WorldWideScience

Sample records for atom molecular mechanics

  1. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  2. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  3. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  4. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    Science.gov (United States)

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  5. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Samuel Hertig

    2016-06-01

    Full Text Available Molecular dynamics (MD simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  6. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    Science.gov (United States)

    Hertig, Samuel; Latorraca, Naomi R; Dror, Ron O

    2016-06-01

    Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  7. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  9. Continuum mechanics at the atomic scale : Insights into non-adhesive contacts using molecular dynamics simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2016-01-01

    Classical molecular dynamics (MD) simulations were performed to study non-adhesive contact at the atomic scale. Starting from the case of Hertzian contact, it was found that the reduced Young’s modulus E* for shallow indentations scales as a function of, both, the indentation depth and the contact

  10. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  11. Determining the Molecular Growth Mechanisms of Protein Crystal Faces by Atomic Force Microscopy

    Science.gov (United States)

    Nadarajah, Arunan; Li, Huayu; Pusey, Marc L.

    1999-01-01

    A high resolution atomic force microscopy (AFM) study had shown that the molecular packing on the tetragonal lysozyme (110) face corresponded to only one of two possible packing arrangements, suggesting that growth layers on this face were of bimolecular height. Theoretical analyses of the packing also indicated that growth of this face should proceed by the addition of growth units of at least tetramer size corresponding to the 43 helices in the crystal. In this study an AFM linescan technique was devised to measure the dimensions of individual growth units on protein crystal faces as they were being incorporated into the lattice. Images of individual growth events on the (110) face of tetragonal lysozyme crystals were observed, shown by jump discontinuities in the growth step in the linescan images as shown in the figure. The growth unit dimension in the scanned direction was obtained from these images. A large number of scans in two directions on the (110) face were performed and the distribution of lysozyme growth unit sizes were obtained. A variety of unit sizes corresponding to 43 helices, were shown to participate in the growth process, with the 43 tetramer being the minimum observed size. This technique represents a new application for AFM allowing time resolved studies of molecular process to be carried out.

  12. Development of polarizable models for molecular mechanical calculations I: parameterization of atomic polarizability.

    Science.gov (United States)

    Wang, Junmei; Cieplak, Piotr; Li, Jie; Hou, Tingjun; Luo, Ray; Duan, Yong

    2011-03-31

    In this work, four types of polarizable models have been developed for calculating interactions between atomic charges and induced point dipoles. These include the Applequist, Thole linear, Thole exponential model, and the Thole Tinker-like. The polarizability models have been optimized to reproduce the experimental static molecular polarizabilities obtained from the molecular refraction measurements on a set of 420 molecules reported by Bosque and Sales. We grouped the models into five sets depending on the interaction types, that is, whether the interactions of two atoms that form the bond, bond angle, and dihedral angle are turned off or scaled down. When 1-2 (bonded) and 1-3 (separated by two bonds) interactions are turned off, 1-4 (separated by three bonds) interactions are scaled down, or both, all models including the Applequist model achieved similar performance: the average percentage error (APE) ranges from 1.15 to 1.23%, and the average unsigned error (AUE) ranges from 0.143 to 0.158 Å(3). When the short-range 1-2, 1-3, and full 1-4 terms are taken into account (set D models), the APE ranges from 1.30 to 1.58% for the three Thole models, whereas the Applequist model (DA) has a significantly larger APE (3.82%). The AUE ranges from 0.166 to 0.196 Å(3) for the three Thole models, compared with 0.446 Å(3) for the Applequist model. Further assessment using the 70-molecule van Duijnen and Swart data set clearly showed that the developed models are both accurate and highly transferable and are in fact have smaller errors than the models developed using this particular data set (set E models). The fact that A, B, and C model sets are notably more accurate than both D and E model sets strongly suggests that the inclusion of 1-2 and 1-3 interactions reduces the transferability and accuracy.

  13. Construction of a single-axis molecular puller for measuring polysaccharide and protein mechanics by atomic force microscopy.

    Science.gov (United States)

    Rabbi, Mahir; Marszalek, Piotr E

    2007-12-01

    INTRODUCTIONPolysaccharides and proteins are frequently subjected to mechanical forces in vivo. Because these forces affect a wide range of biological activities, it is important to develop methods that directly investigate the mechanical properties of these molecules. Recent progress in techniques that allow the mechanical manipulation of biopolymers at a single-molecule level has revealed the complex nature of the elasticity of proteins and polysaccharides. The atomic force microscope (AFM) is an excellent force spectrometer for probing the mechanical properties (e.g., length and tension) of individual polysaccharides and proteins. The following protocol describes the basic design and construction of an AFM (a single-axis molecular puller) that has four parts: a head, a base, electronics, and software. Those with a background in mechanical engineering, basic knowledge of electronics and data acquisition techniques, and some computer programming skills (e.g., with LabView, Matlab, or Igor) should be able to construct this instrument. It is advisable to inspect commercial AFMs before constructing one from scratch.

  14. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    Science.gov (United States)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  15. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  16. Atomic valence in molecular systems

    Science.gov (United States)

    Bochicchio, R. C.; Lain, L.; Torre, A.

    2003-06-01

    Atomic valence in molecular systems is described as a partitioning of the hole distribution, the complementary part of the particle distribution. In this scheme, valence splits into three contributions, related to electron spin density, nonuniform occupancy of orbitals (nonpairing terms) and exchange density (pairing terms), respectively, and whose importance depends on the nature of the state of the system. Calculations carried out for correlated CI and Hartree-Fock state functions in both Mulliken and topological AIM type partitionings as well as theoretical results show the suitability of this formulation for describing valence concepts.

  17. Evaluation of Mechanical Properties of Σ5(210/[001] Tilt Grain Boundary with Self-Interstitial Atoms by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2017-01-01

    Full Text Available Grain boundary (GB can serve as an efficient sink for radiation-induced defects, and therefore nanocrystalline materials containing a large fraction of grain boundaries have been shown to have improved radiation resistance compared with their polycrystalline counterparts. However, the mechanical properties of grain boundaries containing radiation-induced defects such as interstitials and vacancies are not well understood. In this study, we carried out molecular dynamics simulations with embedded-atom method (EAM potential to investigate the interaction of Σ5(210/[001] symmetric tilt GB in Cu with various amounts of self-interstitial atoms. The mechanical properties of the grain boundary were evaluated using a bicrystal model by applying shear deformation and uniaxial tension. Simulation results showed that GB migration and GB sliding were observed under shear deformation depending on the number of interstitial atoms that segregated on the boundary plane. Under uniaxial tension, the grain boundary became a weak place after absorbing self-interstitial atoms where dislocations and cracks were prone to nucleate.

  18. Fundamental Mechanism of Atomization

    Science.gov (United States)

    1989-07-01

    substituting the expansion near probem s idntial o Talors poble ifwe iew he em- the point specified by (b), i.e., porally growing rippls in a...maximum 𔃼S. P. Lin and C. Y. Wang, in Encyclopedia ofFluid Mechanics, edited by jet velocity of Uo = 1. 11 X 10 cm/ sec which occurs in test N. P...Cam.23 in Table II, and using the air kbridge, 1963), Vol. 3, No. 25.cm’/ sec at room temperature, we find from the definition of "C. F. Gerald, Applied

  19. Atomic and Molecular Physics Program

    Science.gov (United States)

    2013-03-05

    Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban...et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber -coupled chip... PMMA -diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light

  20. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1993-01-01

    Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.

  1. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  2. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  3. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies

    Science.gov (United States)

    Wu, Jun; Shi, Chentian; Zhang, Yupeng; Fu, Qiang; Pan, Chunxu

    2017-12-01

    Anatase TiO2 with a variant percentage of exposed (001) facets was prepared under hydrothermal processes by adjusting the volume of HF, and the photocatalytic mechanism was studied from atomic-molecular scale by HRTEM and Raman spectroscopy. It was revealed that: 1) From HRTEM observations, the surface of original TiO2 with exposed (001) facets was clean without impurity, and the crystal lattice was clear and completed; however, when mixed with methylene blue (MB) solution, there were many 1 nm molecular absorbed at the surface of TiO2; after the photocatalytic experiment, MB molecules disappeared and the TiO2 lattice image became fuzzy. 2) The broken path of the MB chemical bond was obtained by Raman spectroscopy, i.e., after the irradiation of the light, the vibrational mode of C-N-C disappeared due to the chemical bond breakage, and the groups containing C-N bond and carbon rings were gradually decomposed. Accordingly, we propose that the driving force for breaking the chemical bond and the disappearance of groups is from the surface lattice distortion of TiO2 during photocatalyzation.

  4. 1984 Bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  5. 1985 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  6. 1982 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  7. Bibliography of atomic and molecular processes, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  8. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  9. Talin-driven inside-out activation mechanism of platelet αIIbβ3 integrin probed by multimicrosecond, all-atom molecular dynamics simulations.

    Science.gov (United States)

    Provasi, Davide; Negri, Ana; Coller, Barry S; Filizola, Marta

    2014-12-01

    Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so-called "inside-out" mechanism characterized by the membrane-assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi-microsecond, all-atom molecular dynamics simulations carried on the complete transmembrane (TM) and C-terminal (CT) domains of αIIbβ3 integrin in an explicit lipid-water environment, and in the presence or absence of the talin-1 F2 and F3 subdomains. These large-scale simulations provide unprecedented molecular-level insights into the talin-driven inside-out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid-water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin-1. Notably, not only do these simulations give support to a stable left-handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin-driven integrin activation. © 2014 Wiley Periodicals, Inc.

  10. Atomic and molecular phases through attosecond streaking

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2011-01-01

    phase of the atomic or molecular ionization matrix elements from the two states through the interference from the two channels. The interference may change the phase of the photoelectron streaking signal within the envelope of the infrared field, an effect to be accounted for when reconstructing short...

  11. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    1999-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics.

  12. Atomic and molecular adsorption on Rh(111)

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Rempel, J.; Greeley, Jeffrey Philip

    2002-01-01

    A systematic study of the chemisorption of both atomic (H, O, N, S, C), molecular (N-2, CO, NO), and radical (CH3, OH) species on Rh(111) has been performed. Self-consistent, periodic, density functional theory (DFT-GGA) calculations, using both PW91 and RPBE functionals, have been employed to de...

  13. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model

    Science.gov (United States)

    Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben

    2011-10-01

    Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.

  14. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Telly Stelianos [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to

  15. UNIQUAC interaction parameters for molecules with -OH groups on adjacent carbon atoms in aqueous solution determined by molecular mechanics - glycols, glycerol and glucose

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Klein, R. A.

    1997-01-01

    UNIQUAC interaction parameters have been determined, using molecular mechanics calculations, for 1,2-ethanediol, 1,2-propanediol, glycerol and glucose with water in aqueous solution. Conformational space for individual pairs of molecules was explored using a stochastic method, the Boltzmann Jump...

  16. [Molecular mechanisms of macroevolution].

    Science.gov (United States)

    Tikhodeev, O N

    2005-01-01

    The present paper is devoted to the evolutionary role of genetic modules shuffing. The mechanisms capable to produce new molecular functions and significant complications of ontogenesis are reviewed. Two-step model of macroevolution is proposed. This model comprises: (1) Arising of a new combination of genetic modules. This step does not result in formation of a new taxon but makes necessary ground for that process. (2) Precise structure completing of the new combination of modules and corresponding genome optimization by use of various mechanisms including point mutations. This step concerns many genes and finally leads to formation of a new taxon. It is shown that arising of new combinations of genetic modules might work out as molecular basis for progressive evolution, while alternative structural completing of the same combination might result in adaptive radiation.

  17. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO{sub 2} interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jialin; Ma, Tianbao [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Zhang, Weiwei; Psofogiannakis, George; Duin, Adri C.T. van [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Lei; Qian, Linmao [Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031 (China); Hu, Yuanzhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-12-30

    Highlights: • New ReaxFF reactive force field was applied to simulate the tribochemical wear process at Si/SiO{sub 2} interface. • Wear of silicon atoms is due to the breaking of Si–O–Si bonds and Si–Si–O–Si bond chains on the Si substrate. • Interfacial bridge bonds play an important role during the tribochemical wear process. • Higher pressures applied to the silica phase can cause more Si atoms to be removed by forming more interfacial bridge bonds. • Water plays an opposing role in the wear process because of its both chemical and mechanical effects. - Abstract: In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO{sub 2} interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si–O–Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si–Si bonds in the stretched Si–Si–O–Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si–O–Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si–O–Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.

  18. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2000-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  19. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    1998-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material as well as detailed descriptions of important recent developments.

  20. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2001-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  1. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Walther, Herbert; Walther, Herbert

    2002-01-01

    This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.

  2. Atomic, molecular, and optical physics electromagnetic radiation

    CERN Document Server

    Dunning, F B; Lucatorto, Thomas

    1997-01-01

    Combined with Volumes 29A and 29B, this volume is a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics, as well as an excellent experimental handbook for the field. Thewide availability of tunable lasers in the past several years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  3. Atomic, molecular, and optical physics charged particles

    CERN Document Server

    Dunning, F B

    1995-01-01

    With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  4. Model Hamiltonians for atomic and molecular systems

    Science.gov (United States)

    Carlson, J.; Moskowitz, Jules W.; Schmidt, K. E.

    1989-01-01

    A model Hamiltonian, designed to allow larger systems to be treated with the Green's function Monte Carlo method, is introduced for atomic and molecular systems. The model reduces the statistical variance associated with Green's function Monte Carlo calculations by reducing potential energy fluctuations in the core regions. By performing calculations of Li, LiH, and Li2 we show that this method can be used to obtain energy differences with much less computer time than required for the complete interaction. Increases in efficiency for larger systems will be even greater.

  5. Molecular mechanisms in gliomagenesis

    DEFF Research Database (Denmark)

    Hulleman, Esther; Helin, Kristian

    2005-01-01

    , in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal...... brain development, such as the differentiation of neural stem cells (NSCs) into astrocytes, might contribute to GBM formation. These pathways include growth factor-induced signal transduction routes and processes that control cell cycle progression, such as the p16-CDK4-RB and the ARF-MDM2-p53 pathways...

  6. Molecular mechanisms of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, R.E.

    2001-12-15

    Photosynthesis is a biological process that is as complex as it is fundamental. It is a field that spans time scales from the cosmic to the femtosecond, and bridges disciplines from biochemistry to geology. In the last ten years major advances in the field and improved research techniques have further deepened the understanding of the process of photosynthesis. Molecular Mechanisms of Photosynthesis stands as an ideal introduction to this subject. The author, a leading authority in photosynthesis research, offers a modern approach to photosynthesis in this accessible and well-illustrated text. The book provides a concise overview of the basic principles of energy storage and the history of the field, then progresses into more advanced topics such as electron transfer pathways, kinetics, genetic manipulations, and evolution. Throughout, the author includes an interdisciplinary emphasis that makes this book appealing across fields. authorship: leading authority in photosynthesis and the President of the International Society of Photosynthesis Research. First authoritative text to enter the market in 10 years. Stresses an interdisciplinary approach, which appeals to all science students. Emphasizes the recent advances in molecular structures and mechanisms. Only text to contain comprehensive coverage of both bacterial and plant photosynthesis. Includes the latest insights and research on structural information, improved spectroscopic techniques as well as advances in biochemical and genetic methods. Presents the most extensive treatment of the Origin and evolution of photosynthesis. Comprehensive appendix, which includes a detailed introduction to the physical basis of photosynthesis, including thermodynamics, kinetics and spectroscopy. (author)

  7. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  8. Atomic and molecular adsorption on Fe(110)

    Science.gov (United States)

    Xu, Lang; Kirvassilis, Demetrios; Bai, Yunhai; Mavrikakis, Manos

    2018-01-01

    Iron is the principal catalyst for the ammonia synthesis process and the Fischer-Tropsch process, as well as many other heterogeneously catalyzed reactions. It is thus of fundamental importance to understand the interactions between the iron surface and various reaction intermediates. Here, we present a systematic study of atomic and molecular adsorption behavior over Fe(110) using periodic, self-consistent density functional theory (DFT-GGA) calculations. The preferred binding sites, binding energies, and the corresponding surface deformation energies of five atomic species (H, C, N, O, and S), six molecular species (NH3, CH4, N2, CO, HCN, and NO), and eleven molecular fragments (CH, CH2, CH3, NH, NH2, OH, CN, COH, HCO, NOH, and HNO) were determined on the Fe(110) surface at a coverage of 0.25 monolayer. The binding strengths calculated using the PW91 functional decreased in the following order: C > CH >N > O > S > NH > COH > CN > CH2 > NOH > OH > HNO > HCO > NH2 > H > NO > HCN > CH3 > CO > N2 > NH3. No stable binding structures were observed for CH4. The estimated diffusion barriers and pathways, as well as the adsorbate-surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites, were identified. Using the calculated adsorption energetics, we constructed the potential energy surfaces for a few surface reactions including the decomposition of methane, ammonia, dinitrogen, carbon monoxide, and nitric oxide. These potential energy surfaces provide valuable insight into the ability of Fe(110) to catalyze common elementary steps.

  9. Molecular mechanisms in cardiomyopathy.

    Science.gov (United States)

    Dadson, Keith; Hauck, Ludger; Billia, Filio

    2017-07-01

    Cardiomyopathies represent a heterogeneous group of diseases that negatively affect heart function. Primary cardiomyopathies specifically target the myocardium, and may arise from genetic [hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), mitochondrial cardiomyopathy] or genetic and acquired [dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM)] etiology. Modern genomics has identified mutations that are common in these populations, while in vitro and in vivo experimentation with these mutations have provided invaluable insight into the molecular mechanisms native to these diseases. For example, increased myosin heavy chain (MHC) binding and ATP utilization lead to the hypercontractile sarcomere in HCM, while abnormal protein-protein interaction and impaired Ca2+ flux underlie the relaxed sarcomere of DCM. Furthermore, expanded access to genetic testing has facilitated identification of potential risk factors that appear through inheritance and manifest sometimes only in the advanced stages of the disease. In this review, we discuss the genetic and molecular abnormalities unique to and shared between these primary cardiomyopathies and discuss some of the important advances made using more traditional basic science experimentation. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  10. Delocalized electrons in atomic and molecular nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kresin, Vitaly [Univ. of Southern California, Los Angeles, CA (United States)

    2018-01-17

    The aim of the award (Program director: Dr. Mark Pederson) was to facilitate the attendance of researchers, students, and postdocs from the U.S. at the international workshop co-organized by the applicant. The award succeeded in making it possible for a number of US attendees to present their work and participate in the meeting, which was a significant event in the research community at the interdisciplinary interface of physical chemistry, nanoscience, atomic and molecular physics, condensed matter physics, and spectroscopy. The workshop did not issue proceedings, but the present report includes present the schedule, the abstracts, and the attendance list of the July 2016 Workshop. DOE sponsorship is gratefully acknowledged in the program.

  11. Atomic-level mechanisms of magnesium oxidation

    OpenAIRE

    Gardonio, Sandra; Fanetti, Mattia; Valant, Matjaž; Orlov, Dmytro

    2017-01-01

    Magnesium has been recently becoming an increasingly popular material for various applications. However, excessive chemical reactivity, and oxidation rate in particular, is a major obstruction on the way of Mg to become widely adopted. A significant problem causing the lack of Mg reactivity control is insufficient understanding of mechanisms involved in the oxidation of magnesium surface. Herewith we present the investigation of atomic-level mechanisms of oxidation initiation and propagation ...

  12. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    Science.gov (United States)

    2016-06-06

    Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular

  13. Molecular mechanisms of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Youvan, D.C.; Marrs, B.L.

    1987-06-01

    Knowledge of the molecular interactions, structure and genetic basis of the photosynthetic reaction center makes it possible to ask more detailed questions about its function. Spectroscopy, X-ray crystallography and molecular genetics combine to give a detailed picture of events in photosynthesis and shown how particular molecules contribute to the process. The molecular biology of the photosynthesis center of Rhodopseudomonas is investigated.

  14. The analogue quantum mechanical of plasmonic atoms

    Science.gov (United States)

    Alves, R. A.; Silva, Nuno A.; Costa, J. C.; Gomes, M.; Guerreiro, A.

    2017-08-01

    Localized plasmons in metallic nanostructures present strong analogies with Quantum Mechanical problems of particles trapped in potential wells. In this paper we take this analogy further using the Madelung Formalism of Quantum Mechanics to express the fluid equations describing the charge density of the conduction electrons and corresponding interaction with light in terms of an effective generalized Non-linear Schr¨odinger equations. Within this context, it is possible to develop the analogy of a plasmonic atom and molecule that exhibits Rabi oscillations, Stark effect, among other Quantum Mechanical effects.

  15. High-order-harmonic generation in atomic and molecular systems

    Science.gov (United States)

    Suárez, Noslen; Chacón, Alexis; Pérez-Hernández, Jose A.; Biegert, Jens; Lewenstein, Maciej; Ciappina, Marcelo F.

    2017-03-01

    High-order-harmonic generation (HHG) results from the interaction of ultrashort laser pulses with matter. It configures an invaluable tool to produce attosecond pulses, moreover, to extract electron structural and dynamical information of the target, i.e., atoms, molecules, and solids. In this contribution, we introduce an analytical description of atomic and molecular HHG, that extends the well-established theoretical strong-field approximation (SFA). Our approach involves two innovative aspects: (i) First, the bound-continuum and rescattering matrix elements can be analytically computed for both atomic and multicenter molecular systems, using a nonlocal short range model, but separable, potential. When compared with the standard models, these analytical derivations make possible to directly examine how the HHG spectra depend on the driven media and laser-pulse features. Furthermore, we can turn on and off contributions having distinct physical origins or corresponding to different mechanisms. This allows us to quantify their importance in the various regions of the HHG spectra. (ii) Second, as reported recently [N. Suárez et al., Phys. Rev. A 94, 043423 (2016), 10.1103/PhysRevA.94.043423], the multicenter matrix elements in our theory are free from nonphysical gauge- and coordinate-system-dependent terms; this is accomplished by adapting the coordinate system to the center from which the corresponding time-dependent wave function originates. Our SFA results are contrasted, when possible, with the direct numerical integration of the time-dependent Schrödinger equation in reduced and full dimensionality. Very good agreement is found for single and multielectronic atomic systems, modeled under the single active electron approximation, and for simple diatomic molecular systems. Interference features, ubiquitously present in every strong-field phenomenon involving a multicenter target, are also captured by our model.

  16. Wave mechanics of the hydrogen atom

    OpenAIRE

    Ogilvie, J. F.

    2016-01-01

    The hydrogen atom is a system amenable to an exact treatment within Schroedinger's formulation of quantum mechanics according to coordinates in four systems -- spherical polar, paraboloidal, ellipsoidal and spheroconical coordinates; the latter solution is reported for the first time. Applications of these solutions include angular momenta, a quantitative calculation of the absorption spectrum and accurate plots of surfaces of amplitude functions. The shape of an amplitude function, and even ...

  17. Evolution of the atomic and molecular gas content of galaxies

    NARCIS (Netherlands)

    Popping, Gergö; Somerville, Rachel S.; Trager, Scott C.

    We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure

  18. Derivation of Distributed Models of Atomic Polarizability for Molecular Simulations.

    Science.gov (United States)

    Soteras, Ignacio; Curutchet, Carles; Bidon-Chanal, Axel; Dehez, François; Ángyán, János G; Orozco, Modesto; Chipot, Christophe; Luque, F Javier

    2007-11-01

    The main thrust of this investigation is the development of models of distributed atomic polarizabilities for the treatment of induction effects in molecular mechanics simulations. The models are obtained within the framework of the induced dipole theory by fitting the induction energies computed via a fast but accurate MP2/Sadlej-adjusted perturbational approach in a grid of points surrounding the molecule. Particular care is paid in the examination of the atomic quantities obtained from models of implicitly and explicitly interacting polarizabilities. Appropriateness and accuracy of the distributed models are assessed by comparing the molecular polarizabilities recovered from the models and those obtained experimentally and from MP2/Sadlej calculations. The behavior of the models is further explored by computing the polarization energy for aromatic compounds in the context of cation-π interactions and for selected neutral compounds in a TIP3P aqueous environment. The present results suggest that the computational strategy described here constitutes a very effective tool for the development of distributed models of atomic polarizabilities and can be used in the generation of new polarizable force fields.

  19. 2010 Atomic & Molecular Interactions Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  20. Molecular mechanisms of cancer

    National Research Council Canada - National Science Library

    Weber, Georg F

    2007-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section I. General Mechanisms of Transformation 1. Theories of Carcinogenesis...

  1. Atomic and Molecular Databases, VAMDC (Virtual Atomic and Molecular Data Centre)

    Science.gov (United States)

    Dubernet, Marie-Lise; Zwölf, Carlo Maria; Moreau, Nicolas; Awa Ba, Yaya; VAMDC Consortium

    2015-08-01

    The "Virtual Atomic and Molecular Data Centre Consortium",(VAMDC Consortium, http://www.vamdc.eu) is a Consortium bound by an Memorandum of Understanding aiming at ensuring the sustainability of the VAMDC e-infrastructure. The current VAMDC e-infrastructure inter-connects about 30 atomic and molecular databases with the number of connected databases increasing every year: some databases are well-known databases such as CDMS, JPL, HITRAN, VALD,.., other databases have been created since the start of VAMDC. About 90% of our databases are used for astrophysical applications. The data can be queried, retrieved, visualized in a single format from a general portal (http://portal.vamdc.eu) and VAMDC is also developing standalone tools in order to retrieve and handle the data. VAMDC provides software and support in order to include databases within the VAMDC e-infrastructure. One current feature of VAMDC is the constrained environnement of description of data that ensures a higher quality for distribution of data; a future feature is the link of VAMDC with evaluation/validation groups. The talk will present the VAMDC Consortium and the VAMDC e infrastructure with its underlying technology, its services, its science use cases and its etension towards other communities than the academic research community.

  2. Quantum physics: Atomic envoy enables molecular control

    Science.gov (United States)

    Campbell, Wes

    2017-05-01

    A technique for manipulating molecules uses an intermediary atom to query a nearby molecule's energy state and produces 'quantum superpositions' of these states, a prerequisite for extremely high-precision spectroscopy. See Letter p.203

  3. Physics through the 1990s: Atomic, molecular and optical physics

    Science.gov (United States)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  4. Investigating cell mechanics with atomic force microscopy.

    Science.gov (United States)

    Haase, Kristina; Pelling, Andrew E

    2015-03-06

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Molecular Mechanisms of Preeclampsia

    Science.gov (United States)

    Hod, Tammy; Cerdeira, Ana Sofia; Karumanchi, S. Ananth

    2015-01-01

    Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension and proteinuria after 20 wk of gestation. It is a leading cause of maternal and fetal morbidity and mortality worldwide. Exciting discoveries in the last decade have contributed to a better understanding of the molecular basis of this disease. Epidemiological, experimental, and therapeutic studies from several laboratories have provided compelling evidence that an antiangiogenic state owing to alterations in circulating angiogenic factors leads to preeclampsia. In this review, we highlight the role of key circulating antiangiogenic factors as pathogenic biomarkers and in the development of novel therapies for preeclampsia. PMID:26292986

  6. Springer Handbook of Atomic, Molecular, and Optical Physics

    Science.gov (United States)

    Drake, Gordon W. F.

    This Springer Handbook of Atomic, Molecular, and Optical Physics comprises a comprehensive reference source that unifies the entire fields of atomic, molecular, and optical (AMO) physics, assembling the principal ideas, techniques and results of the field from atomic spectroscopy to applications in comets. Its 92 chapters are written by over 100 authors, all leaders in their respective disciplines. Carefully edited to ensure uniform coverage and style, with extensive cross references, and acting as a guide to the primary research literature, it is both a source of information and an inspiration for graduate students and other researchers new to the field.

  7. 1979 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  8. 1978 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  9. Molecular Mechanisms of Parturition

    Directory of Open Access Journals (Sweden)

    F. Ferré

    1997-01-01

    Full Text Available The initial signal for triggering human parturition might be fetal but of trophoblastic origin. Concomitantly, this placental signal would have as its target not only the uterus but also the fetus by activating its hypothalamo-pituitary-adrenocortical axis. The latter would represent a second fetal signal which, at the fetomaternal interface, would amplify and define in time the mechanisms responsible for the onset of labor, implying changes in the myometrial and cervical extracellular matrix associated with the accession of the contractile phenotype for myometrial cells. At each phase of these processes in the utero-feto-placental system, the nature of these signals remains to be identified. Is there a single substance, or rather, and more likely, a combination of several?

  10. Trapping of molecular Oxygen together with Lithium atoms

    CERN Document Server

    Akerman, Nitzan; Segev, Yair; Bibelnik, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-01-01

    We demonstrate simultaneous deceleration and trapping of a cold atomic and molecular mixture. This is the first step towards studies of cold atom-molecule collisions at low temperatures as well as application of sympathetic cooling. Both atoms and molecules are cooled in a supersonic expansion and are loaded into a moving magnetic trap which brings them to rest via the Zeeman interaction from an initial velocity of 375 m/s. We use a beam seeded with molecular Oxygen, and entrain it with Lithium atoms by laser ablation prior to deceleration. The deceleration ends with loading of the mixture into a static quadrupole trap, which is generated by two permanent magnets. We estimate $10^9$ trapped O$_2$ molecules and $10^5$ Li atoms with background pressure limited lifetime on the order of 1 second. With further improvements to Lithium entrainment we expect that sympathetic cooling of molecules is within reach.

  11. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  12. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  13. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  14. Theory of Electronic, Atomic and Molecular Collisions.

    Science.gov (United States)

    1983-09-01

    rare gas atoms (Section TV, Publications, No. 29). A strong forward peak and rapid angular variation, essentially a Fraunhofer diffraction pattern... triangular finite elements. Correct threshold behavior is built in by using momentum or wave number k as independent variables, and by starting the first...element at the continuum threshold. Since each triangular element has a finite and continuous HUbert transform, a smooth fit is obtained to both real

  15. Molecular mechanisms of rosacea pathogenesis

    Directory of Open Access Journals (Sweden)

    Davydova A.M.

    2013-09-01

    Full Text Available The article presents possible molecular mechanisms for rosacea pathogenesis from current domestic and foreign clinical observations and laboratory research: regulation and expression defects of antimicrobial peptides, vascular endothelial growth factor, the effect of serine proteases, oxidative stress, reactive oxygen species and ferritin on the occurrence and course of rosacea. New developments in molecular biology and genetics are advanced for researching the interaction of multiple factors involved in rosacea pathogenesis, as well as providing the bases for potentially new therapies.

  16. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Brandbyge, Mads; Jacobsen, Karsten Wedel

    1998-01-01

    We have simulated the mechanical deformation of atomic-scale metallic contacts under tensile strain using molecular dynamics and effective medium theory potentials. The evolution of the structure of the contacts and the underlying deformation mechanisms are described along with the calculated...... electronic conductance. Various defects such as intersecting stacking faults, local disorder, and vacancies are created during the deformation. Disordered regions act as weak spots that reduce the strength of the contacts. The disorder tends to anneal out again during the subsequent atomic rearrangements......, but vacancies can be permanently present. The transition states and energies for slip mechanisms have been determined using the nudged elastic band method, and we find a size-dependent crossover from a dislocation-mediated slip to a homogeneous slip when the contact diameter becomes less than a few nm. We show...

  17. Thermodynamics of small clusters of atoms: A molecular dynamics simulation

    DEFF Research Database (Denmark)

    Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J

    1974-01-01

    The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...... was found to be icosahedral in the 55-atom system and face centered cubic for the two larger systems. ©1974 American Institute of Physics...

  18. NASA GSFC Science Symposium on Atomic and Molecular Physics

    Science.gov (United States)

    Bhatia, Anand K. (Editor)

    2007-01-01

    This document is the proceedings of a conference on atomic and molecular physics in honor of the retirements of Dr. Aaron Temkin and Dr. Richard Drachman. The conference contained discussions on electron, positron, atomic, and positronium physics, as well as a discussion on muon catalyzed fusion. This proceedings document also contains photographs taken at the symposium, as well as speeches and a short biography made in tribute to the retirees.

  19. Molecular Mechanism of Heterogeneous Catalysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 6. Molecular Mechanism of Heterogeneous Catalysis - The 2007 Nobel Prize in Chemistry. R S Swathi K L Sebastian. General Article Volume 13 Issue 6 June 2008 pp 548-560 ...

  20. STATINS AND MYOPATHY: MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2015-12-01

    Full Text Available The safety of statin therapy is considered. In particular the reasons of a complication such as myopathy are discussed in detail. The molecular mechanisms of statin myopathy , as well as its risk factors are presented. The role of coenzyme Q10 in the myopathy development and coenzyme Q10 application for the prevention of this complication are considered. 

  1. STATINS AND MYOPATHY: MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2012-01-01

    Full Text Available The safety of statin therapy is considered. In particular the reasons of a complication such as myopathy are discussed in detail. The molecular mechanisms of statin myopathy , as well as its risk factors are presented. The role of coenzyme Q10 in the myopathy development and coenzyme Q10 application for the prevention of this complication are considered. 

  2. Atomic and molecular layer deposition for surface modification

    Science.gov (United States)

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas-solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin - even non-uniform - atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid.

  3. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  4. Optically pumped semiconductor lasers for atomic and molecular physics

    Science.gov (United States)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  5. Screened Electrostatic Interactions in Molecular Mechanics.

