WorldWideScience

Sample records for atom heat processing

  1. The Thermos process heat reactor

    International Nuclear Information System (INIS)

    Lerouge, Bernard

    1979-01-01

    The THERMOS process heat reactor was born from the following idea: the hot water energy vector is widely used for heating purposes in cities, so why not save on traditional fossil fuels by simply substituting a nuclear boiler of comparable power for the classical boiler installed in the same place. The French Atomic Energy Commission has techniques for heating in the big French cities which provide better guarantees for national independence and for the environment. This THERMOS technique would result in a saving of 40,000 to 80,000 tons of oil per year [fr

  2. Fast switching of alkali atom dispensers using laser-induced heating

    International Nuclear Information System (INIS)

    Griffin, P.F.; Weatherill, K.J.; Adams, C.S.

    2005-01-01

    We show that by using an intense laser source to locally heat an alkali atom dispenser, one can generate a high flux of atoms followed by fast recovery (<100 ms) of the background pressure when the laser is extinguished. For repeated heating pulses a switch-on time for the atomic flux of 200 ms is readily attainable. This technique is suited to ultracold atom experiments using simple ultrahigh vacuum (UHV) chambers. Laser-induced heating provides a fast repetition of the experimental cycle, which, combined with low atom loss due to background gas collisions, is particularly useful for experiments involving far-off resonance optical traps, where sufficient laser power (0.5-4 W) is readily available

  3. Generalized atomic processes for interaction of intense femtosecond XUV- and X-ray radiation with solids

    International Nuclear Information System (INIS)

    Deschaud, B.; Peyrusse, O.; Rosmej, F.B.

    2014-01-01

    Generalized atomic processes are proposed to establish a consistent description from the free-atom approach to the heated and even up to the cold solid. It is based on a rigorous introduction of the Fermi-Dirac statistics, Pauli blocking factors and on the respect of the principle of detailed balance via the introduction of direct and inverse processes. A probability formalism driven by the degeneracy of the free electrons enables to establish a link of atomic rates valid from the heated atom up to the cold solid. This allows to describe photoionization processes in atomic population kinetics and subsequent solid matter heating on a femtosecond time scale. The Auger effect is linked to the 3-body recombination via a generalized 3-body recombination that is identified as a key mechanism, along with the collisional ionization, that follows energy deposition by photoionization of inner shells when short, intense and high-energy radiation interacts with matter. Detailed simulations are carried out for aluminum that highlight the importance of the generalized approach. (authors)

  4. The role of atomic and molecular processes in fusion research

    International Nuclear Information System (INIS)

    Harrison, M.F.A.

    1977-01-01

    This paper considers the relevance of atomic and molecular processes to research into controlled nuclear fusion and in particular their effects upon the magnetically confined plasma in Tokamak experiments and conceptual Tokamak reactors. The relative significance of collective phenomena and of single particle collisions to both plasma heating and loss processes are discussed and the pertinent principles of plasma refuelling and plasma diagnostics are outlined. The methods by which atomic and molecular data are applied to these problems, the contributing effects of surface interactions and the consequent implications upon the accuracy and the type of data needed are described in a qualitative manner. Whilst particular atomic and molecular processes are not discussed in detail, sufficient information is given of the physical environments of Tokamak devices for significant processes to be self evident. (author)

  5. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  6. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  7. Atomic spectrometry based on metallic tube atomizers heated by flame: Innovative strategies from fundamentals to analysis

    International Nuclear Information System (INIS)

    Arruda, Marco Aurelio Zezzi; Figueiredo, Eduardo Costa

    2009-01-01

    This review describes recent developments in atomic absorption spectrometry using metallic tube atomizers heated by flames. Sample introduction in spray or gaseous form is emphasized, describing some proposed systems for this task and the fundamentals involved in each context. The latest challenges and future possibilities for use of metallic tubes in atomic/mass spectrometry are also considered.

  8. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    Science.gov (United States)

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  9. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  10. Phase transformations, heat evolution, and atomic diffusion during slow heating of Al-rich Al/Zr multilayered foils

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Kaitlynn; Barron, S. C.; Knepper, R.; Weihs, T. P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2689 (United States); Bonds, M. A.; Browning, N. D. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Livi, K. J. T. [High-Resolution Analytical Electron Microbeam Facility, Integrated Imaging Center, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Campbell, G. H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-12-28

    We describe the energy and sequence of phase transformations in multilayered Al/Zr foils with atomic ratios of 3 Al:1 Zr during low temperature (<350 °C) heat treatments in a differential scanning calorimeter. The initial phase formed is an Al-rich amorphous phase that appears to grow by Zr diffusion through the amorphous phase. The subsequent nucleation and growth of tetragonal Al{sub 3}Zr along the Al/amorphous layer interface is mediated by Al diffusion through the crystalline intermetallic phase. Diffusion coefficients associated with these processes are higher than expected from reports of diffusivities measured at higher temperatures. The inferred heat of formation of the tetragonal Al{sub 3}Zr phase is 1240 ± 40 J/g (53 ± 2 kJ/mol atom). No anomalous variation in the energy or sequence of phase transformations is found with bilayer thickness for samples with bilayer thickness in the range of 17 nm to 90 nm despite anomalies in the bilayer dependence of self-propagating reaction velocities in the same foils.

