International Nuclear Information System (INIS)
Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 1011 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.)
International Nuclear Information System (INIS)
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Energy Technology Data Exchange (ETDEWEB)
Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)
2008-12-15
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Coupled-cluster computations of atomic nuclei
Hagen, G; Hjorth-Jensen, M; Dean, D J
2013-01-01
In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.
Triaxial rotation in atomic nuclei
Institute of Scientific and Technical Information of China (English)
CHEN Yong-Shou; GAO Zao-Chun
2009-01-01
The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.
Dussel, G G; Dukelsky, J; Sarriguren, P
2007-01-01
We consider the development of Cooper pairs in a self-consistent Hartree Fock mean field for the even Sm isotopes. Results are presented at the level of a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson ansatz. While projected BCS captures much of the pairing correlation energy that is absent from BCS, it still misses a sizable correlation energy, typically of order $1 MeV$. Furthermore, because it does not average over the properties of the fermion pairs, the exact Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective.
Alpha-cluster model of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Sosin, Zbigniew; Kallunkathariyil, Jinesh [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland); Blocki, Jan [NCBJ, Theoretical Physics Division (BP2), Swierk (Poland); Lukasik, Jerzy; Pawlowski, Piotr [IFJ PAN, Krakow (Poland)
2016-05-15
The description of a nuclear system in its ground state and at low excitations based on the equation of state (EoS) around normal density is presented. In the expansion of the EoS around the saturation point, additional spin polarization terms are taken into account. These terms, together with the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state configurations of the N=Z even-even nuclei. At the nuclear surface these clusters can be identified as alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account an additional interaction between clusters the binding energies and sizes of the considered nuclei are very accurately described. The limits of the EoS parameters are established from the properties of the α, {sup 3}He and t particles. (orig.)
Inner Radiation Belt Generation of Light Nuclei Isotope
Galper, A. M.; Koldashov, S. V.; Leonv, A. A.; Mikhailov, V. V.
2003-07-01
Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the essential source of H and He isotop es nuclei in radiation belt. This paper reports the calculations of these isotop es intensities from the inner zone proton intensity model AP-8, the atmosphere drift-averaged composition and densities model MSIS-90, and cross sections for the various interaction processes. To calculate drift-averaged densities and energy losses of secondaries the particles are traced in geomagnetic field according IGRF-95 model by numerical solution of motion equation. The calculations account for nuclear interactions kinematic along the whole trapped protons trajectories. The results of calculations are compared with experimental data from SAMPEX, CRRES, RESURS-04 and MITA satellites taken during different solar activity phases. The comparison with observational data shows that the atmosphere is sufficient source for inner zone 4 He, 3 He,2 H and 3 H for L-shell less than 1.3.
Complex Geometry of Nuclei and Atoms
Atiyah, M F
2016-01-01
We propose a new geometrical model of matter, in which neutral atoms are modelled by compact, complex algebraic surfaces. Proton and neutron numbers are determined by a surface's Chern numbers. Equivalently, they are determined by combinations of the Hodge numbers, or the Betti numbers. Geometrical constraints on algebraic surfaces allow just a finite range of neutron numbers for a given proton number. This range encompasses the known isotopes.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalen...
Effective field theory for deformed atomic nuclei
Papenbrock, T
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
A new superfluid phase in atomic nuclei
International Nuclear Information System (INIS)
The influence of pairing and the dynamical α-type correlations on the structure of nuclear states is studied within the enlarged superfluid model (ESM). A comparison between ESM and different modern nuclear structure models such as: the quasiparticle-phonon nuclear model, interaction boson model, Hartree-Fock-Bogoliubov, temperature dependent Hartree-Fock-Bogoliubov and Migdal's finite Fermi system model, is done for particular cases. New gap equations are obtained. The phase structure is enriched by a new superfluid phase - the so-called α-like superfluid phase-dominated by α-type correlations. New first and second order phase transitions are predicted. A first order phase transition between the α-like superfluid phase and the pairing superfluid phase seems to be observed in Sm region. New types of isomers, the so-called ''superfluid isomers'', with their bands of elementary excitations are predicted. One of them is observed in 152Sm. These isomers correspond to a second (local) minimum of the correlation energy versus pairing deformations, analogous to the fission or superdeformed (shape) isomers, which correspond to the second (local) minimum of the potential energy along the elongation degree of shape deformation. The superfluidities of neutron and proton systems in heavy nuclei region may be generated by one another. This fact leads to the explanation of the origin of the odd-even staggering of the charge radii of chains of isotopes of different nuclei. The fact that the magnitude of the α-decay reduced widths (γ2) of the neutron-defficient Pb isotopes is almost equal to the γ2 of the actinide α-decaying nuclei is due to the above mentioned induction of the neutron superfluidity into the proton system also. Such exotic data ESM can explain especially in the region of single magic nuclei. Within ESM we could find a natural microscopic description of the scissors mode that dominates the structure of the Kπ=1+ magnetic states. (author). 89 refs, 27 figs
Symmetries in atomic nuclei from isospin to supersymmetry
Frank, Alejandro; Van Isacker, Pieter
2009-01-01
Symmetries in Atomic Nuclei aims to present an overview of recent applications of symmetry to the description of atomic nuclei. Special care is given to a pedagogical introduction of symmetry concepts using simple examples. After a historical overview of the applications of symmetry in nuclear physics, progress in the field during the last decade is reviewed. Special emphasis is put on the introduction of neutron-proton and boson-fermion degrees of freedom. Their combination leads to a supersymmetric description of pairs and quartets of nuclei. Both theoretical aspects and experimental signatures of dynamical (super)symmetries are carefully discussed. Case studies show how these symmetries are displayed by real atomic nuclei which have been studied experimentally using state-of-the art spectroscopy. Symmetries in Atomic Nuclei focuses on nuclear structure physics and has been written by active investigators in the field, but its scope is wider and is intended for final-year or post-graduate students and resea...
Atomic vapor laser isotope separation
Paisner, J. A.
1988-07-01
Atomic Vapor Laser Isotope Separation (AVLIS) is a general and powerful technique applicable to many elements. A major present application to the enrichement of uranium for lightwater power reactor fuel has been under development at the Lawrence Livermore National Laboratory since 1973. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet future U.S. needs for the internationally competitive production of uranium separative work. Major features of the AVLIS process will be discussed with consideration of the process figures of merit.
Exotic modes of excitation in atomic nuclei far from stability
Paar, N.; Vretenar, D.; Khan, E.; Colo, G.
2007-01-01
We review recent studies of the evolution of collective excitations in atomic nuclei far from the valley of $\\beta$-stability. Collective degrees of freedom govern essential aspects of nuclear structure, and for several decades the study of collective modes such as rotations and vibrations has played a vital role in our understanding of complex properties of nuclei. The multipole response of unstable nuclei and the possible occurrence of new exotic modes of excitation in weakly-bound nuclear ...
Comparing and contrasting nuclei and cold atomic gases
DEFF Research Database (Denmark)
Zinner, Nikolaj Thomas; Jensen, Aksel Stenholm
2013-01-01
The experimental revolution in ultracold atomic gas physics over the past decades has brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and contrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques...... physics transferred to cold atoms, and consider which systems are more likely to show interesting bound state spectra. Finally, we address some recent studies of the BCS–BEC crossover in light nuclei and compare them to the concepts used in ultracold atomic gases. While many-body concepts such as BEC...
Origin of Unexpected Isotopic Trends in Synthesis of Superheavy Nuclei
Institute of Scientific and Technical Information of China (English)
LIU Zu-Hua; BAO Jing-Dong
2007-01-01
We investigate the dependence of the yield of superheavy nuclei with Z = 110, 112, 114 on the neutron excess of the projectile nucleus with a two-parameter Smoluchowski equation. It is confirmed that in some cases, the cold fusion reactions with less neutron excess are more favourable than those with more neutron excess. In order to probe the origin of these unexpected isotopic trends, we also investigate the probabilities of capture, fusion and survival in the cold fusion reactions in detail. It is found that the maximal ER cross sections of the superheavy nuclei exponentially increase as a function of Bf - Sn with Bf being the fission barrier and Sn being the neutron separation energy. Although the probabilities of capture and fusion have some influences, the unexpected isotopic trends mainly due to the dependence of the ER cross sections on the Bf - Sn value. Therefore, the reactions with larger Bf - Sn values should be more favourable for synthesis of superheavy nuclei.
A unified nucleosynthetic site for the production of heavy isotopes and p-nuclei
Ouyed, Amir; Leahy, Denis
2014-01-01
Current r-process models under-produce A130 nuclei, and spallation fragments these isotopes into A<130 nuclei and all 35 p-nuclei. Our model is universal in relation to a star's age, metallicity, and chemistry.
Laser spectroscopy of atomic beams of short-lived nuclei
International Nuclear Information System (INIS)
A possibility of performing laser-nuclear-spectroscopic experiments at qualitatively new level aimed to solve the second-glass current problem and to search T-non invariant effects in the beta-decay of atomic nuclei is discussed. The question of the increase in efficiency of the experiments, aimed to study the main characteristics of nuclei, far from the beta-stability, by means of the laser spectroscopy methods is considered. 147 refs.; 5 figs.; 1 tab
Scattering theory of molecules, atoms and nuclei
Canto, L Felipe
2012-01-01
The aim of the book is to give a coherent and comprehensive account of quantum scattering theory with applications to atomic, molecular and nuclear systems. The motivation for this is to supply the necessary theoretical tools to calculate scattering observables of these many-body systems. Concepts which are seemingly different for atomic/molecular scattering from those of nuclear systems, are shown to be the same once physical units such as energy and length are diligently clarified. Many-body resonances excited in nuclear systems are the same as those in atomic systems and come under the name
Experimental level densities of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Guttormsen, M.; Bello Garrote, F.L.; Eriksen, T.K.; Giacoppo, F.; Goergen, A.; Hagen, T.W.; Klintefjord, M.; Larsen, A.C.; Nyhus, H.T.; Renstroem, T.; Rose, S.J.; Sahin, E.; Siem, S.; Tornyi, T.G.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Aiche, M.; Ducasse, Q.; Jurado, B. [University of Bordeaux, CENBG, CNRS/IN2P3, B.P. 120, Gradignan (France); Bernstein, L.A.; Bleuel, D.L. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Byun, Y.; Voinov, A. [Ohio University, Department of Physics and Astronomy, Athens, Ohio (United States); Gunsing, F. [CEA Saclay, DSM/Irfu/SPhN, Cedex (France); Lebois, L.; Leniau, B.; Wilson, J. [Institut de Physique Nucleaire d' Orsay, Orsay Cedex (France); Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West (South Africa)
2015-12-15
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)
Heavy atom isotope effects on enzymatic reactions
Paneth, Piotr
1994-05-01
The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.
Reliability of the pseudospin symmetry in atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Marcos, S.; Niembro, R. [Departamento de Fisica Moderna, Universidad de Cantabria, E-39005 Santander (Spain); Lopez-Quelle, M. [Departamento de Fisica Aplicada, Universidad de Cantabria, E-39005 Santander (Spain); Savushkin, L.N. [Department of Physics, St. Petersburg University for Telecommunications, 191065 St. Petersburg (Russian Federation); Bernardos, P. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, E-39005 Santander (Spain)
2003-06-01
The reliability of the pseudospin symmetry (PSS) in atomic nuclei is analyzed in the framework of the relativistic Hartree approach. We find that the nuclear surface strongly increases the effect of the pseudospin-orbit potential (PSOP), spoiling the possibility of the exact realization of the PSS even in the limit of a vanishing PSOP. It is also shown that the PSS cannot be explained by the fact that {sigma}{sub S}{approx_equal}-{sigma}. New arguments to explain the PSS in finite nuclei are given. The important role the spin-orbit interaction plays in the achievement of the PSS is also discussed. (orig.)
How the Pauli exclusion principle affects fusion of atomic nuclei
Simenel, C; Godbey, K; Dasgupta, M; Hinde, D J
2016-01-01
The Pauli exclusion principle induces a repulsion between composite systems of identical fermions such as colliding atomic nuclei. Our goal is to study how heavy-ion fusion is impacted by this "Pauli repulsion". We propose a new microscopic approach, the density-constrained frozen Hartree-Fock method, to compute the bare potential including the Pauli exclusion principle exactly. Pauli repulsion is shown to be important inside the barrier radius and increases with the charge product of the nuclei. Its main effect is to reduce tunnelling probability. Pauli repulsion is part of the solution to the long-standing deep sub-barrier fusion hindrance problem.
Isotopic dependence of isomeric states in heavy nuclei
International Nuclear Information System (INIS)
High-spin K-isomer states, which are usually assumed as two quasiparticle high-spin configurations states, were observed in heavy nuclei 250,256Fm, 252,254No, 266Hs and 270,271Ds. In order to calculate the energies of 2qp isomer states in even-even nuclei, the two-center shell model is used for finding the single-particle levels at the ground state of nucleus. The shape parameterization used in this model effectively includes many even multipolarities. The dependence of the parameters of Is and I2 terms on A and N - Z were modified for the correct description of the ground state spins of odd actinides. The microscopical corrections and quadrupole parameters of deformation calculated with the two-center shell model are close to those obtained with the microscopic-macroscopic approaches of P. Moller et al. and A.Sobiczewski et al. The calculated values of Qa are in reasonable agreement with measured values. The calculated two-quasiparticle energies are in good agreement with the available experimental data. In the even isotope chains of Fm and No the calculated E2qp for high spin K-isomer states are minimal for 250Fm and 252No. In 242,244Fm the K-isomer states with K ≥ 6 are above 1.38 MeV that is larger than the energies of the K-isomer states in 252,254No. In order to observe these states in the neutron-deficient Fm isotopes, one should produce these isotopes with the cross sections similar to those for the nuclei 252,254No. Calculating the potential energy surface near the ground state, one can not exclude the existence of shallow potential minima which can be related to the shape isomers. The possibility of existence of these minima is discussed within the microscopic-macroscopic model. We found the indications for the low-lying shape isomers in 264,266Sg and 268,270Hs The alpha-decay between the isomer states and between the ground states can have similar properties that shields the observation of isomeric states. The population of the isomer states in the
International Nuclear Information System (INIS)
A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-Sh. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N-82, the RMF theory predicts the well-known onset of prolate deformation at about N-88, which saturates at about N-102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)
Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach
Energy Technology Data Exchange (ETDEWEB)
Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E., E-mail: stepanov@depni.sinp.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Tretyakova, T. Yu. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)
2015-12-15
Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.
First AID (Atom counting for Isotopic Determination).
Energy Technology Data Exchange (ETDEWEB)
Roach, J. L. (Jeffrey L.); Israel, K. M. (Kimberly M.); Steiner, R. E. (Robert E.); Duffy, C. J. (Clarence J.); Roench, F. R. (Fred R.)
2002-01-01
Los Alamos National Laboratory (LANL) has established an in vitro bioassay monitoring program in compliance with the requirements in the Code of Federal Regulations, 10 CFR 835, Occupational Radiation Protection. One aspect of this program involves monitoring plutonium levels in at-risk workers. High-risk workers are monitored using the ultra-sensitive Therrnal Ionization Mass Spectrometry (TIMS) technique to ensure compliance with DOE standards. TIMS is used to measure atom ratios of 239Pua nd 240Puw ith respect to a tracer isotope ('Pu). These ratios are then used to calculate the amount of 239Pu and 240Pup resent. This low-level atom counting technique allows the calculation of the concentration levels of 239Pu and 240Pu in urine for at risk workers. From these concentration levels, dose assessments can be made and worker exposure levels can be monitored. Detection limits for TIMS analysis are on the order of millions of atoms, which translates to activity levels of 150 aCi 239Pua nd 500 aCi for 240Pu. pCi for Our poster presentation will discuss the ultra-sensitive, low-level analytical technique used to measure plutonium isotopes and the data verification methods used for validating isotopic measurements.
Coupling of (ultra- relativistic atomic nuclei with photons
Directory of Open Access Journals (Sweden)
M. Apostol
2013-11-01
Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.
Inner Radiation Belt Source of Helium and Heavy Hydrogen Nuclei Isotope
Galper, A. M.; Koldashov, S. V.; Leonov, A. A.; Mikhailov, V. V.
Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the essential source of H and He isotopes nuclei in radiation belt. This paper reports specified calculations of these isotopes intensities from the various inner zone proton intensity models AP-8, CRRESPRO and SAMPEX/PET PSB97, the atmosphere drift-averaged composition and densities model MSIS-90, and cross sections for the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries the particles are traced in geomagnetic field according IGRF-95 model by numerical solution of motion equation. The calculations account for nuclear interactions kinematic along the whole trapped protons trajectories. The comparison with observational data from SAMPEX, CRRES, RESURS-04 and MITA satellites taken during different solar activity phases shows that the atmosphere is sufficient source for inner zone 4He, 3He, 2H and 3H for L-shell less than 1.3. The calculation model allows having the energy spectrum and angle distribution of light nuclear isotopes in inner radiation belt that can be used to evaluate SEU rates.
Properties of light atomic nuclei in the potential cluster model
Dubovichenko, S B
2010-01-01
Monograph includes the results of the scientific work of the author for approximately 10 years and it is dedicated to theoretical studies of the structure of light atomic nuclei on the basis of potential cluster model with the forbidden states. Are examined questions of the single-valued construction of the intercluster potentials, which contain the forbidden states and simultaneously applied in the continuous and discrete spectra for the light nuclear systems with a mass of from 2 to 16. Is presented the mathematical apparatus and some calculation methods, utilized in the cluster model. Many questions, until now, considered here did not be reflected in the monographic literature. The book can represent interest for the students of elder courses, probationers, graduate students and scientific workers, who work in the field of theoretical nuclear physics. This Book is written in Russian, but will perhaps present certain interest.
Transmutations of atomic nuclei in hadron-nuclei nuclear collisions at GeV energies
International Nuclear Information System (INIS)
In hadron-nuclei nuclear collisions nuclei change their mass numbers A and the charge numbers Z. The mechanism of transmutation of a target nucleus was prompted experimentally and is described in this work. The information about the nuclei transmutation may be a basis for elaboration of the method of nuclei changes in beams of hadrons from accelerators
THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.
Energy Technology Data Exchange (ETDEWEB)
HOLDEN, N.E.
2005-08-07
Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).
The Structure of Light Nuclei and Its Effect on Precise Atomic Measurements
Friar, J. L.
2002-01-01
My talk will consist of three parts: (a) what every atomic physicist needs to know about the physics of light nuclei [and no more]; (b) what nuclear physicists can do for atomic physics; (c) what atomic physicists can do for nuclear physics. A brief qualitative overview of the nuclear force and calculational techniques for light nuclei will be presented, with an emphasis on debunking myths and on recent progress in the field. Nuclear quantities that affect precise atomic measurements will be ...
The Structure of Light Nuclei and Its Effect on Precise Atomic Measurements
Friar, J. L.
2002-01-01
This review consists of three parts: (a) what every atomic physicist needs to know about the physics of light nuclei; (b) what nuclear physicists can do for atomic physics; (c) what atomic physicists can do for nuclear physics. A brief qualitative overview of the nuclear force and calculational techniques for light nuclei will be presented, with an emphasis on debunking myths and on recent progress in the field. Nuclear quantities that affect precise atomic measurements will be discussed, tog...
Classical and quantal aspects of rotating atomic nuclei
International Nuclear Information System (INIS)
Two methods for the calculation of the properties of rapidly rotating atomic nuclei are discussed in this dissertation. One of them is the cranking model, which can be derived from the Time Dependent Hartree equation. The quantization condition known from the Path Integral description of the many-body system is applied to the corresponding time dependent orbit. When the magnitude of the expectation value of the angular momentum vector is equal to an integer plus a constant the condition is fullfilled. In the cranking model there is no collective contribution to signature changing processes, like E2 transitions changing the angular momentum by one unit. By evaluating a specific polarization effect, a collective contribution. The second method addresses the situation in which the classical motion is called wobbling. If the angular momentum component along the symmetry axis is large compared to the perpendicular component, the motion can be treated as a harmonic vibration. This approximation is shown to give values of the moment of intertia in quantitative agreement with experimental data. It is also shown that the anharmonicities created by the coupling of the nucleons to the quantized field vibrations, are able to give the same level spacing as the rigid rotor model. (author)
International Nuclear Information System (INIS)
The optical isotopic shifts in atomic spectra are measured for the first time using the method of laser multistep photoionization of atoms and the changes in the mean-square charge radii of radioactive nuclei are determined. The measurements were performed for the radioactive isotopes /sup 145-149/Eu in the transition 4f 7 6s28S0/sub 7/2/ --4f 7 6s 6p 6P/sub 7/2/, lambda = 576.5 nm
[Atomic Vapor Laser Isotope Separation (AVLIS) program
International Nuclear Information System (INIS)
This report summarizes work performed for the Atomic Vapor Laser Isotope Separation (AVLIS) program from January through July, 1992. Each of the tasks assigned during this period is described, and results are presented. Section I details work on sensitivity matrices for the UDS relay telescope. These matrices show which combination of mirror motions may be performed in order to effect certain changes in beam parameters. In Section II, an analysis is given of transmission through a clipping aperture on the launch telescope deformable mirror. Observed large transmission losses could not be simulated in the analysis. An EXCEL spreadsheet program designed for in situ analysis of UDS optical systems is described in Section III. This spreadsheet permits analysis of changes in beam first-order characteristics due to changes in any optical system parameter, simple optimization to predict mirror motions needed to effect a combination of changes in beam parameters, and plotting of a variety of first-order data. Optical systems may be assembled directly from OSSD data. A CODE V nonsequential model of the UDS optical system is described in Section IV. This uses OSSD data to build the UDS model; mirror coordinates may thus be verified. Section V summarizes observations of relay telescope performance. Possible procedures which allow more accurate assessment of relay telescope performance are given
Single atom detection of calcium isotopes by atom trap trace analysis
Hoekstra, S; Morgenstern, R; Wilschut, H W; Hoekstra, R
2005-01-01
We demonstrate a combination of an isotopically purified atom beam and a magneto-optical trap which enables the single atom detection of all stable isotopes of calcium (40, 42, 43, 44, 46 and 48). These isotopes range in abundance from 96.9 % (40Ca) to 0.004 (46Ca). The trap is loaded from an atomic beam which is decelerated in a Zeeman slower and subsequently deflected over an angle of 30 degrees by optical molasses. The isotope selectivity of the Zeeman slower and the deflection stage is investigated experimentally and compared with Monte Carlo simulations.
Atomic vapor laser isotope separation using resonance ionization
International Nuclear Information System (INIS)
In June 1985, the Department of Energy announced the selection of atomic vapor laser isotope separation [AVLIS] as the technology to meet the United States' future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. The authors discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques employed. The methodology adopted is illustrated with examples of other elements that are under study in the program. (author)
Atomic Beam Laser Spectrometer for In-field Isotopic Analysis
Energy Technology Data Exchange (ETDEWEB)
Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group
2016-06-22
This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft^{3}, < 1000W.
Recent topics of mesic atoms and mesic nuclei -- $\\phi$ mesic nuclei exist ?--
Yamagata-Sekihara, J; Cabrera, D; Vacas, M J Vicente
2008-01-01
We study $\\phi$-meson production in nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of the medium modifications to reaction cross sections. The structures of the bound states, $\\phi$-mesic nuclei, are also studied. For strong absorptive interaction cases, we need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.
Some new trends in laser isotope separation in atomic vapours
International Nuclear Information System (INIS)
New approaches to the methods of laser isotope separation are considered and realised which substantially extend the possibilities of the methods. To narrow down an absorption line and decrease parasitic absorption at transitions in isotope atoms that do not belong to an isotope being separated, two-photon excitation of atoms was used both in collinear and counterpropagating light beams. By using two-photon excitation in counterpropagating light beams, the weight amounts of Zn isotopes were separated under the conditions when the isotopic structure of a resonance transition was completely masked by the Doppler broadening. Two-photon excitation in collinear beams was used for efficient purification of lead from a rare 210Pb isotope to obtain a low-radioactive lead. A detailed computer simulation of separation of isotopes of Zn, B, Pb, and Si using two-photon excitation was performed. An efficient method of isotope separation involving chemical reactions with selectively excited long-lived atoms was proposed and realised. The method offers some advantages over the conventional photoionisation method. (invited paper)
Nuclear polarizability of helium isotopes in atomic transitions
Pachucki, K.; Moro, A. M.
2006-01-01
We estimate the nuclear polarizability correction to atomic transition frequencies in various helium isotopes. This effect is non-negligible for high precision tests of quantum electrodynamics or accurate determination of the nuclear charge radius from spectroscopic measurements in helium atoms and ions. In particular, it amounts to $28(3)$ kHz for 1S-2S transition in 4He+.
Collective properties of octupole-deformed atomic nuclei
International Nuclear Information System (INIS)
Collective properties of even-even nuclei in the radium region are studied theoretically. Energy of the lowest collective states and reduced probabilities B(E2) and B(E3) of electromagnetic transitions between these states are mainly analysed. The excited states are treated as large-amplitude quadrupole and octupole vibrations coupled with each other. A large anharmonicity of the spectrum and a large value B(E3) of the transition from the first octupole excited state to the ground state are obtained, for octupole-deformed nuclei. A strong dependence of the results on the shape of the potential energy of a nucleus, treated as a function of its deformation, is stressed. (author)
Data mining for isotope discrimination in atom probe tomography
International Nuclear Information System (INIS)
Ions with similar time-of-flights (TOF) can be discriminated by mapping their kinetic energy. While current generation position-sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all of the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. - Highlights: ► Atom probe tomography and statistical learning were combined for data enhancement. ► Multiple eigenvalue decompositions decomposed a spectrum with overlapping peaks. ► The isotope of each atom was determined by kinetic energy discrimination. ► Eigenspectra were identified and new chemical information was identified
Recent developments in high-spin calculations in atomic nuclei
International Nuclear Information System (INIS)
A brief introduction to the recent achievements in the high-spin domain in nuclear physics is given. Results of the calculations in highly developed rotational bands in deformed nuclei, as well as the calculations in the structure of the yrast isomers are presented. The calculations fail in two aspects: local minima in the yrast line are not confirmed experimentally, the overall slope of the yrast line in 152Dy is considerably overestimated. The calculations of the yrast line with new Woods-Saxon parameters are now in progress. The parameters are chosen to reproduce the large gap in the levels at proton number Z=64. (M.H.)
Quantum fluctuations and stability of tetrahedral deformations in atomic nuclei
Zberecki, K; Magierski, P; Schunck, N
2006-01-01
The possible existence of stable axial octupole and tetrahedral deformations is investigated in $^{80}$Zr and $^{98}$Zr. HFBCS calculations with parity projection have been performed for various parametrizations of the Skyrme energy functional. The correlation and excitation energies of negative parity states associated with shape fluctuations have been obtained using the generator coordinate method (GCM). The results indicate that in these nuclei both the axial octupole and tetrahedral deformations are of dynamic character and possess similar characteristics. Various Skyrme forces give consistent results as a function of these two octupole degrees of freedom both at the mean-field level as well as for configuration mixing calculations.
Quantum Algebraic Symmetries in Nuclei, Molecules and Atomic Clusters
Bonatsos, Dennis; Daskaloyannis, C.
1999-01-01
Various applications of quantum algebraic techniques in nuclear structure physics and in molecular physics are briefly reviewed and a recent application of these techniques to the structure of atomic clusters is discussed in more detail.
Isotopic abundance in atom trap trace analysis
Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter
2014-03-18
A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.
International Nuclear Information System (INIS)
Nuclear fission allows us to produce and study the properties of the nuclei with a higher neutron to proton ratio. Spectroscopic studies of such neutron-rich fragment nuclei provide direct information on the nuclear excited states. Such studies help to explore the new regions of nuclear deformations, and to extend the theoretical model(s) to regions which have hitherto been inaccessible. A lot of work has already been done on these set of nuclei by means of spontaneous fission of 252Cf and 248Cm sources, heavy-ion induced fusion-fission reactions, and also using deep-inelastic reactions. More recently, spectroscopic studies were performed using thermal neutron induced fission of 235U using CIRUS reactor facility. Here we report the yield distribution of the isotopes, produced in thermal neutron induced fission of 235U, using prompt γ-γ coincidence measurement technique
Electromagnetic isotope separation at the China Institute of Atomic Energy
Energy Technology Data Exchange (ETDEWEB)
Li Gongpan; Lin Zhizhou; Xiang Xuyang; Deng Jingting (China Inst. of Atomic Energy, Beijing, BJ (China))
1992-08-01
Electromagnetic isotope separation at the China Institute of Atomic Energy (CIAE) is described. Calutron, Nier-Bernas and Freeman ion sources were constructed for ion implantation systems. It was found that some enriched isotope samples were contaminated more by lighter than by heavier neighbors. This phenomenon may be explained if the sputtered particles consist of a considerable percentage of ions. A computer inspection system for recording and processing operation data has been designed. (orig.).
