WorldWideScience

Sample records for atom probe field-ion

  1. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  2. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  3. Atom probe field ion microscopy and related topics: A bibliography 1991

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory

  4. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  5. Atom probe field ion microscopy and related topics: A bibliography 1989

    International Nuclear Information System (INIS)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications

  6. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1979-06-01

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He in tungsten

  7. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  8. Atom probe field ion microscopy and related topics: A bibliography 1993

    International Nuclear Information System (INIS)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included

  9. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-01-01

    An attempt is made to introduce the reader to the basic physical ideas involved in the field-ion and atom-probe field-ion microscope techniques, and to the applications of these techniques to the study of defects and radiation damage in solids. The final section discusses, in precise form, the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interest in detail

  10. Study of defects, radiation damage and implanted gases in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.; Amano, J.; Wagner, A.

    1980-10-01

    The ability of the field-ion microscope to image individual atoms has been applied, at Cornell University, to the study of fundamental properties of point defects in irradiated or quenched metals. The capability of the atom probe field-ion microscope to determine the chemistry - that is, the mass-to-charge ratio - of a single ion has been used to investigate the behavior of different implanted species in metals. A brief review is presented of: (1) the basic physical principles of the field-ion and atom-probe microscopes; (2) the many applications of these instruments to the study of defects and radiation damage in solids; and (3) the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interests in detail

  11. Specimen preparation of irradiated materials for examination in the atom probe field ion microscope

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1994-01-01

    The atom probe field ion microscope (APFIM) requires specimens in the form of ultrasharp needles. Basic protective measures used to reduce exposure druing specimen preparation are discussed. The low-level radioactive specimen blanks may be made using a two-stage electropolishing process using a thin layer of electrolyte floating on a denser inert liquid; this produces a necked region and eventually two specimens from each single blank. The amount of material handled may also be reduced using a micropolishing technique to repolish blunt or fractured specimens. Control of contamination and possible spills is discussed

  12. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries

  13. Atom-probe field-ion-microscopy study of Fe-Ti alloys

    International Nuclear Information System (INIS)

    Pickering, H.W.; Kuk, Y.; Sakurai, T.

    1980-01-01

    A newly developed high-performance atom-probe (field ion microscope) was employed for the composition analysis of Fe-Ti alloys and their interactions with ambient gas, such as H 2 and O 2 . With a mass resolution (m/Δm) better than 2000 and a spatial resolution of a few A, all isotopes of Fe and Ti and their hydrides and other compounds are clearly resolved during the depth profile study. Some of our findings are: (1) Titanium segregated on the surface and grain boundaries upon heating (greater than or equal to 900 0 C), in the form of oxides, and (2) some Ti in the bulk forms clusters of various sizes with C, O, and/or N as nuclei

  14. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    International Nuclear Information System (INIS)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min -1 can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected

  15. Imaging process in field ion microscopy from the FEM to the atom-probe

    International Nuclear Information System (INIS)

    Mueller, E.W.

    1976-01-01

    The development of the technique and the interpretations of the imaging mechanism, which involve a number of complex phenomena, are traced from the invention of the field emission microscope and the discovery of field desorption to the first field ion microscope. Subsequent introduction of cryogenic operation and utilization of field evaporation led, prior to 1960, to the attainment of high-quality images with full resolution of the atomic lattice and to fundamental applications in the study of lattice defects and other phenomena of physical metallurgy. Extension to the lower-melting metals by imaging with neon was aided by the availability of image intensification technology. The invention of the atom-probe FIM in 1967, permitting surface analysis with ultimate single-atom sensitivity, also brought the discovery of unexpected effects, such as field adsorption of the noble images gases and the abundant formation of metal-noble gas molecular ions. These phenomena, together with recent results of field desorption microcopy, must be included in a refined interpretation of the imaging process. 16 figs., 115 references

  16. Investigations of reactions between pure refractory metals and light gases with the field ion microscope and atom probe

    International Nuclear Information System (INIS)

    Krautz, E.; Haiml, G.

    1989-01-01

    The initial stages of selected reactions of the refractory metals tungsten, niobium and tantalum with hydrogen, oxygen, nitrogen and methane have been studied with the field ion microscope in atomic resolution whereby the composition of single net planes converages and surface zones could absolutely be analyzed with the atom probe by using field desorption under defined conditions at low temperatures. 14 refs., 9 figs. (Author)

  17. Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7/sub -//sub x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The structure and composition of the superconducting oxide YBa 2 Cu 3 O/sub 7-//sub x/ have been examined in atomic detail by field ion microscopy and imaging atom-probe mass spectroscopy. The field ion samples were prepared from hot-pressed disks of the oxide powders. Atomic resolution images were obtained with either argon or hydrogen as the imaging gas. Individual layers of atoms were observed which could be field evaporated in a uniform, layer-by-layer manner. Imaging atom-probe analysis of the field ion tips indicated a metal composition which varied noticeably from sample to sample and an oxygen concentration which was consistently much too low

  18. Atom-probe field-ion microscopy investigation of CMSX-4 Ni-base superalloy laser beam welds

    International Nuclear Information System (INIS)

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1996-01-01

    CMSX-4 superalloy laser beam welds were investigated by transmission electron microscopy and atom probe field-ion microscopy (APFIM). The weld microstructure consisted of fine (10- to 50-nm) irregularly shaped γ' precipitates (0.65 to 0.75 volume fraction) within the γ matrix. APFIM compositions of the γ and γ' phases were found to be different from those in the base metal. Concentration profiles across the γ and γ' phases showed extensive variations of Cr, Co and Al concentrations as a function of distance within the γ phase. Calculated lattice misfits near the γ/γ' interface in the welds are positive values compared to the negative values for base metal. (orig.)

  19. Atom-probe field-ion microscope for the study of the interaction of impurity atoms or alloying elements with defects

    International Nuclear Information System (INIS)

    Wagner, A.; Hall, T.M.; Seidman, D.N.

    1976-10-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) designed for the study of defects is described. This atom probe features: (1) a variable magnification internal-image-intensification system; (2) a liquid-helium goniometer stage; (3) a low-energy (less than or equal 3 keV) gas-ion gun for in-situ irradiations; (4) an ultra-high vacuum (approximately 3.10 -10 torr) chamber; (5) a high vacuum (approximately 10 -6 torr) specimen-exchange device; (6) a Chevron ion detector; and (7) an eight-channel digital timer with a +-10 nsec resolution for measuring the TOFs. The entire process of applying the evaporation pulse to the specimen, measuring the voltages, and analyzing the TOF data is controlled by a computer. With this system we can record and analyze 600 TOFmin. Results on unirradiated specimens of molybdenum, tungsten, W/25 at. % Re, Mo/1.0 at. % Ti, Mo/1.0 at. % Ti/0.08 at. % Zr and a special low swelling stainless steel alloy (LS1A) demonstrate the instrument's ability to quantitatively determine concentrations at the 5.10 -4 at fr level and to determine their spatial distribution with a resolution of a few angstroms

  20. Characterization of duplex stainless steels by TEM [transmission electron microscopy], SANS [small-angle neutron scattering], and APFIM [atom-probe field ion microscopy] techniques

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Results are presented of complementary characterization of aged duplex stainless steels by advanced metallographic techniques, including transmission and high-voltage electron microscopies; small-angle neutron scattering; and atom-probe field ion microscopy. On the basis of the characterization, the mechanisms of aging embrittlement have been shown to be associated with the precipitation of Ni- and Si-rich G phase and Cr-rich α' in the ferrite, and M 23 C 6 carbides on the austenite-ferrite phase boundaries. 19 refs., 19 figs., 1 tab

  1. Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy

    International Nuclear Information System (INIS)

    Sha, G.; Cerezo, A.

    2004-01-01

    Full text: For high strength 7xxx series Al alloys, Zr is an important trace alloy element which is often added to optimise properties, having effects such as refining grain size, inhibiting recrystallization, and improving stress corrosion cracking resistance and quench sensitivity. In addition, it has been reported recently that Zr addition also has a significant influence on early stage ageing behaviour of a 7xxx series Al alloy. Zr equilibrium solubility in solid Al is extremely low. After solution or ageing treatment, most Zr is present as small spherical Ai 3 Zr dispersoids approximately 20 nm in diameter, distributed at grain boundaries as well as within the Al matrix. The crystallographic nature of intermetallic phase Al 3 Zr has been well studied in the literatures. So far, no direct measurement of the chemistry of the Al 3 Zr particles in 7xxx series Al alloys has been published. It is unclear if there is significant Zn, Mg or Cu included in the particles. In this research, 3DAP has been employed for the first time to investigate ionisation behaviour of Al 3 Zr particles and determine the chemistry of the particles in 7050 Al alloy. Using field ion microscopy, the local evaporation radius of the Al 3 Zr particle has been measured to be equivalent to 36 nm for a 10 kV tip, less than the equivalent tip radius for the Al matrix of ∼68 nm. Using the matrix Al evaporation field (19 V/nm) as a reference, this allows the evaporation field of Al 3 Zr to be calculated as 35 V/nm, the same as the field calculated for evaporation of Al as Al 2+ (35 V/nm), and that of Zr as Zr 3+ (35 V/nm). This result is consistent with Al 2+ and Zr 3+ being the main species observed in the mass spectrum during analysis of Al 3 Zr particles. Using 3DAP, the chemical compositions of Al 3 Zr particles are determined to be 64.8∼67.7 at% Al, 23.6∼24.8 at% Zr, 6.9∼9.1 at% Zn, 0.4∼0.7 at% Cu, 0.5∼1.2 at% Mg, with a (Al+Zn)/Zr ratio close to 3. Choice of specimen temperature of

  2. Time-of-flight atom-probe field-ion microscope for the study of defects in metals. Report No. 2357

    International Nuclear Information System (INIS)

    Hall, T.M.; Wagner, A.; Berger, A.S.; Seidman, D.N.

    1975-06-01

    An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10 -6 torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450 0 K. Specimens can also be irradiated in-situ with any low-energy (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s -1 . In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy

  3. Quantitative compositional analysis and field-evaporation behavior of ordered Ni4Mo on an atomic plane-by-plane basis: an atom-probe field-ion microscope study. MSC report No. 4802

    International Nuclear Information System (INIS)

    Yamamoto, M.; Seidman, D.N.

    1982-10-01

    The (211) fundamental and (101) superlattice planes, of the bct lattice, were analysed chemically on an atomic plane-by-plane basis. It was demonstrated that the composition of each individual plane can be determined as a function of depth without any ambiguity. The overall average Mo concentration was measured to be 17.1 at. % for the (211) fundamental plane. Details of the field evaporation behavior of the (211) fundamental and (101) superlattice planes were studied. The field-evaporation behavior is described in terms of the field-evaporation rate, the order of the field evaporated ions, etc. Each individual atomic plane field evaporated on an atomic plane-by-plane basis for the (211) fundamental plane. While for (101) superlattice plane a group of planes consisting of one plane of Mo atoms and four planes of Ni atoms field-evaporated as a unit. An abnormal increase in the number of Mo atoms was found in the central portion of the (211) fundamental plane. Possible mechanisms for the abnormal field evaporation rate are discussed. It is concluded that the atom probe technique can be used to follow the physics and chemistry of the field-evaporation process and the chemistry of the alloy as a function of position, on a subnanometer scale, throughout the specimen. 13 figures

  4. Atom probe microanalysis: Principles and applications to materials problems

    International Nuclear Information System (INIS)

    Miller, M.K.; Smith, G.D.W.

    1987-01-01

    A historical background and general introduction to field emission and field-ionization, field-ion microscopy, and the atom probe is given. Physical principles of field ion microscopy are explained, followed by interpretation of images. Types of atom probes are discussed, as well as the instrumentation used in atomic probe microanalysis. Methods of atom probe analysis and data representation are covered, along with factors affecting performance and statistical analysis of atom probe data. Finally, some case studies and special types of analyses are presented

  5. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben; Al-Kassab, Talaat

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic

  6. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  7. Field-ion microscopy, MSC report No. 4691

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-03-01

    This short article discusses the elements of a basic field ion microscope (FIM), the physics of the processes of field ionization and field evaporation, the factors limiting atomic resolution, the principle features of an atom probe FIM and imaging atom-probe mass spectroscopy

  8. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  9. Detecting device of atomic probe

    International Nuclear Information System (INIS)

    Nikonenkov, N.V.

    1979-01-01

    Operation of an atomic-probe recording device is discussed in detail and its flowsheet is given. The basic elements of the atomic-probe recording device intented for microanalysis of metals and alloys in an atomic level are the storage oscillograph with a raster-sweep unit, a two-channel timer using frequency meters, a digital printer, and a control unit. The digital printer records information supplied by four digital devices (two frequency meters and two digital voltmeters) in a four-digit binary-decimal code. The described device provides simultaneous recording of two ions produced per one vaporation event

  10. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  11. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    International Nuclear Information System (INIS)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 950 0 C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  12. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  13. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1983-01-01

    The role of lasers in nuclear physics research is discussed including nuclear structure experiments involving the measurement of isotope shifts and hyperfine splitting in atomic energy levels in unstable nuclei by resonance fluorescence spectroscopy and the ultra sensitive detection of isotopic element abundances. (U.K.)

  14. Modeling Atom Probe Tomography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2015-12-15

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.

  15. Creating and probing coherent atomic states

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.O.; Burgdoerfer, J. [Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Frey, M.T.; Dunning, F.B. [Rice Univ., Houston, TX (United States)

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  16. A FIM-atom probe investigation of the bainite transformation in CrMo steel

    International Nuclear Information System (INIS)

    Bach, P.W.

    1981-01-01

    To obtain a better understanding of the role played by Cr and Mo in the bainite transformation a Field-Ion Microscope - Atom Probe was constructed in order to study the distribution of the alloying elements near various types of boundaries on atomic scale. The distribution of alloying elements measured with this instrument is not so smooth on atomic scale as suggested by microprobe analysis. In a coherent twin boundary, formed during the bainite transformation, a depletion of the substitutionals Cr and Mo and an enhancement of the C content is observed, which is in accordance with the atomic model of a B.C.C. twin. In the twin plane the interstitial sites are even larger than the F.C.C. octahedral sites and this plane can act as an effective sink for the carbon atoms from bainitic ferrite. The depletion of Cr and Mo from the twin plane is due to interface coherency. (Auth.)

  17. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  18. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Kawakami, K. [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Raabe, D. [Max-Planck Institut für Eisenforschung GmbH, Department for Microstructure Physics and Alloy Design, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2017-04-15

    Highlights: • Quantitative analysis in Fe-Cu alloy was investigated in voltage and laser atom probe. • In voltage-mode, apparent Cu concentration exceeded actual concentration at 20–40 K. • In laser-mode, the concentration never exceeded the actual concentration even at 20 K. • Detection loss was prevented due to the rise in tip surface temperature in laser-mode. • Preferential evaporation of solute Cu was reduced in laser-mode. - Abstract: The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40 K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20 K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  19. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-04-01

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Efficient atom localization via probe absorption in an inverted-Y atomic system

    Science.gov (United States)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  2. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    The following were studied: New semiclassical method for scattering calculations, He atom scattering from defective Pt surfaces, He atom scattering from Xe overlayers, thermal dissociation of H 2 on Cu(110), spin flip scattering of atoms from surfaces, and Car-Parrinello simulations of surface processes

  3. First local electrode atom probe analysis of magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Kuhlman, K.R.; Kelly, T.F.; Miller, M.K.

    2004-01-01

    Full text: We have successfully fabricated atom probe samples of a metamorphic magnetite and performed an analysis of one of these samples using a local electrode atom probe (LEAP). This particular magnetite, previously designated LP204-1, was extracted from a polymetamorphosed, granulite-facies marble and contains grain scale heterogeneity in its oxygen isotope ratios. Crystals of LP204-1 contain a high number density of nanometer-scale, disk-shaped Al-Mn-Fe-spinel precipitates making this magnetite particularly attractive for demonstrating the capabilities of the LEAP with regard to geological materials. Field ion microscope images of these magnetite crystals show precipitate size and morphology that agrees with previous results. A sample of LP-204-1 was analyzed in the LEAP, resulting in a cylindrical analyzed volume approx. 26 nm in diameter and 21 nm high. The mass spectrum contained nearly 106,000 atoms, 97.1 % of which were identified. Peaks for singly, doubly and triply ionized species were fully resolved. The analysis volume appeared to be purely magnetite, i.e. no precipitates were observed. If it is assumed that 77 % of the ions in the peak at 16 are O 2 ++ rather than O+, the stoichiometry measured for this sample using electron probe microanalysis is achieved. The high fraction of O 2 ++ can be explained by lack of a peak for O ++ and significant peaks for FeO x indicating a relatively low field strength, which in turn favors molecular ions. This work is an encouraging beginning for analysis of geological materials in atom probes. Refs. 4 (author)

  4. Measurements of H-atom density by a catalytic probe

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2006-01-01

    One of the important plasma parameters in tokamaks is the density of neutral hydrogen atoms which can be measured by catalytic probes. The method is based on the catalytic recombination of H atoms on the metal surface. In order to prevent a substantial drain of atoms by the probe, it should be made as small as possible. But still this effect can not be neglected. Therefore a study of the influence of a catalytic probe on the H-atom density was performed. The source of neutral H-atoms was inductively coupled RF hydrogen plasma. The gas from the discharge vessel was leaked to an experimental chamber through a narrow tube with the diameter of 5 mm and the length of 6 cm. Charged particles created in the discharge vessel were recombined on the walls of the narrow tube, so that the gas entering the experimental chamber was a mixture of hydrogen atoms and molecules only. The density of H-atoms in the experimental chamber was measured with two nickel catalytic probes. One probe was at fixed position and the other one was made movable. A change in the probe signal of the fixed probe was measured versus the position of the movable probe. The measurements were performed at the pressures between 10 Pa and 200 Pa and at two different RF powers 200 W and 300 W. It was found that the density of neutral hydrogen atoms was reduced for about 20% due to the presence of the probe. This result was independent from the pressure in the experimental chamber. (author)

  5. Interpretation of atom probe tomography data for the intermetallic TiAl+Nb by means of field evaporation simulation

    KAUST Repository

    Boll, Torben

    2013-01-01

    In this paper simulations of the field evaporation process during field ion microscopy (FIM) and atom probe tomography (APT) are presented and compared with experimental data. The Müller-Schottky-model [1] was extended to include the local atomic arrangement on the evaporation process of atoms. This arrangement was described by the sum of the next-neighbor-binding-energies, which differ for an atom of type A, depending on how many A-A, B-B or A-B bonds are present. Thus simulations of APT-data of intermetallic phases become feasible. In this study simulations of L10-TiAl with additions of Nb are compared with experimental data. Certain artifacts, which appear for experimental data are treated as well. © 2012 Elsevier B.V.

  6. Field ion microscopy

    International Nuclear Information System (INIS)

    Ramanathan, D.

    1975-01-01

    The basic features of the Field-Ion Microscope (FIM) and the theory of image formation are explained. Design parameters of the FIM, factors limiting its resolution, interpretation of the image, etc are briefly outlined. Relative merits of the various imaging gases and the applications of the FIM are also covered. (K.B.)

  7. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  8. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  9. Industrial application of atom probe tomography to semiconductor devices

    NARCIS (Netherlands)

    Giddings, A.D.; Koelling, S.; Shimizu, Y.; Estivill, R.; Inoue, K.; Vandervorst, W.; Yeoh, W.K.

    2018-01-01

    Advanced semiconductor devices offer a metrology challenge due to their small feature size, diverse composition and intricate structure. Atom probe tomography (APT) is an emerging technique that provides 3D compositional analysis at the atomic-scale; as such, it seems uniquely suited to meet these

  10. Atom probe tomography of a commercial light emitting diode

    International Nuclear Information System (INIS)

    Larson, D J; Prosa, T J; Olson, D; Lawrence, D; Clifton, P H; Kelly, T F; Lefebvre, W

    2013-01-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device

  11. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  12. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  13. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  14. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  15. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  16. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  17. Semiconductor studies by radioactive probe atoms

    International Nuclear Information System (INIS)

    Wichert, Thomas

    2003-01-01

    There are a growing number of experimental techniques that have in common the usage of radioactive isotopes for the characterization of semiconductors. These techniques deliver atomistic information about identity, formation, lattice environment, and electronic structure, as well as dynamics of defects and defect complexes. The results obtained by different hyperfine techniques are discussed in context with the study of intrinsic and extrinsic defects, i.e. of vacancies or self-interstitials and dopant or impurity atoms, respectively. In addition, the employment of electrical and optical techniques in combination with radioactive isotopes is presented

  18. Max Auwaerter Price lecture: building and probing atomic structures

    International Nuclear Information System (INIS)

    Ternes, M.

    2008-01-01

    Full text: The control of the geometric, electronic, and magnetic properties of atomic-scale nanostructures is a prerequisite for the understanding and fabrication of new materials and devices. Two routes lead towards this goal: Atomic manipulation of single atoms and molecules by scanning probe microscopy, or patterning using self-assembly. Atomic manipulation has been performed since almost 20 years, but it has been difficult to answer the simple question: how much force does it take to manipulate atoms and molecules on surfaces? To address this question, we used a combined atomic force and scanning tunneling microscope to simultaneously measure the force and the current between an adsorbate and a tip during atomic manipulation. We found that the force it takes to move an atom depends crucially on the binding between adsorbate and surface. Our results indicate that for moving metal atoms on metal surfaces, the lateral force component plays the dominant role. Measuring the forces during manipulation yielded the full potential energy landscape of the tip-sample interaction. Surprisingly, the potential energy barriers are comparable to diffusion barriers, which are obtained in the absence of a probe tip. Furthermore, we used the scanning tunneling microscope to assemble magnetic structures on a thin insulator. We found, that the spin of the atom is influenced by the magnetocrystalline anisotropy of the supporting surface which lifts the spin degeneracy of the ground state and enables the identification of individual atoms. The ground state of atoms with half-integer spin remains always degenerated at zero field due to Kramers theorem. We found that if these states differ by an orbital momentum of m = ±1 the localized spin is screened by the surrounding conducting electrons of the non-magnetic host and form a many-electron spin-singlet at sufficiently low temperature. (author)

  19. A versatile atomic number correction for electron-probe microanalysis

    International Nuclear Information System (INIS)

    Love, G.; Cox, M.G.; Scott, V.D.

    1978-01-01

    A new atomic number correction is proposed for quantitative electron-probe microanalysis. Analytical expressions for the stopping power S and back-scatter R factors are derived which take into account atomic number of the target, incident electron energy and overvoltage; the latter expression is established using Monte Carlo calculations. The correct procedures for evaluating S and R for multi-element specimens are described. The new method, which overcomes some limitations inherent in earlier atomic number corrections, may readily be used where specimens are inclined to the electron beam. (author)

  20. Performance and applications of the ORNL local electrode atom probe

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F.

    2004-01-01

    Full text: The commercial introduction in 2003 of the local electrode atom probe (LEAP) developed by Imago Scientific Instruments has made dramatic, orders of magnitude improvements in the data acquisition rate and the size of the analyzed volume compared to previous types of three-dimensional atom probes and other scanning atom probes. This state-of-the-art instrument may be used for the analysis of traditional needle-shaped specimens and specimens fabricated from 'flat' specimens with focused ion beam (FIB) techniques. The advantage of this local electrode configuration is that significantly lower (∼50 %) standing and pulse voltages are required to produce the field strength required to field evaporate ions from the specimen. New high speed (200 kHz) pulse generators coupled with crossed delay line detectors and faster timing systems also enable significantly faster (up to 300 times) data acquisition rates to be achieved. This new design also permits a significantly larger field of view to be analyzed and results in data sets containing up to 10 8 atoms. In the local electrode atom probe, a ∼10-50 μm diameter aperture is typically positioned approximately one aperture diameter in front of the specimen. In order to accurately align the specimen to the aperture in the funnel-shaped electrode, the specimen is mounted on a three axis nanopositioning stage. An approximate alignment is performed while viewing the relative positions of the specimen and the local electrode with a pair of low magnification video cameras and then a pair of higher magnification video cameras attached to long range microscopes. The final alignment is performed with the use of the field evaporated ions from the specimen. A discussion on the alignment of the specimen with the local electrode, the effects of the fields on the specimen, and the effects of aperture size on aperture lifetime will be presented. The performance of the ORNL local electrode atom probe will be described. The

  1. Data mining for isotope discrimination in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Scott R. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Bryden, Aaron [Ames National Laboratory, Ames, IA 50011-2230 (United States); Suram, Santosh K. [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011-2230 (United States)

    2013-09-15

    Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. - Highlights: ► Atom probe tomography and statistical learning were combined for data enhancement. ► Multiple eigenvalue decompositions decomposed a spectrum with overlapping peaks. ► The isotope of each atom was determined by kinetic energy discrimination. ► Eigenspectra were identified and new chemical information was identified.

  2. New approaches to nanoparticle sample fabrication for atom probe tomography

    International Nuclear Information System (INIS)

    Felfer, P.; Li, T.; Eder, K.; Galinski, H.; Magyar, A.P.; Bell, D.C.; Smith, G.D.W.; Kruse, N.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  3. New approaches to nanoparticle sample fabrication for atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Li, T. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Materials Department, The University of Oxford, Oxford (United Kingdom); Eder, K. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Galinski, H. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Magyar, A.P.; Bell, D.C. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138 (United States); Smith, G.D.W. [Materials Department, The University of Oxford, Oxford (United Kingdom); Kruse, N. [Chemical Physics of Materials (Catalysis-Tribology), Université Libre de Bruxelles, Campus Plaine, CP 243, 1050 Brussels (Belgium); Ringer, S.P.; Cairney, J.M. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2015-12-15

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  4. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota

    2012-12-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Visualization of deuterium dead layer by atom probe tomography

    KAUST Repository

    Gemma, Ryota; Al-Kassab, Talaat; Kirchheim, Reiner; Pundt, Astrid A.

    2012-01-01

    The first direct observation, by atom probe tomography, of a deuterium dead layer is reported for Fe/V multilayered film loaded with D solute atoms. The thickness of the dead layers was measured to be 0.4-0.5 nm. The dead layers could be distinguished from chemically intermixed layers. The results suggest that the dead layer effect occurs even near the interface of the mixing layers, supporting an interpretation that the dead layer effect cannot be explained solely by electronic charge transfer but also involves a modulation of rigidity. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Probing stem cell differentiation using atomic force microscopy

    International Nuclear Information System (INIS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  7. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  8. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  9. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Directory of Open Access Journals (Sweden)

    Zeng Wei

    2018-03-01

    Full Text Available For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  10. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Science.gov (United States)

    Zeng, Wei; Deng, Li; Chen, Aixi

    2018-03-01

    For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D) atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  11. Encapsulation method for atom probe tomography analysis of nanoparticles

    International Nuclear Information System (INIS)

    Larson, D.J.; Giddings, A.D.; Wu, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction. - Highlights: • Pt nanoparticles were analyzed using atom probe tomography and TEM. • The particles were prepared by encapsulation using atomic layer deposition. • Simulation of field evaporation near a void results in aberrations in ion trajectories. • Apparent differences between TEM and APT analyses are reconciled through simulation of field evaporation from a low-field matrix containing high-field NPs; ion trajectory aberrations are shown to lead to an apparent mixing of the matrix into the NPs.

  12. Developing detection efficiency standards for atom probe tomography

    Science.gov (United States)

    Prosa, Ty J.; Geiser, Brian P.; Lawrence, Dan; Olson, David; Larson, David J.