    Science.gov (United States)

    Wang, Bo; Truhlar, Donald G

    2014-10-14

    In a typical application of molecular mechanics (MM), the electrostatic interactions are calculated from parametrized partial atomic charges treated as point charges interacting by radial Coulomb potentials. This does not usually yield accurate electrostatic interactions at van der Waals distances, but this is compensated by additional parametrized terms, for example Lennard-Jones potentials. In the present work, we present a scheme involving radial screened Coulomb potentials that reproduces the accurate electrostatics much more accurately. The screening accounts for charge penetration of one subsystem's charge cloud into that of another subsystem, and it is incorporated into the interaction potential in a way similar to what we proposed in a previous article (J. Chem. Theory Comput. 2010, 6, 3330) for combined quantum mechanical and molecular mechanical (QM/MM) simulations, but the screening parameters are reoptimized for MM. The optimization is carried out with electrostatic-potential-fitted partial atomic charges, but the optimized parameters should be useful with any realistic charge model. In the model we employ, the charge density of an atom is approximated as the sum of a point charge representing the nucleus and inner electrons and a smeared charge representing the outermost electrons; in particular, for all atoms except hydrogens, the smeared charge represents the two outermost electrons in the present model. We find that the charge penetration effect can cause very significant deviations from the popular point-charge model, and by comparison to electrostatic interactions calculated by symmetry-adapted perturbation theory, we find that the present results are considerably more accurate than point-charge electrostatic interactions. The mean unsigned error in electrostatics for a large and diverse data set (192 interaction energies) decreases from 9.2 to 3.3 kcal/mol, and the error in the electrostatics for 10 water dimers decreases from 1.7 to 0.5 kcal

  6. Springer handbook of atomic, molecular, and optical physics

    CERN Document Server

    Cassar, Mark M

    2006-01-01

    This Springer Handbook of Atomic, Molecular, and Optical Physics comprises a comprehensive reference source that unifies the entire fields of atomic, molecular, and optical (AMO) physics, assembling the principal ideas, techniques and results of the field from atomic spectroscopy to applications in comets. Its 92 chapters are written by over 100 authors, all leaders in their respective disciplines. Carefully edited to ensure uniform coverage and style, with extensive cross references, and acting as a guide to the primary research literature, it is both a source of information and an inspiration for graduate students and other researchers new to the field. Relevant diagrams, graphs, and tables of data are provided throughout the text. Substantially updated and expanded since the 1996 edition and published in conjunction with the 2005 World Year of Physics (commemorating Einstein’s 1905 "miracle year"), it contains several entirely new chapters covering current areas of great research interest, such as Bose �...

  7. Theory of quantum and classical connections in modeling atomic, molecular and electrodynamical systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon

  8. Molecular dynamics simulations of a silver atom in water: evidence for a dipolar excitonic state.

    Science.gov (United States)

    Spezia, Riccardo; Nicolas, Cédric; Boutin, Anne; Vuilleumier, Rodolphe

    2003-11-14

    The properties of a silver atom in bulk water were studied for the first time by molecular dynamics simulations using two complementary mixed quantum-classical approaches. The first one consists of treating by quantum mechanics one electron only, which interacts with a classical silver cation and solvent through one-electron pseudopotentials. The second one is Car-Parrinello molecular dynamics that treats all the valence electrons quantum-mechanically. Very good agreement is obtained between these two methods, and the calculated absorption spectrum of the solvated silver atom agrees very well with experimental data. Both simulations reveal that the silver atom is in the critical region for the appearance of a dipolar excitonic state and exhibits a dipole moment of approximately 2 D with large fluctuations of +/-1 D. The structure of the solvation shell is also analyzed.

  9. Understanding the Atomic-Scale World with the Molecular Workbench

    Science.gov (United States)

    Tinker, Robert F.

    2006-12-01

    The Molecular Workbench (MW) is a sophisticated system for developing and delivering interactive learning activities to teach basic concepts that govern atomic and nanoscale phenomena. The system is based on a molecular dynamics model that calculates the motion of atoms, molecules, and other objects in real time as a result of the applicable forces, including Lennard-Jones potentials, electrostatic potentials, elastic bonds, and external fields. Light-atom interactions are modeled with photons of selectable energy that interact with the excited states of atoms. The built-in authoring functions can be used to create or modify learning activities. The ease of creating MW materials has led to over 200 activities contributed by staff and collaborators. Many are housed in a database with fields that include an overview, learning objectives, a description of the central concepts addressed, textbook references, and extensions. MW has been used extensively in classrooms in grades 7-14. In several settings student learning gains have been measured using a pre-posttest design. Research results will be reported that show Overall increases in understanding of atomic scale phenomena at high school and community college levels. The ability to transfer understanding of atomic-scale phenomena to new situations and to reason about macroscopic phenomena on the basis of atomic-scale interactions. Better understanding of difficult questions that required immersive visualization and prediction MW is written in Java, so it runs under all common operating systems, including Mac OSX, Windows, and Linux. It is open source, so it can be shared and copied by any user.

  10. Multiresolution molecular mechanics: Implementation and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biyikli, Emre; To, Albert C., E-mail: albertto@pitt.edu

    2017-01-01

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

  11. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  12. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...... technological advances in microfluidics and reporter genes have improved this scenario. Here, we summarize recent progress in the field, revealing the ubiquitous bacterial stress alarmone ppGpp as an emerging central regulator of multidrug tolerance and persistence, both in stochastically and environmentally...... induced persistence. In several different organisms, toxin-antitoxin modules function as effectors of ppGpp-induced persistence....

  13. Effect of atomizer scale and fluid properties on atomization mechanisms and spray characteristics

    Science.gov (United States)

    Waind, Travis

    Atomization is chaos. The breakup of liquid structures by a gas encompasses such a wide range of possible configurations that a definitive mechanism describing breakup in any and all situations is an impossibility. However, when focus is applied, trends can be teased out of experimental data that seem to appropriately describe the action undertaken. These studies sought to better understand atomization, specifically coaxial, two-stream, airblast (or air-assist) atomization in which a central liquid jet is broken up by an annular, high-velocity gas stream. The studies enclosed focused on identifying the effect of changing the atomizer's scale on atomization. While most (but not all) atomization studies only focus on the resulting far-field drop diameters, these studies placed the focus largely on the intermediate structures, in the form of the intact liquid jet (ILJ), while also quantifying the resulting drop diameters. The location and shape of the ILJ constantly change, and on its surface, wavelengths were seen to form and grow, which have been correlated to the resulting drop diameters in previous studies. The studies enclosed herein are unique in that they attempt to apply and explain exiting mechanism-based breakup mechanisms to regimes, fluids, and geometry changes not yet evaluated in the literature. Existing correlations were compared to the experimental data for a range of atomizer geometries, and when they were found lacking, Buckingham-(Pi) theorem was used to develop new correlations for predicting behavior. Additionally, the method developed for the calculation of these parameters for other image sets is included, allowing for easy comparison and value verification. A small-scale, coaxial atomization system was used to atomize water and two silicone oils with air. The atomizers used in these studies had the same general geometry type, but had varying sizes, allowing for the effect of both scale and geometry to be evaluated. These studies quantified

  14. Anticancer molecular mechanisms of resveratrol

    Directory of Open Access Journals (Sweden)

    Elena Maria Varoni

    2016-04-01

    Full Text Available Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Despite it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to: extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin and developmental pathways; signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; immune-surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multi-drug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.

  15. Toggling bistable atoms via mechanical switching of bond angle.

    Science.gov (United States)

    Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A; Kantorovich, Lev; Moriarty, Philip

    2011-04-01

    We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies. © 2011 American Physical Society

  16. Molecular Mechanism of Somite Development

    Directory of Open Access Journals (Sweden)

    Gulfidan Coskun

    2013-06-01

    Full Text Available From third week of gestation, notochord and the neural folds begin to gather at the center of the embryo to form the paraxial mesoderm. Paraxial mesoderm separates into blocks of cells called somitomers at the lateral sides of the neural tube of the head region. At the beginning of the third week somitomeres take ring shapes and form blocks of somites from occipital region to caudal region. Although somites are transient structures, they are extremely important in organizing the segmental pattern of vertebrate embryos. Somites give rise to the cells that form the vertebrae and ribs, the dermis of the dorsal skin, the skeletal muscles of the back, and the skeletal muscles of the body wall and limbs. Somitogenesis are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt and fibroblast growth factor signaling pathways. The prevailing model of the mechanism governing somitogenesis is the “clock and wave front”. Somitogenesis has components of periodicity, separation, epithelialization and axial specification. According to this model, the clock causes cells to undergo repeated oscillations, with a particular phase of each oscillation defining the competency of cells in the presomitic mesoderm to form a somite. Any disruption in this mechanism can be cause of severe segmentation defects of the vertebrae and congenital anomalies. In this review, we discuss the molecular mechanisms underlying the somitogenesis which is an important part of morphogenesis. [Archives Medical Review Journal 2013; 22(3.000: 362-376

  17. Atom-scale molecular interactions in lipid raft mixtures

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo

    2009-01-01

    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular....... As a particularly intriguing example of this, the lateral pressure profiles of raft-like and non-raft systems indicate that the lipid composition of membrane domains may have a major impact on membrane protein activation....

  18. 2004 Atomic and Molecular Interactions Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul J. Dagdigian

    2004-10-25

    The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference.

  19. Atoms, Molecules and Photons An Introduction to Atomic-, Molecular- and Quantum Physics

    CERN Document Server

    Demtröder, Wolfgang

    2010-01-01

    This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised new edition with new sections covering all actual developments, like x-ray optics, ion-cyclotron-resonance spectrometer, attosecond lasers, ultraprecission frequency measurement ...

  20. Molecular Mechanisms of Anthracycline Activity

    Science.gov (United States)

    Beretta, Giovanni Luca; Zunino, Franco

    On the basis of evidence that anthracyclines are DNA intercalating agents and DNA is the primary target, a large number of analogs and related intercalators have been developed. However, doxorubicin and closely related anthracyclines still remain among the most effective antitumor agents. Multiple mechanisms have been proposed to explain their efficacy. They include inhibition of DNA-dependent functions, free radical formation, and membrane interactions. The primary mechanism of action is now ascribed to drug interference with the function of DNA topoisomerase II. The stabilization of the topoisomerase-mediated cleavable complex results in a specific type of DNA damage (i.e., double-strand protein-associated DNA breaks). The drug-stabilized cleavable complex is a potentially reversible molecular event and its persistence, as a consequence of strong DNA binding, may be recognized as an apoptotic stimulus. Indirect evidence supports the notion that the bioreductive processes of the quinone moiety generating the semiquinone radical with concomitant production of reactive oxygen species may contribute to the drug effects. The cellular defense mechanisms and response to genotoxic/cytotoxic stress appear to be critical determinants of the tumor sensitivity to anthracyclines.

  1. Molecular Mechanisms of Cardiovascular Aging

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-12-01

    Full Text Available BACKGROUND: The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. CONTENT: We provide an overview of some of the molecular mechanisms involved in regulating lifespan and health, including mitochondria, telomeres, stem cells, sirtuins, Adenosine Monophosphate-activated Protein Kinase, Mammalian Target of Rapamycin and Insulin-like Growth Factor 1. We also provide future perspectives of lifespan and health, which are intimately linked fields. SUMMARY: Aging remains the biggest non-modifiable risk factor for cardiovascular disease. The biological, structural and mechanical changes in senescent cardiovascular system are thought to contribute in increasing incidence of cardiovascular disease in aging. Understanding the mechanisms contributing to such changes is therefore crucial for both prevention and development of treatment for cardiovascular diseases. KEYWORDS: cardiovascular aging, mitochondria, telomeres, sirtuin, stem cells.

  2. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  3. Atomic White-Out: Enabling Atomic Circuitry through Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface.

    Science.gov (United States)

    Huff, Taleana R; Labidi, Hatem; Rashidi, Mohammad; Koleini, Mohammad; Achal, Roshan; Salomons, Mark H; Wolkow, Robert A

    2017-09-26

    We report the mechanically induced formation of a silicon-hydrogen covalent bond and its application in engineering nanoelectronic devices. We show that using the tip of a noncontact atomic force microscope (NC-AFM), a single hydrogen atom could be vertically manipulated. When applying a localized electronic excitation, a single hydrogen atom is desorbed from the hydrogen-passivated surface and can be transferred to the tip apex, as evidenced from a unique signature in frequency shift curves. In the absence of tunnel electrons and electric field in the scanning probe microscope junction at 0 V, the hydrogen atom at the tip apex is brought very close to a silicon dangling bond, inducing the mechanical formation of a silicon-hydrogen covalent bond and the passivation of the dangling bond. The functionalized tip was used to characterize silicon dangling bonds on the hydrogen-silicon surface, which was shown to enhance the scanning tunneling microscope contrast, and allowed NC-AFM imaging with atomic and chemical bond contrasts. Through examples, we show the importance of this atomic-scale mechanical manipulation technique in the engineering of the emerging technology of on-surface dangling bond based nanoelectronic devices.

  4. Modified morphology of graphene sheets by Argon-atom bombardment: molecular dynamics simulations.

    Science.gov (United States)

    Wei, Xiao-Lin; Zhang, Kai-Wang; Wang, Ru-Zhi; Liu, Wen-Liang; Zhong, Jian-Xin

    2011-12-01

    By a molecular dynamics method, we simulated the process of Argon-atom bombardment on a graphene sheet with 2720 carbon atoms. The results show that, the damage of the bombardment on the graphene sheet depends not only on the incident energy but also on the particle flux density of Argon atoms. To compare and analyze the effect of the incident energy and the particle flux density in the Argon-atom bombardment, we defined the impact factor on graphene sheet by calculating the broken-hole area. The results indicate that, there is an exponential accumulated-damage for the impact of both the incident energy and the particle flux density and there is a critical incident energy ranging from 20-30 eV/atom in Argon-atom bombardment. Different configurations, such as sieve-like and circle-like graphene can be formed by controlling of different particle flux density as the incident energy is more than the critical value. Our results supply a feasible method on fabrication of porous graphene-based materials for gas-storages and molecular sieves, and it also helps to understand the damage mechanism of graphene-based electronic devices under high particle radiation.

  5. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  6. Molecular mechanics application in inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Coelho Lilian Weitzel

    1999-01-01

    Full Text Available The present paper is a review about basic principles of the molecular mechanics that is the most important tool used in molecular modeling area, and their applications to the calculation of the relative stability and chemical reactivity of organometalic and coordination compounds. We show how molecular mechanics can be successfully applied to a wide variety of inorganic systems.

  7. Continuum Mechanics at the Atomic Scale.

    Science.gov (United States)

    1977-01-01

    stress is singular at t=o bu* also the stored elastic energy. For that reason we are forced to consider the Polution valid only in a hollow cylinder...Diego Dept. of Applied Mechanics Prof. W.D. Pilkey La Jolla, California 92037 University of Virginia Dept. of Aerospace Engineering Prof. William A...University of California, LA School of Engineering & Applied Science Prof. J,. D. Achenbach Los Angeles, California 90024 Northwestern University Dept. of

  8. Imaging Multi-Particle Atomic and Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Landers, Allen [Auburn Univ., AL (United States)

    2016-02-12

    Final Report for Grant Number: DE- FG02-10ER16146 This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms and molecules with photons and electrons. The duration of the grant was the 5 year period from 4/1/2010 – 10/31/2015. All of the support from the grant was used to pay salaries of the PI, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 20 peer reviewed publications over these 5 years with 2 of the publications in Physical Review Letters and 1 in Nature; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B ...).

  9. Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective.

    Science.gov (United States)

    Mateu, Mauricio G

    2012-09-01

    The advent of nanoscience and nanotechnology and the development of atomic force microscopy and other single-molecule techniques are leading to a renewed look at viruses from the point of view of the physical sciences. As any other solid-state object, virus particles are endowed with mechanical properties such as elasticity or brittleness. Emerging studies on virus mechanics may facilitate the engineering of the physical properties of viruses to improve their potential application in nanotechnology, and may be also relevant to understand virus biology. Viruses are subject to internal and external forces, and as evolving entities they may have selectively adapted their mechanical behavior to resist, or even use, those forces. This article adopts the perspective of structural and molecular virology to review the results obtained to date, using the atomic force microscope, on the mechanical properties of virus particles, their molecular determinants, and possible biological implications. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Understanding the physics and chemistry of reaction mechanisms from atomic contributions: a reaction force perspective.

    Science.gov (United States)

    Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro

    2012-07-12

    Studying chemical reactions involves the knowledge of the reaction mechanism. Despite activation barriers describing the kinetics or reaction energies reflecting thermodynamic aspects, identifying the underlying physics and chemistry along the reaction path contributes essentially to the overall understanding of reaction mechanisms, especially for catalysis. In the past years the reaction force has evolved as a valuable tool to discern between structural changes and electrons' rearrangement in chemical reactions. It provides a framework to analyze chemical reactions and additionally a rational partition of activation and reaction energies. Here, we propose to separate these energies further in atomic contributions, which will shed new insights in the underlying reaction mechanism. As first case studies we analyze two intramolecular proton transfer reactions. Despite the atom based separation of activation barriers and reaction energies, we also assign the participation of each atom in structural changes or electrons' rearrangement along the intrinsic reaction coordinate. These participations allow us to identify the role of each atom in the two reactions and therfore the underlying chemistry. The knowledge of the reaction chemistry immediately leads us to suggest replacements with other atom types that would facilitate certain processes in the reaction. The characterization of the contribution of each atom to the reaction energetics, additionally, identifies the reactive center of a molecular system that unites the main atoms contributing to the potential energy change along the reaction path.

  11. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    Science.gov (United States)

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-02-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction.

  12. Localised quantum states of atomic and molecular particles physisorbed on carbon-based nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Trachta, Michal; Bludský, Ota; Špirko, Vladimír

    2014-01-01

    Roč. 141, č. 11 (2014), "114702-1"-"114702-10" ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571; GA ČR GAP208/11/0436; GA ČR GAP208/10/0725 Institutional support: RVO:68378271 ; RVO:61388963 Keywords : periodic structure * carbon nanostructures * graphene * quantum mechanics * physisorbed Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.952, year: 2014

  13. European Virtual Atomic And Molecular Data Center - VAMDC

    Science.gov (United States)

    Dimitrijevic, M. S.; Sahal-Brechot, S.; Kovacevic, A.; Jevremovic, D.; Popovic, L. C.

    2010-07-01

    Reliable atomic and molecular data are of great importance for different applications in astrophysics, atmospheric physics, fusion, environmental sciences, combustion chemistry, and in industrial applications from plasmas and lasers to lighting. Currently, very important resources of such data are highly fragmented, presented in different, nonstandardized ways, available through a variety of highly specialized and often poorly documented interfaces, so that the full exploitation of all their scientific worth is limited, hindering research in many topics like e.g. the characterization of extrasolar planets, understanding the chemistry of our local solar system and of the wider universe, the study of the terrestrial atmosphere and quantification of climate change; the development of the fusion rersearch, etc. The Virtual Atomic and Molecular Data Centre (http://www.vamdc.eu, VAMDC) is an European Union funded FP7 project aiming to build a secure, documented, flexible and interoperable e-science environment-based interface to existing atomic and molecular data. It will also provide a forum for training potential users and dissemination of expertise worldwide. Partners in the Consortium of the Project are: 1) Centre National de Recherche Scientifique - CNRS (Paris, Reims, Grenoble, Bordeaux, Dijon, Toulouse); 2) The Chancellor, Masters and Scholars of the University of Cambridge - CMSUC; 3) University College London - UCL; 4) Open University - OU; (Milton Keynes, England); 5) Universitaet Wien - UNIVIE; 6) Uppsala Universitet - UU; 7) Universitaet zu Koeln - KOLN; 8) Istituto Nazionale di Astrofisica - INAF (Catania, Cagliari); 9) Queen's University Belfast - QUB; 10) Astronomska Opservatorija - AOB (Belgrade, Serbia); 11) Institute of Spectroscopy RAS - ISRAN (Troitsk, Russia); 12) Russian Federal Nuclear Center - All-Russian Institute of Technical Physics - RFNC-VNIITF (Snezhinsk, Chelyabinsk Region, Russia; 13) Institute of Atmospheric Optics - IAO (Tomsk, Russia

  14. Attosecond science in atomic, molecular, and condensed matter physics.

    Science.gov (United States)

    Leone, Stephen R; Neumark, Daniel M

    2016-12-16

    Attosecond science represents a new frontier in atomic, molecular, and condensed matter physics, enabling one to probe the exceedingly fast dynamics associated with purely electronic dynamics in a wide range of systems. This paper presents a brief discussion of the technology required to generate attosecond light pulses and gives representative examples of attosecond science carried out in several laboratories. Attosecond transient absorption, a very powerful method in attosecond science, is then reviewed and several examples of gas phase and condensed phase experiments that have been carried out in the Leone/Neumark laboratories are described.

  15. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  16. Atomic, Molecular, and Optical Physics Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Jr., Lloyd [University of Southern California

    1997-09-21

    This document contains the final reports from the five panels that comprised a Workshop held to explore future directions, scientific impacts and technological connections of research in Atomic, Molecular and Optical Physics. This workshop was sponsored by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and was held at the Westfields International Conference Center in Chantilly, Virginia on September 21-24, 1997. The workshop was chaired by Lloyd Armstrong, Jr., University of Southern California and the five panels focused on the following topics: Panel A: Interactions of Atoms and Molecules with Photons - Low Field Daniel Kleppner (Massachusetts Institute of Technology), chair Panel B: Interactions of Atoms and Molecules with Photons - High Field Phil Bucksbaum (University of Michigan), chair Panel C: Surface Interactions with Photons, Electrons, Ions, Atoms and Molecules J. Wayne Rabalais (University of Houston), chair Panel D: Theory of Structure and Dynamics Chris Greene (University of Colorado), chair Panel E: Nano- and Mesocopic Structures Paul Alivisatos (Lawrence Berkeley National Laboratory), chair The choice of focus areas reflects areas of significant interest to DOE/BES but is clearly not intended to span all fields encompassed by the designation of atomic, molecular and optical physics, nor even all areas that would be considered for review and funding under DOE’s AMOP program. In a similar vein, not all research that might be suggested under these topics in this report would be appropriate for consideration by DOE’s AMOP program. The workshop format included overview presentations from each of the panel chairs, followed by an intensive series of panel discussion sessions held over a two-day period. The panels were comprised of scientists from the U. S. and abroad, many of whom are not supported by DOE’s AMOP Program. This workshop was held in lieu of the customary “Contractors Meeting” held annually for

  17. Updates to the Virtual Atomic and Molecular Data Centre

    Science.gov (United States)

    Hill, Christian; Tennyson, Jonathan; Gordon, Iouli E.; Rothman, Laurence S.; Dubernet, Marie-Lise

    2014-06-01

    The Virtual Atomic and Molecular Data Centre (VAMDC) has established a set of standards for the storage and transmission of atomic and molecular data and an SQL-based query language (VSS2) for searching online databases, known as nodes. The project has also created an online service, the VAMDC Portal, through which all of these databases may be searched and their results compared and aggregated. Since its inception four years ago, the VAMDC e-infrastructure has grown to encompass over 40 databases, including HITRAN, in more than 20 countries and engages actively with scientists in six continents. Associated with the portal are a growing suite of software tools for the transformation of data from its native, XML-based, XSAMS format, to a range of more convenient human-readable (such as HTML) and machinereadable (such as CSV) formats. The relational database for HITRAN1, created as part of the VAMDC project is a flexible and extensible data model which is able to represent a wider range of parameters than the current fixed-format text-based one. Over the next year, a new online interface to this database will be tested, released and fully documented - this web application, HITRANonline2, will fully replace the ageing and incomplete JavaHAWKS software suite.

  18. Concerted hydrogen atom and electron transfer mechanism for catalysis by lysine-specific demethylase.

    Science.gov (United States)

    Yu, Tao; Higashi, Masahiro; Cembran, Alessandro; Gao, Jiali; Truhlar, Donald G

    2013-07-18

    We calculate the free energy profile for the postulated hydride transfer reaction mechanism for the catalysis of lysine demethylation by lysine-specific demethylase LSD1. The potential energy surface is obtained by using combined electrostatically embedded multiconfiguration molecular mechanics (EE-MCMM) and single-configuration molecular mechanics (MM). We employ a constant valence bond coupling term to obtain analytical energies and gradients of the EE-MCMM subsystem, which contains 45 quantum mechanics (QM) atoms and which is parametrized with density functional calculations employing specific reaction parameters obtained by matching high-level wave function calculations. In the MM region, we employ the Amber ff03 and TIP3P force fields. The free energy of activation at 300 K is calculated by molecular dynamics (MD) umbrella sampling on a system with 102,090 atoms as the maximum of the free energy profile along the reaction coordinate as obtained by the weighted histogram analysis method with 17 umbrella sampling windows. This yields a free energy of activation of only 10 kcal/mol, showing that the previously postulated direct hydride transfer reaction mechanism is plausible, although we find that it is better interpreted as a concerted transfer of a hydrogen atom and an electron.

  19. Modeling the Mechanical Properties of Functionalized Carbon Nanotubes and Their Composites: Design at the Atomic Level

    Directory of Open Access Journals (Sweden)

    Qing-Sheng Yang

    2014-01-01

    Full Text Available This investigation focuses on the design of functionalization configuration at the atomic level to determine the influence of atomic structure on the mechanical properties of functionalized carbon nanotubes (F-CNTs and their composites. Tension and compressive buckling behaviors of different configurations of CNTs functionalized by H atoms are studied by a molecular dynamics (MD method. It is shown that H-atom functionalization reduces Young’s modulus of CNTs, but Young’s modulus is not sensitive to the functionalization configuration. The configuration does, however, affect the tensile strength and critical buckling stress of CNTs. Further, the stress-strain relations of composites reinforced by nonfunctionalized and various functionalized CNTs are analyzed.

  20. Roadmap of ultrafast x-ray atomic and molecular physics

    Science.gov (United States)

    Young, Linda; Ueda, Kiyoshi; Gühr, Markus; Bucksbaum, Philip H.; Simon, Marc; Mukamel, Shaul; Rohringer, Nina; Prince, Kevin C.; Masciovecchio, Claudio; Meyer, Michael; Rudenko, Artem; Rolles, Daniel; Bostedt, Christoph; Fuchs, Matthias; Reis, David A.; Santra, Robin; Kapteyn, Henry; Murnane, Margaret; Ibrahim, Heide; Légaré, François; Vrakking, Marc; Isinger, Marcus; Kroon, David; Gisselbrecht, Mathieu; L’Huillier, Anne; Wörner, Hans Jakob; Leone, Stephen R.

    2018-02-01

    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm‑2) of x-rays at wavelengths down to ∼1 Ångstrom, and HHG provides unprecedented time resolution (∼50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ∼280 eV (44 Ångstroms) and the bond length in methane of ∼1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities

  1. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    Science.gov (United States)

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  2. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations

    Science.gov (United States)

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-01

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  3. Efficient Calculation of Molecular Integrals over London Atomic Orbitals.

    Science.gov (United States)

    Irons, Tom J P; Zemen, Jan; Teale, Andrew M

    2017-08-08

    The use of London atomic orbitals (LAOs) in a nonperturbative manner enables the determination of gauge-origin invariant energies and properties for molecular species in arbitrarily strong magnetic fields. Central to the efficient implementation of such calculations for molecular systems is the evaluation of molecular integrals, particularly the electron repulsion integrals (ERIs). We present an implementation of several different algorithms for the evaluation of ERIs over Gaussian-type LAOs at arbitrary magnetic field strengths. The efficiencies of generalized McMurchie-Davidson (MD), Head-Gordon-Pople (HGP), and Rys quadrature schemes are compared. For the Rys quadrature implementation, we avoid the use of high precision arithmetic and interpolation schemes in the computation of the quadrature roots and weights, enabling the application of this algorithm seamlessly to a wide range of magnetic fields. The efficiency of each generalized algorithm is compared by numerical application, classifying the ERIs according to their total angular momenta and evaluating their performance for primitive and contracted basis sets. In common with zero-field integral evaluation, no single algorithm is optimal for all angular momenta; thus, a simple mixed scheme is put forward that selects the most efficient approach to calculate the ERIs for each shell quartet. The mixed approach is significantly more efficient than the exclusive use of any individual algorithm.

  4. Direct detection of momentum flux in atomic and molecular beams

    Science.gov (United States)

    Choi, J. G.; Hayden, J. S.; O'Connor, M. T.; Diebold, G. J.

    1981-10-01

    We describe the use of a microphone for detection of atomic and molecular beams in a high-vacuum environment. Two experiments were carried out to demonstrate this detection method. Pulsed beams of argon were detected using a conventional electret microphone where the output of the microphone was displayed directly on an oscilloscope or processed with a boxcar averager to remove the transient oscillations of the microphone diaphragm. Amplitude modulated, continuous beams of atomic argon were also detected using a lock-in amplifier. The microphone possesses a response to the pressure or momentum flux in the beam that appears to be unique among beam detectors. We use the classical equipartition theorem to calculate the magnitude of the random fluctuations in the output voltage of the microphone that is used to give an expression for the minimum detectable momentum flux in the beam. For a typical microphone we find this to be 3×10-8 Pa, (in a 1-Hz bandwidth), which corresponds to a minimum number density of 1×106 cm-3 for an effusive argon beam at 300 K.

  5. The Atom in a Molecule: Implications for Molecular Structure and Properties

    Science.gov (United States)

    2016-05-23

    Briefing Charts 3. DATES COVERED (From - To) 01 February 2016 – 23 May 2016 4. TITLE AND SUBTITLE The atom in a molecule: Implications for molecular...For presentation at American Physical Society - Division of Atomic , Molecular, and Optical Physics (May 2016) PA Case Number: #16075; Clearance Date...10 Energy (eV) R C--H (au) R C--H(au) The Atom in a Molecule: Implications for Molecular Structures and Properties P. W. Langhoff, Chemistry

  6. Decomposition of Amino Diazeniumdiolates (NONOates): Molecular Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to slowly release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a qualitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = -N(C2H5)2 (1), -N(C3H4NH2)2 (2), or -N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1-H, 3.5 and 83 x 10-3 s-1 for 2-H, and 3.8 and 3.3 x 10-3 s-1 for 3-H. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~0.01%, for 1) undergoes the N-N heterolytic bond cleavage (k ~102 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all these NONOates are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.

  7. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular Mechanism for Genetic Recombination

    Science.gov (United States)

    Sobell, Henry M.

    1972-01-01

    Symmetry considerations of proteinnucleic acid interaction suggest the existence of an alternate branched configuration for DNA induced by binding specific structural proteins to symmetrically arranged polynucleotide base sequences. The concept that such sequences exist at the ends of genes or operons leads to a molecular model for genetic recombination in eukaryotic cells. PMID:4115953

  9. Molecular mechanisms of NCAM function

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Berezin, Vladimir; Bock, Elisabeth

    2004-01-01

    receptor that responds to both homophilic and heterophilic cues, as well as a mediator of cell-cell adhesion. This review describes NCAM function at the molecular level. We discuss recent models for extracellular ligand-interactions of NCAM, and the intracellular signaling cascade that follows to define...

  10. Polarization effects in molecular mechanical force fields

    Science.gov (United States)

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2014-01-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  11. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  12. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...

  13. Simulation and understanding of atomic and molecular quantum crystals

    Science.gov (United States)

    Cazorla, Claudio; Boronat, Jordi

    2017-07-01

    Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (He 4 and Ne), molecular solids (H2 and CH4 ), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields such as planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals formed by atoms and small molecules, as well as the wide palette of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, structural properties, elasticity, crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are the simulation methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics and quantum thermal baths) is provided. The overarching objective of this article is twofold: first, to clarify in which crystals and physical situations the disregard of QNE may incur in important bias and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic that traditionally has been treated in the context of condensed matter physics, within the broad and interdisciplinary areas of materials science.

  14. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy

    Science.gov (United States)

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-01-01

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed. PMID:28117741

  15. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy.

    Science.gov (United States)

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-01-22

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.

  16. Molecular deformation mechanisms in polyethylene

    CERN Document Server

    Coutry, S

    2001-01-01

    adjacent labelled stems is significantly larger when the DPE guest is a copolymer molecule. Our comparative studies on various types of polyethylene lead to the conclusion that their deformation behaviour under drawing has the same basis, with additional effects imputed to the presence of tie-molecules and branches. Three major points were identified in this thesis. The changes produced by drawing imply (1) the crystallisation of some of the amorphous polymer and the subsequent orientation of the newly formed crystals, (2) the re-orientation of the crystalline ribbons and (3) the beginning of crystallite break-up. However, additional effects were observed for the high molecular weight linear sample and the copolymer sample and were attributed, respectively, to the presence of tie-molecules and of branches. It was concluded that both the tie-molecules and the branches are restricting the molecular movement during deformation, and that the branches may be acting as 'anchors'. This work is concerned with details...

  17. General mechanism for helium blistering involving displaced atom transport

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.

    1979-01-01

    A mechanism developed to account for formation of vertically elongated blisters in high displacement environments produced by /sup 252/Cf alpha particles and fission fragments has been extended to formation of done-shaped blisters in the low displacement environments produced by simple helium ion beams. In this mechanism, transport of displaced atoms to relieve compressive stresses in the helium-implanted layer allows interconnections of small, subsurface bubbles to form the blister cavity. The same transport may cause thickening of the blister caps at low implantation energies. The transition from dome-shaped to vertically elongated blistering occurs between the 300 and 3000 displacements per helium atom produced by simple helium ions and /sup 252/Cf radiations respectively.