Parity and time-reversal violation in nuclei and atoms
International Nuclear Information System (INIS)
Two topics are briefly reviewed: the parity (P)-violating NN interaction and the time-reversal (T) and P-violating electric moments (EDM's) of atoms. The ΔI = 1 P-violating NN amplitude dominated by weak π+- exchange is found to be appreciably smaller than bag-model predictions. This may be a dynamical symmetry of flavor-conserving hadronic weak processes reminiscent of the ΔI = 1/2 rule in flavor-changing decays. General principles of experimental searches for atomic EDM's are discussed. Atomic EDM's are sensitive to electronic or nuclear EDM's and to a P-and-T-violating electron-quark interaction. Even though the experimental precision is still approx.104 times worse than counting statistics, the recent results have reached a sensitivity to nuclear EDM's which rivals that of the neutron EDM data. Further significant improvements can be expected. 17 refs., 4 figs
International Nuclear Information System (INIS)
We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s–1) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).
ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses
Energy Technology Data Exchange (ETDEWEB)
Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.
2005-01-01
The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei
Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter
Whelan, Colm T
2005-01-01
Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.
Alpha decay favoured isotopes of some superheavy nuclei: Spontaneous fission versus alpha decay
Kiren, O V; Bubbly, S G
2013-01-01
Spontaneous fission and alpha decay are the main decay modes for superheavy nuclei. The superheavy nuclei which have small alpha decay half-life compared to spontaneous fission half-life will survive fission and can be detected in the laboratory through alpha decay. We have studied the alpha decay half-life and spontaneous half-life of some superheavy elements in the atomic range Z = 100-130. Spontaneous fission half-lives of superheavy nuclei have been calculated using the phenomenological formula and the alpha decay half-lives using Viola-Seaborg-Sobiczewski formula (Sobiczewski et al. 1989), semi empirical relation of Brown (1992) and formula based on generalized liquid drop model proposed by Dasgupta-Schubert and Reyes (2007). The results are reported here.
Fast-timing studies of nuclei below $^{68}$Ni populated in the $\\beta$-decay of Mn isotopes
Jokinen, A; Simpson, G S; Garcia borge, M J; Koester, U H; Georgiev, G P; Fraile prieto, L M; Aprahamian, A
2008-01-01
We intend to investigate structure of nuclei populated in the $\\beta$-decay of Mn isotopes via the ATD $\\beta\\gamma\\gamma$(t) technique. With this method we will measure dynamic moments in Fe isotopes and their daughters in order to characterize the role of particle-hole excitation across the ${N}$=40 sub-shell closure and the development of collectivity.
Isotopically selective collinear laser photoionization of accelerated helium atoms
International Nuclear Information System (INIS)
Collinear two-step laser photoionization of 3He and 4He isotopes, accelerated to energies of up to 3.9 keV, is described. It is shown that the ionization selectivity in the case of the rare isotope 3He is 106 for a residual-gas pressure of 10-7 Torr in the vacuum system. The sensitivity is limited by collisions that result in the excitation of fast metastable atoms to Rydberg states in the field-free region, and by impact ionization of fast atoms in the region of the ionizer. It is shown that the ionization of helium atoms excited to n3D states occurs along the adiabatic and diabatic channels
Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions
Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.
2016-04-01
In order to find a way to produce superheavy nuclei (SHN), which appear in the gap between the SHN synthesized by cold fusion and those by hot fusion, or those so far not yet been produced in the laboratory, we tried to make use of a set of projectile isotopic chains, to use a radioactive beam projectile, and to test symmetric fusion reactions for gaining more neutrons to synthesize neutron-richer SHN based on the dinuclear system (DNS) model via cold fusion reactions. It is found that the nuclei 265Mt,Ds,272268,273Rg, and 274,275,276Cn may be produced with the detectable evaporation residual cross sections. The intensities of radioactive beams are significantly less than those of the stable beams, therefore using a stable beam is predicted to be the most favorable method for producing SHN. From the symmetric reaction system 136Xe+136Xe , no fusion event was found.
Atomic vapor laser isotope separation in France
International Nuclear Information System (INIS)
The main effort in the field of Isotopic Separation Research and Development in France is devoted since 1985 to the 'SILVA' process. A structured organization has been set up, including the following elements: Specific Research and Development for all the functions and components of the process: this work is supported by numerous benches located in Saclay and Pierrelatte. Each bench is mainly devoted to one process function; regarding process and operating performances are optimized. Integrated Experiences in a Pilot facility. Qualified components are integrated in a pilot facility located in Saclay, the capacity of which is steadily increased. At each stage, complete separative experiments demonstrate the improvements attained. Focused Basic Research for each field, often linked with various and relatively original phenomenas. Models have been built up, supported by specific experiments and values attained for intrinsical parameters. An aggregated process performance computing code integrates all the models, possibly under simplified form. Technical, operating and economical data are gradually added. A general assessment will take place in the middle of the nineties with several technical demonstrations and a complete evaluation of the French AVLIS process
Continuation of Atomic Spectroscopy on Alkali Isotopes at ISOLDE
2002-01-01
Laser optical measurements on Rb, Cs and Fr have already been performed at ISOLDE in 1978-79. The hyperfine structure and isotope shift of |7|6|-|9|8Rb, |1|1|8|-|1|4|5Cs, |2|0|8|-|2|1|3Fr and 14 of their isomers have been studied. Among the wealth of information which has been obtained, the most important are the first observation of an optical transition of the element Fr, the evidence of the onset of nuclear deformation at N~=~60 for Rb isotopes and the shape isomerism isotopes. \\\\ \\\\ From both the atomic and nuclear physics point of view, new studies seem very promising: \\item - the search for new optical transitions in Fr; the shell effect in the rms charge radius at N~=~126 for Fr isotopes \\item - the study of a possible onset of deformation for Cs isotopes beyond |1|4|5Cs \\item - the study of a region of static deformation in neutron-deficient Rb isotopes. \\\\ \\\\ \\end{enumerate} A new apparatus has been built. The principle remains the same as used in our earlier experiments. The improvements concern ess...
Hidden pseudospin and spin symmetries and their origins in atomic nuclei
Liang, Haozhao; Zhou, Shan-Gui
2014-01-01
Symmetry plays a fundamental role in physics. The quasi-degeneracy between single-particle orbitals $(n, l, j = l + 1/2)$ and $(n-1, l + 2, j = l + 3/2)$ indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry (PSS). Since the introduction of the concept of PSS in atomic nuclei, there have been comprehensive efforts to understand its origin. Both splittings of spin doublets and pseudospin doublets play critical roles in the evolution of magic numbers in exotic nuclei discovered by modern spectroscopic studies with radioactive ion beam facilities. Since the PSS was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry (SS) for anti-nucleon, and many new concepts have been introduced. In the present Review, we focus on the recent progress on the PSS and SS in various systems and potentials, including extensions of the PSS study from stable to exotic nuclei, from non-confining to confining potentials, from local to non-local potentials, from ce...
Directory of Open Access Journals (Sweden)
Minkov N.
2016-01-01
Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.
6th International Workshop on Application of Lasers in Atomic Nuclei Research
Błaszczak, Z; Marinova, K; LASER 2004
2006-01-01
6th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, 24-27 May, 2004 Researchers and graduate students interested in the Mössbauer Effect and its applications will find this volume indispensable. The volume presents the most recent developments in the methodology of Mössbauer spectroscopy. Reprinted from Hyperfine Interactions (HYPE) Volume 162, 1-4
Atomic parity nonconservation, neutron radii, and effective field theories of nuclei
Sil, Tapas; Centelles Aixalà, Mario; Viñas Gausí, Xavier; Piekarewicz, J.
2005-01-01
Accurately calibrated effective field theories are used to compute atomic parity non-conserving (APNC) observables. Although accurately calibrated, these effective field theories predict a large spread in the neutron skin of heavy nuclei. While the neutron skin is strongly correlated to a large number of physical observables, in this contribution we focus on its impact on new physics through APNC observables. The addition of an isoscalar-isovector coupling constant to the effective Lagrangian...
Relativistic model for nuclear matter and atomic nuclei with momentum-dependent self-energies
Typel, S
2005-01-01
The Lagrangian density of standard relativistic mean-field (RMF) models with density-dependent meson-nucleon coupling vertices is modified by introducing couplings of the meson fields to derivative nucleon densities. As a consequence, the nucleon self energies, that describe the effective in-medium interaction, become momentum dependent. In this approach it is possible to increase the effective (Landau) mass of the nucleons, that is related to the density of states at the Fermi energy, as compared to conventional relativistic models. At the same time the relativistic effective (Dirac) mass is kept small in order to obtain a realistic strength of the spin-orbit interaction. Additionally, the empirical Schroedinger-equivalent central optical potential from Dirac phenomenology is reasonably well described. A parametrization of the model is obtained by a fit to properties of doubly magic atomic nuclei. Results for symmetric nuclear matter, neutron matter and finite nuclei are discussed.
Signatures of the Giant Pairing Vibration in the 14C and 15C atomic nuclei
F. Cappuzzello(INFN-LNS, Catania, Italy;); Carbone, D.; Cavallaro, M.; Bondì, M.; Agodi, C.; Azaiez, F.; Bonaccorso, A; Cunsolo, A.; Fortunato, L; Foti, A.; Franchoo, S.; Khan, E.; R. Linares; Lubian, J.; Scarpaci, J.A.
2015-01-01
Giant resonances are collective excitation modes for many-body systems of fermions governed by a mean field, such as the atomic nuclei. The microscopic origin of such modes is the coherence among elementary particle-hole excitations, where a particle is promoted from an occupied state below the Fermi level (hole) to an empty one above the Fermi level (particle). The same coherence is also predicted for the particle–particle and the hole–hole excitations, because of the basic quantum symmetry ...
Nakada, H
2015-01-01
We pointed out [Phys. Rev. C \\textbf{91}, 021302(R)] that the isotope shifts of the Pb nuclei, the kink at $N=126$ in particular, can be well described by the Hartree-Fock-Bogolyubov calculations if a density-dependent LS interaction derived from the $3N$ interaction is incorporated. Effects of the density-dependence in the LS channel on the isotope shifts are extensively investigated for the Ca, Ni and Sn isotopes, using the semi-realistic M3Y-P6 interaction and its LS modified variant M3Y-P6a, as in the Pb case. It is found that almost equal charge radii between $^{40}$Ca and $^{48}$Ca are reproduced, as well as the isotope shifts in a long chain of the Sn nuclei, owing to the density-dependence in the LS channel. A kink is predicted at $N=82$ for the isotope shifts of the Sn nuclei, in clear contrast to the interactions without the density-dependence.
Isotopically selective counting of noble gas atoms, using resonance ionization spectroscopy
International Nuclear Information System (INIS)
The technique of Resonance Ionization Spectroscopy (RIS) is being extended to develop a means for counting individual atoms of a selected isotope of a noble gas. In this method, lasers are used for RIS to obtain atomic species (Z) selectivity and a small quadrupole mass spectrometer provides isotopic (A) selectivity. A progress report on the objective of counting each atom of a particular isotope of a noble gas is given. (author)
Isotopically selective counting of noble gas atoms, using resonance ionization spectroscopy
International Nuclear Information System (INIS)
The technique of Resonance Ionization Spectroscopy (RIS) is being extended to develop a means for counting individual atoms of a selected isotope of a noble gas. In this method, lasers are used for RIS to obtain atomic species (Z) selectivity and a small quadrupole mass spectrometer provides isotopic (A) selectivity. A progress report on the objective of counting each atom of a particular isotope of a noble gas is given. 10 references, 4 figures
Occultism and the atom: the curious story of isotopes
Energy Technology Data Exchange (ETDEWEB)
Hughes, Jeff
2003-09-01
The routes to scientific discovery are sometimes strange. We are all familiar with the story of Newton and the falling apple, or with Friedrich Kekule's dream of a snake biting its own tail that led to the discovery of benzene's ring-like structure. But such stories - engaging though they might be - are often mythical. They serve a function in science, emphasizing individual psychology and the flash of inspiration from a heroic scientific genius, over the more routine and collective aspects of scientific work. Romanticism aside, however, the history of science - like Orwell's Big Brother state - usually writes and rewrites history to remove inconvenient facts, mistakes and idiosyncrasies, leaving only a rationalized path to our present knowledge, or what historians sometimes call 'whig' history. In so doing, it not only distorts the actual course of historical events but also gives a misleadingly simplistic picture of the richness of scientific activity and the interactions between science and broader culture. In the history of physics, for example, the discovery of isotopes by Frederick Soddy and Francis Aston is usually cast as part of a linear sequence of discoveries in atomic and nuclear physics. The story, we are told, began with the discovery of radioactivity in the 1890s, continued with the discovery of the nucleus (1911), isotopes (1913), wave mechanics (1920s) and the neutron (1932), before leading to nuclear fission (1938) and, ultimately, the atomic bomb (1945). In the September issue of Physics World Jeff Hughes describes how the history of isotopes was rewritten and why. (U.K.)
Universal charge-mass relation: From black holes to atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar, E-mail: shaharhod@gmail.co [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)
2010-10-04
The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q{<=}{mu}{sup 2/3}E{sub c}{sup -1/3}, where q and {mu} are the charge and mass of the physical system respectively, and E{sub c} is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z{<=}Z{sup *}={alpha}{sup -1/3}A{sup 2/3}, where {alpha}=e{sup 2}/h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.
Probing single-particle and collective states in atomic nuclei with Coulomb excitation
DiJulio, Douglas
A series of experiments and developments, related to stable and radioactive isotopes, have been carried out. These studies have focused on measuring the low-lying excitations of spherical and deformed nuclei using electromagnetic (Coulomb) excitation and also on developments in detector technology for upcoming radioactive ion beams facilities. The low-lying excitations in the nuclei 107,109Sn and 107In have been investigated using low-energy Coulomb excitation at the REX-ISOLDE facility at CERN. The measured reduced transition probabilities were compared to predictions of nuclear structure models. In addition, a relativistic Coulomb excitation experiment was carried out using the FRS at GSI with the nucleus 104Sn. These radioactive ion beam experiments provide important constraints for large-scale-shell-model calculations in the region of the doubly magic nucleus 100Sn. A stable Coulomb excitation experiment was also carried out in order to explore the properties of low-lying structures in the nucleus 170Er...
International Nuclear Information System (INIS)
The analysis method proposed in V. Rotival and T. Duguet [Phys. Rev. C 79, 054308 (2009)] is applied to characterize halo properties in finite many-fermion systems. First, the versatility of the method is highlighted by applying it to light- and medium-mass nuclei as well as to atom-positron and ion-positronium complexes. Second, the dependence of nuclear halo properties on the characteristics of the energy-density functional used in self-consistent Hartree-Fock-Bogoliubov calculations is studied. We focus in particular on the influence of (i) the scheme used to regularize/renormalize the ultraviolet divergence of the local pairing functional, (ii) the angular-momentum cutoff in the single-particle basis, as well as (iii) the isoscalar effective mass, (iv) saturation density, and (v) tensor terms characterizing the particle-hole part of the energy functional. It is found that (a) the low-density behavior of the pairing functional and the regularization/renormalization scheme must be chosen coherently and with care to provide meaningful predictions, (b) the impact of pairing correlations on halo properties is significant and is the result of two competing effects, (c) the detailed characteristics of the pairing functional has, however, only little importance, and (d) halo properties depend significantly on any ingredient of the energy-density functional that influences the location of single-particle levels; i.e., the effective mass, the tensor terms, and the saturation density of nuclear matter. The latter dependencies give insights to how experimental data on medium-mass drip-line nuclei can be used in the distant future to constrain some characteristics of the nuclear energy-density functional. Last but not least, large-scale predictions of halos among all spherical even-even nuclei are performed using specific sets of particle-hole and particle-particle energy functionals. It is shown that halos in the ground state of medium-mass nuclei will be found only at the
Atomic Mass and Nuclear Binding Energy for Fe-52 (Iron)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fe-52 (Iron, atomic number Z = 26, mass number A = 52).
Atomic Mass and Nuclear Binding Energy for Sr-71 (Strontium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sr-71 (Strontium, atomic number Z = 38, mass number A = 71).
Detuning effect in multistep photo-ionization of atomic isotope of heavy element
International Nuclear Information System (INIS)
Detuning effect on the excitation wavelength in 3-step photoionization of atomic isotope of heavy element was experimentally obtained and the role of the isotope shift and hyperfine structure in each transition level was discussed. To achieve high selectivity, the combination of the HFS and isotope sift of upper and lower energy level including the autoionizing level was important. (author)
International Nuclear Information System (INIS)
The method for laser separation of the zinc and rubidium isotopes, based on the selective burning out of excited atoms in flux with the buffer gas and gas-reagent, is experimentally realized. The selective isotope excitation is carried out through the single-photon method with application of weak absorption lines and on the edge of the Doppler contour of absorbing the atoms with low isotope shift value
Flambaum, V. V.
2016-08-01
Local Lorentz invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The EEPV effects are strongly enhanced in the narrow 7.8 eV transition in the Th22990 nucleus. The nuclear LLIV tensors describing the anisotropy in the maximal attainable speed for massive particles (analog of the Michelson-Morley experiment for light) are expressed in terms of the experimental values of the nuclear quadrupole moments. Calculations for nuclei of experimental interest Cs13355 , Rb8537 , Rb8737 , Hg20180 , Xe13154 , and Ne2110 are performed. The results for Ne2110 are used to improve the limits on the proton LLIV interaction constants by 4 orders of magnitude.
International Nuclear Information System (INIS)
The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)
Flambaum, V V
2016-08-12
Local Lorentz invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The EEPV effects are strongly enhanced in the narrow 7.8 eV transition in the _{90}^{229}Th nucleus. The nuclear LLIV tensors describing the anisotropy in the maximal attainable speed for massive particles (analog of the Michelson-Morley experiment for light) are expressed in terms of the experimental values of the nuclear quadrupole moments. Calculations for nuclei of experimental interest _{55}^{133}Cs, _{37}^{85}Rb, _{37}^{87}Rb, _{80}^{201}Hg, _{54}^{131}Xe, and _{10}^{21}Ne are performed. The results for _{10}^{21}Ne are used to improve the limits on the proton LLIV interaction constants by 4 orders of magnitude. PMID:27563955
Ionization yield and isotopic selectivity of three-step photoionization of atoms by pulsed lasers
International Nuclear Information System (INIS)
Estimate of ionization yield and selectivity in multi-step photoionization is of interest in studies related to trace analysis and laser isotope separation. Analytical expressions of ionization yield for the desired and interfering isotopes have been derived by solving rate equations for three-step photoionization. The partial overlap of absorption lines of the isotopes and the charge exchange of the ions of the desired isotope with the atoms of the interfering isotope have been considered. The ionization yield and the isotopic selectivity of the photoionization process are calculated for ytterbium isotopes, considering various atomic and laser parameters. Numerical results have been discussed, showing the effect of both factors on the ionization yield and the isotopic selectivity of the process. (author)
Ionization yield and isotopic selectivity of three-step photoionization of atoms by pulsed lasers
Gupta, G. P.; Suri, B. M.
2002-06-01
Estimate of ionization yield and selectivity in multi-step photoionization is of interest in studies related to trace analysis and laser isotope separation. Analytical expressions of ionization yield for the desired and interfering isotopes have been derived by solving rate equations for three-step photoionization. The partial overlap of absorption lines of the isotopes and the charge exchange of the ions of the desired isotope with the atoms of the interfering isotope have been considered. The ionization yield and the isotopic selectivity of the photoionization process are calculated for ytterbium isotopes, considering various atomic and laser parameters. Numerical results have been discussed, showing the effect of both factors on the ionization yield and the isotopic selectivity of the process.
Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses
Rathod, KD; Singh, PK; Natarajan, Vasant
2014-01-01
We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45(a similar to) with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope Yb-174 and the fermionic isotope Yb-171. Using...
Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses
Rathod, K. D.; Singh, P. K.; Natarajan, Vasant
2014-09-01
We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.
Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses
Rathod, K D; Natarajan, Vasant
2013-01-01
We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.
Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses
Indian Academy of Sciences (India)
K D Rathod; P K Singh; Vasant Natarajan
2014-09-01
We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.
Recent studies on short-lived fission-product nuclei using the on-line isotope separator KUR-ISOL
International Nuclear Information System (INIS)
The He-jet fed isotope separator on-line facility (KUR-ISOL) attached to KUR (Kyoto University Reactor) has been used for the studies of neutron-rich nuclei in the rare-earth region. Recently two isotopes, 152Ce (T1/2 = 1.4 ± 0.2 s) and 154Pr (T1/2 = 2.3 ± 0.1 s), have been newly identified. From the γ-ray energies observed following the decay of 154Pr, the excitation energy of the first excited state of 154Nd was found to be 70.8 keV which indicates that the moment of inertia of this nucleus is the largest among those of known even-even nuclei in the rare-earth region. Nuclear spectroscopic studies on several short-lived nuclei around A = 150 have been performed and a lot of new results have been obtained. Ion implanted 140Cs nuclei have been used for a solid-state physics research. Main results of these progresses will be described together with the recent developments on KUR-ISOL and on the high-efficiency, low-background detecting systems. (author)
Sivaram, C; V., Kiren O
2013-01-01
In recent work, a new cosmological paradigm implied a mass-radius relation, suggesting a universal tension related to the background dark energy (cosmological constant), leading to an energy per unit area that holds for structures from atomic nuclei to clusters of galaxies. Here we explore some of the consequences that arise from such a universal tension.
Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.
Ballance, C J; Schäfer, V M; Home, J P; Szwer, D J; Webster, S C; Allcock, D T C; Linke, N M; Harty, T P; Aude Craik, D P L; Stacey, D N; Steane, A M; Lucas, D M
2015-12-17
Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a 'hybrid' entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell's inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits' energy splittings, to produce a maximally entangled state of one (40)Ca(+) qubit and one (43)Ca(+) qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell's inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing. PMID:26672554
Nanometer-scale isotope analysis of bulk diamond by atom probe tomography
Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.
2015-01-01
Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong covalen
Study of the Neutron Deficient Pb and Bi Isotopes by Simultaneous Atomic- and Nuclear-Spectroscopy
Kessler, T
2002-01-01
We propose to study systematically nuclear properties of the neutron deficient lead $^{183-189}$Pb, $^{191g}$Pb, $^{193g}$Pb and bismuth isotopes $^{188-200}$Bi by atomic spectroscopy with the ISOLDE resonance ionisation laser ion source (RILIS) combined with simultaneous nuclear spectroscopy at the detection set-up. The main focus is the determination of the mean square charge radii of $^{183-190}$Pb and $^{188-193}$Bi from which the influence of low-lying intruder states should become obvious. Also the nuclear spin and magnetic moments of ground-states and long-lived isomers will be determined unambiguously through evaluation of the hyperfine structure, and new isomers could be discovered. The decay properties of these nuclei can be measured by $\\alpha$-$\\gamma$ and $\\beta$-$\\gamma$ spectroscopy. With this data at hand, possible shape transitions around mid-shell at N$\\sim$104 will be studied. This data is crucial for the direct test of nuclear theory in the context of intruder state influence (e.g. energy ...
International Nuclear Information System (INIS)
The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), 84Sr, 130Ba, 132Ba, 136Ce, 138Ce, and 144Sm, were observed, particularly in the first chemical separate, which possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.
Photodisintegration studies on p-nuclei: The case of Mo and Sm isotopes
Nair, C; Erhard, M; Bemmerer, D; Beyer, R; Crespo, P; Grosse, E; Fauth, M; Kosev, K; Rusev, G; Schilling, K D; Schwengner, R; Wagner, A
2007-01-01
In explosive stellar environments like supernovae, the temperatures are high enough for the production of heavy neutron-deficient nuclei, the socalled p-nuclei. Up to now, the knowledge of the reaction rates of p-nuclei is based on theoretical parameterizations using statistical model calculations. At the bremsstrahlung facility of the superconducting electron accelerator ELBE of FZ Dresden-Rossendorf, we aim to measure the photodisintegration rates of heavy nuclei experimentally. Photoactivation measurements on the astrophysically relevant p-nuclei 92Mo and 144Sm have been performed with bremsstrahlung end-point energies from 10.0 to 16.5 MeV. First experiments on the short-lived decays following the reaction 144Sm(gamma,n) are carried out using a pneumatic delivery system for rapid transport of activated samples. The activation yields are compared with calculations using cross sections from recent Hauser-Feshbach models.
Ghodsi, O N; Lari, F
2016-01-01
The behaviors of barrier characteristics and fusion cross sections are analyzed by changing neutron over wide range of colliding systems. For this purpose, we have extended our previous study (Eur. Phys. J. A \\textbf{48}, 21 (2012), it is devoted to the colliding systems with neutron-rich nuclei) to 125 isotopic systems with condition of $0.5\\leq N/Z \\leq 1.6$ for their compound nuclei. The AW 95, Bass 80, Denisov DP and Prox. 2010 potentials are used to calculate the nuclear part of interacting potential. The obtained results show that the trend of barrier heights $V_B$ and positions $R_B$ as well as nuclear $V_N$ and Coulomb $V_C$ potentials (at $R=R_B$) as a function of ($N/Z-1$) quantity are non-linear (second-order) whereas the fusion cross sections follow a linear-dependence.
Mathematical model of isotope-selective laser excitation of long-lived levels of atoms
International Nuclear Information System (INIS)
Method of laser isotope separation base on monophoton selective excitation of long-lived states of atoms could be classified as a new one. Taking zinc and rubidium as an example it is shown that long-lived excited states of atoms could effectively chemically react with a number of molecules, whereas basic states of atoms react weakly. In contrast to AVLIS the method is based on the use of one wavelength. This method does not require collimation of flow of atoms and electric extraction. The method uses Doppler contour property. This property resides in that frequency tuning increasing simultaneously from all the isotopes excitation selectivity rises
Analysis of laser beam propagation effects in atomic laser isotope separation
International Nuclear Information System (INIS)
In the atomic laser isotope separation process, the laser beams propagate through the atomic vapor over a long distance. It has been shown that the laser-atom interactions significantly modify the laser pulse shape and propagation velocity, resulting in degradation of the isotope separation efficiency. These propagation effects have been analyzed quantitatively, and a simple scaling formula has been derived to estimate the necessary laser energy for such optically thick atomic vapor. The optimum conditions of incident laser pulse have also been discussed. (author)
Signatures of the Giant Pairing Vibration in the 14C and 15C atomic nuclei
Cappuzzello, F.; Carbone, D.; Cavallaro, M.; Bondì, M.; Agodi, C.; Azaiez, F.; Bonaccorso, A.; Cunsolo, A.; Fortunato, L.; Foti, A.; Franchoo, S.; Khan, E.; Linares, R.; Lubian, J.; Scarpaci, J. A.; Vitturi, A.
2015-01-01
Giant resonances are collective excitation modes for many-body systems of fermions governed by a mean field, such as the atomic nuclei. The microscopic origin of such modes is the coherence among elementary particle-hole excitations, where a particle is promoted from an occupied state below the Fermi level (hole) to an empty one above the Fermi level (particle). The same coherence is also predicted for the particle–particle and the hole–hole excitations, because of the basic quantum symmetry between particles and holes. In nuclear physics, the giant modes have been widely reported for the particle–hole sector but, despite several attempts, there is no precedent in the particle–particle and hole–hole ones, thus making questionable the aforementioned symmetry assumption. Here we provide experimental indications of the Giant Pairing Vibration, which is the leading particle–particle giant mode. An immediate implication of it is the validation of the particle–hole symmetry. PMID:25814169
Universal charge-mass relation: From black holes to atomic nuclei
Hod, Shahar
2010-01-01
The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form $q\\leq\\mu^{2/3}E^{-1/3}_c$, where $q$ and $\\mu$ are the charge and mass of the physical system respectively, and $E_c$ is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number $Z$ of protons in a nucleus of given mass number $A$: $Z\\leq Z^*={\\alpha}^{-1/3}A^{2/3}$, where $\\alpha=e^2/\\hbar$ is the ...