    2014-08-01

    Atom Probe Tomography (APT) is a near-atomic-scale analytical technique which, due to recent advances in instrumentation and sample preparation techniques, is being used on a variety of 3D applications. Total system detection efficiency is a key parameter for obtaining accurate spatial reconstruction of atomic coordinates from detected ions, but experimental determination of efficiency can be difficult. This work explores new ways to measure total system detection efficiency as well as the specimen characteristics necessary for such measurements. Composite specimens composed of a nickel/chromium multilayer core, National Institute of Standards and Technology Standard Reference Material 2135c, encapsulated with silver, silicon, or nickel were used to demonstrate the suitability of this approach for providing a direct measurement of APT efficiency. Efficiency measurements based on this multilayer encapsulated in nickel are reported.

  13. New atom probe approaches to studying segregation in nanocrystalline materials

    International Nuclear Information System (INIS)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J.; Cao, Y.; Liao, X.Z.; Cairney, J.M.

    2013-01-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess

  14. New atom probe approaches to studying segregation in nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, S.K.; Felfer, P.J.; Araullo-Peters, V.J. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Cao, Y.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Cairney, J.M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); The Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2013-09-15

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. - Highlights: ► New data treatment methods allow delineation of grain boundaries, even without segregation. ► Proxigrams calculated from the surfaces accurately show the extent of segregation. ► Tessellation of the data volume can be used to map the Gibbsian interfacial excess.

  15. New atom probe approaches to studying segregation in nanocrystalline materials.

    Science.gov (United States)

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Computers in field ion microscopy

    International Nuclear Information System (INIS)

    Suvorov, A.L.; Razinkova, T.L.; Sokolov, A.G.

    1980-01-01

    A review is presented of computer applications in field ion microscopy (FIM). The following topics are discussed in detail: (1) modeling field ion images in perfect crystals, (2) a general scheme of modeling, (3) modeling of the process of field evaporation, (4) crystal structure defects, (5) alloys, and (6) automation of FIM experiments and computer-assisted processing of real images. 146 references are given

  17. Design of a femtosecond laser assisted tomographic atom probe

    International Nuclear Information System (INIS)

    Gault, B.; Vurpillot, F.; Vella, A.; Gilbert, M.; Menand, A.; Blavette, D.; Deconihout, B.

    2006-01-01

    A tomographic atom probe (TAP) in which the atoms are field evaporated by means of femtosecond laser pulses has been designed. It is shown that the field evaporation is assisted by the laser field enhanced by the subwavelength dimensions of the specimen without any significant heating of the specimen. In addition, as compared with the conventional TAP, due to the very short duration of laser pulses, no spread in the energy of emitted ions is observed, leading to a very high mass resolution in a straight TAP in a wide angle configuration. At last, laser pulses can be used to bring the intense electric field required for the field evaporation on poor conductive materials such as intrinsic Si at low temperature. In this article, the performance of the laser TAP is described and illustrated through the investigation of metals, oxides, and silicon materials

  18. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory of measureme......The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory...... of measurements on quantum systems has grown into a well established field. Experimental demonstrations of nondestructive continuous measurements on individual quantum systems now occur in many laboratories. Such experiments with ultracold atoms have shown great progress, but the exploitation of the quantum...... nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...

  19. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  20. Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys

    International Nuclear Information System (INIS)

    Oh-ishi, K.; Mendis, C.L.; Ohkubo, T.; Hono, K.

    2011-01-01

    The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys. -- Research highlights: → We study performance of UV laser assisted atom probe analysis for Mg alloys. → There is an optimized range of laser power and specimen temperature. → Optimized UV laser enables atom probe data of Mg alloys with high special resolution.

  1. Atom-probe for FinFET dopant characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2011-05-15

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions

  2. Atom-probe for FinFET dopant characterization

    International Nuclear Information System (INIS)

    Kambham, A.K.; Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W.

    2011-01-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10 o and 45 o ) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: → This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). → Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. → The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions. → In this publication we

  3. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    Science.gov (United States)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  4. Theoretical study of the effect of probe shape on adhesion force between probe and substrate in atomic force microscope experiment

    OpenAIRE

    Yang, Li; Hu, Junhui; Kong, Lingjiang

    2017-01-01

    The quantitative description of adhesion force dependence on the probe shapes are of importance in many scientific and industrial fields. In order to elucidate how the adhesion force varied with the probe shape in atomic force microscope manipulation experiment, we performed a theoretical study of the influences of the probe shape (the sphere and parabolic probe) on the adhesion force at different humidity. We found that the combined action of the triple point and the Kelvin radius guiding th...

  5. Multivariate statistical analysis of atom probe tomography data

    International Nuclear Information System (INIS)

    Parish, Chad M.; Miller, Michael K.

    2010-01-01

    The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe-Cr-Al-Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.

  6. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  7. A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps

    Science.gov (United States)

    2016-03-26

    reveal crystalline patterns from atom probe microscopy desorption maps Lan Yao Department of Materials Science and Engineering, University of Michigan, Ann...reveal the crystallographic information present in Atom Probe Microscopy (APM) data is presented. Themethod filters atoms based on the time difference...between their evaporation and the evaporation of the previous atom . Since this time difference correlates with the location and the local structure of

  8. Probing the nanostructural evolution of age-hardenable Al alloys with atom-probe tomography

    International Nuclear Information System (INIS)

    Biswas, Aniruddha

    2010-01-01

    Atom Probe Tomographic (APT) Microscope is a lens-less point-projection 3-D analytical microscope that has the unique capability of (i) three-dimensional imaging at the atomic scale and (ii) compositional analysis with sub-nanometre spatial resolution and single-atom sensitivity. Modern 3-D APT microscope offers the highest the spatial resolution among all the available analytical techniques. It can simultaneously achieve a spatial resolution better than 0.3 nm in all three directions of a three-dimensional analysis-volume. As a result, 3-D APT microscopy, especially as practiced by the high speed, large field of view instruments is the most appropriate tool for studying nano-scale precipitates and their heterophase interfaces. This talk will introduce the technique, discuss its brief historical background and use examples from age-hardenable Al-alloys. The results include a detailed APT study of the compositional evolution of the nano-scale precipitates: θ and Q present in commercial age hardenable aluminium alloy, W319

  9. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Poulsen, Uffe Vestergaard; Negretti, Antonio

    2009-01-01

    investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally...

  10. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat; Kompatscher, Michael; Kirchheim, Reiner; Kostorz, Gernot; Schö nfeld, Bernd

    2014-01-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from

  11. Guided mass spectrum labelling in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D., E-mail: daniel.haley@materials.ox.ac.uk [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Choi, P.; Raabe, D. [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany)

    2015-12-15

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  12. Guided mass spectrum labelling in atom probe tomography

    International Nuclear Information System (INIS)

    Haley, D.; Choi, P.; Raabe, D.

    2015-01-01

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  13. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.

    Science.gov (United States)

    Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L

    2017-06-15

    The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.

  14. Reduction of multiple hits in atom probe tomography

    International Nuclear Information System (INIS)

    Thuvander, Mattias; Kvist, Anders; Johnson, Lars J.S.; Weidow, Jonathan; Andrén, Hans-Olof

    2013-01-01

    The accuracy of compositional measurements using atom probe tomography is often reduced because some ions are not recorded when several ions hit the detector in close proximity to each other and within a very short time span. In some cases, for example in analysis of carbides, the multiple hits result in a preferential loss of certain elements, namely those elements that frequently field evaporate in bursts or as dissociating molecules. In this paper a method of reducing the effect of multiple hits is explored. A fine metal grid was mounted a few millimeters behind the local electrode, effectively functioning as a filter. This resulted in a decrease in the overall detection efficiency, from 37% to about 5%, but also in a decrease in the fraction of multiple hits. In an analysis of tungsten carbide the fraction of ions originating from multiple hits decreased from 46% to 10%. As a result, the measured carbon concentration increased from 48.2 at%to 49.8 at%, very close to the expected 50.0 at%. The characteristics of the multiple hits were compared for analyses with and without the grid filter. - Highlights: ► APT experiments have been performed with a reduced amount of multiple hits. ► The multiple hits were reduced by placing a grid behind the electrode. ► This resulted in improved carbon measurement of WC

  15. Attachment of carbon nanotubes to atomic force microscope probes

    International Nuclear Information System (INIS)

    Gibson, Christopher T.; Carnally, Stewart; Roberts, Clive J.

    2007-01-01

    In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20 nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM)

  16. Probe Knots and Hopf Insulators with Ultracold Atoms

    Science.gov (United States)

    Deng, Dong-Ling; Wang, Sheng-Tao; Sun, Kai; Duan, L.-M.

    2018-01-01

    Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here we find that knotted structures also exist in a peculiar class of three-dimensional topological insulators—the Hopf insulators. In particular, we demonstrate that the momentum-space spin textures of Hopf insulators are twisted in a nontrivial way, which implies the presence of various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in Hopf insulators, which may have potential applications in spintronics and quantum information processing. D.L.D., S.T.W. and L.M.D. are supported by the ARL, the IARPA LogiQ program, and the AFOSR MURI program, and supported by Tsinghua University for their visits. K.S. acknowledges the support from NSF under Grant No. PHY1402971. D.L.D. is also supported by JQI-NSF-PFC and LPS-MPO-CMTC at the final stage of this paper.

  17. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong

  18. Atom probe characterization of yttria particles in ODS Eurofer steel

    International Nuclear Information System (INIS)

    Aleev, A.A.; Zaluzhny, A.G.; Nikitin, A.A.; Rogozhkin, S.V.; Iskandarov, N.A.; Vladimirov, P.; Moeslang, A.; Lindau, R.; Klimenkov, M.

    2009-01-01

    Oxide dispersion strengthened steels exhibit higher temperature and radiation resistance than conventionally produced ferritic/martensitic steels. Such behaviour, as believed, is mainly caused by presence of highly dispersed and extremely stable oxide particles with sizes of few nanometers. It was shown that the most promising oxide additive was yttria (Y 2 O 3 ) and as mechanical parameters were strongly depended on size and number density of formed peculiarities it is required to reduce their dimensions to few nanometers and drastically increase their number. At present, considerable effort is focused on investigation of behaviour and properties of such particles. Recent studies of Eurofer ODS steel (9%-CrWVTa) by SANS and PoAS revealed the presence of high number density structural peculiarities with size approximately one nanometer. At the same time, previous studies by TEM identified only high number of small (5-10 nm) Y 2 O 3 particles. So, the purpose of this work was to look into this material by means of tomographic atom probe and find out the chemistry and origin of peculiarities with sizes less than 5 nm. These investigations revealed fine (∼ 2 nm) particles that were enriched not only in yttrium and oxygen but also in vanadium and nitrogen. Concentration of vanadium in them is approximately at the same level as yttrium. Moreover, some particles were found to be enriched in only three or even two elements mentioned above. However, total concentration of chemical elements in these particles is considerably less than that of iron. Estimated number density for detected particles is (1 / 5) x 10 23 m -3 . (author)

  19. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    Science.gov (United States)

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo

    2012-01-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations

  1. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  2. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  3. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-04-01

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  4. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  5. Understanding proton-conducting perovskite interfaces using atom probe tomography

    Science.gov (United States)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3

  6. Dopant distributions in n-MOSFET structure observed by atom probe tomography

    International Nuclear Information System (INIS)

    Inoue, K.; Yano, F.; Nishida, A.; Takamizawa, H.; Tsunomura, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  7. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    Science.gov (United States)

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  8. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  10. Two-probe atomic-force microscope manipulator and its applications

    Science.gov (United States)

    Zhukov, A. A.; Stolyarov, V. S.; Kononenko, O. V.

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  11. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  12. Atomic probe Wigner tomography of a nanomechanical system

    International Nuclear Information System (INIS)

    Singh, Swati; Meystre, Pierre

    2010-01-01

    We propose a scheme to measure the quantum state of a nanomechanical oscillator cooled near its ground state of vibrational motion. This is an extension of the nonlinear atomic homodyning technique scheme first developed to measure the intracavity field in a micromaser. It involves the use of a detector atom that is simultaneously coupled to the resonator via a magnetic interaction and to (classical) optical fields via a Raman transition. We show that the probability for the atom to be found in the ground state is a direct measure of the Wigner characteristic function of the nanomechanical oscillator. We also investigate the back-action effect of this destructive measurement on the state of the resonator.

  13. Photoelectron imaging, probe of the dynamics: from atoms... to clusters

    International Nuclear Information System (INIS)

    Lepine, F.

    2003-06-01

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W n - , C n - , C 60 ). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  14. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  15. A computational geometry framework for the optimisation of atom probe reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, Peter [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Institute for General Materials Properties, Department of Materials Science, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen (Germany); Cairney, Julie [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2016-10-15

    In this paper, we present pathways for improving the reconstruction of atom probe data on a coarse (>10 nm) scale, based on computational geometry. We introduce a way to iteratively improve an atom probe reconstruction by adjusting it, so that certain known shape criteria are fulfilled. This is achieved by creating an implicit approximation of the reconstruction through a barycentric coordinate transform. We demonstrate the application of these techniques to the compensation of trajectory aberrations and the iterative improvement of the reconstruction of a dataset containing a grain boundary. We also present a method for obtaining a hull of the dataset in both detector and reconstruction space. This maximises data utilisation, and can be used to compensate for ion trajectory aberrations caused by residual fields in the ion flight path through a ‘master curve’ and correct for overall shape deviations in the data. - Highlights: • An atom probe reconstruction can be iteratively improved by using shape constraints. • An atom probe reconstruction can be inverted using barycentric coordinate transforms. • Hulls for atom probe datasets can be obtained from 2D detector outlines that are co-reconstructed with the data. • Ion trajectory compressions caused by instrument-specific residual fields in the drift tube can be corrected.

  16. Probing new intra-atomic force with isotope shifts

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Kyoko; Tanaka, Minoru [Osaka University, Department of Physics, Graduate School of Science, Toyonaka, Osaka (Japan); Yamamoto, Yasuhiro [Yonsei University, Department of Physics and IPAP, Seoul (Korea, Republic of)

    2017-12-15

    In the development of atomic clocks, some atomic transition frequencies are measured with remarkable precision. These measured spectra may include the effects of a new force mediated by a weakly interacting boson. Such effects might be distilled out from possible violation of a linear relation in isotope shifts between two transitions, as known as King's linearity, with relatively suppressed theoretical uncertainties. We discuss the experimental sensitivity to a new force in the test of the linearity as well as the linearity violation owing to higher-order effects within the Standard Model. The sensitivity to new physics is limited by such effects. We have found that, for Yb{sup +}, the higher-order effect is in the reach of future experiments. The sensitivity to a heavy mediator is also discussed. It is analytically clarified that the sensitivity becomes weaker than that in the literature. Our numerical results of the sensitivity are compared with other weak force search experiments. (orig.)

  17. Probing Efimov discrete scaling in an atom-molecule collision

    Science.gov (United States)

    Shalchi, M. A.; Yamashita, M. T.; Hadizadeh, M. R.; Garrido, E.; Tomio, Lauro; Frederico, T.

    2018-01-01

    The discrete Efimov scaling behavior, well known in the low-energy spectrum of three-body bound systems for large scattering lengths (unitary limit), is identified in the energy dependence of an atom-molecule elastic cross section in mass-imbalanced systems. That happens in the collision of a heavy atom with mass mH with a weakly bound dimer formed by the heavy atom and a lighter one with mass mL≪mH . Approaching the heavy-light unitary limit, the s -wave elastic cross section σ will present a sequence of zeros or minima at collision energies following closely the Efimov geometrical law. Our results, obtained with Faddeev calculations and supplemented by a Born-Oppenheimer analysis, open a perspective to detecting the discrete scaling behavior from low-energy scattering data, which is timely in view of the ongoing experiments with ultracold binary mixtures having strong mass asymmetries, such as lithium and cesium or lithium and ytterbium.

  18. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  19. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  20. Three dimensional atom probe imaging of GaAsSb quantum rings

    International Nuclear Information System (INIS)

    Beltran, A.M.; Marquis, E.A.; Taboada, A.G.; Ripalda, J.M.; Garcia, J.M.; Molina, S.I.

    2011-01-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs x Sb 1-x quantum rings of 20-30 nm in diameter with x∼0.33. -- Highlights: → Atom-probe tomography resolves QR morphology of GaSb self-assembled GaSb buried nanostructures. → From atom-probe tomography compositional distribution has been obtained. → Strong segregation and morphological changes are observed with respect to uncapped QR.

  1. Atom probe, AFM and STM study on vacuum fired stainless steel

    International Nuclear Information System (INIS)

    Stupnik, A.; Frank, P.; Leisch, M.

    2008-01-01

    Full text: Stainless steel is one of the most commonly used structural materials for vacuum equipment. An efficient method to reduce the outgassing rate from stainless steel is a high temperature bakeout in vacuum (vacuum firing). This procedure reduces significantly the amount of dissolved hydrogen in the bulk. For the outgassing process the recombination rate of hydrogen atoms to the molecules plays the determining role and recombination is strongly related to the surface structure and composition. To get more detailed information about the surface morphology and composition AFM, STM and atom probe studies were carried out. Experiments on AISI 304L stainless steel samples show that the surface reconstructs completely during vacuum firing and large atomically flat terraces bounded by bunched steps and facets are formed. The large flat terraces can be assigned to (111) planes. The bunched steps and facets are corresponding in orientation almost to (110) planes and (100) planes. Surface inspection after vacuum firing by Auger electron spectroscopy (AES) gives reason for a composition change indicated by a reduction of the chromium signal in relation to the iron and nickel signal. Since the information depth of AES covers several atomic layers not only the top atomic layer of the sample surface is probed. For this reason 3D atom probe was used as well suited tool to investigate the segregation behavior of this alloy with the goal to examine the change in local chemical composition due to the high temperature treatment. As a result of vacuum firing the atom probe experiments show a significant enrichment of nickel at the top surface layer. In the second atomic layer chromium enrichment is detected. After vacuum firing the average composition below the second atomic layer shows certain chromium depletion up to 2 nm in depth. The observed changes in surface chemistry influence recombination and desorption probability from the surface and may contribute to the present

  2. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    Energy Technology Data Exchange (ETDEWEB)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-04-15

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  3. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  4. Investigation of the self tempering effect of martensite by means of atom probe tomography

    International Nuclear Information System (INIS)

    Sackl, Stephanie; Clemens, Helmut; Primig, Sophie

    2015-01-01

    Self-tempering effects can be observed in steels with relatively high martensite start temperatures. After the formation of the first martensitic laths, carbon is able to diffuse in these laths during cooling, which can be attributed to sufficiently high temperatures. This effect cannot be observed in laths formed at lower temperatures. In steels containing up to 0.2 m.-% carbon, up to 90 % of the carbon atoms in the martensite segregate to dislocations during quenching. Due to its atomic resolution and sensitivity with respect to light elements, atom probe tomography is very well suited for the investigation of this phenomenon. In this study, the self-tempering effect in a quenched and tempered steel 42CrMo4 with a martensite start temperature of 310 C is investigated by means of atom probe tomography.

  5. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  6. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guebum, E-mail: hanguebum@live.co.kr [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, Indiana 47803 (United States); Department of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of); Ahn, Hyo-Sok, E-mail: hsahn@seoultech.ac.kr [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-02-15

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  7. Fabrication of tungsten probe for hard tapping operation in atomic force microscopy

    International Nuclear Information System (INIS)

    Han, Guebum; Ahn, Hyo-Sok

    2016-01-01

    We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20 nm and 50 nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively. - Highlights: • We propose a method of producing highly stiff tungsten probes for hard tapping AFM. • Spring constant of tungsten probe is determined by finite element method. • Enhanced hard tapping performance is confirmed. • Tip-enhanced Raman spectroscopy is used to identify damage to graphene.

  8. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    International Nuclear Information System (INIS)

    Felfer, P.; Ceguerra, A.V.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  9. Probing Andreev bound states in one-atom superconducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)

    2015-07-01

    Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.

  10. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due to t...

  11. Probing the stiffness of isolated nucleoli by atomic force microscopy.

    Science.gov (United States)

    Louvet, Emilie; Yoshida, Aiko; Kumeta, Masahiro; Takeyasu, Kunio

    2014-04-01

    In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.

  12. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    International Nuclear Information System (INIS)

    Zhukov, Mikhail; Golubok, Alexander; Gulyaev, Nikolai

    2016-01-01

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of created specialized probes at study a calcinations process of the aortic heart tissues.

  13. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  14. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  15. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  16. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    International Nuclear Information System (INIS)

    Gemma, R.; Al-Kassab, T.; Kirchheim, R.; Pundt, A.

    2011-01-01

    Research highlights: → Deuterium distribution in V-Fe thin film was investigated by atom probe tomography. → Correct analysis was possible at analysis temperatures below 30 K. → Inhomogeneous distribution of D atoms was nevertheless observed. → This was interpreted by trapping effect at misfit dislocation. → Atom probe analysis provides detailed information on local chemistry of M-D system. - Abstract: V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations.

  17. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    International Nuclear Information System (INIS)

    Rius, G; Clark, I T; Yoshimura, M

    2013-01-01

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  18. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  19. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography

    International Nuclear Information System (INIS)

    Takahashi, Jun; Kawakami, Kazuto; Kobayashi, Yukiko; Tarui, Toshimi

    2010-01-01

    For the first time ever, atomic-scale direct observation of deuterium atoms trapping at nano-sized titanium carbide (TiC) precipitates in steel was successfully achieved using atom probe tomography (APT). Deuterium gas charging into the needle specimen and subsequently quenching were conducted in our designed chamber attached to three-dimensional atom probe (3DAP). The deuterium atoms were definitely observed on the broad surface of TiC platelets, which indicated that the broad interface between the matrix and TiC was the main trapping site.

  20. Atomic wavefunctions probed through strong-field light-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Villeneuve, D M; Corkum, P B; Dudovich, N [Natl Res Council Canada, Ottawa, ON K1A 0R6 (Canada); Shafir, D; Dudovich, N [Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, (Israel); Mairesse, Y [Univ Bordeaux 1, CELIA, CNRS, UMR 5107, CEA, F-33405 Talence (France)

    2009-07-01

    Strong-field light-matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron-ion re-collision process, we are able to resolve the symmetry of the atomic wavefunction with high contrast. (authors)

  1. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  2. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.

    Science.gov (United States)

    Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping

    2012-06-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  3. Dicke superradiance as nondestructive probe for the state of atoms in optical lattices

    Science.gov (United States)

    ten Brinke, Nicolai; Schützhold, Ralf

    2016-04-01

    We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.

  4. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ\\' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ\\' state. © 2014 Elsevier Ltd.

  5. Automated voxelization of 3D atom probe data through kernel density estimation

    International Nuclear Information System (INIS)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Dumpala, Santoshrupa; Broderick, Scott; Rajan, Krishna

    2015-01-01

    Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ’ interface in a Ni–Al–Cr superalloy. - Highlights: • Develop approach for standardizing aspects of atom probe reconstruction. • Use Kernel density estimators to select optimal voxel sizes in an unsupervised manner. • Perform interfacial analysis of Ni–Al–Cr superalloy, using new automated approach. • Optimize voxel size to preserve the feature of interest and minimizing loss / noise.

  6. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Directory of Open Access Journals (Sweden)

    C. N. Ironside

    2017-02-01

    Full Text Available We report on atomic probe microscopy (APM of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  7. Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Xiong Hao; Zhang Duo

    2011-01-01

    The behavior of two-dimensional (2D) atom localization is explored by monitoring the probe absorption in a microwave-driven four-level atomic medium under the action of two orthogonal standing-wave fields. Because of the position-dependent atom-field interaction, the information about the position of the atom can be obtained via the absorption measurement of the weak probe field. It is found that the localization behavior is significantly improved due to the joint quantum interference induced by the standing-wave and microwave-driven fields. Most importantly, the atom can be localized at a particular position and the maximal probability of finding the atom in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. The proposed scheme may provide a promising way to achieve high-precision and high-resolution 2D atom localization.

  8. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii...

  9. Influence of laser power on atom probe tomographic analysis of boron distribution in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Y., E-mail: ytu@imr.tohoku.ac.jp [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Takamizawa, H.; Han, B.; Shimizu, Y.; Inoue, K.; Toyama, T. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yano, F. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Tokyo City University, Setagaya, Tokyo 158-8557 (Japan); Nishida, A. [Renesas Electronics Corporation, Hitachinaka, Ibaraki 312-8504 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    The relationship between the laser power and the three-dimensional distribution of boron (B) in silicon (Si) measured by laser-assisted atom probe tomography (APT) is investigated. The ultraviolet laser employed in this study has a fixed wavelength of 355 nm. The measured distributions are almost uniform and homogeneous when using low laser power, while clear B accumulation at the low-index pole of single-crystalline Si and segregation along the grain boundaries in polycrystalline Si are observed when using high laser power (100 pJ). These effects are thought to be caused by the surface migration of atoms, which is promoted by high laser power. Therefore, for ensuring a high-fidelity APT measurement of the B distribution in Si, high laser power is not recommended. - Highlights: • Influence of laser power on atom probe tomographic analysis of B distribution in Si is investigated. • When using high laser power, inhomogeneous distributions of B in single-crystalline and polycrystalline Si are observed. • Laser promoted migration of B atoms over the specimen is proposed to explain these effects.

  10. Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography

    International Nuclear Information System (INIS)

    Lefebvre, W.; Philippe, T.; Vurpillot, F.

    2011-01-01

    This work presents an original method for cluster selection in Atom Probe Tomography designed to be applied to large datasets. It is based on the calculation of the Delaunay tessellation generated by the distribution of atoms of a selected element. It requires a single input parameter from the user. Furthermore, no prior knowledge of the material is needed. The sensitivity of the proposed Delaunay cluster selection is demonstrated by its application on simulated APT datasets. A strong advantage of the proposed methodology is that it is reinforced by the availability of an analytical model for the distribution of Delaunay cells circumspheres, which is used to control the accuracy of the cluster selection procedure. Another advantage of the Delaunay cluster selection is the direct calculation of a sharp envelope for each identified cluster or precipitate, which leads to the more appropriate morphology of the objects as they are reconstructed in the APT dataset. -- Research Highligthts: →Original method for cluster selection in Atom Probe Tomography. →Delaunay tessellation generated by the distribution of solute atoms. →Direct calculation of a sharp envelope for each identified cluster or precipitate. →Delaunay cluster selection demonstrated by its application on simulated APT datasets.

  11. Determination of the radial distribution function with the tomographic atom probe

    International Nuclear Information System (INIS)

    Heinrich, A.; Al-Kassab, T.

    2004-01-01

    Full text: An algorithm for the determination of the radial distribution function (RDF) and the partial radial distribution function from tomographic atom probe data is introduced and some examples for its application are discussed. Homogeneous distribution of atoms can easily be determined from measured data. Using our algorithm, the lattice of simple cubic structures may be estimated solely from TAP data. The results for bcc and fcc alloys and metals will be presented. By evaluating the vicinity of each atom, information about order phenomena in multi component alloy can be retrieved including short range order. The advantage of determining the (partial) radial distribution functions for any sample with our algorithm is that all data can be derived by one single experiment whereas all other methods of determining a pRDF require one experiment for each pRDF. (author)

  12. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    International Nuclear Information System (INIS)

    Hatakeyama, M.; Yamagata, I.