  11. Physicochemical processes behind atomic tritium harnessing for investigation into surface of solids

    International Nuclear Information System (INIS)

    Badun, G.A.; Fedoseev, V.M.

    2000-01-01

    The thermal dissociation of hydrogen molecules on tungsten wire heated up to 1500 - 2000 K is a comfortable method for the atomic hydrogen production. The role of the different physicochemical processes taking place during dissociation of the molecular tritium interaction, atomic tritium transport to the target and its interaction with the molecules of the target is discussed. High selectivity of the atomic tritium interaction with the components of the different chemical nature target allowed such investigations to be made. The examples of atomic tritium use for the investigation into polymeric materials, absorption layers of surfactants, structure of biological macromolecules and hypomolecular formations are demonstrated [ru

  12. Supplementary plasma heating studies in the Atomic Energy Commission France

    International Nuclear Information System (INIS)

    Consoli, T.

    1976-01-01

    The research on supplementary heating of toroidal plasma made in France at the Atomic Energy Commission and in the European Community are described (with special reference to the J.E.T. project) in the frame of the national programs. A non exhaustive description of the world effort in this topic is also presented: (neutral injection heating, TTMP (transit time magnetic pumping) heating, electron and ion cyclotron resonance, and lower hybrid resonance heating)

  13. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  14. Nuclear process heat

    International Nuclear Information System (INIS)

    Barnert, H.; Hohn, H.; Schad, M.; Schwarz, D.; Singh, J.

    1993-01-01

    In a system for the application of high temperature heat from the HTR one must distinguish between the current generation and the use of process heat. In this respect it is important that the current can be generated by dual purpose power plants. The process heat is used as sensible heat, vaporisation heat and as chemical energy at the chemical conversion for the conversion of raw materials, the refinement of fossil primary energy carriers and finally circuit processes for the fission of water. These processes supply the market for heat, fuels, motor fuels and basic materials. Fifteen examples of HTR heat processes from various projects and programmes are presented in form of energy balances, however in a rather short way. (orig./DG) [de

  15. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Vladimir A. Srećković

    2017-12-01

    Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.

  16. Collisional effects on metastable atom population in vapour generated by electron beam heating

    International Nuclear Information System (INIS)

    Dikshit, B; Majumder, A; Bhatia, M S; Mago, V K

    2008-01-01

    The metastable atom population distribution in a free expanding uranium vapour generated by electron beam (e-beam) heating is expected to depart from its original value near the source due to atom-atom collisions and interaction with electrons of the e-beam generated plasma co-expanding with the vapour. To investigate the dynamics of the electron-atom and atom-atom interactions at different e-beam powers (or source temperatures), probing of the atomic population in ground (0 cm -1 ) and 620 cm -1 metastable states of uranium was carried out by the absorption technique using a hollow cathode discharge lamp. The excitation temperature of vapour at a distance ∼30 cm from the source was calculated on the basis of the measured ratio of populations in 620 to 0 cm -1 states and it was found to be much lower than both the source temperature and estimated translational temperature of the vapour that is cooled by adiabatic free expansion. This indicated relaxation of the metastable atoms by collisions with low energy plasma electrons was so significant that it brings the excitation temperature below the translational temperature of the vapour. So, with increase in e-beam power and hence atom density, frequent atom-atom collisions are expected to establish equilibrium between the excitation and translational temperatures, resulting in an increase in the excitation temperature (i.e. heating of vapour). This has been confirmed by analysing the experimentally observed growth pattern of the curve for excitation temperature with e-beam power. From the observed excitation temperature at low e-beam power when atom-atom collisions can be neglected, the total de-excitation cross section for relaxation of the 620 cm -1 state by interaction with low energy electrons was estimated and was found to be ∼10 -14 cm 2 . Finally using this value of cross section, the extent of excitational cooling and heating by electron-atom and atom-atom collisions are described at higher e-beam powers

  17. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  18. Prospects of HTGR process heat application and role of HTTR

    International Nuclear Information System (INIS)

    Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    At Japan Atomic Energy Research Institute, an effort on development of process heat application with high temperature gas cooled reactor (HTGR) has been continued for providing a future clean alternative to the burning of fossil energy for the production of industrial process heat. The project is named 'HTTR Heat Utilization Project', which includes a demonstration of hydrogen production using the first Japanese HTGR of High Temperature Engineering Test Reactor (HTTR). In the meantime, some countries, such as China, Indonesia, Russia and South Africa are trying to explore the HTGR process heat application for industrial use. One of the key issues for this application is economy. It has been recognized for a long time and still now that the HTGR heat application system is not economically competitive to the current fossil ones, because of the high cost of the HTGR itself. However, the recent movement on the HTGR development, as represented by South Africa Pebble Beds Modular Reactor (SA-PBMR) Project, has revealed that the HTGRs are well economically competitive in electricity production to fossil fuel energy supply under a certain condition. This suggests that the HTGR process heat application will also possibly get economical in the near future. In the present paper, following a brief introduction describing the necessity of the HTGRs for the future process heat application, Japanese activities and prospect of the development on the process heat application with the HTGRs are described in relation with the HTTR Project. In conclusion, the process heat application system with HTGRs is thought technically and economically to be one of the most promising applications to solve the global environmental issues and energy shortage which may happen in the future. However, the commercialization for the hydrogen production system from water, which is the final goal of the HTGR process heat application, must await the technology development to be completed in 2030's at the

  19. Nonstationary Heat Conduction in Atomic Systems

    Science.gov (United States)

    Singh, Amit K.