Energy Technology Data Exchange (ETDEWEB)
Muecher, Dennis
2009-04-28
Within this thesis the influence of subshell closures at neutron numbers N=40 and N=56 upon nuclear structure was examined. The work was focussed on the nucleus {sup 70}Zn that has been studied by a series of experiments. Firstly a photon-scattering experiment was performed at the University of Stuttgart in order to revise the lifetime of the 2{sup +}{sub 2} state in {sup 70}Zn. Furthermore {sup 70}Zn was measured using monoenergetic neutrons at the University of Kentucky yielding many decisive corrections to the low-energy level scheme. In addition, magnetic moments of shortlived states were investigated with the method of transient magnetic fields. As a consequnce of these results it was shown that the nucleus {sup 70}Zn can be described within the F spin symmetric dynamical symmetry U(5) of the IBM-2. A new interpretation was given for the inconvenient behavior of the 0{sup +}{sub 2} and 2{sup +}{sub 3} level. The 2{sup +}{sub 3} state was proposed as the mixedsymmetry state 2{sup +}{sub 1,ms}. Furthermore candidates for the mixed-symmetry states of higher phonon order were presented. It was shown that strong mixing of the involved states occurs. The exceptional behavior of the 2{sup +}{sub 1,ms} states in the even-even zinc isotopes was interpreted as a breaking of the F spin symmetry at the transition to an isospin symmetric system. Experiments with radioactive beams of the nuclei {sup 88}Kr and {sup 92}Kr were presented as well. This was done to show how far mixed symmetry states can be studied using radioactive ion beam experiments in the future. (orig.)
Nuclei and quantum worlds; Dans l'atome, des mondes quantiques
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph
2000-07-01
This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information.
International Nuclear Information System (INIS)
Structure of energy spectra and backbending phenomena of the isotope string of Hf with mass number between 162 and 170 have been investigated. Extend of SU(3)-limits of interacting boson model to allow a boson to break to form a quasiparticle pair, which can occupy h11/2 and i13/2 orbitals. The calculated energy levels, intensity of the electromagnetic transitions, including the ground state, β and γ band are in satisfactory agreement with observed values for the whole string of Hf isotopes. Backbending of the moment inertia of the yrast and β bands can be reproduced reasonably. Recently, very high spin states up to J=40 and a double backbending have been observed in some nuclei in rare-earth region. This phenomena might hopefully be interpreted by considering two or more bosons to break to form more quasiparticle pairs and make more bands crossing to form the double backbending
Błaszczak, Z; Marinova, K; LASER 2006
2007-01-01
7th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, May 29-June 01, 2006 Researchers and PhD students interested in recent results in the nuclear structure investigation by laser spectroscopy, the progress of the experimental technique and the future developments in the field will find this volume indispensable. Reprinted from Hyperfine Interactions (HYPE) Volume ???
Graphs for Isotopes of 115-Uup(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides a graphic representation of nucleon separation energies and residual interaction parameters for isotopes of the chemical element 115-Uup (Ununpentium, atomic number Z = 115).
The atomic weight and isotopic composition of boron and their variation in nature
International Nuclear Information System (INIS)
The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation
Atomic Mass and Nuclear Binding Energy for Ra-226 (Radium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ra-226 (Radium, atomic number Z = 88, mass number A = 226).
Precise atomic masses of neutron-rich Br and Rb nuclei close to the r-process path
Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Karvonen, P; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Äystö, J
2007-01-01
The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion-Guide Isotope Separator On-Line (IGISOL) facility at Jyvaskyla, was employed to measure the atomic masses of neutron rich 85 to 92Br and 94 to 97Rb isotopes with a typical accuracy less than 10 keV. Discrepancies with the older data are discussed. Comparison to different mass models is presented. Details of nuclear structure, shell and subshell closures are investigated by studying the two-neutron separation energy and the shell gap energy.
Precise atomic masses of neutron-rich Br and Rb nuclei close to the r-process path
Energy Technology Data Exchange (ETDEWEB)
Rahaman, S.; Hager, U.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I.D.; Penttilae, H.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics (YFL) (Finland)
2007-04-15
The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion-Guide Isotope Separator On-Line (IGISOL) facility at Jyvaeskylae, was employed to measure the atomic masses of neutron-rich {sup 85-92}Br and {sup 94-97}Rb isotopes with a typical accuracy less than 10keV. Discrepancies with the older data are discussed. Comparison to different mass models is presented. Details of nuclear structure, shell and subshell closures are investigated by studying the two-neutron separation energy and the shell gap energy. (orig.)
International Nuclear Information System (INIS)
Isotopic selectivity calculations are carried out for minor calcium isotopes against the major isotope 40Ca for the single-resonance two-step and double-resonance three-step photoionization schemes with narrow-band lasers by using spectral simulation (SS) and modified spectrum (MS) approaches. The results of these calculations are compared with the density matrix (DM) results reported in the literature. It is noted that the values of isotopic selectivity from the SS approach do not agree with those from the DM approach whereas the MS approach, considering hole burning in the Doppler-broadened atomic spectrum, predicts selectivity values which are in good agreement with the DM results. It is argued that one can adequately use the simple MS approach rather than the complex DM approach for the calculation of isotopic selectivity of multi-step photoionization with single-frequency lasers. (author)
International Nuclear Information System (INIS)
Possibility of zinc isotopes separation based on selective isotope burning out at the edge of Doppler absorption contour due to chemical reaction is demonstrated experimentally for the first time. Molecules of diethyl ether are used as gas-carrier. Value of chemical reaction rate of zinc atoms in (4p3P01) state with diethyl ether molecules is measured by change of time of spontaneous luminescence after impulse excitation. When the frequency of power laser is tuned up in the center of Doppler contour practically 100 % zinc atoms burning out is registered
Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01
Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; P. Azzarello(c); Basile, M.; Barao, F.; G. Barreira(LIP Lisboa); Bartoloni, A; Battiston, R.
2011-01-01
The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be), and 10B/11B in the range 0.2–1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91...
Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01
Aguilar, M; Wiik, K; Grimm, O; Sartorelli, G; Zhou, Y; Pauss, F; Alpat, B; Capell, M; Djambazov, L; Yang, M; Yang, J; Extermann, P; Arefiev, A; Zhuang, H L; Hermel, V; Mihul, A; Galaktionov, Y; Park, H B; Von Gunten, H; Vetlitsky, I; Zhou, F; Vandenhirtz, J; Ambrosi, G; Suter, H; Becker, U; Zhang, H Y; Alcaraz, J; Casaus, J; Ren, Z; Fiandrini, E; Hungerford, W; Ren, D; Wicki, S W; Eppling, F J; Flugge, G; Karlamaa, K; Boella, G; Levi, G; Choi, Y Y; Laborie, G; Lubelsmeyer, K; Gervasi, M; Kirn, T; Azzarello, P; Kounine, A; Barreira, G; Yan, L G; Burger, W J; Koutsenko, V; Grandi, D; Ribordy, M; Gu, W Q; Bindi, V; Favier, J; Haino, S; Shin, J W; Mana, C; Seo, E S; Plyaskin, V; Shoumilov, E; Cannarsa, P; Xia, P C; Ionica, M; Jongmanns, M; Shoutko, V; Wallraff, W; Margotti, A; Lee, S C; Giovacchini, F; Schael, S; Bourquin, M; Roeser, U; Lu, Y S; Torsti, J; Kossakowski, R; Chang, Y H; Menichelli, M; Verlaat, B; Paniccia, M; Steuer, M; Fouque, N; Boschini, M; Zimmermann, B; Song, T; Zuccon, P; Contin, A; Produit, N; Laitinen, T; Kim, K S; Viertel, G; Lin, C H; Lechanoine-Leluc, C; Delgado, C; Lu, G; Pohl, M; Yang, C G; Tornikoski, M; Duranti, M; Cindolo, F; Xu, S; Lebedev, A; Xu, Z Z; Crespo, D; Cristinziani, M; Tomassetti, N; Kim, D H; Biland, A; Bertucci, B; Trumper, J; Buenerd, M; Hangarter, K; Kenney, G; Quadrani, L; Hofer, H; Berdugo, J; Siedenburg, T; Chen, Z G; Ting, S M; Vezzu, F; Cortina-Gil, E; Dai, T S; Barao, F; Commichau, V; Zhang, Z P; Sun, G S; Zhu, W Z; Laurenti, G; Chen, H S; Kim, G N; Sagdeev, R; Wu, S X; Urpo, S; Lee, M W; Rapin, D; Kraeber, M; Chen, H F; Engelberg, J; Ritakari, J; Di Falco, S; Zhu, G Y; Vite, D; Ulbricht, J; Bruni, G; Bellagamba, L; Williams, C; Fisher, P H; D'Antone, I; Pevsner, A; Castellini, G; Chernoplekov, N A; Ao, L; Giusti, P; McNeil, R R; Allaby, J; Yan, J L; Son, D; Santos, D; Cai, X D; Rancoita, P G; Becker, R; Wang, J Z; Oliva, A; Karpinski, W; Cernuda, I; Saouter, P; Ro, S; Anderhub, H; Dela Guia, C; Schwering, G; Ting, S C C; Lamanna, G; Pauluzzi, M; Berges, P; Riihonen, E; Pojidaev, V; Chiueh, T H; Valtonen, E; Pereira, R; Spinella, F; Perrin, E; Park, W H; Dong, Z R; Zichichi, A; Battiston, R; von Dratzig, A S; Vialle, J P; Klimentov, A; Liu, H T; Bartoloni, A; Arruda, L; Tang, X W; Mujunen, A; Pimenta, M; Casadei, D; Spada, F R; Eronen, T; Mayet, F; Palmonari, F; Lustermann, W; Velikhov, E; Pilo, F; Zhao, D X; Luckey, D; Basile, M; Sbarra, C; Natale, S; Siedling, R; Ye, S W; Burger, J D
2011-01-01
The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios (2)H/(4)He, (3)He/(4)He, (6)Li/(7)Li, (7)Be/((9)Be+(10)Be), and (10)B/(11)B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.
Indian Academy of Sciences (India)
H W Wilschut; U Dammalapati; D J Van Der Hoek; K Jungmann; W Kruithof; C J G Onderwater; B Santra; P D Shidling; L Willmann
2010-07-01
One of the greatest successes of the Standard Model of particle physics is the explanation of time-reversal violation (TRV) in heavy mesons. It also implies that TRV is immeasurably small in normal nuclear matter. However, unifying models beyond the Standard Model predict TRV to be within reach of measurement in nuclei and atoms, thus opening an important window to search for new physics. We will discuss two complementary experiments sensitive to TRV: Correlations in the -decay of 21Na and the search for an electric dipole moment (EDM) in radium.
Investigation of isotopically-selective laser collinear photoionization of accelerated helium atoms
International Nuclear Information System (INIS)
Results are presented of investigations of collinear two-step laser photoionization of 3He and 4He isotopes accelerated to energies up to 3.9 keV. It is shown that selectivity of ionization of the rare isotope 3He is 106 for a residual vacuum in the system fo 10-7 mm Hg. It is limited by collision processes leading to the excitation of fast metastable atoms into Rydberg state in the field-free region and to impact ionization of the fast atoms in the region of the ionizer. The ionization of fast Rydberg atoms in a transverse electric field is investigated. It is shown that the ionization of helium atoms excited into the n3D states proceeds via adiabatic and diabatic channels
Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei
Directory of Open Access Journals (Sweden)
Ishizuka Chikako
2016-01-01
Full Text Available Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield or independent fission yield (post-neutron yield are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.
Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei
Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro
2016-06-01
Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.
Nuclear structure of light thallium isotopes as deduced from laser spectroscopy on a fast atom beam
International Nuclear Information System (INIS)
After optimizing the system by experiments on /sup 201,203,205/Tl, the neutron-deficient isotopes 189-193Tl have been studied using the collinear fast atom beam laser spectroscopy system at UNISOR on-line to the Holifield Heavy Ion Research Facility. A sensitive system for the measurements was developed since the light isotopes were available in mass-separated beams of only 7 x 104 to 4 x 105 atoms per second. By laser excitation of the 535 nm atomic transitions of atoms in the beam, the 6s27s 2S/sub 1/2/ and 6s26s 2P/sub 3/2/ hyperfine structures were measured, as were the isotope shifts of the 535 nm transitions. From these, the magnetic dipole moments, spectroscopic quadrupole moments and isotopic changes in mean-square charge radius were deduced. The magnetic dipole moments are consistent with previous data. The /sup 190,192/Tl isotopes show a considerable difference in quadrupole deformations as well as an anomalous isotope shift with respect to 194Tl. A large isomer shift in 193Tl is observed implying a larger deformation in the 9/2- isomer than in the 1/2+ ground state. The /sup 189,191,193/Tl isomers show increasing deformation away from stability. A deformed shell model calculation indicates that this increase in deformation can account for the dropping of the 9/2- band in these isotopes while an increase in neutron pairing correlations, having opposite and compensating effects on the rotational moment of inertia, maintains the 9/2- strong-coupled band structure. 105 refs., 27 figs
2013-01-01
Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy). New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are d...
Structure of Os - Pt nuclei and g factors of 186-192Os isotopes at low spins
International Nuclear Information System (INIS)
Employing a pairing + quadrupole model interaction, especially suitable for the Os - Pt region, the ground state structure of these nuclei is investigated following a selfconsistent Hartree-Fock-Bogolyubov (HFB) approach. Effects of the inclusion of hexadecapole degrees of freedom in the Hamiltonian are also studied. All the osmium isotopes considered here come out to be prolate in shape in the ground state. 186Pt is triaxial with γ=12 deg. and with the increasing mass number they gradually go over to the oblate shape at A=190 itself. In view of recent experimental data on g factors of osmium isotopes which show interesting variations as a function of mass number as well as spin, we have calculated these following the methods of variation after exact angular momentum projection of axial HFB wave functions and the cranked HFB theory. The observed trend of the variation of g factor at I=2 with the mass number is reproduced with very minor adjustments of the force constants of the Hamiltonian in both the approaches. However, the variation of g factor with spin, which is sensitive to the interplay between collective and the single particle degrees of freedom, can be understood only in the cranking approach. (author). 52 refs, 8 figs, 6 tabs
Selective photoionization scheme for atomic gadolinium laser isotope separation
International Nuclear Information System (INIS)
The selective photoionization scheme for separating 157Gd from natural gadolinium and the laser irradiation conditions in order to enrich 157Gd to 60-80% are discussed in the case of two- and three-step photoionization. The dependence of excitation pathways on J-values is also discussed. From the view point of ionization rate it is preferable to select the four-colour three-step photoionization scheme by using both the ground and the lowest metastable levels. Optimum laser irradiation conditions for gadolinium isotope separation are presented. (author)
A note on black-hole physics, cosmic censorship, and the charge-mass relation of atomic nuclei
Hod, Shahar
2016-02-01
Arguing from the cosmic censorship principle, one of the fundamental cornerstones of black-hole physics, we have recently suggested the existence of a universal upper bound relating the maximal electric charge of a weakly self-gravitating system to its total mass: Z(A)≤slant {Z}*(A)\\equiv {α }-1/3{A}2/3, where Z is the number of protons in the system, A is the total baryon (mass) number, and α ={e}2/{{\\hslash }}c is the dimensionless fine-structure constant. In order to test the validity of this suggested bound, we here explore the Z(A) functional relation of atomic nuclei as deduced from the Weizsäcker semi-empirical mass formula. It is shown that all atomic nuclei, including the meta-stable maximally charged ones, conform to the suggested charge-mass upper bound. Our results support the validity of the cosmic censorship conjecture in black-hole physics.
Correlating charge radius with quadrupole deformation and $B(E2)$ in atomic nuclei
Sun, Bao-Hua; Wang, Hao-Xin
2016-01-01
A very good linear correlation is found between the four-point charge radius relation $\\delta R_{2p-2n}(Z,N)$ with that of quadrupole deformation data in even-even nuclei. This results in a further improved charge radius relation that holds in a precision of about 5$\\times 10^{-3}$ fm. Such correlations are also seen in global nuclear models, their precisions, however, are not enough to be consistent with the experimental data. The new relation between charge radii and deformation of even-even nuclei can be generalized to the reduced electric quadrupole transition probability $B(E2)$ between the first $2^+$ state and the $0^+$ ground state, and the mean lifetime $\\tau$ of the first 2$^+$ state.
Hussein, M S; Donangelo, R; Mittig, W
2015-01-01
The scattering of identical nuclei at low energies exhibits conspicuous Mott oscillations which can be used to investigate the presence of components in the predominantly Coulomb interaction arising from several physical effects. It is found that at a certain critical value of the Sommerfeld parameter the Mott oscillations disappear and the cross section becomes quite flat. We call this effect Transverse Isotropy (TI). The critical value of the Sommerfeld parameter at which TI sets in is found to be $\\eta_{c} = \\sqrt{3s +2}$, where $s$ is the spin of the nuclei participating in the scattering. No TI is found in the Mott scattering of identical Fermionic nuclei. The critical center of mass energy corresponding to $\\eta_c$ is found to be $E_c$ = 0.40 MeV for $\\alpha + \\alpha$ (s = 0) , 1.2 MeV for $^{6}$Li + $^{6}$LI (s = 1) and 7.1 MeV for $^{10}$B + $^{10}$B (s = 3). We further found that the inclusion of the nuclear interaction induces a significant modification in the TI. We suggest measurements at these su...
Laser beam propagation effects in atomic laser isotope separation
International Nuclear Information System (INIS)
The propagation of two different-color laser pulses in the resonant three-level medium is studied. The three-level Bloch-Maxwell equations are solved numerically to analyze the change of the pulse shapes and the time-varying atomic populations. The pulse delay and the pulse shape break-up are observed especially for the first excitation laser pulse. Complete separation of the two laser pulses occur from a certain critical distance. It is shown that the rapid decrease of the ionization efficiency is caused by the separation of the two laser pulses. (author)
Mass predictions of atomic nuclei in the infinite nuclear matter model
Nayak, R. C.; Satpathy, L.
2012-07-01
We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and α-particle separation energies of 6727 nuclei in the ranges 4≤Z≤120 and 8≤A≤303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the η-differential equations of the INM model. The local energy η's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact η-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around 31Na and 62Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.
International Nuclear Information System (INIS)
The Atomic Vapor Laser Isotope Separation (AVLIS) program at Lawrence Livermore National Laboratory (LLNL) is developing a large-scale process for photophysically enriching isotopes of several elements. The program now deploys plant prototypical hardware to demonstrate this enrichment process at full scale. The Laser Demonstration Facility, a fully integrated laser system has been constructed and when complete will produce more than 5000 W of tunable average power at a pulse repetition frequency >10 kHz. In AVLIS, an atomic vapor of mixed isotopes is irradiated with laser light precisely tuned to photoionize only desired isotopes. The resulting electrically charged photoions are deflected in an electric field to collector (or extractor) plates where they condense as enriched products. The AVLIS laser system consists of a series of high-average-power dye lasers optically pumped by an array of copper lasers. The dye lasers are used to do the three-step photoionization process. These lasers are well suited for the AVLIS process for both technical and economic reasons. They provide the precise narrowband (<100-MHz), short-pulse (<100-nsec), high-average-power, high-repetition-frequency laser light required by the atomic spectroscopy and vapor flow properties. Equally important, the capital and operating costs of this laser system in its present state of development are consistent with a commercially viable process deployment
Computer Simulation of Atoms Nuclei Structure Using Information Coefficients of Proportionality
Labushev, Mikhail M
2012-01-01
The latest research of the proportionality of atomic weights of chemical elements made it possible to obtain 3 x 3 matrices for the calculation of information coefficients of proportionality Ip that can be used for 3D modeling of the structure of atom nucleus. The results of computer simulation show high potential of nucleus structure research for the characterization of their chemical and physical properties.
Proceedings of the workshop on fundamental muon physics: atoms, nuclei, and particles
International Nuclear Information System (INIS)
This report contains the proceedings of a workshop held at Los Alamos, January 20-22, 1986, to discuss present and future experiments with muons in particle, nuclear, and atomic physics. Special attention was paid to new developments in muon beams and detection devices. The workshop sessions were Muon Decay, Muon Capture, QED and Electroweak Interactions, Laser Spectroscopy of Muonic Atoms, High-Energy Muon-Nucleon and Muon-Nucleus Scattering, Muon Beams - New Developments, and Muon Catalysis
Energy Technology Data Exchange (ETDEWEB)
Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Kawabata, T. [Center for Nuclear Studies, University of Tokyo, Tokyo 113-0033 (Japan); Kawase, K. [Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047 (Japan); Nayak, B.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Ohta, T. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Ouchi, H. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); Yoshida, H.P. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)
2012-12-05
The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic {alpha}-scattering at 100 MeV/u and at extremely forward angles, including 0 Degree-Sign . The asymmetry term in the nuclear incompressibility extracted from the ISGMR in Cd isotopes is found to be K{sub {tau}}=-555{+-}75 MeV, confirming the value previously obtained from the Sn isotopes. ISGMR strength has been computed in relativistic RPA using NL3 and FSUGold effective interactions. Both models significantly overestimate the centroids of the ISGMR strength in the Cd isotopes. Combined with other recent theoretical effort, the question of the 'softness' of the open-shell nuclei in the tin region remains open still.
TRIGA International - History of Training Research Isotope production General Atomics
International Nuclear Information System (INIS)
TRIGA conceived at GA in 1956 by a distinguished group of scientists including Edward Teller and Freeman Dyson. First TRIGA reactor Mk-1 was commissioned on 3 may 1958 at G.A. Characteristic feature of TRIGA reactors is inherent safety: Sitting can be confinement or conventional building. TRIGA reactors are the most prevalent in the world: 67 reactors in 24 countries. Steady state powers up to 14 MWt, pulsing up to 22,000 MWt. To enlarge the scope of its manufactured products, CERCA engaged in a Joint Venture with General Atomics, and in July 1995 a new Company was founded: TRIGA INTERNATIONAL SAS (50% GA, 50% CERCA; Head Office: Paris (France); Sales offices: GA San Diego (Ca, USA) and CERCA Lyon (France); Manufacturing plant: CERCA Romans. General Atomics ID: founded in 1955 at San Diego, California, by General Dynamics; status: Privately held corporation; owners: Neal and Linden Blue; business: High technology research, design, manufacturing, and production for industry and Government in the U.S. and overseas; locations: U.S., Germany, Japan, Australia, Thailand, Morocco; employees: 5,000. TRIGA's ID: CERCA is a subsidiary of AREVA, born in November 05, 1957. Activities: fuel manufacture for research reactor, equipment and components for high-energy physics, radioactive sources and reference sources; plants locations: Romans and Pierrelatte (France); total strength: 180. Since the last five years TRIGA has manufactured and delivered more than 800 fuel elements with a door to door service. TRIGA International has the experience to manufacture all types of TRIGA fuel: standard fuel elements, instrumented fuel elements, fuel followed control rods, geometry: 37.3 mm (1.47 in.), 35.8 mm (1.4 in), 13 mm (0.5 in), chemical Composition: U w% 8.5, 12, 20, 30 and 45 w/o, erbium and no erbium. TRIGA International is on INL's approved vendor list (ISO 9000/NQA) and is ready to meet any TRIGA fuel needs either in the US or worldwide
Mass Predictions of Atomic Nuclei in the Infinite Nuclear Matter Model
Nayak, R C
2012-01-01
We present here the mass excesses, binding energies, one- and two- neutron, one and two- proton and \\alpha-particle separation energies of 6727 nuclei in the ranges 4 \\leq Z \\leq 120 and 8 \\leq A \\leq 303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the \\eta-differential equations of the INM model. The local energy \\eta's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact \\eta-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation...
Atomic Mass and NuclearBinding Energy for Uup-269(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-269 (Ununpentium, atomic number Z = 115, mass number A = 269).
Atomic Mass and NuclearBinding Energy for Uup-335(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-335 (Ununpentium, atomic number Z = 115, mass number A = 335).
Atomic Mass and NuclearBinding Energy for Uup-332(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-332 (Ununpentium, atomic number Z = 115, mass number A = 332).
Atomic Mass and NuclearBinding Energy for Uup-326(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-326 (Ununpentium, atomic number Z = 115, mass number A = 326).
Atomic Mass and NuclearBinding Energy for Uup-259(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-259 (Ununpentium, atomic number Z = 115, mass number A = 259).
Atomic Mass and NuclearBinding Energy for Uup-300(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-300 (Ununpentium, atomic number Z = 115, mass number A = 300).
Atomic Mass and NuclearBinding Energy for Uup-317(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-317 (Ununpentium, atomic number Z = 115, mass number A = 317).
Atomic Mass and NuclearBinding Energy for Uup-304(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-304 (Ununpentium, atomic number Z = 115, mass number A = 304).
Atomic Mass and NuclearBinding Energy for Uup-276(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-276 (Ununpentium, atomic number Z = 115, mass number A = 276).
Atomic Mass and NuclearBinding Energy for Uup-271(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-271 (Ununpentium, atomic number Z = 115, mass number A = 271).
Atomic Mass and NuclearBinding Energy for Uup-321(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-321 (Ununpentium, atomic number Z = 115, mass number A = 321).
Atomic Mass and NuclearBinding Energy for Uup-294(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-294 (Ununpentium, atomic number Z = 115, mass number A = 294).
Atomic Mass and NuclearBinding Energy for Uup-277(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-277 (Ununpentium, atomic number Z = 115, mass number A = 277).
Atomic Mass and NuclearBinding Energy for Uup-310(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-310 (Ununpentium, atomic number Z = 115, mass number A = 310).
Atomic Mass and NuclearBinding Energy for Uup-306(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-306 (Ununpentium, atomic number Z = 115, mass number A = 306).
Atomic Mass and NuclearBinding Energy for Uup-323(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-323 (Ununpentium, atomic number Z = 115, mass number A = 323).
Atomic Mass and NuclearBinding Energy for Uup-299(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-299 (Ununpentium, atomic number Z = 115, mass number A = 299).
Atomic Mass and NuclearBinding Energy for Uup-286(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-286 (Ununpentium, atomic number Z = 115, mass number A = 286).
Atomic Mass and NuclearBinding Energy for Uup-282(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-282 (Ununpentium, atomic number Z = 115, mass number A = 282).
Atomic Mass and NuclearBinding Energy for Uup-338(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-338 (Ununpentium, atomic number Z = 115, mass number A = 338).
Atomic Mass and NuclearBinding Energy for Uup-324(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-324 (Ununpentium, atomic number Z = 115, mass number A = 324).
Atomic Mass and NuclearBinding Energy for Uup-322(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-322 (Ununpentium, atomic number Z = 115, mass number A = 322).
Atomic Mass and NuclearBinding Energy for Uup-305(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-305 (Ununpentium, atomic number Z = 115, mass number A = 305).
Atomic Mass and NuclearBinding Energy for Uup-336(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-336 (Ununpentium, atomic number Z = 115, mass number A = 336).
Atomic Mass and NuclearBinding Energy for Uup-308(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-308 (Ununpentium, atomic number Z = 115, mass number A = 308).
Atomic Mass and NuclearBinding Energy for Uup-291(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-291 (Ununpentium, atomic number Z = 115, mass number A = 291).
Atomic Mass and NuclearBinding Energy for Uup-320(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-320 (Ununpentium, atomic number Z = 115, mass number A = 320).
Atomic Mass and NuclearBinding Energy for Uup-261(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-261 (Ununpentium, atomic number Z = 115, mass number A = 261).
Atomic Mass and NuclearBinding Energy for Uup-296(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-296 (Ununpentium, atomic number Z = 115, mass number A = 296).
Atomic Mass and NuclearBinding Energy for Uup-272(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-272 (Ununpentium, atomic number Z = 115, mass number A = 272).
Atomic Mass and NuclearBinding Energy for Uup-258(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-258 (Ununpentium, atomic number Z = 115, mass number A = 258).
Atomic Mass and NuclearBinding Energy for Uup-273(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-273 (Ununpentium, atomic number Z = 115, mass number A = 273).
Atomic Mass and NuclearBinding Energy for Uup-302(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-302 (Ununpentium, atomic number Z = 115, mass number A = 302).
Atomic Mass and NuclearBinding Energy for Uup-289(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-289 (Ununpentium, atomic number Z = 115, mass number A = 289).
Atomic Mass and NuclearBinding Energy for Uup-334(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-334 (Ununpentium, atomic number Z = 115, mass number A = 334).
Atomic Mass and NuclearBinding Energy for Uup-316(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-316 (Ununpentium, atomic number Z = 115, mass number A = 316).
Atomic Mass and NuclearBinding Energy for Uup-309(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-309 (Ununpentium, atomic number Z = 115, mass number A = 309).
Atomic Mass and NuclearBinding Energy for Uup-262(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-262 (Ununpentium, atomic number Z = 115, mass number A = 262).
Atomic Mass and NuclearBinding Energy for Uup-319(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-319 (Ununpentium, atomic number Z = 115, mass number A = 319).
Atomic Mass and NuclearBinding Energy for Uup-314(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-314 (Ununpentium, atomic number Z = 115, mass number A = 314).
Atomic Mass and NuclearBinding Energy for Uup-281(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-281 (Ununpentium, atomic number Z = 115, mass number A = 281).
Atomic Mass and NuclearBinding Energy for Uup-267(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-267 (Ununpentium, atomic number Z = 115, mass number A = 267).
Atomic Mass and NuclearBinding Energy for Uup-329(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-329 (Ununpentium, atomic number Z = 115, mass number A = 329).
Atomic Mass and NuclearBinding Energy for Uup-264(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-264 (Ununpentium, atomic number Z = 115, mass number A = 264).