  18. Mechanical characterization of cellulose single nanofiber by atomic force microscopy

    Science.gov (United States)

    Zhai, Lindong; Kim, Jeong Woong; Lee, Jiyun; Kim, Jaehwan

    2017-04-01

    Cellulose fibers are strong natural fibers and they are renewable, biodegradable and the most abundant biopolymer in the world. So to develop new cellulose fibers based products, the mechanical properties of cellulose nanofibers would be a key. The atomic microscope is used to measure the mechanical properties of cellulose nanofibers based on 3-points bending of cellulose nanofiber. The cellulose nanofibers were generated for an aqueous counter collision system. The cellulose microfibers were nanosized under 200 MPa high pressure. The cellulose nanofiber suspension was diluted with DI water and sprayed on the silicon groove substrate. By performing a nanoscale 3-points bending test using the atomic force microscopy, a known force was applied on the center of the fiber. The elastic modulus of the single nanofiber is obtained by calculating the fiber deflection and several parameters. The elastic modulus values were obtained from different resources of cellulose such as hardwood, softwood and cotton.

  19. Molecular Mechanisms of Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Holt, Shawn

    2003-01-01

    In studies to define the mechanisms involved in the progression of immortal, non-tumorigenic prostate cells to a tumorigenic state, we have found that molecular chaperones are elevated along with telomerase activity...

  20. Molecular Mechanisms of Prostate Cancer Progression

    National Research Council Canada - National Science Library

    Holt, Shawn

    2004-01-01

    In studios to define the mechanisms involved in the progression of immortal non tumorigenic prostate cells to a tumorigenic state, we have found that molecular chaperones are elevated along with telomerase activity...

  1. Atomic force microscopy probing in the measurement of cell mechanics

    OpenAIRE

    Kirmizis, Dimitrios

    2010-01-01

    Dimitrios Kirmizis, Stergios LogothetidisDepartment of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology, Aristotle University, Thessaloniki, GreeceAbstract: Atomic force microscope (AFM) has been used incrementally over the last decade in cell biology. Beyond its usefulness in high resolution imaging, AFM also has unique capabilities for probing the viscoelastic properties of living cells in culture and, even more, mapping the spatial distribution of cell mechanical properties...

  2. Molecular mechanism of Endosulfan action in mammals

    Indian Academy of Sciences (India)

    Endosulfan is a broad-spectrum organochlorine pesticide, speculated to be detrimental to human health in areas ofactive exposure. However, the molecular insights to its mechanism of action remain poorly understood. In two recentstudies, our group investigated the physiological and molecular aspects of endosulfan ...

  3. Trapping cold molecules and atoms: Simultaneous magnetic deceleration and trapping of cold molecular Oxygen with Lithium atoms

    Science.gov (United States)

    Akerman, Nitzan; Karpov, Michael; Segev, Yair; Bibelink, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-05-01

    Cooling molecules to the ultra-cold regime remains a major challenge in the growing field of cold molecules. The molecular internal degrees of freedom complicate the effort of direct application of laser cooling. An alternative and general path towards ultra-cold molecules relies on sympathetic cooling via collisions with laser-cooled atoms. Here, we demonstrate the first step towards application of sympathetic cooling by co-trapping of molecular Oxygen with Lithium atoms in a magnetic trap at a temperature of 300 mK. Our experiment begins with a pulsed supersonic beam which is a general source for cold high-flux atomic and molecular beams. Although the supersonic expansion efficiently cools the beam to temperatures below 1K, it also accelerates the beam to high mean velocities. We decelerate a beam of O2 in a moving magnetic trap decelerator from 375 m/s to a stop. We entrained the molecular beam with Li atoms by laser ablation prior to deceleration. The deceleration ends with loading the molecules and atoms into a static quadrupole trap, which is generated by two permanent magnets. We estimate 109 trapped molecules with background limited lifetime of 0.6 Sec. Our achievement enables application of laser cooling on the Li atoms in order to sympathetically cool the O2.

  4. Mechanical properties of borophene films: a reactive molecular dynamics investigation

    Science.gov (United States)

    Quy Le, Minh; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young’s modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young’s modulus and fracture stress of these five sheets appear in the range 63-136 N m-1 and 12-19 N m-1, respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  5. Molecular mechanisms of oxygen activation

    National Research Council Canada - National Science Library

    Hayaishi, Osamu

    1974-01-01

    ... OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. I l l Fifth Avenue, New York, New York 10003 United Kingdom ACADEMIC Edition PRESS, publis...

  6. Molecular pathogenesis and mechanisms of thyroid cancer

    Science.gov (United States)

    Xing, Mingzhao

    2013-01-01

    Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. PMID:23429735

  7. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.

    2016-12-16

    The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.

  8. Fast method for quantum mechanical molecular dynamics

    Science.gov (United States)

    Niklasson, Anders M. N.; Cawkwell, Marc J.

    2012-11-01

    As the processing power available for scientific computing grows, first-principles Born-Oppenheimer molecular dynamics simulations are becoming increasingly popular for the study of a wide range of problems in materials science, chemistry, and biology. Nevertheless, the computational cost of Born-Oppenheimer molecular dynamics still remains prohibitively large for many potential applications. Here we show how to avoid a major computational bottleneck: the self-consistent-field optimization prior to force calculations. The optimization-free quantum mechanical molecular dynamics method gives trajectories that are almost indistinguishable from an “exact” microcanonical Born-Oppenheimer molecular dynamics simulation even when low-prefactor linear scaling sparse matrix algebra is used. Our findings show that the computational gap between classical and quantum mechanical molecular dynamics simulations can be significantly reduced.

  9. The evolution of the atomic and molecular interstellar medium in star-forming galaxies

    NARCIS (Netherlands)

    Popping, Gergö

    2014-01-01

    In this thesis I developed models to make predictions for the atomic and molecular gas content of galaxies. Main results of my thesis include that the atomic hydrogen content of galaxies remained relatively constant with over the last 10 Billion years, whereas the molecular hydrogen content

  10. Resonant Scattering of Muonic Hydrogen Atoms and Dynamics of the Muonic Molecular Complex

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M. C., E-mail: Makoto.Fujiwara@cern.ch [University of British Columbia (Canada); Adamczak, A. [Institute Nuclear Physics (Poland); Bailey, J. M. [Chester Technology (United Kingdom); Beer, G. A. [University of Victoria (Canada); Beveridge, J. L. [TRIUMF (Canada); Faifman, M. P. [Kurchatov Institute (Russian Federation); Huber, T. M. [Gustavus Adolphus College (United States); Kammel, P. [University of Illinois at Urbana-Champaign (United States); Kim, S. K. [Jeonbuk National University (Korea, Republic of); Knowles, P. E. [Universite de Fribourg (Switzerland); Kunselman, A. R. [University of Wyoming (United States); Markushin, V. E. [Paul Scherrer Institute (Switzerland); Marshal, G. M. [TRIUMF (Canada); Mason, G. R. [University of Victoria (Canada); Mulhauser, F. [Universite de Fribourg (Switzerland); Olin, A. [TRIUMF (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T. A. [University of Northern British Columbia (Canada); Wozniak, J. [Institute Physics and Nuclear Techniques (Poland); Zmeskal, J. [Austrian Academy of Sciences (Austria)

    2001-12-15

    Resonant scattering of muonic hydrogen atoms via back decay of the molecular complex, a key process in the understanding of epithermal muonic molecular formation, is analyzed. The limitations of the effective rate approximation are discussed and the importance of the explicit treatment of the back decay is stressed. An expression of the energy distribution for the back-decayed atoms is given.

  11. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  12. Rolling a single molecular wheel at the atomic scale

    Science.gov (United States)

    Grill, L.; Rieder, K.-H.; Moresco, F.; Rapenne, G.; Stojkovic, S.; Bouju, X.; Joachim, C.

    2007-02-01

    The design of a single-molecule machine consisting of functional components requires a detailed understanding of its mechanical motion. The scanning tunnelling microscope (STM) is the only available tool for driving and imaging such a nanoscale machine on a surface. Both lateral hopping motions and conformational changes of single molecules can be induced using the STM tip. However, no rolling of a wheel has been demonstrated so far at the nanoscale, even though this is a very useful motion at the macroscopic scale. Here we show how the rolling of a single molecule equipped with two wheels (0.8 nm in diameter) can be induced by the STM tip. The characteristics of the rolling are recorded in the STM feedback loop manipulation signal and in real time. We capture unambiguous signatures of the conformational change happening during the rolling. Our approach of controlling the intramolecular mechanics provides a path towards the bottom-up assembly of more complex molecular machines.

  13. Molecular dynamics study of the interactions of incident N or Ti atoms with the TiN(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhai [National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Centre for Precision Manufacturing, Department of Design, Manufacture and Engineering Management, The University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Zeng, Quanren [Centre for Precision Manufacturing, Department of Design, Manufacture and Engineering Management, The University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Yuan, Lin [National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Qin, Yi [Centre for Precision Manufacturing, Department of Design, Manufacture and Engineering Management, The University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Chen, Mingjun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shan, Debin, E-mail: d.b.shan@gmail.com [National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Interactions of incident N or Ti atoms with TiN(001) surface are studied by CMD. • The impact position of incident N on the surface determines the interaction modes. • Adsorption could occur due to the atomic exchange process. • Resputtering and reflection may simultaneously occur. • The initial sticking coefficient of N on TiN(001) is much smaller than that of Ti. - Abstract: The interaction processes between incident N or Ti atoms and the TiN(001) surface are simulated by classical molecular dynamics based on the second nearest-neighbor modified embedded-atom method potentials. The simulations are carried out for substrate temperatures between 300 and 700 K and kinetic energies of the incident atoms within the range of 0.5–10 eV. When N atoms impact against the surface, adsorption, resputtering and reflection of particles are observed; several unique atomic mechanisms are identified to account for these interactions, in which the adsorption could occur due to the atomic exchange process while the resputtering and reflection may simultaneously occur. The impact position of incident N atoms on the surface plays an important role in determining the interaction modes. Their occurrence probabilities are dependent on the kinetic energy of incident N atoms but independent on the substrate temperature. When Ti atoms are the incident particles, adsorption is the predominant interaction mode between particles and the surface. This results in the much smaller initial sticking coefficient of N atoms on the TiN(001) surface compared with that of Ti atoms. Stoichiometric TiN is promoted by N/Ti flux ratios larger than one.

  14. Molecular Mechanisms of Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Ji Hee Yu

    2012-12-01

    Full Text Available The prevalence of obesity has been rapidly increasing worldwide over the last several decades and has become a major health problem in developed countries. The brain, especially the hypothalamus, plays a key role in the control of food intake by sensing metabolic signals from peripheral organs and modulating feeding behaviors. To accomplish these important roles, the hypothalamus communicates with other brain areas such as the brainstem and reward-related limbic pathways. The adipocyte-derived hormone leptin and pancreatic β-cell-derived insulin inform adiposity to the hypothalamus. Gut hormones such as cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide 1, and oxyntomodulin transfer satiety signals to the brain and ghrelin relays hunger signals. The endocannabinoid system and nutrients are also involved in the physiological regulation of food intake. In this article, we briefly review physiological mechanisms of appetite regulation.

  15. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Aymar, M.; Dulieu, O. [Laboratoire Aime Cotton, CNRS, UPR3321, Ba circumflex t. 505, Univ Paris-Sud, 91405 Orsay Cedex (France); Guerout, R. [Laboratoire Kastler-Brossel, CNRS, ENS, Univ Pierre et Marie Curie case 74, Campus Jussieu, F-75252 Paris Cedex 05 (France)

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  16. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo

    2009-11-01

    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  17. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

    DEFF Research Database (Denmark)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik

    2016-01-01

    )-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers......The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...

  18. Molecular mechanisms of DNA photodamage

    Energy Technology Data Exchange (ETDEWEB)

    Starrs, S.M

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA){sub n} and (GA){sub n}, and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a

  19. United polarizable multipole water model for molecular mechanics simulation

    Science.gov (United States)

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S.; Ren, Pengyu

    2015-07-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  20. Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides

    Science.gov (United States)

    Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.

    1993-01-01

    The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.

  1. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus. a molecular mechanics and molecular dynamics study

    DEFF Research Database (Denmark)

    da Graça Thrige, D; Buur, J R; Jørgensen, Flemming Steen

    1997-01-01

    For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate phosphatidyl......For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate...... phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state......). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B...

  2. Nanoscale assembly for molecular electronics and in situ characterization during atomic layer deposition

    Science.gov (United States)

    Na, Jeong-Seok

    The work in this dissertation consists of a two-part study concerning molecular-based electronics and atomic layer deposition (ALD). As conventional "top-down" silicon-based technology approaches its expected physical and technical limits, researchers have paid considerable attention to "bottom-up" approaches including molecular-based electronics that self assembles molecular components and ALD techniques that deposit thin films with atomic layer control. Reliable fabrication of molecular-based devices and a lack of understanding of the conduction mechanisms through individual molecules still remain critical issues in molecular-based electronics. Nanoparticle/molecule(s)/nanoparticle assemblies of "dimers" and "trimers", consisting of two and three nanoparticles bridged by oligomeric ethynylene phenylene molecules (OPEs), respectively, are successfully synthesized by coworkers and applied to contact nanogap electrodes (applied voltage (≥3 VAC). After successful trapping, the sample exposure to air reveals a small rapid decrease in current, followed by a slower exponential increase, and eventual current saturation. This work also reports on the dependence of electron transport on molecular length (2 to 4.7 nm) and structure (linear-type in dimers and Y-type in trimers). The extracted electronic decay constant of ˜0.12 A-1 and effective contact resistance of ˜4 MO indicate a strong electronic coupling between the chain ends, facilitating electron transport over long distances. A three terminal molecular transistor is also demonstrated with trimers trapped across nanogap electrodes. The source-drain current is modulated within a factor of 2 with a gate bias voltage of -2 to +2 V. A subthreshold slope of ˜110 mV/decade is obtained. Finally, we report on both fundamental understanding and application of atomic layer deposition. First, in situ analysis tools such as quartz crystal microbalance and electrical conductance measurements are combined to reveal direct

  3. Understanding the mechanisms of amorphous creep through molecular simulation.

    Science.gov (United States)

    Cao, Penghui; Short, Michael P; Yip, Sidney

    2017-12-26

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  4. The Behavior of Selected Diffuse Interstellar Bands with Molecular Fraction in Diffuse Atomic and Molecular Clouds

    Science.gov (United States)

    Fan, Haoyu; Welty, Daniel E.; York, Donald G.; Sonnentrucker, Paule; Dahlstrom, Julie A.; Baskes, Noah; Friedman, Scott D.; Hobbs, Lewis M.; Jiang, Zihao; Rachford, Brian; Snow, Theodore P.; Sherman, Reid; Zhao, Gang

    2017-12-01

    We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form (f H2), with comparisons to the corresponding behavior of various known atomic and molecular species. The equivalent widths of the five “normal” DIBs (λλ5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to E B-V , show a “lambda-shaped” behavior: they increase at low f H2, peak at f H2 ˜ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca+, Ti+, and CH+ also decline for f H2 > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with f H2, and the trends exhibited by the three C2 DIBs (λλ4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with f H2 are accompanied by cosmic scatter, the dispersion at any given f H2 being significantly larger than the individual errors of measurement. The lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes aside from ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest W λ (5780)/W λ (5797) ratios, characterizing the so-called “sigma-zeta effect,” occur only at f H2 < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing f H2. In order of increasing environmental density, we find the λ6283.8 and λ5780.5 DIBs, the λ6196.0 DIB, the λ6613.6 DIB, the λ5797.1 DIB, and the C2 DIBs.

  5. The molecular mechanism of cholestatic pruritus

    NARCIS (Netherlands)

    Oude Elferink, Ronald P. J.; Kremer, Andreas E.; Martens, Job J. W. W.; Beuers, Ulrich H.

    2011-01-01

    Pruritus is a frequent symptom in patients with cholestatic liver diseases. Pruritus can be excruciating and, in rare cases, become a primary indication for liver transplantation. The molecular mechanism of itch signal transduction is largely unclear. It was our hypothesis that compounds which

  6. Molecular mechanisms of drug-induced thrombocytopenia

    NARCIS (Netherlands)

    Burgess, J K

    A wide range of drugs can induce thrombocytopenia. Molecular mechanisms for the formation of specific epitopes for all the drug-dependent antibodies appear to be very similar. A restricted set of glycoproteins on the platelet surface interacts with the drugs to form neoepitopes, to which the

  7. The mechanics-modulated tunneling spectrum and low-pass effect of viscoelastic molecular monolayer

    Science.gov (United States)

    Chen, Yun; Zhang, Xiaoyue; Shao, Jian; Yu, Jing; Wang, Biao; Zheng, Yue

    2017-10-01

    Understanding the force-induced conductance fluctuation in molecules is essential for building molecular devices with high stability. While stiffness of molecule is usually considered to be desirable for stable conductance, we demonstrate mechanical dragging in viscoelastic molecules integrates both noise resistance and mechanical controllability to molecular conductance. Via conductive atomic force microscope measurement and theoretical modeling, it's found that viscoelastic Azurin monolayer has spectrum-like pattern of conductance corresponding to the duration and strength of applied mechanical pulse under low-frequency excitation. Conductance fluctuation is prevented under high-frequency excitation by dragging dissipation, which qualifies molecular junction with electric robustness against mechanical noise.

  8. [Neonatal hyperbilirubinemia and molecular mechanisms of jaundice].

    Science.gov (United States)

    Jirsa, M; Sticová, E

    2013-07-01

    The introductory summarises the classical path of heme degradation and classification of jaundice. Subsequently, a description of neonatal types of jaundice is given, known as Crigler Najjar, Gilberts, DubinJohnson and Rotor syndromes, emphasising the explanation of the molecular mechanisms of these metabolic disorders. Special attention is given to a recently discovered molecular mechanism of the Rotor syndrome. The mechanism is based on the inability of the liver to retrospectively uptake the conjugated bilirubin fraction primarily excreted into the blood, not bile. A reduced ability of the liver to uptake the conjugated bilirubin contributes to the development of hyperbilirubinemia in common disorders of the liver and bile ducts and to the toxicity of xenobiotics and drugs using transport proteins for conjugated bilirubin.

  9. [Molecular mechanism and genetic basis of geoherbs].

    Science.gov (United States)

    Huang, Lu-Qi; Guo, Lan-Ping; Hu, Juan; Shao, Ai-Juan

    2008-10-01

    As products of interaction of time and space, geoherbs, which are essential parts of Chinese Materia Medica, were characterized in different morphology, unique habitat, continuous and changeable sites. The main fields in molecular mechanism of geoherbs focus on: biodiversity and molecular identification, genetic different and evolutionary genetics, geo-variation and environmental adaptation, germplasm and aimed genus choosing, expression and control of functional gene, gene transfer and bio-safety evaluation. The main tasks are to discover the genetic variation at molecular level, ascertain the molecular characteristics of geoherbs and the effect of environment on gene expression of geoherbs, confirm the genetic factors attribute to the forming of geoherbs, and find out the genetic basis of geoherbs at individual level and population level, respectively. This paper pointed out that the essential of geoherbs is continuers quantities variation at population level, geoherb's populations are different in gene frequency with the others'; geohersm are quantitative trait loci (QTL) controlled by multi - gene or combination with multiple-gene and major gene at individual level. It is very important to pay more attention to the scale effect of geoherbs, refer the theories and methods of quantities genetic, and concern more about the interaction of environment and gene in geoherbs' molecular mechanism research.

  10. Determination of molecular, atomic, electronic cross-sections and effective atomic number of some boron compounds and TSW

    Energy Technology Data Exchange (ETDEWEB)

    Icelli, Orhan [Department of physics Education, Faculty of Education Erzincan University, 24030 Erzincan (Turkey)], E-mail: orhanicelli@gmail.com; Erzeneoglu, Salih [Department of physics, Faculty of Sciences, Atatuerk University, Erzurum (Turkey); Boncukcuoglu, Recep [Department of Environmental Engineering, Faculty of Engineering, Atatuerk University, Erzurum (Turkey)

    2008-07-15

    The transmission of gamma-rays of some boron compounds (H{sub 3}BO{sub 3}, Na{sub 2}B{sub 4}O{sub 7}) and the trommel sieve waste (TSW) have been measured by using an extremely narrow-collimated-beam transmission method in the energy range 15.74-40.93 keV. Molecular, atomic and electronic cross-sections and effective atomic numbers have been determinated on the basis of mixture rule and compared with the results obtained from theory.

  11. Mechanical properties and formation mechanisms of a wire of single gold atoms

    DEFF Research Database (Denmark)

    Rubio-Bollinger, G.; Bahn, Sune Rastad; Agrait, N.

    2001-01-01

    A scanning tunneling microscope supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab i...

  12. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, H. [ed.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  13. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    Science.gov (United States)

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  14. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.

    2000-06-01

    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  15. Molecular mechanisms of taste transduction in vertebrates.

    Science.gov (United States)

    Ishimaru, Yoshiro

    2009-01-01

    Among the five senses, taste and olfaction play crucial roles in the detection of chemical substances in the environment and are referred to as chemical senses. In the past decade, much progress has been made in studies on molecular mechanisms of the gustatory system by methods such as those based on molecular and cellular biology, genetics, and bioinformatics. This review covers recent studies on taste receptors, intracellular signaling transduction in taste receptor cells, and taste coding at the periphery in vertebrates from fish to mammals.

  16. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review.

    Science.gov (United States)

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-09-01

    Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.

  17. Dynamic nuclear polarization of high-density atomic hydrogen in solid mixtures of molecular hydrogen isotopes.

    Science.gov (United States)

    Sheludiakov, S; Ahokas, J; Järvinen, J; Zvezdov, D; Vainio, O; Lehtonen, L; Vasiliev, S; Mao, S; Khmelenko, V V; Lee, D M

    2014-12-31

    We report on magnetic resonance studies of high-density atomic hydrogen and deuterium in solid hydrogen matrices at temperatures below 1 K. Average concentrations of H atoms ≈3×10(19)  cm(-3) are obtained in chemical tunneling reactions of isotope exchange with D atoms. The products of these reactions are closely located pairs of H atoms near D2 molecules with strong exchange interactions. We discovered a dynamic nuclear polarization effect on H atoms created by pumping the center of the H electron spin resonance spectrum, similar to the Overhauser effect in metals. Our results indicate that H atoms may be arranged inside molecular matrices at separations equivalent to local concentrations of 2.6×10(21)  cm(-3). This opens up a way to build a metallic state of atomic hydrogen at zero pressure.

  18. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  19. Perfect Precision Detecting Probability Of An Atom Via Sgc Mechanism

    Science.gov (United States)

    Hamedi, H. R.

    2015-06-01

    This letter investigates a scheme of high efficient two-dimensional (2D) atom localization via scanning probe absorption in a Y-type four-level atomic scheme with two orthogonal standing waves. It is shown that because of the position dependent atom-field interaction, the spatial probability distribution of the atom can be directly determined via monitoring the probe absorption and gain spectra. The impact of different controlling parameters of the system on 2D localization is studied. We find that owning the effect of spontaneously generated coherence (SGC), the atom can be localized at a particular position and the maximal probability of detecting the atom within the sub-wavelength domain of the two orthogonal standing waves reaches to hundred percent. Phase controlling of position dependent probe absorption is then discussed. The presented scheme may be helpful in laser cooling or atom nanolithography via high precision and high resolution atom localization.

  20. Molecular mechanism for the umami taste synergism

    Science.gov (United States)

    Zhang, Feng; Klebansky, Boris; Fine, Richard M.; Xu, Hong; Pronin, Alexey; Liu, Haitian; Tachdjian, Catherine; Li, Xiaodong

    2008-01-01

    Umami is one of the 5 basic taste qualities. The umami taste of L-glutamate can be drastically enhanced by 5′ ribonucleotides and the synergy is a hallmark of this taste quality. The umami taste receptor is a heteromeric complex of 2 class C G-protein-coupled receptors, T1R1 and T1R3. Here we elucidate the molecular mechanism of the synergy using chimeric T1R receptors, site-directed mutagenesis, and molecular modeling. We propose a cooperative ligand-binding model involving the Venus flytrap domain of T1R1, where L-glutamate binds close to the hinge region, and 5′ ribonucleotides bind to an adjacent site close to the opening of the flytrap to further stabilize the closed conformation. This unique mechanism may apply to other class C G-protein-coupled receptors. PMID:19104071

  1. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J. (comps.)

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  2. Rabi oscillations between atomic and molecular condensates driven with coherent one-color photoassociation.

    Science.gov (United States)

    Yan, Mi; DeSalvo, B J; Huang, Ying; Naidon, P; Killian, T C

    2013-10-11

    We demonstrate coherent one-color photoassociation of a Bose-Einstein condensate, which results in Rabi oscillations between atomic and molecular condensates. We attain atom-molecule Rabi frequencies that are comparable to decoherence rates by driving photoassociation of atoms in an ^{88}Sr condensate to a weakly bound level of the metastable 1S0+3P1 molecular potential, which has a long lifetime and a large Franck-Condon overlap integral with the ground scattering state. Transient shifts and broadenings of the excitation spectrum are clearly seen at short times, and they create an asymmetric excitation profile that only displays Rabi oscillations for blue detuning from resonance.

  3. Molecular mechanisms of hepatic injury and repair

    OpenAIRE

    Henderson, Neil C

    2007-01-01

    In this thesis I examined molecular mechanisms involved in acute and chronic liver injury, and also studied basic pathways mediating tumour promotion. Acute hepatic failure secondary to paracetamol poisoning is associated with high mortality. C-jun (NH2) terminal kinase (JNK) is a member of the mitogen activated protein kinase family and is a key intracellular signaling molecule involved in the control of cell fate. Paracetamol induced hepatic JNK activation in both human and m...

  4. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  5. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.

    Science.gov (United States)

    Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2013-08-13

    The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

  6. Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow

    Science.gov (United States)

    Malik, F. Bary

    1995-01-01

    The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.

  7. Rovibrational excitation of HD in collisions with atomic and molecular hydrogen

    Science.gov (United States)

    Flower, D. R.; Roueff, E.

    1999-11-01

    We have computed cross-sections and rate coefficients for rovibrational transitions in HD, induced by collisions with atomic and molecular hydrogen. We employed fully quantum-mechanical methods and the potential of Boothroyd et al. for H-HD, and that of Schwenke for H2-HD. The rate coefficients for vibrational relaxation v=1->0 of HD are compared with the corresponding values for H2. The influence of vibrationally excited channels on the rate coefficients for rotational transitions within the v=0 vibrational ground state of HD is shown to be small at T=500K, where T is the kinetic temperature. The rate coefficients, for 100http://ccp7.dur.ac.uk/.

  8. Liquid Atomic Force Microscopy: Solvation Forces, Molecular Order, and Squeeze-Out

    Science.gov (United States)

    O'Shea, Sean J.; Gosvami, Nitya N.; Lim, Leonard T. W.; Hofbauer, Wulf

    2010-08-01

    We review the use of atomic force microscopy (AFM) in liquids to measure oscillatory solvation forces. We find solvation layering can occur for all the liquids studied (linear and branched alkanes) but marked variations in the force and dissipation may arise dependent on: a) the temperature, b) the tip shape/radius of curvature, and c) the degree of molecular branching. Several findings (e.g., the strong temperature dependence in measured solvation forces, solvation oscillations using branched molecules) differ from those observed using the Surface Force Apparatus, because of the nanoscale area probed by AFM. Conduction AFM is used to explore how liquid is squeezed out of the tip-sample gap, and enables the change in contact area of the tip-sample junction to be monitored and compared to mechanical models. We find elastic models provide a good description of the deformation of ordered, solid-like solvation layers but not disordered, liquid-like layers.

  9. [Application of molecular dynamics simulation to the interpretation of atomic force microscopy data].

    Science.gov (United States)

    Godzi, M G; Tolstova, A P; Oferkin, I V

    2010-01-01

    A new approach to the interpretation and refining of experimental atomic force microscopy (AFM) data has been developed, which is based on the comparison with the simulated static imaging mode operations output. We have applied the approach to atomic force microscopy studies of lisozyme. During this test, we have obtained distinct precise AFM images of lysozyme monomers adsorbed from a clear aqueous solution onto a mica wafer. The images were compared with the corresponding images obtained by molecular dynamics simulations. We performed two steps of simulations to reproduce the environment and processes of the AFM study of lysozyme. The first step was intended to obtain the adsorbed structure of lysozyme; it was performed using the NAMD molecular dynamics software. At this step, the simulated environment of lysozyme was a water box, and the mica wafer was manually modeled according to its crystal structure. At the second step, we applied molecular mechanics calculations to reproduce tip interactions with the lysozyme on the surface. As a result, we have obtained the height as a function of horizontal coordinates. The function was compared with the AFM real experimental surface height function for adsorbed lysozyme. The results of this comparison showed the excellent equivalence in the shape of experimental and modeled lysozyme structures and a significant difference in their sizes. The investigation of this difference led us to the conclusion that more detailed simulations of AFM imaging are needed to reach a better correspondence between the experiment and the model. We consider our approach to be applicable to refine the AFM images of proteins by a visual comparison with the results of simulation based on precise X-ray structures of these proteins. The first results of the application of this approach provide sufficient information on how to improve the accuracy in further applications.

  10. Convergent close-coupling approach to light and heavy projectile scattering on atomic and molecular hydrogen

    Science.gov (United States)

    Bray, I.; Abdurakhmanov, I. B.; Bailey, J. J.; Bray, A. W.; Fursa, D. V.; Kadyrov, A. S.; Rawlins, C. M.; Savage, J. S.; Stelbovics, A. T.; Zammit, M. C.

    2017-10-01

    The atomic hydrogen target has played a pivotal role in the development of quantum collision theory. The key complexities of computationally managing the countably infinite discrete states and the uncountably infinite continuum were solved by using atomic hydrogen as the prototype atomic target. In the case of positron or proton scattering the extra complexity of charge exchange was also solved using the atomic hydrogen target. Most recently, molecular hydrogen has been used successfully as a prototype molecule for developing the corresponding scattering theory. We concentrate on the convergent close-coupling computational approach to light projectiles, such as electrons and positrons, and heavy projectiles, such as protons and antiprotons, scattering on atomic and molecular hydrogen.

  11. Molecular-dynamics simulation of lateral friction in contact-mode atomic force microscopy of alkane films: The role of molecular flexibility

    DEFF Research Database (Denmark)

    Soza, P.; Hansen, Flemming Yssing; Taub, H.

    2011-01-01

    Molecular-dynamics simulations are used to investigate lateral friction in contact-mode atomic force microscopy of tetracosane (n-C24H50) films. We find larger friction coefficients on the surface of monolayer and bilayer films in which the long axis of the molecules is parallel to the interface...... than on a surface of molecules with the long axis perpendicular to the surface, in agreement with experimental results. A major dissipation mechanism is the molecular flexibility as manifested in the torsional motion about the molecules' C-C bonds. The generation of gauche defects as a result...

  12. The Effect of Atom Vacancy Defect on the Vibrational Behavior of Single-Walled Carbon Nanotubes: A Structural Mechanics Approach

    Directory of Open Access Journals (Sweden)

    S. K. Georgantzinos

    2014-04-01

    Full Text Available An atomistic structural mechanics method, which is based on the exclusive use of spring elements, is developed in order to study the effect of imperfections due to atom vacancy on the vibrational characteristics of single-walled carbon nanotubes (SWCNTs. The developed elements simulate the relative translations and rotations between atoms as well as the mass of the atoms. In this way, molecular mechanics theory can be applied directly because the atomic bonds are modeled by using exclusively physical variables such as bond stretching. The method is validated for its predictability comparing with vibration results found in the open literature for pristine nanotubes. Then, it is used for the vibration analysis of defective nanotubes. Imperfections such as one-atom vacancy, two-atom vacancy, and one carbon hexagonal cell vacancy are investigated. Their effect on vibrational behavior is explored for different defect positions, nanotube diameters, and support conditions. According to the obtained results, the fundamental frequency is decreased as the size of imperfection increases, and the percentage reduction in fundamental frequency due to the atomic vacancy defect is more affected for a single-clamped SWCNT than for a double-clamped one.

  13. Molecular Articulation in Response to Interactive Atomic Forces in Docker

    Science.gov (United States)

    1996-12-01

    than the calculations.4-15 Figure 5-1: The number of CPU cycles used by the articulation functions for six test case consisting of 13, 92,154,272,397...and 608 atoms .............................................................. 5-3 Figure 5-2: The percentage of the total number of CPU cycles in...The ARM server is run on an Intel 80386 and is responsible for controlling the PER-Force force-reflective arm which is the interface allowing the

  14. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Energy Technology Data Exchange (ETDEWEB)

    Pabst, Stefan Ulf

    2013-04-15

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO{sub 2} is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  15. Molecular Mechanisms of Renal Ischemic Conditioning Strategies

    DEFF Research Database (Denmark)

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V

    2015-01-01

    Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part...... of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review...... summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many...

  16. Molecular Mechanisms in Exercise-Induced Cardioprotection

    Directory of Open Access Journals (Sweden)

    Saeid Golbidi

    2011-01-01

    Full Text Available Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.

  17. Molecular mechanisms for protein-encoded inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David; (Cornell); (HHMI)

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  18. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  19. Molecular Mechanics of Tip-Link Cadherins

    Science.gov (United States)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2011-11-01

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is likely composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their complete molecular structure, elasticity, and deafness-related structural defects remain largely unknown. We present crystal structures of extracellular (EC) tip-link cadherin repeats involved in hereditary deafness and tip link formation. In addition, we show that the deafness mutation D101G, in the linker region between the repeats EC1 and EC2 of cadherin-23, causes a slight bend between repeats and decreases Ca2+ affinity. Molecular dynamics simulations suggest that tip-link cadherin repeats are stiff and that either removing Ca2+ or mutating Ca2+-binding residues reduces rigidity and unfolding strength. The structures and simulations also suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with protocadherin-15 to form the tip link.