    Understanding heat at the atomistic level is an interesting exercises. It is fascinating to note how the vibration of atoms result into thermodynamic concept of heat. This thesis aims to bring insights into different constitutive laws of heat conduction. We also develop a framework in which the interaction of thermostats to the system can be studied and a well known Kapitza effect can be reduced. The thesis also explores stochastic and continuum methods to model the latent heat release in the first order transition of ideal silicon surfaces into dimers. We divide the thesis into three works which are connected to each other: 1. Fourier's law leads to a diffusive model of heat transfer in which a thermal signal propagates infinitely fast and the only material parameter is the thermal conductivity. In micro- and nano-scale systems, non-Fourier effects involving coupled diffusion and wavelike propagation of heat can become important. An extension of Fourier's law to account for such effects leads to a Jeffreys-type model for heat transfer with two relaxation times. In this thesis, we first propose a new Thermal Parameter Identification (TPI) method for obtaining the Jeffreys-type thermal parameters from molecular dynamics simulations. The TPI method makes use of a nonlinear regression-based approach for obtaining the coefficients in analytical expressions for cosine and sine-weighted averages of temperature and heat flux over the length of the system. The method is applied to argon nanobeams over a range of temperature and system sizes. The results for thermal conductivity are found to be in good agreement with standard Green-Kubo and direct method calculations. The TPI method is more efficient for systems with high diffusivity and has the advantage, that unlike the direct method, it is free from the influence of thermostats. In addition, the method provides the thermal relaxation times for argon. Using the determined parameters, the Jeffreys-type model is able to

  20. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  1. Optimized Compositional Design and Processing-Fabrication Paths for Larger Heats of Nanostructured Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-02-06

    The objective of this work was to characterize the alloy 14YWT-PM2, which is an extruded and cross-rolled precursor alloy to a large heat of 14YWT being produced using an alternative processing path that incorporates Y during gas atomization process.

  2. Progress and safety aspects in process heat utilization from nuclear systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1995-01-01

    Report about the Status and the Progress in the Various Programs and Projects in the Federal Republic of Germany in Process Heat Utilization from the High Temperature Reactor and on Recent Changes of the Atomic Law in the Federal Republic of Germany with Big Influence on the Safety of Nuclear Energy Technology. (author)

  3. Cascade Processes in Muonic Hydrogen Atoms

    International Nuclear Information System (INIS)

    Faifman, M. P.; Men'Shikov, L. I.

    2001-01-01

    The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated.Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated.

  4. Direct Measurements of Half-Cycle Reaction Heats during Atomic Layer Deposition by Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lownsbury, James M. [Department; Gladden, James A. [Department; Campbell, Charles T. [Department; Department; Kim, In Soo [Materials; Martinson, Alex B. F. [Materials

    2017-10-05

    We introduce a new high-temperature adsorption calorimeter that approaches the ideal limit of a heat detector whereby the signal at any time is proportional to the heat power being delivered to the sample and prove its sensitivity for measuring pulse-to-pulse heats of half-reactions during atomic layer deposition (ALD) at 400 K. The heat dynamics of amorphous Al2O3 growth via sequential self-limiting surface reaction of trimethylaluminum (TMA) and H2O is clearly resolved. Calibration enables quantitation of the exothermic TMA and H2O half-reactions with high precision, -343 kJ/mol TMA and -251 kJ/mol H2O, respectively. A time resolution better than 1 ms is demonstrated, allowing for the deconvolution of at least two distinct surface reactions during TMA microdosing. It is further demonstrated that this method can provide the heat of reaction versus extent of reaction during each precursors half-reaction, thus providing even richer mechanistic information on the surface processes involved. The broad applicability of this novel calorimeter is demonstrated through excellent signal-to-noise ratios of less exothermic ALD half-reactions to produce TiO2 and MnO.

  5. Atomization process for metal powder

    International Nuclear Information System (INIS)

    Lagutkin, Stanislav; Achelis, Lydia; Sheikhaliev, Sheikhali; Uhlenwinkel, Volker; Srivastava, Vikas

    2004-01-01

    A new atomization process has been developed, which combines pressure and gas atomization. The melt leaves the pressure nozzle as a hollow thin film cone. After the pre-filming step, the melt is atomized by a gas stream delivered by a ring nozzle. The objectives of this investigation are to achieve a narrow size distribution and low specific gas consumption compared to conventional gas atomization techniques. Both lead to a higher efficiency and low costs. Tin and some alloys have been atomized successfully with this technique. The mass median diameters from different experiments are between 20 and 100 μm. Sieving analysis of the tin powder shows close particle size distributions

  6. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  7. Atomic processes in matter-antimatter interactions

    International Nuclear Information System (INIS)

    Morgan, D.L.