Atomic Mass and NuclearBinding Energy for Uup-298(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-298 (Ununpentium, atomic number Z = 115, mass number A = 298).
Atomic Mass and NuclearBinding Energy for Uup-339(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-339 (Ununpentium, atomic number Z = 115, mass number A = 339).
Atomic Mass and NuclearBinding Energy for Uup-278(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-278 (Ununpentium, atomic number Z = 115, mass number A = 278).
Atomic Mass and NuclearBinding Energy for Uup-312(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-312 (Ununpentium, atomic number Z = 115, mass number A = 312).
Atomic Mass and NuclearBinding Energy for Uup-318(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-318 (Ununpentium, atomic number Z = 115, mass number A = 318).
Atomic Mass and NuclearBinding Energy for Uup-270(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-270 (Ununpentium, atomic number Z = 115, mass number A = 270).
Atomic Mass and NuclearBinding Energy for Uup-263(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-263 (Ununpentium, atomic number Z = 115, mass number A = 263).
Atomic Mass and NuclearBinding Energy for Uup-313(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-313 (Ununpentium, atomic number Z = 115, mass number A = 313).
Atomic Mass and NuclearBinding Energy for Uup-337(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-337 (Ununpentium, atomic number Z = 115, mass number A = 337).
Atomic Mass and NuclearBinding Energy for Uup-287(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-287 (Ununpentium, atomic number Z = 115, mass number A = 287).
Atomic Mass and NuclearBinding Energy for Uup-279(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-279 (Ununpentium, atomic number Z = 115, mass number A = 279).
Atomic Mass and NuclearBinding Energy for Uup-275(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-275 (Ununpentium, atomic number Z = 115, mass number A = 275).
Atomic Mass and NuclearBinding Energy for Uup-333(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-333 (Ununpentium, atomic number Z = 115, mass number A = 333).
Atomic Mass and NuclearBinding Energy for Uup-280(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-280 (Ununpentium, atomic number Z = 115, mass number A = 280).
Atomic Mass and NuclearBinding Energy for Uup-266(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-266 (Ununpentium, atomic number Z = 115, mass number A = 266).
Atomic Mass and NuclearBinding Energy for Uup-330(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-330 (Ununpentium, atomic number Z = 115, mass number A = 330).
Atomic Mass and NuclearBinding Energy for Uup-265(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-265 (Ununpentium, atomic number Z = 115, mass number A = 265).
Atomic Mass and NuclearBinding Energy for Uup-283(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-283 (Ununpentium, atomic number Z = 115, mass number A = 283).
Atomic Mass and NuclearBinding Energy for Uup-297(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-297 (Ununpentium, atomic number Z = 115, mass number A = 297).
Atomic Mass and NuclearBinding Energy for Uup-268(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-268 (Ununpentium, atomic number Z = 115, mass number A = 268).
Atomic Mass and NuclearBinding Energy for Uup-274(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-274 (Ununpentium, atomic number Z = 115, mass number A = 274).
Atomic Mass and NuclearBinding Energy for Uup-260(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-260 (Ununpentium, atomic number Z = 115, mass number A = 260).
Atomic Mass and NuclearBinding Energy for Uup-307(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-307 (Ununpentium, atomic number Z = 115, mass number A = 307).
Atomic Mass and NuclearBinding Energy for Uup-293(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-293 (Ununpentium, atomic number Z = 115, mass number A = 293).
Atomic Mass and NuclearBinding Energy for Uup-284(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-284 (Ununpentium, atomic number Z = 115, mass number A = 284).
Atomic Mass and NuclearBinding Energy for Uup-292(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-292 (Ununpentium, atomic number Z = 115, mass number A = 292).
Atomic Mass and NuclearBinding Energy for Uup-328(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-328 (Ununpentium, atomic number Z = 115, mass number A = 328).
Atomic Mass and NuclearBinding Energy for Uup-331(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-331 (Ununpentium, atomic number Z = 115, mass number A = 331).
Atomic Mass and NuclearBinding Energy for Uup-311(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-311 (Ununpentium, atomic number Z = 115, mass number A = 311).
Atomic Mass and NuclearBinding Energy for Uup-285(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-285 (Ununpentium, atomic number Z = 115, mass number A = 285).
Atomic Mass and NuclearBinding Energy for Uup-315(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-315 (Ununpentium, atomic number Z = 115, mass number A = 315).
Atomic Mass and NuclearBinding Energy for Uup-288(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-288 (Ununpentium, atomic number Z = 115, mass number A = 288).
Atomic Mass and NuclearBinding Energy for Uup-295(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-295 (Ununpentium, atomic number Z = 115, mass number A = 295).
Atomic Mass and NuclearBinding Energy for Uup-301(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-301 (Ununpentium, atomic number Z = 115, mass number A = 301).
Atomic Mass and NuclearBinding Energy for Uup-303(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-303 (Ununpentium, atomic number Z = 115, mass number A = 303).
Atomic Mass and NuclearBinding Energy for Uup-290(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-290 (Ununpentium, atomic number Z = 115, mass number A = 290).
Atomic Mass and NuclearBinding Energy for Uup-327(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-327 (Ununpentium, atomic number Z = 115, mass number A = 327).
Atomic Mass and NuclearBinding Energy for Uup-325(Ununpentium)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-325 (Ununpentium, atomic number Z = 115, mass number A = 325).
Results of calculations of isotope-selective laser excitation of long-lived levels of zinc atoms
International Nuclear Information System (INIS)
On the basis of mathematical model of laser isotope-selective excitation of long-lived atoms numerical calculations were conducted for zinc atoms. These atoms are characterized by small shifts between lines of different isotopes (600700 MHz), while the method are particularly effective in the case of big shifts. In spite of that due to relative simplicity of the method in comparison with AVLIS it is used for zinc isotope separation. The method is effective in the case of excitation of atom long-lived level. In this case in the interval between radiation impulses at the account of chemical reaction with some molecules atoms in this state could be removed. Calculation results show efficiency of burning out of those isotopes, which lines are nearest to radiation line
Study of isotopic selectivity in laser resonance ionization of lutetium atom
International Nuclear Information System (INIS)
Using numerical simulation method in terms of rate equation approximation, laser-induced isotopic selectivity of the scheme of resonance ionization: 5d6s22D3/2(573.655 nm)→5d6s6p 4F3/2 (642.518 nm)→6s6p24P1/2(643.548 nm)→Autoionization state was studied. The function of isotopic selectivity on laser wavelength was calculated for the parameters matching real experimental conditions by this method. The results calculated were well met with the experimental. The dependences of laser-induced isotopic selectivity on the laser parameters, such as wavelength, bandwidth and intensity, were discussed in view of the interaction of linearly polarized light with lutetium atom. The approaches that isotopic ratio were accurately determined by laser resonance ionization mass spectrometry in the case of certain laser parameters were presented. This theoretical method may be also used to study the isotopic selectivity of other elements and select the scheme of resonance ionization of laser isotope separation
Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation
Libby, W. F.
1958-08-04
Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)
Separation and spectroscopic study of exotic nuclei at GANIL
International Nuclear Information System (INIS)
A new isotopic separation method is presented. It allows the studies of radioactive atomic nuclei produced in high energy heavy ions collisions. Two experiments were performed at the GANIL facilities (Grand Accelerateur National d'Ions Lourds, Caen). They are analysed on the fields of the experimental resolution and of the spectroscopic results. Measurements of beta decay half lives and gamma spectra are brought for sixteen neutron rich nuclei at the frontier of the experimental knowledge
The elemental and isotopic composition of Galactic cosmic-ray nuclei from scandium through nickel
Leske, Richard A.
1993-01-01
Measurements of the relative elemental and isotopic abundances of iron-group Galactic cosmic rays at energies of about 325 MeV per nucleon have been made. The source abundance ratio of Ni-60/Ni-58 is 1.07 +/- 0.39, which is a factor of 2.8 +/- 1.0 larger than the solar system value. Our measurements imply the presence of Co-59 at the source, which can be reconciled with the predictions of conventional nucleosynthesis models if there exists a time delay of more than about 100,000 yr between nucleosynthesis and acceleration. Most of the Mn-54 produced by spallation during cosmic-ray propagation in the Galaxy is found to have decayed to Fe-54, indicating a confinement time of greater than 2 Myr. The source ratio of Fe-54/Fe-56 corrected for the Mn-54 decay is 0.046+/- 0.020, which is consistent with the solar system value of 0.063.
Energy Technology Data Exchange (ETDEWEB)
Balabekyan, A. R., E-mail: balabekyan@ysu.am; Danagulyan, A. S. [Yerevan State University (Armenia); Drnoyan, J. R.; Demekhina, N. A. [Joint Institute for Nuclear Research (Russian Federation); Hovhannisyan, G. H.; Simonyan, A. E. [Yerevan State University (Armenia); Adam, J.; Solnishkin, A. A.; Tsoupko-Sytnikov, V. M. [Joint Institute for Nuclear Research (Russian Federation)
2011-05-15
Cross sections for the production of residual nuclei on the isotopes {sup 112,118,120,124}Sn irradiated with 0.66-, 1.0-, 3.65-, and 8.1-GeV proton beams were investigated. A ten-parameter semiempirical formula was used to systematize the cross sections in question. A comparative analysis of parameter values obtained at different proton energies was performed.
Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
Krause, M.; Riet, J. te; Wolf, K. van der
2013-01-01
The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness toge
Energy Technology Data Exchange (ETDEWEB)
HOLDEN,N.E.
2007-07-23
The International Organization for Standardization (ISO) has published a Guide to the expression of Uncertainty in Measurement (GUM). The IUPAC Commission on Isotopic Abundance and Atomic Weight (CIAAW) began attaching uncertainty limits to their recommended values about forty years ago. CIAAW's method for determining and assigning uncertainties has evolved over time. We trace this evolution to their present method and their effort to incorporate the basic ISO/GUM procedures into evaluations of these uncertainties. We discuss some dilemma the CIAAW faces in their present method and whether it is consistent with the application of the ISO/GUM rules. We discuss the attempt to incorporate variations in measured isotope ratios, due to natural fractionation, into the ISO/GUM system. We make some observations about the inconsistent treatment in the incorporation of natural variations into recommended data and uncertainties. A recommendation for expressing atomic weight values using a tabulated range of values for various chemical elements is discussed.
International Nuclear Information System (INIS)
Research and development activities are being conducted on many aspects of the atomic uranium laser isotope separation process. Extensive laser spectroscopy studies have been made in order to identify attractive multi-step selective ionization schemes. Using low density (1010 atoms/cm3) apparatus, the excited state spectra of atomic uranium have been investigated via multiple step laser excitation and photoionization studies using two, three and four pulsed lasers. Observation of the spectra was accomplished by observing the yield of 235U and 238U ions as a function of the wavelength, intensities and delays of the various lasers. These data yielded information on the photoexcitation and photoionizatin cross sections, and on the location, J values, lifetimes, isotope shifts and hyperfine structure of the various atomic levels of uranium. Experiments on selective ionization of uranium vapor by multiple step laser excitation followed by ion extraction at 1013 atoms/cm3 density have produced 6% enriched 235U. These indicate that this process is well adapted to produce light water reactor fuel but less suitable for highly enriched material. Application has been made for license for a 1979 experimental facility to provide data for a mid-1980 commercial plant
Parshin, P P
2002-01-01
The method of isotopic contrast in inelastic neutron scattering is described. The analysis of capabilities of the method for researches of atomic dynamics of condensed matter is carried out. For an example of a binary oxide CuO the experimental implementation of this method is demonstrated. The researches of dynamic behavior of some chemical elements in HTSC cuprates and related compounds are discussed. (orig.)
Production of relativistic positronium in collisions of photons and electrons with nuclei and atoms
Gevorkyan, S R; Schiller, A; Serbo, V G; Tarasov, A V
1998-01-01
We consider the production of ultrarelativistic positronium (Ps) in $\\gamma A is an atom or a nucleus with charge $Ze$. For the photoproduction of para- and ortho-Ps and the electroproduction of para-Ps we obtain the most complete description compared with previous works. It includes high order $Z \\alpha$ corrections and polarization effects. The accuracy of the obtained cross sections is determined by omitted terms of the order of the inverse Ps Lorentz factor squared. The studied high order multi-photon electroproduction of ortho-Ps dominates for the collision of electrons with heavy atoms over the bremsstrahlung production from the electron via a virtual photon proposed by Holvik and Olsen. Our results complete and correct the studies of those authors.
Najim, L. A.; Kheder, Malek. H.
2013-07-01
A modified phenomenological model is used to calculate nuclear energy levels and describe successfully the backbending of the moment of inertia for the ground state bands in even-even isotopes of Hf and Dy nuclei. The model is a combination of the Myers and Swiatecki model with variable moment inertia (VMI) model. Since the Myers and Swiatecki model has a deviation from experimental energies in which it takes into account pairing effect with constant moment of inertia, in the rotation of nuclei, the Coriolis force acts to de-pair the nucleons pair and align their angular momentum with nuclei total angular momentum, thus Coriolis force increasing and decrease the rotational energy. So, the moment of inertia varies with the angular momentum. Therefore, we modified this model by adding a term to make the moment of inertia vary with angular momentum in the same manner of the VMI model which has a term added to the rotational energy equation. The modified model fits remarkably with the experimental observation and other models in many cases with the use of few parameters especially in rotational nuclei regions similar to Hf and Dy nuclei.
Geometrical symmetries in atomic nuclei: From theory predictions to experimental verifications
Dudek, J.; Góźdź, A.; Molique, H.; Curien, D.
2013-02-01
In the lectures delivered at the 2012 Predeal School an overview has been presented of the contemporary theory of the nuclear geometrical (shape) symmetries. The formalism combines two most powerful theory tools applicable in the context: The group- and group-representation theory together with the modern realistic mean-field theory. We suggest that all point-groups of symmetry of the mean-field Hamiltonian, sufficiently rich in symmetry elements (as discussed in the text) may lead to the magic numbers that characterise such a group in analogy with the spherical magic gaps characterising nuclear sphericity. We discuss in simple terms the mathematical and physical arguments for the presence of such symmetries in nuclei. In our opinion: It is not so much the question of Whether? - but rather: Where in the Nuclear Chart several of the point group-symmetries will be seen? We focus our presentation on the tetrahedral symmetry with the magic numbers calculated to be 32, 40, 56, 64, 70, 90 and 136, and discuss qualitatively the problem of the formulation of the experimental criteria which would allow for the final discovery of the tetrahedral symmetry in subatomic physics.
Report of study meeting on dynamics of quarks-hadrons in atomic nuclei
International Nuclear Information System (INIS)
This meeting was held for three days from June 11 to 13, 1992, in Research Center for Nuclear Physics, Osaka University. The lectures were given on is the sea of quarks in nucleons isospin symmetry, quark exchange current in nuclei, monopole condensation and color confinement, confinement-deconfinement transition at finite temperature in infrared effective dual QCD, Monte Carlo study of abelian projected QCD, a static baryon and a static meson in a dual abelian effective theory of QCD, susceptibility to number of quarks at finite temperature and density, weakness of finite temperature QCD phase transition, instanton-induced interaction in strange system, effect of weak interaction to K meson condensed phase in high density nuclear substances, compressible bag model and dibaryon stars, research using effective model of saturation property of strange substance system, hydrodynamical model for fluctuation in rapidity distribution, hadron formation through mixed phase from quarks, gluons and plasma, entropy formation in high energy nucleus collision and 15 other themes. (K.I.)
Uranium Isotopic Ratio Measurements of U3O8 Reference Materials by Atom Probe Tomography
Energy Technology Data Exchange (ETDEWEB)
Fahey, Albert J.; Perea, Daniel E.; Bartrand, Jonah AG; Arey, Bruce W.; Thevuthasan, Suntharampillai
2016-01-01
We report results of measurements of isotopic ratios obtained with atom probe tomography on U3O8 reference materials certified for their isotopic abundances of uranium. The results show good agreement with the certified values. High backgrounds due to tails from adjacent peaks complicate the measurement of the integrated peak areas as well as the fact that only oxides of uranium appear in the spectrum, the most intense of which is doubly charged. In addition, lack of knowledge of other instrumental parameters, such as the dead time, may bias the results. Isotopic ratio measurements can be performed at the nanometer-scale with the expectation of sensible results. The abundance sensitivity and mass resolving power of the mass spectrometer are not sufficient to compete with magnetic-sector instruments but are not far from measurements made by ToF-SIMS of other isotopic systems. The agreement of the major isotope ratios is more than sufficient to distinguish most anthropogenic compositions from natural.
Effects of the Lorentz invariance violation in Coulomb interaction in nuclei and atoms
Flambaum, V V
2016-01-01
Anisotropy in the speed of light (studied in the Michelson-Morley experiment ) generates anisotropy in the Coulomb interaction. This anisotropy manifests itself in the nuclear and atomic experiments. The experimental results for 21Ne are used to improve the limits on the tensor components characterising the asymmetry of the speed of light and the Coulomb interaction (violation of the Lorentz symmetry in the photon sector) by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10E-28.
Production of relativistic positronium in collisions of photons and electrons with nuclei and atoms
Gevorkyan, S. R.; Kuraev, E. A.; Schiller, A.; Serbo, V. G.; Tarasov, A. V.
1998-01-01
We consider the production of ultrarelativistic positronium (Ps) in $\\gamma A \\to Ps + A$ and $e A \\to Ps + e A$ processes where $A$ is an atom or a nucleus with charge $Ze$. For the photoproduction of para- and ortho-Ps and the electroproduction of para-Ps we obtain the most complete description compared with previous works. It includes high order $Z \\alpha$ corrections and polarization effects. The accuracy of the obtained cross sections is determined by omitted terms of the order of the in...
Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama
2016-02-10
It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.
Parity violating radiative emission of neutrino pair in heavy alkaline earth atoms of even isotopes
Yoshimura, M; Uetake, S
2014-01-01
Metastable excited states ${}^3P_2, {}^3P_0$ of heavy alkaline earth atoms of even isotopes are studied for parity violating (PV) effects in radiative emission of neutrino pair (RENP). PV terms arise from interference between two diagrams containing neutrino pair emission of valence spin current and nuclear electroweak charge density proportional to the number of neutrons in nucleus. This mechanism gives large PV effects, since it does not suffer from the suppression of 1/(electron mass) usually present for non-relativistic atomic electrons. A controllable magnetic field is crucial to identify RENP process by measuring PV observables. Results of PV asymmetries under the magnetic field reversal and the photon circular polarization reversal are presented for an example of Yb atom.
The isotopic effects in the scattering and the kinetics of the atomic cascade
Popov, V P
2016-01-01
{\\it Ab initio} quantum-mechanical calculations of the differential and integrated cross sections of the elastic scattering, Stark transitions, and Coulomb de-excitation at collisions of excited $\\mu^- p$ and $\\mu^- d$ atoms with hydrogen isotope atoms in the ground state are performed. The scattering processes are treated in a unified manner in the framework of the close-coupling approach. The used basis includes both open and closed channels corresponding to all exotic atom states with principal quantum numbers from $n=1$ up to $n_{\\rm max}=20$. The energy shifts of $ns$ states due to electron vacuum polarization and finite nuclear size are taken into account. The kinetics of atomic cascade of $\\mu^- p$ and $\\mu^- d$ atoms are studied in a wide range of relative target densities ($\\varphi = 10^{-8} -1$) within the improved version of the extended cascade model. The results of the numerical quantum-mechanical calculations of the cross sections for quantum numbers and kinetic energies of muonic atoms, that ar...
Cluster radioactivity of Z=125 super heavy nuclei
International Nuclear Information System (INIS)
For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8Be, 10Be, 12C, 14C, 16C, 18O, 20O, 22Ne, 24Ne, 25Ne, 26Ne, 28Mg, 30Mg, 32Si, 34Si, 36Si, 40S, 48Ca, 50Ca and 52Ti from the super heavy nuclei Z=125
Energy Technology Data Exchange (ETDEWEB)
Miyabe, Masabumi; Ohba, Masaki; Wakaida, Ikuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-10-01
Autoionizing Rydberg series converging to six states (0, 261.841, 633.273, 3082.011, 3427.274, 3444.235 cm{sup -1}) of Gd ion have been observed by using three-color three-step photoionization via ten different 2nd-step levels of J=0 or 1. While the perturbations with interlopers become significant in the region of n=30-35 for most of the observed series, long and well-defined series structures appeared in higher energy region. From an analysis of such unperturbed structures, the first ionization potential of Gd atom was estimated to be 49601.45 (30) cm{sup -1}. This is in good agreement with the previous value, but the accuracy is improved by about one order of magnitude. In addition, isotope effect on the ionization potential was also determined by isotope shifts of some Rydberg series. (author)
International Nuclear Information System (INIS)
This work is concerned with the study of exotic nuclei located on both sides of the stability-line and known as neutron rich and neutron deficient respectively. For the former, produced by alpha particle-induced fission, an on-line isotope separation with an ion guide (IGISOL) has been developed and submitted to several off-line and on-line optimization tests showing capacity to spectroscopic studies. In the case of neutron deficient nuclei near the magicity Z=82, 182Tl(3s) has been identified and its decaying modes and those of 183Tl ground state, studied, using the on-line separator ISOLDE. On the other hand, the β decay of 172,175Ir produced in 32S induced reaction is studied using a helium jet system on the SARA accelerator. Existence of isomers is derived from half-lives measurements
Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes
International Nuclear Information System (INIS)
Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g7/2 5/2[413] neutron and g9/2 9/2[404] proton orbitals and the consequent enhancement of the n-p interaction. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Louw, P.A.; De Villiers, W.Y.Z.; Jarvis, N.V. [Atomic Energy Corporation of South Africa Ltd, Pretoria (South Africa)
1997-10-01
The Atomic Energy Corporation of South Africa Ltd (AEC) owns and operates the 20 MW research reactor, SAFARI-1. Utilisation of the reactor has in recent years changed from research and materials testing to the production of isotopes. The most important breakthrough achieved in recent years is the production of high quality fission 99Mo. This has been produced routinely since April 1993 and supplied to clients across the world. A capability for the reliable production of 1000 Ci of 99Mo per week (calibrated for six days after production) has been proven. The AEC has also established facilities to produce its own 99mTc generators together with a most of radiopharmaceutical kits for diagnostic nuclear medicine purposes. The production of {sup 153}Sm and {sup 131}I (tellurium oxide route) has been operational for many years. Applications include therapeutic radiopharmaceuticals such as {sup 153}Sm-EDTMP for bone cancer pain palliation, {sup 13`}I-Lipiodol for liver cancer and {sup 131}I capsules for thyroid treatment. Facilities for the production of other isotopes such as {sup 131}I (from fission), {sup 32}P and {sup 35}S are in various stages of completion. Extensive analytical methods and equipment have been developed and are routinely used to certify the quality of exported isotopes. Irradiation and encapsulation of {sup 192}Ir is also performed routinely at the AEC. Modern facilities allow for the production of isotopes such as {sup 131}Ba and {sup 140}La on an ad hoc basis. Quality assurance procedures based on ISO9000 were developed for all aspects of the production of the various isotopes. Documentation, such as Drug Master Files, required by authorities in various countries has also been submitted and accepted 15 refs., 1 tab., 2 figs.
Energy Technology Data Exchange (ETDEWEB)
Akram, W.; Schönbächler, M. [School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sprung, P. [Institut für Planetologie, Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Vogel, N. [Institute for Geochemistry and Petrology, ETH, Clausiusstrasse 25, 8092 Zürich (Switzerland)
2013-11-10
Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.
Zelevinsky, Vladimir
2016-01-01
This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.
Adriani, O; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Borisov, S; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Danilchenko, I A; De Pascale, M P; De Santis, C; De Simone, N; Di Felice, V; Formato, V; Galper, A M; Karelin, A V; Koldashov, S V; Koldobskiy, S; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Marcelli, L; Mayorov, A G; Menn, W; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Nikonov, N; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Yurkin, Y T; Wu, J; Zampa, G; Zampa, N; Zverev, V G
2013-01-01
The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from July 2006 to December 2007. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.
Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb
Korth, Haje; Strohbehn, Kim; Tejada, Francisco; Andreou, Andreas G.; Kitching, John; Knappe, Svenja; Lehtonen, S. John; London, Shaughn M.; Kafel, Matiwos
2016-08-01
A miniature atomic scalar magnetometer based on the rubidium isotope 87Rb was developed for operation in space. The instrument design implements both Mx and Mz mode operation and leverages a novel microelectromechanical system (MEMS) fabricated vapor cell and a custom silicon-on-sapphire (SOS) complementary metal-oxide-semiconductor (CMOS) integrated circuit. The vapor cell has a volume of only 1 mm3 so that it can be efficiently heated to its operating temperature by a specially designed, low-magnetic-field-generating resistive heater implemented in multiple metal layers of the transparent sapphire substrate of the SOS-CMOS chips. The SOS-CMOS chip also hosts the Helmholtz coil and associated circuitry to stimulate the magnetically sensitive atomic resonance and temperature sensors. The prototype instrument has a total mass of fewer than 500 g and uses less than 1 W of power, while maintaining a sensitivity of 15 pT/√Hz at 1 Hz, comparable to present state-of-the-art absolute magnetometers.
Studies of pear-shaped nuclei using accelerated radioactive beams
Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M
2013-01-01
There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...
Ahamad, Shakeb; Patra, S K
2012-01-01
The ground state and first intrinsic excited state of superheavy nuclei with Z=120 and N=160-204 are investigated using both non-relativistic Skyrme-Hartree-Fock and the axially deformed Relativistic Mean Field formalisms. We employ a simple BCS pairing approach for calculating the energy contribution from pairing interaction. The results for isotopic chain of binding energy, quadrupole deformation parameter, two neutron separation energies and some other observables are compared with the FRDM and some recent macroscopic-microscopic calculations. We predict superdeformed ground state solutions for almost all the isotopes. Considering the possibility of magic neutron number, two different mode of \\alpha-decay chains (292)120 and (304)120 are also studied within these frameworks. The Q_{\\alpha}-values and the half-life T^{\\alpha}_{1/2} for these two different mode of decay chains are compared with FRDM and recent macroscopic-microscopic calculations. The calculation is extended for the \\alpha-decay chains of 29...
Wang, B.; Zhang, J. W.; Gao, C.; Wang, L. J.
2011-08-01
We demonstrated a simple method to photo-ionize barium atoms using 791 nm diode laser together with 310 nm UV LED. It solved the bottle-neck problem of previous method using 791 nm diode laser and 337 nm N2 laser, whose ionization rate was limited by the repetition rate of N2 laser. Compared with previous method, it has advantages of high efficiency together with simple and cheap setups. By tuning the frequency of 791 nm laser to be resonant with the desired isotope, isotope selective photo-ionization has been realized.
DEFF Research Database (Denmark)
Laursen, Kristian Holst; Schjørring, Jan Kofod; Kelly, S.D.;
2014-01-01
Organic food products are believed to be healthier, safer and more environment-friendly than their conventional counterparts and are sold at premium prices. Consequently, adulteration of organic plants and fraudulent activities for economic profit are increasing. This has spurred the development...... of sophisticated analytical procedures for testing authenticity. We review the use of multi-element and stable-isotope analysis based on atomic spectroscopy for discriminating between organic and conventional plants. We conclude that inductively-coupled plasma-mass spectrometry, stable-isotope analysis of bulk...
Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.
Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong
2015-09-15
We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications. PMID:26371933
Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.
Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong
2015-09-15
We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.
Propagation of heavy cosmic-ray nuclei
International Nuclear Information System (INIS)
Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range 3< Z<83. Details of the application of ''matrix methods'' above a few hundred meV per nucleon, a new treatment of electron capture decay, and a new table of cosmic-ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed
Ruthenium(0) nanoparticle-catalyzed isotope exchange between 10B and 11B nuclei in decaborane(14).