    2013-01-01

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe 3 Cr 2 Ni 2 Mo 2 Si 2 . In a Ti-rich carbide, nominaling Fe 5 Cr 8 Ni 10 Mo 2 Ti 11 Si 2 C 6 , enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed

  13. Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2012-06-15

    Radiation-induced segregation (RIS) of solute atoms at a grain boundary (GB) in 304 stainless steel (SS), neutron-irradiated to a dose of 24 dpa at 300 Degree-Sign C in the fuel wrapper plates of a commercial pressurized water reactor, was investigated using laser-assisted atom probe tomography (APT). Ni, Si, and P enrichment and Cr and Fe depletion at the GB were evident. The full-width at half-maximum of the RIS region was {approx}3 nm for the concentration profile peaks of Ni and Si. The atomic percentages of Ni, Si, and Cr at the GB were {approx}19%, {approx}7%, and {approx}14%, respectively, in agreement with previously-reported values for neutron-irradiated SS. A high number density of intra-granular Ni-Si rich precipitates formed in the matrix. A precipitate-denuded zone with a width of {approx}10 nm appeared on both sides of the GB.

  14. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  15. Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sandra D. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Liu, Jia [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Arey, Bruce W. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Schreiber, Daniel K. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Perea, Daniel E. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States

    2018-02-13

    The distribution of iron resulting from the autocatalytic interaction of aqueous Fe(II) with the hematite (001) surface was directly mapped in three dimensions (3D) for the first time, using iron isotopic labelling and atom probe tomography (APT). Analyses of the mass spectrum showed that natural abundance ratios in 56Fe-dominant hematite are recovered at depth with good accuracy, whereas at the relict interface with 57Fe(II) solution evidence for hematite growth by oxidative adsorption of Fe(II) was found. 3D reconstructions of the isotope positions along the surface normal direction showed a zone enriched in 57Fe, which was consistent with an average net adsorption of 3.2 – 4.3 57Fe atoms nm–2. Statistical analyses utilizing grid-based frequency distribution analyses show a heterogeneous, non-random distribution of oxidized Fe on the (001) surface, consistent with Volmer-Weber-like island growth. The unique 3D nature of the APT data provides an unprecedented means to quantify the atomic-scale distribution of sorbed 57Fe atoms and the extent of segregation on the hematite surface. This new ability to spatially map growth on single crystal faces at the atomic scale will enable resolution to long-standing unanswered questions about the underlying mechanisms for electron and atom exchange involved in a wide variety of redox-catalyzed processes at this archetypal and broadly relevant interface.

  16. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  17. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    functional-based tight-binding model revealed that a stress-free single-walled (14,6) MoS2 nanotube has a torsional deformation of 0.87 °/nm. Comparison between simulated electron diffraction patterns and atomic-resolution ADF-STEM images of nanotubes with and without the small twist suggested that these experimental techniques are viable routes for detecting presence of the torsional deformation. 2. Development of theory to cast light on aspects of scattering behavior that affect STEM data.. STEM probe intensity oscillates as the probe transmits through a crystalline sample. The oscillatory behavior of the probe is extremely similar during transmission through 3-D crystals and the hypothetical structure of an isolated column of atoms, a 1-D crystal. This indicates that the physical origin of oscillation in intensity is not due to scattering of electrons away from one atomic column and subsequent scattering back from neighboring columns. It leaves in question what the physical origin or intensity oscillation is. This question was answered here by analysis of electron beam behavior in isolated atomic columns, examined via multislice-based simulations. Two physical origins, changes in angular distribution of the probe and phase shift between the angular components, were shown to cause oscillation in beam intensity. Sensitivity of frequency of oscillation to different probe and sample parameters was used to better understand the influence of the two physical origins on probe oscillation. 3. Acquisition of atomic-scale STEM data to answer specific questions about a material.. Graphene, due to its 2-Dimensionality, and due to its thermal, optical, electrical, and mechanical properties, which are conducive to providing a unique material for incorporation in devices, has gained a lot of interest in the research world and even spurred start-ups. There are several feasible routes of graphene synthesis, among which chemical exfoliation of graphite is a promising method for mass

  18. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  19. Applying computational geometry techniques for advanced feature analysis in atom probe data

    International Nuclear Information System (INIS)

    Felfer, Peter; Ceguerra, Anna; Ringer, Simon; Cairney, Julie

    2013-01-01

    In this paper we present new methods for feature analysis in atom probe tomography data that have useful applications in materials characterisation. The analysis works on the principle of Voronoi subvolumes and piecewise linear approximations, and feature delineation based on the distance to the centre of mass of a subvolume (DCOM). Based on the coordinate systems defined by these approximations, two examples are shown of the new types of analyses that can be performed. The first is the analysis of line-like-objects (i.e. dislocations) using both proxigrams and line-excess plots. The second is interfacial excess mapping of an InGaAs quantum dot. - Highlights: • Computational geometry is used to detect and analyse features within atom probe data. • Limitations of conventional feature detection are overcome by using atomic density gradients. • 0D, 1D, 2D and 3D features can be analysed by using Voronoi tessellation for spatial binning. • New, robust analysis methods are demonstrated, including line and interfacial excess mapping

  20. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  1. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  2. The mystery of missing species in atom probe tomography of composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Karahka, M.; Xia, Y.; Kreuzer, H. J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-08-10

    There is a serious problem in atom probe tomography of composite materials such as oxides that even from stoichiometric samples one observes non-stoichiometric ion yields. We present a quantitative model that explains the non-stoichiometry allowing a fit to experimental data of ion yields as a function of applied field to extract activation barriers and prefactors. The numbers are confirmed by density functional theory. We also show that for oxides the missing oxygen is thermally desorbed as neutral O{sub 2}, either directly or associatively. Finally, we suggest methods to improve the experimental setup.

  3. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  4. Initial study on Z-phase strengthened 9-12% Cr steels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; Andren, Hans-Olof [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2010-07-01

    The microstructure of two different types of Z-phase strengthened experimental steels, CrNbN-based or CrTaN-based, was investigated. Both steels underwent aging at 650 C for relatively short period of time, 24 hours or 1005 hours. Atom probe tomography was used to study the chemical composition of the matrix and precipitates, and the size and number density of the small precipitates. Both steels contain Laves phase at prior austenite grain boundaries and martensitic lath boundaries. The CrTaN-based steel was found more promising due to its finer and more densely distributed precipitates after 1005 hour aging. (orig.)

  5. Thermal diffusivity of diamond nanowires studied by laser assisted atom probe tomography

    Science.gov (United States)

    Arnoldi, L.; Spies, M.; Houard, J.; Blum, I.; Etienne, A.; Ismagilov, R.; Obraztsov, A.; Vella, A.

    2018-04-01

    The thermal properties of single-crystal diamond nanowires (NWs) have been calculated from first principles but have never been measured experimentally. Taking advantage of the sharp geometry of samples analyzed in a laser assisted atom probe, this technique is used to measure the thermal diffusivity of a single NW at low temperature (ab-initio calculations and confirms that thermal diffusivity in nanoscale samples is lower than in bulk samples. The results impact the design and integration of diamond NWs and nanoneedles in nanoscale devices for heat dissipation.

  6. Three dimensional atom probe imaging of GaAsSb quantum rings.

    Science.gov (United States)

    Beltrán, A M; Marquis, E A; Taboada, A G; Ripalda, J M; García, J M; Molina, S I

    2011-07-01

    Unambiguous evidence of ring-shaped self-assembled GaSb nanostructures grown by molecular beam epitaxy is presented on the basis of atom-probe tomography reconstructions and dark field transmission electron microscopy imaging. The GaAs capping process causes a strong segregation of Sb out of the center of GaSb quantum dots, leading to the self-assembled GaAs(x)Sb(1-x) quantum rings of 20-30 nm in diameter with x ∼ 0.33. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.; Li, Yujiao; Boll, Torben; Borchers, Christine; Choi, Pyuckpa; Al-Kassab, Talaat; Raabe, Dierk; Kirchheim, Reiner

    2013-01-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  9. Nanoprecipitates in single-crystal molybdenum-alloy nanopillars detected by TEM and atom probe tomography

    International Nuclear Information System (INIS)

    Oveisi, Emad; Bártová, Barbora; Gerstl, Stephan; Zimmermann, Julien; Marichal, Cécile; Van Swygenhoven, Helena; Hébert, Cécile

    2013-01-01

    Transmission electron microscopy (TEM) supported by various chemical analyses techniques as well as atom probe tomography is applied to characterize newly identified nanosized precipitates in Mo-alloy nanopillars that were prepared by directional solidification. It is shown that the α-Mo matrix contains Al-enriched face-centred cubic precipitates which have a 4.12 Å lattice parameter, and exhibit a Kurdjumov–Sachs crystallographic orientation relationship with the matrix. Such precipitates could be responsible for the unusual behaviour of the pillars during compression tests

  10. Influence of supersaturated carbon on the diffusion of Ni in ferrite determined by atom probe tomography

    KAUST Repository

    Kresse, T.

    2013-09-01

    In patented and cold-drawn pearlitic steel wires dissociation of cementite occurs during mechanical deformation. In this study the influence of the carbon decomposition on the diffusion of nickel in ferrite is investigated by means of atom probe tomography. In the temperature range 423-523 K we observed a much smaller activation energy of Ni diffusion than for self-diffusion in body-centered cubic iron, indicating an increased vacancy density owing to enhanced formation of vacancy-carbon complexes. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. How can we probe the atom mass currents induced by synthetic gauge fields?

    Science.gov (United States)

    Paramekanti, Arun; Killi, Matthew; Trotzky, Stefan

    2013-05-01

    Ultracold atomic fermions and bosons in an optical lattice can have quantum ground states which support equilibrium currents in the presence of synthetic magnetic fields or spin orbit coupling. As a tool to uncover these mass currents, we propose using an anisotropic quantum quench of the optical lattice which dynamically converts the current patterns into measurable density patterns. Using analytical calculations and numerical simulations, we show that this scheme can probe diverse equilibrium bulk current patterns in Bose superfluids and Fermi fluids induced by synthetic magnetic fields, as well as detect the chiral edge currents in topological states of atomic matter such as quantum Hall and quantum spin Hall insulators. This work is supported by NSERC of Canada and the Canadian Institute for Advanced Research.

  12. Understanding arsenic incorporation in CdTe with atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.; Jayathilaka, P. A. R. D.; Edirisooriya, M.; Myers, T. H.; Zaunbrecher, K. N.; Moseley, J.; Barnes, T. M.; Gorman, B. P.

    2018-08-01

    Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealing treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.

  13. Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Laurent, E-mail: laurent.couturier55@hotmail.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); De Geuser, Frédéric; Deschamps, Alexis [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France)

    2016-11-15

    The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniques is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.

  14. Blind deconvolution of time-of-flight mass spectra from atom probe tomography

    International Nuclear Information System (INIS)

    Johnson, L.J.S.; Thuvander, M.; Stiller, K.; Odén, M.; Hultman, L.

    2013-01-01

    A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the field evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within ±0.33at%. The application of this model to experimental APT data is exemplified with Fe–Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances. - Highlights: • A method for the deconvolution of atom probe mass spectra is proposed. • Applied to synthetic randomly generated spectra the accuracy was ±0.33 at. • Application of the method to an experimental Fe–Cr spectrum is demonstrated

  15. Characterization of Radiation-Induced Clustering using Atom Probe Tomography in Nuclear Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Lim, Sang Yeob; Chang, Kun Ok; Ha, Jin Hyung; Kwon, Jun Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The degradations include the change in mechanical properties, which are related to the microstructure evolution caused by irradiation. The most widely used tool for the imaging irradiated microstructure is transmission electron microscopy (TEM). The composition of irradiation defects can be analyzed using X-ray spectroscopy (EDS) equipped in the TEM. However, composition characterization of the nano-sized irradiation defects in the matrix is limited due to the beam broadening of TEM and the overlapping of the probed volume during EDS analysis. Recently, Atom probe tomography (APT) has been introduced to the characterization of irradiation defects. APT provides sub-nano scale position of atoms and the chemical composition of a selected volume. SS316 irradiated with Fe ions at above 300 .deg. C caused significant clustering and segregation of Si and Ni at defect sinks. The neutron irradiated low alloy steel showed similar clustering of Ni and Si. The approach of using APT was demonstrated to be well suited for discovering the structure of irradiation defects and performing quantitative analysis in nuclear materials irradiated at high temperature.

  16. Wet-chemical etching of atom probe tips for artefact free analyses of nanoscaled semiconductor structures.

    Science.gov (United States)

    Melkonyan, D; Fleischmann, C; Veloso, A; Franquet, A; Bogdanowicz, J; Morris, R J H; Vandervorst, W

    2018-03-01

    We introduce an innovative specimen preparation method employing the selectivity of a wet-chemical etching step to improve data quality and success rates in the atom probe analysis of contemporary semiconductor devices. Firstly, on the example of an SiGe fin embedded in SiO 2 we demonstrate how the selective removal of SiO 2 from the final APT specimen significantly improves accuracy and reliability of the reconstructed data. With the oxide removal, we eliminate the origin of shape artefacts, i.e. the formation of a non-hemispherical tip shape, that are typically observed in the reconstructed volume of complex systems. Secondly, using the same approach, we increase success rates to ∼90% for the damage-free, 3D site-specific localization of short (250 nm), vertical Si nanowires at the specimen apex. The impact of the abrupt emitter radius change that is introduced by this specimen preparation method is evaluated as being minor using field evaporation simulation and comparison of different reconstruction schemes. The Ge content within the SiGe fin as well as the 3D boron distribution in the Si NW as resolved by atom probe analysis are in good agreement with TEM/EDS and ToF-SIMS analysis, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Discontinuous precipitation in a Ni-In alloy studied by analytical field ion microscopy

    International Nuclear Information System (INIS)

    Geber, G.P.; Kirchheim, R.

    1997-01-01

    Discontinuous precipitation (DP) in a Ni-7.5 at.% In alloy has been studied by means of atom probe field ion microscopy (APFIM). The morphology of the lamellar microstructure and the growth kinetics of the decomposition reaction have been investigated by optical and scanning electron microscopy (LM, SEM). A back polishing method has been developed to prepare APFIM specimens in a systematic manner for transmission electron microscopy (TEM), in order to obtain a definite inclination of different interfaces in the tip apex for subsequent analysis of their chemical composition. APFIM results of the Ni- and In-concentration across the interfaces are presented. Based on the APFIM results it is possible to distinguish between the theoretical description of the concentration profiles given by the models of Cahn and Hillert. It is shown by both FIM images and concentration depth profiles that the α/β-interface has a thickness of about 0.5 nm. In addition it is shown for the first time that the concentration across a β-lamella is not constant. This experimental finding was used to develop a generalization of Cahn's model on discontinuous precipitation including the solute flux within the interface between β and the parent phase α 0

  18. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  19. Irradiation-induced precipitation in a SUS316 stainless steel using three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, M., E-mail: hatake@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, IMR/Tohoku University, Narita, Oarai, Ibaraki 311-1313 (Japan); Yamagata, I. [Japan Atom Energy Agency, Narita, Oarai, Ibaraki 311-1393 (Japan)

    2013-11-15

    Precipitation and segregation were investigated in a compositionally modified 316 austenitic stainless steel, neutron-irradiated at 862 K using a three-dimensional atom probe. In the solution-annealed specimen, Mo, Ti, Nb, C and P enrichment were observed in a silicide, with nominal composition Fe{sub 3}Cr{sub 2}Ni{sub 2}Mo{sub 2}Si{sub 2}. In a Ti-rich carbide, nominaling Fe{sub 5}Cr{sub 8}Ni{sub 10}Mo{sub 2}Ti{sub 11}Si{sub 2}C{sub 6}, enrichment of Mo, Si, O, and Nb was observed. Radiation-induced segregation (RIS) at the precipitate–matrix interface was also investigated at an atomic scale. RIS of Ni and P atoms, which are undersized in Fe, was also analyzed around the interface of the Ti-rich carbide and matrix. Results suggest that the carbide–matrix interface is a sink with an interstitial bias. In the cold-worked specimen, complex-precipitates consisting of silicide and carbide were formed.

  20. Analysis of medical device materials with the local electrode atom probe

    International Nuclear Information System (INIS)

    Goodman, S.L.; Mengelt, T.J.; Ali, M.; Ulfig, R.M.; Martens, R.M.; Kelly, T.F.; Kostrna, S.L.P.; Kostrna, M.S.; Carmichael, W.J.

    2004-01-01

    Full text: As medical technology advances towards microsurgical and minimally invasive techniques, there is a drive to produce ever-smaller devices that demand higher material performance and hence enhanced nano and micro-scale control of material structure. These devices are made from stainless steel alloys, Nitinol, titanium, CoCrMo, and non-metals such as pyrolytic carbon and silicon. These applications are made possible due to suitable physical and mechanical properties, good corrosion resistance in biological environments, reasonable biocompatibility, and good manufacturability. With respect to the metals, the nano-structure and composition of the material surface, typically an oxide, is especially critical since biological responses and corrosion occur at the material-environment interface. Thus, there is an increasing need to understand the 3-D structure and composition of metallic biomaterials at the atomic scale. Three-dimensional atom probe microscopy can uniquely provide such atomic-level structural information. In the present study several of these medical device materials were examined. These include a 316L stainless steel alloy which is widely used in implanted spinal fixation devices, bone screws, cardiovascular and neurological stents, a cast CoCrMo acetabular hip cup of a Cormet metal-on-metal Hip Resurfacing System (Corin Group, Cirencester, England) that was rejected for clinical use, Nitinol wires specimens such as are used for stents and guide wires, and low temperature pyrolytic carbon as used in clinical heart valve prosthetics. (author)

  1. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  2. Status Summary of FY16 Atom Probe Tomography Studies on UCSB ATR-2 Irradiated RPV Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Odette, G. Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    The University of California Santa Barbara-2 RPV Steel Irradiation experiment was awarded in 2010 by the Nuclear Science User Facility (formerly ATR NSUF) through a competitive peer review proposal process. The experiment involved irradiation of nearly 1300 samples distributed over 13 capsules. The major objective of this experiment was to better understand embrittlement behavior of reactor pressure steels at doses beyond which available data exists yet may be achieved if reactor operating licenses are extended beyond 60 years. The experiment was instrumented during irradiation and active temperature control was used to maintain the temperature at the design temperature. Six samples were selected from a large matrix of materials to perform atom probe tomography (APT) to look at formation of high dose phases. The nature and formation behavior of these phases is discussed.

  3. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials.

    Science.gov (United States)

    Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D

    2015-12-01

    An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  5. Analysis of deuterium in V-Fe5at.% film by atom probe tomography (APT)

    KAUST Repository

    Gemma, Ryota

    2011-09-01

    V-Fe5at.% 2 and 10-nm thick single layered films were prepared by ion beam sputtering on W substrate. They were loaded with D from gas phase at 0.2 Pa and at 1 Pa, respectively. Both lateral and depth D distribution of these films was investigated in detail by atom probe tomography. The results of analysis are in good agreement between the average deuterium concentration and the value, expected from electromotive force measurement on a similar flat film. An enrichment of deuterium at the V/W interface was observed for both films. The origin of this D-accumulation was discussed in respect to electron transfer, mechanical stress and misfit dislocations. © 2010 Elsevier B.V. All rights reserved.

  6. Graphene Coatings: Probing the Limits of the One Atom Thick Protection Layer

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Balog, Richard

    2012-01-01

    The limitations of graphene as an effective corrosion-inhibiting coating on metal surfaces, here exemplified by the hex-reconstructed Pt(100) surface, are probed by scanning tunneling microscopy measurements and density functional theory calculations. While exposure of small molecules directly onto...... against CO is observed at CO pressures below 106 mbar. However, at higher pressures CO is observed to intercalate under the graphene coating layer, thus lifting the reconstruction. The limitations of the coating effect are further tested by exposure to hot atomic hydrogen. While the coating can withstand...... these extreme conditions for a limited amount of time, after substantial exposure, the Pt(100) reconstruction is lifted. Annealing experiments and density functional theory calculations demonstrate that the basal plane of the graphene stays intact and point to a graphene-mediated mechanism for the H...

  7. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  8. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  9. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi; Vella, Angela; Dé conihout, Bernard; Al-Kassab, Talaat

    2011-01-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  10. Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops

    Science.gov (United States)

    Peterman, Emily M.; Reddy, Steven M.; Saxey, David W.; Snoeyenbos, David R.; Rickard, William D. A.; Fougerouse, Denis; Kylander-Clark, Andrew R. C.

    2016-01-01

    Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 μm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The 207Pb/206Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages. PMID:27617295

  11. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales

    International Nuclear Information System (INIS)

    Marceau, R.K.W.; Stephenson, L.T.; Hutchinson, C.R.; Ringer, S.P.

    2011-01-01

    A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain. -- Research highlights: → A new approach for cluster finding in atom probe tomography (APT) data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features with multiple length scales. → In this study, a model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ' precipitates and shearable GP zones is considered. → APT has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. → It is clearly shown that there is strain-induced dissolution of the GP zones with significant repartitioning of Cu from the GP zones into the solid solution during deformation.

  12. Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.

    Science.gov (United States)

    Danoix, F; Miller, M K; Bigot, A

    2001-10-01

    Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.

  13. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  14. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  15. High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement

    Science.gov (United States)

    Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei

    2018-06-01

    This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.

  16. The Model Analysis of a Complex Tuning Fork Probe and Its Application in Bimodal Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Zhichao Wu

    2017-01-01

    Full Text Available A new electromechanical coupling model was built to quantitatively analyze the tuning fork probes, especially the complex ones. A special feature of a novel, soft tuning fork probe, that the second eigenfrequency of the probe was insensitive to the effective force gradient, was found and used in a homemade bimodal atomic force microscopy to measure power dissipation quantitatively. By transforming the mechanical parameters to the electrical parameters, a monotonous and concise method without using phase to calculate the power dissipation was proposed.

  17. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyu; Qian, Yong, E-mail: qianyong86@163.com; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing, E-mail: xueqingqiu66@163.com

    2016-12-30

    Graphical abstract: The interactions between lignin and inorganic oxides are quantitatively probed by atomic force microscopy, which is fundamental but beneficial for understanding and optimizing the absorption-dispersion and catalytic degradation processes of lignin. - Highlights: • The interactions between lignin and inorganic oxides are measured using AFM. • The adhesion forces between lignin and metal oxides are larger than that in nonmetal systems. • Hydrogen bond plays an important role in lignin-inorganic oxides system. - Abstract: Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al{sub 2}O{sub 3} or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO{sub 2} due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al{sub 2}O{sub 3}, MgO and SiO{sub 2} decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  18. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2

    Directory of Open Access Journals (Sweden)

    Malte Fugel

    2018-01-01

    Full Text Available Hirshfeld atom refinement (HAR is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM, such as too short element–hydrogen distances, r(X—H, or too large atomic displacement parameters (ADPs. This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r(X—H values obtained from HAR. These quantities are compared and found to agree with those obtained from (i accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii multipole modelling (MM, an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydrocarbon rubrene (orthorhombic 5,6,11,12-tetraphenyltetracene, a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa, and the salt potassium hydrogen oxalate (KHOx. The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element–hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily

  19. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2.

    Science.gov (United States)

    Fugel, Malte; Jayatilaka, Dylan; Hupf, Emanuel; Overgaard, Jacob; Hathwar, Venkatesha R; Macchi, Piero; Turner, Michael J; Howard, Judith A K; Dolomanov, Oleg V; Puschmann, Horst; Iversen, Bo B; Bürgi, Hans-Beat; Grabowsky, Simon

    2018-01-01

    Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element-hydrogen distances, r ( X -H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r ( X -H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydro-carbon rubrene (orthorhombic 5,6,11,12-tetra-phenyl-tetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element-hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched

  20. Mapping energetics of atom probe evaporation events through first principles calculations.

    Science.gov (United States)

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: Instrumentation and results

    International Nuclear Information System (INIS)

    Dumpala, S.; Broderick, S.R.; Bagot, P.A.J.; Rajan, K.

    2014-01-01

    An integrated environmental cell has been designed and developed for the latest generation of Atom Probe Tomography LEAP™ instruments, allowing controlled exposure of samples to gases at high temperatures. Following treatment, samples can be transferred through the LEAP vacuum system for subsequent APT analysis, which provides detailed information on changes to chemical microstructures following the reactions with near-atomic resolution. A full description of the cell is presented, along with some sample results on the oxidation of aluminum and two platinum-group alloys, demonstrating the capability of combining exposure/characterization functionality in a single instrument. - Highlights: • Designed and built atom probe environmental cell for in situ reactions. • Investigated Al oxidation, and demonstrated improvement with new cell. • in situ APT analysis of Pt-alloys showed surface segregation of Rh and Ir

  2. Tetragonal fcc-Fe induced by κ -carbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory

    Science.gov (United States)

    Liebscher, Christian H.; Yao, Mengji; Dey, Poulumi; Lipińska-Chwalek, Marta; Berkels, Benjamin; Gault, Baptiste; Hickel, Tilmann; Herbig, Michael; Mayer, Joachim; Neugebauer, Jörg; Raabe, Dierk; Dehm, Gerhard; Scheu, Christina

    2018-02-01

    Correlative scanning transmission electron microscopy, atom probe tomography, and density functional theory calculations resolve the correlation between elastic strain fields and local impurity concentrations on the atomic scale. The correlative approach is applied to coherent interfaces in a κ -carbide strengthened low-density steel and establishes a tetragonal distortion of fcc-Fe. An interfacial roughness of ˜1 nm and a localized carbon concentration gradient extending over ˜2 -3 nm is revealed, which originates from the mechano-chemical coupling between local strain and composition.

  3. Nucleation and growth characterization by field-ion microscopy

    International Nuclear Information System (INIS)

    Inal, O.T.; Scherer, A.

    1985-01-01

    Field-ion microscopy affords atomic resolution and thus is ideally suited for studies involving the nucleation and growth of overlayers on the conical field-emission end forms. The added capability of filed-assisted removal of atomic layers gives this technique a unique three-dimensional capability which is invaluable for the controlled removal of atomic layers and delineation of the depth information. The description of the transition from overlayer to substrate is afforded by a change in the ratio of best image to field evaporation voltages (BIV/FEV). Since the adatom layers are necessarily quite thin (>20 nm) a careful characterization in an SEM and the associated energy dispersive x-ray analysis (EDAX) is certainly worthwhile. The modes of deposition utilized in the studies to be presented include in-situ vapor deposition, electroless (cementation) and electrodeposition of metallic and oxide overgrowths. In-situ vapor deposition allows for imaging-coating-reimaging practice without the introduction of artifacts on these small substrate surfaces quite prone to air of humidity induced etching and alteration. Vapor deposition thus affords the only means of full recovery of the imaging surface at thin coverages. The extent of the coverage can be increased by in-situ tip heating and through reduced misfit between the two species of concern. Although electrolytic or electroless depositions afford much thicker overgrowths, the contact of the field-emission end form with an aqueous medium results in a chemical dissolution that increases with the increasing pH of the solution. The recovered surface is a new surface generated through this etching but still containing the imaging features of the substrate and thus is quite easy to distinguish

  4. Pump-probe study of atoms and small molecules with laser driven high order harmonics

    Science.gov (United States)

    Cao, Wei

    A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source

  5. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, L., E-mail: viskari@chalmers.se [Chalmers University of Technology, Gothenburg (Sweden); Stiller, K. [Chalmers University of Technology, Gothenburg (Sweden)

    2011-05-15

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening {gamma}' Ni{sub 3}(Al,Nb) precipitates on the obtained results is discussed. -- Research highlights: {yields} Laser pulsed APT is shown to be a good method for analysis of Ni-based superalloys. {yields} The evaporation field is shown to be different for different phases which affects reconstructions. {yields} B and P are shown to segregate to grain boundaries. {yields} Initial results of {delta}-phase analysed by APT are shown.