    1988-01-01

    Atomic processes dominate antiproton stopping in matter at nearly all energies of interest. They significantly influence or determine the antiproton annihilation rate at all energies around or below several MeV. This article reviews what is known about these atomic processes. For stopping above about 10 eV the processes are antiproton-electron collisions, effective at medium keV through high MeV energies, and elastic collisions with atoms and adiabatic ionization of atoms, effective from medium eV through low keB energies. For annihilation above about 10 eV is the enhancement of the antiproton annihilation rate due to the antiproton-nucleus coulomb attraction, effective around and below a few tens of MeV. At about 10 eV and below, the atomic rearrangement/annihilation process determines both the stopping and annihilation rates. Although a fair amount of theoretical and some experimental work relevant to these processes exist, there are a number of energy ranges and material types for which experimental data does not exist and for which the theoretical information is not as well grounded or as accurate as desired. Additional experimental and theoretical work is required for accurate prediction of antiproton stopping and annihilation for energies and material relevant to antiproton experimentation and application

  8. Microstructural features and heat flow analysis of atomized and spray-formed Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1998-01-01

    Microstructural features of rapidly solidified powders and preforms of Al 80 Fe 10 V 4 Si 6 alloy produced by spray forming process have been studied. The atomization and spray deposition were carried out using a confined gas atomization process and the microstructural features were characterized using scanning electron microscopy and transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The microstructure of a wide size range of atomized powders invariably revealed cellular and dendritic morphology. The extent of dendritic region and the dendritic arm spacing were observed to increase with power particle size. The TEM investigations indicated the presence of ultrafine second-phase particles in the intercellular or interdendritic regions. In contrast, the spray deposits of the alloy showed considerable variation in microstructure and size and dispersion of the second-phase particles at specific distances from the deposit-substrate interface and the exterior regions of the deposit. Nevertheless, considerable homogeneity was observed in the microstructure toward the center of the spray deposit. The formation and distribution of a cubic phase α-Al(Fe, V)Si has been characterized in both atomized powders and spray deposits. A one-dimensional heat flow model has been used to analyze the evolution of microstructure during atomization and also during spray deposition processing of this alloy. The results indicate that thermal history of droplets in the spray on deposition surface and their solidification behavior considerably influence the microstructural features of the spray deposits

  9. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  10. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process

    International Nuclear Information System (INIS)

    Zhang, Chenghu; Li, Yaping

    2017-01-01

    Concept of reversible heat exchange process as the theoretical model of the cycle combined heat exchanger could be useful to determine thermodynamics characteristics and the limitation values in the isolated heat exchange system. In this study, the classification of the reversible heat exchange processes is presented, and with the numerical method, medium temperature variation tendency and the useful work production and usage in the whole process are investigated by the construction and solution of the mathematical descriptions. Various values of medium inlet temperatures and heat capacity ratio are considered to analyze the effects of process parameters on the outlet temperature lift/drop. The maximum process work transferred from the Carnot cycle region to the reverse cycle region is also researched. Moreover, influence of the separating point between different sub-processes on temperature variation profile and the process work production are analyzed. In addition, the heat-exchange-enhancement-factor is defined to study the enhancement effect of the application of the idealized process in the isolated heat exchange system, and the variation degree of this factor with process parameters change is obtained. The research results of this paper can be a theoretical guidance to construct the cycle combined heat exchange process in the practical system. - Highlights: • A theoretical model of Cycle combined heat exchange process is proposed. • The classification of reversible heat exchange process are presented. • Effects of Inlet temperatures and heat capacity ratio on process are analyzed. • Process work transmission through the whole process is studied. • Heat-exchange-enhancement-factor can be a criteria to express the application effect of the idealized process.

  11. Design and construction of a heat stage for investigations of samples by atomic force microscopy above ambient temperatures

    DEFF Research Database (Denmark)

    Bækmark, Thomas Rosleff; Bjørnholm, Thomas; Mouritsen, Ole G.

    1997-01-01

    The construction from simple and cheap commercially available parts of a miniature heat stage for the direct heating of samples studied with a commercially available optical-lever-detection atomic force microscope is reported. We demonstrate that by using this heat stage, atomic resolution can...... be obtained on highly oriented pyrolytic graphite at 52 °C. The heat stage is of potential use for the investigation of biological material at physiological temperatures. ©1997 American Institute of Physics....

  12. Nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R [Kernforschungsanlage Juelich G.m.b.H. (F.R. Germany). Inst. fuer Reaktorentwicklung

    1976-05-01

    It is anticipated that the coupled utilization of coal and nuclear energy will achieve great importance in the future, the coal serving mainly as raw material and nuclear energy more as primary energy. Prerequisite for this development is the availability of high-temperature reactors, the state of development of which is described here. Raw materials for coupled use with nuclear process heat are petroleum, natural gas, coal, lignite, and water. Steam reformers heated by nuclear process heat, which are suitable for numerous processes, are expected to find wide application. The article describes several individual methods, all based on the transport of gas in pipelines, which could be utilized for the long distance transport of 'nuclear energy'.