Yinghuai, Zhu; Widjaja, Effendi; Sia, Shirley Lo Pei; Zhan, Wang; Carpenter, Keith; Maguire, John A; Hosmane, Narayan S; Hawthorne, M Frederick
2007-05-23
Well dispersed ruthenium(0) nanoparticles, stabilized in the ionic liquid agent, trihexyltetradecylphosphonium dodecylbenzenesulfonate, have been successfully prepared via a reduction reaction of the precursor [CpRuCp*RuCp*]PF6 (Cp* = C5Me5). The ruthenium(0) nanoparticles were shown to catalyze the isotope exchange reaction between 10B enriched diborane and natural abundant B10H14 to produce highly 10B enriched (approximately 90%) decaborane(14) products. The ruthenium(0) nanoparticles were characterized by TEM, XRD, and XPS. The 10B enriched decaborane(14) has been analyzed by Raman spectroscopy, NMR, and high-resolution MS. PMID:17472379
Electroweak interactions in nuclei
International Nuclear Information System (INIS)
Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references
Isotopic Selectivity of Pulsed Excitation of Zinc Atoms upon the 4s21S0 → 4p 3P01 Transition
International Nuclear Information System (INIS)
The spectral dependences of the isotopic selectivity of the optical excitation of zinc atoms in the course of an efficient photochemical reaction with molecules of a reagent gas are calculated within the framework of a simple model taking into account the gas mixture flow. At a certain frequency detuning of monochromatic laser radiation, a high selectivity of isotope separation is realized at the end of the interaction region under the condition that the isotopic shifts are smaller than the Doppler broadening
Long-range interactions between a He($2 ^3S$) atom and a He($2 ^3P$) atom for like isotopes
Zhang, J Y; Sadeghpour, H R; Vrinceanu, D; Yan, Z C; 10.1103/.73.022710
2006-01-01
For the interactions between a He($2 ^3S$) atom and a He($2 ^3P$) atom for like isotopes, we report calculations of the coefficients determining the potential energies at large internuclear separations. Using accurate variational wave functions in Hylleraas coordinates we evaluate the coefficient $C_{3}$ of the resonant dipole-dipole energy, and the van der Waals coefficients $C_{6}$, $C_{8}$, and $C_{10}$ of the energies arising from the mutual perturbations of instantaneous electric dipole, quadrupole, and octupole interactions. We establish definitive values including treatment of the finite nuclear mass for the ${}^3$He($2 ^3S$)--${}^3$He($2 ^3P$) and ${}^4$He($2 ^3S$)--${}^4$He($2 ^3P$) interactions.
Multiconfiguration calculations of electronic isotope shift factors in Al I
Filippin, Livio; Ekman, Jörgen; Fritzsche, Stephan; Godefroid, Michel; Jönsson, Per
2016-01-01
The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of electronic isotope shift factors for a set of transitions between low-lying states in neutral aluminium. These electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of the mass- and field shift factors. Within these approaches, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and estimate theoretical uncertainties of the isotope shift factors.
Semi-microscopic model of pairing in nuclei
Pankratov, S S; Baldo, M; Lombardo, U; Saperstein, E E
2011-01-01
A semi-microscopic model for nucleon pairing in nuclei is presented starting from the ab intio BCS gap equation with Argonne v18 force and the self-consistent Energy Density Functional Method basis characterized with the bare nucleon mass. The BCS theory is formulated in terms of the model space S0 with the effective pairing interaction calculated from the first principles in the subsidiary space S0. This effective interaction is supplemented with a small phenomenological addendum containing one phenomenological parameter universal for all medium and heavy atomic nuclei. We consider the latter as a phenomenological way to take into account both the many-body corrections to the BCS theory and the effective mass effects. For protons, the Coulomb interaction is introduced directly. Calculations made for several isotopic and isotonic chains of semi-magic nuclei confirm the validity of the model. The role of the self-consistent basis is stressed.
Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy
Koester, U H; Kalaninova, Z; Imai, N
2007-01-01
We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.
Directory of Open Access Journals (Sweden)
Guilherme Tosi
2014-08-01
Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.
Institute of Scientific and Technical Information of China (English)
刘洪毓
2007-01-01
Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what
Pairing correlations in exotic nuclei
Sagawa, H
2012-01-01
The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...
Sizes and shapes of short-lived nuclei via laser spectroscopy. Final report
International Nuclear Information System (INIS)
This project, a collaboration involving Iowa State University, Argonne National Lab., and the University of Minnesota, was aimed at the determination of properties of short-lived nuclei through their atomic hyperfine structure and optical isotope shifts. The basic approach was to use a cryogenic He-jet system to thermalize, neutralize, and transport radioactive nuclei produced online into a region suitable for laser spectroscopy. The photon burst method was then used for high sensitivity with the resulting continuous atomic beam. The experiment was located on beamline of the ANL superconducting heavy-ion accelerator. The He-jet system developed would reliably transport approx.102 nuclei into phase space useful for high resolution laser spectroscopy. The laser system developed could accurately and reproducibly sweep small frequency ranges for periods greater than or equal to1 day and sensitivity limits less than or equal to1 atom/s were achieved. However the nuclei were not transported as free atoms precluding nuclear determinations. Attempts to obtain free atoms by eliminating turbulence and contamination were not successful. Some of the high sensitivity spectroscopy techniques developed in this work are now being applied in a search for nuclear relics of the Big Bang and in studies of the photon statistics of light scattered by a single atom. 3 refs., 4 figs
Institute of Scientific and Technical Information of China (English)
周涛; 王同兴
2005-01-01
The sources of uncertainty of relative atomic mass include measurement errors and isotopic fractionation of terrestrial samples. Measurement errors are composed of measurements of atomic masses and isotopic abundances, the later includes uncertainty of correction factor K and isotopic ratios of natural samples. Through differential of seven factors to gain their propagation factors, the uncertainty of correction factors K can be calculated. With the same differential calculation, the uncertainty of relative atomic mass can be obtained.
Brenna, Marco
2014-01-01
The self-consistent mean-field (SCMF) theory describes many properties of the ground state and excited states of the atomic nucleus, such as masses, radii, deformations and giant resonance energies. SCMF models are based on the independent particle picture where nucleons are assumed to move in a self-generated average potential. In the first part of this work, we apply a state-of-the-art SCMF approach, based on the Skyrme effective interaction, to two different excitations (viz. the pygmy dipole resonance and the isovector giant quadrupole resonance), investigating their relation with the nuclear matter symmetry energy, which corresponds to the energy cost for changing protons into neutrons and is a key parameter for the nuclear equation of state. However, SCMF models present well known limitations which require the inclusion of further dynamical correlations, e.g. the ones coming from the interweaving between single-particle and collective degrees of freedom (particle-vibration coupling - PVC). In the second...
The application of atomic vapor laser isotope separation to the enrichment of mercury
International Nuclear Information System (INIS)
The authors discuss the results of recent work carried out at Lawrence Livermore National Laboratory to develop a process for enriching mercury. The discussion centers around the results of spectroscopic measurements of excited-state lifetimes, photoionization cross sections, and isotope shifts. (author)
In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure
Rothe, S
2014-01-01
The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...
Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K
2010-01-01
Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...
Atomic and Molecular Isotope Ratios in Circumstellar Envelopes: Fractionation vs. Nucleosynthesis
Milam, Stefanie
The long standing question of "What are the origin, evolution, and fate of our Universe and/or Galaxy?" has puzzled humankind for centuries. One approach to answering this question is to gain further understanding of stellar evolution, since stars are fundamental in galaxy development and evolution. A compilation of stellar composition can reveal the age, dynamics, and possibly the evolutionary state of a galaxy. Stars are the factories of heavy elements, including carbon, nitrogen, and oxygen, that are key to the chemical complexity associated with planetary systems. Primitive materials, such as meteorites and IDPs, have revealed a component of "atypical" isotopic signatures of these fundamental elements denoting a possible stellar origin. Understanding the processes by which these elements derive is essential for astrophysics on cosmochemical, galactic, stellar, and planetary scales. We propose to analyze data obtained from the Herschel Space Observatory of circumstellar envelopes to definitively measure C, N, and O isotope ratios and test current models of photo-selective isotope fractionation vs. nucleosynthetically determined values. This proposal augments completed programs from the Herschel Space Observatory, namely the the HIFISTARS program (PI: Bujarrabal), which at the time of proposal submission a significant portion of data will no longer be under proprietary regulations (https://nhscsci.ipac.caltech.edu/sc/).) The broader implications for this study include fundamental data necessary for furthering our current understanding of stellar nucleosynthesis, circumstellar chemistry, Galactic chemical evolution, and the origin of presolar grains found in primitive materials. We will focus on isotopologues of species formed in thermochemical equilibrium and trace their natal, nucleosynthetic isotope ratios. We will analyze Herschel data obtained for a survey of evolved stars with varying degrees of nuclear processing, evolutionary states, and envelope chemistry
Fujita, Y; Fujita, H; Adachi, T; Berg, GPA; Caurier, E; Fujimura, H; Hara, K; Hatanaka, K; Janas, Z; Kamiya, J; Kawabata, T; Langanke, K; Martinez-Pinedo, G; Noro, T; Roeckl, E; Shimbara, Y; Shinada, T; van der Werf, SY; Yoshifuku, M; Yosoi, M; Zegers, RGT
2002-01-01
Under the assumption that isospin is a good quantum number, symmetry is expected for the transitions from the ground states of T = 1, T-z = +/-1 nuclei to the common excited states of the T-z = 0 nucleus situated between the two nuclei. The symmetry can be studied by comparing the strengths of Gamow
Dynamic nuclear polarization and relaxation of H and D atoms in solid mixtures of hydrogen isotopes
Sheludiakov, S; Järvinen, J; Vainio, O; Lehtonen, L; Vasiliev, S; Lee, D M; Khmelenko, V V
2016-01-01
We report on a study of Dynamic Nuclear Polarization and electron and nuclear spin relaxation of atomic hydrogen and deuterium in solid molecular matrices of H$_{2}$, D$_{2}$, and HD mixtures. The electron and nuclear spin relaxation times ($T_{1e}$ and $T_{1N}$) were measured within the temperature range 0.15-2.5$\\,$K in a magnetic field of 4.6 T, conditions which ensure a high polarization of electron spins. We found that $T_{1e}$ is nearly temperature independent in this temperature range, while $T_{1N}$ decreased by 2 orders of magnitude. Such strong temperature dependence is typical for the nuclear Orbach mechanism of relaxation via the electron spins. We found that the nuclear spins of H atoms in solid D$_{2}$ and D$_{2}:$HD can be efficiently polarized by the Overhauser effect. Pumping the forbidden transitions of H atoms also leads to DNP, with the efficiency strongly dependent on the concentration of D atoms. This behaviour indicates the Cross effect mechanism of the DNP and nuclear relaxation, which...
Atomic vapor laser isotope separation at Lawrence Livermore National Laboratory: a status report
International Nuclear Information System (INIS)
The field of laser induced chemistry began in earnest early in the 1970's with the initiation of major efforts in laser isotope separation (LIS) of uranium. Though many specialized, small-scale photochemical and diagnostic applications have been identified and evaluated experimentally, and continue to show promise, currently the only high payoff, large-scale applications remain LIS of special elements. Aspects of the physical scaling, technology status and economic basis of uranium LIS are examined with special emphasis on the effort at LLNL
Anharmonic vibrations in nuclei
Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.
2003-01-01
In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.
Institute of Scientific and Technical Information of China (English)
LIU Shi-Li; SHI Ying
2010-01-01
@@ Quasi-classical trajectory theory is used to study the isotope effect of oxygen atoms on the vector correlations in the O(3p)+D2 reaction at a collision energy of 25kcal/mol using accurate potential energy surface of the 3 A' triplet state.The distributions of p(θr)and the distribution of dihedral angel p(ψr)as well as p(θr,ψr)are calculated.Moreover,four polarization-dependent generalized differential cross sections(PDDCSs)of product are presented in the center-of-mass frame.The results indicate that the polarization of the product presents different characters for the isotope effect of oxygen atoms.Isotopic substitute can cause obviously different effects on the four PDDCSs.
Spectroscopy of heavy fissionable nuclei
Indian Academy of Sciences (India)
S K Tandel
2015-09-01
Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.
Use of Atomic and Nuclear Techniques in Elemental and Isotopic Analysis
International Nuclear Information System (INIS)
This book is divided into four chapters which were presented by six authors of the best Arab specialists who have used the atomic and nuclear techniques for a long time and recognized their importance and capabilities in scientific researches. Atomic and Nuclear techniques are very successful in the field of analysis because they are the only way to proceed the analysis process with the requested accuracy and they are the cheapest at the same time. A number of these techniques were collected in this book on the basis of their accuracy and the abundance of using them in the analysis of material components, specially when these elements exist with insignificant percentage as in the case of poisons science, archaeology, nutrition, medicine and other applications.
International Nuclear Information System (INIS)
The isotopic variation of industrially produced antimony was estimated using multiple-collector inductively coupled plasma mass spectrometry. A reproducible 123Sb/121Sb ratio of ±0.004% (2 standard deviations) was routinely obtained using a Sn doping mass discrimination correction technique. Only a small isotopic variation of about 0.05% was observed among industrially important Sb materials (five commercially available reagents and two ore minerals). The degree of Sb isotopic variation to determine the uncertainty in Sb atomic weight can be reduced by this new analytical technique to 0.00025 compared to the currently accepted IUPAC isotopic variation determined by conventional mass spectrometry of ±0.001. Heavy isotope enrichment of Sb in a drainage water sample from a stibnite mining area was found. This heavy isotope enrichment tendency in an aqueous environment may be useful in detecting anthropogenic Sb input from industrial emission by the smelting process via air because Sb of anthropogenic origin will have lighter isotope enrichment features. (author)
Energy Technology Data Exchange (ETDEWEB)
Fujita, T., E-mail: tomomi.fujita@riken.jp [Osaka University, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Imamura, K.; Yang, X. F. [RIKEN Nishina Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Kobayashi, T. [RIKEN Center for Advanced Photonics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Shimoda, T. [Osaka University, Department of Physics (Japan); Matsuo, Y. [Hosei University, Department of Advanced Sciences (Japan); Collaboration: OROCHI Collaboration
2015-11-15
A new laser spectroscopic method named “OROCHI (Optical RI-atom Observation in Condensed Helium as Ion catcher)” has been developed for deriving the nuclear spins and electromagnetic moments of low-yield exotic nuclei. In this method, we observe atomic Zeeman and hyperfine structures using laser-radio-frequency/microwave double-resonance spectroscopy. In our previous works, double-resonance spectroscopy was performed successfully with laser-sputtered stable atoms including non-alkali Au atoms as well as alkali Rb and Cs atoms. Following these works, measurements with {sup 84−87}Rb energetic ion beams were carried out in the RIKEN projectile fragment separator (RIPS). In this paper, we report the present status of OROCHI and discuss its feasibility, especially for low-yield nuclei such as unstable Au isotopes.
Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru
2008-04-01
Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al
Mean-field models and exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)
1998-06-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Van Isacker, P
2010-01-01
The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.
Energy Technology Data Exchange (ETDEWEB)
Huerstel, A
2002-11-01
This thesis is devoted to the study of very neutron deficient nuclei in the lead region of the nuclear chart and more precisely to the investigation of the single particle states and collective properties of the {sup 187,189}Bi isotopes by gamma-ray spectroscopy. These nuclei were produced via fusion-evaporation reaction induced by a krypton beam on a silver target. In this mass region, the cross section for producing these nuclei are very low, of the order of a few micro-barns, making experimental studies very difficult. The identification of the nuclei was done using the very powerful RDT (Recoil Decay Tagging) technique, based on the selection of the isotopes through their characteristic alpha-particle decays. The experiments were performed at the university of Jyvdskyla (Finland) with the facility combining the gamma-ray spectrometer JUROSPHERE and the magnetic gas-filled separator RITU. Isomeric states were observed in both nuclei and their life-times measured. The systematics of individual proton states in odd-mass bismuth isotopes have been reproduced with a shell model up to 20 neutrons away from the valley of stability. Furthermore, rotational bands, a signature of collective nuclear motion, have been established for the first time in these nuclei. The interpretation of these results led to the conclusion that {sup 187,189}Bi have a prolate shape at low excitation energy, unlike the heavier bismuth isotopes which have been interpreted to have oblate deformation, implying a shape transition in this mass region. Hartree-Fock-Bogolyubov calculations are consistent with the experimental indication of shape coexistence, as seen in the neighbouring even-even lead nuclei. (author)
International Nuclear Information System (INIS)
The application of fast atom bombardment (FAB) mass spectrometry to the determination of lead isotope ratios in nineteenth century pottery glazes from the Niagara Peninsula has been investigated with the aim of determining the source of the lead used in the glazes. Methods of sampling have been compared, including direct analysis of glass chips, analysis of powdered glaze scrapings, analysis of acid extracts of the former, and simple acid leaching of the surface of a piece of pottery. The latter method gave the best results. The FAB data, as obtained on an older mass spectrometer, can distinguish lead from igneous vs. sedimentary deposits, but is not adequate to determine specific mining locations. Although newer FAB instrumentation can narrow this range, the overlap of data from the Niagara Peninsula and England precludes a simple answer to the archeological question as to English vs. Canadian origin of the lead used in the Jordan pottery glazes. However, the data do suggest that the potter used a local source for the lead
Toward the Ab-initio Description of Medium Mass Nuclei
Barbieri, C; Soma, V; Duguet, T; Navratil, P
2012-01-01
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.
Physics with loosely bound nuclei
Indian Academy of Sciences (India)
Chhanda Samanta
2001-08-01
The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to ﬁnd a consistent picture for the unstable nuclei starting from their stable counterparts. Some signiﬁcant differences in the structure and reaction mechanisms are found.
Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M
2012-01-01
$\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.
Alpha Decay Preformation Factors for Even-Even 280-316116 Superheavy Isotopes
Alsaif, Norah A. M.; Radiman, Shahidan; Yahaya, Redzuwan; Ahmed, Saad M. Saleh
2016-06-01
The success of the cluster formation model (CFM) in deriving an energy-dependent formula for the preformation factors of heavy nuclei has motivated us to expand this approach to the superheavy isotopes (SHI). In this paper, the alpha-cluster formation (preformation factor) behavior inside the parent nuclei of SHI with atomic number Z = 116 and neutron numbers 164 ≤ N ≤ 200 is determined using the alpha preformation formula contained within the CFM. The cluster formation energy of the alpha particles and the total energy of the parent nuclei are calculated on the basis of the various binding energies. Our results clearly show that the CFM remains valid for superheavy nuclei (SHN). In addition, our calculations reveal that the alpha clustering mechanism and formation probability in 280-316116 even-even SHI are similar to those of even-even heavy nuclei in a general sense.
Mančev, Ivan; Milojević, Nenad; Belkić, Dževad
2015-06-01
Single charge exchange in collisions between bare projectiles and heliumlike atomic systems at intermediate and high incident energies is examined by using the four-body formalism of the first- and second-order theories. The main purpose of the present study is to investigate the relative importance of the intermediate ionization continua of the captured electron compared to the usual direct path of the single electron transfer from a target to a projectile. In order to achieve this goal, comprehensive comparisons are made between the four-body boundary-corrected continuum-intermediate-states (BCIS-4B) method and the four-body boundary-corrected first Born (CB1-4B) method. The perturbation potential is the same in the CB1-4B and BCIS-4B methods. Both methods satisfy the correct boundary conditions in the entrance and exit channels. However, unlike the CB1-4B method, the second-order BCIS-4B method takes into account the electronic Coulomb continuum-intermediate states in either the entrance or the exit channel depending on whether the post or the prior version of the transition amplitude is used. Hence, by comparing the results from these two theories, the relative importance of the intermediate ionization electronic continua can be assessed within the four-body formalism of scattering theory. The BCIS-4B method predicts the usual second-order effect through double scattering of the captured electron on two nuclei as a quantum-mechanical counterpart of the Thomas classical two-step, billiard-type collision. The physical mechanism for this effect in the BCIS-4B method is also comprised of two steps such that ionization occurs first. This is followed by capture of the electron by the projectile with both processes taking place on the energy shell. Moreover, the role of the second, noncaptured electron in a heliumlike target is revisited. To this end, the BCIS-4B method describes the effect of capture of one electron by the interaction of the projectile nucleus with
Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.
1994-01-01
The isotopic composition of C, N, O, Ne, Mg, Si cosmic ray nuclei has been measured in the energy range 50-200 MeV per nucleon using data collected by the High-Energy Telescope of the cosmic-ray subsystem experiment on the Voyager 1 and 2 spacecraft. These data were collected during the period of minimum solar activity in 1986-1988 at an average distance of 27 AU with an effective solar modulation that was much less than at the Earth. The isotope analysis, based on the energy loss - total energy method, has a mass resolution of 0.2 amu for carbon and 0.4 amu at silicon. We find a (C-13)/(C-12) ratio slightly lower and a (O-18)/(O-16) ratio slightly enhanced over their solar system value. We also observe the previously reported enhancement of the (Ne-22)/(Ne-20) ratio relative to solar at the cosmic-ray source but only a weak, if any, enhancement of the (Mg-25)/(Mg-24), (Mg-26)/(Mg 24), and (Si-30)/(Si-28) ratios.
Clayton, R. N.
2003-12-01
Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (radiation in the wavelength range 90-100 nm. The reaction proceeds by a predissociation mechanism, in which the excited electronic state lives long enough to have well-defined vibrational and rotational energy levels. As a consequence, the three isotopic species - C16O, C17O
Nuclear Sizes and the Isotope Shift
Friar, J L; Sprung, D W L
1997-01-01
Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii are discussed from the nuclear-physics perspective. Interpretation of precise isotope-shift measurements is formalism dependent, and care must be exercised in interpreting these results and those obtained from relativistic electron scattering from nuclei. We strongly advocate that the entire nuclear-charge operator be used in calculating nuclear-size corrections in atoms, rather than relegating portions of it to the non-radiative recoil corrections. A preliminary examination of the intrinsic deuteron radius obtained from isotope-shift measurements suggests the presence of small meson-exchange currents (exotic binding contributions of relativistic order) in the nuclear charge operator, which contribute approximately 1/2%.
Khan, E; Blumenfeld, Y; Van Giai, N; Alamanos, N; Auger, F; Bauge, E; Beaumel, D; Delaroche, J P; Delbourgo-Salvador, P; Drouart, A; Fortier, S; Frascaria, N; Gillibert, A; Girod, M; Jouanne, C; Kemper, K W; Lagoyannis, A; Lapoux, V; Lépine-Szily, A; Lhenry, I; Libert, J; Maréchal, F; Maison, J M; Musumarra, A; Ottini-Hustache, S; Piattelli, P; Pita, S; Pollacco, E C; Roussel-Chomaz, P; Santonocito, D; Sauvestre, J E; Scarpaci, J A; Zerguerras, T
2001-01-01
Proton elastic and inelastic scattering angular distributions to the 2 sub 1 sup + and 3 sub 1 sup - collective states of the proton-rich nuclei sup 3 sup 0 S and sup 3 sup 4 Ar were measured at 53 MeV/A and 47 MeV/A, respectively, using secondary beams from the GANIL facility and the MUST silicon strip detector array. Data for the stable sup 3 sup 2 S nucleus were also obtained at 53 MeV/A for comparison. A phenomenological analysis was used to deduce the deformation parameters beta sub p sub , sub p sub ' for the low-lying collective excitations. A microscopic analysis was performed by generating matter and transition densities from self-consistent QRPA calculations. Configuration mixing calculations based on a collective Bohr Hamiltonian were also performed. DWBA and coupled-channel calculations using microscopic optical potentials built from these densities and the JLM interaction are compared to the data. There is no indication for the presence of proton skins in these nuclei. The microscopic calculation...
International Nuclear Information System (INIS)
The working conditions of a new on-line electrostatic collection system are presented. The main characteristics are high efficiency (reaching 20%) and short delay time (down to the millisecond). A systematic study of this method, comparing experiment and theory, is done. The device has been successfully used on the one hand for the exotic isotopes research (discovery of 184Pb) and on the other hand for the study of reactions induced by a 12C beam at 86 MeV/nucleon
International Nuclear Information System (INIS)
4 nuclei of Nickel-48 have been produced in the GANIL accelerator. This nucleus is made up of 28 protons and 20 neutrons, it has at least 10 neutrons less than natural nickel but it is doubly magic: both protons and neutrons are distributed on full shells. It appears as if being doubly magic could compensate for the instability due to the shortage of neutrons. (A.C.)
Pseudospin Dynamical Symetry in Nuclei
Ginocchio, Joseph N
2014-01-01
Pseudospin symmetry has been useful in understanding atomic nuclei. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from this insight into the relativistic origins of pseudospin symmetry. Since in nuclei the sum of the scalar and vector potentials is not zero but is small, we discuss preliminary investigations into the conditions on the potentials to produce partial dynamic pseudospin symmetry. Finally we show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei.
International Nuclear Information System (INIS)
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs
Energy Technology Data Exchange (ETDEWEB)
Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)
1991-09-01
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.
Statistical clumped isotope signatures.
Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Energy Technology Data Exchange (ETDEWEB)
Massarczyk, Ralph Jens
2011-01-17
During the last hundred years several models were developed to describe the configuration of nuclei. These models have to make predictions, which should be comparable with experiments. As a standard type of experiment the nuclear resonance fluorescence was established. A nucleus is excited by irradiation with photons. By emitting one or more photons the nucleus decays back to the ground state. With this method it is possible to measure energy levels and to determine the strength of their excitation. A continuum of unresolved peaks gives additional strength. The existing setup at the linear electron accelerator ELBE of the Forschungszentrum Dresden-Rossendorf uses bremsstrahlung, produced as a secondary beam in a thin Niobium foil. During the years 2008/09 experiments on the nuclei of {sup 86}Kr and {sup 136}Ba took place there. In this work they will be analyzed. Photon flux and efficiency determination have been done as well as simulations on detector response and non-nuclear scattered background events. For this purpose the GEANT4 package was used. Finally the resulting cross sections were corrected for branching and feeding.
Decay of heavy and superheavy nuclei
Indian Academy of Sciences (India)
K P Santhosh
2014-04-01
We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.
Proton scattering from unstable nuclei
Indian Academy of Sciences (India)
Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi
2001-08-01
Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.
International Nuclear Information System (INIS)
This Report provides a rationale and justification for the initiation of a Coordinated Research programme to support studies using stable isotopic tracer techniques to address priority areas of human protein-energy interactions with special emphasis on the problems of human nutrition in developing countries. The Report suggests a modus for establishing such a practically oriented Coordinated Research Programme under the aegis of the International Atomic Energy Agency with concrete suggestions for its organization and the identification of probable participants in such a programme. The likely sources of additional funding to sustain such an activity viable for a period of 4 to 5 years are also indicated. 8 refs
α-decay half-lives study of superheavy nuclei
International Nuclear Information System (INIS)
Now a days, the synthesis of superheavy nuclei (SHN) has become an outstanding research topic in nuclear physics. Since the predictions of the existence of superheavy island in 1960s. In recent years, much experimental progress has been made in synthesizing SHN with atomic number Z=114-118 by hot fusion reactions. α-decay is the most powerful tool in studying exotic nuclei in the superheavy region as it can provide some reliable knowledge on the nuclear structure and is used to identify new isotopes when an unknown parent nucleus decays to a known daughter nucleus. In this paper, we calculate the α-decay half-lives of some SHN by considering the unstable parent nucleus as a quantum two-body system of the ejected α particle and the daughter nucleus exhibiting resonance scattering phenomena under the combined effect of nuclear, coulomb and centrifugal forces. Finally, predictions within the same frame work are given for the α-decay half-lives of nuclei having Z=120-126 are made for future experiments
Mageed, K E Abd El; Gado, K A; Shalaby, Asmaa G
2016-01-01
We have applied the Coulomb and proximity potential model,CPPM to calculate the half lives for various clusters decay of the selected even-even isotopes of the chosen nuclei. These nuclei are Hf, W, Os, Pt, and Hg in the 5d transition metal region in the periodic table with atomic number 72 greater or equal Z less than or equal 80. Furthermore, the half-lives are calculated using the universal formula for cluster decay. The calculated half-lives of alpha decay for the chosen isotopes are in good agreement with the experimental data, especially with the CPPM results. The alpha and cluster decays are more probable from the parents in the heavier mass number A equal 168,180 than from the parents in the lighter mass number A equal 156, 166.
Beck, C; Zafra, A Sanchez i; Thummerer, S; Azaiez, F; Bednarczyk, P; Courtin, S; Curien, D; Dorvaux, O; Goasduff, A; ~Lebhertz, D; Nourreddine, A; ~Rousseau, M; Salsac, M -D; von Oertzen, W; Gebauer, B; Wheldon, C; Kokalova, Tz; Efimov, G; Zherebchevsky, V; Schulz, Ch; Bohlen, H G; Kamanin, D; de Angelis, G; Gadea, A; Lenzi, S; Napoli, D R; Szilner, S; Milin, M; Catford, W N; Jenkins, D G; Royer, G
2010-01-01
A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Results on clustering aspects are also discussed for light neutron-rich Oxygen isotopes.
Properties of superheavy nuclei with Z = 124
Mehta, M S; Kumar, Bharat; Patra, S K
2015-01-01
We employ Relativistic Mean Field (RMF) model with NL3 parametrization to investigate the ground state properties of superheavy nucleus, Z = 124. The nuclei selected (from among complete isotopic series) for detailed investigation show that the nucleon density at the center is very low and therefore, these nuclei can be treated as semi-bubble nuclei. The considerable shell gap appears at neutron numbers N = 172, 184 and 198 showing the magicity corresponding to these numbers. The results are compared with the macro-microscopic Finite Range Droplet Model (FRDM) wherever possible.