  6. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel.

    Science.gov (United States)

    Thuvander, Mattias; Andersson, Marcus; Stiller, Krystyna

    2013-09-01

    Lath boundaries in a maraging stainless steel of composition 13Cr-8Ni-2Mo-2Cu-1Ti-0.7Al-0.3Mn-0.2Si-0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni₃(Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R' phase. The film is perforated with Cu-rich 9R and η-Ni₃(Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ'-Ni₃(Ti, Al, Si) and the Cr-rich α' phase were not observed at the lath boundaries. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Atom probe characterization of precipitation in an aged Cu-Ni-P alloy

    International Nuclear Information System (INIS)

    Aruga, Yasuhiro; Saxey, David W.; Marquis, Emmanuelle A.; Cerezo, Alfred; Smith, George D.W.

    2011-01-01

    A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 o C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 o C as the clusters enlarge during ageing. -- Research highlights: → We characterize the clustering behavior in a Cu-Ni-P alloy during ageing at 250 o C. → The clusters have a wide range of Ni/P ratios when they are relatively small. → Larger clusters exhibit a narrow distribution of the ratio. → Hardness increases almost linearly with the logarithm of ageing time beyond 100s. → We believe increasing density and size of the clusters leads to the age hardening.

  8. Atomic force microscopy deep trench and sidewall imaging with an optical fiber probe

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui, E-mail: xiehui@hit.edu.cn; Hussain, Danish; Yang, Feng [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Sun, Lining [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Robotics and Microsystems Center, Soochow University, 215021 Suzhou (China)

    2014-12-15

    We report a method to measure critical dimensions of micro- and nanostructures using the atomic force microscope (AFM) with an optical fiber probe (OFP). This method is capable of scanning narrow and deep trenches due to the long and thin OFP tip, as well as imaging of steep sidewalls with unique profiling possibilities by laterally tilting the OFP without any modifications of the optical lever. A switch control scheme is developed to measure the sidewall angle by flexibly transferring feedback control between the Z- and Y-axis, for a serial scan of the horizontal surface (raster scan on XY-plane) and sidewall (raster scan on the YZ-plane), respectively. In experiments, a deep trench with tapered walls (243.5 μm deep) and a microhole (about 14.9 μm deep) have been imaged with the orthogonally aligned OFP, as well as a silicon sidewall (fabricated by deep reactive ion etching) has been characterized with the tilted OFP. Moreover, the sidewall angle of TGZ3 (AFM calibration grating) was accurately measured using the switchable scan method.

  9. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy

    International Nuclear Information System (INIS)

    Lee, Hyunsoo; Shin, Weonho; Choi, Jang Wook; Park, Jeong Young

    2012-01-01

    The nanomechanical properties of fully lithiated and pristine Si nanowires (NWs) deposited on a Si substrate were studied with atomic force microscopy (AFM). Si NWs were synthesized using the vapour-liquid-solid process on stainless-steel substrates using an Au catalyst. Fully lithiated Si NWs were obtained using the electrochemical method, followed by drop-casting on a Si substrate. The roughness of the Si NWs, which was derived from AFM images, is greater for the lithiated Si NWs than for the pristine Si NWs. Force spectroscopy was used to study the influence of lithiation on the tip-surface adhesion force. The lithiated Si NWs revealed a smaller tip-surface adhesion force than the Si substrate by a factor of two, while the adhesion force of the Si NWs is similar to that of the Si substrate. Young's modulus, obtained from the force-distance curve, also shows that the pristine Si NWs have a relatively higher value than the lithiated Si NWs due to the elastically soft and amorphous structures of the lithiated region. These results suggest that force spectroscopy can be used to probe the degree of lithiation at nanometer scale during the charging and discharging processes. (paper)

  10. Atomic-level studies of superconducting YBa2Cu3O/sub 7-x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The transmission electron microscope, field ion microscope, and imaging atom-probe mass spectrometer have been used to examine the structure and composition of field-emitter ''tips'' prepared from hot-pressed samples of YBa 2 Cu 3 O/sub 7-x/. Transmission electron microscope images of the tip apex clearly show periodic defect structures which are interpreted as twins boundaries. Field ion microscope images reveal the structure of the samples in atomic resolution and indicate that the material can be field evaporated in a uniform, layer-by-layer fashion. Imaging atom-probe mass spectra contain signals corresponding to all of the constituent elements with intensities fairly consistent with the 1-2-3 ratio of the metals, but highly deficient in oxygen

  11. Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys

    International Nuclear Information System (INIS)

    Hudson, D.; Smith, G.D.W.; Gault, B.

    2011-01-01

    Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate. -- Research Highlights: → Realistic simulated mass spectra were generated so as to reproduce experimental data with a perfectly determined composition. → Several metrics were tested against these simulated mass spectra to determine an optimal methodology for ranging mass peaks in atom probe tomography. Systematic automated ranging provides a significant reduction in the deviation between true and measured concentrations compared to manual ranging by multiple users on the same data. → Experimental datasets were subsequently investigated, and Fe has been shown to be distributed as a random solid solution within the matrix of 'as-received' recrystallised ZIRLO, a zirconium alloy.

  12. TEM [transmission electron microscopy], APFIM [atom-probe field ion microscopy], and SANS [small-angle neutron scattering] examination of aged duplex stainless steel components from some decommissioned reactors

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-12-01

    The present investigation indicates that the primary embrittlement processes of the CF-8 grade cast stainless steel components during extended reactor service are spinodal decomposition of the ferrite phase and M 23 C 6 carbide precipitation on the austenite-ferrite boundaries. The ferrite hardness measured for the Shippingport reactor valves appears to reflect the different extent of spinodal decomposition among the different valves which contain slightly different Cr contents. G-phase precipitation was minimal compared to that during accelerated aging of CF-8 steel in the laboratory (i.e., near 400/degree/C). This indicates that the activation energy may be strongly influenced by the synergism among the G-phase precipitation, carbide formation, and spinodal decomposition. 13 refs., 2 figs

  13. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel

    International Nuclear Information System (INIS)

    Thuvander, Mattias; Andersson, Marcus; Stiller, Krystyna

    2013-01-01

    Lath boundaries in a maraging stainless steel of composition 13Cr–8Ni–2Mo–2Cu–1Ti–0.7Al–0.3Mn–0.2Si–0.03C (at%) have been investigated using atom probe tomography following aging at 475 °C for up to 100 h. Segregation of Mo, Si and P to the lath boundaries was observed already after 5 min of aging, and the amount of segregation increases with aging time. At lath boundaries also precipitation of η-Ni 3 (Ti, Al) and Cu-rich 9R, in contact with each other, takes place. These co-precipitates grow with time and because of coarsening the area number density decreases. After 100 h of aging a ∼5 nm thick film-like precipitation of a Mo-rich phase was observed at the lath boundaries. From the composition of the film it is suggested that the phase in question is the quasicrystalline R′ phase. The film is perforated with Cu-rich 9R and η-Ni 3 (Ti, Al) co-precipitates. Not all precipitate types present in the matrix do precipitate at the lath boundaries; the Si-containing G phase and γ′-Ni 3 (Ti, Al, Si) and the Cr-rich α′ phase were not observed at the lath boundaries. - Highlights: ► Lath boundaries in a maraging steel were analyzed by APT. ► Segregation of Mo, Si and P was measured. ► Precipitation of η-Ni 3 (Ti, Al) and Cu-rich 9R was observed. ► After 100 h of aging a quasicrystalline Mo-rich film was observed

  14. Atom probe characterization of nano-scaled features in irradiated Eurofer and ODS Eurofer steel

    International Nuclear Information System (INIS)

    Rogozkin, S.; Aleev, A.; Nikitin, A.; Zaluzhnyi, A.; Vladimirov, P.; Moeslang, A.; Lindau, R.

    2009-01-01

    Outstanding performance of oxide dispersion strengthened (ODS) steels at high temperatures and up to high doses allowed to consider them as potential candidates for fusion and fission power plants. At the same time their mechanical parameters strongly correlate with number density of oxide particles and their size. It is believed that fine particles are formed at the last stage of sophisticated production procedures and play a crucial role in higher heat- and radiation resistance in comparison with conventional materials. However, due to their small size - only few nanometers, characterization of such objects requires considerable efforts. Recent study of ODS steel by tomographic atom probe, the most appropriate technique in this case, shown considerable stability of these particles under high temperatures and ion-irradiation. However, these results were obtained for 12/14% Cr with addition of 0.3% Y 2 O 3 and titanium which is inappropriate in case of ODS Eurofer 97 and possibility to substitute neutron by ion irradiation is still under consideration. In this work effect of neutron irradiation on nanostructure behaviour of ODS Eurofer are investigated. Irradiation was performed on research reactor BOR-60 in SSC RF RIAR (Dimitrovgrad, Russia) up to 30 dpa at 280 deg. C and 580 deg. C. Recent investigation of unirradiated state revealed high number density of nano-scaled features (nano-clusters) even without addition of Ti in steel. It was shown that vanadium played significant role in nucleation process and core of nano-clusters was considerably enriched with it. In irradiated samples solution of vanadium in matrix was observed while the size of particles stayed practically unchanged. Also no nitrogen was detected in these particles in comparison with unirradiated state where bond energy of N with V was considered to be high as VN 2+ ions were detected on mass-spectra. (author)

  15. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  16. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    Science.gov (United States)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  17. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  18. 3D-atom probe analysis of Cr and Cu added nitriding steels

    International Nuclear Information System (INIS)

    Takahashi, J.; Kawakami, K.; Sugiyama, M.; Kawasaki, K.

    2004-01-01

    Full text: Nitriding treatment is a very effective method for hardening the surface of steels and realizing improvement in wear-resistance. Although this technology has been performed for many years, the precipitation and hardening mechanisms are not completely clear. It was not easy to observe very fine precipitates which may be generated in nitriding steels. We performed a three-dimensional atom probe analysis of the nitriding steel plate in which two kinds of precipitates were generated. Hot-rolled steel plates, which mainly contained Cr 1.0wt.% and Cu 1.3wt.%, were nitrided by annealing (550-6000 o ) in a mainly NH 3 atmosphere. The material before the nitriding had a hardness of about 100 Hv. By the nitriding, the surface hardness increased to more than 700 Hv, and the inside hardness also increased to 200 Hv. The specimens were taken from 0.15 mm, 0.3 mm and 0.8 mm depth from the surface, which mostly correspond to the peak, the half and the inside hardness, respectively. In the specimen of 0.8 mm depth, prolate spheroidal Cu precipitates of more than 8 nm in diameter were observed. In the specimen of 0.3 mm depth, plate-shape nitride precipitates of 6-10 nm in diameter were observed in addition to the Cu precipitates. Each Cu precipitate made a pair with the nitride precipitate. In the 0.15 mm depth specimen, Cr nitride precipitates of high volume density in addition to the pairs consisting of a Cu precipitate and a Cr nitride precipitate were observed. The size of the nitride precipitate forming the pair was slightly larger than that of the single Cr nitride precipitates. Furthermore, the denuded zone where the nitride precipitate does not exist was observed around the pairs. From these results, it was concluded that three stages of precipitation arose as follows: By the heat treatment of nitriding processing, Cu precipitates were generated first. Then, Cr nitride nucleated at the surface of the Cu precipitates inhomogeneously, and surrounding solute Cr was

  19. Inhomogeneous distribution of manganese atoms in ferromagnetic ZnSnAs{sub 2}:Mn thin films on InP revealed by three-dimensional atom probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Uchitomi, Naotaka, E-mail: uchitomi@nagaokaut.ac.jp; Inoue, Hiroaki; Kato, Takahiro; Toyota, Hideyuki [Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Uchida, Hiroshi [Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-05-07

    Atomic-scale Mn distributions in ferromagnetic ZnSnAs{sub 2}:Mn thin films grown on InP substrates have been studied by applying three-dimensional atom probe (3DAP) microscopy. It is found that Mn atoms in cross-sectional 3DAP maps show the presence of inhomogeneities in Mn distribution, which is characteristic patterns of a spinoidal decomposition phase with slightly high and low concentration regions. The high Mn concentration regions are expected to be coherently clustered MnAs in the zinc-blende structure, resulting in the formation of Mn-As random connecting patterns. The origin of room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn on InP can be well explained by the formation of atomic-scale magnetic clustering by spinoidal decomposition without breaking the continuity of the zinc-blende structure, which has been suggested by previous theoretical works. The lattice-matching between magnetic epi-layers and substrates should be one of the most important factors to avoid the formation of secondary hexagonal MnAs phase precipitates in preparing ferromagnetic semiconductor thin films.

  20. Analysis of atomic distribution in as-fabricated Zircaloy-2 claddings by atom probe tomography under high-energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, T., E-mail: sawabe@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Sonoda, T.; Kitajima, S. [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Kameyama, T. [Tokai University, Department of Nuclear Engineering, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-11-15

    The properties of second-phase particles (SPPs) in Zircaloy-2 claddings are key factors influencing the corrosion resistance of the alloy. The chemical compositions of Zr (Fe, Cr){sub 2} and Zr{sub 2}(Fe, Ni) SPPs were investigated by means of pulsed laser atom probe tomography. In order to prevent specimen fracture and to analyse wide regions of the specimen, the pulsed laser energy was increased to 2.0 nJ. This gave a high yield of average of 3 × 10{sup 7} ions per specimen. The Zr (Fe, Cr){sub 2} SPPs contained small amounts of Ni and Si atoms, while in Zr{sub 2}(Fe, Ni) SPPs almost all the Si was concentrated and the ratio of Zr: (Fe + Ni + Si) was 2:1. Atomic concentrations of the Zr-matrix and the SPPs were identified by two approaches: the first by using all the visible peaks of the mass spectrum and the second using the representative peaks with the natural abundance of the corresponding atoms. It was found that the change in the concentration between the Zr-matrix and the SPPs can be estimated more accurately by the second method, although Sn concentration in the Zr{sub 2}(Fe, Ni) SPPs is slightly overestimated.

  1. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  2. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    Science.gov (United States)

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations

    International Nuclear Information System (INIS)

    Song, W.; Appen, J. von; Choi, P.; Dronskowski, R.; Raabe, D.; Bleck, W.

    2013-01-01

    Carbide precipitation during upper and lower bainite formation in high-carbon bearing steel 100Cr6 is characterized using transmission electron microscopy and atom probe tomography. The results reveal that both ε and θ carbides precipitate in lower bainite isothermally held at 260 °C and only θ precipitates form in upper bainite isothermally held at 500 °C. ε and θ precipitate under paraequilibrium condition at 260 °C in lower bainite and θ precipitates under negligible partitioning local equilibrium condition in upper bainite at 500 °C. In order to theoretically study ε and θ precipitation and the ε → θ transition in bainite, thermodynamic calculations have been carried out using ab initio techniques. We find that ε and θ carbides in ferrite have almost identical thermodynamic stability, and hence have similar formation probability. In austenite, however, cementite formation is clearly preferred: it is favored by 5 kJ mol −1 at room temperature and still by 4 kJ mol −1 at 500 °C. Hence, the thermodynamic predictions agree well with the atom probe tomography results

  4. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  5. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  6. Pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    Science.gov (United States)

    McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.

    2009-09-01

    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.

  7. Using muonium to probe the kinetics of the reaction between the H atom and OH"- in superheated water

    International Nuclear Information System (INIS)

    Ghandi, K.; Alcorn, C.; Brodovitch, J.-C.; Driedger, E.; Mozafari, M.; Percival, P.W.

    2011-01-01

    Operation of a supercritical-water-cooled nuclear reactor requires knowledge of water chemistry over a wide range of conditions. The considerable knowledge gap for conditions above the operating temperature of current-generation CANDU reactors is the target of this study. Since the H atom is difficult to probe at the desired temperatures and pressures, muonium is used as an alternative. In the current CANDU reactors, coolant pH is controlled using LiOH. We are studying how the rate constants for the reaction of muonium with LiOH and NaOH change with temperature and pressure. (author)

  8. Using muonium to probe the kinetics of the reaction between the H atom and OH{sup -} in superheated water

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, K.; Alcorn, C. [Mount Allison Univ., Sackville, NB (Canada); Brodovitch, J.-C. [Simon Fraser Univ., Burnaby, BC (Canada); Driedger, E. [Mount Allison Univ., Sackville, NB (Canada); Mozafari, M. [Simon Fraser Univ., Burnaby, BC (Canada); Percival, P.W. [Simon Fraser Univ., Burnaby, BC (Canada); TRIUMF, Vancouver, BC (Canada)

    2011-07-01

    Operation of a supercritical-water-cooled nuclear reactor requires knowledge of water chemistry over a wide range of conditions. The considerable knowledge gap for conditions above the operating temperature of current-generation CANDU reactors is the target of this study. Since the H atom is difficult to probe at the desired temperatures and pressures, muonium is used as an alternative. In the current CANDU reactors, coolant pH is controlled using LiOH. We are studying how the rate constants for the reaction of muonium with LiOH and NaOH change with temperature and pressure. (author)

  9. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

    Science.gov (United States)

    Zilnyk, K. D.; Pradeep, K. G.; Choi, P.; Sandim, H. R. Z.; Raabe, D.

    2017-08-01

    Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 °C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 °C.

  10. Atom probe microscopy investigation of Mg site occupancy within δ′ precipitates in an Al–Mg–Li alloy

    International Nuclear Information System (INIS)

    Gault, Baptiste; Cui, Xiang Yuan; Moody, Michael P.; De Geuser, Frederic; Sigli, Christophe; Ringer, Simon P.; Deschamps, Alexis

    2012-01-01

    The composition and site occupancy of Mg within ordered δ′ precipitates in a model Al–Mg–Li alloy have been characterized by atom probe microscopy and first-principles simulations. The concentration in the precipitates is found to be almost the same as that of the matrix; however, we show evidence that Mg partitions to the sites normally occupied by Li in the L1 2 structure. Density functional calculations demonstrate that this partitioning is energetically favorable, in agreement with experimental results.

  11. Developments of saddle field ion sources and their applications

    International Nuclear Information System (INIS)

    Abdelrahman, M.M.; Helal, A.G.

    2009-01-01

    Ion sources should have different performance parameters according to the various applications for which they are used, ranging from ion beam production to high energy ion implanters. There are many kinds of ion sources, which produce different ion beams with different characteristics. This paper deals with the developments and applications of some saddle field ion sources which were designed and constructed in our lab. Theory of operation and types of saddle field ion sources are discussed in details. Some experimental results are given. The saddle field ion sources operate at low gas pressure and require neither magnetic field nor filament. This type of ion sources is used for many different applications as ion beam machining, sputtering, cleaning and profiling for surface analysis etc

  12. Field electron emission spectrometer combined with field ion/electron microscope as a field emission laboratory

    International Nuclear Information System (INIS)

    Shkuratov, S.I.; Ivanov, S.N.; Shilimanov, S.N.

    1996-01-01

    The facility, combining the field ion microscope, field electron emission microscope and field electron emission spectrometer, is described. Combination of three methodologies makes it possible to carry out the complete cycle of emission studies. Atom-plane and clean surface of the studied samples is prepared by means of field evaporation of the material atom layers without any thermal and radiation impact. This enables the study of atom and electron structure of clean surface of the wide range materials, the study whereof through the field emission methods was previously rather difficult. The temperature of the samples under study changes from 75 up to 2500 K. The energy resolution of the electron analyzer equals 30 MeV. 19 refs., 10 figs

  13. Characterization of microstructural evolution in Fe-C(-Mn) alloys during early stages of ageing using atom probe

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Tran, P.; Pereloma, E.; Ringer, S.P.

    2004-01-01

    Full text: Extensive studies on the effect of ageing treatment on the micro structure and mechanical properties of most commercial ferritic (a) Fe-C(-X) alloys reveal age-hardening characteristics that involve a monotonic increase towards a peak hardness after several hours of ageing. Peak hardness is always associated with the formation of precipitate particles (e.g: MnC 3 ). However, there is relatively little systematic work on the very early stages of ageing using direct nanostructural analysis and many questions remain on the potential for clustering of interstitial C atoms prior to the precipitation reaction. In this experimental work, we report a small but significant hardness peak within 300 sec during ageing at 550 deg C. High resolution transmission electron microscopy (HRTEM) observations did not show any microstructural change during this early stage of ageing. In order to understand the microstructural evolution in ultra-low carbon a-Fe-C(-Mn) alloys during these early stages of ageing, 3-dimensional atom probe (3DAP) has been used to examine the C atom distribution and possible segregation of C and Mn atoms in these alloys. In this report, the 3DAP analyses and HRTEM observations of Fe-C and Fe-C-Mn alloys are correlated with age hardening measurements and possible mechanisms of the initial hardening phenomenon will be discussed

  14. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  15. NMR Chemical Shift of a Helium Atom as a Probe for Electronic Structure of FH, F-, (FHF)-, and FH2.

    Science.gov (United States)

    Tupikina, E Yu; Efimova, A A; Denisov, G S; Tolstoy, P M

    2017-12-21

    In this work, we present the first results of outer electronic shell visualization by using a 3 He atom as a probe particle. As model objects we have chosen F - , FH, and FH 2 + species, as well as the hydrogen-bonded complex FH···F - at various H···F - distances (3.0, 2.5, 2.0, and 1.5 Å and equilibrium at ca. 1.14 Å). The interaction energy of investigated objects with helium atom (CCSD/aug-cc-pVTZ) and helium atom chemical shift (B3LYP/pcS-2) surfaces were calculated, and their topological analysis was performed. For comparison, the results of standard quantum mechanical approaches to electronic shell visualization were presented (ESP, ELF, ED, ∇ 2 ED). We show that the Laplacian of helium chemical shift, ∇ 2 δ He , is sensitive to fluorine atom lone pair localization regions, and it can be used for the visualization of the outer electronic shell, which could be used to evaluate the proton accepting ability. The sensitivity of ∇ 2 δ He to lone pairs is preserved at distances as large as 2.0-2.5 Å from the fluorine nucleus (in comparison with the distance to ESP minima, located at 1.0-1.5 Å or maxima of ELF, which are as close as 0.6 Å to the fluorine nucleus).

  16. Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions

    Science.gov (United States)

    Tao, Yinglei; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.

  17. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.

    Science.gov (United States)

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-02-08

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

  18. Probing the quantum analog of chaos with atoms in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Gay, J C; Delande, D

    1987-01-01

    For a few years, considerable interest arose in the problem of the quantum analog of classical chaos for hamiltonian system. Among several other simple atomic physics systems, the atom in a magnetic field turns out to be the most promising prototype for tackling such questions. The classical and quantum motions are now well understood. The experimental study is possible in high Rydberg states of atoms. Throughout the study of some aspects of this problem, the authors demonstrate that the quantum analog of chaos presents a two-fold aspect. While the spectral properties at short range are conveniently described by Random matrix theories, a long-range order still exist in the quantum dynamics which indicates the existence of scars of symmetries. This in turn is quite clearly exhibited in the experimental data on Rydberg atoms. Finally the authors indicate how to generalize the notions to any situation involving the Coulomb field and perturbing potentials. 21 refs.; 8 figs.

  19. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  20. Fundamental insights into the radium uptake into barite by atom probe tomography and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Juliane

    2017-10-01

    -of-the-art high-resolution microscopy techniques was used to answer the questions regarding (1) the internal microstructure of the initial barite (2) the role of this internal microstructure during the Ra uptake and (3) t he changes in the Ra distribution within the barite. This study comprises the first characterization of barite by atom probe tomography (APT). By combining APT and transmission electron microscopy (TEM) methods, pores covering the size range from a few nanometers to a few micrometers were identified in the SL barite. The pores were organized in layers parallel to the outer crystal faces. High resolution chemical analysis indicated that the pores contain a solution of water and sodium chloride. By focused ion beam (FIB) tomography, it was revealed that open macropores of several micrometers size are present as well within the SL barite. These partially connected macropores are distributed within the complete barite particles. Therefore, the macropores provide a direct pathway for Ra-containing aqueous fluid to enter the SL barite particles by diffusion within the aqueous solution. In addition, pores were also identified in the AL barite by TEM characterization. The entrapment of solution during mineral precipitation is known for several minerals at high supersaturation. As barite only precipitates at high supersaturation, nanoscale fluid inclusions as well as macropores probably were entrapped during the particle growth by precipitation. A microstructure similar to the one of the barite type used in this study was previously reported for other barites. In Ra-free reference experiment, no microstructural changes were noted over recrystallization times of up to 898 days. In prior studies, three different stages of Ra uptake were described based on macroscopic results. Ra-containing barite samples from all three stages were characterized to understand the role of the internal barite microstructure. At the beginning, the nano-scale fluid inclusions disappeared

  1. Fundamental insights into the radium uptake into barite by atom probe tomography and electron microscopy

    International Nuclear Information System (INIS)

    Weber, Juliane

    2017-01-01

    used to answer the questions regarding (1) the internal microstructure of the initial barite (2) the role of this internal microstructure during the Ra uptake and (3) t he changes in the Ra distribution within the barite. This study comprises the first characterization of barite by atom probe tomography (APT). By combining APT and transmission electron microscopy (TEM) methods, pores covering the size range from a few nanometers to a few micrometers were identified in the SL barite. The pores were organized in layers parallel to the outer crystal faces. High resolution chemical analysis indicated that the pores contain a solution of water and sodium chloride. By focused ion beam (FIB) tomography, it was revealed that open macropores of several micrometers size are present as well within the SL barite. These partially connected macropores are distributed within the complete barite particles. Therefore, the macropores provide a direct pathway for Ra-containing aqueous fluid to enter the SL barite particles by diffusion within the aqueous solution. In addition, pores were also identified in the AL barite by TEM characterization. The entrapment of solution during mineral precipitation is known for several minerals at high supersaturation. As barite only precipitates at high supersaturation, nanoscale fluid inclusions as well as macropores probably were entrapped during the particle growth by precipitation. A microstructure similar to the one of the barite type used in this study was previously reported for other barites. In Ra-free reference experiment, no microstructural changes were noted over recrystallization times of up to 898 days. In prior studies, three different stages of Ra uptake were described based on macroscopic results. Ra-containing barite samples from all three stages were characterized to understand the role of the internal barite microstructure. At the beginning, the nano-scale fluid inclusions disappeared, probably due to coalescing to new macropores

  2. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope.

    Science.gov (United States)

    Schouteden, Koen; Lauwaet, Koen; Janssens, Ewald; Barcaro, Giovanni; Fortunelli, Alessandro; Van Haesendonck, Chris; Lievens, Peter

    2014-02-21

    Preformed Co clusters with an average diameter of 2.5 nm are produced in the gas phase and are deposited under controlled ultra-high vacuum conditions onto a thin insulating NaCl film on Au(111). Relying on a combined experimental and theoretical investigation, we demonstrate visualization of the three-dimensional atomic structure of the Co clusters by high-resolution scanning tunneling microscopy (STM) using a Cl functionalized STM tip that can be obtained on the NaCl surface. More generally, use of a functionalized STM tip may allow for systematic atomic structure determination with STM of nanoparticles that are deposited on metal surfaces.