  13. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  14. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  15. Solar Process Heat Basics | NREL

    Science.gov (United States)

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be

  16. Multielectron effects in atomic processes

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.

    1999-01-01

    One demonstrates a prominent role of electron collectivization in atoms and quasi-atomic formations. Paper discusses in detail the approximation of random phases with exchange enabling to take account of these effects. One points out the necessity to go outside the terms of the approximation when studying some processes via combination of the approximation with the theory of disturbances. The results of the recently conducted estimations of cross sections of photoionization of atomic iodine and of its positive and negative ions, Xe + single-electron photoionization, resonance-amplified emission of photons in electron collisions with atoms and quasi-atomic formations, non-dipole corrections to the angular distribution of photoelectrons, probabilities of two electron transitions where the whole amount of energy releases in the form of one photon, illustrate the role of the collective effects [ru

  17. Process heat supply requirements on HTGRs

    International Nuclear Information System (INIS)

    Schad, M.K.

    1989-01-01

    Since it has been claimed that the MHTGR is competitive with coal in producing electricity, the MHTGR must be competitive in producing process heat. There is a huge process heat market and there are quite a number of processes where the industrial MHTGR = HTRI could supply the necessary process heat and energy. However, to enhance its introduction on the market and to conquer a reasonable share of the market, the HTRI should fulfill the following major requirements: Unlimited constant and flexible heat supply, no secondary heat transport system at higher temperatures and low radioactive contamination level of the primary helium. Unlimited constant and flexible heat supply could be achieved with smaller HTRIs having heat generation capacities below 100 MW-th. The process heat generated by smaller HTRIs need not be more expensive since the installed necessary heat supply redundancy is smaller and the excess power density lower. The process heat at elevated temperatures generated by a HTRI with a secondary heat transfer system is much more expensive due to the additional investment and operating cost as well as the reduced helium temperature span available. For some processes, the HTRI is not able to cover the total process heat requirement while other processes can consume only part of the heat offered. These limitations could be reduced by using higher core outlet and inlet temperatures or both. Due to the considerably lower heat transfer rates and the resulting larger heat transfer areas in process plants, the diffusion of nuclear activity at elevated temperatures may increase so that a more efficient helium cleaning system may be required. (author). 5 figs, 3 tabs

  18. Molecular engineering problems in heat and mass transfer

    International Nuclear Information System (INIS)

    Kotake, S.

    1991-01-01

    As for developing, manufacturing and applying new materials of advanced functions such as high-performance devices and high-temperature materials, fundamental understanding of the phenomena from the standpoint of molecular and atomic levels has been required. In these problems, the processes of heat and mass transfer play an important role, being one of the rate-controlling factors. But the energy levels associated with heat and mass transfer are of the orders much less than those of chemical reaction, and it is not easy to understand the thermal problems on the molecular and atomic basis. This paper views the processes of heat and mass transfer from the dynamical motions of atom and molecule for thermal engineering problems. Especially, problems are considered of heat conduction in fine-ceramics, sintered materials of high heat conductivity or high heat-insulation, phase change of condensation in vapor deposition processes such as CVD and PVD, and radiation in laser processing

  19. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  20. The secure heating reactor

    International Nuclear Information System (INIS)

    Pind, C.

    1987-01-01

    The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives for heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories

  1. Cost comparison of very high temperature nuclear reactors for process heat applications

    International Nuclear Information System (INIS)

    Crowley, J.H.; Newman, J.B.

    1975-03-01

    In April 1974, the United States Atomic Energy Commission (USAEC) authorized General Atomic Company, General Electric Company and Westinghouse Astronuclear Laboratory to assess the available technology for producing process heat utilizing very high temperature nuclear reactors. General Electric and Westinghouse produced concepts for the entire nuclear system, including the balance of plant. The General Atomic assessment included only the nuclear reactor portion of the nuclear plant. United Engineers and Constructors Inc. (UE and C) was requested by the USAEC in November 1974 to prepare an economic comparison of the three conceptual plants. The comparison is divided into three tasks: (1) Develop a balance of plant conceptual design to be combined with the General Atomic concept as a basis for comparison, and estimate the cost of the General Atomic/UE and C concept in July 1974 dollars; (2) Normalize the overall plant costs for the General Atomic/UE and C, General Electric and Westinghouse concepts, compare the costs, and identify significant differences between the concepts; and (3) Estimate the operation and maintenance costs for the General Atomic/UE and C plant and compare with the other concepts. The results of these task studies are discussed