Kato, K; Kobayashi, J; Julienne, P S; Inouye, S
2016-01-01
The multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the $^{41}$K-$^{87}$Rb system relative to the position of the previously observed atom-dimer resonance in the $^{40}$K-$^{87}$Rb system. This shift is well explained by our calculations with a three-body model including the van der Waals interactions, and, more importantly, the multichannel spinor physics. With only minor difference in the atomic masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the isolated and overlapping Feshbach resonances in the $^{40}$K-$^{87}$Rb and $^{41}$K-$^{87}$Rb systems, respectively. Our study demonstrates the role of the multichannel Feshbach physics in determining Efimov resonances in heteronuclear three-body systems.
Excitation energies in neutron-rich rare isotopes as indicators of changing shell structure
Energy Technology Data Exchange (ETDEWEB)
Gade, Alexandra [Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States)
2015-09-15
The quest for a predictive model of atomic nuclei fuels experimental and theoretical research programs worldwide. The properties of rare isotopes emerge as crucial ingredients for the development of nuclear models valid also towards the nucleon driplines. Many important aspects of the interactions between the constituent protons and neutrons are amplified in the regime of large isospin and can best be isolated and characterized there. The energies of excited states offer a unique view into the structure of nuclei and are often some of the first quantities accessible by experiment. Excitation energies can be measured directly and in model-independent ways and thus are among the key observables that can guide our understanding of atomic nuclei. (orig.)
International Nuclear Information System (INIS)
Ever since the foundation of the GSI, the Darmstadt-based Gesellschaft fuer Schwerionenforschung, in the 1970s, physicists of the Justus-Liebig-University of Giessen have been at the frontiers of research work examining the behaviour of nuclear matter under critical stability conditions. The article in this edition of ''Spiegel der Forschung'', the scientific journal of the university, highlights the results of the last twenty years of research activities with the velocity separator named SHIP, Separator for Heavy Ion Reaction Products. With this instrument, developed by members of the university's II. Institute of Physics and built and operated by members of the GSI in Darmstadt, the scientists were able to generate the six heaviest of the currently known chemical elements, with atomic numbers ranging from 107 to 112. The element with the atomic number 111 will be named ''Roentgenium'', in honour of the famous physicist and Nobel prize winner Wilhelm Conrad Roentgen
Wodyński, Artur; Pecul, Magdalena
2014-01-14
The (1)JCC and (1)JCH spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants. PMID:24437889
The effective stiffness of nuclei near magic numbers
International Nuclear Information System (INIS)
This paper trys to explain the rapid increase in the apparent size of the rubidium isotope nuclei around the magic number N = 50. Droplet and deformation models are used to evaluate the measured data. 6 refs., 4 figs
Synthesis of superheavy nuclei: Obstacles and opportunities
Directory of Open Access Journals (Sweden)
Zagrebaev V.I.
2015-01-01
Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.
Institute of Scientific and Technical Information of China (English)
Zang Hua-Ping; Li Wen-Feng; Linghu Rong-Feng; Cheng Xin-Lu; Yang Xiang-Dong
2011-01-01
This paper applies the multiple ellipsoid model to the 16Ne (20Ne, 28Ne, 34Ne)-Na2 collision systems, and calculates integral cross sections for rotational excitation at the incident energy of 190 meV. It can be seen that the accuracy of the integral cross sections can be improved by increasing the number of equipotential ellipsoid surfaces. Moreover, by analysing the differences of these integral cross sections, it obtains the change rules of the integral cross sections with the increase of rotational angular quantum number J', and with the change of the mass of isotope substitution neon atom. Finally, the contribution of different regions of the potential to inelastic cross sections for 20Ne-Na2 collision system is investigated at relative incident energy of 190 meV.
Energy Technology Data Exchange (ETDEWEB)
Komura, Kazuhisa [Kanazawa Univ., Low Level Radioactivity Lab., Tatsunokuchi, Ishikawa (Japan); Yousef, Ahmed M. [South Valley Univ. (Egypt)
2001-06-01
Radioactive europium and cobalt isotopes induced by environmental neutrons have been discovered by low-background Ge detector installed in Ogoya underground laboratory. Specific activities of {sup 152}Eu, {sup 154}Eu and {sup 155}Eu and {sup 60}Co were measured for recent and old europium and cobalt reagents. Observed activities are 0.06-0.52 dpm g{sup -1} for {sup 152}Eu, 0.09-0.16 dpm g{sup -1} for {sup 154}Eu and 0.005-0.16 dpm g{sup -1} for {sup 155}Eu and 0.007-0.083 dpm g{sup -1} for {sup 60}Co. Contribution of natural {sup 152}Eu and {sup 60}Co in Atomic-bomb exposed samples are found to be negligible low and less than 10%, respectively. (author)
Directory of Open Access Journals (Sweden)
Wu C.Y.
2012-02-01
Full Text Available Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.
Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, G. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.
2012-02-01
Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1)↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.
Relativistic symmetry breaking in light kaonic nuclei
Yang, Rong-Yao; Jiang, Wei-Zhou; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na
2014-01-01
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkabl...
Deformation properties of the neutron-deficient ODD-A Pt and Hg nuclei
Energy Technology Data Exchange (ETDEWEB)
Sauvage, J.; Libert, J.; Roussiere, B.; Verney, D.; Ibrahim, F.; Le Blanc, F.; Oms, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Cabaret, L.; Pinard, J. [Laboratoire Aime Cotton, 91 - Orsay (France); Crawford, J.E.; Lee, J.K.P. [Physics Dept., Mc Gill University, Montreal (Canada); Genevey, J. [Institut des Sciences Nucleaires, IN2P3-CNRS, 38 - Grenoble (France); Huber, G. [Institut fur Physik der Universitat Mainz (Germany)
2000-07-01
Nuclear and atomic spectroscopy measurements have provided a great number of data on the neutron-deficient Pt and Hg nuclei. The odd-A Pt and Hg with A<186 have a prolate shape, the even-even isotopes have a triaxial shape while the nuclear shape of the odd-A Pt and Hg with A>186 is still an open question. The energy of the low-lying levels and the nuclear moments have been calculated in the framework of a semi-microscopic axial-rotor + I quasiparticle coupling model. The predictions are compared with the experimental data and discussed. The results strongly suggest a prolate shape for the negative-parity low-lying states of the odd-A {sup 187-191}Pt and {sup 187-193}Hg isotopes. (authors)
Samanta, C.; Adhikari, S
2001-01-01
A new mass formula capable of explaining the binding energies of almost all the known isotopes from Li to Bi is prescribed. In addition to identifying the new magic number at neutron number N=16 (Z=7-9), pseudo-magic numbers at N=14 (Z=7-10), Z=14 (N=13-19), and at N=6 (Z=3-8), the formula accounts for the loss of magicity for nuclei with N=8 (Z=4) and N=20 (Z=12-17). The redefinition of the neutron drip line resulting from this formula further allows us to predict the existence of 26O,31F, 3...
Electric monopole transitions from low energy excitations in nuclei
Wood, J L; De Coster, C; Heyde, Kris L G
1999-01-01
Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.
International Nuclear Information System (INIS)
We present the differential cross sections dσ(E,Ω)/dΩ for elastic and inelastic (isotopic exchange) scattering of muonic hydrogen, deuterium and tritium on hydrogen isotopes nuclei for the case of difference in masses of the projectile μ-atom and the target nucleus. Available partial phase shifts have been used in the calculations and the results are presented in tables and figures for different CMS collision energies. The cross sections are important for description of the slowing down and diffusion of μ-atoms in matter and particularly for description of kinetics of muon catalyzed nuclear fusion. 12 refs., 11 figs., 12 tabs
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.
2016-06-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).
Directory of Open Access Journals (Sweden)
Dagmara I. Strumińska-Parulska
2010-09-01
Full Text Available The paper summarizes the results of plutonium findings in atmospheric fallout samples and marine samples from the southern Baltic Sea during our research in 1986-2007. The activities of 238Pu and 239+240Pu isotopes were measured with an alpha spectrometer. The activities of 241Pu were calculated indirectly by 241Am activity measurements 16-18 years after the Chernobyl accident. The 240Pu/239Pu atomic ratios were measured using accelerator mass spectrometry (AMS. The 241Pu activities indicate that the main impact of the Chernobyl accident was on the plutonium concentration in the components of the Baltic Sea ecosystem examined in this work. The highest 241Pu/239+240Pu activity ratio was found in sea water (140 ± 33. The AMS measurements of atmospheric fallout samples collected during 1986 showed a significant increase in the 240Pu/239Pu atomic ratio from 0.29 ± 0.04 in March 1986 to 0.47 ± 0.02 in April 1986.
Synthesis of superheavy nuclei: Obstacles and opportunities
Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter
2015-01-01
There are only 3 methods for the production of heavy and superheavy (SH) nuclei, namely, fusion reactions, a sequence of neutron capture and beta(-) decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Zcold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+) decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.
Optical isotope shifts for unstable samarium isotopes
International Nuclear Information System (INIS)
Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144Sm and 154Sm, covering the well known transition region from spherical to deformed shapes. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.
2000-05-25
A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.
International Nuclear Information System (INIS)
In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs
Energy Technology Data Exchange (ETDEWEB)
1991-09-01
In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.
Principles of stable isotope distribution
Criss, Robert E
1999-01-01
1. Abundance and Measurement of Stable Isotopes 1.1. Discovery of Isotopes 1.2. Nuclide Types, Abundances, and Atomic Weights 1.3. Properties and Fractionation of Isotopic Molecules 1.4. Material Balance Relationships 1.5. Mass Spectrometers 1.6. Notation and Standards 1.7. Summary 1.8. Problems References 2. Isotopic Exchange and Equilibrium Fractionation 2.1. Isotopic Exchange Reactions 2.2. Basic Equations 2.3. Molecular Models 2.4. Theory of Isotopic Fractionation 2.5. Temperature Dependence of Isotopic Fractionation Factors 2.6. Rule of the Mean 2.7. Isotopic Thermometers
Relativistic impulse approximation analysis of elastic proton scattering from He isotopes
Kaki, Kaori
2014-01-01
Recent relativistic mean field (RMF) calculations have provided nuclear distributions of some isotopes whose mass numbers are much larger than atomic numbers. For helium isotopes, the RMF calculation seems to be inappropriate because of the small mass numbers; however, applicable results are obtained for 6,8He nuclei. The author calculates observables of proton elastic scattering from the helium isotopes and discusses relations between observables and nuclear distributions of the isotopes by comparison of the calculated results with experimental data. The calculations are based on relativistic impulse approximation (RIA) at incident proton energy: 71 MeV for 4,6,8He, 300 and 500 MeV for 4He, and 0.7 GeV for 6He. Scattering observables are predicted for 6,8He at 200 MeV.
Synthesis and decay properties of the heaviest nuclei
Oganessian, Yuri
2006-07-01
The formation and decay properties of the heaviest nuclei with Z=112-116 and 118 were studied in the reactions 238U, 242,244Pu, 243Am, 245,248Cm and 249Cf + 48Ca. The new nuclides mainly undergo sequential α-decay, which ends with spontaneous fission. The total time of decay ranges from 0.5 ms to ~1 day, depending on the proton and neutron numbers in the synthesized nuclei. The atomic number of the new elements 115 and 113 was confirmed also by an independent radiochemical experiment based on the identification of the neutron-rich isotope 268Db (TSF~30 h), the final product in the chain of α-decays of the odd-odd parent nucleus 288115. The comparison of the decay properties of 29 new nuclides with Z=104-118 and N=162-177 gives evidence of the decisive influence of the structure of superheavy elements on their stability with respect to different modes of radioactive decay. The investigations connected with the search for superheavy elements in Nature and prospects of superheavy element research are also presented. The experiments were carried out at the Flerov Laboratory of Nuclear Reactions (JINR, Dubna) in collaboration with the Analytical and Nuclear Chemistry Division of the Lawrence Livermore National Laboratory (USA).
Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.
Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.
Discovery of the Isotopes with Z <= 10
Thoennessen, M
2010-01-01
A total of 126 isotopes with Z $\\le$ 10 have been identified to date. The discovery of these isotopes which includes the observation of unbound nuclei, is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.
International Nuclear Information System (INIS)
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3
Energy Technology Data Exchange (ETDEWEB)
Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.
1991-09-01
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.
Laser spectroscopy of neutron deficient gold and platinum isotopes
International Nuclear Information System (INIS)
A new method for on-line laser spectroscopy of radioactive atoms based on the resonant ionization spectroscopy of laser-desorbed radioactive samples has been devised. An experimental setup has been installed on-line at the ISOCELE mass separator in Orsay (France) and experiments have been performed on the region of transitional nuclei around Z=79. Isotopic shift measurements on four new isotopes 194Au, 196Au, 198Au, 199Au have been performed on gold and results on the neutron deficient isotopes down to 186 Au have been obtained confirming the nuclear ground-state shape transition from oblate to prolate between 187Au and 186Au. The first isotopic shift measurements on radioactive platinum isotopes have been obtained on 186Pt, 188Pt, 189Pt. Indications of a shape transition have been observed between 186Pt and 188Pt. The extracted experimental changes in mean square charge radii δ 2 > A,A' along isotopic chains are compared to self-consistent Hartree-Fock plus BCS calculations
Discovery of 40Mg and 42Al suggests neutron drip-line slant towards heavier isotopes.
Baumann, T; Amthor, A M; Bazin, D; Brown, B A; Folden, C M; Gade, A; Ginter, T N; Hausmann, M; Matos, M; Morrissey, D J; Portillo, M; Schiller, A; Sherrill, B M; Stolz, A; Tarasov, O B; Thoennessen, M
2007-10-25
A fundamental question in nuclear physics is what combinations of neutrons and protons can make up a nucleus. Many hundreds of exotic neutron-rich isotopes have never been observed; the limit of how many neutrons a given number of protons can bind is unknown for all but the lightest elements, owing to the delicate interplay between single particle and collective quantum effects in the nucleus. This limit, known as the neutron drip line, provides a benchmark for models of the atomic nucleus. Here we report a significant advance in the determination of this limit: the discovery of two new neutron-rich isotopes--40Mg and 42Al--that are predicted to be drip-line nuclei. In the past, several attempts to observe 40Mg were unsuccessful; moreover, the observation of 42Al provides an experimental indication that the neutron drip line may be located further towards heavier isotopes in this mass region than is currently believed. In stable nuclei, attractive pairing forces enhance the stability of isotopes with even numbers of protons and neutrons. In contrast, the present work shows that nuclei at the drip line gain stability from an unpaired proton, which narrows the shell gaps and provides the opportunity to bind many more neutrons. PMID:17960237
Structure of collective modes in transitional and deformed nuclei
Caprio, M. A.
2005-01-01
The collective structure of atomic nuclei intermediate between spherical and quadrupole deformed structure presents challenges to theoretical understanding. However, models have recently been proposed in terms of potentials which are soft with respect to the quadrupole deformation variable beta. To test these models, information is needed on low-spin states of transitional nuclei. The present work involves measurement of electromagnetic decay properties of low-spin states for nuclei in the A=...
Large amplitude pairing fluctuations in atomic nuclei
Vaquero, Nuria López; Rodríguez, Tomás R
2013-01-01
Pairing fluctuations are self-consistently incorporated on the same footing as the quadrupole deformations in present state of the art calculations including particle number and angular momentum conservation as well as configuration mixing. The approach is complemented by the use of the finite range density dependent Gogny force which, with a unique source for the particle-hole and particle-particle interactions, guarantees a self-consistent interplay in both channels. We have applied our formalism to study the role of the pairing degree of freedom in the description of the most relevant observables like spectra, transition probabilities, separation energies, etc. We find that the inclusion of pairing fluctuations mostly affects the description of excited states, depending on the excitation energy and the angular momentum. $E0$ transition probabilities experiment rather big changes while $E2$'s are less affected. Genuine pairing vibrations are thoroughly studied with the conclusion that deformations strongly ...
Relativistic symmetry breaking in light kaonic nuclei
Yang, Rong-Yao; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na
2014-01-01
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei.
Zachmann, Karin
2015-01-01
During the Cold War, the super powers advanced nuclear literacy and access to nuclear resources and technology to a first-class power factor. Both national governments and international organizations developed nuclear programs in a variety of areas and promoted the development of nuclear applications in new environments. Research into the use of isotopes and radiation in agriculture, food production, and storage gained major importance as governments tried to promote the possibility of a peaceful use of atomic energy. This study is situated in divided Germany as the intersection of the competing socio-political systems and focuses on the period of the late 1940s and 1950s. It is argued that political interests and international power relations decisively shaped the development of "nuclear agriculture". The aim is to explore whether and how politicians in both parts of the divided country fostered the new field and exerted authority over the scientists. Finally, it examines the ways in which researchers adapted to the altered political conditions and expectations within the two political structures, by now fundamentally different.
Zachmann, Karin
2015-01-01
During the Cold War, the super powers advanced nuclear literacy and access to nuclear resources and technology to a first-class power factor. Both national governments and international organizations developed nuclear programs in a variety of areas and promoted the development of nuclear applications in new environments. Research into the use of isotopes and radiation in agriculture, food production, and storage gained major importance as governments tried to promote the possibility of a peaceful use of atomic energy. This study is situated in divided Germany as the intersection of the competing socio-political systems and focuses on the period of the late 1940s and 1950s. It is argued that political interests and international power relations decisively shaped the development of "nuclear agriculture". The aim is to explore whether and how politicians in both parts of the divided country fostered the new field and exerted authority over the scientists. Finally, it examines the ways in which researchers adapted to the altered political conditions and expectations within the two political structures, by now fundamentally different. PMID:26775431
Nuclear moments of radioactive nuclei. Final report
International Nuclear Information System (INIS)
An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs
Synthesis and Properties of Superheavy Nuclei
International Nuclear Information System (INIS)
The mechanism of production and decay of excited compound nuclei leading to production of isotopes of trans actinide elements in the vicinity of closed deformed shells Z = 108, N = 162 is being considered. The implementation of experiments is described and data on synthesis of new isotopes 262104, 265,266 106 and 267 108 in hot fusion reactions is presented. The properties of the new nuclides point to a considerable increase of the periods of spontaneous fission predicted by the macro-microscopic theory. Prospects for using fusion reactions in synthesizing new elements are discussed.(author). 30 refs.; 9 figs.; 2 tabs
Gamma spectroscopy of neutron rich actinide nuclei
Energy Technology Data Exchange (ETDEWEB)
Birkenbach, Benedikt; Geibel, Kerstin; Vogt, Andreas; Hess, Herbert; Reiter, Peter; Steinbach, Tim; Schneiders, David [Koeln Univ. (Germany). IKP; Collaboration: AGATA-Collaboration
2013-07-01
Excited states in neutron-rich actinide Th and U nuclei were investigated after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce the nuclei of interest. Beam-like reaction products of Xe- and Ba isotopes after neutron transfer were selected by the PRISMA spectrometer. The recoil like particles were registered by a MCP detector inside the scattering chamber. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique which was successfully exploited. First results on the collective properties of various Th and U isotopes are discussed.
Static quadrupole moments in 120Te nuclei
International Nuclear Information System (INIS)
In recent years the region in the vicinity of tin isotopes has been intensively investigated both from experimental and theoretical perspectives. In tellurium nuclei with two protons outside the major shell, the partial level schemes are dominated by the 1g7/2 orbit leading to 6+ isomers in the vicinity of N=82 shell closure. At low spin, the Te nuclei are considered to be one of the best examples of quadrupole vibrators. For any nuclei to be vibrational namely three criteria must be satisfied : (i) the R4/2 ratio is equal to 2, (ii) a nearly degenerate two-phonon triplet of 0+, 2+ and 4+ states (iii) collective electric quadrupole transitions between states differing by one phonon and strong hindrance of E2 transition between states differing by more than one phonon
Ab Initio Path to Heavy Nuclei
Binder, Sven; Calci, Angelo; Roth, Robert
2014-01-01
We present the first ab initio calculations of nuclear ground states up into the domain of heavy nuclei, spanning the range from 16-O to 132-Sn based on two- plus three-nucleon interactions derived within chiral effective field theory. We employ the similarity renormalization group for preparing the Hamiltonian and use coupled-cluster theory to solve the many-body problem for nuclei with closed sub-shells. Through an analysis of theoretical uncertainties resulting from various truncations in this framework, we identify and eliminate the technical hurdles that previously inhibited the step beyond medium-mass nuclei, allowing for reliable validations of nuclear Hamiltonians in the heavy regime. Following this path we show that chiral Hamiltonians qualitatively reproduce the systematics of nuclear ground-state energies up to the neutron-rich Sn isotopes.
The formation and decay of superheavy nuclei produced in 48Ca-induced reactions
Kumar, Sushil; Balasubramaniam, M.; Gupta, Raj K.; Münzenberg, G.; Scheid, W.
2003-04-01
The formation of superheavy nuclei in 48Ca+232Th, 238U, 242,244Pu and 248Cm reactions and their subsequent decay are studied within the quantum mechanical fragmentation theory (QMFT) and the QMFT-based preformed cluster decay model (PCM) of Gupta and collaborators. According to QMFT, all these 48Ca-induced reactions are cold fusion reactions with relative excitation energies larger than those for the Pb-induced cold fusion reactions and smaller than those for the lighter beam, i.e. Mg, Si or S-induced hot fusion reactions. The same reactions were first suggested by Gupta et al in 1977 on the basis of QMFT, and this study re-establishes the same result. In fact, for such heavy isotopes of Z = 110 to 116, 50Ca is shown to be a better beam for cold fusion, but 50Ca is a radioactive nucleus. The alpha-decay half-lives of these nuclei after 3n and/or 4n evaporations, i.e. of the evaporation residues of these compound systems, calculated on PCM compare reasonably well with the experiments published by the Dubna group and another recent calculation. As expected for such rare decays, PCM calculations show that the alpha-preformation factors are small, ~10-8 to 10-10. The possible competition of alpha-decays with heavy cluster emissions from these superheavy nuclei is also probed from the point of view of searching for new nuclear structure information and possible future experiments with such exotic nuclei. The decay half-lives for some clusters are in fact shown to be lower than the limits of experiments for nuclei with enough available atoms.
The formation and decay of superheavy nuclei produced in 48Ca-induced reactions
International Nuclear Information System (INIS)
The formation of superheavy nuclei in 48Ca+232Th, 238U, 242,244Pu and 248Cm reactions and their subsequent decay are studied within the quantum mechanical fragmentation theory (QMFT) and the QMFT-based preformed cluster decay model (PCM) of Gupta and collaborators. According to QMFT, all these 48Ca-induced reactions are cold fusion reactions with relative excitation energies larger than those for the Pb-induced cold fusion reactions and smaller than those for the lighter beam, i.e. Mg, Si or S-induced hot fusion reactions. The same reactions were first suggested by Gupta et al in 1977 on the basis of QMFT, and this study re-establishes the same result. In fact, for such heavy isotopes of Z = 110 to 116, 50Ca is shown to be a better beam for cold fusion, but 50Ca is a radioactive nucleus. The α-decay half-lives of these nuclei after 3n and/or 4n evaporations, i.e. of the evaporation residues of these compound systems, calculated on PCM compare reasonably well with the experiments published by the Dubna group and another recent calculation. As expected for such rare decays, PCM calculations show that the α-preformation factors are small, ∼10-8 to 10-10. The possible competition of α-decays with heavy cluster emissions from these superheavy nuclei is also probed from the point of view of searching for new nuclear structure information and possible future experiments with such exotic nuclei. The decay half-lives for some clusters are in fact shown to be lower than the limits of experiments for nuclei with enough available atoms
Fayans functional for deformed nuclei. Uranium region
Tolokonnikov, S V; Kortelainen, M; Lutostansky, Yu S; Saperstein, E E
2015-01-01
Fayans energy density functional (EDF) FaNDF^0 has been applied to the nuclei around uranium region. Ground state characteristics of the Th, U and Pu isotopic chains, up to the two-neutron drip line, are found and compared with predictions from several Skyrme EDFs. The two-neutron drip line is found for FaNDF^0, SLy4 and SkM^* EDFs for a set of elements with even proton number, from Pb up to Fm.
PREFACE: Correlation Dynamics in Nuclei
Suzuki, Toshio; Otsuka, Takaharu; Ichimura, Munetake
2005-01-01
The International Symposium on `Correlation Dynamics in Nuclei' was held at the Sanjo Kaikan, the University of Tokyo, from the 31 January to 4 February 2005. This symposium was organized on the occasion of the 50th anniversary of the Configuration Mixing theory of Arima and Horie. The symposium was hosted by the University of Tokyo, and supported by the Inoue Foundation for Science, the Japan Atomic Energy Research Institute and the Ministry of Education, Culture, Sports, Science and Technology. The purpose of the symposium was to discuss theoretical and experimental developments and future prospects in physics of correlation dynamics in nuclei, including topics such as effective interactions, shell model studies of configuration mixing and spin-isospin modes in nuclei. It was shown in many ways and angles that the Arima-Horie theory has been a starting point of a variety of developments of the studies in these fields over many decades. The developments have been enhanced by the expansion of computational capabilities and the progress in accelerators, detectors and radioactive beam facilities. We enjoyed 28 excellent and lively invited talks and 30 oral presentations in the symposium with about 90 participants. A special session was dedicated to celebrate the 80th birthday of Professor Igal Talmi, who made invaluable and pioneering works in the shell model theory. Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium very successful.
Deformed $sd$-shell nuclei from first principles
Jansen, G R; Hagen, G; Navrátil, P
2015-01-01
We extend the ab initio coupled-cluster effective interaction (CCEI) method to deformed open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei $^{20}$Ne and $^{24}$Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory for deformed nuclei, thereby demonstrating that collective phenomena in $sd$-shell nuclei emerge from complex ab initio calculations.
Medium Effects in Reactions with Rare Isotopes
International Nuclear Information System (INIS)
We discuss medium effects in knockout reactions with rare isotopes of weakly-bound nuclei at intermediate energies. We show that the poorly known corrections may lead to sizable modifications of knockout cross sections and momentum dsitributions.
Shells Evolution and Core Excitations in Semi-Magic Nuclei
Nowacki, F.
2006-01-01
Recent advances in Large Shell Model calculations allow now to treat extended valence spaces and more complete descriptions of (semi-)magic nuclei can be achieved with inclusion of core excitations. The interplay between shell evolution and core excitations in semi-magic nuclei will be illustrated for tin isotopic chains in the framework of Large Shell Model calculations. pn and nn monopole relative influence will be traced back on Effective Single Particle Energies and B(E2)'s.
Precision mass measurements of radioactive nuclei at JYFLTRAP
Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J
2007-01-01
The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.
Isotope separation with improved selective ionization
International Nuclear Information System (INIS)
Method and apparatus for isotope separation by selective ionization of a desired isotope in an environment of plural isotopes without corresponding ionization of the other isotopes in the environment. The selective ionization is achieved through a three step excitation of atoms of the desired isotope in response to laser radiations applied to the environment. The transition for each step is selected to be less than one half the ionization potential for the isotopes to avoid two step nonselective ionization
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
International Nuclear Information System (INIS)
The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters
Institute of Scientific and Technical Information of China (English)
黄学人; 朱熙文; 梅刚华; 钟达
2001-01-01
将激光抽运选择性极化原子束磁偏转方案用于铀同位素浓缩，考察了铀原子基态各子能级的磁偏转特性，提出了选择性光抽运极化的实验方案，讨论了可能得到的浓缩结果。%A scheme of magnetic deflection of an atomic beam polarized bylaser pumping applied to isotope enrichment of uranium is presented. The characteristics of magnetic deflection for all sub-levels in the ground state of uranium atoms were evaluated. An experimental method of selectively polarized uranium atoms by optical pumping was proposed. The available enrichment result in this scheme was discussed.
Modes of decay in neutron-rich nuclei
Kumar, B.; Biswal, S. K.; Singh, S. K.; Lahiri, C.; Patra, S. K.
2016-03-01
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field (RMF) approach using axially deformed basis. The total nucleon densities are calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like α-decay and β-decay are analyzed. We find the neutron-rich isotopes are stable against α-decay, however they are very much unstable against β-decay. The life time of these nuclei predicted to be tens of second against β-decay.
Modes of decay in neutron-rich nuclei
Kumar, B; Singh, S K; Lahiri, C; Patra, S K
2016-01-01
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities are calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like {\\alpha}-decay and \\b{eta} -decay are analyzed. We find the neutron-rich isotopes are stable against {\\alpha}-decay, however they are very much unstable against \\b{eta} -decay. The life time of these nuclei predicted to be tens of second against \\b{eta} -decay.
Symmetry energy, unstable nuclei, and neutron star crusts
Iida, Kei
2013-01-01
Phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters.