  3. Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Martin; González, C.; Jelínek, Pavel

    2012-01-01

    Roč. 24, 08 (2012), 084003/1-084003/7 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GPP204/11/P578; GA ČR GAP204/10/0952; GA ČR GA202/09/0545; GA MŠk(CZ) ME10076 Grant - others:AVČR(CZ) M100100904 Institutional research plan: CEZ:AV0Z10100521 Keywords : atomic force microscopy * metallic surfaces * atomic contrast * scanning tunneling microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012 http://iopscience.iop.org/0953-8984/24/8/084003

  4. Dependence of EIA spectra on mutual coherence between coupling and probe fields in Cs atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Mi Rang; Kim, Kyoung Dae; Park, Hyun Deok; Kim, Jung Bog [Korea National University of Education, Chungwon (Korea, Republic of); Moon, Han Seb [Korea Research Institute of the Standards and Science, Taejon (Korea, Republic of)

    2002-03-01

    We observed the dependence of EIA spectra on the mutual coherence between the coupling and the probe fields in the D{sub 2}F{sub 9} = 4 {r_reversible} F{sub e} = 5 transition of Cs vapors at room temperature where the coupling and the probe fields were made from one laser source or two independent laser sources. By using one source having a high mutual coherence, we found EIA spectra linewidths much narrower than 0.1 {gamma} on the weak coupling field and the transparent spectra with linewidths narrower than 1 MHz within subnatural absorption on the strong coupling field. On the other hand, where the two sources which were nearly incoherent with each other were used, the absorption profiles showed the same dependence on the coupling power as the spectra for the one source, but their linewidths were broad, on the order of the natural linewidth.

  5. Shot noise as a probe of spin-polarized transport through single atoms

    DEFF Research Database (Denmark)

    Burtzlaff, Andreas; Weismann, Alexander; Brandbyge, Mads

    2015-01-01

    Single atoms on Au(111) surfaces have been contacted with the Au tip of a low temperature scanning tunneling microscope. The shot noise of the current through these contacts has been measured up to frequencies of 120 kHz and Fano factors have been determined to characterize the transport channels...

  6. The extended wedge method: atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes.

    Science.gov (United States)

    Khare, H S; Burris, D L

    2013-05-01

    One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS2 to demonstrate the technique. Carbon and single crystal MoS2 had friction coefficients of μ = 0.20 ± 0.04 and μ = 0.006 ± 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS2 had a friction coefficient of μ = 0.005 ± 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).

  7. On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space.

    Science.gov (United States)

    Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P

    2018-06-01

    Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    International Nuclear Information System (INIS)

    Lohmann, Bernd; Grum-Grzhimailo, Alexei N.; Kleinpoppen, Hans

    2013-01-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is, until today, hardly to perform

  9. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Bernd [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Grum-Grzhimailo, Alexei N. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Kleinpoppen, Hans

    2013-07-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is

  10. Photoelectron spectra as a probe of double-core resonsance in two-electron atoms

    International Nuclear Information System (INIS)

    Grobe, R.; Haan, S.L.; Eberly, J.H.

    1996-01-01

    The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields

  11. Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe

    International Nuclear Information System (INIS)

    Girard, C.

    1991-01-01

    The interaction force between a metallic tip and a nonplanar dielectric surface is derived from a nonlocal formalism. A general formulation is given for the case of a spherical tip of nanometer size and for surfaces of arbitrary shapes (stepped surfaces and single crystals adsorbed on a planar surface). The dispersion part of the attractive force is obtained from a nonlocal theory expressed in terms of generalized electric susceptibilities of the two constituents. Implications for atomic force microscopy in attractive modes are discussed. In this context, the present model indicates two different forms of corrugation: those due to the protuberance present on the tip leading to atomic corrugations; nanometer-sized corrugations detected in the attractive region by the spherical part of the tip

  12. Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Alon; Goh, M. Cynthia [Department of Chemistry and Institute for Optical Sciences, University of Toronto, 80 St. George Street, Toronto M5S 3H6 (Canada)

    2012-03-15

    A novel sample holder that enables atomic force microscopy (AFM) tips to be mounted inside a scanning electron microscopy (SEM) for the purpose of characterizing the AFM tips is described. The holder provides quick and easy handling of tips by using a spring clip to hold them in place. The holder can accommodate two tips simultaneously in two perpendicular orientations, allowing both top and side view imaging of the tips by the SEM.

  13. Reaction (γ,2e) and (e,3e) as probe of electron correlation in atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    Cross sections of the (γ,2e) and (e,3e) reactions contain information about the two vacancy-energy spectrum and electron-pair correlations in initial and final states of the target atom. Physical pictures of these processes are presented for two- and many-electron atoms. The simplest mechanisms are discussed, demonstrating some features which await experimental confirmation. Attention is given to high photon energy and the relativistic energy region of these reactions. The energy distribution of outgoing relativistic electrons is qualitatively different from the nonrelativistic case. The origin and types of corrections to the simplest mechanisms, and possible means of their detection, are discussed. In addition, the role of different resonances: shape, giant, autoionizational, and Feshbach-type are considered. Results of calculations are compared with experimental data, mainly on double photoionization cross sections. Different possible objects as targets for the reactions are considered, including negative ions, excited atoms, molecules, and clusters. The modification of these reactions due to photon emission is discussed. The future of the domain is outlined

  14. Reactions (γ,2e) and (e,3e) as probes of electronic correlations in atoms

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1993-01-01

    Cross sections of the (γ,2e) and (e,3e) reactions carry information on two vacancy energy spectrum and on electron pair correlations in initial and final states of the target atom. Physical pictures of these processes are presented for two- and many-electron atoms. Simplest mechanisms of them are discussed, demonstrating some features which are waiting for experimental confirmation. Attention is given to high photon energy and even to relativistic energy region of these reactions. The energy distribution of outgoing relativistic electrons is qualitatively different from what it is for the nonrelativistic case. Origin and types of corrections to the simplest mechanisms and possible means of their detection are discussed. Role of different resonances: shape, giant, autoionizational, and Feschbach-type are considered. Results of calculations are compared with experimental data, mainly on double photoionization cross sections. Different possible objects as targets for the reactions are mentioned, including negative ions, excited atoms, molecules and clusters. Modification of the type of these reactions due to rather probable emission of the photon is discussed. Future of the domain is outlined. (orig.)

  15. Charge Transport in Metal-Molecule-Metal Junctions Probed by Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyunwook

    2013-01-01

    We have demonstrated a proof of intrinsic charge transport properties in alkanedithiol molecular junctions using a multiprobe approach combining a variety of transport techniques. The temperature-independent I(V) behavior and the correct exponential decay of conductance with respect to molecular length shows that the dominant charge transport mechanism is off-resonant tunneling. Length-dependent TVS measurements for the saturated alkane-dithiol series indicate that we did indeed probe a molecular system with CAFM. These results can provide stringent criteria to establish a valid molecular transport junction via a probabilistic measurement technique. In this study, we report a study of charge transport in alkanedithiol SAMs formed in metal-molecule-metal junctions using CAFM in combination with a variety of molecular transport techniques including temperature-and length-variable transport measurements and transition voltage spectroscopy. The main goal of this study is to probe the intrinsic transport properties of component molecules using CAFM, but not parasitic or defect-related effects

  16. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  17. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  18. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    Science.gov (United States)

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  19. Comparison of NO titration and fiber optics catalytic probes for determination of neutral oxygen atom concentration in plasmas and postglows

    International Nuclear Information System (INIS)

    Mozetic, Miran; Ricard, Andre; Babic, Dusan; Poberaj, Igor; Levaton, Jacque; Monna, Virginie; Cvelbar, Uros

    2003-01-01

    A comparative study of two different absolute methods NO titration and fiber optics catalytic probe (FOCP) for determination of neutral oxygen atom density is presented. Both methods were simultaneously applied for measurements of O density in a postglow of an Ar/O 2 plasma created by a surfatron microwave generator with the frequency of 2.45 GHz an adjustable output power between 30 and 160 W. It was found that the two methods gave similar results. The advantages of FOCP were found to be as follows: it is a nondestructive method, it enables real time measuring of the O density, it does not require any toxic gas, and it is much faster than NO titration. The advantage of NO titration was found to be the ability to measure O density in a large range of dissociation of oxygen molecules

  20. Atom probe tomography of the evolution of the nanostructure of oxide dispersion strengthened steels under ion irradiation

    Science.gov (United States)

    Orlov, N. N.; Rogozhkin, S. V.; Bogachev, A. A.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffmann, Ya.; Möslang, A.; Vladimirov, P.

    2017-09-01

    The atom probe tomography of the nanostructure evolution in ODS1 Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti steels under heavy ion irradiation at 300 and 573 K is performed. The samples were irradiated by 5.6 MeV Fe2+ ions and 4.8 MeV Ti2+ ions to a fluence of 1015 cm-2. It is shown that the number of nanoclusters increases by a factor of 2-3 after irradiation. The chemical composition of the clusters in the steels changes after irradiation at 300 K, whereas the chemical composition of the clusters in the 13.5Cr-0.3Ti ODS steel remains the same after irradiation at 573 K.

  1. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, S., E-mail: e0954@mosk.tytlabs.co.jp; Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K. [Toyota Central R and D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Isheim, D.; Seidman, D. N. [Northwestern University, Evanston, Illinois 60208-3108 (United States)

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573 K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  2. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    International Nuclear Information System (INIS)

    Lemmens, B.; Springer, H.; Duarte, M.J.; De Graeve, I.; De Strycker, J.; Raabe, D.; Verbeken, K.

    2016-01-01

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe 4 Al 13 ) and η (Fe 2 Al 5 ) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dip aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.

  4. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    Science.gov (United States)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  5. Investigations of oxide particles in unirradiated ODS-Eurofer by TEM and 3D atom probe methods

    International Nuclear Information System (INIS)

    Aleev, A.A.; Iskandarov, N.A.; Nikitin, A.A.; Rogizhkin, S.V.; Zaluzhny, A.G.; Klimenkov, M.; Lindau, R.; Moeslang, A.; Vladimirov, P.

    2009-01-01

    Oxide dispersion strengthened steels possess better high-temperature creep and radiation resistance than conventionally produced ferritic/martensitic steels. This behavior is mainly caused by the presence of highly dispersed and extremely stable oxide particles with sizes of few nanometers. One of the promising oxides used for dispersion strengthening was yttria (Y 2 O 3 ), which was introduced into EUROFER by mechanical alloying followed by the hot isostatic pressing at temperature around 1000-1200 dg. C and pressure ∼100 MPa. It was found that mechanical properties were strongly depended on size and spatial distribution of the precipitates. Therefore considerable efforts are focused on the investigation of the chemical composition and orientation of precipitates with respect to the steel matrix. Recent studies of Eurofer ODS steel (9%-CrWVTa) by SANS revealed the presence of high number density structural features with a size of approximately one nanometer. At the same time, previous studies by TEM identified only high number of small (6-40 nm) Y 2 O 3 particles. In this work we tried to get a deeper inside into the nanostructure of this material by means of tomographic atom probe and to correlate the results with the picture obtained by TEM. The present investigations revealed fine (∼2 nm) enrichments containing not only yttrium and oxygen but also vanadium and nitrogen. Concentration of vanadium was found to be approximately at the same level as yttrium. Some of the enrichments contained only three or even two elements mentioned above. Estimated number density of enrichments is about (1/5) x 10 23 m -3 . We suppose that these enriched zones might be precursors of the larger precipitates observed by TEM. The thesis seems to be supported by the similarities of the chemical composition and spatial distribution of elements inside enriched zones and nano precipitates studied by atomic probe and analytical TEM methods. (author)

  6. Preparing and probing atomic Majorana fermions and topological order in optical lattices

    International Nuclear Information System (INIS)

    Kraus, C V; Diehl, S; Zoller, P; Baranov, M A

    2012-01-01

    We introduce a one-dimensional system of fermionic atoms in an optical lattice whose phase diagram includes topological states of different symmetry classes with a simple possibility to switch between them. The states and topological phase transitions between them can be identified by looking at their zero-energy edge modes which are Majorana fermions. We propose several universal methods of detecting the Majorana edge states, based on their genuine features: the zero-energy, localized character of the wave functions and the induced non-local fermionic correlations. (paper)

  7. Preliminary experiments with a cusp-field ion source

    International Nuclear Information System (INIS)

    Bickes, R.W. Jr.; O'Hagan, J.B.

    1980-12-01

    Preliminary experiments with a cusp field ion source have been completed. Measurements were made of the total ion current and mass and energy distributions as a function of source operating conditions and cusp field geometry. These experiments have indicated that a cusp field source may be used in the Sandia Neutron Generator for Cancer Therapy and may permit the incorporation of a simplified unpumped accelerator design. Suggestions for future work are briefly outlined

  8. Fabrication of nano-sized magnetic tunnel junctions using lift-off process assisted by atomic force probe tip.

    Science.gov (United States)

    Jung, Ku Youl; Min, Byoung-Chul; Ahn, Chiyui; Choi, Gyung-Min; Shin, Il-Jae; Park, Seung-Young; Rhie, Kungwon; Shin, Kyung-Ho

    2013-09-01

    We present a fabrication method for nano-scale magnetic tunnel junctions (MTJs), employing e-beam lithography and lift-off process assisted by the probe tip of atomic force microscope (AFM). It is challenging to fabricate nano-sized MTJs on small substrates because it is difficult to use chemical mechanical planarization (CMP) process. The AFM-assisted lift-off process enables us to fabricate nano-sized MTJs on small substrates (12.5 mm x 12.5 mm) without CMP process. The e-beam patterning has been done using bi-layer resist, the poly methyl methacrylate (PMMA)/ hydrogen silsesquioxane (HSQ). The PMMA/HSQ resist patterns are used for both the etch mask for ion milling and the self-aligned mask for top contact formation after passivation. The self-aligned mask buried inside a passivation oxide layer, is readily lifted-off by the force exerted by the probe tip. The nano-MTJs (160 nm x 90 nm) fabricated by this method show clear current-induced magnetization switching with a reasonable TMR and critical switching current density.

  9. Probing atomic-size defects and free volumes with positron and positronium

    International Nuclear Information System (INIS)

    Dolveck, J.Y.; Moser, P.; Guo-Huan Dai

    1992-01-01

    The lifetime measurement of positrons injected in a metal allows to investigate defects of atomic dimension. Many crucial problems in metallurgy have found their solutions by the positron annihilation (PA) techniques for about three decades. Application to semiconductors research has been developed in recent years. Specific theory and analysing method can be used in the studies of the free-volume hole in polymers, the size of the empty spaces being between 0.3 and 1.5 nanometers. In many insulating materials, the diffusing positron can trap an electron and form a metastable positronium (Ps). Like a gas bubble, the Ps atom may diffuse and get trapped by the free-volume hole. When this mechanism is governing, lifetimes over the range of 1-10 ns are well observable and a correspondence exists between the positronium lifetime and minimum diameter of the trapping open space. Example of application is given in a study of polyimide membranes used for gas separation. A good correlation is revealed between the Ps lifetime and H 2 and/or CH 4 permeabilities. Recent progress in polymers research is also reviewed

  10. Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Rajan, Krishna

    2013-01-01

    The purpose of this work is to develop a methodology to estimate the APT reconstruction parameters when limited crystallographic information is available. Reliable spatial scaling of APT data currently requires identification of multiple crystallographic poles from the field desorption image for estimating the reconstruction parameters. This requirement limits the capacity of accurately reconstructing APT data for certain complex systems, such as highly alloyed systems and nanostructured materials wherein more than one pole is usually not observed within one grain. To overcome this limitation, we develop a quantitative methodology for calibrating the reconstruction parameters in an APT dataset by ensuring accurate inter-planar spacing and optimizing the curvature correction for the atomic planes corresponding to a single crystallographic orientation. We validate our approach on an aluminum dataset and further illustrate its capabilities by computing geometric reconstruction parameters for W and Al–Mg–Sc datasets. - Highlights: ► Quantitative approach is developed to accurately reconstruct APT data. ► Curvature of atomic planes in APT data is used to calibrate the reconstruction. ► APT reconstruction parameters are determined from a single crystallographic axis. ► Quantitative approach is demonstrated on W, Al and Al–Mg–Sc systems. ► Accurate APT reconstruction of complex materials is now possible

  11. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  12. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Xu, Hongwu [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Zhu, Jinlong [High Pressure Science and Engineering Center, Department of Physics and Astronomy, The University of Nevada, Las Vegas, Nevada 89154, USA and National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Page, Katharine, E-mail: pagekl@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-12-15

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2} measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.

  13. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    International Nuclear Information System (INIS)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A.; Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P.

    2015-01-01

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering

  14. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  15. Probing and Manipulating the Interfacial Defects of InGaAs Dual-Layer Metal Oxides at the Atomic Scale.

    Science.gov (United States)

    Wu, Xing; Luo, Chen; Hao, Peng; Sun, Tao; Wang, Runsheng; Wang, Chaolun; Hu, Zhigao; Li, Yawei; Zhang, Jian; Bersuker, Gennadi; Sun, Litao; Pey, Kinleong

    2018-01-01

    The interface between III-V and metal-oxide-semiconductor materials plays a central role in the operation of high-speed electronic devices, such as transistors and light-emitting diodes. The high-speed property gives the light-emitting diodes a high response speed and low dark current, and they are widely used in communications, infrared remote sensing, optical detection, and other fields. The rational design of high-performance devices requires a detailed understanding of the electronic structure at this interface; however, this understanding remains a challenge, given the complex nature of surface interactions and the dynamic relationship between the morphology evolution and electronic structures. Herein, in situ transmission electron microscopy is used to probe and manipulate the structural and electrical properties of ZrO 2 films on Al 2 O 3 and InGaAs substrate at the atomic scale. Interfacial defects resulting from the spillover of the oxygen-atom conduction-band wavefunctions are resolved. This study unearths the fundamental defect-driven interfacial electric structure of III-V semiconductor materials and paves the way to future high-speed and high-reliability devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe

    Directory of Open Access Journals (Sweden)

    Juan V. Escobar

    2017-04-01

    Full Text Available We present a procedure to perform and interpret pull-off force measurements during the jump-off-contact process between a liquid drop and rough surfaces using a conventional atomic force microscope. In this method, a micrometric liquid mercury drop is attached to an AFM tipless cantilever to measure the force required to pull this drop off a rough surface. We test the method with two surfaces: a square array of nanometer-sized peaks commonly used for the determination of AFM tip sharpness and a multi-scaled rough diamond surface containing sub-micrometer protrusions. Measurements are carried out in a nitrogen atmosphere to avoid water capillary interactions. We obtain information about the average force of adhesion between a single peak or protrusion and the liquid drop. This procedure could provide useful microscopic information to improve our understanding of wetting phenomena on rough surfaces.

  17. Heavy atoms as molecular probes in studying the solvent dependence of the dynamics of triplet exciplexes

    International Nuclear Information System (INIS)

    Steiner, U.; Winter, G.

    1981-01-01

    Electron transfer reactions between thiopyronine triplet (acceptor 3 A + ) and the electron donors (D), aniline, p-Br-aniline and p-I-aniline, are investigated by flash spectroscopy in solvents of different viscosity and polarity. Due to the heavy-atom effect the radical yield becomes very sensitive to the solvent influence, which can be explained by the dynamic properties of a triplet exciplex ( 3 (AD + )) formed as a primary product in the reaction between acceptor triplet and donor. Whereas on variation of solvent viscosity the solvent cage effect on the dissociation of 3 (AD + ) is observed, a change in solvent polarity is suggested to affect the radiationless deactivation of 3 (AD + ) to the ground state of the components. (author)

  18. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  19. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.

    Science.gov (United States)

    Gnaser, Hubert; Radny, Tobias

    2015-12-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.

  20. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  1. Parameter sensitivity analysis of nonlinear piezoelectric probe in tapping mode atomic force microscopy for measurement improvement

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Rachael; Nima Mahmoodi, S., E-mail: nmahmoodi@eng.ua.edu [Department of Mechanical Engineering, The University of Alabama, Box 870276, Tuscaloosa, Alabama 35487 (United States)

    2014-02-21

    The equations of motion for a piezoelectric microcantilever are derived for a nonlinear contact force. The analytical expressions for natural frequencies and mode shapes are obtained. Then, the method of multiple scales is used to analyze the analytical frequency response of the piezoelectric probe. The effects of nonlinear excitation force on the microcantilever beam's frequency and amplitude are analytically studied. The results show a frequency shift in the response resulting from the force nonlinearities. This frequency shift during contact mode is an important consideration in the modeling of AFM mechanics for generation of more accurate imaging. Also, a sensitivity analysis of the system parameters on the nonlinearity effect is performed. The results of a sensitivity analysis show that it is possible to choose parameters such that the frequency shift minimizes. Certain parameters such as tip radius, microcantilever beam dimensions, and modulus of elasticity have more influence on the nonlinearity of the system than other parameters. By changing only three parameters—tip radius, thickness, and modulus of elasticity of the microbeam—a more than 70% reduction in nonlinearity effect was achieved.

  2. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Sei-Young Lee

    2011-01-01

    Full Text Available Sei-Young Lee1,2, Ana-Maria Zaske3, Tommaso Novellino1,4*, Delia Danila3, Mauro Ferrari1,5*, Jodie Conyers3, Paolo Decuzzi1,6*1Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX, USA; 2Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA; 3CeTIR – Center for Translational Injury Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; 4Department of Biomedical Engineering, Biomedical Campus University of Rome, Italy; 5MD Anderson Cancer Center, Houston, TX, USA; 6BioNEM – Center of Bio-Nanotechnology and Engineering for Medicine, University of Magna Graecia, Catanzaro, Italy; *Currently at Department of Nanomedicine and Biomedical Engineering, The Methodist Hospital Research Institute, Houston, TX, USAAbstract: TNF-α (tumor necrosis factor-α is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1 mechanical properties, employing atomic force microscopy; 2 cytoskeletal organization, through fluorescence microscopy; and 3 membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h, for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells; the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with

  3. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  4. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  5. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    Science.gov (United States)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-04-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  6. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  7. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  8. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  9. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    Science.gov (United States)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  10. Monolayer dispersion of CoO on Al2O3 probed by positronium atom

    International Nuclear Information System (INIS)

    Liu, Z.W.; Zhang, H.J.; Chen, Z.Q.

    2014-01-01

    CoO/Al 2 O 3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N 2 . Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al 2 O 3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al 2 O 3 . The positron lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al 2 O 3 . The presence of CoO significantly decreases both the lifetime and the intensity of τ 4 . Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.

  11. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  12. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  13. Atom Probe Tomography of Phase and Grain Boundaries in Experimentally-Deformed and Hot-Pressed Wehrlite

    Science.gov (United States)

    Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.

    2017-12-01

    Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and

  14. Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions

    International Nuclear Information System (INIS)

    Zandbergen, M.W.; Cerezo, A.; Smith, G.D.W.

    2015-01-01

    Atom probe tomography (APT) analysis and hardness measurements have been used to characterise the early stages of precipitation in three Al–Mg–Si alloys with different Cu contents (Al–0.51 at.%Mg–0.94 at.%Si, with 0.01 at.%, 0.06 at.%, or 0.34 at.% Cu). A range of single and multi- stage heat treatments were chosen to evaluate the changes in precipitation processes. Three ageing temperatures were investigated, 298 K (natural ageing), 353 K (pre-ageing) and 453 K (automotive paint-bake conditions). The Cu content had significant effects on the microstructural evolution within the alloy. Formation of clusters which can act as precursors of elongated precipitates during paint-baking was found to be enhanced with increasing Cu content. This improved the paint-bake hardening response and mitigated the deleterious effects of natural ageing. Cu was present in all precipitates in the highest Cu-containing alloy. These precipitates were believed to be precursors to the Q′ phase. Mechanisms for the effects of Cu on precipitation kinetics are proposed.

  15. Microstructural evolution of Fe−22%Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganova, Olesya A., E-mail: KorchuganovaOA@gmail.com [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow (Russian Federation); State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218, Moscow (Russian Federation); Thuvander, Mattias [Chalmers University of Technology, SE-412 96, Göteborg (Sweden); Aleev, Andrey A.; Rogozhkin, Sergey V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow (Russian Federation); State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218, Moscow (Russian Federation); Boll, Torben [Chalmers University of Technology, SE-412 96, Göteborg (Sweden); Kulevoy, Timur V. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, 117218, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow (Russian Federation)

    2016-08-15

    Nanostructure evolution during ion irradiation of two thermally aged binary Fee22Cr alloys has been investigated using atom probe tomography. Specimens aged at 500 °C for 50 and 200 h were irradiated by 5.6 MeV Fe ions at room temperature up to fluences of 0.3 × 10{sup 15} ions/cm{sup 2} and 1 × 10{sup 15} ions/cm{sup 2}. The effect of irradiation on the material nanostructure was examined at a depth of 1 μm from the irradiated surface. The analysis of Cr radial concentration functions reveals that dense α′-phase precipitates in the 200 h aged alloy become diffuse and thereby larger when subjected to irradiation. On the other hand, less Cr-enriched precipitates in the alloy aged for 50 h are less affected. The CreCr pair correlation function analysis shows that matrix inhomogeneity decreases under irradiation. Irradiation leads to a decrease in the number density of diffuse clusters, whereas in the case of well-developed precipitates it remains unchanged.

  16. Microstructural evolution of Fe−22%Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography

    International Nuclear Information System (INIS)

    Korchuganova, Olesya A.; Thuvander, Mattias; Aleev, Andrey A.; Rogozhkin, Sergey V.; Boll, Torben; Kulevoy, Timur V.

    2016-01-01

    Nanostructure evolution during ion irradiation of two thermally aged binary Fee22Cr alloys has been investigated using atom probe tomography. Specimens aged at 500 °C for 50 and 200 h were irradiated by 5.6 MeV Fe ions at room temperature up to fluences of 0.3 × 10 15 ions/cm 2 and 1 × 10 15 ions/cm 2 . The effect of irradiation on the material nanostructure was examined at a depth of 1 μm from the irradiated surface. The analysis of Cr radial concentration functions reveals that dense α′-phase precipitates in the 200 h aged alloy become diffuse and thereby larger when subjected to irradiation. On the other hand, less Cr-enriched precipitates in the alloy aged for 50 h are less affected. The CreCr pair correlation function analysis shows that matrix inhomogeneity decreases under irradiation. Irradiation leads to a decrease in the number density of diffuse clusters, whereas in the case of well-developed precipitates it remains unchanged.

  17. Microstructural evolution of Fesbnd 22%Cr model alloy under thermal ageing and ion irradiation conditions studied by atom probe tomography

    Science.gov (United States)

    Korchuganova, Olesya A.; Thuvander, Mattias; Aleev, Andrey A.; Rogozhkin, Sergey V.; Boll, Torben; Kulevoy, Timur V.

    2016-08-01

    Nanostructure evolution during ion irradiation of two thermally aged binary Fee22Cr alloys has been investigated using atom probe tomography. Specimens aged at 500 °C for 50 and 200 h were irradiated by 5.6 MeV Fe ions at room temperature up to fluences of 0.3 × 1015 ions/cm2 and 1 × 1015 ions/cm2. The effect of irradiation on the material nanostructure was examined at a depth of 1 μm from the irradiated surface. The analysis of Cr radial concentration functions reveals that dense α‧-phase precipitates in the 200 h aged alloy become diffuse and thereby larger when subjected to irradiation. On the other hand, less Cr-enriched precipitates in the alloy aged for 50 h are less affected. The CreCr pair correlation function analysis shows that matrix inhomogeneity decreases under irradiation. Irradiation leads to a decrease in the number density of diffuse clusters, whereas in the case of well-developed precipitates it remains unchanged.