  2. Characteristics of plasma in uranium atomic beam produced by electron-beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    The electron temperature of plasma and the ion flux ratio in the uranium atomic beam produced by electron-beam heating were characterized with Langmuir probes. The electron temperature was 0.13 eV, which was lower than the evaporation surface temperature. The ion flux ratio to atomic beam flux was more than 3% at higher evaporation rates. The ion flux ratio has increased with decreasing acceleration energy of the electron-beam under constant electron-beam power. This is because of an increase of electron-beam current and a large ionization cross-section of uranium by electron-impact. It was confined that the plasma is produced by electron-impact ionization of the evaporated atoms at the evaporation source. (author)

  3. Heating and cooling processes in disks*

    Directory of Open Access Journals (Sweden)

    Woitke Peter

    2015-01-01

    Full Text Available This chapter summarises current theoretical concepts and methods to determine the gas temperature structure in protoplanetary disks by balancing all relevant heating and cooling rates. The processes considered are non-LTE line heating/cooling based on the escape probability method, photo-ionisation heating and recombination cooling, free-free heating/cooling, dust thermal accommodation and high-energy heating processes such as X-ray and cosmic ray heating, dust photoelectric and PAH heating, a number of particular follow-up heating processes starting with the UV excitation of H2, and the release of binding energy in exothermal reactions. The resulting thermal structure of protoplanetary disks is described and discussed.

  4. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  5. 1978 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  6. 1979 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  7. 1980 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    1982-02-01

    This annotated bibliography lists 2866 works on atomic and molecular processes reported in publications dated 1980. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors

  8. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  9. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  10. Modeling of Heating During Food Processing

    Science.gov (United States)

    Zheleva, Ivanka; Kamburova, Veselka

    Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.

  11. Multiple-electron processes in fast ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs

  12. Applied atomic collision physics. Vol. 2

    International Nuclear Information System (INIS)

    Barnett, C.F.; Harrison, M.F.A.

    1984-01-01

    This volume brings together papers on atomic processes that have been important in fusion research during the past 30 years. Topics include: Atomic radiation from low density plasma; Properties of magnetically confined plasmas in tokomaks; Diagnostics and; Heating by energetic particles. Each chapter includes references

  13. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  14. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  15. 1982 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  16. Bibliography of atomic and molecular processes, 1983

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  17. 1985 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  18. 1985 bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  19. Bibliography of atomic and molecular processes, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  20. 1984 Bibliography of atomic and molecular processes

    International Nuclear Information System (INIS)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  1. 1982 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  2. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  3. Process optimization of atomized melt deposition for the production of dispersion strengthened Al-8.5%Fe-1.2%V-1.7%Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1995-01-01

    Atomized melt deposition is a low cost manufacturing process with the microstructural control achieved through rapid solidification. In this process the liquid metal is disintegrated into fine droplets by gas atomization and the droplets are deposited on a substrate producing near net shape products. In the present investigation Al-8.5%Fe-1.2%V-1.7%Si alloy was produced using atomized melt deposition process to study the evolution of microstructure and assess the cooling rates and the undercooling achieved during the process. The size, morphology and the composition of second phase particles in the alloy are strong functions of the cooling rate and the undercooling and hence microstructural changes with the variation in process parameters were quantified. To define optimum conditions for the atomized melt deposition process, a mathematical model was developed. The model determines the temperature distribution of the liquid droplets during gas atomization and during the deposition stages. The model predicts the velocity distribution, cooling rates and the fraction solid, during the flight for different droplet sizes. The solidification heat transfer phenomena taking place during the atomized melt deposition process was analyzed using a finite difference method based on the enthalpy formulation

  4. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  5. Plasma heating with multi-MeV neutral atom beams

    International Nuclear Information System (INIS)

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D 0 formed from D - . The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV

  6. Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization

    International Nuclear Information System (INIS)

    Moita, A.S.; Moreira, A.L.N.

    2007-01-01

    This paper addresses an experimental study aimed at characterizing the mechanisms of disintegration which occur when individual water and fuel droplets impact onto heated surfaces. The experiments consider the use of a simplified flow configuration and make use of high-speed visualization together with image processing techniques to characterize the morphology of the impact and to quantify the outcome of secondary atomization in terms of droplet size and number. The results evidence that surface topography, wettability and liquid properties combine in a complex way to alter the wetting behaviour of droplets at impact at different surface temperatures. The relative importance of the dynamic vapor pressure associated with the rate of vaporization and surface roughness increases with surface temperature and becomes dominant at the film boiling regime. The analysis is aimed at giving a phenomenological description of droplet disintegration within the various heat transfer regimes

  7. Concept of APDL, the atomic process description language

    International Nuclear Information System (INIS)

    Sasaki, Akira

    2004-01-01

    The concept of APDL, the Atomic Process Description Language, which provides simple and complete description of atomic model is presented. The syntax to describe electron orbital and configuration is defined for the use in the atomic structure, kinetics and spectral synthesis simulation codes. (author)

  8. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  9. The SILVA atomic process

    International Nuclear Information System (INIS)

    Cazalet, J.