  20. Cellular and Molecular Mechanisms of AKI.

    Science.gov (United States)

    Agarwal, Anupam; Dong, Zheng; Harris, Raymond; Murray, Patrick; Parikh, Samir M; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-05-01

    In this article, we review the current evidence for the cellular and molecular mechanisms of AKI, focusing on epithelial cell pathobiology and related cell-cell interactions, using ischemic AKI as a model. Highlighted are the clinical relevance of cellular and molecular targets that have been investigated in experimental models of ischemic AKI and how such models might be improved to optimize translation into successful clinical trials. In particular, development of more context-specific animal models with greater relevance to human AKI is urgently needed. Comorbidities that could alter patient susceptibility to AKI, such as underlying diabetes, aging, obesity, cancer, and CKD, should also be considered in developing these models. Finally, harmonization between academia and industry for more clinically relevant preclinical testing of potential therapeutic targets and better translational clinical trial design is also needed to achieve the goal of developing effective interventions for AKI. Copyright © 2016 by the American Society of Nephrology.

  1. Electron transfer processes of atomic and molecular doubly charged ions: information from beam experiments

    Science.gov (United States)

    Herman, Zdenek

    2013-07-01

    Single-electron transfer reactions in collisions of atomic and molecular doubly charged ions, with atoms and molecules, were investigated in a series of crossed-beam scattering, translational spectroscopy and product luminescence experiments. Investigation of a series of atomic dication-atom electron transfer at collision energies of 0.1-10 eV provided data on differential and relative total cross sections of state-to-state processes. Populations of electronic and vibrational states and rotational temperatures of molecular product ions were obtained from studies of non-dissociative electron transfer in systems containing simple molecular dications and/or molecular targets. The product electronic states populated with highest probability were those for which the translational energy release was 3-5 eV, indicating that the 'reaction window' concept, based on the Landau-Zener formalism, is applicable also to molecular systems. Population of the vibrational states of the molecular products could be described by Franck-Condon factors of the vertical transitions between the reactant and product states, especially at higher (keV) collision energies. Rotational temperature of the product molecular cations was found to be surprisingly low, mostly 400-500 K, practically the temperature of the ion source.

  2. Molecular mechanisms of robustness in plants.

    Science.gov (United States)

    Lempe, Janne; Lachowiec, Jennifer; Sullivan, Alessandra M; Queitsch, Christine

    2013-02-01

    Robustness, the ability of organisms to buffer phenotypes against perturbations, has drawn renewed interest among developmental biologists and geneticists. A growing body of research supports an important role of robustness in the genotype to phenotype translation, with far-reaching implications for evolutionary processes and disease susceptibility. Similar to animals and fungi, plant robustness is a function of genetic network architecture. Most perturbations are buffered; however, perturbation of network hubs destabilizes many traits. Here, we review recent advances in identifying molecular robustness mechanisms in plants that have been enabled by a combination of classical genetics and population genetics with genome-scale data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    Science.gov (United States)

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  4. [A possible molecular mechanism of the narcotic action of noble gases].

    Science.gov (United States)

    Dovgusha, V V; Fok, M V; Zaritskaia, G A

    2005-01-01

    A molecular mechanism of the narcotic action of noble gases is suggested, which is based on the fact that noble gas atoms change the orientation of water molecules absorbed on the surface of axon membrane. The resulting change in the transmembrane potential deteriorates the propagation of nerve pulse.

  5. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact.

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-12

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  6. Molecular mechanics of tropocollagen-hydroxyapatite biomaterials

    Science.gov (United States)

    Dubey, Devendra Kumar

    Hard biomaterials such as bone, dentin, and nacre show remarkable mechanical performance and serve as inspiration for development of next generation of composite materials with high strength and toughness. Such materials have primarily an organic phase (e.g. tropocollagen (TC) or chitin) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered arrangement at nanoscopic length scales. Interfacial interactions between the organic phases and the mineral phases and structural effects arising due to the staggered and hierarchical arrangements are identified to be the two most important determinants for high mechanical performance of such biomaterials. Effects of these determinants in such biomaterials are further intertwined with factors such as loading configuration, chemical environment, mineral crystal shape, and residue sequences in polymer chains. Atomistic modeling is a desired approach to investigate such sub nanoscale issues as experimental techniques for investigations at such small scale are still in nascent stage. For this purpose, explicit three dimensional (3D) molecular dynamics (MD) and ab initio MD simulations of quasi-static mechanical deformations of idealized Tropocollagen-Hydroxyapatite (TC-HAP) biomaterials with distinct interfacial arrangements and different loading configurations are performed. Focus is on developing insights into the molecular level mechanics of TC-HAP biomaterials at fundamental lengthscale with emphasis on interface phenomenon. Idealized TC-HAP atomistic models are analyzed for their mechanical strength and fracture failure behavior from the viewpoint of interfacial interactions between TC and HAP and associated molecular mechanisms. In particular, study focuses on developing an understanding of factors such as role of interfacial structural arrangement, hierarchical structure design, influence of water, effect of changes in HAP crystal shape, and mutations in TC molecule on the mechanical strength

  7. Reasoning with Atomic-Scale Molecular Dynamic Models

    Science.gov (United States)

    Pallant, Amy; Tinker, Robert F.

    2004-01-01

    The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…

  8. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    Science.gov (United States)

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  9. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  10. Molecular Mechanisms of Cardioprotective Actions of Tanshinones

    Directory of Open Access Journals (Sweden)

    Hyou-Ju Jin

    2016-01-01

    Full Text Available Tanshinones are lipophilic compounds derived from Salvia miltiorrhiza (Danshen that has been widely used to treat coronary heart diseases in China. The cardioprotective actions of tanshinones have been extensively studied in various models of myocardial infarction, cardiac ischemia reperfusion injury, cardiac hypertrophy, atherosclerosis, hypoxia, and cardiomyopathy. This review outlines the recent development in understanding the molecular mechanisms and signaling pathways involved in the cardioprotective actions of tanshinones, in particular on mitochondrial apoptosis, calcium, nitric oxide, ROS, TNF-α, PKC, PI3K/Akt, IKK/NF-κB, and TGF-β1/Smad mechanisms, which highlights the potential of these compounds as therapeutic agents for treating cardiovascular diseases.

  11. The cytotoxicity of organobismuth compounds with certain molecular structures can be diminished by replacing the bismuth atom with an antimony atom in the molecules.

    Science.gov (United States)

    Kohri, Kumiko; Yoshida, Eiko; Yasuike, Shuji; Fujie, Tomoya; Yamamoto, Chika; Kaji, Toshiyuki

    2015-06-01

    Organic-inorganic hybrid molecules, which are composed of an organic structure and metal(s), are indispensable for synthetic chemical reactions; however, their toxicity has been incompletely understood. In the present study, we discovered two cytotoxic organobismuth compounds whose cytotoxicity diminished upon replacement of the intramolecular bismuth atom with an antimony atom. The intracellular accumulation of the organobismuth compounds was much higher than that of the organoantimony compounds with the corresponding organic structures. We also showed that both the organic structure and bismuth atom are required for certain organobismuth compounds to exert their cytotoxic effect, suggesting that the cytotoxicity of such a compound is a result of an interaction between the organic structure and the bismuth atom. The present data suggest that organobismuth compounds with certain molecular structures exhibit cytotoxicity via an interaction between the molecular structure and the bismuth atom, and this cytotoxicity can be diminished by replacing the bismuth atom with an antimony atom, resulting in lower intracellular accumulation.

  12. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    Science.gov (United States)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  13. [Programmed necrosis and necroptosis - molecular mechanisms].

    Science.gov (United States)

    Giżycka, Agata; Chorostowska-Wynimko, Joanna

    2015-12-16

    Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.

  14. Molecular inhibitory mechanism of tricin on tyrosinase

    Science.gov (United States)

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-01

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  15. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  16. Atomic force microscopy: High resolution dynamic imaging of cellular and molecular structure in health and disease.

    Science.gov (United States)

    Taatjes, Douglas J; Quinn, Anthony S; Rand, Jacob H; Jena, Bhanu P

    2013-10-01

    The atomic force microscope (AFM), invented in 1986, and a member of the scanning probe family of microscopes, offers the unprecedented ability to image biological samples unfixed and in a hydrated environment at high resolution. This opens the possibility to investigate biological mechanisms temporally in a heretofore unattainable resolution. We have used AFM to investigate: (1) fundamental issues in cell biology (secretion) and, (2) the pathological basis of a human thrombotic disease, the antiphospholipid syndrome (APS). These studies have incorporated the imaging of live cells at nanometer resolution, leading to discovery of the "porosome," the universal secretory portal in cells, and a molecular understanding of membrane fusion from imaging the interaction and assembly of proteins between opposing lipid membranes. Similarly, the development of an in vitro simulacrum for investigating the molecular interactions between proteins and lipids has helped define an etiological explanation for APS. The prime importance of AFM in the success of these investigations will be presented in this manuscript, as well as a discussion of the limitations of this technique for the study of biomedical samples. Copyright © 2013 Wiley Periodicals, Inc.

  17. Multimillion-atom Reactive Molecular Dynamics Simulations on Oxidation of SiC Nanoparticles

    Science.gov (United States)

    Li, Ying; Romero, Nichols; Argonne National Laboratory Collaboration; University of Southern California Collaboration; Kumamoto University, Japan Collaboration

    High-temperature oxidation of silicon-carbide nanoparticles (nSiC) underlies a wide range of technologies from high-power electronic switches for efficient electrical grid and thermal protection of space vehicles to self-healing ceramic nanocomposites. Here, multimillion-atom reactive molecular dynamics simulations validated by ab initio quantum molecular dynamics simulations predict unexpected condensation of large graphene flakes during high-temperature oxidation of nSiC. Initial oxidation produces a molten silica shell that acts as an autocatalytic `nanoreactor' by actively transporting oxygen reactants while protecting the nanocarbon product from harsh oxidizing environment. Percolation transition produces porous nanocarbon with fractal geometry, which consists of mostly sp2 carbons with pentagonal and heptagonal defects. This work suggests a simple synthetic pathway to high surface-area, low-density nanocarbon with numerous energy, biomedical and mechanical-metamaterial applications, including the reinforcement of self-healing composites. Department of Energy (DOE), Office of Science, Grant # DE-AC02-06CH-11357 and Grant # DE-FG02-04ER-46130.

  18. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    Science.gov (United States)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of

  19. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.

    Science.gov (United States)

    Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter

    2013-08-14

    The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.

  20. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  1. Applications of quantum and classical connections in modeling atomic, molecular and electrodynamic systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamical Systems is a reference on the new field of relativistic optics, examining topics related to relativistic interactions between very intense laser beams and particles. Based on 30 years of research, this unique book connects the properties of quantum equations to corresponding classical equations used to calculate the energetic values and the symmetry properties of atomic, molecular and electrodynamical systems. In addition, it examines applications for these methods, and for the calculation of

  2. Atomic and molecular layer activation of dielectric surfaces

    Science.gov (United States)

    Senkevich, John Joseph

    Strong interaction between the material deposit and substrate is critical to stable deposits and interfaces. The work presented here focuses on the surface activation of dielectric surfaces and oxidized metal surfaces to promote the chemisorption of palladium (II) hexafluoroacetylacetonate (PdII (hfac)2). The goal is to develop reliable, robust metallization protocols, which enable strong interactions between the metal and substrate. SiO2, air exposed Ta, Trikon, and SiLK were activated with sulfur or phosphorus. Two types of activations were developed; one based on self-assembled chemistry, and the other a plasma-assisted process. Activation of the surface using self-assembly techniques was carried out using mercaptan-terminated silane and tetrasulfide silane. The resulting films were characterized by variable angle spectroscopic ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy. Tetrasulfide silane sources films exhibit self-limiting behavior, even in the presence of water vapor; whereas mercaptan-terminated silane sourced films tend to be thicker. The surface activations using atomic layers of sulfur and phosphorus were carried out in a rf plasma chamber using hydrogen sulfide and phosphine sources, respectively. The activations were studied as functions of rf power, system pressure, and substrate material. Results show that higher rf powers and lower system pressures promote greater surface coverages by sulfur with a reduced oxidation state. The activated dielectrics show evidence of PdII(hfac)2 chemisorption, in contrast to non-activated surfaces. The binding energy shift of the Pd3d 5/2 XPS peak towards elemental Pd provides evidence for the dissociative chemisorption of PdII(hfac)2. The extent of dissociation depends on the substrate temperature and the activation method used. The conclusions of the work presented here have implications for metallization using highly polarizable transition metals. Specifically, it can be applied to

  3. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-01

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  4. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  5. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.

    Science.gov (United States)

    Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier

    2013-02-19

    Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of

  6. Dissociation mechanisms of photoexcited molecular ions

    CERN Document Server

    Inglis, L C

    2003-01-01

    Photoionisation of gas phase molecules, in the energy range 8 - 40 eV, and the subsequent dissociation mechanisms have been investigated using threshold photoelectron spectroscopy and ion time-of-flight mass spectrometry. The excitation source used was monochromatic radiation, delivered by station 3.2 at the Daresbury Laboratory Synchrotron Radiation Source. These two techniques have also been combined in threshold photoelectron-photoion coincidence experiments, in order to record coincidence time-of-flight mass spectra and thereby determine breakdown curves. Such curves display the ion fragmentation as a function of internal energy. In addition, computer modelling techniques have been employed to gain some understanding of the unimolecular dissociations of energy selected molecular ions by establishing theoretical breakdown graphs, appearance energies, fragmentation pathways and dissociation rates. Ab initio quantum chemistry calculations have been carried out, generating ionisation and appearance energies, ...

  7. Molecular and cellular mechanisms of heterotopic ossification.

    Science.gov (United States)

    Ramirez, Diana M; Ramirez, Melissa R; Reginato, Anthony M; Medici, Damian

    2014-10-01

    Heterotopic ossification (HO) is a debilitating condition in which cartilage and bone forms in soft tissues such as muscle, tendon, and ligament causing immobility. This process is induced by inflammation associated with traumatic injury. In an extremely rare genetic disorder called fibrodysplasia ossificans progessiva (FOP), a combination of inflammation associated with minor soft tissue injuries and a hereditary genetic mutation causes massive HO that progressively worsens throughout the patients' lifetime leading to the formation of an ectopic skeleton. An activating mutation in the BMP type I receptor ALK2 has been shown to contribute to the heterotopic lesions in FOP patients, yet recent studies have shown that other events are required to stimulate HO including activation of sensory neurons, mast cell degranulation, lymphocyte infiltration, skeletal myocyte cell death, and endothelial-mesenchymal transition (EndMT). In this review, we discuss the recent evidence and mechanistic data that describe the cellular and molecular mechanisms that give rise to heterotopic bone.

  8. Cancer chemoprevention – selected molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Katarzyna Walczak

    2017-03-01

    Full Text Available The effect of diet on cancer formation and prevention of carcinogenesis has attracted considerable attention for years and is the subject of several studies. Some components of the daily diet, such as resveratrol, curcumin, genistein, gingerol, can significantly reduce the risk of cancer or affect the rate of tumor progression. Cancer chemoprevention assumes the use of natural or synthetic biologically active substances in order to prevent, inhibit or reverse the progression of cancer. There are many biologically active compounds in several natural products, i.e. garlic, ginger, soy, curcuma, tomatoes, cruciferous plants or green tea. Their chemopreventive activity is based on the inhibition of processes underlying carcinogenesis (inflammation, transformation and proliferation, but also affects the final phase of carcinogenesis - angiogenesis and metastasis. Despite the relatively low toxicity of chemopreventive agents, their molecular targets often coincide with the objectives of the currently used cancer therapies. The widespread use of chemopreventive agents may contribute to reduction of the rate of cancer incidence, and increase the effectiveness of conventional cancer therapies. In the present study, selected molecular mechanisms of the chemopreventive activity have been discussed, especially their involvement in the regulation of signal transduction, cell cycle regulation, apoptosis, metastasis and angiogenesis. The role of chemopreventive agents in the inflammatory process, the metabolism of xenobiotics and multidrug resistance has been also characterized.

  9. The molecular mechanisms of obesity paradox.

    Science.gov (United States)

    Antonopoulos, Alexios S; Tousoulis, Dimitris

    2017-07-01

    Clinical observations suggest a complex relationship between human obesity and cardiovascular disease. Whilst abdominal (visceral) adiposity leads to deleterious metabolic disturbances, subcutaneous fat accumulation has a benign effect on cardiometabolic risk. Notably, an accumulating body of evidence paradoxically links increased body mass index with a better prognosis in patients with established cardiovascular disease, a finding that has been termed the 'obesity paradox'. Whilst this is now acknowledged to be an epidemiological finding, a metabolically healthy obese group associated with low cardiovascular risk has also been identified. The current concept of adipose tissue (AT) biology suggests that AT expansion is feasible without accompanying adipocyte dysfunction. A metabolically healthy obese phenotype can be promoted by exercise, but is also linked with intrinsic AT molecular characteristics such as efficient fat storage and lipid droplet formation, high adipogenesis capacity, low extracellular matrix fibrosis, angiogenesis potential, adipocyte browning and low macrophages infiltration/activation. Such features are associated with a secretomic profile of human AT which is protective for the cardiovascular system. In the present review, we summarize the existing knowledge on the molecular mechanisms underlying the 'obesity paradox' and whether fatness can be healthy too. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  10. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  11. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.

    Science.gov (United States)

    Chen, Charles H; Wiedman, Gregory; Khan, Ayesha; Ulmschneider, Martin B

    2014-09-01

    Unbiased molecular simulation is a powerful tool to study the atomic details driving functional structural changes or folding pathways of highly fluid systems, which present great challenges experimentally. Here we apply unbiased long-timescale molecular dynamics simulation to study the ab initio folding and partitioning of melittin, a template amphiphilic membrane active peptide. The simulations reveal that the peptide binds strongly to the lipid bilayer in an unstructured configuration. Interfacial folding results in a localized bilayer deformation. Akin to purely hydrophobic transmembrane segments the surface bound native helical conformer is highly resistant against thermal denaturation. Circular dichroism spectroscopy experiments confirm the strong binding and thermostability of the peptide. The study highlights the utility of molecular dynamics simulations for studying transient mechanisms in fluid lipid bilayer systems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014. Published by Elsevier B.V.

  12. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.

    Science.gov (United States)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-03-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.

  13. Molecular mechanisms and therapeutic interventions in sarcopenia

    Directory of Open Access Journals (Sweden)

    Sung Sup Park

    2017-09-01

    Full Text Available Sarcopenia is the degenerative loss of muscle mass and function with aging. Recently sarcopenia was recognized as a clinical disease by the International Classification of Disease, 10th revision, Clinical Modification. An imbalance between protein synthesis and degradation causes a gradual loss of muscle mass, resulting in a decline of muscle function as a progress of sarcopenia. Many mechanisms involved in the onset of sarcopenia include age-related factors as well as activity-, disease-, and nutrition-related factors. The stage of sarcopenia reflecting the severity of conditions assists clinical management of sarcopenia. It is important that systemic descriptions of the disease conditions include age, sex, and other environmental risk factors as well as levels of physical function. To develop a new therapeutic intervention needed is the detailed understanding of molecular and cellular mechanisms by which apoptosis, autophagy, atrophy, and hypertrophy occur in the muscle stem cells, myotubes, and/or neuromuscular junction. The new strategy to managing sarcopenia will be signal-modulating small molecules, natural compounds, repurposing of old drugs, and muscle-specific microRNAs.

  14. Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching

    Science.gov (United States)

    Engstrom, James R.; Kummel, Andrew C.

    2017-02-01

    Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.

  15. DYNAMICS OF ATOMIC AND MOLECULAR EMISSION FEATURES FROM NANOSECOND, FEMTOSECOND LASER AND FILAMENT PRODUCED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Phillips, Mark C.

    2016-08-08

    In this presentation, the persistence of atomic, and molecular emission features and its relation to fundamental properties (temperature and density) of ablation plumes generated using various irradiation methods (ns, fs, filaments) will be discussed in detail along with its implications for remote sensing applications.

  16. Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Gourdon, Pontus Emanuel; Liu, Xiangyu

    2014-01-01

    in the determination of a membrane protein structure, the CopA Cu+-ATPase, when other methods had failed to resolve the heavy atom substructure. MRPM is particularly suited for proteins undergoing large conformational changes where multiple search models should be generated, and it enables the identification of weak...... but correct molecular replacement solutions with maximum contrast to prime experimental phasing efforts....

  17. Essay: Fifty years of atomic, molecular and optical physics in Physical Review Letters.

    Science.gov (United States)

    Haroche, Serge

    2008-10-17

    The fiftieth anniversary of Physical Review Letters is a good opportunity to review the extraordinary progress of atomic, molecular, and optical physics reported in this journal during the past half-century. As both a witness and an actor of this story, I recall personal experiences and reflect about the past, present, and possible future of my field of research.

  18. Structural and chemical evolution of single-wall carbon nanotubes under atomic and molecular deuterium interaction

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, M.A.; Smithers, Mark A.

    2005-01-01

    The interaction of atomic (D) and molecular (D2) deuterium, as present in a (D + D2) gas mixture, with single-wall carbon nanotubes (SWNTs) has been studied by means of a combination of scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The SWNT

  19. Glow discharge sources for atomic and molecular analyses

    Science.gov (United States)

    Storey, Andrew Patrick

    Two types of glow discharges were used and characterized for chemical analysis. The flowing atmospheric pressure afterglow (FAPA) source, based on a helium glow discharge (GD), was utilized to analyze samples with molecular mass spectrometry. A second GD, operated at reduced pressure in argon, was employed to map the elemental composition of a solid surface with novel optical detection systems, enabling new applications and perspectives for GD emission spectrometry. Like many plasma-based ambient desorption-ionization sources being used around the world, the FAPA requires a supply of helium to operate effectively. With increased pressures on global helium supply and pricing, the use of an interrupted stream of helium for analysis was explored for vapor and solid samples. In addition to the mass spectra generated by the FAPA source, schlieren imaging and infrared thermography were employed to map the behavior of the source and its surroundings under the altered conditions. Additionally, a new annular microplasma variation of the FAPA source was developed and characterized. A spectroscopic imaging system that utilized an adjustable-tilt interference filter was used to map the elemental composition of a sample surface by glow discharge emission spectroscopy. This apparatus was compared to other GD imaging techniques for mapping elemental surface composition. The wide bandpass filter resulted in significant spectral interferences that could be partially overcome with chemometric data processing. Because time-resolved GD emission spectroscopy can provide fine depth-profiling measurements, a natural extension of GD imaging would be its application to three-dimensional characterization of samples. However, the simultaneous cathodic sputtering that occur across the sample results in a sampling process that is not completely predictable. These issues are frequently encountered when laterally varied samples are explored with glow discharge imaging techniques. These insights

  20. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  1. Dislocation emission at the Silicon/Silicon nitride interface: A million atom molecular dynamics simulation on parallel computers

    Science.gov (United States)

    Bachlechner; Omeltchenko; Nakano; Kalia; Vashishta; Ebbsjo; Madhukar

    2000-01-10

    Mechanical behavior of the Si(111)/Si(3)N4(0001) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the (1; 1;1) plane of the silicon substrate with a speed of 500 (+/-100) m/s. Time evolution of the dislocation emission and nature of defects is studied.

  2. Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates

    NARCIS (Netherlands)

    Baron, R; de Vries, AH; Hunenberger, PH; van Gunsteren, WF

    2006-01-01

    Molecular liquids can be modeled at different levels of spatial resolution. In atomic-level (AL) models, all (heavy) atoms can be explicitly simulated. In coarse-grained (CG) models, particles (beads) that represent groups of covalently bound atoms are used as elementary units. Ideally, a CG model

  3. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Science.gov (United States)

    Yang, Qingcheng; To, Albert C.

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), [57]) is applied to capture surface effect for nanosized structures by designing a surface summation rule SRS within the framework of MMM. Combined with previously proposed bulk summation rule SRB, the MMM summation rule SRMMM is completed. SRS and SRB are consistently formed within SRMMM for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SRMMM lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SRS and SRB are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SRMMM accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SRMMM with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SRMMM that is analogous to numerical integration error with quadrature rule in FEM is very small.

  4. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/polyacrylamide blends at an atomic level.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao

    2017-11-01

    The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Crossed Molecular Beam Study of the Reactions of Oxygen and Fluorine Atoms.

    Science.gov (United States)

    1980-03-01

    products (i.e., benzaldehyde , cresol, anisole, and benzyl alcohol). Supersonic beams of O(3 P) atoms produced in a radiofrequency dis- charge I0 and toluene ...used to clarify the reaction mechanism. The reaction of O(3p) with another aromatic hydrocarbon toluene , results in competition between two...substitution channels, loss of H atom and loss of CH5. In contrast to the 0 + C6H6 reaction, no stabilized oxygen- toluene adduct was observed., The development

  6. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  7. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights:

  8. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Science.gov (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  9. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.

  10. Molecule-assisted atomic chain formation : mechanisms and properties of new one-dimensional conductors

    NARCIS (Netherlands)

    Thijssen, Wilhelmus Hendrikus Alphonsus

    2007-01-01

    This thesis describes the formation and physical properties of atomic chains consisting of metal atoms and incorporated small molecules. Small molecules like oxygen and hydrogen modify the electrical and mechanical properties of these wires, resulting in new one-dimensional conductors.

  11. Molecule-assisted atomic chain formation: mechanisms and properties of new one-dimensional conductors

    OpenAIRE

    Thijssen, Wilhelmus Hendrikus Alphonsus

    2007-01-01

    This thesis describes the formation and physical properties of atomic chains consisting of metal atoms and incorporated small molecules. Small molecules like oxygen and hydrogen modify the electrical and mechanical properties of these wires, resulting in new one-dimensional conductors.

  12. Atomic Force Microscopy of virus capsids uncover the interplay between mechanics, structure and function

    Science.gov (United States)

    de Pablo, Pedro J.

    The basic architecture of a virus consists of the capsid, a shell made up of repeating protein subunits, which packs, shuttles and delivers their genome at the right place and moment. Viral particles are endorsed with specific physicochemical properties which confer to their structures certain meta-stability whose modulation permits fulfilling each task of the viral cycle. These natural designed capabilities have impelled using viral capsids as protein containers of artificial cargoes (drugs, polymers, enzymes, minerals) with applications in biomedical and materials sciences. Both natural and artificial protein cages have to protect their cargo against a variety of physicochemical aggressive environments, including molecular impacts of highly crowded media, thermal and chemical stresses, and osmotic shocks. Viral cages stability under these ambiences depend not only on the ultimate structure of the external capsid, which rely on the interactions between protein subunits, but also on the nature of the cargo. During the last decade our lab has focused on the study of protein cages with Atomic Force Microscopy (AFM) (figure 1). We are interested in stablishing links of their mechanical properties with their structure and function. In particular, mechanics provide information about the cargo storage strategies of both natural and virus-derived protein cages. Mechanical fatigue has revealed as a nanosurgery tool to unveil the strength of the capisd subunit bonds. We also interrogated the electrostatics of individual protein shells. Our AFM-fluorescence combination provided information about DNA diffusing out cracked-open protein cages in real time.

  13. Molecular mechanism of alcoholic fatty liver

    Science.gov (United States)

    Rasineni, Karuna; Casey, Carol A.

    2012-01-01

    Ethanol abuse and chronic ethanol consumption remains a major public health problem and is responsible for a high rate of morbidity. Alcohol-induced fatty liver generally begins as hepatic steatosis, and if the cause persists, this invariably progresses to steatohepatitis and cirrhosis. The original biochemical explanation for an alcoholic fatty liver centered on the ability of ethanol metabolism to shift the redox state of the liver and inhibit fatty acid oxidation. Subsequent studies found repression of fatty acid oxidation and that the induction of lipogenesis can occur in alcoholic conditions. Ethanol activates sterol regulatory element binding protein 1, inducing a battery of lipogenic enzymes. These effects may be due in part to inhibition of AMP-dependent protein kinase, reduction in plasma adiponectin or increased levels of TNF-α the liver. They in turn activate lipogenic pathways and inhibit fatty acid oxidation. Besides the fatty acid synthesis and oxidation, ethanol also alters lipid droplet (LD, the storage form of triglycerides, TG) metabolism in hepatocytes and very low-density lipoprotein (VLDL) secretion from liver. Because steatosis is now regarded as a significant risk factor for advanced liver pathology, an understanding of the molecular mechanisms in its etiology provides new therapeutic targets to reverse the alcoholic fatty liver. PMID:22701235

  14. Molecular mechanism of fertilization in the pig.

    Science.gov (United States)

    Ito, Junya; Kashiwazaki, Naomi

    2012-10-01

    At fertilization, the sperm triggers resumption from the arrest, extrusion of the second polar body and pronuclear formation, the events of which are collectively acknowledged as 'oocyte activation'. In all species up to date, oocyte activation requires a fertilization-associated increase in the intracellular concentration of calcium. Especially in mammals, the signal of intracellular calcium rise at fertilization consists of periodical rises, which are also referred to as calcium oscillations. Our recent results suggest that these calcium oscillations have an important role in not only oocyte activation but also development of mammals. Pigs are animals of great agricultural value and ones in which assisted reproductive techniques, including somatic cell nuclear transfer, to produce gene-modified pigs. Although reconstructed embryos require artificial activation stimuli which mimic fertilization-associated increase of intracellular calcium in the oocytes, it has been known that the developmental ability of the oocytes after artificial activation is low and the regimen seems to be required for improvement. Recently we focused on two molecules, phospholipase C zeta and inositol 1,4,5-triphosphate receptor which have important roles in regulation of calcium oscillations during fertilization in mammals, including pigs. In this review, we will discuss the present status and future perspective of molecular mechanisms during fertilization in pigs. © 2012 Japanese Society of Animal Science.

  15. Cellular and molecular mechanisms of intestinal fibrosis.

    Science.gov (United States)

    Speca, Silvia; Giusti, Ilaria; Rieder, Florian; Latella, Giovanni

    2012-07-28

    Fibrosis is a chronic and progressive process characterized by an excessive accumulation of extracellular matrix (ECM) leading to stiffening and/or scarring of the involved tissue. Intestinal fibrosis may develop in several different enteropathies, including inflammatory bowel disease. It develops through complex cell, extracellular matrix, cytokine and growth factor interactions. Distinct cell types are involved in intestinal fibrosis, such as resident mesenchymal cells (fibroblasts, myofibroblasts and smooth muscle cells) but also ECM-producing cells derived from epithelial and endothelial cells (through a process termed epithelial- and endothelial-mesenchymal transition), stellate cells, pericytes, local or bone marrow-derived stem cells. The most important soluble factors that regulate the activation of these cells include cytokines, chemokines, growth factors, components of the renin-angiotensin system, angiogenic factors, peroxisome proliferator-activated receptors, mammalian target of rapamycin, and products of oxidative stress. It soon becomes clear that although inflammation is responsible for triggering the onset of the fibrotic process, it only plays a minor role in the progression of this condition, as fibrosis may advance in a self-perpetuating fashion. Definition of the cellular and molecular mechanisms involved in intestinal fibrosis may provide the key to developing new therapeutic approaches.

  16. Molecular mechanics parameters for the FapydG DNA lesion.

    Science.gov (United States)

    Song, Kun; Hornak, Viktor; de los Santos, Carlos; Grollman, Arthur P; Simmerling, Carlos

    2008-01-15

    FapydG is a common oxidative DNA lesion involving opening of the imidazole ring. It shares the same precursor as 8-oxodG and can be excised by the same enzymes as 8-oxodG. However, the loss of the aromatic imidazole in FapydG results in a reduction of the double bond character between C5 and N7, with an accompanying increase in conformational flexibility. Experimental characterization of FapydG is hampered by high reactivity, and thus it is desirable to investigate structural details through computer simulation. We show that the existing Amber force field parameters for FapydG do not reproduce X-ray structural data. We employed quantum mechanics energy profile calculations to derive new molecular mechanics parameters for the rotation of the dihedral angles in the eximidazole moiety. Using these parameters, all-atom simulations in explicit water reproduce the nonplanar conformation of cFapydG in the crystal structure of the complex with L. lactis glycosylase Fpg. We note that the nonplanar structure is stabilized by an acidic residue that is not present in most Fpg sequences. Simulations of the E-->S mutant, as present in E. coli, resulted in a more planar conformation, suggesting that the highly nonplanar form observed in the crystal structure may not have direct biological relevance for FapydG.

  17. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations.

    Science.gov (United States)

    Debela, T T; Wang, X D; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-02-05

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt-Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  18. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-01-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between...... the full nonequilibrium Green's function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide...... a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule....

  19. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  20. A quantum-mechanics molecular-mechanics scheme for extended systems.

    Science.gov (United States)

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  1. Challenging the Science Curriculum Paradigm: Teaching Primary Children Atomic-Molecular Theory

    Science.gov (United States)

    Haeusler, Carole; Donovan, Jennifer

    2017-11-01

    Solutions to global issues demand the involvement of scientists, yet concern exists about retention rates in science as students pass through school into University. Young children are curious about science, yet are considered incapable of grappling with abstract and microscopic concepts such as atoms, sub-atomic particles, molecules and DNA. School curricula for primary (elementary) aged children reflect this by their limitation to examining only what phenomena are without providing any explanatory frameworks for how or why they occur. This research challenges the assumption that atomic-molecular theory is too difficult for young children, examining new ways of introducing atomic theory to 9 year olds and seeks to verify their efficacy in producing genuine learning in the participants. Early results in three cases in different schools indicate these novel methods fostered further interest in science, allowed diverse children to engage and learn aspects of atomic theory, and satisfied the children's desire for intellectual challenge. Learning exceeded expectations as demonstrated in the post-interview findings. Learning was also remarkably robust, as demonstrated in two schools 8 weeks after the intervention and, in one school, 1 year after their first exposure to ideas about atoms, elements and molecules.