Symmetry energy, unstable nuclei and neutron star crusts
Energy Technology Data Exchange (ETDEWEB)
Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)
2014-02-15
The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)
International Nuclear Information System (INIS)
We present new measurements of isotopic shifts and hyperfine structure in the lead resonance line for a total of 15 isotopes. The experimental accuracy is of order 4 MHz. Using independent measurements of the nuclear parameter lambda for the stable isotopes we have derived lambda for all measured isotopes. The derived lambda values are compared with various theoretical predictions for the lead nuclei. We also give values for the nuclear magnetic dipole and electric quadrupole moments deduced from our measurements. (orig.)
Acceleration of heavy nuclei in solar flares
International Nuclear Information System (INIS)
The overabundance of heavy nuclei in solar cosmic rays of energy approximately less than 5 MeV/nucleon is explained by taking into account the pre-flare ionization states of these nuclei in the region where they are accelerated. A model is proposed which considers two-step accelerations associated with the initial development of solar flares. The first step is closely related to the triggering process of flares, while the second one starts with the development of the explosive phase. Further ionization of medium and heavy nuclei occurs through their interaction with keV electrons accelerated by the first-step acceleration. It is suggested that the role of these electrons is important in producing fully ionized atoms in the acceleration regions. (U.S.)
International Nuclear Information System (INIS)
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Baruah, Sudarshan
2008-07-15
The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of {sup 81}Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ({sup 72}Zn) down to 290 ms ({sup 81}Zn). In case of all the nuclides, the relative mass uncertainty ({delta}m=m) achieved was in the order of 10{sup -8} corresponding to a 100-fold improvement in precision over previous measurements. (orig.)
Clément, Emmanuel
2006-01-01
Deformation from the spherical shape is a fundamental property of the atomic nuclei. The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. A first experimental indication for shape coexistence comes from the observation of low-lying excited 0+ states. An ...
International Nuclear Information System (INIS)
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB)
Beyond mean-field boson-fermion model for odd-mass nuclei
Nomura, K; Vretenar, D
2016-01-01
A novel method for calculating spectroscopic properties of medium-mass and heavy atomic nuclei with an odd number of nucleons is introduced, based on the framework of nuclear energy density functional theory and the particle-core coupling scheme. The deformation energy surface of the even-even core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s), are obtained in a self-consistent mean-field calculation determined by the choice of the energy density functional and pairing interaction. This method uniquely determines the parameters of the Hamiltonian of the boson core, and only the strength of the particle-core coupling is specifically adjusted to selected data for a particular nucleus. The approach is illustrated in a systematic study of low-energy excitation spectra and transition rates of axially deformed odd-mass Eu isotopes.
Finite amplitude method applied to giant dipole resonance in heavy rare-earth nuclei
Oishi, Tomohiro; Hinohara, Nobuo
2016-01-01
Background: The quasiparticle random phase approximation (QRPA), within the framework of the nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of the atomic nuclei. Recently, finite amplitude method (FAM) has been developed, in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mo...
Beyond-mean-field boson-fermion model for odd-mass nuclei
Nomura, K.; Nikšić, T.; Vretenar, D.
2016-05-01
A novel method for calculating spectroscopic properties of medium-mass and heavy atomic nuclei with an odd number of nucleons is introduced, based on the framework of nuclear energy density functional theory and the particle-core coupling scheme. The deformation energy surface of the even-even core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s), are obtained in a self-consistent mean-field calculation determined by the choice of the energy density functional and pairing interaction. This method uniquely determines the parameters of the Hamiltonian of the boson core, and only the strength of the particle-core coupling is specifically adjusted to selected data for a particular nucleus. The approach is illustrated in a systematic study of low-energy excitation spectra and transition rates of axially deformed odd-mass Eu isotopes.
Isotope-Identifying neutron reflectometry
Energy Technology Data Exchange (ETDEWEB)
Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Petrenko, A. V.; Gundorin, N. A.; Gledenov, Yu. M. [Joint Institute for Nuclear Research (Russian Federation); Aksenov, V. L. [National Research Centre “Kurchatov Institute”, St. Petersburg Nuclear Physics Institute (Russian Federation)
2015-07-15
The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.
Neutron skin in Osmium isotopes
International Nuclear Information System (INIS)
Here we have made an attempt to calculate neutron skin thickness in rare earth even-even osmium isotopes. The selected isotopes ranges from 2-p to 2-n drip line. Neutron skin is an important feature of neutron rich nuclei. The ground state proton and neutron rms radii have been calculated using HFB approximation. A comparison of calculated radii have been done by using two different Skyrme parameterizations and two different basis
Unexpectedly large charge radii of neutron-rich calcium isotopes
Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.; Ekström, A.; Frömmgen, N.; Hagen, G.; Hammen, M.; Hebeler, K.; Holt, J. D.; Jansen, G. R.; Kowalska, M.; Kreim, K.; Nazarewicz, W.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papenbrock, T.; Papuga, J.; Schwenk, A.; Simonis, J.; Wendt, K. A.; Yordanov, D. T.
2016-06-01
Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain `magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.
International Nuclear Information System (INIS)
A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs
Study of nuclei' excitation in the charge exchange reactions (Draft)
International Nuclear Information System (INIS)
Carried out experimental and theoretical studies show, that in the nuclear charge exchange reactions there is an unique ability for study both properties and behavior of the delta-isobar in the excited nuclear environment. However for theoretical analysis of these reactions it is necessary have experimental data on nuclei charge exchange on free nucleons. It is offered the experiment of measurement dependence of inclusive cross section of the tritium nuclei charge exchange in 3He nuclei on hydrogen from transferred energy. This reaction is isotopically dependent on 3He nuclei in tritons charge exchange reaction on neutrons. Aim of proposed experiment is checking of a hypothesis believability about the delta-isobar excitation in flying nucleus, and measurement of the process intensity. Peculiarity of this experiment is application of relativistic tritons beams formed from accelerated fragments of 4He nuclei. Experimental facility presents of combination of two one-arm spectrometers: first one - time-flying spectrometer for measurement tritium nuclei impulse in beam to target with accuracy 0.3 % for 6 GeV/s and identification of tritium nuclei, the second one - magnetic spectrometer for identification and measurement of 3He nuclei impulse forming in the result of the charge exchange reaction
Berengut, J C; Kava, E M
2011-01-01
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark mass variation, in a number of isotopes of experimental interest including 201,199Hg and 87,85Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation-values of proton and neutron spin in nuclei are also needed to interpret measurements of vio...
3rd International conference on nuclei far from stability, Cargese, Corsica, 19-26 May 1976
International Nuclear Information System (INIS)
These conference proceedings contain 103 contributions which are grouped under the following headings: Experimental methods and techniques; Perspectives in research on exotic nuclei; Nuclear masses - experiment and theory; Nuclear spins, moments, and radii; Light nuclei; Delayed particle emission and statistical aspects; Excited states of neutron-deficient nuclei; Excited states of fission products and other neutron-rich isotopes; Heavy elements and astrophysical aspects. Also included are the Scientific programme and a List of participants. (AJ)
Inner radiation belt source of helium and heavy hydrogen isotopes
Leonov, A. A.; Galper, A. M.; Koldashov, S. V.; Mikhailov, V. V.; Casolino, M.; Picozza, P.; Sparvoli, R.
Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the main source of energetic H and He isotopes nuclei in the radiation belt. This paper reports on the specified calculations of these isotope intensities using various inner zone proton intensity models (AP-8 and SAMPEX/PET PSB97), the atmosphere drift-averaged composition and density model MSIS-90, and cross-sections of the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries, the particles were tracked in the geomagnetic field (modelled through IGRF-95) by integrating numerically the equation of the motion. The calculations take into account the kinematics of nuclear interactions along the whole trajectory of trapped proton. The comparison with new data obtained from the experiments on board RESURS-04 and MITA satellites and with data from SAMPEX and CRRES satellites taken during different phases of solar activity shows that the upper atmosphere is a sufficient source for inner zone helium and heavy hydrogen isotopes. The calculation results are energy spectra and angular distributions of light nuclear isotopes in the inner radiation belt that may be used to develop helium inner radiation belt model and to evaluate their contribution to SEU (single event upset) rates.
Photodisintegration of p-process nuclei
Energy Technology Data Exchange (ETDEWEB)
Wagner, A.; Nair, C.; Erhard, M.; Bemmerer, D.; Beyer, R.; Junghans, A.; Kosev, K.; Rusev, G.; Schilling, K.D.; Schwengner, R. [Forschungszentrum Dresden-Rossendorf, 01314 Dresden (Germany); Grosse, E. [Forschungszentrum Dresden-Rossendorf, 01314 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany)
2009-07-01
The neutron deficient p-nuclei are shielded from the s- or r-process by stable isotopes. P-nuclei are likely to be formed in high temperature cosmic scenarios like exploding supernovae by photodisintegration reactions on heavy r- or s- seed nuclei. The lack of experimental information on energy-dependent cross sections especially for ({gamma},p) and ({gamma},{alpha}) reactions reduces the applicability of nucleosynthesis models. Using intense bremsstrahlung produced at the superconducting electron linear accelerator ELBE at Forschungszentrum Dresden-Rossendorf we investigated ({gamma},n), ({gamma},p) and ({gamma},{alpha}) reactions for the medium-mass p-nuclei {sup 92}Mo and {sup 144}Sm, as well as ({gamma},n) reactions for {sup 100}Mo and {sup 154}Sm by photo-activation. The lowest photoactivation yields have been measured in an underground laboratory. The photodisintegration of {sup 197}Au serves as a benchmark and it is compared to data measured previously with the positron annihilation technique.
Spectroscopic Studies of Exotic Nuclei at ISOLDE
2002-01-01
Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...
Signatures of shape phase transitions in odd-mass nuclei
Nomura, K; Vretenar, D
2016-01-01
Quantum phase transitions between competing ground-state shapes of atomic nuclei with an odd number of protons or neutrons are investigated in a microscopic framework based on nuclear energy density functional theory and the particle-plus-boson-core coupling scheme. The boson-core Hamiltonian, as well as the single-particle energies and occupation probabilities of the unpaired nucleon, are completely determined by constrained self-consistent mean-field calculations for a specific choice of the energy density functional and paring interaction, and only the strength parameters of the particle-core coupling are adjusted to reproduce selected spectroscopic properties of the odd-mass system. We apply this method to odd-A Eu and Sm isotopes with neutron number $N \\approx 90$, and explore the influence of the single unpaired fermion on the occurrence of a shape phase transition. Collective wave functions of low-energy states are used to compute quantities that can be related to quantum order parameters: deformations...
Nuclei far from stability using exotic targets
Wilhelmy, J B; Brown, R E; Flynn, E R; Thomas, K E; Van der Plicht, J
1981-01-01
The meson factories have made possible high fluence medium energy proton beams that can be used for spallation reactions to produce macro quantities of unstable isotopes. Targets of over 10 g/cm/sup 2/ can be exposed to total fluence approaching 1 A-hour resulting in spallation yields in the 0.01-10 mg range for many isotopes of potential interest for nuclear structure studies. With the use of hot cell facilities, chemical processing can isolate the desired material and this coupled with subsequent isotope separation can result in usable quantities of material for nuclear target application. With offstable isotopes as target materials, conventional nuclear spectroscopy techniques can be employed to study nuclei far from stability. The irradiation and processing requirements for such an operation, along with the isotope production possibilities, are discussed. Also presented are initial experiments using a /sup 148/Gd (t/sub 1/2/=75a) target to perform the (p, t) reaction to establish levels in the proposed do...
Discovery of the Isotopes with 11 <= Z <= 19
Thoennessen, M
2011-01-01
A total of 194 isotopes with 11 $\\le$ Z $\\le$ 19 have been identified to date. The discovery of these isotopes which includes the observation of unbound nuclei, is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.
Self-consistent calculations of quadrupole moments of spherical nuclei
Directory of Open Access Journals (Sweden)
Saperstein E.E.
2012-12-01
Full Text Available The self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional byFayans et al. with the set DF3-a of parameters fixed previously is used to calculate three kinds of quadrupolemoments. At first, we examined systematically quadrupole moments of odd neighbors of semi-magic lead andtin isotopes and N = 50, N = 82 isotones. Second, we found quadrupole moments of the first 2+ states in thesame two chains of isotopes. Finally, we evaluated quadrupole moments of odd-odd nuclei neighboring to doublemagic ones. Reasonable agreement with available experimental data has been obtained. Predictions are made forquadrupole moments of nuclei in the vicinity of unstable magic nuclei
1967-01-01
When ISOLDE began operation, it was unique in the world. It used a new technique to overcome the problem of rapidly separating interesting atoms from the rest of the nuclear target. Through a combination of chemical and electromagnetic methods the different isotopes were separated and converted into an ion beam made of just one isotope. On-line production of radioactive nuclei, in this way, offered many new opportunities for physicists as it allowed them to perform previously impossible experiments on short-lived nuclei. ISOLDE has become one of CERN's major installations and it supports a broad scientific programme by providing beams to different experiments. The techniques developed at ISOLDE have opened up a new field of radioactive ion-beam accelerators, both at CERN and worldwide.
Clustering in stable and exotic nuclei
Beck, C
2016-01-01
Since the pioneering discovery of molecular resonances in the 12C+12C reaction more than half a century ago a great deal of research work has been undertaken in alpha clustering. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of "exotic" shapes and Bose-Einstein alpha condensates in light N=Z alpha-conjugate nuclei is investigated. Various approaches of the superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Evolution of clustering from stability to the drip-lines is examined: clustering aspects are, in particular, discussed for light exotic nuclei with large neutron excess such as neutron-rich Oxygen isotopes with their complete spectroscopy.
Clustering effects induced by light nuclei
Beck, C
2013-01-01
Since the pioneering discovery, half a century ago, of 12C+12C molecular resonances, a great deal of research work has been undertaken in theSince the pioneering discovery, half a century ago, of 12C+12C molecular resonances, a great deal of research work has been undertaken in the alpha-clustering study. Our knowledge in the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Clustering aspects are also discussed for light nuclei with neutron excess through very recent results on neutron-rich Oxygen isotopes.
Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections
Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.
2016-04-01
Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at
Leng, Melanie; Dean, Jonathan
2014-01-01
Isotopes are variations of a particular chemical element. It is all to do with the number of neutrons. Oxygen has two main isotopes: 18O which has 10 neutrons and 8 protons; and 16O which has 8 neutrons and 8 protons. Although these variants have a different number of neutrons (and therefore a different atomic mass), the number of protons remains the same, and they are still classed as the same element. Isotopes are analysed in terms of ratios such as 18O/16O which is shortened to δ18O (δ...
Energy Technology Data Exchange (ETDEWEB)
Broglia, R.A.
1986-01-01
The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)
Evidence of double magicity of N=Z nuclei near the rp-process path
Sharma, M. M.; Sharma, J. K.
2009-01-01
N=Z nuclei above Ni are understood to be waiting-point nuclei in the rp-process nucleosynthesis. Investigating the experimental isotope shifts in Kr isotopes near the proton drip-line, we have discovered that N=Z rp-process nuclei $^{68}$Se, $^{72}$Kr, $^{76}$Sr and $^{80}$Zr exhibit a significant shell gap both at the proton and neutron numbers in the deformed space with the consequence that pairing correlations for protons and neutrons vanish, thus lending a double-magic character to these ...
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6He and3H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay
International Nuclear Information System (INIS)
Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ-, e+) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN
Bellucci, Jeremy J; Simonetti, Antonio; Wallace, Christine; Koeman, Elizabeth C; Burns, Peter C
2013-08-01
The Pb isotopic compositions for 51 spots of melt glass in 11 samples of trinitite have been determined by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Trinitite glass yields a large range of Pb isotopic compositions (i.e., (206)Pb/(204)Pb = 17.08-19.04), which reflect mixing between industrial Pb from materials used in the Trinity test and natural geologic components. Areas within trinitite melt glass containing high concentrations of both Cu and Pb, which are derived from the bomb and blast site-related components, were used for delineating the Pb isotopic composition corresponding to the anthropogenic Pb component. Comparison between the isotopic composition estimated here for the industrial Pb used in the Trinity test and those from known Pb deposits worldwide indicates close agreement with ore from the Buchans mine (Newfoundland, Canada). The Buchans mine was active during the time of the Trinity test and was operated by the American Smelting and Refining Company, which could have provided the Pb used in the test. The industrial Pb used in the Trinity test materials is not documented in the literature (or declassified) but could have been present in bricks, solder, pigs, or some other anthropogenic component related to the experiment. PMID:23829180
Laser isotope separation of gadolinium
International Nuclear Information System (INIS)
Basic studies on laser isotope separation of gadolinium were performed. Spectroscopic data were obtained such as isotope shifts and hyperfine structures using an atomic beam. Enrichment of 157Gd up to 80% was observed by three-step photoionization experiment using linearly polarized dye lasers. Design of an separation system was discussed by the help of computer calculation of excitation dynamics. (author)
Fissibility of compound nuclei
Iwata, Yoritaka
2012-01-01
Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and fission events are expected to appear. In this paper, a microscopic method of calculating the fissibility of compound nuclei is presented.
Elusive active galactic nuclei
Maiolino, R; Comastri, A; Gilli, R; Nagar, NM; Bianchi, S; Boker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M
2003-01-01
A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically 'elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtai
Octupole collectivity in nuclei
Butler, P. A.
2016-07-01
The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.
Triaxiality in superheavy nuclei
International Nuclear Information System (INIS)
In this work, triaxial degree of freedom is explicitly utilized in calculating alpha decay lifetimes. The synthesis of superheavy nuclei with Z = 114-116 and 118 were detected by their decaying alpha chains with terminating spontaneous fission events. The lifetime of alpha decay chains measured are to be compared with the values evaluated theoretically
Hoyer, Paul
1995-01-01
I review hard photon initiated processes on nuclei. The space-time development of the DIS reaction as viewed in the target rest frame qualitatively describes the nuclear shadowing of quark and gluon distributions, although it may be difficult to understand the very weak $Q^2$ dependence of the low $x$ data. The current jet hadron energy distribution at large $\
Superheavy Nuclei: Which Regions of Nuclear Map are Accessible for the Nearest Studies
Karpov, A. V.; Zagrebaev, V. I.; Greiner, W.
2015-11-01
Use of fusion reactions for synthesis and studying new superheavy nuclei is considered in the paper. Perspectives of synthesis of new elements with Z > 118 are discussed. The gap of unknown SH nuclei, located between the isotopes which were produced earlier in the cold and hot fusion reactions, can be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. Cross sections for the production of these nuclei are predicted to be rather large. The found area of β+-decaying SH nuclei with 111 ≤ Z ≤ 115 located to the "right" (more neutron-rich) to those synthesized recently in Dubna in 48Ca-induced fusion reactions gives a unique chance to synthesize in fusion reactions the most stable SH nuclei located at the center of the island of stability.
Effect of properties of superheavy nuclei on their production and decay
Adamian, G. G.; Antonenko, N. V.; Bezbakh, A. N.; Jolos, R. V.
2016-05-01
Properties and stability of superheavy nuclei resulting from hot fusion are discussed. It is shown that the microscopic-macroscopic approach allows obtaining the closed proton shell at Z ≥ 120. Isotopic trends of K-isomeric states in superheavy nuclei are predicted. Evaporation residue cross sections in hot fusion reactions are calculated using the predicted properties of superheavy nuclei. Interruption of α decay chains by spontaneous fission is analyzed. Alpha decay chains through isomeric states are considered. Internal level densities in superheavy nuclei are microscopically calculated.
EINSTEIN, SCHROEDINGER, AND ATOM
Directory of Open Access Journals (Sweden)
Trunev A. P.
2014-03-01
Full Text Available In this paper, we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation and the Schrodinger equation as well. The solutions of the Einstein equations describing the stationary states of arbitrary quantum and classical systems with central symmetry have been obtained. Einstein’s atom model has been developed, and proved that atoms and atomic nuclei can be represented as standing gravitational waves
Directory of Open Access Journals (Sweden)
Trunev A. P.
2013-02-01
Full Text Available In this paper we consider a system of Dirac equations describing the dynamics of quarks in the metric of the atomic nuclei. We found out, that the binding energy of the nucleons for all known nuclides depends on the content of the quarks. The resulting dependence of the energy of the nucleons shows a quark shells, similar to electron shells. Our basic assumption is that each nucleon in the nucleus loses its individuality by dissociation to individual quarks that form quark shells. These shells are filled sequentially, just as filled electron shells. Since the nucleons are composed of two types of quarks, there are two types of shells that are filled with u and d quarks, respectively. In this case, the binding energy per nucleon depends on the concentration of quarks in the shells and the energy of the interaction of quarks.
Energetic Nuclei, Superdensity and Biomedicine
Baldin, A. M.
1977-01-01
High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…
Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.
2016-06-01
KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.
Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei
Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo
2016-03-01
Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.
JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei
Energy Technology Data Exchange (ETDEWEB)
Papenbrock, Thomas
2014-05-16
The grant “JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei ” (DOE DE-FG02-06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.-based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.
JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei
Energy Technology Data Exchange (ETDEWEB)
Papenbrock, Thomas
2014-05-16
The grant “JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei ” (DOE DE‐FG02‐06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.‐based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.
General Relativistic Mean Field Theory for rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki
1998-03-01
The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)
International Nuclear Information System (INIS)
Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many
Energy Technology Data Exchange (ETDEWEB)
Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-22
For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.
Effenberger, M.; Mosel, U.
1997-01-01
We calculate the total photoabsorption cross section and cross sections for inclusive pion and eta photoproduction in nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical BUU transport model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cro...
Kelkar, N G; Moskal, P
2015-01-01
The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.
International Nuclear Information System (INIS)
Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185Au, and competing triaxial and prolate shapes in 71Se and 176Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152Dy, 132Ce and 135Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68Ge and 70Se. The differences are thought to be related to the competing shell gaps in these nuclei
Hosaka, Kouichi; Shiino, Kennichi; Nakanishi, Yuko; Odagiri, Takeshi; Kitajima, Masashi; Kouchi, Noriyuki
2016-06-01
The absolute values of the cross section for formation of a 2 p atom pair in the photoexcitation of H2 and D2 are measured against the incident photon energy in the range of doubly excited states by means of the coincidence detection of two Lyman-α photons. The cross-section curves are explained only by the contribution of the doubly excited Q2Π1u(1 ) state. The isotope effect on the oscillator strengths of 2 p +2 p pair formation for H2 and D2 from the Q2Π1u(1 ) state is almost the same as that on the oscillator strengths of 2 s +2 p pair formation from the Q2Π1u(1 ) state obtained by our group [T. Odagiri et al., Phys. Rev. A 84, 053401 (2011), 10.1103/PhysRevA.84.053401]. This channel independence indicates that both isotope effects are dominated by the early dynamics of the Q2Π1u(1 ) state, before reaching the branching point into 2 p +2 p pair formation and 2 s +2 p pair formation.
Charge radii of radium isotopes
Wansbeek, L. W.; Schlesser, S.; Sahoo, B. K.; Dieperink, A. E. L.; Onderwater, C. J. G.; Timmermans, R. G. E.
2012-01-01
We present a combined analysis of the available isotope-shift data from the optical spectra of Ra atoms and Ra+ ions. Atomic structure calculations of the field-shift and specific mass-shift constants of the low-lying levels in Ra+ are used. The nuclear radial differences delta
The Atomic Fingerprint: Neutron Activation Analysis
Energy Technology Data Exchange (ETDEWEB)
Keisch, Bernard [Carnegie-Mellon University
1972-01-01
The nuclei of atoms are stable only when they contain certain numbers of neutrons and protons. Since nuclei can absorb additional neutrons, which in many cases results in the conversion of a stable nucleus to a radioactive one, neutron activation analysis is possible.
Dynamical effects in fusion with exotic nuclei
Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.
2016-08-01
Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.
Exotic structure of carbon isotopes
International Nuclear Information System (INIS)
Ground state properties of C isotopes, deformation and electromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parties of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12∼15% of the Thomas-Reiche-Kuhn sum rule value and 50∼ 80% of the cluster sum rule value. (author)
Alignments in the nobelium isotopes
Institute of Scientific and Technical Information of China (English)
ZHENG Shi-Zie; XU Fu-Rong; YUAN Cen-Xi; QI Chong
2009-01-01
Total-Routhian-Surface calculations have been performed to investigate the deformation and align-ment properties of the No isotopes. It is found that normal deformed and superdeformed states in these nuclei can coexist at low excitation energies. In neutron-deficient No isotopes, the superdeformed shapes can even become the ground states. Moreover, we plotted the kinematic moments of inertia of the No isotopes, which follow very nicely available experimental data. It is noted that, as the rotational frequency increases, align-ments develop at hω=0.2-0.3 MeV. Our calculations show that the occupation of the vj orbital plays an important role in the alignments of the No isotopes.
Strong interaction studies with kaonic atoms
Marton, J; Beer, G; Berucci, C; Bosnar, D; Bragadireanu, A M; Cargnelli, M; Clozza, A; Curceanu, C; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayano, R; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Okada, S; Pietreanu, D; Piscicchia, K; Ponta, T; Quaglia, R; Vidal, A Romero; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J
2015-01-01
The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K-pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DA?NE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering le...
Strong interaction studies with kaonic atoms
Marton, J; Beer, G; Berucci, C; Bosnar, D; Bragadireanu, A M; Cargnelli, M; Clozza, A; Curceanu, C; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayano, R; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Okada, S; Pietreanu, D; Piscicchia, K; Ponta, T; Quaglia, R; Vidal, A Romero; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J
2016-01-01
The strong interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DAFNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound kaonic hydrogen atom leading to a hadronic shift and a hadronic broadening of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated ...
Dipole Excitations of Unstable Neutron-Rich Nuclei
International Nuclear Information System (INIS)
Coulomb breakup of high-energy secondary beams of unstable nuclei serves in nuclear structure investigations of neutron-rich isotopes. A summary of the respective research activities at GSI is presented, covering isotopes from helium to oxygen. The breakup is mediated through dipole excitations in to the continuum. Non-resonant excitations in to the continuum near the dissociation threshold deliver information on the single-particle ground-state structure. Resonant excitation into the giant resonance domain is also observed. In addition, a brief outlook on future activities at GSI is given. (author)
Energy Technology Data Exchange (ETDEWEB)
Petit, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement
1994-12-31
Laser properties may be used for stable isotope production either by selective photoionization of an atom particular isotope, either by selective photodissociation of a molecule. Principles of both processes are reviewed and examples of calcium 43 isotope separation through photoionization and of carbon and oxygen isotope separation by photodissociation are presented. 4 figs., 1 tab., 11 refs.
International Nuclear Information System (INIS)
Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and
2002-01-01
This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.
Formation of Superheavy Nuclei in Massive Fusion Reactions
Institute of Scientific and Technical Information of China (English)
FENG Zhao-qing; JIN Gen-ming; LI Jun-qing; Scheid Werner
2009-01-01
Within the concept of the dinuclear system(DNS),by incorporating the coupling of the relative motion to the nucleon transfer process,a dynamical model is proposed for describing the formation of superheavy residue nucleus in massive fusion reactions,in which the capture of two heavy colliding nuclei,the formation of compound nucleus and the de-excitation process are calculated using empirical coupled channel model,solving master equation numerically and statistical theory,respectively.By using the DNS model,the evaporation-residue excitation functions in the ~(48)Ca induced fusion reactions and in the cold fusion reactions are investigated systematically and compared with available experimental data.Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed.The possible factors that influencing the isotopic dependence of the production cross sections are analyzed.The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated.
Energy Technology Data Exchange (ETDEWEB)
Hirscher, M.; Kronmueller, H. (Max-Planck-Inst. fuer Metallforschung, Inst. fuer Physik, Stuttgart (Germany))
1991-08-30
Magnetic after-effect measurements are very sensitive to short-range reorientation relaxations and represent an ideal tool for the study of hydrogen diffusion even at low concentrations. In this paper we deal with the interaction of hydrogen with defects or different microstructures and with the local reorientation in the vicinity of these structures. Results of hydrogen diffusion in a pure metal with radiation-induced intrinsic atomic defects, in chemically ordered and disordered binary f.c.c. alloys, and in chemically as well as structurally disordered amorphous alloys are presented. The three examples illustrate the use of hydrogen as an internal probe to detect microstructural defects on an atomic scale. (orig.).
Blandford, RD; Woltjer, L
1990-01-01
Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory
Beckmann, Volker
2012-01-01
This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d
Effenberger, M.; Hombach, A; Teis, S.; Mosel, U.
1996-01-01
We calculate the total photoabsorption cross section on nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical phase space model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cross sections for $N \\, R \\to N \\, N$, needed for the calculation ...
Formation of superheavy nuclei in cold fusion reactions
Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner
2007-01-01
Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.