    1997-01-01

    The SILVA laser isotope separation process is based on the laser selective photo-ionization of uranium atomic vapour; the process is presently under development by CEA and COGEMA in France, with the aim to reduce by a factor three the cost of uranium enrichment. The two main components of a SILVA process plant are the lasers (copper vapour lasers and dye lasers) and the separator for the vaporization (with a high energy electron beam), ionization and separation operations. Researches on the SILVA process started in 1985 and the technical and economical feasibility is to be demonstrated in 1997. The progresses of similar rival processes and other processes are discussed and the remaining research stages and themes of the SILVA program are presented

  10. The rates of elementary atomic processes and laser spectroscopy

    International Nuclear Information System (INIS)

    Rudzikas, Z.; Sereapinas, P.; Kaulakys, B.

    1989-01-01

    Laser spectroscopy and physics of the atom are closely interrelated. Spectra are the fundamental characteristics of atoms. Modern atomic spectroscopy deals with the structure and properties of any atom of the periodic table as well as of ions of any ionization degree. Therefore, one has to develop fairly universal and, at the same time, exact methods. In this paper briefly analyze the contemporary status of the theory of many-electron atoms and ions, the peculiarities of their structure and spectra, as well as of the processes of their interaction with radiation, interatomic interaction and of the plasma spectroscopy. The attention mainly is paid to the spectroscopy of multiply charged ions and to the processes with highly excited atoms

  11. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  12. Cascade processes in kaonic and muonic atoms

    International Nuclear Information System (INIS)

    Faifman, M.P.; Men'shikov, L.I.

    2003-01-01

    Cascade processes in exotic (kaonic and muonic) hydrogen/deuterium have been studied with the quantum-classical Monte Carlo code (QCMC) developed for 'ab initio' - calculations. It has been shown that the majority of kaonic hydrogen atoms during cascade are accelerated to high energies E ∼ 100 eV, which leads to a much lower value for the calculated yields Y of x-rays than predicted by the 'standard cascade model'. The modified QCMC scheme has been applied to the study of the cascade in μp and μd muonic atoms. A comparison of the calculated yields for K-series x-rays with experimental data directly indicates that the molecular structure of the hydrogen target and new types of non-radiative transitions are essential for the light muonic atoms, while they are negligible for heavy (kaonic) atoms. These processes have been considered and estimates of their probabilities are presented. (author)

  13. Flexibility analysis of main primary heat transport system : Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rastogi, S.K.

    1975-01-01

    The paper presents flexibility analysis problem of main primary heat transport system and the approximate analysis that has been made to estimate the loads coming on major equipments. The primary heat transport system for Narora Atomic Power Project is adopting vertical steam generators and pumps equally divided on either side of the reactor with inter-connecting pipes and feeders. Since the system is mainly spring supported with movement of a few points in certain direction defined but no anchorage, it represents a good problem for flexibility analysis which can only be solved in one step by developing a good computer programme. (author)

  14. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  15. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  16. 1978 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  17. 1979 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  18. High temperature nuclear process heat systems for chemical processes

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1976-01-01

    The development planning and status of the very high temperature gas cooled reactor as a source of industrial process heat is presented. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system offers a unique combination of the two that is environmentally and economically attractive and technically sound. Conceptual studies of several energy-intensive processes coupled to a nuclear heat source are presented

  19. Safety Philosophy in Process Heat Plants Coupled to High Temperature Reactors

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    With the future availability of fossil fuel resources in doubt, high temperature nuclear reactors have the potential to be an important technology in the near term. Due to a high coolant outlet temperature, high temperature reactors (HTR) can be used to drive chemical plants that directly utilize process heat. Additionally, the high temperature improves the thermodynamic efficiency of the energy utilization. Many applications of high temperature reactors exist as a thermal driving vector for endothermic chemical process plants. Hydrogen generation using the General Atomics (GA) sulfur iodine (SI) cycle is one promising application of high temperature nuclear heat. The main chemical reactions in the SI cycle are: 1. I 2 +SO 2 + 2H 2 O → 2HI + H 2 SO 4 (Bunsen reaction) 2. H 2 SO 4 → H 2 O + SO 2 + 1/2O 2 (Sulfuric acid decomposition) 3. 2HI → H 2 + I 2 (Hydrogen Iodide decomposition). With the exception of hydrogen and oxygen, all relevant reactants are recycled within the process. However, there are many unresolved safety and operational issues related to implementation of such a coupled plant

  20. The SILVA atomic process

    International Nuclear Information System (INIS)

    Cazalet, J.

    1996-01-01

    The SILVA isotopic laser separation process of atomic uranium vapor requires the use of specific high power visible light laser devices and systems for uranium evaporation and management (separation modules). The CEA, in collaboration with industrialists, has developed these components and built some demonstration plants. The scientific and technological challenges raised by this process are now surmounted. The principle of the SILVA process is the selective photo-ionization of uranium isotopes using laser photon beams tuned to the exact excitation frequency of the isotope electron layers. This paper describes the principle of the SILVA process (lasers and separator), the technical feasibility and actual progress of the program and its future steps, its economical stakes, and the results obtained so far. (J.S.). 2 figs., 2 photos

  1. Utilization of an arc-heated jet for production of supersonic seeded beams of atomic nitrogen

    International Nuclear Information System (INIS)

    Bickes, R.W. Jr.; Newton, K.R.; Herrmann, J.M.; Bernstein, R.B.