  2. Molecular Mechanism for LAMP1 Recognition by Lassa Virus.

    Science.gov (United States)

    Cohen-Dvashi, Hadas; Cohen, Nadav; Israeli, Hadar; Diskin, Ron

    2015-08-01

    Lassa virus is a notorious human pathogen that infects many thousands of people each year in West Africa, causing severe viral hemorrhagic fevers and significant mortality. The surface glycoprotein of Lassa virus mediates receptor recognition through its GP1 subunit. Here we report the crystal structure of GP1 from Lassa virus, which is the first representative GP1 structure for Old World arenaviruses. We identify a unique triad of histidines that forms a binding site for LAMP1, a known lysosomal protein recently discovered to be a critical receptor for internalized Lassa virus at acidic pH. We demonstrate that mutation of this histidine triad, which is highly conserved among Old World arenaviruses, impairs LAMP1 recognition. Our biochemical and structural data further suggest that GP1 from Lassa virus may undergo irreversible conformational changes that could serve as an immunological decoy mechanism. Together with a variable region that we identify on the surface of GP1, those could be two distinct mechanisms that Lassa virus utilizes to avoid antibody-based immune response. Structural data at atomic resolution for viral proteins is key for understanding their function at the molecular level and can facilitate novel avenues for combating viral infections. Here we used X-ray protein crystallography to decipher the crystal structure of the receptor-binding domain (GP1) from Lassa virus. This is a pathogenic virus that causes significant illness and mortality in West Africa. This structure reveals the overall architecture of GP1 domains from the group of viruses known as the Old World arenaviruses. Using this structural information, we elucidated the mechanisms for pH switch and binding of Lassa virus to LAMP1, a recently identified host receptor that is critical for successful infection. Lastly, our structural analysis suggests two novel immune evasion mechanisms that Lassa virus may utilize to escape antibody-based immune response. Copyright © 2015, American

  3. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    David Martinez-Martin

    Full Text Available Structural Biology (SB techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25-50 nm cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called "dissipation channel" in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.

  4. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy.

    Science.gov (United States)

    Martinez-Martin, David; Carrasco, Carolina; Hernando-Perez, Mercedes; de Pablo, Pedro J; Gomez-Herrero, Julio; Perez, Rebeca; Mateu, Mauricio G; Carrascosa, Jose L; Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25-50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called "dissipation channel" in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.

  5. First quantum mechanics/molecular mechanics studies of the inhibition mechanism of cruzain by peptidyl halomethyl ketones.

    Science.gov (United States)

    Arafet, Kemel; Ferrer, Silvia; Moliner, Vicent

    2015-06-02

    Cruzain is a primary cysteine protease expressed by the protozoan parasite Trypanosoma cruzi during Chagas disease infection, and thus, the development of inhibitors of this protein is a promising target for designing an effective therapy against the disease. In this paper, the mechanism of inhibition of cruzain by two different irreversible peptidyl halomethyl ketones (PHK) inhibitors has been studied by means of hybrid quantum mechanics/molecular mechanics-molecular dynamics (MD) simulations to obtain a complete representation of the possible free energy reaction paths. These have been traced on free energy surfaces in terms of the potential of mean force computed at AM1d/MM and DFT/MM levels of theory. An analysis of the possible reaction mechanisms of the inhibition process has been performed showing that the nucleophilic attack of an active site cysteine, Cys25, on a carbon atom of the inhibitor and the cleavage of the halogen-carbon bond take place in a single step. PClK appears to be much more favorable than PFK from a kinetic point of view. This result would be in agreement with experimental studies in other papain-like enzymes. A deeper analysis of the results suggests that the origin of the differences between PClK and PFK can be the different stabilizing interactions established between the inhibitors and the residues of the active site of the protein. Any attempt to explore the viability of the inhibition process through a stepwise mechanism involving the formation of a thiohemiketal intermediate and a three-membered sulfonium intermediate has been unsuccessful. Nevertheless, a mechanism through a protonated thiohemiketal, with participation of His159 as a proton donor, appears to be feasible despite showing higher free energy barriers. Our results suggest that PClK can be used as a starting point to develop a proper inhibitor of cruzain.

  6. Physiology and molecular mechanism of glucocorticoid action

    Directory of Open Access Journals (Sweden)

    Andrzej Nagalski

    2010-03-01

    Full Text Available Endogenous glucocorticoids (GCs are secreted into the systemic circulation from the adrenal cortex. This release is under the control of the circadian clock and can be enhanced at any time in response to a stressor. The levels of circulating GC are regulated systemically by the hypothalamo-pituitary-adrenal axis and locally by access to target cells and pre-receptor metabolism by 11β-hydroxysteroids dehydrogenase enzymes. GCs mediate their genomic action by binding to two different ligand-inducible transcription factors: high-affinity mineralocorticoid receptor (MR and 10-fold lower affinity glucocorticoid receptors (GRs. Responses to GCs vary among individuals, cells, and tissues. The diversity and specificity in the steroid hormone’s response in the cell is controlled at different levels, including receptor translocation, interaction with specific transcription factors and coregulators, and the regulation of receptor protein levels by microRNA. Moreover, multiple GR isoforms are generated from one single GR gene by alternative splicing and alternative translation initiation. These isoforms all have unique tissue distribution patterns and transcriptional regulatory profiles. Furthermore, each is subjected to various post-translational modifications that affect receptor function. Deciphering the molecular mechanisms of GC action is further complicated by the realization that GCs can induce rapid, non-genomic effects within the cytoplasm. A tight regulation of GC secretion and their cell-specific activity is essential for proper organism function. This is particularly seen under conditions of GC deficiency or excess, as in Addison’s disease and Cushing’s syndrome, respectively.

  7. [Multiple sclerosis: molecular and cellular mechanisms].

    Science.gov (United States)

    Boĭko, A N; Favorova, O O

    1995-01-01

    Multiple sclerosis (MS) is a chronic central nervous system disease of considerable medical and social impact. It is characterized by destruction of the myelin, the axon proteolipid sheath, or demyelination. While the etiology of MS remains unknown, one of the most well-grounded theories of its pathogenesis postulates that immunomediated inflammatory processes play the main role in myelin damage. The leading role in the autoimmune disturbance development belongs to T-cell system, however, B-cells also participate in the pathological process. Both genetical predisposition and environmental influence are involved in MS development. Correlations were found between MS and numerous environmental factors, including ecology and different infectious agents. However, no single environmental factor and no single infection was confirmed to be the primary cause of MS. The predisposition to MS seems to depend on several genes. Alleles and haplotypes of HLA genes which are the main human immune-response genes are undoubtedly associated with MS. Serological methods have shown weak association of MS with A3 and B7 loci of HLA class I. Stronger association was found for HLA class II haplotype specified to DR2(DR15), DQ6(DQ1) in serology typing nomenclature or DRB1*1501, DQA1*0102, DQB1*0602 in sequence-based genotyping terminology. Besides, MS was found to be associated with alleles of genes of T-cell receptors, cytokines, myelin components and some others, although these results are sometimes contradictory. The analysis of genetical predisposition factors and of possible mechanisms of their involvement in demyelination process on molecular and cellular levels should enlighten the MS pathogenesis and provide new ways of medical treatment and prevention of MS.

  8. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    Science.gov (United States)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    substitutions of specific amino acid sidechains, in conjunction with computer-assisted molecular modeling and biomimetic synthesis, allowed us to probe the determinants of catalytic activity and confirm the identification of the amino acid sidechains required for hydrolysis of the silicon alkoxides. If, as suggested by the data of others, silicic acid is conjugated with organic moieties after its transport into the cell, the catalytic mechanism described here may be important in biosilicification by sponges. As is often the case, we have been better able to answer mechanistic questions about "how" silica can be formed biologically, than "why" the diversity of structures is elaborated. Studies of spicule formation during cellular regeneration in Tethya aurantia reveal that synthesis of the larger silica needles (megascleres) and smaller starburst-shaped microscleres may be independently regulated, presumably at the genetic level. The spatial segregation of these morphologically-distinct spicule types within the sponge further suggests an adaptive significance of the different skeletal elements.

  9. Creation, destruction, and transfer of atomic multipole moments by electron scattering: Quantum-mechanical treatment

    Science.gov (United States)

    Csanak, G.; Kilcrease, D. P.; Fursa, D. V.; Bray, I.

    2008-12-01

    Using the wave-packet propagation method of Rodberg and Thaler and the density matrix method of Fano and Blum, we have defined by completely quantum-mechanical methods the cross sections for the creation, destruction, and transfer of atomic multipole moments by both elastic and inelastic scattering of electrons by atomic targets. All cross sections obtained quantum mechanically, except for the coherence transfer cross sections, agree in form with those obtained semiclassically by Fujimoto and co-workers. We also used the converged close-coupling (CCC) method to calculate numerically some of the above cross sections for selected transitions in electron scattering from hydrogen and barium atoms.

  10. Atomic and molecular physics and data activities for astrophysics at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, D.J.; Kristic, P.S.; Liu, W.; Schultz, D.R.; Stancil, P.C.

    1998-04-01

    The atomic astrophysics group at ORNL produces, collects, evaluates, and disseminates atomic and molecular data relevant to astrophysics and actively models various astrophysical environments utilizing this information. With the advent of the World Wide Web, these data are also being placed on-line to facilitate their use by end-users. In this brief report, the group`s recent activities in data production and in modeling are highlighted. For example, the authors describe recent calculations of elastic and transport cross sections relevant to ionospheric and heliospheric studies, charge transfer between metal ions and metal atoms and novel supernova nebular spectra modeling, ion-molecule collision data relevant to planetary atmospheres and comets, and data for early universe modeling.

  11. Indistinguishability and interference in the coherent control of atomic and molecular processes.

    Science.gov (United States)

    Gong, Jiangbin; Brumer, Paul

    2010-02-07

    The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible "which-way" information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while "incoherent interference control" scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.

  12. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy

    OpenAIRE

    Mi Li; Dan Dang; Lianqing Liu; Ning Xi; Yuechao Wang

    2017-01-01

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used ...

  13. Bibliography of atomic and molecular excitation in heavy particle collisions, 1950--1975

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, S.W.; Thomas, E.W.; Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Kirkpatrick, M.I.; McDaniel, E.W.; Phaneuf, R.A. (eds.)

    1979-02-01

    This annotated bibliography lists published work on atomic and molecular excitation in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactions and authors.

  14. Metabolic alterations and molecular mechanism in silkworm larvae ...

    African Journals Online (AJOL)

    Metabolic alterations and molecular mechanism in silkworm larvae during viral infection: A review. ... African Journal of Biotechnology ... of sericulture largely and greatly depends on the metabolic modulations and molecular mechanism of silkworm, besides its genetic composition and immunological resistance. One of the ...

  15. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases

    Science.gov (United States)

    Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.

    2017-10-01

    SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.

  16. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids.

    Science.gov (United States)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Li, Guohui

    2017-12-31

    In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.

  17. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  18. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    Science.gov (United States)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  19. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I.; Simon, M. N. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Heyer, M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Rigliaco, E. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Hillenbrand, L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Gorti, U.; Hollenbach, D., E-mail: pascucci@lpl.arizona.edu [SETI Institute, Mountain View, CA 94043 (United States)

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  20. Lys169 of human glucokinase is a determinant for glucose phosphorylation: implication for the atomic mechanism of glucokinase catalysis.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Glucokinase (GK, a glucose sensor, maintains plasma glucose homeostasis via phosphorylation of glucose and is a potential therapeutic target for treating maturity-onset diabetes of the young (MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI. To characterize the catalytic mechanism of glucose phosphorylation by GK, we combined molecular modeling, molecular dynamics (MD simulations, quantum mechanics/molecular mechanics (QM/MM calculations, experimental mutagenesis and enzymatic kinetic analysis on both wild-type and mutated GK. Our three-dimensional (3D model of the GK-Mg(2+-ATP-glucose (GMAG complex, is in agreement with a large number of mutagenesis data, and elucidates atomic information of the catalytic site in GK for glucose phosphorylation. A 10-ns MD simulation of the GMAG complex revealed that Lys169 plays a dominant role in glucose phosphorylation. This prediction was verified by experimental mutagenesis of GK (K169A and enzymatic kinetic analyses of glucose phosphorylation. QM/MM calculations were further used to study the role of Lys169 in the catalytic mechanism of the glucose phosphorylation and we found that Lys169 enhances the binding of GK with both ATP and glucose by serving as a bridge between ATP and glucose. More importantly, Lys169 directly participates in the glucose phosphorylation as a general acid catalyst. Our findings provide mechanistic details of glucose phorphorylation catalyzed by GK, and are important for understanding the pathogenic mechanism of MODY.

  1. Density functional theory calculations of stability and diffusion mechanisms of impurity atoms in Ge crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maeta, Takahiro [Graduate School of System Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); GlobalWafers Japan Co., Ltd., Higashikou, Seirou-machi, Kitakanbara-gun, Niigata 957-0197 (Japan); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)

    2014-08-21

    Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.

  2. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, M. J. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Autreto, P. A. S.; Galvao, D. S., E-mail: galvao@ifi.unicamp.br; Ugarte, D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Sato, F.; Dantas, S. O. [Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora-MG (Brazil)

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.

  3. Car and Parrinello meet Green and Kubo: simulating atomic heat transport from equilibrium ab initio molecular dynamics

    Science.gov (United States)

    Baroni, Stefano

    Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).

  4. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni.

    Science.gov (United States)

    López-Moreno, S; Romero, A H

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  5. Looking at cell mechanics with atomic force microscopy: Experiment and theory

    OpenAIRE

    Benítez Suárez, Rafael; Toca-Herrera, J. L.

    2014-01-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The rev...

  6. Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique

    Science.gov (United States)

    2010-01-01

    develop in chemical vapor deposited ( CVD ) films within the first 10–30nm of material, owing to the process of island formation and coalescence [44–46...George, ZnO /Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements, Thin Solid Films 414 (2002) 43–55. [81...homepage: www.e lsev ier .com/ locate /sna Thermo-mechanical properties of alumina films created using the atomic layer deposition technique David C

  7. Molecular dynamics study of mechanical properties of carbon nanotube reinforced aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ashish Kumar, E-mail: ashish.memech@gmail.com; Singh, Akhileshwar [Ph.D. Scholar, Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur (India); Mokhalingam, A. [M.Tech. Scholar, Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur (India); Kumar, Dinesh [Assistant Professor, Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur (India)

    2016-05-06

    Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for the interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young’s modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young’s modulus of the Al matrix up to 77 % as compared to pure Al.

  8. Quantum mechanics of molecular rate processes

    CERN Document Server

    Levine, Raphael D

    1999-01-01

    This survey of applications of the theory of collisions and rate processes to molecular problems explores collisions of molecules with internal structure, generalized Ehrenfest theorem, theory of reactive collisions, and role of symmetry. It also reviews partitioning technique, equivalent potentials and quasibound states, theory of direct reactions, more. 1969 edition.

  9. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    Science.gov (United States)

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  10. Migration Mechanism for Atomic Hydrogen in Porous Carbon Materials

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, B.; Zhao, Y. F.; Ciobanu, C. V.

    2012-05-14

    To explain the fast kinetics of H in porous carbon, we propose that the migration relies on H hopping from a carbon nanotube (CNT) to another. Using density functional theory, we have found that the barrier for H hopping becomes smaller than that for diffusion along a tube for certain CNT separations, decreasting to less than 0.5 eV for separations of -3.1 {angstrom}. Such significant reduction occurs irrespective of radius, chirality, registry, and orientation of the two CNTs: the diffusion is thus facilitated by the porous nature of the material itself. The mechanism proposed is applicable for any porous carbon-based nanomaterials.

  11. Large scale ab initio molecular dynamics using the OpenAtom software

    Science.gov (United States)

    Ismail-Beigi, Sohrab; Mandal, Subhasish; Kim, Minjung; Mikida, Eric; Bohm, Eric; Jindal, Prateek; Jain, Nikhil; Kale, Laxmikant; Martyna, Glenn

    First principles molecular dynamics approaches permit one to simulate dynamic and time-dependent phenomena in physics, chemistry, and materials science without the use of empirical potentials or ad hoc assumptions about the interatomic interactions since they describe electrons, nuclei and their interactions explicitly. We describe our collaborative efforts in developing and enhancing the OpenAtom open source ab initio density functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/). OpenAtom takes advantage of the Charm++ parallel framework. We present parallel scaling results on a large metal organic framework (MOF) material of scientific and potential technological interest for hydrogen storage. In the process, we highlight the capabilities of the software which include molecular dynamics (Car-Parrinello or Born-Oppenheimer), k-points, spin, path integral beads for quantum nuclear effects, and parallel tempering for exploration of complex phase spaces. Particular efforts have been made to ensure that the different capabilities interoperate in various combinations with high performance and scaling. Comparison to other available open source software will also be assessed. This collaboration is supported NSF SI2-SSI Grant ACI-1339804.

  12. On the emergence of molecular structure from atomic shape in the 1/r2 harmonium model.

    Science.gov (United States)

    Müller-Herold, Ulrich

    2006-01-07

    The formal similarity of the three-body Hamiltonians for helium and the hydrogen molecule ion is used to demonstrate the unfolding of a rotating dumbbell-like proton distribution from a (1s)2-type electron distribution by smooth variation of the particles' masses in the 1/r2 harmonium model. The 1/r2 harmonium is an exactly solvable modification of the harmonium model (also known as Hooke's law atom) where the attraction between different particles is harmonic and the repulsion between the two equal particles is given by a 1/r2 potential. The dumbbell-like molecular structure appears as an expression of increasing spatial correlation due to increasing mass. It gradually appears in the one-density distribution of the two equal particles if their mass exceeds a critical value depending on the mass of the third particle. For large mass of the equal particles, their one-density distribution approaches an asymptotic form derived from the Born-Oppenheimer treatment of H2+ in the 1/r2 harmonium model. Below the critical value, the one density is a spherical, Gaussian-type atomic density distribution with a maximum at the center of mass. The topological transition at the critical value separates molecular structure and atomic shape as two qualitatively different manifestations of spatial structure.

  13. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

    2006-03-01

    have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid

  14. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    Science.gov (United States)

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  15. Molecular structure of poly(methyl methacrylate) surface II: Effect of stereoregularity examined through all-atom molecular dynamics.

    Science.gov (United States)

    Jha, Kshitij C; Zhu, He; Dhinojwala, Ali; Tsige, Mesfin

    2014-11-04

    Utilizing all-atom molecular dynamics (MD), we have analyzed the effect of tacticity and temperature on the surface structure of poly(methyl methacrylate) (PMMA) at the polymer-vacuum interface. We quantify these effects primarily through orientation, measured as the tilt with respect to the surface normal, and the surface number densities of the α-methyl, ester-methyl, carbonyl, and backbone methylene groups. Molecular structure on the surface is a complex interplay between orientation and number densities and is challenging to capture through sum frequency generation (SFG) spectroscopy alone. Independent quantification of the number density and orientation of chemical groups through all-atom MD presents a comprehensive model of stereoregular PMMA on the surface. SFG analysis presented in part I of this joint publication measures the orientation of molecules that are in agreement with MD results. We observe the ester-methyl groups as preferentially oriented, irrespective of tacticity, followed by the α-methyl and carbonyl groups. SFG spectroscopy also points to ester-methyl being dominant on the surface. The backbone methylene groups show a very broad angular distribution, centered along the surface plane. The surface number density ratios of ester-methyl to α-methyl groups show syndiotactic PMMA having the lowest value. Isotactic PMMA has the highest ratios of ester- to α-methyl. These subtle trends in the relative angular orientation and number densities that influence the variation of surface structure with tacticity are highlighted in this article. A more planar conformation of the syndiotactic PMMA along the surface (x-y plane) can be visualized through the trajectories from all-atom MD. Results from conformation tensor calculations for chains with any of their segments contributing to the surface validate the visual observation.

  16. Solving atomic structures using statistical mechanical searches on x-ray scattering derived potential energy surfaces

    Science.gov (United States)

    Wright, Christopher James

    Engineering the next generation of materials, especially nanomaterials, requires a detailed understanding of the material's underlying atomic structure. These structures give us better insight into structure-property relationships, allowing for property driven material design on the atomic level. Even more importantly, understanding structures in-situ will translate stimuli and responses on the macroscopic scale to changes on the nanoscale. Despite the importance of precise atomic structures for materials design, solving atomic structures is difficult both experimentally and computationally. Atomic pair distribution functions (PDFs) provide information on atomic structure, but the difficulty of extracting the PDF from x-ray total scattering measurements limits their use. Translating the PDF into an atomic structure requires the search of a very high dimensional space, the set of all potential atomic configurations. The large computational cost of running these simulations also limits the use of PDF as an atomistic probe. This work aims to address these issues by developing 1) novel statistical mechanical approaches to solving material structures, 2) fast simulation of x-ray total scattering and atomic pair distribution functions (PDFs), and 3) data processing procedures for experimental x-ray total scattering measurements. First, experimentally derived potential energy surfaces (PES) and the statistical mechanical ensembles used to search them are developed. Then the mathematical and computational framework for the PDF and its gradients will be discussed. The combined PDF-PES-ensemble system will be benchmarked against a series of nanoparticle structures to ascertain the efficiency and effectiveness of the system. Experimental data processing procedures, which maximize the usable data, will be presented. Finally, preliminary results from experimental x-ray total scattering measurements will be discussed. This work presents one of the most complete end

  17. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium \\beta -decay

    CERN Document Server

    Lokhov, Alexey V

    2016-01-01

    Data analysis of the next generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with a better then 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  18. Molecular Energy Decompositions in the Hilbert-Space of Atomic Orbitals at Correlated Level

    Science.gov (United States)

    Alcoba, Diego R.; Bochicchio, Roberto C.; Lain, Luis; Torre, Alicia

    This work describes a new model to partition the molecular energy into one- and two-center contributions in the Hilbert-space of atomic orbitals at correlated level. Our proposal makes explicit use of the pairing nature of chemical bonding phenomena to accommodate appropriately the correlation effects within these contributions. The model is based on the treatment of the kinetic energy as contributing to both one- and two-atom terms, according to the pairing or unpairing character of the electron cloud, and on the appropriate assignment of the density cumulant dependent contributions. Numerical results for selected systems are reported and compared with those arising from other models, showing the reliability of our predictions.

  19. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Andrzej Koliński

    2013-05-01

    Full Text Available We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  20. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  1. Multilevel Quantum Mechanics Theories and Molecular Mechanics Calculations of the Cl-+ CH3I Reaction in Water.

    Science.gov (United States)

    Liu, Peng; Li, Chen; Wang, Dunyou

    2017-10-19

    The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.

  2. Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Jian Sheng-Rui

    2008-01-01

    Full Text Available AbstractThis work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100 subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a non-bonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions.

  3. Molecular Dynamics Simulations with Quantum Mechanics / Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-02-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in complex environment but very time consuming. The computational cost on QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive way. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  4. Quantum Mechanical Studies of Molecular Hyperpolarizabilities.

    Science.gov (United States)

    1980-04-30

    the molecular orbitals, leads to the coupled perturbed Hartree-Fock ( CPHF ) method.14 3 The U1 f X)(J; 2)l X(1; 2)d, 2 , (8) results of CPHF and CHF...thef fnrte-tid lent CPHF . ’ 16 At least in the static case these method. terms should not be considered as cnrrelation corrections. These terms arise...these formulas is obtain- tions, subject to the field-dependent orbitals. ed by excluding all even or odd terms in Eq. (1) by ( CPHF is the static

  5. Symposium on molecular and cellular mechanisms of mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  6. Atomic imaging using secondary electrons in a scanning transmission electron microscope: Experimental observations and possible mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Inada, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hitachi High Technologies Corp., Ibaraki (Japan); Su, D. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Egerton, R.F. [University of Alberta, Edmonton (Canada); Konno, M. [Hitachi High Technologies Corp., Ibaraki (Japan); Wu, L.; Ciston, J.; Wall, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Zhu, Y., E-mail: zhu@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-06-15

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. -- Research highlights: {yields} Atomic imaging using secondary electrons in an aberration-corrected electron microscope. {yields} High-resolution secondary electron imaging mechanism. {yields} Image contrast quantification and as functions of imaging conditions. {yields} Simultaneous acquisition of atomic images from surface and bulk.

  7. Atomic-scale structure of dislocations revealed by scanning tunneling microscopy and molecular dynamics

    DEFF Research Database (Denmark)

    Christiansen, Jesper; Morgenstern, K.; Schiøtz, Jakob

    2002-01-01

    The intersection between dislocations and a Ag(111) surface has been studied using an interplay of scanning tunneling microscopy (STM) and molecular dynamics. Whereas the STM provides atomically resolved information about the surface structure and Burgers vectors of the dislocations......, the simulations can be used to determine dislocation structure and orientation in the near-surface region. In a similar way, the subsurface structure of other extended defects can be studied. The simulations show dislocations to reorient the partials in the surface region leading to an increased splitting width...

  8. Application of the Finite Element Method in Atomic and Molecular Physics

    Science.gov (United States)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  9. Molecular positional order in Langmuir-Blodgett films by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bourdieu, L.; Ronsin, O.; Chatenay, D. (Inst. Curie, Paris (France))

    1993-02-05

    Langmuir-Blodgett films of barium arachidate have been studied on both macroscopic and microscopic scales by atomic force microscopy. As prepared, the films exhibit a disordered hexagonal structure; molecularly resolved images in direct space establish a connection between the extent of the positional order and the presence of defects such as dislocations. Upon heating, the films reorganize into a more condensed state with a centered rectangular crystallographic arrangement; in this new state the films exhibit long-range positional order and unusual structural features, such as a height modulation of the arachidic acid molecules. 22 refs., 4 figs.

  10. Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations

    Science.gov (United States)

    Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi

    2017-09-01

    The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.

  11. Molecular and cellular mechanisms of pulmonary fibrosis

    Science.gov (United States)

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  12. A polarizable force-field model for quantum-mechanical-molecular-mechanical Hamiltonian using expansion of point charges into orbitals.

    Science.gov (United States)

    Biswas, P K; Gogonea, Valentin

    2008-10-21

    We present an ab initio polarizable representation of classical molecular mechanics (MM) atoms by employing an angular momentum-based expansion scheme of the point charges into partial wave orbitals. The charge density represented by these orbitals can be fully polarized, and for hybrid quantum-mechanical-molecular-mechanical (QM/MM) calculations, mutual polarization within the QM/MM Hamiltonian can be obtained. We present the mathematical formulation and the analytical expressions for the energy and forces pertaining to the method. We further develop a variational scheme to appropriately determine the expansion coefficients and then validate the method by considering polarizations of ions by the QM system employing the hybrid GROMACS-CPMD QM/MM program. Finally, we present a simpler prescription for adding isotropic polarizability to MM atoms in a QM/MM simulation. Employing this simpler scheme, we present QM/MM energy minimization results for the classic case of a water dimer and a hydrogen sulfide dimer. Also, we present single-point QM/MM results with and without the polarization to study the change in the ionization potential of tetrahydrobiopterin (BH(4)) in water and the change in the interaction energy of solvated BH(4) (described by MM) with the P(450) heme described by QM. The model can be employed for the development of an extensive classical polarizable force-field.

  13. Molecular mechanisms of von Willebrand Factor mechanoregulation

    NARCIS (Netherlands)

    Jakobi, A.J.|info:eu-repo/dai/nl/311489621

    2012-01-01

    Von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. The potency to recruit platelets critically depends on the size of VWF multimers, which is regulated by a feedback mechanism involving shear-induced unfolding of the A2 domain in VWF and cleavage by the

  14. A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders

    Science.gov (United States)

    Sadat, Mohammad Rafat; Bringuier, Stefan; Asaduzzaman, Abu; Muralidharan, Krishna; Zhang, Lianyang

    2016-10-01

    In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties.

  15. Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature.

    Science.gov (United States)

    He, Nan; Li, Zhen Hua

    2016-04-21

    Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.

  16. Detection of atomic and molecular mega-electron-volt projectiles using an x-ray charged coupled device camera

    Energy Technology Data Exchange (ETDEWEB)

    Chabot, M.; Martinet, G.; Bouneau, S.; Genolini, B.; Grave, X.; Nguyen, K.; Le Gailliard, C.; Rosier, P. [Institut de Physique Nucleaire d' Orsay, IN2P3-CNRS, Universite Paris Sud, 91406 Orsay cedex (France); Beroff, K.; Pino, T.; Feraud, G.; Friha, H. [Institut des Sciences Moleculaires d' Orsay, INP-CNRS, Universite Paris Sud, 91406 Orsay cedex (France); Villier, B. [Hamamatsu Photonics (France)

    2011-10-15

    We show that an x-ray charge coupled device (CCD) may be used as a particle detector for atomic and molecular mega-electron-volt (MeV) projectiles of around a few hundred keV per atomic mass unit. For atomic species, spectroscopic properties in kinetic energy measurements (i.e., linearity and energy resolution) are found to be close to those currently obtained with implanted or surface barrier silicon particle detectors. For molecular species, in order to increase the maximum kinetic energy detection limit, we propose to put a thin foil in front of the CCD. This foil breaks up the molecules into atoms and spreads the charges over many CCD pixels and therefore avoiding saturation effects. This opens new perspectives in high velocity molecular dissociation studies with accelerator facilities.

  17. Molecular mechanisms of synaptic remodeling in alcoholism.

    Science.gov (United States)

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  18. Mechanism of Molecular Exchange in Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  19. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  20. Molecular mechanisms in plant abiotic stress response

    Directory of Open Access Journals (Sweden)

    Poltronieri Palmiro

    2011-01-01

    Full Text Available Improved crop varieties are needed to sustain the food supply, to fight climate changes, water scarcity, temperature increase and a high variability of rainfalls. Variability of drought and increase in soil salinity have negative effects on plant growth and abiotic stresses seriously threaten sustainable agricultural production. To overcome the influence of abiotic stresses, new tolerant plant varieties and breeding techniques using assisted selection are sought. A deep understanding of the mechanisms that respond to stress and sustain stress resistance is required. Here is presented an overview of several mechanisms that interact in the stress response. Localised synthesis of plant hormones, second messengers and local effectors of abiotic stress response and survival, the signaling pathways regulated by plant hormones are today better understood. Metabolic networks in drought stress responses, long distance signaling, cross-talk between plant organs finalised to tissue-specific expression of abiotic stress relieving genes have been at the centre of most recent studies.

  1. Molecular mechanisms regulating NLRP3 inflammasome activation

    Science.gov (United States)

    Jo, Eun-Kyeong; Kim, Jin Kyung; Shin, Dong-Min; Sasakawa, Chihiro

    2016-01-01

    Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome. PMID:26549800

  2. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  3. Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules

    Science.gov (United States)

    2015-01-01

    manufacture, use, or sell any patented invention that may relate to them. Qualified requestors may obtain copies of this report from the Defense...through ex-post-facto unitary transformations of the underlying molecular eigenfunctions. So-called quasi-atomic molecular orbitals [25, 26] and natural...representation Φ̃ (α,β) S (i, j : Rαβ), with the unitary matrix Ũ (α,β) p (Rαβ) in Eq. (16) employed to transform from this pair representation to the

  4. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Li Yuqin

    2014-01-01

    Full Text Available The interaction of patulin with human serum albumin (HSA was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis, circular dichroism (CD, atomic force microscopy (AFM, and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.

  5. Atomic and electronic structures of a-SiC:H from tight-binding molecular dynamics

    CERN Document Server

    Ivashchenko, V I; Shevchenko, V I; Ivashchenko, L A; Rusakov, G V

    2003-01-01

    The atomic and electronic properties of amorphous unhydrogenated (a-SiC) and hydrogenated (a-SiC:H) silicon carbides are studied using an sp sup 3 s sup * tight-binding force model with molecular dynamics simulations. The parameters of a repulsive pairwise potential are determined from ab initio pseudopotential calculations. Both carbides are generated from dilute vapours condensed from high temperature, with post-annealing at low temperature for a-SiC:H. A plausible model for the inter-atomic correlations and electronic states in a-SiC:H is suggested. According to this model, the formation of the amorphous network is weakly sensitive to the presence of hydrogen. Hydrogen passivates effectively only the weak bonds of threefold-coordinated atoms. Chemical ordering is very much affected by the cooling rate and the structure of the high-temperature vapour. The as-computed characteristics are in rather good agreement with the results for a-SiC and a-Si:H from ab initio calculations.

  6. High molecular orientation in mono- and tri-layer polydiacetylene films imaged by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI,DARRYL Y.; CARPICK,ROBERT W.; BURNS,ALAN R.

    2000-03-06

    Atomically flat monolayer and trilayer films of polydiacetylenes have been prepared on mica and silicon using a horizontal deposition technique from a pure water subphase. Langmuir films of 10,12-pentacosadiynoic acid (I) and N-(2-ethanol)-10,12-pentacosadiynamide (II) were compressed to 20 mN/m and subsequently polymerized by UV irradiation at the air-water interface. Blue and red forms of the films were prepared by varying exposure times and incident power. Polymerization to the blue-phase films produced slight contractions in the film of 2 and 5% for the films of II and I, respectively. Longer UV exposures yielded red-phase films with dramatic film contraction of 15 and 32% for II and I, respectively. The horizontal deposition technique provided transfer ratios of unity with minimal film stress or structure modification. Atomic force microscopy images revealed nearly complete coverage of the substrate with atomically flat films. Crystalline domains of up to 100 microns of highly oriented polydiacetylene molecules were observed. The results reported herein provided insight into the roles of molecular packing and chain orientations in converting the monomeric film to the polymerized blue- and red-phases.