Determination of Matter Surface Distribution of Neutron-rich Nuclei
Kohama, A; Arima, A; Yamaji, S; Kohama, Akihisa; Seki, Ryoichi; Arima, Akito; Yamaji, Shuhei
2003-01-01
We demonstrate that the matter density distribution in the surface region is determined well by the use of the relatively low-intensity beams that become available at the upcoming radioactive beam facilities. Following the method used in the analyses of electron scattering, we examine how well the density distribution is determined in a model-independent way by generating pseudo data and by carefully applying statistical and systematic error analyses. We also study how the determination becomes deteriorated in the central region of the density, as the quality of data decreases. Determination of the density distributions of neutron-rich nuclei is performed by fixing parameters in the basis functions to the neighboring stable nuclei. The procedure allows that the knowledge of the density distributions of stable nuclei assists to strengthen the determination of their unstable isotopes.
Electron scattering off palladium isotopes
International Nuclear Information System (INIS)
The low-lying states of the even Pd isotopes are characterized by vibrator-like properties. In this thesis the results of an electron scattering experiment on the Pd isotopes, designed to study the description of such nuclei in the Anharmonic Vibrator Model (AVM) and the Interacting Boson Approximation (IBA), are presented and discussed. Data have been taken at the high-resolution electron scattering facility of NIKHEF-K and covered a momentum-transfer range of 0.4 to 2.5 fm-1. (Auth.)
Fragmentation of relativistic oxygen nuclei in interactions with a proton
Glagolev, V V; Lipin, V D; Lutpullaev, S L; Olimov, K K; Yuldashev, A A; Yuldashev, B S; Olimov, Kh.K.
2001-01-01
The data on investigation of inelastic interactions of 16O nuclei with a proton at 3.25 A GeV/c momentum by the bubble chamber method are presented. The separate characteristics as fragments isotopic composition and as topo-logical cross sections of fragmentation channels are given. The processes of light fragments formation and breakup of 16O nucleus on multicharge fragments have been investigated. The comparison of experimental data with the calculations by statistical multifragmentation model was conducted.
Average resonance parameters of zirconium and molybdenum nuclei
International Nuclear Information System (INIS)
Full sets of average resonance parameters S0, S1, R0', R1', S1,3/2 for zirconium and molybdenum nuclei with natural mixture of isotopes are determined by means of the method designed by authors. The determination is realized from analysis of the average experimental differential cross sections of neutron elastic scattering in the field of energy before 440 keV. Analysis of recommended parameters and some of the literary data had been performed also.
Average resonance parameters of ruthenium and palladium nuclei
International Nuclear Information System (INIS)
Full sets of the average resonance parameters S0, S1, R0', R1', S1,3/2 for ruthenium and palladium nuclei with natural mixture of isotopes are determined by means of the method designed by authors. The determination is realized from analysis of the average experimental differential cross sections of neutron elastic scattering in the field of energy before 440 keV. The analysis of recommended parameters and of some of the literary data had been performed also.
Average resonance parameters of germanium and selenium nuclei
International Nuclear Information System (INIS)
Full sets of average resonance parameters S0, S1, R0', R1', S1,3/2 for germanium and selenium nuclei with natural isotope content are determined. Parameters are received from the analysis of experimental neutron elastic scattering cross sections at energy region up to 440 keV with the help of the method developed by the authors. The analysis of recommended parameters and some literature data is fulfilled as well.
Average resonance parameters of tellurium and neodymium nuclei
International Nuclear Information System (INIS)
Complete sets of average resonance parameters S0, S1, R''0, R''1, and S1,3/2 for tellurium and neodymium nuclei with natural isotope contents have been determined by analyzing the experimental differential cross-sections of neutron elastic scattering in the energy range lower than 440 keV. The data obtained, the recommended parameter values, and some literature data have been analyzed.
Ho, L C; Sargent, W L W; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.
1996-01-01
We describe a new sample of Seyfert nuclei discovered during the course of an optical spectroscopic survey of nearby galaxies. The majority of the objects, many recognized for the first time, have luminosities much lower than those of classical Seyferts and populate the faint end of the AGN luminosity function. A significant fraction of the nuclei emit broad H-alpha emission qualitatively similar to the broad lines seen in classical Seyfert 1 nuclei and QSOs.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
Toshimi Suda
2014-11-01
A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.
Energy Technology Data Exchange (ETDEWEB)
Plekhanov, Vladimir G. [Computer Science College, Tallinn (Estonia). Mathematics and Physics Dept.
2013-07-01
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
G Plekhanov, Vladimir
2013-01-01
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
Elusive Active Galactic Nuclei
Maiolino, R; Gilli, R; Nagar, N M; Bianchi, S; Böker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M
2003-01-01
A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically "elusive". X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive AGN in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 10^24 cm^-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN, the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical Narrow Line Region. Elusive AGN may contribute significantly to the 30 keV bump of the X-ray background.
Study of neutron-deficient Sn isotopes
International Nuclear Information System (INIS)
The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106Sn, high spin states in 107Sn and 107In; Yrast levels of 106Sn, 107Sn, 108Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112Xe. All these results are discussed
Isotopic effects on the phonon modes in boron carbide.
Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O
2010-10-01
The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.
High Rydberg atoms: newcomers to the atomic physics scene
International Nuclear Information System (INIS)
A description is given of high Rydberg atoms which have a greatly increased size due to their having been perturbed in certain ways. The production, detection, and research on these atoms are considered. The motivation for such studies, apart from their intrinsic interest, includes laser development, laser isotope separation, energy deposition in gases, plasma diagnostics, and radio astronomy
2002-01-01
We propose to perform Coulomb excitation experiments of neutron-rich nuclei in the vicinity of $^{68}$Ni towards $^{78}$Ni using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Major changes in the structure of the atomic nucleus are expected around the N = 40 subshell closure. Recent B(E2) measurements suggested that $^{68}$Ni behaves like a doubly magic nucleus while neutron-rich Zn isotopes with N>38 exhibit a sudden increase of B(E2) values which may be the signature of deformation. We would like to check and test these predictions for neutron-rich nuclei in the vicinity of N = 40 and N = 50 shell closures like $^{72}$Zn, $^{74}$Zn, $^{76}$Zn, $^{68}$Ni, $^{70}$Ni. Our calculations show that an energy upgrade from 2.2 to 3 MeV/nucleon will be of crucial importance for a part of our study while some nuclei can still be very efficiently studied at an energy of 2.2 MeV/nucleon. Therefore, to perform our experiment in an efficient way, we request 21 shifts of beam time before the ene...
International Nuclear Information System (INIS)
Born from the application to geology of nuclear physics techniques, the isotopic geology has revolutionized the Earth's sciences. Beyond the dating of rocks, the tracer techniques have permitted to reconstruct the Earth's dynamics, to measure the temperatures of the past (giving birth to paleoclimatology) and to understand the history of chemical elements thanks to the analysis of meteorites. Today, all domains of Earth sciences appeal more or less to the methods of isotopic geology. In this book, the author explains the principles, methods and recent advances of this science: 1 - isotopes and radioactivity; 2 - principles of isotope dating; 3 - radio-chronological methods; 4 - cosmogenic isotope chronologies; 5 - uncertainties and radio-chronological results; 6 - geochemistry of radiogenic isotopes; 7 - geochemistry of stable isotopes; 8 - isotopic geology and dynamical analysis of reservoirs. (J.S.)
International Nuclear Information System (INIS)
Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)
García Recio, Carmen; Nieves Pamplona, Juan Miguel; Salcedo, Lorenzo Luis; Tolós Rigueiro, Laura
2011-01-01
The anti-D meson self-energy is evaluated self-consistently, using unitarized coupled-channel theory, by computing the in-medium meson-baryon T-matrix in the C=-1,S=0 sector. The heavy pseudo-scalar and heavy vector mesons, anti-D and anti-D^*, are treated on equal footing as required by heavy quark spin symmetry. Results for energy levels and widths of D^- mesic atoms in 12C, 40Ca, 118Sn and 208Pb are presented. The spectrum contains states of atomic and of nuclear types for all nuclei. anti...
A Quantum Gas Microscope for Fermionic Atoms
Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.
2015-01-01
Strongly interacting fermions define the properties of complex matter at all densities, from atomic nuclei to modern solid state materials and neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. Here we realize a quantum gas microscope for fermionic $^{40}$K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high-resolu...
Do Skyrme forces that fit nuclear matter work well in finite nuclei?
Stevenson, P D; Stone, J R; Dutra, M
2012-01-01
A shortlist of Skyrme force parameterizations, recently found to have passed a series of constraints relating to nuclear matter properties is analyzed for their ability to reproduce data in finite nuclei. We analyse binding energies, isotope shifts and fission barriers. We find that the subset of forces have no common ability to reproduce (or otherwise) properties of finite nuclei, despite passing the extensive range of nuclear matter constraints.
Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM
International Nuclear Information System (INIS)
The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)
Spectral statistics of rare-earth nuclei: Investigation of shell model configuration effect
Sabri, H
2015-01-01
The spectral statistics of even-even rare-earth nuclei are investigated by using all the available empirical data for Ba, Ce, Nd, Sm, Gd, Dy, Er, Yb and Hf isotopes. The Berry- Robnik distribution and Maximum Likelihood estimation technique are used for analyses. An obvious deviation from GOE is observed for considered nuclei and there are some suggestions about the effect due to mass, deformation parameter and shell model configurations.
On limits of ab initio calculations of pairing gap in nuclei
Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.
2010-01-01
A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab-initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.
Neutron Skin Thickness of Nuclei and Effective Nucleon-Nucleon Interactions
Institute of Scientific and Technical Information of China (English)
LIU Min; WANG Ning; LI Zhu-Xia; WU Xi-Zhen
2006-01-01
@@ The Skyrme energy density functional is applied to study the ground state properties of a series of finite nuclei.The charge rms radii, neutron rms radii, and the neutron skin thickness for some nuclei are calculated and compared with the experimental data. The constraint on the effective interactions, especially, the density dependence of the isospin-dependent part of Skyrme interactions is extracted by the data of neutron skin thicknesses of 208 pb and isotopes of Sn.
Dynamical effects in fusion with exotic nuclei
Vo-Phuoc, K; Simpson, E C
2016-01-01
[Background] Reactions with stable beams have demonstrated a strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. [Purpose] To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. [Method] Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in $^{40-54}$Ca+$^{116}$Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. [Results] The development of a neutron skin in exotic calcium iso...
Clusters in neutron-rich light nuclei
Directory of Open Access Journals (Sweden)
Jelavić Malenica D.
2016-01-01
Full Text Available Due to their high selectivity, transfer and sequential decay reactions are powerful tools for studies of both single particle (nucleon and cluster states in light nuclei. Their use is particularly simple for investigations of α-particle clustering (because α-particle has Jπ=0+, which simplifies spin and parity assignments to observed cluster states, but they are also easily applicable to other types of clustering. Recent results on clustering in neutron-rich isotopes of beryllium, boron and carbon obtained measuring the 10B+10B reactions (at 50 and 72 MeV are presented. The highly efficient and segmented detector systems used, built from 4 Double Sided Silicon Strip Detectors (DSSSD allowed detection of double and multiple coincidences and, in that way, studies of states populated in transfer reactions, as well as their sequential decay.
Viscosity: From air to hot nuclei
Indian Academy of Sciences (India)
Nguyen Dinh Dang
2014-11-01
After a brief review of the history of viscosity from classical to quantal fluids, a discussion of how the shear viscosity of a finite hot nucleus is calculated directly from the width and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio / with s being the entropy volume density, is extracted from the experimental systematic of GDR in copper, tin and lead isotopes at finite temperature . These empirical results are compared with the results predicted by several independent models, as well as with almost model-independent estimations. Based on these results, it is concluded that the ratio / in medium and heavy nuclei decreases with increasing to reach (1.3−4)$×\\hbar/(4 k_B)$ at = 5 MeV, which is almost the same as that obtained for quark-gluon plasma at > 170 MeV.
Magic ultramagnetized nuclei in explosive nucleosynthesis
International Nuclear Information System (INIS)
Direct evidence of the presence of 44Ti and content of the isotope in the supernova remnant Cassiopeia A are obtained from the analysis of gamma-ray spectrum of the remnant. A significant excess of observational 44Ti volume on predictions of supernova models can be explained as the magnetization effect in the process of explosive nucleosynthesis. The formation of chemical elements is considered accounting for superstrong magnetic fields predicted for supernovae and neutron stars. Using the arguments of nuclear statistical equilibrium, a significant effect of magnetic field on the nuclear shell energy is demonstrated. The magnetic shift of the most tightly “bound” nuclei from the transition metals of iron series to titanium leads to an exponential increase in the portion of 44Ti and, accordingly to a significant excess of the yield of these products of nucleosynthesis.
Ayala, A P; Levin, E M
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains nine separate records on the transport of the evanescent electron beam in the vacuum section with plasma disks, determination of ΔΓs from analysis of untagged decays Bs0→J/ψφ by using the method of angular moments, investigation of light nucleus clustering in relativistic multifragmentation processes, secondary fragments of relativistic 22Ne at 4.1 A · GeV/c nuclei in nuclear emulsion, extrapolation of experimental data of accelerated radiation aging to the operation condition of dipole magnet electrical insulation at low dose rates, automatic quality control system of the installed straws into TRT wheels, a new method of fast simulation for a hadron calorimeter response, empirical evidence for relation between threshold effects and neutron strength function as well as on what information can be derived when no events are registered
Xu, Renxin
2011-01-01
What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.
Beck, Christian
Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics: - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...
Electron scattering off nuclei
International Nuclear Information System (INIS)
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author)
International Nuclear Information System (INIS)
In this talk I discuss properties of hot stellar matter at sub-nuclear densities which is formed in supernova explosions. I emphasize that thermodynamic conditions in this case are rather similar to those created in the laboratory by intermediate-energy heavy-ion collisions. Theoretical methods developed for the interpretation of multi-fragment final states in such reactions can be used also for description of the stellar matter. I present main steps of the statistical approach to the equation of state and nuclear composition, dealing with an ensemble of nuclear species instead of one “average” nucleus. Finally some results of this approach are presented. The emphasis is put on possible formation of heavy and superheavy nuclei. (author)
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.
Fission barrier in even-even superheavy nuclei
International Nuclear Information System (INIS)
In this work, the ground state properties of even-even superheavy nuclei (Z=112-120) are studied. The work has given emphasis on the role of deformation on the structure of superheavy nuclei. The problem of superdeformed ground state, their deformation energy curves and the potential energy surface of these nuclei is addressed. Both the nonrelativistic Skyrme-Hartree-Fock SHF and the deformed Relativistic Mean Field RMF models have been used in a constrained calculation. The systematic investigations of fission barriers in even-even superheavy nuclei with charge number Z=112-120 within relativistic mean field theory including the triaxial shapes and octupole shapes with axial symmetry. The improved version of NL3 parameter set (NL3), standard NL3, SkI4 and SLy4 parameter sets are used for the calculations. The pairing correlations are treated using the BCS approximation using the seniority pairing forces adjusted to empirical values of the gap parameters. The investigations for potential energy surface (PES), and the deformation energy curves for several isotopes with charge number Z=112, 114, 116, 118 and 120 nuclei obtained with the NL3 parameterization of the RMF Lagrangian is presented. The results will be for the case of axial solution with reflection symmetry, triaxial solutions with reflection symmetry, and octupole deformation solutions with axial symmetry
Future of superheavy element research: Which nuclei could be synthesized within the next few years?
Zagrebaev, Valeriy; Greiner, Walter
2012-01-01
Low values of the fusion cross sections and very short half-lives of nuclei with Z$>$120 put obstacles in synthesis of new elements. Different nuclear reactions (fusion of stable and radioactive nuclei, multi-nucleon transfers and neutron capture), which could be used for the production of new isotopes of superheavy (SH) elements, are discussed in the paper. The gap of unknown SH nuclei, located between the isotopes which were produced earlier in the cold and hot fusion reactions, can be filled in fusion reactions of $^{48}$Ca with available lighter isotopes of Pu, Am, and Cm. Cross sections for the production of these nuclei are predicted to be rather large, and the corresponding experiments can be easily performed at existing facilities. For the first time, a narrow pathway is found to the middle of the island of stability owing to possible $\\beta^+$-decay of SH isotopes which can be formed in ordinary fusion reactions of stable nuclei. Multi-nucleon transfer processes at near barrier collisions of heavy (a...
Repolarization of Negative Muons by Polarized $^{209}$Bi Nuclei
Kadono, R; Ishikawa, T; Nishiyama, K; Nagamine, K; Yamazaki, T; Bosshard, A; Döbeli, M; van Elmbt, L; Schaad, M; Truöl, P; Bay, A; Perroud, J P; Deutsch, J; Tasiaux, B; Hagn, E
2016-01-01
A large $\\mu^-$ polarization was achieved in muonic Bi atoms with the help of the strong hyperfine field in a polarized nuclear target. Using $^{209}$Bi nuclei polarized to ($59\\pm9$)% in ferromagnetic BiMn, we observed a $\\mu$-$e$ decay asymmetry of ($13.1\\pm3.9$)%, which gives $\\mu^-$ polarization per nuclear polarization equal to $-1.07\\pm 0.35$. This value is almost consistent with $-0.792$ calculated for nuclei with spin $I= \\frac{9}{2}$ and a positive magnetic moment under the assumption that the hyperfine interaction becomes effective in the lowest muonic states.
Single Particle energy levels in ODD-A Nuclei
International Nuclear Information System (INIS)
Singe particle energies for atomic nuclei with odd-A number of nucleons, i.e. nuclei possessing odd number of protons or odd number of neutrons, were calculated based on Nilsson's theory, and then the diagrams were made. the energy diagram is in the from of plot of energies as function of deformations, entities identifying the deviations from the spherical shape. The energy calculations were done using FORTRAN 77 language of PC (Personal Computer) version with Microsoft Fortran Power Station compiler, which was then combined with WORD version 6.0 and EXCEL version 5.0 of WINDOWS WORKGROUP to make the plot
Experiments with stored relativistic exotic nuclei
International Nuclear Information System (INIS)
Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: (1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10-6. The achieved mass resolving power of m/Δm = 6.5 . 105 (FWHM) in recent measurements represents an improvement by a factor of two compared to our previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54 ≤ Z ≤ 84. The results are compared with mass models and estimated values based on extrapolations of experimental values. (2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5 . 105 (FWHM) was achieved in this mode of operation. (3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability. (orig.)
International Nuclear Information System (INIS)
During the reporting period the analysis of the over 100 muonic spectra of practically all stable isotopes of Ru, Pd, Cd, Sn, Te and Ba has progressed satisfactorily and systematic trends of the ΔN = 2 isotope and of the ΔZ = 2 isotone shifts have been established. The analysis of the muonic x-ray spectra of the Gd-isotopes 154155156157158160Gd has been completed. A paper describing precise measurements of the ground-state quadrupole moments of 155Gd and 157Gd has been published. The discrepancies in the energy splitting of the 3d and 2p levels of muonic 208Pb was partly solved by a precise re-measurement of the d/sub 5/3/ - d/sub 3/2/ splitting energy. Uncertainties in the nuclear polarization corrections cannot account for the discrepancies that still exist in the 2p/sub 3/2/ - 2p/sub 1/2/ splitting energy. A theoretical attempt to explain the observed isotope shifts in Ca nuclei was qualitatively successful. A refinement of the model, however, is needed to provide a quantitative explanation of the experimental results
Cavitation inception from bubble nuclei
DEFF Research Database (Denmark)
Mørch, Knud Aage
2015-01-01
The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years......, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...
Directory of Open Access Journals (Sweden)
Holt Roy J.
2016-01-01
Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
Neutron Dripline in Odd and Even Mass Calcium and Nickel Nuclei
Bhattacharya, Madhubrata; Gangopadhyay, G.
2005-01-01
Neutron rich Ca and Ni nuclei have been studied in spherical Relativistic Mean Field formalism in co-ordinate space. A delta interaction has been has been adopted to treat the pairing correlations for the neutrons. Odd nuclei have been treated in the blocking approximation. The effect of the positive energy continuum and the role of pairing in the stability of nuclei have been investigated using the resonant-BCS (rBCS) approach. In Ca isotopes, N=50 is no longer a magic number while in Ni nuc...
Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models
Institute of Scientific and Technical Information of China (English)
2001-01-01
Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.
Examining the stability of thermally fissile Th and U isotopes
Kumar, Bharat; Biswal, S. K.; Singh, S. K.; Patra, S. K.
2015-11-01
The properties of recently predicted thermally fissile Th and U isotopes are studied within the framework of the relativistic mean-field approach using the axially deformed basis. We calculate the ground, first intrinsic excited state for highly neutron-rich thorium and uranium isotopes. The possible modes of decay such as α decay and β decay are analyzed. We found that neutron-rich isotopes are stable against α decay, however, they are very unstable against β decay. The lifetime of these nuclei is predicted to be tens of seconds against β decay. If these nuclei are utilized before their decay time, a lot of energy can be produced with the help of multifragmentation fission. Also, these nuclei have great implications from the astrophysical point of view. In some cases, we found that the isomeric states with energy range from 2 to 3 MeV and three maxima in the potential energy surface of Th-230228 and U-234228 isotopes.
Evaluation of prompt neutron spectra for minor actinide nuclei
Energy Technology Data Exchange (ETDEWEB)
Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.
1997-03-01
Measurement data on fission prompt neutron spectra of minor actinide (MA) is much little, and its accuracy is also unsufficient. Therefore, conventional evaluation value of fission spectra of MA was assumed for its nuclear temperature by using a method of determining from its systemicity owing to assumption of the Maxwell type distribution, but it can be said that this method consider fully to features of MA isotopes. In this paper, some evaluation calculation results are shown by adopting an evaluation method developed by authors and based on modified Madland Nix model and are conducted by concept of physical properties on target nuclei. As a result, by adopting the level density parameter of fission fragments, the inverse process cross section, the fission product yield distribution and the total release energy, effect of inverse process cross section, mass distribution of fission product, calculation results of Cm isotope and systemicity of fission spectra of actinide isotope were investigated. (G.K.)
Alpha cluster states and molecular orbitals in sd-shell nuclei
Energy Technology Data Exchange (ETDEWEB)
Kimura, M. [Creative Research Institution Sousei Research Department, Hokkaido University, Sapporo 001-0021 (Japan); Furutachi, N. [Meme Media Laboratory, Hokkaido University, Sapporo 060-8628 (Japan); Kanada-En' yo, Y. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2010-03-01
The alpha-clustering and molecular-orbitals of {sup 22}Ne and F isotopes are investigated based on antisymmetrized molecular dynamics (AMD). The observed candidates for the alpha cluster state of {sup 22}Ne are understood as the molecular-orbital states and alpha+{sup 18}O di-nuclei states. The presence of the molecular-orbital states in the O and F isotopes and the drastic reduction of their excitation energy near the neutron-drip line are predicted.
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph
1997-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.
Mishustin, I N; Buervenich, T J; Stöcker, H; Greiner, W
2005-01-01
We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (antiproton, antilambda, etc.). The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from He to Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by factor 3-4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q-values, the in-medium annihilation rates should be strongly suppressed leading to relativel...
''Tailed'' nuclei are a possible cell marker of radiational effects
International Nuclear Information System (INIS)
Study of peripheral blood smears from irradiated patients (liquidators of consequences of the Chernobyl Atomic Electric Plant accident) has shown nuclei of some lymphocytes to have a protrusion into the cytoplasm. Such abnormal nuclei are called ''tailed'' nuclei (TN). The mean frequency of appearance of lymphocytes with TN in the group of irradiated patients (n=136) amounted to 0.59%, whereas in the group of healthy donors (n=50), 0.15% (the difference between the groups is statistically significant). The correlation coefficient between the indicators ''frequency of lymphocytes with NT'' and ''frequency of lymphocytes with dicentric chromosomes'' was 0.73 (n=47, p<0.001). By the method of bicolour FISH there was revealed localization of the near-centromere (not more than two signals) and telomere (not more than one signal) regions in the nuclear ''tails''. Abnormalities of the TN type in lymphocytes are likely to result from breakdowns of chromosomal bridges formed by dicentric chromosomes. (author)
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains eight separate records on independent yields of Xe isotopes at photofission of 232Th and 238U, importance of dark matter for LHC physics, the search and study of the resonances in the system of π+π- - mesons from the reaction np → npπ+π- at Pn = 5.20 GeV/c, 'γ + jet' events rate estimation for gluon distribution determination at LHC, extraction of protons with the energy of 35 MeV from the upgraded AIC-144 cyclotron, charge exchange injection for Nuclotron and Nuclotron booster, the effect of electromagnetic interactions on the proton spectrum in free neutron β-decay and accelerator and reactor
International Nuclear Information System (INIS)
Nuclei (larval stage) and outer parts (adult stage) of fish otoliths from the Taiaro closed lagoon (French Polynesia) and adjacent ocean have been analysed for the C-O isotopic compositions. δ18O values of the nuclei of both populations indicate that isotopic equilibrium is reached. This implies that the lagoonal fish population has done its complete biological cycle in the lagoon and represents an adaptation in a closed system. δ18O values of the outer parts show a slight isotopic disequilibrium (13C values exhibit a strong isotopic disequilibrium related to metabolic activity. (authors)
A study on nuclear properties of Zr, Nb, and Ta nuclei used as structural material in fusion reactor
Directory of Open Access Journals (Sweden)
Sahan Halide
2015-01-01
Full Text Available Fusion has a practically limitless fuel supply and is attractive as an energy source. The main goal of fusion research is to construct and operate an energy generating system. Fusion researches also contains fusion structural materials used fusion reactors. Material issues are very important for development of fusion reactors. Therefore, a wide range of fusion structural materials have been considered for fusion energy applications. Zirconium (Zr, Niobium (Nb and Tantalum (Ta containing alloys are important structural materials for fusion reactors and many other fields. Naturally Zr includes the 90Zr (%51.5, 91Zr (%11.2, 92Zr (%17.1, 94Zr (%17.4, 96Zr (%2.80 isotopes and 93Nb and 181Ta include the 93Nb (%100 and 181Ta (%99.98, respectively. In this study, the charge, mass, proton and neutron densities and the root-mean-square (rms charge radii, rms nuclear mass radii, rms nuclear proton, and neutron radii have been calculated for 87-102Zr, 93Nb, 181Ta target nuclei isotopes by using the Hartree–Fock method with an effective Skyrme force with SKM*. The calculated results have been compared with those of the compiled experimental taken from Atomic Data and Nuclear Data Tables and theoretical values of other studies.
Nuclear effects in atomic transitions
Pálffy, Adriana
2011-01-01
Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.
International Nuclear Information System (INIS)
PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa
Safeguards implications of laser isotope separation
International Nuclear Information System (INIS)
The purpose of this report is to describe and emphasise the safeguards and relevant features of atomic vapour laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS), and to consider the issues that must be addressed before a safeguards approach at a commercial AVLIS or MLIS facility can be implemented. (Author)
The isotope effect: Prediction, discussion, and discovery
Kragh, Helge
2011-01-01
The precise position of a spectral line emitted by an atomic system depends on the mass of the atomic nucleus and is therefore different for isotopes belonging to the same element. The possible presence of an isotope effect followed from Bohr's atomic theory of 1913, but it took several years before it was confirmed experimentally. Its early history involves the childhood not only of the quantum atom, but also of the concept of isotopy. Bohr's prediction of the isotope effect was apparently at odds with early attempts to distinguish between isotopes by means of their optical spectra. However, in 1920 the effect was discovered in HCl molecules, which gave rise to a fruitful development in molecular spectroscopy. The first detection of an atomic isotope effect was no less important, as it was by this means that the heavy hydrogen isotope deuterium was discovered in 1932. The early development of isotope spectroscopy illustrates the complex relationship between theory and experiment, and is also instructive with...
Reactions with fast radioactive beams of neutron-rich nuclei
International Nuclear Information System (INIS)
The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11Li and 12Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)
Reactions with fast radioactive beams of neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
2005-11-01
The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)
The isotopic distribution conundrum.
Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz
2012-01-01
Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart
Spectrin-like proteins in plant nuclei
Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.
2000-01-01
We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa, ty
Atomic Data: Division B / Commission 14 / Working Group Atomic Data
Nave, Gillian; Zhao, Gang
2015-01-01
This report summarizes laboratory measurements of atomic wavelengths, energy levels, hyperfine and isotope structure, energy level lifetimes, and oscillator strengths. Theoretical calculations of lifetimes and oscillator strengths are also included. The bibliography is limited to species of astrophysical interest. Compilations of atomic data and internet databases are also included. Papers are listed in the bibliography in alphabetical order, with a reference number in the text. Comprehensive lists of references for atomic spectra can be found in the NIST Atomic Spectra Bibliographic Databases http://physics.nist.gov/asbib.
Synthesis of Superheavy Nuclei in 48CA-INDUCED Reactions
Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G.; Moody, K. J.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.
2008-11-01
Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with an increasing number of neutrons, which agrees with the predictions of theoretical models concerning the decisive dependence of the structure and radioactive properties of superheavy elements on their proximity to the nuclear shells with N = 184 and Z = 114.