  18. Atomic Force Microscopy Probing of Receptor–Nanoparticle Interactions for Riboflavin Receptor Targeted Gold–Dendrimer Nanocomposites

    Science.gov (United States)

    2015-01-01

    Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core–shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP–dendrimer; 20.5 nm). Binding of RfBP to the AuNP–dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP–dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro. PMID:24571134

  19. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna

    2015-05-19

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  20. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    KAUST Repository

    Khushaim, Muna; Boll, Torben; Seibert, Judith; Haider, Ferdinand; Al-Kassab, Talaat

    2015-01-01

    The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T 1 Al 2 CuLi / θ ′ Al 2 Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al 2 Cu equilibrium composition. Additionally, the Li distribution inside the θ ′ platelets was found to equal the same value as in the matrix. The equally thin T 1 platelet deviates from the formula (Al 2 CuLi) in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al 2 CuLi) stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T 1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T 1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  1. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    2015-01-01

    Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially with high accuracy. Due to its ability to spatially characterize chemistry in non-conducting materials, such as oxides, provides the opportunity to characterize stoichiometry, which strongly is tied to material performance. However, accuracy has been correlated with instrument run parameters. A systematic study of the effect of laser energy, temperature, and detection rate is performed on the evaporation behavior of a model oxide, uranium dioxide (UO 2 ). Modifying the detection rate and temperature did not affect its evaporation behavior as laser energy. It was discovered that three laser evaporation regimes are present in UO 2 . Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser assisted field evaporation and high laser energy produces thermal effects in the evaporation behavior. Laser energy had the greatest impact on evaporation and the optimal instrument condition for UO 2 was determined to be 50K, 10 pJ laser energy, 0.3% detection rate, and a 100 kHz repetition rate. These conditions provide the best combination of mass resolution, accurate stoichiometry, and evaporation behavior.

  2. Characterization of Precipitation in Al-Li Alloy AA2195 by means of Atom Probe Tomography and Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Muna Khushaim

    2015-01-01

    Full Text Available The microstructure of the commercial alloy AA2195 was investigated on the nanoscale after conducting T8 tempering. This particular thermomechanical treatment of the specimen resulted in the formation of platelet-shaped T1Al2CuLi/θ′Al2Cu precipitates within the Al matrix. The electrochemically prepared samples were analyzed by scanning transmission electron microscopy and atom probe tomography for chemical mapping. The θ′ platelets, which are less than 2 nm thick, have the stoichiometric composition consistent with the expected Al2Cu equilibrium composition. Additionally, the Li distribution inside the θ′ platelets was found to equal the same value as in the matrix. The equally thin T1 platelet deviates from the formula (Al2CuLi in its stoichiometry and shows Mg enrichment inside the platelet without any indication of a higher segregation level at the precipitate/matrix interface. The deviation from the (Al2CuLi stoichiometry cannot be simply interpreted as a consequence of artifacts when measuring the Cu and Li concentrations inside the T1 platelet. The results show rather a strong hint for a true lower Li and Cu contents, hence supporting reasonably the hypothesis that the real chemical composition for the thin T1 platelet in the T8 tempering condition differs from the equilibrium composition of the thermodynamic stable bulk phase.

  3. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    Science.gov (United States)

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A study of atomic distribution in the intermetallic compound by AP-FIM

    International Nuclear Information System (INIS)

    Ren, D.G.

    1993-01-01

    This paper reports a study of the atomic distributions in the intermetallic compound by field ion microscope and atom probe (AP-FIM). The samples used in this work had nearly stoichiometry composition of Ni 3 Al with boron and without boron. The samples of TiAl also had nearly stoichiometry composition and adding Zr and Mn. The field ion image of Ni 3 Al without boron displays essentially the ordered f.c.c. crystal structure (Ll 2 ) with the center of (001) face. The field ion image of B-doped Ni 3 Al shows that the extent of ordering is reduced by addition of boron. The results of AP analysis show that the distribution of boron atom in Ni 3 Al is approximately homogeneous for the low boron contents. The atomic arrangements of Ni and Al in Ni 3 Al crystal lattice were changed by addition of boron. It is shown in the probability of consecutive evaporative sequence Al-Al and Ni-Ni is increased with B-doping. The field ion image of TiAl shows two regions with ordered f.c.t crystal structure (r-TiAl) and disordered. The distributions of Ti and Al atoms in the TiAl alloy show that the structure of a lamellar mixture were confirmed by AP profiles. The results of AP analysis show that distributions of Ti, Al, Mn and Zr in the alloy essentially is homogeneous. The results of AP analysis also exhibit that the interface of an oxide exists in the alloys. These interfaces of oxides consist of TiO and AlO in the TiAl, NiO in the Ni 3 Al. The broadness of the oxides interface were estimated about 8-10nm

  5. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    Kinno, T.; Akutsu, H.; Tomita, M.; Kawanaka, S.; Sonehara, T.; Hokazono, A.; Renaud, L.; Martin, I.; Benbalagh, R.; Sallé, B.; Takeno, S.

    2012-01-01

    Highlights: ► Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. ► Comparison of depth profiles of single-hit events and those of multi-hit events. ► ∼80% of Pt atoms were detected in multi-hit events. ► Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  6. Studying nearest neighbor correlations by atom probe tomography (APT) in metallic glasses as exemplified for Fe40Ni40B20 glassy ribbons

    KAUST Repository

    Shariq, Ahmed

    2012-01-01

    A next nearest neighbor evaluation procedure of atom probe tomography data provides distributions of the distances between atoms. The width of these distributions for metallic glasses studied so far is a few Angstrom reflecting the spatial resolution of the analytical technique. However, fitting Gaussian distributions to the distribution of atomic distances yields average distances with statistical uncertainties of 2 to 3 hundredth of an Angstrom. Fe 40Ni40B20 metallic glass ribbons are characterized this way in the as quenched state and for a state heat treated at 350 °C for 1 h revealing a change in the structure on the sub-nanometer scale. By applying the statistical tool of the χ2 test a slight deviation from a random distribution of B-atoms in the as quenched sample is perceived, whereas a pronounced elemental inhomogeneity of boron is detected for the annealed state. In addition, the distance distribution of the first fifteen atomic neighbors is determined by using this algorithm for both annealed and as quenched states. The next neighbor evaluation algorithm evinces a steric periodicity of the atoms when the next neighbor distances are normalized by the first next neighbor distance. A comparison of the nearest neighbor atomic distribution for as quenched and annealed state shows accumulation of Ni and B. Moreover, it also reveals the tendency of Fe and B to move slightly away from each other, an incipient step to Ni rich boride formation. © 2011 Elsevier B.V.

  7. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  8. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    OpenAIRE

    Alvarez, Jose; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy (CP-AFM) and confocal micro-Raman/Photoluminescence (PL) imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced ...

  9. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. V., E-mail: baklanov@mail.ioffe.ru [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation); Gutkin, A. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Brunkov, P. N. [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation)

    2015-08-15

    Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

  10. Mg dopant distribution in an AlGaN/GaN p-type superlattice assessed using atom probe tomography, TEM and SIMS

    International Nuclear Information System (INIS)

    Bennett, S E; Kappers, M J; Barnard, J S; Humphreys, C J; Oliver, R A; Clifton, P H; Ulfig, R M

    2010-01-01

    P-type conducting layers are critical in GaN-based devices such as LEDs and laser diodes. Such layers are often produced by doping GaN with Mg, but the hole concentration can be enhanced using AlGaN/GaN p-type superlattices by exploiting the built-in polarisation fields. A Mg-doped AlGaN/GaN superlattice was studied using SIMS. Although the AlGaN and GaN were nominally doped to the same level, the SIMS data suggested a difference in doping density between the two materials. Atom probe tomography was then used to investigate the Mg distribution. The superlattice repeats were clearly visible, as expected and, in addition, significant Mg clustering was observed in both the GaN and AlGaN layers. There were many more Mg clusters in the AlGaN layers than the GaN layers, accounting for the difference in doping density suggested by SIMS. To evaluate the structural accuracy of the atom probe reconstruction, layer thicknesses from the atom probe were compared with STEM images. Finally, future work is proposed to investigate the Mg clusters in the TEM.

  11. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    Science.gov (United States)

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Atomic structures and compositions of internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N. (Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering); Merkle, K.L. (Argonne National Lab., IL (United States))

    1992-03-01

    This research program addresses fundamental questions concerning the relationships between atomic structures and chemical compositions of metal/ceramic heterophase interfaces. The chemical composition profile across a Cu/MgO {l brace}111{r brace}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single phase alloy, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar space of the {l brace}222{r brace} MgO planes. In particular, we demonstrate for the first time that the bonding across a Cu/MgO {l brace}111{r brace}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu{vert bar}O{vert bar}Mg{hor ellipsis} and not Cu{vert bar}Mg{vert bar}O{hor ellipsis}; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence it was established, via high resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {l brace}111{r brace} planes with a cube-on-cube relationship between a precipitate and the matrix. First results are also presented for the Ni/Cr{sub 2}O{sub 4} interface; for this system selected area atom probe microscopy was used to analyze this interface; Cr{sub 2}O{sub 4} precipitates are located in a field-ion microscope tip and a precipitate is brought into the tip region via a highly controlled electropolishing technique.

  13. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  14. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.

    2011-05-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  15. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    KAUST Repository

    Rademacher, Thomas W.; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-01-01

    Addition of ternary elements to the D03 ordered Fe3Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. © 2010 Elsevier B.V.

  16. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  17. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment.

    Science.gov (United States)

    Azoury, Doron; Krüger, Michael; Orenstein, Gal; Larsson, Henrik R; Bauch, Sebastian; Bruner, Barry D; Dudovich, Nirit

    2017-11-13

    Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.

  18. Photoelectron imaging, probe of the dynamics: from atoms... to clusters; Imagerie de photoelectrons, sonde de la dynamique: des atomes... aux agregats

    Energy Technology Data Exchange (ETDEWEB)

    Lepine, F

    2003-06-15

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W{sub n}{sup -}, C{sub n}{sup -}, C{sub 60}). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  19. Atomic level microstructural characterization by APFIM

    International Nuclear Information System (INIS)

    Miller, M.K.

    1996-01-01

    Atom probe field ion microscopy has been used to characterize Ni aluminides in addition to changes in microstructure of pressure vessel steels as a result of exposure to neutron irradiation. Ultrafine intragranular Cu precipitates and P segregation to grain and lath boundaries have been quantified in the pressure vessel steels. In boron-doped Ni 3 Al, the B additions were found to segregate to dislocations, low angle boundaries, antiphase boundaries, stacking faults, and grain boundaries. In boron-doped NiAl, B segregation to grain boundaries and ultrafine MB 2 precipitates were observed. In Mo-doped NiAl, enrichments of Mo, C, N/Si, B, and Fe were observed at the grain boundaries together with Mo precipitates and low Mo matrix solubility

  20. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  1. Impact of dynamic specimen shape evolution on the atom probe tomography results of doped epitaxial oxide multilayers: Comparison of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Nandasiri, Manjula; Devaraj, Arun, E-mail: arun.devaraj@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Xu, Zhijie [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Thevuthasan, Suntharampillai [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, PO Box 5825, Doha (Qatar)

    2015-08-31

    The experimental atom probe tomography (APT) results from two different specimen orientations (top-down and sideways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was compared with level-set method based field evaporation simulations for the same specimen orientations. This experiment-simulation comparison explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction, leading to inaccurate estimation of interfacial intermixing. This study highlights the importance of comparing experimental results with field evaporation simulations when using APT to study oxide heterostructure interfaces.

  2. Field desorption and field ion surface studies of samples exposed to the plasmas of PLT and ISX

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Panitz, J.A.

    1978-01-01

    Modifications to the surface of field-ion specimens exposed to plasma discharges in PLT and ISX determined by Imaging Probe, Field Ion Microscope, and Transmission Electron Microscope analysis have in the past shown several consistent features. Surface films consisting primarily of limiter material with trapped plasma and impurity species have been found to reside on samples with direct line of sight exposure to the plasma during the discharges. Control specimens placed in the tokamak, but shielded from the plasma, on the other hand, remained free of deposits. When exposed to only high power plasma discharges, samples placed at the wall position in PLT and ISX have survived the exposures with no evidence of damage or implantation. In this paper we describe the results of a recent exposure in PLT in which for the first time samples of stainless steel were included for High-Field Surface Analysis. Tokamak operating conditions, including stainless-steel limiters, titanium gettering between discharges, and the occurrence of a disruption, also distinguished this exposure from those carried out previously. Surprisingly, even with stainless-steel limiters, carbon films were found to be deposited on the samples at a rate

  3. Heavy Atom Substituents as Molecular Probes for Solvent Effects on the Dynamics of Short-lived Triplet Exciplexes

    OpenAIRE

    Winter, Gerhard; Steiner, Ulrich

    1980-01-01

    The influence of heavy atom substituents (Br, I) in the electron donor aniline on the electron transfer reaction with thiopyronine triplet is investigated by flash spectroscopy in solvents of different viscosity and polarity. Triplet quenching constants and radical yields are determined. The results are analysed in terms of decay constants of an intermediate triplet exciplex where the heavy atom substituents significantly enhance the intersystem crossing process leading to singlet ground stat...

  4. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  5. Innovation and optimization of a method of pump-probe polarimetry with pulsed laser beams in view of a precise measurement of parity violation in atomic cesium

    International Nuclear Information System (INIS)

    Chauvat, D.

    1997-10-01

    While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation ε 1 excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation ε 2 tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry (∼ 10 -6 ) in the gain that depends on the handedness of the tri-hedron (E, ε 1 , ε 2 ) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)

  6. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography

    International Nuclear Information System (INIS)

    Rademacher, Thomas; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-01-01

    Addition of ternary elements to the D0 3 ordered Fe 3 Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. -- Research highlights: → APT measurements of Fe 3 Al-Cr are systematically analysed to study ordering. → APT measurements are simulated using EAM to calculate binding energies. → Cr occupies next nearest neighbour sites of aluminium with at least 83% ordering. → Aluminium ordering is at least 92%

  7. Diode laser probe of CO2 vibrational excitation produced by collisions with hot deuterium atoms from the 193 nm excimer laser photolysis D2S

    International Nuclear Information System (INIS)

    O'Neill, J.A.; Cai, J.Y.; Flynn, G.W.; Weston, R.E. Jr.

    1986-01-01

    The 193 nm excimer laser photolysis of D 2 S in D 2 S/CO 2 mixtures produces fast deuterium atoms (E/sub TR/approx.2.2 eV) which vibrationally excite CO 2 molecules via inelastic translation--vibration/rotation (T--V/R) energy exchange processes. A high resolution (10 -3 cm -1 ) cw diode laser probe was used to monitor the excitation of ν 3 (antisymmetric stretch) and ν 2 (bend) vibrations in CO 2 . The present results are compared with previous experiments involving hot hydrogen atom excitation of CO 2 in H 2 S/CO 2 mixtures as well as with theoretical calculations of the excitation probability. The probability for excitation of a ν 3 quantum in CO 2 is about 1%--2% per gas kinetic D/CO 2 collision. Bending (ν 2 ) quanta are produced about eight times more efficiently than antisymmetric stretching (ν 3 ) quanta. The thermalization rate for cooling hot D atoms below the threshold for production of a ν 3 vibrational quantum corresponds to less than 2 D*/D 2 S collisions or 15 D*/CO 2 collisions

  8. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  9. The neon gas field ion source-a first characterization of neon nanomachining properties

    International Nuclear Information System (INIS)

    Livengood, Richard H.; Tan, Shida; Hallstein, Roy; Notte, John; McVey, Shawn; Faridur Rahman, F.H.M.

    2011-01-01

    At the Charged Particle Optics Conference (CPO7) in 2006, a novel trimer based helium gas field ion source (GFIS) was introduced for use in a new helium ion microscope (HIM), demonstrating the novel source performance attributes and unique imaging applications of the HIM (Hill et al., 2008 ; Livengood et al., 2008 ). Since that time there have been numerous enhancements to the HIM source and platform demonstrating resolution scaling into the sub 0.5 nm regime (Scipioni et al., 2009 ; Pickard et al., 2010 ). At this Charged Particle Optics Conference (CPO8) we will be introducing a neon version of the trimer-GFIS co-developed by Carl Zeiss SMT and Intel Corporation. The neon source was developed as a possible supplement to the gallium liquid metal ion source (LMIS) used today in most focused ion beam (FIB) systems (Abramo et al., 1994 ; Young et al.,1998 ). The neon GFIS source has low energy spread (∼1 eV) and a small virtual source size (sub-nanometer), similar to that of the helium GFIS. However neon does differ from the helium GFIS in two significant ways: neon ions have high sputtering yields (e.g. 1 Si atom per incident ion at 20 keV); and have relatively shallow implant depth (e.g. 46 nm in silicon at 20 keV). Both of these are limiting factors for helium in many nanomachining applications. In this paper we will present both simulation and experimental results of the neon GFIS used for imaging and nanomachining applications.

  10. Quantitative transmission electron microscopy and atom probe tomography study of Ag-dependent precipitation of Ω phase in Al-Cu-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song; Ying, Puyou [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2017-02-27

    The close association between the Ω precipitation and various Ag additions is systematically investigated by quantitative transmission electron microscopy and atom probe tomography analysis. Our results suggest that the precipitation of Ω phase is strongly dependent on Ag variations. Increasing the bulk Ag content favors a denser Ω precipitation and hence leads to a greater age-hardening response of Al-Cu-Mg-Ag alloy. This phenomenon, as proposed by proximity histograms, is directly related to the greater abundance of Ag solutes within Ω precursors. This feature lowers its nucleation barrier and increases the nucleation rate of Ω phase, finally contributes to the enhanced Ω precipitation. Also, it is noted that increasing Ag remarkably restricts the precipitation of θ' phase.

  11. Nanostructural evolution in surveillance test specimens of a commercial nuclear reactor pressure vessel studied by three-dimensional atom probe and positron annihilation

    International Nuclear Information System (INIS)

    Toyama, T.; Nagai, Y.; Tang, Z.; Hasegawa, M.; Almazouzi, A.; Walle, E. van; Gerard, R.

    2007-01-01

    The nanostructural evolution of irradiation-induced Cu-rich nanoprecipitates (CRNPs) and vacancy clusters in surveillance test specimens of in-service commercial nuclear reactor pressure vessel steel welds of Doel-1 and Doel-2 are revealed by combining the three-dimensional local electrode atom probe and positron annihilation techniques. In both medium (0.13 wt.%) and high (0.30 wt.%) Cu welds, the CRNPs are found to form readily at the very beginning of the reactor lifetime. Thereafter, during the subsequent 30 years of operation, the residual Cu concentration in the matrix shows a slight decrease while the CRNPs coarsen. On the other hand, small vacancy clusters of V 3 -V 4 start appearing after the initial Cu precipitation and accumulate steadily with increasing neutron dose. The observed nanostructural evolution is shown to provide unique and fundamental information about the mechanisms of the irradiation-induced embrittlement of these specific materials

  12. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    Science.gov (United States)

    Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-09-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

  13. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel

    International Nuclear Information System (INIS)

    Felfer, Peter J.; Killmore, Chris R.; Williams, Jim G.; Carpenter, Kristin R.; Ringer, Simon P.; Cairney, Julie M.

    2012-01-01

    Most modern HSLA steels rely on the effect of Nb in steels to achieve the properties desired for a specific application. While the role of Nb in forming precipitates has been well characterized, its role in a solid solution is less well understood due to the difficulty of obtaining quantitative experimental data. In the current work, site-specific atom probe tomography was used to quantify the amount of Nb present at prior austenite grain boundaries in a commercial strip-cast steel, produced via the Castrip ® process. This was compared to the amount of Nb found at ferrite–ferrite grain boundaries that had formed during the transformation from austenite to ferrite. With the interfacial excess Nb measured, thermodynamic calculations were carried out and compared to the change in transformation temperature obtained by dilatometry, with reference to a comparable Nb free, strip-cast steel.

  14. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); LeDuc, P. R., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Departments of Biomedical Engineering and Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)

    2014-10-20

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  15. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    International Nuclear Information System (INIS)

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F.; LeDuc, P. R.

    2014-01-01

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  16. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    Science.gov (United States)

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  17. Atom probe study on the bulk nanocomposite SmCo/Fe permanent magnet produced by ball-milling and warm compaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, X.Y., E-mail: xiangyuan.xiong@mcem.monash.edu.au [Monash Centre for Electron Microscopy, Monash University, Vic. 3800 (Australia); Department of Materials Engineering, Monash University, Vic. 3800 (Australia); Rong, C.B. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Rubanov, S. [Electron Microscopy Unit, Bio21 Institute, University of Melbourne, Vic. 3052 (Australia); Zhang, Y. [Division of Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Liu, J.P. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2011-11-15

    The microstructure and compositions of the bulk nanocomposite SmCo/Fe permanent magnet were studied using transmission electron microscopy and 3-dimensional atom probe techniques. The excellent magnetic properties were related to the uniform nanocomposite structure with nanometer {alpha}-Fe particles uniformly distributed in the SmCo phase matrix. The {alpha}-Fe phase contained {approx}26 at% Co, and the SmCo phase contained {approx}19 at% Fe, confirming that the interdiffusion of Fe and Co atoms between the two phases occurred. The formation of the {alpha}-Fe(Co) phase explained why the saturation magnetization of the nanocomposite permanent magnet was higher than that expected from the original pure {alpha}-Fe and SmCo{sub 5} powders, which enhanced further the maximum energy product of the nanocomposite permanent magnet. - Highlights: > A uniform nanocomposite SmCo/{alpha}-Fe permanent magnet with high performance obtained. > The first quantitative analyses of interdiffusion of Fe and Co between the two phases presented. > The saturation magnetization of the nanocomposite enhanced by the resulting {alpha}-Fe(Co) phase.

  18. Design of a scanning probe microscope with advanced sample treatment capabilities: An atomic force microscope combined with a miniaturized inductively coupled plasma source

    International Nuclear Information System (INIS)

    Hund, Markus; Herold, Hans

    2007-01-01

    We describe the design and performance of an atomic force microscope (AFM) combined with a miniaturized inductively coupled plasma source working at a radio frequency of 27.12 MHz. State-of-the-art scanning probe microscopes (SPMs) have limited in situ sample treatment capabilities. Aggressive treatments such as plasma etching or harsh treatments such as etching in aggressive liquids typically require the removal of the sample from the microscope. Consequently, time consuming procedures are required if the same sample spot has to be imaged after successive processing steps. We have developed a first prototype of a SPM which features a quasi in situ sample treatment using a modified commercial atomic force microscope. A sample holder is positioned in a special reactor chamber; the AFM tip can be retracted by several millimeters so that the chamber can be closed for a treatment procedure. Most importantly, after the treatment, the tip is moved back to the sample with a lateral drift per process step in the 20 nm regime. The performance of the prototype is characterized by consecutive plasma etching of a nanostructured polymer film

  19. Note: A silicon-on-insulator microelectromechanical systems probe scanner for on-chip atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Anthony G.; Maroufi, Mohammad; Moheimani, S. O. Reza, E-mail: Reza.Moheimani@newcastle.edu.au [School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-04-15

    A new microelectromechanical systems-based 2-degree-of-freedom (DoF) scanner with an integrated cantilever for on-chip atomic force microscopy (AFM) is presented. The silicon cantilever features a layer of piezoelectric material to facilitate its use for tapping mode AFM and enable simultaneous deflection sensing. Electrostatic actuators and electrothermal sensors are used to accurately position the cantilever within the x-y plane. Experimental testing shows that the cantilever is able to be scanned over a 10 μm × 10 μm window and that the cantilever achieves a peak-to-peak deflection greater than 400 nm when excited at its resonance frequency of approximately 62 kHz.

  20. PIEZO channel protein naturally expressed in human breast cancer cell MDA-MB-231 as probed by atomic force microscopy

    Science.gov (United States)

    Weng, Yuanqi; Yan, Fei; Chen, Runkang; Qian, Ming; Ou, Yun; Xie, Shuhong; Zheng, Hairong; Li, Jiangyu

    2018-05-01

    Mechanical stimuli drives many physiological processes through mechanically activated channels, and the recent discovery of PIEZO channel has generated great interests in its mechanotransduction. Many previous researches investigated PIEZO proteins by transcribing them in cells that originally have no response to mechanical stimulation, or by forming PIEZO-combined complexes in vitro, and few studied PIEZO protein's natural characteristics in cells. In this study we show that MDA-MB-231, a malignant cell in human breast cancer cell line, expresses the mechanosensitive behavior of PIEZO in nature without extra treatment, and we report its characteristics in response to localized mechanical stimulation under an atomic force microscope, wherein a correlation between the force magnitude applied and the channel opening probability is observed. The results on PIEZO of MDA-MB-231 can help establish a basis of preventing and controlling of human breast cancer cell via mechanical forces.

  1. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  2. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    International Nuclear Information System (INIS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-01-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations

  3. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Ireneusz [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany); Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław (Poland); Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  4. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Energy Technology Data Exchange (ETDEWEB)

    Vecchiola, Aymeric [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Chrétien, Pascal; Schneegans, Olivier; Mencaraglia, Denis; Houzé, Frédéric, E-mail: frederic.houze@geeps.centralesupelec.fr [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Delprat, Sophie [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); UPMC, Université Paris 06, 4 place Jussieu, 75005 Paris (France); Bouzehouane, Karim; Seneor, Pierre; Mattana, Richard [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Tatay, Sergio [Molecular Science Institute, University of Valencia, 46980 Paterna (Spain); Geffroy, Bernard [Lab. Physique des Interfaces et Couches minces (PICM), UMR 7647 CNRS-École polytechnique, 91128 Palaiseau (France); Lab. d' Innovation en Chimie des Surfaces et Nanosciences (LICSEN), NIMBE UMR 3685 CNRS-CEA Saclay, 91191 Gif-sur-Yvette (France); and others

    2016-06-13

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  5. Nano-structural changes in the RPV steels irradiated in MTR to high doses. 3D atom probe and positron annihilation study

    International Nuclear Information System (INIS)

    Dohi, Kenji; Soneda, Naoki; Nomoto, Akiyoshi; Ishino, Shiori

    2005-01-01

    Reactor pressure vessel (RPV) steels of life-extended light water reactors are to be exposed to higher neutron fluence. The understanding of radiation embrittlement of RPV steels is very important in order to improve prediction of the embrittlement. The radiation embrittlement is mainly cased by copper-enriched cluster (CEC) and matrix damage (MD) due to irradiation. The state-or-the art technique such as three dimensional atom probe (3DAP) and positron annihilation (PA) has enabled to observe these microstructural features. The effect of highly dose irradiation on the formation of clusters in a low copper base metal and a high copper weld metal is investigated by means of the 3DAP and PA observations in this paper. The materials were irradiated to a neutron fluence of 10 20 n/cm 2 at 290 degC in a test reactor. The 3DAP observation shows that high dense CRCs in size of about 2 nm are formed in the high Cu weld metal. The CRCs consist of Si in addition to Fe, Cu, Mn, and Ni. Solute atom clusters below 2 nm are also observed in low Cu base metal, but the clusters include a large amount of Si and free from Cu. These clusters may be peculiar to highly irradiated materials because of no literature reporting such the clusters in the similar steels irradiated at the lower fluence. The data of the positron annihilation coincidence Doppler broadening measurement for both materials also shows the formation of clusters containing Cu, Ni, Mn, and Si. This means the clusters observed by 3DAP are uniformly distributed in the materials. Hardness tests and PA measurement combined with isochronal annealing show that defects, e.g. dislocation loop etc., having a positron lifetime of about 140 psec influence on mechanical properties of the steels. (author)

  6. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Ying, Puyou; Wang, Jian; Li, Junlin

    2016-01-01

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  7. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Ying, Puyou; Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2016-06-21

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  8. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2011-08-15

    Highlights: > Microstructural changes in stainless steel electroslag weld-overlay cladding. > Thermal aging caused progress of spinodal decomposition and precipitation of G phases in the {delta}-ferrite phase. > The degree of the spinodal decomposition had a linear relationship to the hardness. - Abstract: The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% {delta}-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 deg. C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M{sub 23}C{sub 6} type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  9. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Nishiyama, Y.; Onizawa, K.