  7. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, Susana; Boyle, Richard

    2011-01-01

    Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4

  8. Temperature Effects on Tensile and Compressive Mechanical Behaviors of C-S-H Structure via Atomic Simulation

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2017-01-01

    Full Text Available An atomic scale model of amorphous calcium silicate hydrate (C-S-H with Ca/Si ratio of 1.67 is constructed. Effects of temperature on mechanical properties of C-S-H structure under tensile and compressive loading in the layered direction are investigated via molecular dynamics simulations. Results from present simulations show that (1 the tensile strength and Young’s modulus of C-S-H structure significantly decrease with the increase of the temperature; (2 the water layer plays an important role in the mechanical properties of C-S-H structure; (3 the compressive strength is stronger than tensile strength, which corresponds with the characteristic of cement paste.

  9. Is the microscopic stress computed from molecular simulations in mechanical equilibrium?

    Science.gov (United States)

    Torres-Sánchez, Alejandro; Vanegas, Juan M.; Arroyo, Marino

    The microscopic stress field connects atomistic simulations with the mechanics of materials at the nano-scale through statistical mechanics. However, its definition remains ambiguous. In a recent work we showed that this is not only a theoretical problem, but rather that it greatly affects local stress calculations from molecular simulations. We find that popular definitions of the local stress, which are continuously being employed to understand the mechanics of various systems at the nanoscale, violate the continuum statements of mechanical equilibrium. We exemplify these facts in local stress calculations of defective graphene, lipid bilayers, and fibrous proteins. Furthermore, we propose a new physical and sound definition of the microscopic stress that satisfies the continuum equations of balance, irrespective of the many-body nature of the inter-atomic potential. Thus, our proposal provides an unambiguous link between discrete-particle models and continuum mechanics at the nanoscale.

  10. Molecular and atomic ultra trace analysis by laser induced fluorescence with OPO system and ICCD camera.

    Science.gov (United States)

    Burel, L; Giamarchi, P; Stephan, L; Lijour, Y; Le Bihan, A

    2003-06-13

    This paper presents a synthesis of some analytical potentialities of an equipment designed for both laser induced molecular and atomic fluorescence in the field of ultra-trace analysis (ng l(-1)). Excitation of fluorescence was performed with a pulsed Nd:Yag laser coupled to an optical parametric oscillator (OPO). Fluorescence spectra were recorded with a spectrograph and an intensified charge-coupled device (ICCD). The high energy and the tunability of the excitation combined with the sensitivity of the ICCD and the time-resolution provide better limit of detection (LOD) and selectivity. By molecular fluorescence, some major organic contaminants in the environment were studied, i.e. polycyclic aromatic hydrocarbons (PAHs) (benzo[a]pyrene and hydroxypyrene) and a pesticide (carbaryl). The LODs achieved by direct analysis were far below the restricted European values for tap water. Analysis was performed in water containing humic acids using time resolution to avoid the matrix fluorescence. By electro thermal atomisation-laser excited atomic fluorescence (ETA-LEAF), we detected traces of aluminium and lead in seawater. Some general considerations about the signal to noise ratio optimisation are reported. LODs reached the femtogram level.

  11. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    Science.gov (United States)

    Jarvis, Samuel Paul

    2015-08-21

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  12. Determining the Molecular Packing Arrangements on Protein Crystal Faces by Atomic Force Microscopy

    Science.gov (United States)

    Li, Huayu; Perozzo, Mary A.; Konnert, John H.; Nadarajan, Arunan; Pusey, Marc L.

    1998-01-01

    Periodic Bond Chain (PBC) analysis of the packing of tetragonal lysozyme crystals have revealed that there are two possible molecular packing arrangements for the crystal faces. The analysis also predicted that only one of these, involving the formation of helices about the 4(sub 3) axes, would prevail during crystal growth. In this study high resolution atomic force microscopy (AFM) was employed to verify these predictions for the (110) crystal face. A computer program was developed which constructs the expected AFM image for a given tip shape for each possible molecular packing arrangement. By comparing the actual AFM image with the predicted images the correct packing arrangement was determined. The prediction of an arrangement involving 4(sub 3) helices was confirmed in this manner,"while the alternate arrangement was not observed. The investigation also showed the protein molecules were packed slightly closer about the 4(sub 3) axes than in the crystallographic arrangement of the crystal interior. This study demonstrates a new approach for determining the molecular packing arrangements on protein crystal faces. It also shows the power of combining a theoretical PBC analysis with experimental high resolution AFM techniques in probing protein crystal growth processes at the molecular level.

  13. Weak links between fast mobility and local structure in molecular and atomic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, S. [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Puosi, F. [Laboratoire de Physique de l’École Normale Supérieure de Lyon, UMR CNRS 5672, 46 allée d’Italie, 69007 Lyon (France); Leporini, D., E-mail: dino.leporini@df.unipi.it [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); IPCF-CNR, UOS Pisa, Pisa (Italy)

    2015-03-28

    We investigate by molecular-dynamics simulations, the fast mobility—the rattling amplitude of the particles temporarily trapped by the cage of the neighbors—in mildly supercooled states of dense molecular (linear trimers) and atomic (binary mixtures) liquids. The mixture particles interact by the Lennard-Jones potential. The non-bonded particles of the molecular system are coupled by the more general Mie potential with variable repulsive and attractive exponents in a range which is a characteristic of small n-alkanes and n-alcohols. Possible links between the fast mobility and the geometry of the cage (size and shape) are searched. The correlations on a per-particle basis are rather weak. Instead, if one groups either the particles in fast-mobility subsets or the cages in geometric subsets, the increase of the fast mobility with both the size and the asphericity of the cage is revealed. The observed correlations are weak and differ in states with equal relaxation time. Local forces between a tagged particle and the first-neighbour shell do not correlate with the fast mobility in the molecular liquid. It is concluded that the cage geometry alone is unable to provide a microscopic interpretation of the known, universal link between the fast mobility and the slow structural relaxation. We suggest that the particle fast dynamics is affected by regions beyond the first neighbours, thus supporting the presence of collective, extended fast modes.

  14. ATOMIC AND MOLECULAR PHYSICS: Radiation forces on a three-level atom in the high-order Bessel beams

    Science.gov (United States)

    Wang, Zheng-Ling; Yin, Jian-Ping

    2008-07-01

    The general expressions of the average dissipative and dipole forces acting on a Λ-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in 1D optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of ħΓ(2κB) due to the orbital angular momentum lħ of the HBB.

  15. Molecular and Cellular Mechanisms of Palate Development.

    Science.gov (United States)

    Li, C; Lan, Y; Jiang, R

    2017-10-01

    Development of the mammalian secondary palate involves highly dynamic morphogenetic processes, including outgrowth of palatal shelves from the oral side of the embryonic maxillary prominences, elevation of the initially vertically oriented palatal shelves to the horizontal position above the embryonic tongue, and subsequently adhesion and fusion of the paired palatal shelves at the midline to separate the oral cavity from the nasal cavity. Perturbation of any of these processes could cause cleft palate, a common birth defect that significantly affects patients' quality of life even after surgical treatment. In addition to identifying a large number of genes required for palate development, recent studies have begun to unravel the extensive cross-regulation of multiple signaling pathways, including Sonic hedgehog, bone morphogenetic protein, fibroblast growth factor, transforming growth factor β, and Wnt signaling, and multiple transcription factors during palatal shelf growth and patterning. Multiple studies also provide new insights into the gene regulatory networks and/or dynamic cellular processes underlying palatal shelf elevation, adhesion, and fusion. Here we summarize major recent advances and integrate the genes and molecular pathways with the cellular and morphogenetic processes of palatal shelf growth, patterning, elevation, adhesion, and fusion.

  16. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Science.gov (United States)

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  17. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de; Kuester, Miriam [Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745 Jena (Germany); Streb, Carsten [Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen (Germany); Roth, Christian; Sträter, Norbert [Universität Leipzig, D-04103 Leipzig (Germany); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745 Jena (Germany)

    2013-02-01

    A new approach is presented that allows the efficient localization and orientation of heavy-atom cluster compounds used in experimental phasing by a molecular replacement procedure. This permits the calculation of meaningful phases up to the highest resolution of the diffraction data. Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome.

  18. On the Oxygen Transport Mechanism in Titanium Thin Films under Irradiation by Molecular Water Ions

    Directory of Open Access Journals (Sweden)

    Simona TUČKUTĖ

    2013-03-01

    Full Text Available The behavior of oxygen atoms in (0.5 – 1.0 mm thick Ti films is investigated under high-flux, low-energy molecular water ion irradiation. The anomalously deep penetration of oxygen without formation of new compounds observable by XRD has been registered after 10 min of irradiation at room temperature using Auger Electron spectroscopy analysis. The mechanism driving oxygen atoms from the surface into the bulk is discussed. It is based on the results of experimental studies of surface topography and assumption that the surface energy increases under ion irradiation, and relaxation processes minimizing the surface energy initiate the atomic redistribution  on the surface and in the bulk. Two processes minimizing the surface free energy are considered: (i the mixing of atoms on the surface, and (ii the annihilation of surface vacancies by the atoms transported from the bulk to the surface.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3822

  19. Understanding the mechanism of H atom absorption in the Pd(1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Padama, Allan Abraham B. [Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños, Laguna 4031 (Philippines); Kasai, Hideaki, E-mail: kasai@dyn.ap.eg.osaka-u.ac.jp [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871 (Japan); Center for Continuing Professional Development, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-10-05

    Highlights: • This study elucidates the absorption of H in Pd(1 1 0) (1 × 2) missing-row surface. • Electronic structure depicts the stronger adsorption on ridge than on trough site. • The geometry of missing-row Pd(1 1 0) allows Pd atoms to accommodate H and H{sub 2}. • Assisted absorption is facilitated by the repulsion between H atoms. - Abstract: The underlying mechanism of H atom absorption in the Pd(1 1 0) (1 × 2) missing-row reconstructed surface is investigated by performing density functional theory based calculations. The stronger binding energy of H on ridge than on trough site of the missing-row surface is due to the more pronounced creation of derived bonding state as had been depicted from the electronic structure of the system. Hydrogen absorption takes place with the involvement of other incoming H atoms through an assisted absorption process that is facilitated by the repulsion between the incoming H and the absorbing H. The geometry of the missing-row surface enables the Pd atoms to accommodate the H atoms efficiently leading to H absorption as well as H{sub 2} dissociation.

  20. On the Vibration of Single-Walled Carbon Nanocones: Molecular Mechanics Approach versus Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-01-01

    Full Text Available The vibrational behavior of single-walled carbon nanocones is studied using molecular structural method and molecular dynamics simulations. In molecular structural approach, point mass and beam elements are employed to model the carbon atoms and the connecting covalent bonds, respectively. Single-walled carbon nanocones with different apex angles are considered. Besides, the vibrational behavior of nanocones under various types of boundary conditions is studied. Predicted natural frequencies are compared with the existing results in the literature and also with the ones obtained by molecular dynamics simulations. It is found that decreasing apex angle and the length of carbon nanocone results in an increase in the natural frequency. Comparing the vibrational behavior of single-walled carbon nanocones under different boundary conditions shows that the effect of end condition on the natural frequency is more prominent for nanocones with smaller apex angles.

  1. Fundamental Differences Between Application of Basic Principles of Quantum Mechanics on Atomic and Higher Levels

    OpenAIRE

    Nikulov, Alexey

    2007-01-01

    Superconductivity is macroscopic quantum phenomenon. From force of habit most physicists pay no heed to a paradoxicality of this fact. Niels Bohr considered quantum mechanics as atomic physics and the paradoxical quantum principles may be admissible on this level. But they seem quite strange on the macroscopic level. In the last years some experts, A. J. Leggett and other, attract our attention to a contradiction between quantum mechanics and macroscopic realism. In this paper I try to draw r...

  2. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  3. Anemia: Progress in molecular mechanisms and therapy

    Science.gov (United States)

    Sankaran, Vijay G.; Weiss, Mitchell J.

    2015-01-01

    Anemia is a major source of morbidity and mortality worldwide. Here we review recent insights into how red blood cells (RBCs) are produced, the pathogenic mechanisms underlying various forms of anemia, and novel therapies derived from these findings. It is likely that these new insights, mainly arising from basic scientific studies, will contribute immensely to understanding frequently debilitating forms of anemia and the ability to treat affected patients. Major worldwide diseases that may stand to benefit from the new advances include the hemoglobinopathies (β-thalassemia and sickle cell disease), rare genetic disorders of red blood cell production, and anemias associated with chronic kidney disease, inflammation, and cancer. Promising new treatment approaches include drugs that target recently defined pathways in red blood cell production, iron metabolism, and fetal globin gene expression, as well as gene therapies using improved viral vectors and newly developed genome editing technologies. PMID:25742458

  4. Anemia: progress in molecular mechanisms and therapies.

    Science.gov (United States)

    Sankaran, Vijay G; Weiss, Mitchell J

    2015-03-01

    Anemia is a major source of morbidity and mortality worldwide. Here we review recent insights into how red blood cells (RBCs) are produced, the pathogenic mechanisms underlying various forms of anemia, and novel therapies derived from these findings. It is likely that these new insights, mainly arising from basic scientific studies, will contribute immensely to both the understanding of frequently debilitating forms of anemia and the ability to treat affected patients. Major worldwide diseases that are likely to benefit from new advances include the hemoglobinopathies (β-thalassemia and sickle cell disease); rare genetic disorders of RBC production; and anemias associated with chronic kidney disease, inflammation, and cancer. Promising new approaches to treatment include drugs that target recently defined pathways in RBC production, iron metabolism, and fetal globin-family gene expression, as well as gene therapies that use improved viral vectors and newly developed genome editing technologies.

  5. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    Science.gov (United States)

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  6. Flavonoids health benefits and their molecular mechanism.

    Science.gov (United States)

    Xiao, Z-P; Peng, Z-Y; Peng, M-J; Yan, W-B; Ouyang, Y-Z; Zhu, H-L

    2011-02-01

    Flavonoids are a group of polyphenolic compounds, diverse in chemical structure and characteristics, found ubiquitously in plants. Until now, more than 9000 different flavonoid compounds were described in plants, where they play important biological roles by affecting several developmental processes. There has been increasing interest in the research of flavonoids from dietary sources, due to growing evidence of the versatile health benefits of flavonoids including anti-inflammatory, antioxidant, antiproliferative and anticancer activity, freeradical scavenging capacity, antihypertensive effects, coronary heart disease prevention and anti-human immunodeficiency virus functions. This paper reviews the current advances in flavonoids in food with emphasis on mechanism aspects on the basis of the published literature, which may provide some guidance for researchers in further investigations and for industries in developing practical health agents.

  7. Cellular and molecular mechanisms coordinating pancreas development.

    Science.gov (United States)

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  8. BEAMDB and MolD - databases for atomic and molecular collisional and radiative processes: Belgrade nodes of VAMDC

    Science.gov (United States)

    Marinković, Bratislav P.; Jevremović, Darko; Srećković, Vladimir A.; Vujčić, Veljko; Ignjatović, Ljubinko M.; Dimitrijević, Milan S.; Mason, Nigel J.

    2017-06-01

    We present two atomic and molecular (A&M) databases, MolD and BEAMDB, hosted by the SerVO - the Serbian virtual observatory (http://servo.aob.rs). These databases and web applications have been implemented in accordance to the standards developed by Virtual Atomic and Molecular Data Centre (VAMDC, http://www.vamdc.eu). The MolD database contains photo-dissociation cross-sections for individual rovibrational states of the diatomic molecular ions and rate coefficients for the atom-Rydberg atom chemi-ionisation and inverse electron-ion-atom chemi-recombination processes. The Belgrade electron/atom(molecule) database (BEAMDB) provides collisional data for electron interactions with atoms and molecules. Differential cross sections (DCS) are presented for both elastic and inelastic (excitation) cross sections in tabulated data tables. These DCS data are integrated over a full range of scattering angles in order to achieve integral, momentum transfer and viscosity cross sections as functions of impact electron energy. Beside these tables, energy loss spectra are presented in the graphical form.

  9. MOLECULAR TARGETS AND MECHANISMS FOR ETHANOL ACTION IN GLYCINE RECEPTORS

    Science.gov (United States)

    Perkins, Daya I.; Trudell, James R.; Crawford, Daniel K.; Alkana, Ronald L.; Davies, Daryl L.

    2010-01-01

    Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed. PMID:20399807

  10. Molecular Mechanism of Apoptosis and Necrosis

    Directory of Open Access Journals (Sweden)

    Gulfidan Coskun

    2011-06-01

    Full Text Available Organismal homeostasis depends on an intricate balance between cell death and renewal. Apoptosis is a process of programmed cell death that plays a critical role in some normal and pathologic conditions beginning from embryologic development and ends at death. Apoptosis is initiated by morphological changes at the cell membrane, surface organels and nucleus. Apoptosis starts with death signals coming from outside or inside of the cell and continue to activate the mechanisms of apoptosis via cell death receptor or mitochondrial pathways. During apoptosis a group proteases are activated which cause DNA fragmentation, cytoplasmic shrinkage and membrane blebbing. Apoptotic cells divide into apoptotic bodies and then these apoptotic bodies are removed from tissue by phagocytes and adjacent cells In contrast to the “programmed” nature of apoptosis, necrotic cell death has always been believed to be a random, uncontrolled process that leads to death of the cell. Also necrosis, which is an other type of cell death, came to be used to describe pathologic cell death which cause inflamation. [Archives Medical Review Journal 2011; 20(3.000: 145-158

  11. Common Physical Framework Explains Phase Behavior and Dynamics of Atomic, Molecular, and Polymeric Network Formers

    Directory of Open Access Journals (Sweden)

    Stephen Whitelam

    2014-03-01

    Full Text Available We show that the self-assembly of a diverse collection of building blocks can be understood within a common physical framework. These building blocks, which form periodic honeycomb networks and nonperiodic variants thereof, range in size from atoms to micron-scale polymers and interact through mechanisms as different as hydrogen bonds and covalent forces. A combination of statistical mechanics and quantum mechanics shows that one can capture the physics that governs the assembly of these networks by resolving only the geometry and strength of building-block interactions. The resulting framework reproduces a broad range of phenomena seen experimentally, including periodic and nonperiodic networks in thermal equilibrium, and nonperiodic supercooled and glassy networks away from equilibrium. Our results show how simple “design criteria” control the assembly of a wide variety of networks and suggest that kinetic trapping can be a useful way of making functional assemblies.

  12. Molecular mechanisms of dominant expression in porphyria.

    Science.gov (United States)

    Badminton, M N; Elder, G H

    2005-01-01

    Partial deficiency of enzymes in the haem synthetic pathway gives rise to a group of seven inherited metabolic disorders, the porphyrias. Each deficiency is associated with a characteristic increase in haem precursors that correlates with the symptoms associated with individual porphyrias and allows accurate diagnosis. Two types of clinical presentation occur separately or in combination; acute life-threatening neurovisceral attacks and/or cutaneous symptoms. Five of the porphyrias are low-penetrance autosomal dominant conditions in which clinical expression results from additional factors that act by increasing demand for haem or by causing an additional decrease in enzyme activity or by a combination of these effects. These include both genetic and environmental factors. In familial porphyria cutanea tarda (PCTF), environmental factors that include alcohol, exogenous oestrogens and hepatotropic viruses result in inhibition of hepatic enzyme activity via a mechanism that involves excess iron accumulation. In erythropoietic protoporphyria (EPP), co-inheritance of a functional polymorphism in trans to a null ferrochelatase allele accounts for most clinically overt cases. In the autosomal dominant acute hepatic porphyrias (acute intermittent porphyria, variegate porphyria, hereditary coproporphyria), acute neurovisceral attacks occur in a minority of those who inherit one of these disorders. Although various exogenous (e.g. drugs, alcohol) and endogenous factors (e.g. hormones) have been identified as provoking acute attacks, these do not provide a full explanation for the low penetrance of these disorders. It seems probable that genetic background influences susceptibility to acute attacks, but the genes that are involved have not yet been identified.

  13. Effect of irradiation on mechanical properties of symmetrical grain boundaries investigated by atomic simulations

    Science.gov (United States)

    Wang, X. Y.; Gao, N.; Setyawan, W.; Xu, B.; Liu, W.; Wang, Z. G.

    2017-08-01

    Tensile response of irradiated symmetric grain boundaries to the externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its undertaken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trapping efficiency to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.

  14. Effect of irradiation on mechanical properties of symmetrical grain boundaries investigated by atomic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. Y.; Gao, N.; Setyawan, W.; Xu, B.; Liu, W.; Wang, Z. G.

    2017-08-01

    Tensile response of irradiated symmetric grain boundaries to externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its under- taken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trap- ping efficiency to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.

  15. Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

    Science.gov (United States)

    Zhao, Xin; Geskin, Victor; Stadler, Robert

    2017-03-01

    Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.

  16. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    Science.gov (United States)

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Imaging and measuring the molecular force of lymphoma pathological cells using atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Zhang, Weijing

    2013-01-01

    Atomic force microscopy (AFM) provides a new technology to visualize the cellular topography and quantify the molecular interactions at nanometer spatial resolution. In this work, AFM was used to image the cellular topography and measure the molecular force of pathological cells from B-cell lymphoma patients. After the fluorescence staining, cancer cells were recognized by their special morphological features and then the detailed topography was visualized by AFM imaging. The AFM images showed that cancer cells were much rougher than healthy cells. CD20 is a surface marker of B cells and rituximab is a monoclonal antibody against CD20. To measure the CD20-rituximab interaction forces, the polyethylene glycol (PEG) linker was used to link rituximab onto the AFM tip and the verification experiments of the functionalized probe indicated that rituximab molecules were successfully linked onto the AFM tip. The CD20-rituximab interaction forces were measured on about 20 pathological cells and the force measurement results indicated the CD20-rituximab binding forces were mainly in the range of 110-120 pN and 130-140 pN. These results can improve our understanding of the topography and molecular force of lymphoma pathological cells. © Wiley Periodicals, Inc.

  18. Quantum-mechanical calculations of cross sections for electron collisions with atoms and molecules

    CERN Document Server

    Bartschat, Klaus; Zatsarinny, Oleg

    2016-01-01

    An overview of quantum-mechanical methods to generate cross-section data for electron collisions with atoms and molecules is presented. Particular emphasis is placed on the time-independent close-coupling approach, since it is particularly suitable for low-energy collisions and also allows for systematic improvements as well as uncertainty estimates. The basic ideas are illustrated with examples for electron collisions with argon atoms and methane. For many atomic systems, such as e-Ar collisions, highly reliable cross sections can now be computed with quantified uncertainties. On the other hand, while electron collision calculations with molecules do provide key input data for plasma models, the methods and computer codes presently used require further development to make these inputs robust.

  19. [Recent advances in molecular mechanisms of supernumerary tooth formation].

    Science.gov (United States)

    Ge, Li-hong; Wang, Xu

    2013-08-18

    Despite advances in the knowledge of tooth morphogenesis and differentiation, little is relatively known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. Mice, which are commonly used for studying tooth development, only exhibit one dentition. However, a number of mouse models are now starting to provide some insight into the mechanisms that control overall tooth number within the dentition. This review describes recent advances in our understanding of the molecular mechanisms of supernumerary tooth formation. Indeed, many of the molecular signaling pathways known to be involved in normal development of the tooth germ can also give rise to supernumerary teeth if inappropriately regulated. These include components of the Hedgehog, FGF, Wnt and BMP families, which may potentially play a role in human supernumerary tooth formation.

  20. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  1. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  2. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    Science.gov (United States)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising

  3. The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling.

    Science.gov (United States)

    Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua

    2013-04-01

    The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    Science.gov (United States)

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Structural evolution and atomic dynamics in Ni-Nb metallic glasses: A molecular dynamics study

    Science.gov (United States)

    Xu, T. D.; Wang, X. D.; Zhang, H.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.

    2017-10-01

    The composition and temperature dependence of static and dynamic structures in NixNb1-x (x = 50-70 at. %) were systematically studied using molecular dynamics with a new-released semi-empirical embedded atom method potential by Mendelev. The calculated pair correlation functions and the structure factor match well with the experimental data, demonstrating the reliability of the potential within relatively wide composition and temperature ranges. The local atomic structures were then characterized by bond angle distributions and Voronoi tessellation methods, demonstrating that the icosahedral ⟨0,0,12,0⟩ is only a small fraction in the liquid state but increases significantly during cooling and becomes dominant at 300 K. The most abundant clusters are identified as ⟨0,0,12,0⟩ and distorted icosahedron ⟨0,2,8,2⟩. The large fraction of these two clusters hints that the relatively good glass forming ability is near the eutectic point. Unlike Cu-Zr alloys, both the self-diffusion coefficient and shear viscosity are insensitive to compositions upon cooling in Ni-Nb alloys. The breakdown of the Stokes-Einstein relation happens at around 1.6Tg (Tg: glass transition temperature). In the amorphous state, the solid and liquid-like atoms can be distinguished based on the Debye-Waller factor ⟨u2⟩. The insensitivity of the dynamic properties of Ni-Nb alloys to compositions may result from the relatively simple solidification process in the phase diagram, in which only one eutectic point exists in the studied composition range.

  6. Molecular electrostatic potential at the atomic sites in the effective core potential approximation

    Science.gov (United States)

    Lesiuk, Michał; Zachara, Janusz

    2013-02-01

    Considering calculations of the molecular electrostatic potential at the atomic sites (MEP@AS) in the presence of effective core potentials (ECP), we found that the consequent use of the definition of MEP@AS based on the energy derivative with respect to nuclear charge leads to a formula that differs by one term from the result of simple application of Coulomb's law. We have developed a general method to analytically treat derivatives of ECP with respect to nuclear charge. Benchmarking calculations performed on a set of simple molecules show that our formula leads to a systematic decrease in the error connected with the introduction of ECP when compared to all-electron results. Because of a straightforward implementation and relatively low costs of the developed procedure we suggest to use it by default.

  7. Atomic layer deposition by reaction of molecular oxygen with tetrakisdimethylamido-metal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J, E-mail: jprovine@stanford.edu; Schindler, Peter; Torgersen, Jan; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Karnthaler, Hans-Peter [Physics of Nanostructured Materials, University of Vienna, 1090 Vienna (Austria); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 and Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-01-15

    Tetrakisdimethylamido (TDMA) based precursors are commonly used to deposit metal oxides such as TiO{sub 2}, ZrO{sub 2}, and HfO{sub 2} by means of chemical vapor deposition and atomic layer deposition (ALD). Both thermal and plasma enhanced ALD (PEALD) have been demonstrated with TDMA-metal precursors. While the reactions of TDMA-type precursors with water and oxygen plasma have been studied in the past, their reactivity with pure O{sub 2} has been overlooked. This paper reports on experimental evaluation of the reaction of molecular oxygen (O{sub 2}) and several metal organic precursors based on TDMA ligands. The effect of O{sub 2} exposure duration and substrate temperature on deposition and film morphology is evaluated and compared to thermal reactions with H{sub 2}O and PEALD with O{sub 2} plasma.

  8. Imaging modes of atomic force microscopy for application in molecular and cell biology

    Science.gov (United States)

    Dufrêne, Yves F.; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J.

    2017-04-01

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  9. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    Science.gov (United States)

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  10. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    Science.gov (United States)

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  11. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  12. A coarse-grained computational model of DNA from all-atom molecular dynamics simulations.

    Science.gov (United States)

    Papoian, Garegin; Savelyev, Alexey

    2007-03-01

    DNA folds into a highly compact chromatin structure in the eukariotic cells. Counterions and the aqueous solvent provide a stabilizing medium for the maintanence of the highly compact and organized DNA structures. Thus, detailed understanding of counterion condensation around DNA is required to build a coarse-grained computational model of a chromatin fiber. We carried out large-scale all-atom Molecular Dynamics simulations of a 16-mer DNA in explicit water with Na+ and K+ counterions to gain insight into generic aspects of monovalent counterion condensation around the whole DNA molecule, focusing on the discrete nature of water and ions. We found that the Na+ ions penetrate the DNA interior and condense around the DNA exterior to a significantly larger degree compared with the K+ ions. We have provided a microscopic explanation for the larger Na+ affinity towards DNA, that is based on a combination of steric, electrostatic, and hydration effects. Our simulations are consistent with the prior DNA compaction and electrophoretic mobility experiments. We developed a coarse-grained DNA model based on the results of these all-atom simulations.

  13. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.

    Science.gov (United States)

    Dahms, Sven O; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E

    2013-02-01

    Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome.

  14. Temperature dependence of Young's modulus of titanium dioxide (TIO2) nanotubes: Molecular mechanics modeling

    Science.gov (United States)

    Lukyanov, S. I.; Bandura, A. V.; Evarestov, R. A.

    2015-12-01

    Temperature dependence of the Young's modulus of cylindrical single-wall nanotubes with zigzag and armchair chiralities and consolidated-wall nanotubes has been studied by the molecular mechanics method with the use of the atom-atom potential. The nanotubes have been obtained by rolling up of crystal layers (111) of TiO2 with fluorite structure. Calculations have been performed for isothermal conditions on the basis of calculating the Helmholtz free energy of the system. The dependence of the Helmholtz free energy of nanotubes on the period has been calculated in the quasi-harmonic approximation as a result of calculation of phonon frequencies. It has been shown that the temperature dependence of the stiffness of nanotubes is determined by their chirality, and some nanotubes exibit anomalous behavior of both the Young's modulus and the period of unit cell with variation in temperature.

  15. AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening

    Science.gov (United States)

    Pencheva, Tania; Lagorce, David; Pajeva, Ilza; Villoutreix, Bruno O; Miteva, Maria A

    2008-01-01

    Background Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization. Results The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection. Conclusion The open source AMMOS

  16. Performing the Millikan experiment at the molecular scale: Determination of atomic Millikan-Thomson charges by computationally measuring atomic forces

    Science.gov (United States)

    Rogers, T. Ryan; Wang, Feng

    2017-10-01

    An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about -0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions.

  17. Performing the Millikan experiment at the molecular scale: Determination of atomic Millikan-Thomson charges by computationally measuring atomic forces

    Science.gov (United States)

    Wang, Feng

    2017-01-01

    An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about −0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions. PMID:29096447

  18. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    Science.gov (United States)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  19. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  20. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    Science.gov (United States)

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  1. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  2. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Science.gov (United States)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-04-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets.

  3. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  4. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  5. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  6. Applications of molecular quantum mechanics to problems in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H.F. III

    1983-03-01

    The past decade has witnessed remarkable progress in the development of rigorous quantum mechanical methods for the study of molecular electronic structure. Key developments include the emergence of large scale configuration interaction methods (including more than one million variational parameters) and of analytic first and second energy derivative techniques. These advances have greatly increased the scope of current applications of quantun mechanics to chemistry. Present and anticipated future developments with respect to the fields of physical, organic, and inorganic chemistry are surveyed.

  7. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms.

    Science.gov (United States)

    Peng, Mei; Darko, Kwame Oteng; Tao, Ting; Huang, Yanjun; Su, Qiongli; He, Caimei; Yin, Tao; Liu, Zhaoqian; Yang, Xiaoping

    2017-03-01

    Metformin, a widely prescribed drug for treating type II diabetes, is one of the most extensively recognized metabolic modulators which has shown an important anti-cancer property. However, fairly amount of clinical trials on its single administration have not demonstrated a convincing efficiency yet. Thus, recent studies tend to combine metformin with clinical commonly used chemotherapeutic drugs to decrease their toxicity and attenuate their tumor resistance. These strategies have displayed promising clinical benefits. Interestingly, metformin experiences a diversity of molecular mechanisms when it combines different chemotherapeutic drugs. For example, AMPK/mTOR signaling pathway activation plays a major role when it combines with hormone modulating drugs. In contrast, suppression of HIF-1, p-gp and MRP1 protein expression is its main mechanism when metformin combines with anti-metabolites. Furthermore, when combining of metformin with antibiotics, inhibition of oxidative stress and inflammatory signaling pathway becomes a novel pharmaceutical mechanism for its cardio-protective effect. Induction of apoptotic mitochondria and nucleus could be the major player for the synergistic effect of its combination with cisplatin. In contrast, down-regulation of lipoprotein or cholesterol synthesis might be the undefined molecular base when metformin combines with taxane. Thus, deep exploration of molecular mechanisms of metformin with these different drugs is critical to understand its synergistic effect and help for personalized administration. In this mini-review, detailed molecular mechanisms of these combinations are discussed and summarized. This work will promote better understanding of molecular mechanisms of metformin and provide precise targets to identify specific patient groups to achieve satisfactory treatment efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Atomic force microscopy study of the arrangement and mechanical properties of astrocytic cytoskeleton in growth medium

    OpenAIRE

    Efremov, Yu.; Dzyubenko, E.; Bagrov, D.; Maksimov, G.; Shram, S.; Shaitan, K.

    2011-01-01

    Astrocytes are quite interesting to study because of their role in the development of various neurodegenerative disorders. The present work describes an examination of the arrangement and mechanical properties of cytoskeleton of living astrocytes using atomic force microscopy (AFM). The experiments were performed with an organotypic culture of dorsal root ganglia (DRG) obtained from a chicken embryo. The cells were cultivated on a gelatinous substrate and showed strong adhesion. AFM allows on...

  9. Kinetics and mechanism of the gas phase reaction of Cl atoms with iodobenzene

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Ponomarev, DA; Nielsen, OJ

    2001-01-01

    Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20-700 Torr of N-2, air, or O-2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl + QH(5)I) = (3.3 +/- 0.7) x 10(-11) cm(3) molecule(-1) s(-1) to give...

  10. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  11. Quantum Mechanics/Molecular Mechanics Simulations Identify the Ring-Opening Mechanism of Creatininase.