    2011-08-01

    The effect of thermal aging on microstructural changes was investigated in stainless steel weld-overlay cladding composed of 90% austenite and 10% δ-ferrite phases using atom probe tomography (APT). In as-received materials subjected to cooling process after post-welding heat treatments (PWHT), a slight fluctuation of the Cr concentration was already observed due to spinodal decomposition in the ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the ferrite phase. The chemical compositions of M 23C 6 type carbides seemed to be formed at the austenite/ferrite interface were analyzed. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

  10. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin

    2016-06-14

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ\\' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ\\' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  11. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study

    International Nuclear Information System (INIS)

    Hane, Francis; Moores, Brad; Amrein, Matthias; Leonenko, Zoya

    2009-01-01

    The air-lung interface is covered by a molecular film of pulmonary surfactant (PS). The major function of the film is to reduce the surface tension of the lung's air-liquid interface, providing stability to the alveolar structure and reducing the work of breathing. Earlier we have shown that function of bovine lipid extract surfactant (BLES) is related to the specific molecular architecture of surfactant films. Defined molecular arrangement of the lipids and proteins of the surfactant film also give rise to a local highly variable electrical surface potential of the interface. In this work we investigated a simple model of artificial lung surfactant consisting of DPPC, eggPG, and surfactant protein C (SP-C). Effects of surface compression and the presence of SP-C on the monolayer structure and surface potential distribution were investigated using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We show that topography and locally variable surface potential of DPPC-eggPG lipid mixture are similar to those of pulmonary surfactant BLES in the presence of SP-C and differ in surface potential when SP-C is absent.

  12. Monitoring of atomic metastable state lifetimes by the laser-enhanced ionization technique--A new method for probing local stoichiometric combustive conditions

    International Nuclear Information System (INIS)

    Ljungberg, Peter; Malmsten, Yvonne; Axner, Ove

    1995-01-01

    The lifetimes of atomic metastable states in an acetylene/air flame have been investigated using the laser-enhanced ionization technique. The lifetimes were found to be several orders of magnitude less than the natural ones, which clearly shows that they are fully determined by the surrounding environment. The lifetime of a specific state has been investigated as a function of flame conditions. It was found that the lifetime is strongly dependent on the local flame composition, with a distinct maximum for stoichiometric conditions. For fuel-lean local conditions, the excess of O2 acts as an effective quencher of the metastable state, while for fuel-rich conditions the quenching is dominated by unburned fuel components. An acetylene/air flame has been probed both as a function of height in the flame, as well as a function of fuel/air composition fed to the burner. The experiments show clearly for which heights and fuel/air compositions that lean, stoichiometric or rich conditions prevail. This makes a monitoring of metastable state lifetimes a useful technique for combustion analysis

  13. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  14. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    International Nuclear Information System (INIS)

    Alvarez, J; Boutchich, M; Kleider, J P; Teraji, T; Koide, Y

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5–6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm −1 ). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current–voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices. (paper)

  15. Comparative and complementary characterization of precipitate microstructures in Al-Mg-Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Koshino, Yuki [Department of Mechanical Engineering and Materials Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Kozuka, Masaya [Materials Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan); Hirosawa, Shoichi, E-mail: hirosawa@ynu.ac.jp [Department of Mechanical Engineering and Materials Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Aruga, Yasuhiro [Materials Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan)

    2015-02-15

    Highlights: • Microalloying addition of Li enhances the age-hardening response of Al-Mg-Si alloys. • Size and number density of nanoclusters or precipitates are increased by Li addition. • Mg and Si contents within the aggregates are inversely decreased by Li addition. • Microalloying Li accelerates heterogeneous nucleation of such Mg-Si aggregates. - Abstract: In this study, comparative and complementary characterization of precipitate microstructures by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and atom probe tomography (APT) has been performed for Al-0.55 wt%Mg-0.89 wt%Si(-0.043 wt%Li) alloys aged at 433 K for 1.2 ks (under aging) and 36 ks (peak aging). Quantitative estimation of nanometer-scale clusters (nanoclusters) and β″ precipitates by TEM and APT revealed that microalloying addition of Li increases the size and number density of these Mg-Si aggregates, resulting in the enhanced age-hardening response. Positive evidence by APT for the segregation of Li suggests that heterogeneous nucleation of such Mg-Si aggregates with the aid of Li is attributed to the modified precipitate microstructures and thus improved mechanical strength of this alloy system.

  16. Laser-induced reversion of δ′ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    KAUST Repository

    Khushaim, Muna Saeed Amin; Gemma, Ryota; Al-Kassab, Talaat

    2016-01-01

    The influence of tuning the laser pulse energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction, and composition of δ' precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser pulse energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser pulse energy of 100 pJ was in fairly good agreement with reported range of δ' solvus temperature, suggesting a result of reversion upon heating due to laser pulsing. © 2016 Wiley Periodicals, Inc.

  17. Atom-probe tomography the local electrode atom probe

    CERN Document Server

    Miller, Michael K

    2014-01-01

    In this comprehensive introduction to the use of APT in nanocharacterization, readers will find everything they need to get up to speed on the technique, from the core physics to state-of-the-art instrumentation and revised methods of data analysis.

  18. Nano-scale study of phase separation in ferrite of long term thermally aged Mo-bearing duplex stainless steels - Atom probe tomography and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Pareige, C.; Emo, J.; Pareige, P.; Saillet, S.; Domain, C.

    2015-01-01

    Duplex stainless steels (DSS), used in primary circuit of Pressurised Water Reactor (PWR), are prone to thermal ageing at service temperature, typically between 286 and 323 C. degrees. This ageing is due to the ferrite decomposition via two kinds of phase transformations: spinodal decomposition into Fe rich α zones and Cr rich α' zones and precipitation of G-phase enriched in Ni, Si, Mn and Mo. It has been shown by atom probe tomography (APT) that the G-phase particles form at the interface between α and α' regions thereby demonstrating that α-α' decomposition and G-phase precipitation are highly dependent. The synergy between the two decomposition processes should be related to both the thermodynamics of the system and the diffusion mechanisms active during ageing. This can be studied by atomistic kinetic Monte Carlo (AKMC) with a model that can reproduce the phase transformations which take place in ferrite of duplex stainless steels. This paper presents the first simulations of the kinetics of spinodal decomposition and G-phase precipitation occurring in ferrite of duplex stainless steels. The kinetics was simulated using a simple but effective atomic kinetic Monte Carlo model in a ternary alloy. The simulations reproduced the α/α' spinodal structure with precipitates at the α/α' interface. The comparison of simulated results with experiments shows that the simulations quantitatively reproduce the kinetics of phase transformation and the synergy observed experimentally between the spinodal decomposition and G-phase precipitation: the time evolution of the wavelength of the spinodal decomposition and the radius of G-phase precipitates were quantitatively reproduced. The simulations endorse the assumption that G-phase precipitation mainly results from the rejection of G-formers from α and α' domains. By following the vacancy pathway during simulation, we show that coarsening of the G-phase precipitates must proceed via

  19. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography.

    Science.gov (United States)

    Sun, Zhiyuan; Tzaguy, Avra; Hazut, Ori; Lauhon, Lincoln J; Yerushalmi, Roie; Seidman, David N

    2017-12-13

    Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.

  20. Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shima, K.; Shimizu, H.; Momose, T.; Shimogaki, Y. [Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tu, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China); Takamizawa, H.; Shimizu, Y.; Inoue, K.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2014-09-29

    We used atom probe tomography (APT) to study the use of a Cu(Mn) as a seed layer of Cu, and a Co(W) single-layer as reliable Cu diffusion barriers for future interconnects in ultra-large-scale integration. The use of Co(W) layer enhances adhesion of Cu to prevent electromigration and stress-induced voiding failures. The use of Cu(Mn) as seed layer may enhance the diffusion barrier performance of Co(W) by stuffing the Cu diffusion pass with Mn. APT was used to visualize the distribution of W and Mn in three dimensions with sub-nanometer resolution. W was found to segregate at the grain boundaries of Co, which prevents diffusion of Cu via the grain boundaries. Mn was found to diffuse from the Cu(Mn) layer to Co(W) layer and selectively segregate at the Co(W) grain boundaries with W, reinforcing the barrier properties of Co(W) layer. Hence, a Co(W) barrier coupled with a Cu(Mn) seed layer can form a sufficient diffusion barrier with film that is less than 2.0-nm-thick. The diffusion barrier behavior was preserved following a 1-h annealing at 400 °C. The underlayer of the Cu interconnects requires a large adhesion strength with the Cu, as well as low electrical resistivity. The use of Co(W) has previously been shown to satisfy these requirements, and addition of Mn is not expected to deteriorate these properties.

  1. Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography

    International Nuclear Information System (INIS)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2015-01-01

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO 4 by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of 16 O 2 + ions. Green laser assisted field evaporation led to the selective loss of Li (∼33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO 4 . Plotting of multihit events on Saxey plots also revealed a strong neutral O 2 loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency. - Highlights: • Laser wavelength and pulse energy affect accuracy of APT analysis of LiFePO 4 . • Oxygen deficiency observed for UV laser; stronger at higher laser energies. • Selective loss of Li with green laser due to dc evaporation. • Saxey plots reveal prevalent formation of O 2 neutrals. • Quantification of molecular dissociations cannot account for O deficiency

  2. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    Science.gov (United States)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  3. Performance optimization of a cusp-field ion source and high-perveance extractor

    International Nuclear Information System (INIS)

    Meyer, E.A.; Amstrong, D.D.; Schneider, D.

    1981-01-01

    The injector for the Fusion Materials Irradiation Test (FMIT) Facility must deliver a 110-mA dc beam of deuterons or H 2 + ions to the radio-frequency quadrupole (RFQ) accelerator at 75-keV energy. Operational parameters of a hydrogen-fed cusp-field ion source and a high-perveance extractor have been evaluated on a test stand and on the recently completed first stage of the prototype injector

  4. Atomic structures and compositions of internal interfaces. Progress report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Merkle, K.L. [Argonne National Lab., IL (United States)

    1992-03-01

    This research program addresses fundamental questions concerning the relationships between atomic structures and chemical compositions of metal/ceramic heterophase interfaces. The chemical composition profile across a Cu/MgO {l_brace}111{r_brace}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single phase alloy, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar space of the {l_brace}222{r_brace} MgO planes. In particular, we demonstrate for the first time that the bonding across a Cu/MgO {l_brace}111{r_brace}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu{vert_bar}O{vert_bar}Mg{hor_ellipsis} and not Cu{vert_bar}Mg{vert_bar}O{hor_ellipsis}; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence it was established, via high resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {l_brace}111{r_brace} planes with a cube-on-cube relationship between a precipitate and the matrix. First results are also presented for the Ni/Cr{sub 2}O{sub 4} interface; for this system selected area atom probe microscopy was used to analyze this interface; Cr{sub 2}O{sub 4} precipitates are located in a field-ion microscope tip and a precipitate is brought into the tip region via a highly controlled electropolishing technique.

  5. Three-dimensional atom-probe microscopy investigation of the temporal evolution of the nanostructure of a model Ni-Al-Cr alloy

    International Nuclear Information System (INIS)

    Sudbrack, C.K.; Noebe, R.D.; Seidman, D.N.

    2004-01-01

    Full text: Due to complex interactions in multi-component multi-phase metallic alloys, as well as experimental limitations, insight into the decomposition pathways of isothermal precipitation from a supersaturated solid-solution is limited. Experimentally, the direct, spatial characterization of the chemical composition on a sub-nano- and nanometer scale of small features is challenging, but necessary to understand solid-solid phase-transformation phenomena. The power and capacity of three-dimensional atom-probe (3DAP) microscopy to characterize an ordering precipitation reaction, gamma (fcc) → gamma (fcc) + gamma-prime (L1 2 structure) in Ni-5.2 Al-14.2 Cr at. % aged isothermally at 600 o C, was first demonstrated by Schmuck et al., and is examined in great detail here. Complementary transmission electron microscopy experiments are utilized to study the temporal evolution. For the decomposition stages investigated (2 minutes to 1024 hours aging), this alloy exhibits a high number density (3.2 x 10 24 m -3 maximum) of spheroidal precipitates, 0.5-10 nm in radius. The average composition of the γ'-precipitates is shown to evolve temporally, such that solute concentrations decrease toward their equilibrium values. Sub-nanometer scale compositional profiles across the interface are obtained by the proximity histogram method, or 'proxigram' for short. In agreement with the theory of diffusion-limited growth, chemical gradients of the Al (depletion) and Cr (enrichment) that extend approximately 3 nm from the interface into the matrix are observed in the 0.25 h aging state. As the alloy is aged, these gradients decay, and completely disappear between 4 and 16 h of aging. The interfacial widths of the proxigram composition profiles are found to be component dependent, such that, the widths of the Ni, Al, and Cr profiles are 0.78 ± 0.09, 1.24 ± 0.11, and 1.84 ± 0.13 nm, respectively. Precipitates interconnected by necks are observed, and their implication on the

  6. Atom-Probe Tomographic Investigations of a Precipitation-Strengthened HSLA-115 Steel and a Ballistic-Resistant 10 wt. % Ni Steel for Naval Applications

    Science.gov (United States)

    Jain, Divya

    High performance structural materials are needed for Naval applications which require an excellent combination of yield strength, low-temperature impact toughness, ductility, ballistic-resistance, and weldability. This research investigates precipitation-strengthened HSLA-115 steels and ballistic-resistant 10 wt. % Ni steels, which have emerged as promising alternatives to the widely used HSLA-100 steels for Naval applications. HSLA-115 is a Cu-bearing high-strength low-carbon martensitic steel and has been used in the flight deck of the recently built U.S. Navy CVN-78 aircraft carrier. It is typically used in conditions with overaged Cu precipitates, to obtain acceptable impact toughness and ductility at 115 ksi (793 MPa) yield strength. However, overaging of Cu precipitates limits its strength and applications. This research demonstrates that aging at 550 °C facilitates the co-precipitation of sub-nanometer sized M2C carbides and Cu precipitates in high number density (˜1023 m-3) in HSLA-115. 3-D atom-probe tomography (APT) investigation reveals that Cu precipitates form first, followed by the nucleation of M2C carbides, which are co-located with Cu precipitates and are distributed heterogeneously at lath-boundaries and dislocations, indicating heterogeneous nucleation of M2C. Carbon redistribution during quenching (following the austenitization) and subsequent aging at 550 °C is followed using APT. Segregation of C (3-6 at. % C) is observed at martensitic lath-boundaries in the as-quenched and 0.12 h aged conditions. On further aging, C redistributes, forming cementite and M 2C carbides, whose composition and morphology evolves with aging time. Precipitation kinetics of M2C carbides is intertwined with Cu precipitates; temporal evolution of Cu precipitates and M2C carbides is characterized in terms of their mean radii, number densities, and volume fractions and correlated with the bulk mechanical properties. Precipitation of M2C carbides offsets the softening

  7. Numerical simulations for quantitative analysis of electrostatic interaction between atomic force microscopy probe and an embedded electrode within a thin dielectric: meshing optimization, sensitivity to potential distribution and impact of cantilever contribution

    Science.gov (United States)

    Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G.

    2018-04-01

    Recent experimental results demonstrated that an electrostatic force distance curve (EFDC) can be used for space charge probing in thin dielectric layers. A main advantage of the method is claimed to be its sensitivity to charge localization, which, however, needs to be substantiated by numerical simulations. In this paper, we have developed a model which permits us to compute an EFDC accurately by using the most sophisticated and accurate geometry for the atomic force microscopy probe. To avoid simplifications and in order to reproduce experimental conditions, the EFDC has been simulated for a system constituted of a polarized electrode embedded in a thin dielectric layer (SiN x ). The individual contributions of forces on the tip and on the cantilever have been analyzed separately to account for possible artefacts. The EFDC sensitivity to potential distribution is studied through the change in electrode shape, namely the width and the depth. Finally, the numerical results have been compared with experimental data.

  8. Time dependence of the natural passivation process on AISI 304 in an alkaline medium: Atomic force microscopy and scanning Kelvin probe force microscopy as additional tools to electrochemical impedance spectroscopy

    Science.gov (United States)

    Benaioun, N. E.; Maafa, I.; Florentin, A.; Denys, E.; Hakiki, N. E.; Moulayat, N.; Bubendorff, J. L.

    2018-04-01

    Thin surface films formed on AISI 304 samples in an alkaline solution of pH = 13 are studied by atomic force microscopy (AFM), scanning Kelvin probe force microscopy (SKPFM) and electrochemical impedance spectroscopy (EIS) as a function of immersion time. The results reveal that changes on EIS diagrams correspond to topographical modifications on the sample surface as shown by AFM. Both techniques are therefore complementary. The oxide layer is chemically homogenous as shown by SKPFM imaging and our ultra-thin passive layer is an efficient barrier against corrosion.

  9. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  10. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  11. Studying nearest neighbor correlations by atom probe tomography (APT) in metallic glasses as exemplified for Fe40Ni40B20 glassy ribbons

    KAUST Repository

    Shariq, Ahmed; Al-Kassab, Talaat; Kirchheim, Reiner

    2012-01-01

    resolution of the analytical technique. However, fitting Gaussian distributions to the distribution of atomic distances yields average distances with statistical uncertainties of 2 to 3 hundredth of an Angstrom. Fe 40Ni40B20 metallic glass ribbons

  12. Ultrastrong Carbon Thin Films from Diamond to Graphene under Extreme Conditions: Probing Atomic Scale Interfacial Mechanisms to Achieve Ultralow Friction and Wear

    Science.gov (United States)

    2016-12-08

    tribological behavior of hard carbon materials during initial sliding contact, in order to understand what controls and enables the transition from high to...publication. Our goal is to characterize and understand the atomic-scale mechanisms governing the tribological behavior (friction and wear) of hard carbon...affecting the sliding behavior of these materials, including: rehybridization from sp3 to sp2-bonding of the C atoms20, formation of bonds across the

  13. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.; Volkov, A. Ya.; Kutin, A. A. [Institute of Macromolecular Compounds RAS, 199004 Bolshoy Pr., 31, St.-Petersburg (Russian Federation); Temiryazeva, M. P.; Temiryazev, A. G. [Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) Russian Academy of Sciences, Fryazino, Moscow region, 141190 (Russian Federation)

    2016-06-17

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsules and outside them.

  14. In-situ field-ion microscope study of the recovery behavior of heavy metal ion-irradiated tungsten, tungsten (rhenium) alloys and molybdenum

    International Nuclear Information System (INIS)

    Nielsen, C.H.

    1977-06-01

    Three field ion microscope (FIM) experiments were carried out to study the annealing behavior of heavy ion irradiated tungsten, tungsten (rhenium) alloys and molybdenum. The first experiment dealt with the stage I long-range migration of tungsten self interstitial atoms (SIAs) in high purity tungsten of resistivity ratio, R = 24,000 (R = rho 300 /rho 4 . 2 , where rho 300 and rho 4 . 2 are the room temperature and 0 0 C resistivities). The FIM specimens were irradiated in situ at 18 K with 30 keV W + ions to an average dose of 5 x 10 12 ions cm -2 and subsequently examined by the pulsed-field evaporation technique. The second experiment dealt with the phenomenon of impurity atom trapping of SIAs during long-range migration. It was shown that rhenium atoms in a tungsten matrix tend to capture tungsten SIAs and remain bound up to temperatures as high as 390 K. The final experiment was concerned with the low temperature annealing kinetics of irradiated molybdenum. High purity molybdenum of resistivity ratio R = 5700 was irradiated at 10 K with 30 keV Mo + ions to a dose of approximately 5 x 10 12 ions cm -2 . The results indicated that the electric field has only a minimal effect on the SIA annealing kinetics. This tends to strengthen the contention that the molybdenum SIA becomes mobile at 32 K

  15. A field ion microscope study of the surface reaction of tungsten with n-octanol under an applied positive voltage: reaction conditions for the 'splitting' of (110) plane

    International Nuclear Information System (INIS)

    Terao, T.; Iwatsu, F.; Morikawa, H.

    1993-01-01

    Field ion microscopy is a powerful tool for the study of surface phenomena on an atomic scale, especially when they are crystal plane dependent, because the microscope shows many crystal planes of the sample tip simultaneously. Although a large number of FIM studies on vapor deposition, surface diffusion and surface reactions at a metal-gas interface have been reported, those on reactions at a metal-liquid interface are few. The authors have studied the corrosion or tungsten with aqueous solutions and found that water corroded the tungsten tips very severely to reduce the radius of curvature of the tip cap drastically. The reaction was so severe that it was not possible to trace it back to the very initial stages. They adopted, as a weaker reagent, one of the higher alcohols, n-octanol(C 8 H 17 OH), and found that it reacted with tungsten tips when an electrical pulse with a positive voltage between 5 and 10V was applied to the tip, giving very interesting field ion images in which the central (110) plane was divided into two parts located side by side across the [001] zone line. This means that some anisotropic surface reaction occurred which made a groove along the [001] zone line going through the (110) plane, usually the most stable plane chemically for bcc metals. They named this phenomenon 'splitting'. This reaction was less severe than that with water and some results on the morphology of the groove and on the reaction sequence have been reported. In the present paper more detailed reaction conditions which give rise to the splitting are described

  16. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    Science.gov (United States)

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  17. Field ion microscopy study of depleted zones in tungsten after proton irradiation

    International Nuclear Information System (INIS)

    Farnum, D.J.; Sommer, W.F.; Inal, O.T.; Yu, J.

    1986-01-01

    Depleted zones in tungsten, that resulted from medium-energy proton irradiations, were studied using the Field Ion Microscope (FIM). The shapes and sizes of depleted zones is an important aspect of basic radiation damage. These data can be compared to models that have been suggested as well as aid development of new models. These depleted volumes are of interest not only for an understanding of basic radiation effects, but also because they affect material properties and can act as nucleation sites for voids or gas bubbles. Depleted zones were produced in annealed tungsten wires by irradiation with 600 to 800 MeV protons at the Los Alamos Meson Physics Facility. The defects observed in the irradiated samples included vacancies, depleted zones, grain boundaries, and dislocations. Single vacancies were the most commonly observed defect. Of the samples ''imaged,'' over 50 depleted zones were found within the area of high resolution in the area between the prominent [112] poles in a [110] oriented sample. The number of layers photographed in each sample was dependent upon the initial shape of the tip and ranged from 60 to 200 [110] sequential layers

  18. Three-dimensional evaluation of compositional and structural changes in cycled LiNi1/3Co1/3Mn1/3O2 by atom probe tomography

    Science.gov (United States)

    Lee, Ji Yeong; Kim, Ji Yoon; Cho, Hae In; Lee, Chi Ho; Kim, Han Sung; Lee, Sang Uck; Prosa, Ty J.; Larson, David J.; Yu, Tae Hwan; Ahn, Jae-Pyoung

    2018-03-01

    Accelerated capacity fading of LiNi1/3Co1/3Mn1/3O2 (NCM111) electrode by the chemical migration of lithium (Li) or transition metals (TMs), and surface reconstruction in the surface during electrochemical cycling were evaluated by correlative analysis of atom probe tomography (APT) and transmission electron microscopy (TEM). The cycled NCM111 showed a lack of Li at surface which provides the driving force for long-range Ni migration toward surface. A schematic model for phase transformation and the kinetics of TM migration within the layered structure by density functional theory (DFT) calculations was proposed. This study provides insights into capacity loss and voltage fade upon electrochemical charge-discharge process of NCM111 by measuring the variation of Li composition away from the surface.

  19. The study of the irradiation-induced embrittlement of reactor pressure vessels. Analysis of surveillance test specimens of a commercial nuclear reactor pressure vessel studied by three-dimensional atom probe and positron annihilation

    International Nuclear Information System (INIS)

    Nagai, Yasuyoshi; Toyama, Takeshi; Hasegawa, Masayuki

    2007-01-01

    The study of embrittlement of nuclear power reactor pressure vessels (RPVs) is of critical importance for the safety assessment in the nuclear industry. Some origins of embrittlement are attributed to fine Cu precipitates, matrix defects, grain boundary segregation of P and late blooming phase. This review article described nanostructural observation by three-dimensional atom probe (3DAP) and positron annihilation spectroscopy (PAS). The density and sizes of Cu-rich nanoprecipitates and grain boundary segregation are sensitively detected by 3DAP, and vacancies are probed by PAS. Element analysis around vacancies and fine microstructural Cu precipitates not containing vacancies are successfully observed by a coincidence doppler broadening method. The nanostructural evolution of irradiation-induced Cu-rich nanoprecipitates (CRNPs) and vacancy clusters in surveillance test specimens of commercial nuclear reactor pressure vessel steel welds of Doel-2 in Belgium were revealed by combining 3DAP and PAS. In both medium (0.13 wt%) and high (0.30 wt%) Cu welds, the CRNPs were found to form readily at the very beginning of the reactor lifetime. On the other hand, small vacancy clusters start appearing after the initial Cu precipitates and accumulate steadily with increasing neutron dose. The CRNPs were also observed at very low dose rate of neutrons in the test specimen of Calder Hall Reactor of Japan Atomic Power Company. The significant enhancement of these Cu precipitates results in the embrittlement in practical RPVs. At very high dose of 2.2x10 18 n/cm 2 by JMTR, the Cu precipitates were scarcely observed, and the irradiation-induced embrittlement was primarily caused from vacancy-impurity complexes and dislocation loops. (author)

  20. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul [Department of Physics, University at Buffalo, Buffalo, New York 14260 (United States)

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  1. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  2. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside

    Directory of Open Access Journals (Sweden)

    Roman Sommer

    2016-12-01

    Full Text Available Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  3. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

    Science.gov (United States)

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O -methylated selenoglycoside, specifically methyl 2- O -methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor . The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2- O -methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  4. Radioactive Probes on Ferromagnetic Surfaces

    CERN Multimedia

    2002-01-01

    On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.

  5. Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by Conductive Atomic Force Microscopy and combined techniques

    International Nuclear Information System (INIS)

    Diamanti, M.V.; Souier, T.; Stefancich, M.; Chiesa, M.; Pedeferri, M.P.

    2014-01-01

    Graphical abstract: - Highlights: • Nanoscale anodic titanium oxides were investigated with multidisciplinary approach. • Oxide thickness was estimated via spectrophotometry and coulometry. • C-AFM identified nanometric conductivity heterogeneities, ascribed to oxide structure. • High conductivity areas exhibited local memristive behavior. - Abstract: Anodic oxidation of titanium in acid electrolytes allows to obtain a thin, compact oxide layer with thickness, structure, color, and electrical properties that vary with process parameters imposed, among which cell voltage has a key effect. Although oxidation kinetics have been investigated in several research works, a broader vision of oxide properties–including thickness and structure–still has to be achieved, especially in the case of very thin oxide films, few tens of nanometers thick. This is vital for engineered applications of nanostructured TiO 2 films, as in the field of memristive devices, where a precise control of oxide thickness, composition and structure is required to tune its electrical response. In this work, oxide films were produced on titanium with thickness ranging from few nanometers to 200 nm. Oxide thickness was estimated by coulometry and spectrophotometry. These techniques were then combined with C-AFM, which provided a deeper understanding of oxide thickness and uniformity of the metal surface and probed the presence of crystalline nano-domains within the amorphous oxide phase affecting the overall film electrical and optical properties

  6. Atomic-resolution study of homogeneous radiation-induced precipitation in a neutron-irradiated W-10 at. % Re alloy. MSC report No. 5014

    International Nuclear Information System (INIS)

    Herschitz, R.; Seidman, D.N.

    1983-06-01

    The phenomenon of radiation-induced precipitation has been investigated in a W-10 at. % Re alloy using the atom-probe field-ion microscope. Results show a significant alteration of the microstructure of this alloy as a result of the fast-neutron irradiation. Precipitates with the composition approx. WRe (sigma phase) were detected at a density of 10 16 cm -3 . Coherent, semicoherent and possibly incoherent precipitates of the sigma phase have been observed. They were not associated with either linear or planar defects, or with any impurity atoms; i.e. a true homogeneous radiation-induced precipitation occurs in this alloy. A physical argument is presented for the nucleation of the sigma phase precipitates in the vicinity of displacement cascades produced by primary knock-on atoms. It is suggested that the nucleation of the sigma phase is due to the formation of tightly-bound mobil mixed dumbells which react to form an immobile rhenium cluster. The growth of this cluster into a precipitate is most likely driven by the irreversible vacancy: self-interstitial atom (SIA) annihilation reaction, as suggested recently by Cauvin and Martin. A mechanism for the suppression of voids, in this alloy, is presented which is self-consistent with the homogeneous radiation-induced precipitation mechanism

  7. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johannes Bernardus Charles; Khatib, M.G.; Koelmans, W.W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data

  8. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  9. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  10. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  11. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  12. Development of Atomic Beam Probe for tokamaks

    Czech Academy of Sciences Publication Activity Database

    Berta, M.; Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S.; Havlíček, Josef; Háček, Pavel

    2013-01-01

    Roč. 88, č. 11 (2013), s. 2875-2880 ISSN 0920-3796 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : ABP * Plasma diagnostics * COMPASS tokamak * Current density * Plasma density profile measurement Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.149, year: 2013 http://www.sciencedirect.com/science/article/pii/S0920379613005048#

  13. Development of atomic beam probe for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Berta, M., E-mail: bertam@sze.hu [Széchenyi István University, EURATOM Association, Győr (Hungary); Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, EURATOM Association, Budapest (Hungary); Havlícek, J.; Háček, P. [Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic)

    2013-11-15

    Highlights: • ABP is newly developed diagnostic. • Unique measurement method for the determination of plasma edge current variations caused by different transient events such as ELMs. • The design process has been fruitfully supported by the physically motivated computer simulations. • Li-BES system has been modified accordingly to the needs of the ABP. -- Abstract: The concept and development of a new detection method for light alkali ions stemming from diagnostic beams installed on medium size tokamak is described. The method allows us the simultaneous measurement of plasma density fluctuations and fast variations in poloidal magnetic field, therefore one can infer the fast changes in edge plasma current. The concept has been worked out and the whole design process has been done at Wigner RCP. The test detector with appropriate mechanics and electronics is already installed on COMPASS tokamak. General ion trajectory calculation code (ABPIons) has also been developed. Detailed calculations show the possibility of reconstruction of edge plasma current density profile changes with high temporal resolution, and the possibility of density profile reconstruction with better spatial resolution compared to standard Li-BES measurement, this is important for pedestal studies.

  14. Development of atomic beam probe for tokamaks

    International Nuclear Information System (INIS)

    Berta, M.; Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S.; Havlícek, J.; Háček, P.

    2013-01-01

    Highlights: • ABP is newly developed diagnostic. • Unique measurement method for the determination of plasma edge current variations caused by different transient events such as ELMs. • The design process has been fruitfully supported by the physically motivated computer simulations. • Li-BES system has been modified accordingly to the needs of the ABP. -- Abstract: The concept and development of a new detection method for light alkali ions stemming from diagnostic beams installed on medium size tokamak is described. The method allows us the simultaneous measurement of plasma density fluctuations and fast variations in poloidal magnetic field, therefore one can infer the fast changes in edge plasma current. The concept has been worked out and the whole design process has been done at Wigner RCP. The test detector with appropriate mechanics and electronics is already installed on COMPASS tokamak. General ion trajectory calculation code (ABPIons) has also been developed. Detailed calculations show the possibility of reconstruction of edge plasma current density profile changes with high temporal resolution, and the possibility of density profile reconstruction with better spatial resolution compared to standard Li-BES measurement, this is important for pedestal studies

  15. Mobile probes

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Jørgensen, Anna Neustrup; Noesgaard, Signe Schack

    2016-01-01

    A project investigating the effectiveness of a collection of online resources for teachers' professional development used mobile probes as a data collection method. Teachers received questions and tasks on their mobile in a dialogic manner while in their everyday context as opposed...... to in an interview. This method provided valuable insight into the contextual use, i.e. how did the online resource transfer to the work practice. However, the research team also found that mobile probes may provide the scaffolding necessary for individual and peer learning at a very local (intra-school) community...... level. This paper is an initial investigation of how the mobile probes process proved to engage teachers in their efforts to improve teaching. It also highlights some of the barriers emerging when applying mobile probes as a scaffold for learning....

  16. Optical probe

    International Nuclear Information System (INIS)

    Denis, J.; Decaudin, J.M.

    1984-01-01

    The probe includes optical means of refractive index n, refracting an incident light beam from a medium with a refractive index n1>n and reflecting an incident light beam from a medium with a refractive index n2 [fr

  17. Counting probe

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki

    1976-01-01

    Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)

  18. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  19. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  20. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    Science.gov (United States)

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  1. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope

    International Nuclear Information System (INIS)

    Hagedorn, Till; Ouali, Mehdi El; Paul, William; Oliver, David; Miyahara, Yoichi; Gruetter, Peter

    2011-01-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10 -10 mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

  2. Sources of polarized ions and atoms

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1988-01-01

    In this presentation we discuss methods of producing large quantities of polarized atoms and ions (Stern-Gerlach separation, optical pumping, and spin-exchange) as well as experimental methods of measuring the degree of polarization of atomic systems. The usefulness of polarized atoms in probing the microscopic magnetic surface properties of materials will also be discussed. 39 refs., 5 figs., 2 tabs

  3. Field-ion microscope studies of the defect structure of the primary state of damage of irradiated metals

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1975-01-01

    A review is presented of field ion microscope applications in studies of point defect distribution in irradiated metals. FIM results on the primary state of radiation damage in neutron and ion-irradiated iridium and tungsten, at both room-temperature and 78 0 K, showed that it consists of: (1) isolated vacancies; (2) depleted zones; (3) compact vacancy clusters of voids; and (4) dislocation loops. The fraction of vacancies stored in the dislocation loops represented a small fraction of the total vacancy concentration; in the case of tungsten it was approximately 10 percent. These FIM observations provide a simple explanation of the low yield-factor, determined by transmission electron microscopy, for a number of ion-irradiated metals

  4. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Cavity electromagnetically induced transparency with Rydberg atoms

    Science.gov (United States)

    Bakar Ali, Abu; Ziauddin

    2018-02-01

    Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.

  6. Parametric resonances in the amplitude-modulated probe-field absorption spectrum of a two-level atom driven by a resonance amplitude- and phase-modulated pumping field

    International Nuclear Information System (INIS)

    Sushilov, N.V.; Kholodkevich, E.D.

    1995-01-01

    An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field

  7. Probe specificity

    International Nuclear Information System (INIS)

    Laget, J.M.

    1986-11-01

    Specificity and complementarity of hadron and electron probes must be systematically developed to answer three questions currently asked in intermediate energy nuclear physics: what is nucleus structure at short distances, what is nature of short range correlations, what is three body force nature [fr

  8. Giant atoms cast long shadow

    International Nuclear Information System (INIS)

    Amato, I.

    1996-01-01

    Atoms swollen with energy can serve as supersensitive detectors. They also probe the shadow realm where the quantum world of the atom gives way to the familiar classical world. Created in the laboratory, where they live for a few milliseconds inside vacuum chambers, Rydberg atoms acquire their girth when one or sometimes two of their electrons are excited to very high energy levels, displacing them far from the nuclear core. This article describes the atoms, the history of their identification, and future possibilities. 2 figs

  9. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  10. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  11. Final Technical Report for Award DESC0011912, "Trimodal Tapping Mode Atomic Force Microscopy: Simultaneous 4D Mapping of Conservative and Dissipative Probe-Sample Interactions of Energy-Relevant Materials”

    Energy Technology Data Exchange (ETDEWEB)

    Solares, Santiago D. [George Washington Univ., Washington, DC (United States)

    2017-09-22

    The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.

  12. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  13. Innovation and optimization of a method of pump-probe polarimetry with pulsed laser beams in view of a precise measurement of parity violation in atomic cesium; Innovation et optimisation d'une methode de polarimetrie pompe-sonde avec des faisceaux laser impulsionnels en vue d'une mesure precise de violation de la parite dans l'atome de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Chauvat, D

    1997-10-15

    While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation {epsilon}{sub 1} excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation {epsilon}{sub 2} tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry ({approx} 10{sup -6}) in the gain that depends on the handedness of the tri-hedron (E, {epsilon}{sub 1}, {epsilon}{sub 2}) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)

  14. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  15. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  16. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  17. Probe-based recording technology

    International Nuclear Information System (INIS)

    Naberhuis, Steve

    2002-01-01

    The invention of the scanning tunneling microscope (STM) prompted researchers to contemplate whether such technology could be used as the basis for the storage and retrieval of information. With magnetic data storage technology facing limits in storage density due to the thermal instability of magnetic bits, the super-paramagnetic limit, the heir-apparent for information storage at higher densities appeared to be variants of the STM or similar probe-based storage techniques such as atomic force microscopy (AFM). Among these other techniques that could provide replacement technology for magnetic storage, near-field optical scanning optical microscopy (NSOM or SNOM) has also been investigated. Another alternative probe-based storage technology called atomic resolution storage (ARS) is also currently under development. An overview of these various technologies is herein presented, with an analysis of the advantages and disadvantages inherent in each particularly with respect to reduced device dimensions. The role of micro electro mechanical systems (MEMS) is emphasized

  18. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  19. FY 1999 achievement report on the project on the R and D of industrial science technology. R and D of the atom/molecule limit operation technology (Development of high-functional material formation technology for electric power generation environment); 1999 nendo genshi bunshi kyokugen sosa gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden kankyoyo kokino sozai keisei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the FY 1999 results of the study of atomic technology. Using a combined system of the scanning tunnel microscope (STM) with the field ion microscope and the atom probe (AP), a few Ag atoms were identified. Si windows were formed by electron beam irradiated from a STM tip, and Ge nanocrystal array was formed at the windows by supplying GeH4 gas. Iron clusters were deposited on Si substrates. With those as nuclei and in self-formation for etching masks, Si pillar distribution nano-crystals were etching-processed. The oxidation process of clean Si surface using ultra-high vacuum electron spin resonance was observed, and the incomplete state of the Si oxidation process was observed. Perovskite oxide superlattices composed of the two kinds were fabricated using the laser ablation method. The layer type antiferromagnetic spin arrangement is artificially modulated in the superlattices along the stacking direction. To observe the magnetic nano-structure, the development was commenced of a spin-polarized STM. The paper theoretically analyzed the dynamic process of atoms and molecules. (NEDO)

  20. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  3. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  4. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  5. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  6. Internal reflection of interstitial atoms from close-packed tungsten faces

    International Nuclear Information System (INIS)

    Dranova, Zh.I.; Mikhajlovskij, I.M.

    1981-01-01

    Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru

  7. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  8. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  9. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  10. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  11. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  12. Probing surface magnetism with ion beams

    International Nuclear Information System (INIS)

    Winter, H.

    2007-01-01

    Ion beams can be used to probe magnetic properties of surfaces by a variety of different methods. Important features of these methods are related to trajectories of atomic projectiles scattered from the surface of a solid target and to the electronic interaction mechanisms in the surface region. Both items provide under specific conditions a high sensitivity for the detection of magnetic properties in the region at the topmost layer of surface atoms. This holds in particular for scattering under planar surface channeling conditions, where under grazing impact atoms or ions are reflected specularly from the surface without penetration into the subsurface region. Two different types of methods are employed based on the detection of the spin polarization of emitted or captured electrons and on spin blocking effects for capture into atomic terms. These techniques allow one to probe the long range and short range magnetic order in the surface region

  13. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  14. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  15. Chameleon induced atomic afterglow

    International Nuclear Information System (INIS)

    Brax, Philippe

    2010-09-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  16. Chameleon induced atomic afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-09-15

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter. (orig.)

  17. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  18. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  19. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  20. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  1. Extreme sub-wavelength atom localization via coherent population trapping

    OpenAIRE

    Agarwal, Girish S.; Kapale, Kishore T.

    2005-01-01

    We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity ...

  2. EDITORIAL: Probing the nanoworld Probing the nanoworld

    Science.gov (United States)

    Miles, Mervyn

    2009-10-01

    In nanotechnology, it is the unique properties arising from nanometre-scale structures that lead not only to their technological importance but also to a better understanding of the underlying science. Over the last twenty years, material properties at the nanoscale have been dominated by the properties of carbon in the form of the C60 molecule, single- and multi-wall carbon nanotubes, nanodiamonds, and recently graphene. During this period, research published in the journal Nanotechnology has revealed the amazing mechanical properties of such materials as well as their remarkable electronic properties with the promise of new devices. Furthermore, nanoparticles, nanotubes, nanorods, and nanowires from metals and dielectrics have been characterized for their electronic, mechanical, optical, chemical and catalytic properties. Scanning probe microscopy (SPM) has become the main characterization technique and atomic force microscopy (AFM) the most frequently used SPM. Over the past twenty years, SPM techniques that were previously experimental in nature have become routine. At the same time, investigations using AFM continue to yield impressive results that demonstrate the great potential of this powerful imaging tool, particularly in close to physiological conditions. In this special issue a collaboration of researchers in Europe report the use of AFM to provide high-resolution topographical images of individual carbon nanotubes immobilized on various biological membranes, including a nuclear membrane for the first time (Lamprecht C et al 2009 Nanotechnology 20 434001). Other SPM developments such as high-speed AFM appear to be making a transition from specialist laboratories to the mainstream, and perhaps the same may be said for non-contact AFM. Looking to the future, characterisation techniques involving SPM and spectroscopy, such as tip-enhanced Raman spectroscopy, could emerge as everyday methods. In all these advanced techniques, routinely available probes will

  3. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  4. Probe Techniques. Introductory Remarks

    Energy Technology Data Exchange (ETDEWEB)

    Emeleus, K. G. [School of Physics and Applied Mathematics, Queen' s University, Belfast (United Kingdom)

    1968-04-15

    In this brief introduction to the session on probes, the history of theii development is first touched on briefly. Reference is then made to the significance of the work to be described by Medicus, for conductivity and recombination calculations, and by Lam and Su, for a wide range of medium and higher pressure plasmas. Finally, a number of other probe topics are mentioned, including multiple probes; probes in electronegative plasmas; resonance probes; probes in noisy discharges; probes as oscillation detectors; use of probes where space-charge is not negligible. (author)

  5. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  6. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  7. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  8. Localization of a two-level atom via the absorption spectrum

    International Nuclear Information System (INIS)

    Xu, Jun; Hu, Xiang-Ming

    2007-01-01

    We show that it is possible to localize a two-level atom as it passes through a standing-wave field by measuring the probe-field absorption. There is 50% detecting probability of the atom at the nodes of the standing-wave field in the subwavelength domain when the probe field is tuned resonant with the atomic transition

  9. 3D atom microscopy in the presence of Doppler shift

    Science.gov (United States)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  10. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  11. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the

  12. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  13. Probing the Influence of the Conjugated Structure and Halogen Atoms of Poly-Iron-Phthalocyanine on the Oxygen Reduction Reaction by X-ray Absorption Spectroscopy and Density Functional Theory

    International Nuclear Information System (INIS)

    Peng, Yingxiang; Cui, Lufang; Yang, Shifeng; Fu, Jingjing; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia; Xia, Dingguo

    2015-01-01

    Metal-phthalocyanine (MPc) macrocyclic catalysts have been perceived as promising alternatives to Pt and Pt-based catalysts for the oxygen reduction reaction (ORR). However, the effect of different MPc molecular structures on the ORR has rarely been reported in depth. Herein, iron-phthalocyanine polymers (poly-FePcs) and multi-walled carbon nanotubes (MWCNTs) composites with different structures were synthesized using microwave method. The relationship between their molecular structure and electrocatalytic activity was fully revealed by density functional theory (DFT) and X-ray fine absorption spectroscopy (XAFS). DFT calculations revealed that the introduction of halogen atoms can increase the ion potential (IP) and the dioxo-binding energy () of the poly-FePcs. Meanwhile, their conjugated structure not only facilitates electronic transmission, but also significantly increases . XAFS analysis indicated that the poly-FePc/MWCNTs composites had a square planar structure and a smaller of phthalocyanine ring (Fe-N 4 structure) skeleton structure radius when a larger conjugated structure or introduced halogen atoms was present. The experimental results suggest that the these changes in properties arising from the different structures of the MPc macrocyclic compounds led to a huge effect on their ORR electrochemical activities, and provide a guide to obtaining promising electrochemical catalysts

  14. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  15. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  16. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  17. z calibration of the atomic force microscope by means of a pyramidal tip

    DEFF Research Database (Denmark)

    Jensen, Flemming

    1993-01-01

    A new method for imaging the probe tip of an atomic force microscope cantilever by the atomic force microscope itself (self-imaging) is presented. The self-imaging is accomplished by scanning the probe tip across a sharper tip on the surface. By using a pyramidal probe tip with a very well......-defined aspect ratio, this technique provides an excellent z-calibration standard for the atomic force microscope....

  18. High sensitivity probe absorption technique for time-of-flight ...

    Indian Academy of Sciences (India)

    Abstract. We report on a phase-sensitive probe absorption technique with high sen- sitivity, capable of detecting a few hundred ultra-cold atoms in flight in an observation time of a few milliseconds. The large signal-to-noise ratio achieved is sufficient for reliable measurements on low intensity beams of cold atoms.

  19. Multipartite entanglement detection with nonsymmetric probing

    DEFF Research Database (Denmark)

    Dellantonio, Luca; Das, Sumanta; Appel, Jürgen

    2017-01-01

    We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify th...... the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.......We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify...

  20. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  1. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  2. Bichromatic electromagnetically induced transparency in cold rubidium atoms

    International Nuclear Information System (INIS)

    Wang, J.; Jiang, K.J.; Zhan, M.S.; Zhu Yifu

    2003-01-01

    In a three-level atomic system coupled by two equal-amplitude laser fields with a frequency separation 2δ, a weak probe field exhibits a multiple-peaked absorption spectrum with a constant peak separation δ. The corresponding probe dispersion exhibits steep normal dispersion near the minimum absorption between the multiple absorption peaks, which leads to simultaneous slow group velocities for probe photons at multiple frequencies separated by δ. We report an experimental study in such a bichromatically coupled three-level Λ system in cold 87 Rb atoms. The multiple-peaked probe absorption spectra under various experimental conditions have been observed and compared with the theoretical calculations

  3. Influence of the atomic structure on the quantum state of sputtered Ir atoms

    International Nuclear Information System (INIS)

    Bastiaansen, J.; Philipsen, V.; Lievens, P.; Silverans, R.E.; Vandeweert, E.

    2004-01-01

    The probability of the ejection of a neutral atom in a specific quantum state after keV-ion beam sputtering is often interpreted in terms of the interaction between the atomic states of the escaping atom and the electronic states of the solid. In this work, we examined this interplay in the sputtering of iridium as this element has--unlike the elements employed in previous investigations--a complex atomic structure due to strong configuration interactions. Double-resonant two-photon laser ionization is used to probe the sputtered Ir atoms yielding information about the probability for an ejected atom to populate a specific atomic state and its escape velocity. The qualitative features of the corresponding population partition and state-selective velocity distributions show the influence of the excitation energy and the electronic structure of the different atomic states. A comparison is made between the experimental data and predictions from the resonant electron transfer description

  4. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  5. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  6. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  7. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  8. Interpretation of plasma impurity deposition probes. Analytic approximation

    Science.gov (United States)

    Stangeby, P. C.

    1987-10-01

    Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.

  9. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  10. Subwavelength atom localization via coherent population trapping

    International Nuclear Information System (INIS)

    Agarwal, G S; Kapale, K T

    2006-01-01

    We present an atom localization scheme based on coherent population trapping. We consider atomic transitions in a Lambda configuration where the control field is a standing-wave field. The probe field and the control field produce coherence between the two ground states and prepare the atom in a pure state. We show that the population in one of the ground states has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of this population would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelength localization

  11. Probes for dark matter physics

    Science.gov (United States)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  12. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  13. Trends in exotic-atom research

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Horvath, D.

    1983-01-01

    An attempt was made to analyze the trends in the development of exotic-atom research on the basis of a recently compiled bibliography. The analysis of nearly 4000 publications demonstrated that: (1) exotic atoms are nuclear probes used in every field of physics, from the test of quantum electrodynamics (QED) to chemical physics, to materials sciences; (2) the role of nuclear and atomic physics in exotic atom research is decreasing (although it is still significant), while that of materials sciences and chemial physics is exponentially increasing; and (3) prior to 1980 most investigators were mainly interested in atoms with negative muons, while during the last few years the positive muon (μSR) studies have dominated exotic atom research

  14. Magnetic nanostructures: radioactive probes and recent developments

    International Nuclear Information System (INIS)

    Prandolini, M J

    2006-01-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at

  15. Probe-diverse ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, I., E-mail: isaac.russellpeterson@rmit.edu.au [ARC Centre of Excellence for Coherent X-ray Science, the University of Melbourne, School of Physics, Victoria 3010 (Australia); Harder, R. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Robinson, I.K. [Research Complex at Harwell, Didcot, Oxfordshire OX11 0DE (United Kingdom); London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2016-12-15

    We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme.

  16. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  17. Traversing probe system

    International Nuclear Information System (INIS)

    Mashburn, D.N.; Stevens, R.H.; Woodall, H.C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride. 10 claims, 6 figures

  18. Traversing probe system

    Science.gov (United States)

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  19. Electrical resistivity probes

    Science.gov (United States)

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  20. Simulation-aided design and fabrication of nanoprobes for scanning probe microscopy

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Chang, Day-Bin

    2011-01-01

    We proposed and demonstrated a flexible and effective method to design and fabricate scanning probes for atomic force microscopy applications. Computer simulations were adopted to evaluate design specifications and desired performance of atomic force microscope (AFM) probes; the fabrication processes were guided by feedback from simulation results. Through design-simulation-fabrication iterations, tipless cantilevers and tapping mode probes were successfully made with errors as low as 2% in designed resonant frequencies. For tapping mode probes, the probe tip apex achieved a 10 nm radius of curvature without additional sharpening steps; tilt-compensated probes were also fabricated for better scanning performance. This method provides AFM users improved probe quality and practical guidelines for customized probes, which can support the development of novel scanning probe microscopy (SPM) applications. -- Research highlights: → We developed a design-simulation-fabrication strategy for customized AFM/SPM probes and demonstrated the results of tipless cantilever, sharpened probe tip, and tilt-compensated probe. → This simulation-aided method improved the geometry control and performance prediction of AFM probes; the error in resonant frequency was reduced to ∼2%. → Integration of simulation in design and fabrication of AFM probes expedites development of new probes and consequently promotes novel SPM applications.

  1. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  2. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  3. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  4. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  5. Microparticle adhesion studies by atomic force microscopy

    NARCIS (Netherlands)

    Segeren, L.H.G.J.; Siebum, B.; Karssenberg, F.G.; Berg, van den J.W.A.; Vancso, G.J.

    2002-01-01

    Atomic force microscopy (AFM) is one of the most flexible and simple techniques for probing surface interactions. This article reviews AFM studies on particle adhesion. Special attention is paid to the characterization of roughness and its effect on adhesion. This is of importance when comparing the

  6. Atomic four-level N systems

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2004-01-01

    We investigate the atomic four-level N configuration both analytically and numerically, for various pump and probe intensities, with and without transfer of coherence (TOC) and Doppler broadening, and compare the results obtained to those of realistic atomic systems. We find that TOC affects the whole spectrum, in addition to producing an electromagnetically induced absorption (EIA) peak at line center. We show that the EIA peak splits as the pump intensity increases. These results are compared with those of realistic systems. When the pump is σ + polarized and the probe is π polarized, the results are similar to those of the N configuration. When the pump and probe polarizations are both linear with perpendicular polarizations, various N-like subsystems contribute to the spectrum. Consequently, the splitting of the EIA peak only occurs at very high pump intensities. We also discuss the influence of the probe on the pump absorption and refraction and find that both the pump and probe show EIA peaks when the pump intensity is low, and complementary behavior when the pump is intense. At both low and high pump intensity, the pump and probe dispersions are of opposite sign

  7. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  8. Atomic scale chemical tomography of human bone

    Science.gov (United States)

    Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn

    2017-01-01

    Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.

  9. Experimental Investigation of the Dispersion of Liquids by Ejection Atomizers

    Science.gov (United States)

    Arkhipov, V. A.; Bondarchuk, S. S.; Evsevleev, M. Ya.; Zharova, I. K.; Zhukov, A. S.; Zmanovskii, S. V.; Kozlov, E. A.; Konovalenko, A. I.; Trofimov, V. F.

    2013-11-01

    This paper presents the results of an experimental investigation of the dispersivity of liquid droplets in the spray cone of ejection atomizers. The calculational droplet size distribution function was measured by the method of low angles of the probe laser radiation scattering indicatrix on a pneumohydraulic bench under cold blow conditions. The efficiency of the proposed circuit designs of atomizers has been analyzed.

  10. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  11. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  12. Probe tests microweld strength

    Science.gov (United States)

    1965-01-01

    Probe is developed to test strength of soldered, brazed or microwelded joints. It consists of a spring which may be adjusted to the desired test pressure by means of a threaded probe head, and an indicator lamp. Device may be used for electronic equipment testing.

  13. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  14. Fabrication of all diamond scanning probes for nanoscale magnetometry

    OpenAIRE

    Appel Patrick; Neu Elke; Ganzhorn Marc; Barfuss Arne; Batzer Marietta; Gratz Micha; Tschoepe Andreas; Maletinsky Patrick

    2016-01-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes s...

  15. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  16. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  17. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  18. Probing Molecular Ions With Laser-Cooled Atomic Ions

    Science.gov (United States)

    2017-10-11

    1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no...multiphoton dissociation spectroscopy of CaH+ in a Coulomb crystal, and quantum logic spectroscopy of CaH+. The first two goals have been completed and the...dissociation technique benefits from larger ion number in a three- dimensional Coulomb crystal. We used this technique to measure the for the first time

  19. Surface forces studied with colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Giesbers, M.

    2001-01-01

    Forces between surfaces are a determining factor for the performance of natural as well as synthetic colloidal systems, and play a crucial role in industrial production processes. Measuring these forces is a scientific and experimental challenge and over the years several techniques have

  20. Protein crystals as scanned probes for recognition atomic force microscopy.

    Science.gov (United States)

    Wickremasinghe, Nissanka S; Hafner, Jason H

    2005-12-01

    Lysozyme crystal growth has been localized at the tip of a conventional silicon nitride cantilever through seeded nucleation. After cross-linking with glutaraldehyde, lysozyme protein crystal tips image gold nanoparticles and grating standards with a resolution comparable to that of conventional tips. Force spectra between the lysozyme crystal tips and surfaces covered with antilysozyme reveal an adhesion force that drops significantly upon blocking with free lysozyme, thus confirming that lysozyme crystal tips can detect molecular recognition interactions.