    Science.gov (United States)

    Jitonnom, Jitrayut; Mujika, Jon I; van der Kamp, Marc W; Mulholland, Adrian J

    2017-12-05

    Creatininase catalyzes the conversion of creatinine (a biosensor for kidney function) to creatine via a two-step mechanism: water addition followed by ring opening. Water addition is common to other known cyclic amidohydrolases, but the precise mechanism for ring opening is still under debate. The proton donor in this step is either His178 or a water molecule bound to one of the metal ions, and the roles of His178 and Glu122 are unclear. Here, the two possible reaction pathways have been fully examined by means of combined quantum mechanics/molecular mechanics simulations at the SCC-DFTB/CHARMM22 level of theory. The results indicate that His178 is the main catalytic residue for the whole reaction and explain its role as proton shuttle during the ring-opening step. In the first step, His178 provides electrostatic stabilization to the gem-diolate tetrahedral intermediate. In the second step, His178 abstracts the hydroxyl proton of the intermediate and delivers it to the cyclic amide nitrogen, leading to ring opening. The latter is the rate-limiting step with a free energy barrier of 18.5 kcal/mol, in agreement with the experiment. We find that Glu122 must be protonated during the enzyme reaction, so that it can form a stable hydrogen bond with its neighboring water molecule. Simulations of the E122Q mutant showed that this replacement disrupts the H-bond network formed by three conserved residues (Glu34, Ser78, and Glu122) and water, increasing the energy barrier. Our computational studies provide a comprehensive explanation for previous structural and kinetic observations, including why the H178A mutation causes a complete loss of activity but the E122Q mutation does not.

  12. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations.

    Science.gov (United States)

    Rosta, Edina; Nowotny, Marcin; Yang, Wei; Hummer, Gerhard

    2011-06-15

    We use quantum mechanics/molecular mechanics simulations to study the cleavage of the ribonucleic acid (RNA) backbone catalyzed by ribonuclease H. This protein is a prototypical member of a large family of enzymes that use two-metal catalysis to process nucleic acids. By combining Hamiltonian replica exchange with a finite-temperature string method, we calculate the free energy surface underlying the RNA-cleavage reaction and characterize its mechanism. We find that the reaction proceeds in two steps. In a first step, catalyzed primarily by magnesium ion A and its ligands, a water molecule attacks the scissile phosphate. Consistent with thiol-substitution experiments, a water proton is transferred to the downstream phosphate group. The transient phosphorane formed as a result of this nucleophilic attack decays by breaking the bond between the phosphate and the ribose oxygen. In the resulting intermediate, the dissociated but unprotonated leaving group forms an alkoxide coordinated to magnesium ion B. In a second step, the reaction is completed by protonation of the leaving group, with a neutral Asp132 as a likely proton donor. The overall reaction barrier of ∼15 kcal mol(-1), encountered in the first step, together with the cost of protonating Asp132, is consistent with the slow measured rate of ∼1-100/min. The two-step mechanism is also consistent with the bell-shaped pH dependence of the reaction rate. The nonmonotonic relative motion of the magnesium ions along the reaction pathway agrees with X-ray crystal structures. Proton-transfer reactions and changes in the metal ion coordination emerge as central factors in the RNA-cleavage reaction. © 2011 American Chemical Society

  13. Atomic Layer Etching Mechanism of MoS2 for Nanodevices.

    Science.gov (United States)

    Kim, Ki Seok; Kim, Ki Hyun; Nam, Yeonsig; Jeon, Jaeho; Yim, Soonmin; Singh, Eric; Lee, Jin Yong; Lee, Sung Joo; Jung, Yeon Sik; Yeom, Geun Young; Kim, Dong Woo

    2017-04-05

    Among the layered transition metal dichalcogenides (TMDs) that can form stable two-dimensional crystal structures, molybdenum disulfide (MoS2) has been intensively investigated because of its unique properties in various electronic and optoelectronic applications with different band gap energies from 1.29 to 1.9 eV as the number of layers decreases. To control the MoS2 layers, atomic layer etching (ALE) (which is a cyclic etching consisting of a radical-adsorption step such as Cl adsorption and a reacted-compound-desorption step via a low-energy Ar(+)-ion exposure) can be a highly effective technique to avoid inducing damage and contamination that occur during the reactive steps. Whereas graphene is composed of one-atom-thick layers, MoS2 is composed of three-atom-thick S(top)-Mo(mid)-S(bottom) layers; therefore, the ALE mechanisms of the two structures are significantly different. In this study, for MoS2 ALE, the Cl radical is used as the adsorption species and a low-energy Ar(+) ion is used as the desorption species. A MoS2 ALE mechanism (by which the S(top), Mo(mid), and S(bottom) atoms are sequentially removed from the MoS2 crystal structure due to the trapped Cl atoms between the S(top) layer and the Mo(mid) layer) is reported according to the results of an experiment and a simulation. In addition, the ALE technique shows that a monolayer MoS2 field effect transistor (FET) fabricated after one cycle of ALE is undamaged and exhibits electrical characteristics similar to those of a pristine monolayer MoS2 FET. This technique is also applicable to all layered TMD materials, such as tungsten disulfide (WS2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2).

  14. Molecular engineering with artificial atoms: designing a material platform for scalable quantum spintronics and photonics

    Science.gov (United States)

    Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.

    2017-09-01

    Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.

  15. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  16. Survival under stress: molecular mechanisms of metabolic rate ...

    African Journals Online (AJOL)

    Studies in my laboratory are analysing the molecular mechanisms and regulatory events that underlie transitions to and from hypometabolic states In systems including ... Our newest research targets two areas: the role of protein kinases in regulating metabolic adjustments and the role of stress-induced gene expression in ...

  17. Molecular pathogenetic mechanisms of nephrotic edema: progress in understanding.

    Science.gov (United States)

    Camici, Marcello

    2005-06-01

    Molecular and pathogenetic mechanisms in sodium retention and water reabsorption of nephrotic edema are discussed. Are reported and analyzed molecular mechanisms about sodium retention in collecting duct cells regarding activation and surface expression of epithelial sodium channels (ENaC) and sodium-potassium-ATPase (Na,K-ATPase) by aldosterone, vasopressin, natriuretic peptide system (underfill theory): is necessary a better understanding about the dysregulation of ENaC and Na,K-ATPase surface expression and the resistance to natriuretic peptide system. Are also reported and analyzed molecular mechanisms of sodium retention in proximal tubule cells regarding intrinsic albumin toxicity upon type 3 sodium-hydrogen exchanger ionic pump and the activity of sodium-hydrogen exchanger regulatory factor protein (overfill theory): a better knowledge about the link between albumin, sodium-hydrogen exchanger type 3 (NHE3) ionic pump, sodium-hydrogen exchanger regulatory factor protein is necessary. Then molecular mechanisms of vasopressin free water retention through acquaporin water channels in collecting duct cells are discussed: further studies are necessary to understand vasopressin release pathway (osmotic/nonosmotic) and V2 receptor activation with cell surface expression of renal acquaporins water channel.

  18. molecular mechanisms of metabolic rate depression in animals

    African Journals Online (AJOL)

    55-4. Survival under stress: molecular mechanisms of metabolic rate depression in animals. Kenneth B. Storey. Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6. E-mail: kbstorey@ccs.earleton.ea. Received 1 September 1997; accepted 4 March J 998.

  19. Molecular mechanisms of epithelial host defense in the airways

    NARCIS (Netherlands)

    Vos, Joost Bastiaan

    2007-01-01

    Airway epithelial cells are indispensable for the host defense system in the lungs. Various strategies by which epithelial cells protect the lungs against inhaled pathogens have been described. In spite of that, the molecular mechanisms by which epithelial cells initiate and control the host defense

  20. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  1. Molecular Mechanisms of Bone 18F-NaF Deposition

    OpenAIRE

    Czernin, Johannes; Satyamurthy, Nagichettiar; Schiepers, Christiaan

    2010-01-01

    There is renewed interest in 18F-NaF bone imaging with PET or PET/CT. The current brief discussion focuses on the molecular mechanisms of 18F-NaF deposition in bone and presents model-based approaches to quantifying bone perfusion and metabolism in the context of preclinical and clinical applications of bone imaging with PET.

  2. Molecular mechanisms of disease in hereditary red blood cell enzymopathies

    NARCIS (Netherlands)

    Wijk, Henricus Anthonius van

    2004-01-01

    Metabolically defective red blood cells are old before their time, and suffer from metabolic progeria. The focus of this thesis was to identify the molecular mechanisms by which inherited enzymopathies of the red blood cell lead to impaired enzyme function and, consequently, shorten red blood cell

  3. Relation between the parameters of dust and of molecular and atomic gas in extragalactic star-forming regions

    Science.gov (United States)

    Smirnova, K. I.; Murga, M. S.; Wiebe, D. S.; Sobolev, A. M.

    2017-08-01

    The relationships between atomic and molecular hydrogen and dust of various sizes in extragalactic star-forming regions are considered, based on observational data from the Spitzer and Herschel infrared space telescopes, the Very Large Array (atomic hydrogen emission) and IRAM (CO emission). The source sample consists of approximately 300 star-forming regions in 11 nearby galaxies. Aperture photometry has been applied to measure the fluxes in eight infrared bands (3.6, 4.5, 5.8, 8, 24, 70, 100, and 160 μm), the atomic hydrogen 21 cm line, and CO (2-1) line. The parameters of the dust in the starforming regions were determined via synthetic-spectra fitting, such as the total dust mass, the fraction of polycyclic aromatic hydrocarbons (PAHs), etc. Comparison of the observed fluxes with the measured parameters shows that the relationships between atomic hydrogen, molecular hydrogen, and dust are different in low- and high-metallicity regions. Low-metallicity regions contain more atomic gas, but less molecular gas and dust, including PAHs. The mass of dust constitutes about 1% of the mass of molecular gas in all regions considered. Fluxes produced by atomic and molecular gas do not correlate with the parameters of the stellar radiation, whereas the dust fluxes grow with increasing mean intensity of stellar radiation and the fraction of enhanced stellar radiation. The ratio of the fluxes at 8 and 24 μm, which characterizes the PAH content, decreases with increasing intensity of the stellar radiation, possibly indicating evolutionary variations of the PAH content. The results confirm that the contribution of the 24 μm emission to the total IR luminosity of extragalactic star-forming regions does not depend on the metallicity.

  4. Identifying deformation mechanisms in molecular dynamics simulations of laser shocked matter

    Science.gov (United States)

    White, T. G.; Tikku, A.; Alves Silva, M. F.; Gregori, G.; Higginbotham, A.; Eakins, D. E.

    2017-12-01

    In this paper we demonstrate a new post-processing technique that allows straightforward identification of deformation mechanisms in molecular dynamics simulations. We utilise reciprocal space methods by calculating a per-atom structure factor (PASF) to visualise changes in volume, orientation and structure, thus allowing unambiguous discrimination between key deformation/relaxation mechanisms such as uniaxial strain, twinning and structural phase transformations. The full 3-D PASF is reduced to a 2-D representation by taking only those points which lie on the surface of an ellipsoid passing through the nearest reciprocal lattice points. Projecting this 2-D representation onto the set of spherical harmonics allows for a numerical characterisation of the system state that easily captures various plastic deformation mechanisms that have been historically difficult to identify. The technique is used to successfully classify high temperature twinning rotations in shock compressed tantalum and to identify the α to ω phase transition in group-IV hcp metals.

  5. An integrated, cross-disciplinary study of soil hydrophobicity at atomic, molecular, core and landscape scales

    Science.gov (United States)

    Matthews, G. Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2017-04-01

    Soil hydrophobicity can lead to reduced soil fertility and heightened flood risk caused by increased run-off. Soil hydrophobicity is a well-known phenomenon when induced by natural events such as wildfires and anthropogenic causes including adding organic wastes or hydrocarbon contaminants. This presentation concerns a much more subtle effect - the naturally occurring changes between hydrophilic and hydrophobic states caused by periods of wetness and drought. Although subtle, they nevertheless affect vast areas of soil, and so their effects can be very significant, and are predicted to increase under climate change conditions. To understand the effect, a major interdisciplinary study has been commissioned by the UK's Natural Environment Research Council (NERC) to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. We present the key findings from the many publications currently in preparation. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces, and that these effects can be meaningfully upscaled from molecular to landscape scale. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (natural rough pasture, Wales), intermediate to severe (pasture, Wales), and subcritical (managed research grassland, Rothamsted Research, England). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were determined from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using novel separation methods which reduces interference by humic acids, and allows identification

  6. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    Science.gov (United States)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  7. Tuned and Balanced Redistributed Charge Scheme for Combined Quantum Mechanical and Molecular Mechanical (QM/MM) Methods and Fragment Methods: Tuning Based on the CM5 Charge Model.

    Science.gov (United States)

    Wang, Bo; Truhlar, Donald G

    2013-02-12

    Tuned and balanced redistributed charge schemes have been developed for modeling the electrostatic fields of bonds that are cut by a quantum mechanical-molecular mechanical boundary in combined quantum mechanical and molecular mechanical (QM/MM) methods. First, the charge is balanced by adjusting the charge on the MM boundary atom to conserve the total charge of the entire QM/MM system. In the balanced smeared redistributed charge (BSRC) scheme, the adjusted MM boundary charge is smeared with a smearing width of 1.0 Å and is distributed in equal portions to the midpoints of the bonds between the MM boundary atom and the MM atoms bonded to it; in the balanced redistributed charge-2 (BRC2) scheme, the adjusted MM boundary charge is distributed as point charges in equal portions to the MM atoms that are bonded to the MM boundary atom. The QM subsystem is capped by a fluorine atom that is tuned to reproduce the sum of partial atomic charges of the uncapped portion of the QM subsystem. The new aspect of the present study is a new way to carry out the tuning process; in particular, the CM5 charge model, rather than the Mulliken population analysis applied in previous studies, is used for tuning the capping atom that terminates the dangling bond of the QM region. The mean unsigned error (MUE) of the QM/MM deprotonation energy for a 15-system test suite of deprotonation reactions is 2.3 kcal/mol for the tuned BSRC scheme (TBSRC) and 2.4 kcal/mol for the tuned BRC2 scheme (TBRC2). As was the case for the original tuning method based on Mulliken charges, the new tuning method performs much better than using conventional hydrogen link atoms, which have an MUE on this test set of about 7 kcal/mol. However, the new scheme eliminates the need to use small basis sets, which can be problematic, and it allows one to be more consistent by tuning the parameters with whatever basis set is appropriate for applications. (Alternatively, since the tuning parameters and partial charges

  8. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    Science.gov (United States)

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  9. Photocatalytic Mechanism Regulation of Bismuth Oxyhalogen via Changing Atomic Assembly Method.

    Science.gov (United States)

    Bai, Yang; Shi, Xian; Wang, Ping-Quan; Xie, Haiquan; Ye, Liqun

    2017-09-13

    Exciton and carrier photocatalytic processes have been proved in bismuth oxyhalogen photocatalysts. But, there are no reports about how to regulate the different mechanisms to improve photocatalytic activity for different reaction. Here, we found that the photocatalytic mechanisms could be regulated by changing the assembly method of bismuth, oxygen, and halogen atoms. Reactive oxygen species (ROS) experimentals results concluded that solid solution BiOBr0.5I0.5 showed enhanced exciton photocatalytic process, and coupling 0.5BiOBr/0.5BiOI displayed improved carrier photocatalytic proces. This work promoted the understanding about solid solution and coupling for bismuth oxyhalogen.

  10. Investigation of the interaction between patulin and human serum albumin by a spectroscopic method, atomic force microscopy, and molecular modeling.

    Science.gov (United States)

    Yuqin, Li; Guirong, You; Zhen, Yang; Caihong, Liu; Baoxiu, Jia; Jiao, Chen; Yurong, Guo

    2014-01-01

    The interaction of patulin with human serum albumin (HSA) was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), atomic force microscopy (AFM), and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K) were 2.60 × 10(4), 4.59 × 10(4), and 7.01 × 10(4) M(-1) at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG (0), ΔH (0), and ΔS (0) values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.

  11. Selenosugar determination in porcine liver using multidimensional HPLC with atomic and molecular mass spectrometry.

    Science.gov (United States)

    Lu, Ying; Pergantis, Spiros A

    2009-01-01

    A methodology based on liquid chromatography coupled online with atomic and molecular mass spectrometry was developed for identifying trace amounts of the selenosugar methyl 2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeGalNAc) in porcine liver, obtained from an animal that had not received selenium supplementation. Sample preparation was especially critical for the identification of SeGalNAc by molecular mass spectrometry. This involved liver extraction using a Tris buffer, followed by sequential centrifugations. The resulting cytosolic fraction was pre-concentrated and the low molecular weight selenium (LMWSe) fraction obtained from a size exclusion column was collected, concentrated, and subsequently analyzed using a tandem dual-column HPLC-ICP-MS system which consisted of strong cation exchange (SCX) and reversed phase (RP) columns coupled in tandem. Hepatocytosolic SeGalNAc was tentatively identified by retention time matching and spiking. Its identity was further confirmed by using the same type of chromatography on-line with atmospheric pressure chemical ionization tandem mass spectrometry operated in the selected reaction monitoring (SRM) mode. Four SRM transitions, characteristic of SeGalNAc, were monitored and their intensity ratios determined in order to confirm SeGalNAc identification. Instrument limits of detection for SeGalNAc by SCX-RP HPLC-ICP-MS and SCX-RP HPLC-APCI-MS/MS were 3.4 and 2.9 μg Se L(-1), respectively. Selenium mass balance analysis revealed that trace amounts of SeGalNAc, 2.16±0.94 μg Se kg(-1) liver (wet weight) were present in the liver cytosol, corresponding to 0.4% of the total Se content in the porcine liver.

  12. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    Science.gov (United States)

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  13. Molecular Dynamics Simulation Connections and Mechanical Properties of Cu/Al Explosion Shock Interface

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2017-10-01

    Full Text Available Based on the molecular dynamics (MD method, transient explosive welding process of Cu/Al junction point was revealed from the microscopic aspect, and mechanical properties and machinability of the Cu/Al nano-weldment were studied. The results show that kinetic energy is converted into internal energy in the system after the collision. The heterogeneous atoms penetrate into each other and the diffusion effect of copper atoms is better than aluminium atoms. The elastic modulus of the nano-weldment is 64.56 GPa, which is between copper's and aluminium's; however, its yield strength is less than those of the two monocrystals. Interactions between dislocations and disordered lattices cause the stress strengthening in the plastic deformation stage, which causes that the stress values of the weldment is larger than those of the two monocrystals. This strengthening mechanism is also reflected in the cutting process, and the weldment has the highest average cutting force 117.80 nN. A mass of dislocations nucleate in the disordered lattice areas of the weldment, and they spread at 45¯ to the cutting direction. However, dislocations pile up when their propagation is hindered by the disordered lattices and interface, which leads to the work hardening effect.

  14. Systematic study of imidazoles inhibiting IDO1 via the integration of molecular mechanics and quantum mechanics calculations.

    Science.gov (United States)

    Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng

    2017-05-05

    Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Matrix metalloproteinase 2 inhibition: combined quantum mechanics and molecular mechanics studies of the inhibition mechanism of (4-phenoxyphenylsulfonyl)methylthiirane and its oxirane analogue.

    Science.gov (United States)

    Tao, Peng; Fisher, Jed F; Shi, Qicun; Vreven, Thom; Mobashery, Shahriar; Schlegel, H Bernhard

    2009-10-20

    The inhibition mechanism of matrix metalloproteinase 2 (MMP2) by the selective inhibitor (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT) and its oxirane analogue is investigated computationally. The inhibition mechanism involves C-H deprotonation with concomitant opening of the three-membered heterocycle. SB-3CT was docked into the active site of MMP2, followed by molecular dynamics simulation to prepare the complex for combined quantum mechanics and molecular mechanics (QM/MM) calculations. QM/MM calculations with B3LYP/6-311+G(d,p) for the QM part and the AMBER force field for the MM part were used to examine the reaction of these two inhibitors in the active site of MMP2. The calculations show that the reaction barrier for transformation of SB-3CT is 1.6 kcal/mol lower than its oxirane analogue, and the ring-opening reaction energy of SB-3CT is 8.0 kcal/mol more exothermic than that of its oxirane analogue. Calculations also show that protonation of the ring-opened product by water is thermodynamically much more favorable for the alkoxide obtained from the oxirane than for the thiolate obtained from the thiirane. A six-step partial charge fitting procedure is introduced for the QM/MM calculations to update atomic partial charges of the quantum mechanics region and to ensure consistent electrostatic energies for reactants, transition states, and products.

  16. Molecular modeling study of uranyl nitrate extraction with monoamides. 2: Molecular mechanics and lipophilicity calculations -- Structure-activity relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rabbe, C.; Madic, C. [CEA-DCC-DRRV, Bagnols-sur-Ceze (France); Sella, C. [E.S.P.C.I., Paris (France). Lab. de Chimie Analytique; Godard, A. [INSA Rouen, Mont-Saint-Aignan (France)

    1999-01-01

    This report describes the second part of a theoretical approach aimed at establishing structure-activity relationships in a data base made of twenty-two monoamides (A) used as uranium (VI) nitrate extractants. It was found that predominant factors determining the extracting ability of a monoamide are of three kinds: (1) electron density of the coordinating atoms or groups, which should be as high as possible; (2) steric effects, which should be as low as possible; and (3) lipophilicity of the ligands, which should be above a minimum threshold value. In the first paper of this series, quantum chemistry calculations were reported to account for electronic properties of the ligands. This second paper reports molecular mechanics calculations made on UO{sub 2}(NO{sub 3}){sub 2}A{sub 2} complexes in order to determine the influence of steric effects on the formation of these compounds. Calculations of monoamide lipophilicity using Rekker`s method showed that all the molecules of the data base were lipophilic enough and, consequently, that this parameter was not significantly important for the extraction of uranyl nitrate by these monoamides. A quantitative relationship was established between the U(VI) distribution ratio and the two parameters, calculated by quantum chemistry and molecular mechanics methods.

  17. Blistering mechanisms of atomic-layer-deposited AlN and Al2O3 films

    Science.gov (United States)

    Broas, Mikael; Jiang, Hua; Graff, Andreas; Sajavaara, Timo; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2017-10-01

    Blistering of protective, structural, and functional coatings is a reliability risk pestering films ranging from elemental to ceramic ones. The driving force behind blistering comes from either excess hydrogen at the film-substrate interface or stress-driven buckling. Contrary to the stress-driven mechanism, the hydrogen-initiated one is poorly understood. Recently, it was shown that in the bulk Al-Al2O3 system, the blistering is preceded by the formation of nano-sized cavities on the substrate. The stress- and hydrogen-driven mechanisms in atomic-layer-deposited (ALD) films are explored here. We clarify issues in the hydrogen-related mechanism via high-resolution microscopy and show that at least two distinct mechanisms can cause blistering in ALD films.

  18. Symmetry-resolved spectroscopy by detection of a metastable hydrogen atom for investigating the doubly excited states of molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Takeshi; Kumagai, Yoshiaki; Tanabe, Takehiko; Nakano, Motoyoshi; Kouchi, Noriyuki [Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Suzuki, Isao H, E-mail: joe@chem.titech.ac.j [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-11-01

    Symmetry-resolved spectroscopy for investigating the doubly excited states of molecular hydrogen has been newly developed, where a metastable hydrogen atom dissociating in a direction parallel and perpendicular to the electric vector of the linearly polarized incident light is detected.

  19. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    Science.gov (United States)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  20. Atomic structure of screw dislocations intersecting the Au(111) surface: A combined scanning tunneling microscopy and molecular dynamics study

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Schiøtz, Jakob; Dahl-Madsen, Bjarke

    2006-01-01

    The atomic-scale structure of naturally occurring screw dislocations intersecting a Au(111) surface has been investigated both experimentally by scanning tunneling microscopy (STM) and theoretically using molecular dynamics (MD) simulations. The step profiles of 166 dislocations were measured using...

  1. Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales.

    Science.gov (United States)

    Rigato, Annafrancesca; Rico, Felix; Eghiaian, Frédéric; Piel, Mathieu; Scheuring, Simon

    2015-06-23

    In multicellular organisms, cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous, and unconstrained substrate with nonspecific adhesion sites, thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries (▽, T, and Y), and investigated their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young's moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics.

  2. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

    CERN Document Server

    Manini, Nicola

    2014-01-01

    This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

  3. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2011-11-15

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.

  4. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    Science.gov (United States)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  5. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    Science.gov (United States)

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.

  6. Atomistic mechanism of microRNA translation upregulation via molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Wei Ye

    Full Text Available MicroRNAs are endogenous 23-25 nt RNAs that play important gene-regulatory roles in animals and plants. Recently, miR369-3 was found to upregulate translation of TNFα mRNA in quiescent (G0 mammalian cell lines. Knock down and immunofluorescence experiments suggest that microRNA-protein complexes (with FXR1 and AGO2 are necessary for the translation upregulation. However the molecular mechanism of microRNA translation activation is poorly understood. In this study we constructed the microRNA-mRNA-AGO2-FXR1 quadruple complex by bioinformatics and molecular modeling, followed with all atom molecular dynamics simulations in explicit solvent to investigate the interaction mechanisms for the complex. A combined analysis of experimental and computational data suggests that AGO2-FXR1 complex relocalize microRNA:mRNA duplex to polysomes in G0. The two strands of dsRNA are then separated upon binding of AGO2 and FXR1. Finally, polysomes may improve the translation efficiency of mRNA. The mutation research confirms the stability of microRNA-mRNA-FXR1 and illustrates importance of key residue of Ile304. This possible mechanism can shed more light on the microRNA-dependent upregulation of translation.

  7. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    Science.gov (United States)

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins

    Directory of Open Access Journals (Sweden)

    De-Xing Hou

    2004-01-01

    Full Text Available Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK pathway and activator protein 1 (AP-1 factor; (ii suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB pathway and cyclooxygenase 2 (COX-2 gene; (iii apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS / c-Jun NH2-terminal kinase (JNK-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.

  9. Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra

    CERN Document Server

    Charnock, G T P; Kuprov, Ilya

    2011-01-01

    An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to distortions in molecular geometry.

  10. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Michael [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Stock, Lorenz G. [Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Traxler, Lukas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Leclercq, Laurent [Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Bonazza, Klaus; Friedbacher, Gernot [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Cottet, Hervé [Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Stutz, Hanno [Division of Chemistry and Bioanalytics, Department of Molecular Biology, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Ebner, Andreas, E-mail: andreas.ebner@jku.at [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria)

    2016-08-03

    Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated. - Highlights: • SMIL coating allows generation of homogeneous ultra-flat surfaces. • Molecular electrostatic adhesion forces can be determined in the inner wall of CZE capillary with picoNewton accuracy. • Topographical images and simultaneously acquired adhesion maps yield morphological and chemical information at the nanoscale.

  11. Research briefing on selected opportunities in atomic, molecular, and optical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses research on the following topics: The Laser-Atom Revolution; Controlling Dynamical Pathways; Nonclassical States of Light; Transient States of Atomic Systems; New Light Generation and Handling; Clusters; Atomic Physics at User Facilities; and Impacts of AMO Sciences on Modern Technologies.

  12. Research briefing on selected opportunities in atomic, molecular, and optical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report discusses research on the following topics: The Laser-Atom Revolution; Controlling Dynamical Pathways; Nonclassical States of Light; Transient States of Atomic Systems; New Light Generation and Handling; Clusters; Atomic Physics at User Facilities; and Impacts of AMO Sciences on Modern Technologies.

  13. Molecular and regulatory mechanisms controlling floral organ development.

    Science.gov (United States)

    Stewart, Darragh; Graciet, Emmanuelle; Wellmer, Frank

    2016-05-01

    The genetic and molecular mechanisms that underlie the formation of angiosperm flowers have been studied extensively for nearly three decades. This work has led to detailed insights into the gene regulatory networks that control this vital developmental process in plants. Here, we review some of the key findings in the field of flower development and discuss open questions that must be addressed in order to obtain a more comprehensive understanding of flower formation. In particular, we focus on the specification of the different types of floral organs and on how the morphogenesis of these organs is controlled to give rise to mature flowers. Central to this process are the floral organ identity genes, which encode members of the family of MADS-domain transcription factors. We summarize what is currently known about the functions of these master regulators and discuss a working model for the molecular mechanism that may underlie their activities. © 2016 Federation of European Biochemical Societies.

  14. The epidemiology of supernumerary teeth and the associated molecular mechanism.

    Science.gov (United States)

    Lu, Xi; Yu, Fang; Liu, Junjun; Cai, Wenping; Zhao, Yumei; Zhao, Shouliang; Liu, Shangfeng

    2017-07-03

    Supernumerary teeth are common clinical dental anomalies. Although various studies have provided abundant information regarding genes and signaling pathways involved in tooth morphogenesis, which include Wnt, FGF, BMP, and Shh, the molecular mechanism of tooth formation, especially for supernumerary teeth, is still unclear. In the population, some cases of supernumerary teeth are sporadic, while others are syndrome-related with familial hereditary. The prompt and accurate diagnosis of syndrome related supernumerary teeth is quite important for some distinctive disorders. Mice are the most commonly used model system for investigating supernumerary teeth. The upregulation of Wnt and Shh signaling in the dental epithelium results in the formation of multiple supernumerary teeth in mice. Understanding the molecular mechanism of supernumerary teeth is also a component of understanding tooth formation in general and provides clinical guidance for early diagnosis and treatment in the future.

  15. Molecular Mechanisms and Function Prediction of Long Noncoding RNA

    Directory of Open Access Journals (Sweden)

    Handong Ma

    2012-01-01

    Full Text Available The central dogma of gene expression considers RNA as the carrier of genetic information from DNA to protein. However, it has become more and more clear that RNA plays more important roles than simply being the information carrier. Recently, whole genome transcriptomic analyses have identified large numbers of dynamically expressed long noncoding RNAs (lncRNAs, many of which are involved in a variety of biological functions. Even so, the functions and molecular mechanisms of most lncRNAs still remain elusive. Therefore, it is necessary to develop computational methods to predict the function of lncRNAs in order to accelerate the study of lncRNAs. Here, we review the recent progress in the identification of lncRNAs, the molecular functions and mechanisms of lncRNAs, and the computational methods for predicting the function of lncRNAs.

  16. Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis.

    Science.gov (United States)

    Hua-Huy, T; Dinh-Xuan, A T

    2015-04-01

    Fibrosis is characterized by disproportionate accumulation of collagens and other extracellular matrix substances, resulting in organ dysfunction and failure. In systemic sclerosis, cellular and molecular mechanisms involved in the pathophysiology of fibrosis are highly complex and yet barely understood. Anatomopathological findings showed the coexistence of patchy inflammatory cell infiltration, microvascular injuries, and fibrotic foci. One of the most commonly accepted hypotheses considers endothelial activation as the triggering phenomenon inducing inflammatory and autoimmunity activation. The resulting cytokines and autoantibodies production accelerates the proliferating rate of normal fibroblasts and their transformation into myofibroblasts, leading to diffuse fibrosis. This review aims to focus on cellular and molecular mechanisms implicated in the fibrogenesis of systemic sclerosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    Science.gov (United States)

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  18. Molecular interaction mechanisms in reverse micellar extraction of microbial transglutaminase.

    Science.gov (United States)

    Yu, Tingting; Lin, Mingxiang; Wan, Junfen; Cao, Xuejun

    2017-08-18

    Reverse micellar extraction is an efficient and economical alternative for protein purification. In this study, microbial transglutaminase (MTGase) from crude materials was purified using reverse micellar extraction, and the molecular interaction mechanism in reverse micellar extraction of MTGase was explored. By using a molecular simulation study, the interaction mechanism of forward extraction was investigated. The molecular simulation results reveal the interaction of MTGase-water-surfactant is the major driving force for the forward extraction. Further, the effect of ionic strength on molecular interactions in backward extraction was investigated using 1H low-field nuclear magnetic resonance (LF-NMR) and circular dichroism (CD) spectra. In backward extraction, the interactions between water and the other two molecules (MTGase and surfactant molecules) are enhanced while the interactions between target molecules (MTGase) and the other two molecules (water and surfactant molecules) are weakened as the ionic strength increases. Moreover, the effect of size exclusion on backward extraction was also investigated. The results demonstrate size exclusion has limit effect at high ionic strength, and the weakened interaction of MTGase-water-surfactant is the main reason causing the release of the target molecules in backward extraction. This work might provide valuable reference to the MTGase purification and downstream processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Chemical Vapor Deposition and Atomic Layer Deposition of Coatings for Mechanical Applications

    Science.gov (United States)

    Doll, G. L.; Mensah, B. A.; Mohseni, H.; Scharf, T. W.

    2010-01-01

    Chemical vapor deposition (CVD) of films and coatings involves the chemical reaction of gases on or near a substrate surface. This deposition method can produce coatings with tightly controlled dimensions and novel structures. Furthermore, the non-line-of-sight-deposition capability of CVD facilitates the coating of complex-shaped mechanical components. Atomic layer deposition (ALD) is also a chemical gas phase thin film deposition technique, but unlike CVD, it utilizes “self-limiting” surface adsorption reactions (chemisorption) to control the thickness of deposited films. This article provides an overview of CVD and ALD, discusses some of their fundamental and practical aspects, and examines their advantages and limitations versus other vapor processing techniques such as physical vapor deposition in regard to coatings for mechanical applications. Finally, site-specific cross-sectional transmission electron microscopy inside the wear track of an ALD ZnO/ZrO2 8 bilayers nanolaminate coating determined the mechanisms that control the friction and wear.

  20. Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils

    Science.gov (United States)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2016-01-01

    The cavitation of gas bubbles in liquids has been applied to different disciplines in life and natural sciences, and in technologies. To obtain an appropriate theoretical description of effects induced by the bubble cavitation, we develop an all-atom nonequilibrium molecular-dynamics simulation method to simulate bubbles undergoing harmonic oscillation in size. This allows us to understand the mechanism of the bubble cavitation-induced liquid shear stress on surrounding objects. The method is then employed to simulate an Aβ fibril model in the presence of bubbles, and the results show that the bubble expansion and contraction exert water pressure on the fibril. This yields to the deceleration and acceleration of the fibril kinetic energy, facilitating the conformational transition between local free energy minima, and leading to the dissociation of the fibril. Our work, which is a proof-of-concept, may open a new, efficient way to dissociate amyloid fibrils using the bubble cavitation technique, and new venues to investigate the complex phenomena associated with amyloidogenesis. PMID:27825231

  1. All-atom molecular dynamics simulations of lung surfactant protein B: Structural features of SP-B promote lipid reorganization.

    Science.gov (United States)

    Khatami, Mohammad Hassan; Saika-Voivod, Ivan; Booth, Valerie

    2016-12-01

    Lung surfactant protein B (SP-B), a 79 residue, hydrophobic protein from the saposin superfamily, plays an essential role in breathing. Because of the extreme hydrophobicity of SP-B, the experimental structure of this protein has not yet been determined. Here, we run all-atom molecular dynamics simulations using the OPLS-AA force field in GROMACS to study SP-B's structure and mechanisms for promoting lipid reorganization. Firstly, we find that the final structures indicate the need for some fine-tuning of the homology-based secondary structure predictions. Secondly, we find energetically feasible structures 1) with SP-B's helices in the plane of the bilayer, 2) with SP-B's helices inclined with respect to the bilayer, and 3) with SP-B in a closed structure interacting peripherally with the bilayer. Interestingly, SP-B structures that were bent at the hinge region between the pairs of helices promoted and/or stabilized defects in the lipid bilayer. Finally, particular salt bridge patterns and structural plasticity in the central loop and adjacent region of SP-B appeared to be involved in SP-B's lipid reorganization abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  3. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  4. 2008 Atomic and Molecular Interactions GRC-July 6-11, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Arthur Suits

    2009-06-03

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2008 conference continues these traditions. At the 2008 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Spectroscopy; (2) Molecules in Strong Fields; (3) Photodissociation Dynamics; (4) Astrochemistry; and (5) Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed. Limited funds are available to support attendance for students and post-docs. Advisors should email the conference chair requesting such support, and the students should apply online as usual.

  5. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele

    2015-08-06

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  6. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging.

    Science.gov (United States)

    Leitner, Michael; Stock, Lorenz G; Traxler, Lukas; Leclercq, Laurent; Bonazza, Klaus; Friedbacher, Gernot; Cottet, Hervé; Stutz, Hanno; Ebner, Andreas

    2016-08-03

    Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Atomically-thin molecular layers for electrode modification of organic transistors.

    Science.gov (United States)

    Gim, Yuseong; Kang, Boseok; Kim, BongSoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-09-07

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm(2) V(-1) s(-1) and electron mobility of 0.17 cm(2) V(-1) s(-1) in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.

  8. Molecular mechanism of interaction between norfloxacin and trypsin studied by molecular spectroscopy and modeling

    Science.gov (United States)

    Lu, Yan; Wang, Gongke; Lu, Xiumin; Lv, Juan; Xu, Meihua; Zhang, Weiwei

    2010-01-01

    The molecular mechanism of the binding of norfloxacin (NRF) to trypsin was investigated by fluorescence, synchronous fluorescence and UV-vis absorbance spectroscopy and molecular modeling at physiological conditions. The quenching mechanism and the binding mode were investigated in terms of the association constants and basic thermodynamic parameters. The results of spectroscopic measurements suggested that NRF have a strong ability to quench the intrinsic fluorescence of trypsin through static quenching procedure. Moreover, fluorescence experiments were also performed at different values of pH to elucidate the effect of pH on the binding. The NRF-trypsin complex was stabilized by hydrophobic forces and hydrogen bonding, via tryptophan residue as indicated from the thermodynamic parameters, which was consistent with the results of molecular docking and accessible surface area calculations.

  9. Molecular Mechanism of hTERT Function in Mitochondria

    Science.gov (United States)

    2016-10-20

    Molecular mechanism of hTERT function in mitochondria (x) Material has been given an OPSEC review and it has been determined to be non sensitive and...transcriptase (hTERT) is localized to mitochondria , as well as the nucleus, but details about its biology and function in the organelle remain largely...demonstrate the canonical nuclear RNA [human telomerase RNA (hTR)] is not present in human mitochondria and not required for the mitochondrial

  10. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  11. Molecular mechanisms involved in the pathogenesis of septic shock.

    Science.gov (United States)

    López-Bojórquez, Lucia Nikolaia; Dehesa, Alejandro Zentella; Reyes-Terán, Gustavo

    2004-01-01

    Pathogenesis of the development of sepsis is highly complex and has been the object of study for many years. The inflammatory phenomena underlying septic shock are described in this review, as well as the enzymes and genes involved in the cellular activation that precedes this condition. The most important molecular aspects are discussed, ranging from the cytokines involved and their respective transduction pathways to the cellular mechanisms related to accelerated catabolism and multi-organic failure.

  12. Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties

    Energy Technology Data Exchange (ETDEWEB)

    von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel, Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Ramakrishnan, Raghunathan [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel, Basel Switzerland; Rupp, Matthias [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel, Basel Switzerland; Knoll, Aaron [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Texas Advanced Computing Center, University of Texas, Austin Texas

    2015-04-20

    We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation, rotation, and nuclear permutation, and requires no preconceived knowledge about chemical bonding, topology, or electronic orbitals. As such, it meets many important criteria for a good molecular representation, suggesting its usefulness for machine learning models of molecular properties trained across chemical compound space. To assess the performance of this new descriptor, we have trained machine learning models of molecular enthalpies of atomization for training sets with up to 10 k organic molecules, drawn at random from a published set of 134 k organic molecules with an average atomization enthalpy of over 1770 kcal/mol. We validate the descriptor on all remaining molecules of the 134 k set. For a training set of 10 k molecules, the fingerprint descriptor achieves a mean absolute error of 8.0 kcal/mol. This is slightly worse than the performance attained using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training and test sets. (c) 2015 Wiley Periodicals, Inc.

  13. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Saif Ahmad

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1 gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a regulation of SMN gene expression and (b degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.

  14. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  15. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    Science.gov (United States)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  16. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  17. Note: Mechanical etching of atomic force microscope tip and microsphere attachment for thermal radiation scattering enhancement.

    Science.gov (United States)

    Brissinger, D; Parent, G; Lacroix, D

    2013-12-01

    This Note describes a mechanical etching technique which can be used to prepare silicon tips used in atomic force microscopy apparatus. For such devices, dedicated tips with specific shapes are now commonly used to probe surfaces. Yet, the control of the tip morphology where characteristic scales are lower than 1 μm remains a real challenge. Here, we detail a controlled etching process of AFM probes apex allowing micrometer-sized sphere attachment. The technique used and influent parameters are discussed and SEM images of the achieved tips are given. Deceptive problems and drawbacks that might occur during the process are also covered.

  18. 3D mechanical measurements with an atomic force microscope on 1D structures

    DEFF Research Database (Denmark)

    Kallesøe, Christian; Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter

    2012-01-01

    We have developed a simple method to characterize the mechanical properties of three dimensional nanostructures, such as nanorods standing up from a substrate. With an atomic force microscope the cantilever probe is used to deflect a horizontally aligned nanorod at different positions along...... the nanorod, using the apex of the cantilever itself rather than the tip normally used for probing surfaces. This enables accurate determination of nanostructures' spring constant. From these measurements, Young's modulus is found on many individual nanorods with different geometrical and material structures...... in a short time. Based on this method Young's modulus of carbon nanofibers and epitaxial grown III-V nanowires has been determined....

  19. Effect of Glow-to-Arc Transition on Loss Mechanism of Ba Atoms from Electrode of Fluorescent Lamp

    Science.gov (United States)

    Ueda, Takashi; Samir, Ahmed; Egashira, Yuichi; Yamashita, Go; Shimada, Shozaburo; Yamagata, Yukihiko; Uchino, Kiichiro; Manabe, Yoshio

    2007-10-01

    The loss of Ba atoms from the electrode of a fluorescent lamp was measured while the lamp was operated in the glow and arc discharge modes at 60 Hz. A laser-induced fluorescence (LIF) technique was applied to the measurements of the temporal and spatial distributions of Ba atoms in the vicinity of the electrode. Ground-state (61S0) Ba atoms were excited to a 51P1 level by a frequency-doubled dye laser beam (350.1 nm), and the subsequent fluorescence (51P1-51D2, 582.6 nm) was detected. The temporal and spatial distributions of Ba atoms were found to be completely different in the two discharge modes. Temporally; in the arc discharge mode, the density of the Ba atoms was found to have two peaks, and the number of Ba atoms emitted in the anode half-cycle was about twofold larger than that emitted in the cathode half-cycle. In the glow discharge mode, the number of Ba atoms emitted in the anode half-cycle was found to be negligible compared with that emitted in the cathode half-cycle. Spatially; in the arc discharge mode, Ba atoms were found to be emitted mainly from the hot spot of the filament electrode. In the glow discharge mode, Ba atoms were found to be emitted from all parts of the filament electrodes homogeneously. The mechanism of Ba atom loss in both modes was discussed.

  20. Atoms, mechanics, and probability Ludwig Boltzmann's statistico-mechanical writings : an exegesis

    CERN Document Server

    Darrigol, Olivier

    2018-01-01

    One of the pillars of modern science, statistical mechanics, owes much to one man, the Austrian physicist Ludwig Boltzmann (1844-1906). As a result of his unusual working and writing styles, his enormous contribution remains little read and poorly understood. The purpose of this book is to make the Boltzmann corpus more accessible to physicists, philosophers, and historians, and so give it new life. The means are introductory biographical and historical materials, detailed and lucid summaries of every relevant publication, and a final chapter of critical synthesis. Special attention is given to Boltzmann's theoretical tool-box and to his patient construction of lofty formal systems even before their full conceptual import could be known. This constructive tendency largely accounts for his lengthy style, for the abundance of new constructions, for the relative vagueness of their object--and for the puzzlement of commentators. This book will help the reader cross the stylistic barrier and see how ingeniously B...

  1. Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance

    Science.gov (United States)

    Gould, Troy D.

    Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm, which increased the selectivity for C 3H6 hydrogenolysis by an order of magnitude over a much larger Ni/Al2O3 catalyst. Pt particles were deposited by varying the number of ALD cycles and the reaction chemistry (H2 or O 2) to control the particle size from approximately 1 to 2 nm, which allowed lower-coordinated surface atoms to populate the particle surface. These Pt ALD catalysts demonstrated some of the highest oxidative dehydrogenation of propane selectivities (37%) of a Pt catalyst synthesized by a scalable technique. Dry reforming of methane (DRM) is a reaction of interest due to the recent increased recovery of natural gas, but this reaction is hindered from industrial implementation because the Ni catalysts are plagued by deactivation from sintering and coking. This work utilized Ni ALD and NiPt ALD catalysts for the DRM reaction. These catalysts did not form destructive carbon whiskers and had enhanced reaction rates due to increased bimetallic interaction. To further limit sintering, the Ni and NiPt ALD catalysts were coated with a porous alumina matrix by molecular layer deposition (MLD). The catalysts were evaluated for DRM at 973 K, and the MLD-coated Ni catalysts outperformed the uncoated Ni catalysts in either activity (with 5 MLD cycles) or stability (with 10 MLD cycles). In summary, this thesis developed a new Ni nanoparticle ALD chemistry, explored possibilities for changing Pt ALD particle size, brought the two techniques together to create enhanced bimetallic

  2. Significant enhancement of the selectivity of propylene epoxidation for propylene oxide: a molecular oxygen mechanism.

    Science.gov (United States)

    Dai, Yimeng; Chen, Zongjia; Guo, Yanglong; Lu, Guanzhong; Zhao, Yifang; Wang, Haifeng; Hu, P

    2017-09-20

    As an attractive and environmentally friendly process for propylene oxide (PO) production, direct epoxidation of propylene (DEP) with molecular oxygen catalyzed by metal-based catalysts such as Ag and Cu has drawn much attention, but remains one of the biggest challenges in chemistry. In this work, the crucial competitive reactions of propylene α-H stripping (AHS) versus the oxametallacycle formation (OMMP formation) using adsorbed atomic oxygen (O*) or adsorbed molecular oxygen (O 2 *) as an oxidant are extensively compared on IB group metal surfaces (Cu, Ag and Au) with varied electronic and structural effects in order to explore the possibility to enhance the PO selectivity by virtue of first-principles calculations. The determining factor for the PO selectivity is quantitatively revealed: it is found that with atomic O*, the AHS pathway was preferred, indicating the reason for low PO selectivity with current catalysts. By contrast, the undissociated molecular O 2 * species is found to prefer to electrophilically attack the C[double bond, length as m-dash]C double bond of propylene and form a special oxametallacycle intermediate (OOMMP) rather than nucleophilically abstracting the α-H. This OOMMP can readily cleave the O-O bond and transform into OMMP. These results demonstrate that the presence of undissociated O 2 * can efficiently promote the PO selectivity. Furthermore, the merit of such a molecular O 2 * mechanism can be rationalized by our quantitative barrier decomposition analyses, which reveal that the lower hydrogen affinity (ΔE H ) of the O 2 * species dominantly contributes to the limited AHS reaction, and boosts the OMMP selectivity. Therefore, ΔE H can be applied as a selectivity descriptor. An efficient strategy to promote PO formation is presented. The insight obtained could pave the way for further development of catalysts for propylene epoxidation.

  3. Effects of Stretching Speed on Mechanical Rupture of Phospholipid/Cholesterol Bilayers: Molecular Dynamics Simulation

    Science.gov (United States)

    Shigematsu, Taiki; Koshiyama, Kenichiro; Wada, Shigeo

    2015-01-01

    Rupture of biological cell membrane under mechanical stresses is critical for cell viability. It is triggered by local rearrangements of membrane molecules. We investigated the effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers using unsteady molecular dynamics simulations. We focused on pore formation, the trigger of rupture, in a 40 mol% cholesterol-including bilayer. The unsteady stretching was modeled by proportional and temporal scaling of atom positions at stretching speeds from 0.025 to 30 m/s. The effects of the stretching speed on the critical areal strain, where the pore forms, is composed of two regimes. At low speeds (stretching speeds, which qualitatively agrees with available experimental data. Transient recovery of the cholesterol and phospholipid molecular orientations was evident at lower speeds, suggesting the formation of a stretch-induced interdigitated gel-like phase. However, this recovery was not confirmed at higher speeds or for the pure bilayer. The different responses of the molecular orientations may help explain the two regimes for the effect of stretching speed on pore formation. PMID:26471872

  4. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  5. [Molecular mechanisms of TRP channels in mechano-sensory transduction].

    Science.gov (United States)

    Zou, Wen-juan; Huang, Gui-fang; Kang, Li-jun

    2012-03-01

    Channels from the TRP superfamily have essential roles in a wide variety of sensory transductions, especially in mechano-sensation, such as hearing, touch and mechanical pain. TRP channels are also implicated in major channelopathies, including deafness, chronic pain, autosomal dominant polycystic kidney disease (ADPKD) and ventricular hypertrophy. As the leading candidates for mechano-sensitive channels, some TRP channels appear to be mechano-receptor, which can be activated by mechanical forces directly, such as C. elegans TRPN homolog TRP-4; whereas others may act as signal modulators, receiving and amplifying signals indirectly. This review is to introduce the function of TRPs in mechano-sensory transduction and to discuss the underlying molecular mechanisms.

  6. Molecular mechanisms of coronavirus RNA capping and methylation.

    Science.gov (United States)

    Chen, Yu; Guo, Deyin

    2016-02-01

    The 5'-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2'-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5'-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5'-cap structure and methylation modification of viral genomic RNAs.

  7. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  8. Brown algal morphogenesis: Atomic Force Microscopy as a tool to study the role of mechanical forces

    Directory of Open Access Journals (Sweden)

    Benoit eTesson

    2014-09-01

    Full Text Available Over the last few years, a growing interest has been directed toward the use of macroalgae as a source of energy, food and molecules for the cosmetic and pharmaceutical industries. Besides this, macroalgal development remains poorly understood compared to other multicellular organisms. Brown algae (Phaeophyceae form a monophyletic lineage of usually large multicellular algae which evolved independently from land plants. In their environment, they are subjected to strong mechanical forces (current, waves and tide, in response to which they modify rapidly and reversibly their morphology. Because of their specific cellular features (cell wall composition, cytoskeleton organization, deciphering how they cope with these forces might help discover new control mechanisms of cell wall softening and cellulose synthesis. Despite the current scarcity in knowledge on brown algal cell wall dynamics and protein composition, we will illustrate, in the light of methods adapted to Ectocarpus siliculosus, to what extent atomic force microscopy can contribute to advance this field of investigation.

  9. Epidemiological bases and molecular mechanisms linking obesity, diabetes, and cancer.

    Science.gov (United States)

    Gutiérrez-Salmerón, María; Chocarro-Calvo, Ana; García-Martínez, José Manuel; de la Vieja, Antonio; García-Jiménez, Custodia

    2017-02-01

    The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Statistical-mechanical theory of ultrasonic absorption in molecular liquids

    Science.gov (United States)

    Kobryn, Alexander E.; Hirata, Fumio

    2007-01-01

    We present results of the theoretical description of ultrasonic phenomena in molecular liquids. In particular, we are interested in the development of a microscopical, i.e., statistical-mechanical, framework capable of explaining the long living puzzle of excess ultrasonic absorption in liquids. Typically, an ultrasonic wave in a liquid can be generated by applying a periodically alternating external pressure with an angular frequency that corresponds to the ultrasound. If the perturbation introduced by such a process is weak, its statistical-mechanical treatment can be done with the use of a linear response theory. We treat the liquid as a system of interacting sites, so that all the response/aftereffect functions as well as the energy dissipation and generalized (wave-vector and frequency-dependent) ultrasonic absorption coefficient are obtained in terms of familiar site-site static and time correlation functions such as static structure factors or intermediate scattering functions. To express the site-site intermediate scattering functions, we refer to the site-site memory equations in the mode-coupling approximation for first-order memory kernels, while equilibrium properties such as site-site static structure factors, and direct and total correlation functions are deduced from the integral equation theory of molecular liquids known as RISM, or one of its generalizations. All of the formalism is phrased in a general manner, hence the results obtained are expected to work for arbitrary types of molecular liquids including simple, ionic, polar, and nonpolar liquids.

  11. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  12. Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement

    OpenAIRE

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Lykkegaard Karlsen, Jesper; Nissen, Poul

    2014-01-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom ...

  13. Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

  14. Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets.

    Science.gov (United States)

    Miceli, Giacomo; Hutter, Jürg; Pasquarello, Alfredo

    2016-08-09

    We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

  15. Atomically-thin molecular layers for electrode modification of organic transistors

    Science.gov (United States)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically

  16. Molecular mechanisms of cognitive dysfunction following traumatic brain injury.

    Science.gov (United States)

    Walker, Kendall R; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  17. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    Science.gov (United States)

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  18. Molecular Mechanisms of Cognitive Dysfunction following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kendall Rae Walker

    2013-07-01

    Full Text Available Traumatic brain injury (TBI results in significant disability due to cognitive deficits particularly in attention, learning and memory and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer’s disease (AD, Parkinson’s disease (PD, Amyotrophic Lateral Sclerosis (ALS and most recently chronic traumatic encephalopathy (CTE is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  19. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology.

    Science.gov (United States)

    van der Kamp, Marc W; Mulholland, Adrian J

    2013-04-23

    Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.

  20. Molecular Mechanisms of How Mercury Inhibits Water Permeation through Aquaporin-1: Understanding by Molecular Dynamics Simulation

    Science.gov (United States)

    Hirano, Yoshinori; Okimoto, Noriaki; Kadohira, Ikuko; Suematsu, Makoto; Yasuoka, Kenji; Yasui, Masato

    2010-01-01

    Abstract Aquaporin (AQP) functions as a water-conducting pore. Mercury inhibits the water permeation through AQP. Although site-directed mutagenesis has shown that mercury binds to Cys189 during the inhibition process, it is not fully understood how this inhibits the water permeation through AQP1. We carried out 40 ns molecular dynamics simulations of bovine AQP1 tetramer with mercury (Hg-AQP1) or without mercury (Free AQP1). In Hg-AQP1, Cys191 (Cys189 in human AQP1) is converted to Cys-SHg+ in each monomer. During each last 10 ns, we observed water permeation events occurred 23 times in Free AQP1 and never in Hg-AQP1. Mercury binding did not influence the whole structure, but did induce a collapse in the orientation of several residues at the ar/R region. In Free AQP1, backbone oxygen atoms of Gly190, Cys191, and Gly192 lined, and were oriented to, the surface of the water pore channel. In Hg-AQP1, however, the SHg+ of Cys191-SHg+ was oriented toward the outside of the water pore. As a result, the backbone oxygen atoms of Gly190, Cys191, and Gly192 became disorganized and the ar/R region collapsed, thereby obstructing the permeation of water. We suggest that mercury disrupts the water pore of AQP1 through local conformational changes in the ar/R region. PMID:20409470

  1. Neural tube closure: cellular, molecular and biomechanical mechanisms.

    Science.gov (United States)

    Nikolopoulou, Evanthia; Galea, Gabriel L; Rolo, Ana; Greene, Nicholas D E; Copp, Andrew J

    2017-02-15

    Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field. © 2017. Published by The Company of Biologists Ltd.

  2. Quantum Interactomics and Cancer Molecular Mechanisms: I. Report Outline

    CERN Document Server

    Baianu, I C

    2004-01-01

    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quant...

  3. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Cocoa phytochemicals: recent advances in molecular mechanisms on health.

    Science.gov (United States)

    Kim, Jiyoung; Kim, Jaekyoon; Shim, Jaesung; Lee, Chang Yong; Lee, Ki Won; Lee, Hyong Joo

    2014-01-01

    Recent reports on cocoa are appealing in that a food commonly consumed for pure pleasure might also bring tangible benefits for human health. Cocoa consumption is correlated with reduced health risks of cardiovascular diseases, hypertension, atherosclerosis, and cancer, and the health-promoting effects of cocoa are mediated by cocoa-driven phytochemicals. Cocoa is rich in procyanidins, theobromine, (-)-epicatechin, catechins, and caffeine. Among the phytochemicals present in consumed cocoa, theobromine is most available in human plasma, followed by caffeine, (-)-epicatechin, catechin, and procyanidins. It has been reported that cocoa phytochemicals specifically modulate or interact with specific molecular targets linked to the pathogenesis of chronic human diseases, including cardiovascular diseases, cancer, neurodegenerative diseases, obesity, diabetes, and skin aging. This review summarizes comprehensive recent findings on the beneficial actions of cocoa-driven phytochemicals in molecular mechanisms of human health.

  5. The molecular mechanism for nuclear transport and its application.

    Science.gov (United States)

    Kim, Yun Hak; Han, Myoung-Eun; Oh, Sae-Ock

    2017-06-01

    Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.

  6. R-matrix-incorporating-time theory of one-electron atomic and molecular systems in intense laser fields

    Science.gov (United States)

    Broin, Cathal Ó.; Nikolopoulos, L. A. A.

    2017-02-01

    In this thesis tutorial we discuss the R-matrix-incorporating-time ab initio theoretical framework for the solution of the time-dependent Schrödinger equation of one-electron atomic and molecular systems under strong electromagnetic fields. Within this approach, a division-of-space method is developed with the configuration space of the electron’s coordinates separated over two regions, the inner and outer regions. In the inner region the quantum system’s time-dependent wavefunction is expanded on the eigenstate basis set of its field-free Hamiltonian representation while in the outer region its grid representation is considered. The present tutorial describes in detail the theoretical formulation for one-electron quantum systems. Example calculations are discussed for atomic hydrogen, H, and the molecular hydrogen ion, {{{H}}}2+, in intense laser fields.

  7. MISCONCEPTION REMEDIATION OF ATOMIC ORBITAL, MOLECULAR ORBITAL, AND HIBRIDIZIATION CONCEPTS BY COMPUTER ASISSTED INSTRUCTION WITH ANIMATION AND SIMULATION MODEL

    Directory of Open Access Journals (Sweden)

    Sri Mursiti

    2010-06-01

    Full Text Available The research of Computer Asissted Instruction with animation and simulation was used to misconception remediation of atomic orbital, molecular orbital, and hibridiziation concepts. The applicated instruction model was focused on concept approach with macromedia flash player and power point programme. The subject of this research were the 2nd semestre students of Chemistry Department. The data were collected by using of true-false pre-test and post- test followed by the reason of its. The analysis reveals that the Computer Asissted Instruction with animation and simulation model increased the understanding of atomic orbital, molecular orbital, and hibridiziation concepts or remediation of concepts missconception, shown by the significant score gained between before and after the implementation of Computer Asissted Instruction with animation and simulation model. The instruction model developed the students's generic skills too.   Keywords: animation simulation,misconception remediation, orbital, hibridization

  8. Molecular mechanism of DNA association with single-stranded DNA binding protein.

    Science.gov (United States)

    Maffeo, Christopher; Aksimentiev, Aleksei

    2017-12-01

    During DNA replication, the single-stranded DNA binding protein (SSB) wraps single-stranded DNA (ssDNA) with high affinity to protect it from degradation and prevent secondary structure formation. Although SSB binds ssDNA tightly, it can be repositioned along ssDNA to follow the advancement of the replication fork. Using all-atom molecular dynamics simulations, we characterized the molecular mechanism of ssDNA association with SSB. Placed in solution, ssDNA-SSB assemblies were observed to change their structure spontaneously; such structural changes were suppressed in the crystallographic environment. Repeat simulations of the SSB-ssDNA complex under mechanical tension revealed a multitude of possible pathways for ssDNA to come off SSB punctuated by prolonged arrests at reproducible sites at the SSB surface. Ensemble simulations of spontaneous association of short ssDNA fragments with SSB detailed a three-dimensional map of local affinity to DNA; the equilibrium amount of ssDNA bound to SSB was found to depend on the electrolyte concentration but not on the presence of the acidic tips of the SSB tails. Spontaneous formation of ssDNA bulges and their diffusive motion along SSB surface was directly observed in multiple 10-µs-long simulations. Such reptation-like motion was confined by DNA binding to high-affinity spots, suggesting a two-step mechanism for SSB diffusion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  10. Interlayer shear effect on vibrational behavior of bilayer graphene using the molecular mechanics simulation

    Directory of Open Access Journals (Sweden)

    Mina Mirparizi

    2016-09-01

    Full Text Available In this article, the interlayer shear effects on vibrational behavior of bilayer graphene (BG are studied by using the molecular mechanics (MM simulation. Investigation on mechanical behavior of graphenes has recently attracted because of their excellent properties. MM simulation is exploited for modeling of covalent bond in the plane of graphene layers and they are modeled as space-frame structures. The interaction between two layers is modeled by Lennard–Jones potential for not only two apposite atoms but also for all adjacent atoms. The frequencies and mode shapes for cantilever and bridged bilayer graphene as well as monolayer graphene (MG are obtained by a finite element approach. Results show that the interlayer shear interaction has considerable effect on vibrational behavior of BG and increases the natural frequencies, because existence of horizontal forces (shear forces that prevent the lateral displacements. It can be seen that the interaction between two layers are more considerable in second mode because the curvature and variation of displacement are higher in second mode. Also it can be found that changing of mode shapes has considerable effect on shear interaction.

  11. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    Science.gov (United States)

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  12. Time-of-Flight Experiments in Molecular Motion and Electron-Atom Collision Kinematics

    Science.gov (United States)

    Donnelly, Denis P.; And Others

    1971-01-01

    Describes a set of experiments for an undergraduate laboratory which demonstrates the relationship between velocity, mass, and temperature in a gas. The experimental method involves time-of-flight measurements on atoms excited to metastable states by electron impact. Effects resulting from recoil in the electron-atom collision can also be…

  13. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    Science.gov (United States)

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  14. In situ detection of atomic and molecular iodine using Resonance and Off-Resonance Fluorescence by Lamp Excitation: ROFLEX

    Science.gov (United States)

    Gómez Martín, J. C.; Blahins, J.; Gross, U.; Ingham, T.; Goddard, A.; Mahajan, A. S.; Ubelis, A.; Saiz-Lopez, A.

    2011-01-01

    We demonstrate a new instrument for in situ detection of atmospheric iodine atoms and molecules based on atomic and molecular resonance and off-resonance ultraviolet fluorescence excited by lamp emission. The instrument combines the robustness, light weight, low power consumption and efficient excitation of radio-frequency discharge light sources with the high sensitivity of the photon counting technique. Calibration of I2 fluorescence is achieved via quantitative detection of the molecule by Incoherent Broad Band Cavity-enhanced Absorption Spectroscopy. Atomic iodine fluorescence signal is calibrated by controlled broad band photolysis of known I2 concentrations in the visible spectral range at atmospheric pressure. The instrument has been optimised in laboratory experiments to reach detection limits of 1.2 pptv for I atoms and 13 pptv for I2, for S/N = 1 and 10 min of integration time. The ROFLEX system has been deployed in a field campaign in northern Spain, representing the first concurrent observation of ambient mixing ratios of iodine atoms and molecules in the 1-350 pptv range.

  15. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations.

    Science.gov (United States)

    Jain, Vaibhav; Maiti, Prabal K; Bharatam, Prasad V

    2016-09-28

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH 2 ) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH 2 ) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH 2 ) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  16. Mechanical characterization of polymeric thin films by atomic force microscopy based techniques.

    Science.gov (United States)

    Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia

    2013-02-01

    Polymeric thin films have been awakening continuous and growing interest for application in nanotechnology. For such applications, the assessment of their (nano)mechanical properties is a key issue, since they may dramatically vary between the bulk and the thin film state, even for the same polymer. Therefore, techniques are required for the in situ characterization of mechanical properties of thin films that must be nondestructive or only minimally destructive. Also, they must also be able to probe nanometer-thick ultrathin films and layers and capable of imaging the mechanical properties of the sample with nanometer lateral resolution, since, for instance, at these scales blends or copolymers are not uniform, their phases being separated. Atomic force microscopy (AFM) has been proposed as a tool for the development of a number of techniques that match such requirements. In this review, we describe the state of the art of the main AFM-based methods for qualitative and quantitative single-point measurements and imaging of mechanical properties of polymeric thin films, illustrating their specific merits and limitations.

  17. Atomic-Scale Mechanism of Efficient Hydrogen Evolution at SiC Nanocrystal Electrodes.

    Science.gov (United States)

    Shen, Xiao; Pantelides, Sokrates T

    2013-01-03

    Efficient electrochemical hydrogen evolution at ultrathin 3C-SiC nanocrystal electrodes in acid solutions was recently reported, but the atomic-scale mechanism of the reaction was not identified. Here we report quantum mechanical calculations of pertinent reactions and show that the reaction happens at pre-existing hydrogenated surface Si-H sites through a mechanism that is related to the Volmer-Heyrovsky mechanism that occurs in metals. Here the Heyrovsky reaction occurs as the first step, where an electron from the substrate reacts with a hydronium adsorbed at a Si-H site, creating an H2 molecule and a Si dangling bond. The Volmer reaction follows and regenerates the Si-H. This ordering of reactions is supported by the fact that the hydrogen coverage on SiC electrodes does not depend on the applied voltage, in contrast to the cases of metal electrodes. Moreover, the Volmer reaction, which is a one-step process on metal surface, is a two-step process here. We then show that the rise of the conduction band due to quantum confinement accounts for the fact that only ultrasmall SiC nanocrystals are electrochemically active. We also show that the ability of a Si-H bond to bind a hydronium is essential for the hydrogen evolution to occur at high rate.

  18. Hard collisions of few keV diatomic molecular ions with atomic gas targets: Collision induced dissociation and target ionization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nora G; Sayler, A M; McKenna, J; Gaire, B; Zohrabi, M; Berry, Ben; Carnes, K D; Ben-Itzhak, I [J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506 (United States); Wolff, Wania, E-mail: ibi@phys.ksu.ed [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21945-970, RJ (Brazil)

    2009-11-01

    Target ionization in close encounters between few keV simple diatomic molecular ions and noble gas targets have been studied experimentally. Some of the projectile molecular ions fragment as a result of these violent collisions while others remain bound despite undergoing a 'hard' collision. The measured momenta shed light on the mechanisms responsible for this behavior.

  19. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    Science.gov (United States)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  20. Unraveling the mechanism of a reversible photoactivated molecular proton crane.

    Science.gov (United States)

    van der Loop, Tibert H; Ruesink, Freek; Amirjalayer, Saeed; Sanders, Hans J; Buma, Wybren J; Woutersen, S

    2014-11-13

    We study the structural dynamics of the photoactivated molecular proton crane 7-hydroxy-8-(morpholinomethyl)quinoline using femtosecond UV-pump IR-probe spectroscopy. Upon electronic excitation, a proton is transferred from the hydroxy to the amine group located on the rotatable morpholino side group. This morpholino group subsequently delivers the proton to the aromatic quinoline nitrogen by rotation around the C-C bond. Time-resolved vibrational spectroscopy allows us to study this process in unprecedented detail. We find that the transport of the proton involves multiple time scales. Upon photoexcitation, the OH proton is transferred within <300 fs to the morpholino side group. After this, the intramolecular hydrogen bond that locks the crane arm breaks with a time constant of 36 ± 1 ps. Subsequently, the protonated crane arm rotates with a time constant of 334 ± 12 ps to deliver the proton at the quinoline moiety. After the proton crane has returned to its electronic ground state with a time constant 700 ± 22 ps, the proton is transferred back from the quinoline nitrogen to the negatively charged O atom. The time constant of the back rotation is 39.8 ± 0.2 ns, about 200 times slower than the forward proton transfer.