    1976-01-01

    Intense supersonic beams of atomic nitrogen (>10 17 atoms sr -1 sec -1 ) have been produced from the dissociation of N 2 in an Ar arc (at temperatures in excess of 6000 K) using the arc-heated nozzle beam source of Young, Rodgers, and Knuth. Experiments characterizing the N 2 dissociation and the translational energies of the N, N 2 , and Ar components in the beams are described. Evidence is presented for the formation of atomic C as well as C 2 and CH from the pyrolysis of CH 4 and C 2 H 4 in the Ar arc

  2. Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors

    International Nuclear Information System (INIS)

    Wiggins, D.S.; Williams, J.J.

    1977-04-01

    An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others

  3. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  4. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    Science.gov (United States)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  5. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Directory of Open Access Journals (Sweden)

    Ho-Chiao Chuang

    2014-06-01

    Full Text Available This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments.

  6. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Science.gov (United States)

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  7. Process heat. Triggering the processes

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Eva

    2012-07-01

    If solar process heat is to find a market, then the decision makers in industrial companies need to be aware that it actually exists. This was one of the main goals of the So-Pro project, which officially drew to a close in April 2012. (orig.)

  8. Induction Heating Process Design Using COMSOL Multiphysics Software

    Directory of Open Access Journals (Sweden)

    Andy Triwinarko

    2011-08-01

    Full Text Available Induction heating is clean environmental heating process due to a non-contact heating process. There is lots of the induction heating type that be used in the home appliance but it is still new technology in Indonesia. The main interesting area of the induction heating design is the efficiency of the usage of energy and choice of the plate material. COMSOL Multiphysics Software can be used to simulate and estimate the induction heating process. Therefore, the software can be used to design the induction heating process that will have a optimum efficiency. The properties of the induction heating design were also simulated and analyzed such as effect of inductors width, inductors distance, and conductive plate material. The result was shown that the good design of induction heating must have a short width and distance inductor and used silicon carbide as material plate with high frequency controller.

  9. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  10. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  11. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  12. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  13. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Yasin [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Mehmet Akif Ersoy University, Faculty of Arts & Sciences, Chemistry Department, 15030 Burdur (Turkey); Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Dědina, Jiří, E-mail: dedina@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg{sup −1}. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml{sup −1}, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed.

  14. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  15. Nuclear reactor plant for production process heat

    International Nuclear Information System (INIS)

    Weber, M.

    1979-01-01

    The high temperature reactor is suitable as a heat source for carrying out endothermal chemical processes. A heat exchanger is required for separating the reactor coolant gases and the process medium. The heat of the reactor is transferred at a temperature lower than the process temperature to a secondary gas and is compressed to give the required temperature. The compression energy is obtained from the same reactor. (RW) [de

  16. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  17. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  18. Microwave heating processes involving carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-01-15

    Carbon materials are, in general, very good absorbents of microwaves, i.e., they are easily heated by microwave radiation. This characteristic allows them to be transformed by microwave heating, giving rise to new carbons with tailored properties, to be used as microwave receptors, in order to heat other materials indirectly, or to act as a catalyst and microwave receptor in different heterogeneous reactions. In recent years, the number of processes that combine the use of carbons and microwave heating instead of other methods based on conventional heating has increased. In this paper some of the microwave-assisted processes in which carbon materials are produced, transformed or used in thermal treatments (generally, as microwave absorbers and catalysts) are reviewed and the main achievements of this technique are compared with those obtained by means of conventional (non microwave-assisted) methods in similar conditions. (author)

  19. Relaxation processes during amorphous metal alloys heating

    International Nuclear Information System (INIS)

    Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.

    1982-01-01

    Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes

  20. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  1. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  2. Process heat cogeneration using a high temperature reactor

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Valle, Edmundo del; Castillo, Rogelio

    2014-01-01

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU

  3. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  4. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  5. Manipulating cold atoms for quantum information processing

    International Nuclear Information System (INIS)

    Knight, P.

    2005-01-01

    Full text: I will describe how cold atoms can be manipulated to realize arrays of addressable qbits as prototype quantum registers, focussing on how atom chips can be used in combination with cavity qed techniques to form such an array. I will discuss how the array can be generated and steered using optical lattices and the Mott transition, and describe the sources of noise and how these place limits on the use of such chips in quantum information processing. (author)

  6. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  7. Electromagnetic heating processes: analysis and simulations

    OpenAIRE

    Calay, Rajnish Kaur

    1994-01-01

    Electromagnetic heating (EMH) processes are being increasingly used in the industrial and domestic sectors, yet they receive relatively little attention in the thermal engineering domain. Time-temperature characteristics in EMH are qualitatively different from those in conventional heating techniques due to the additional parameters (viz dielectric properties of the material, size and shape of the product and process frequency). From a unified theory perspective, a multi-...

  8. Irreversibility and Action of the Heat Conduction Process

    Directory of Open Access Journals (Sweden)

    Yu-Chao Hua

    2018-03-01

    Full Text Available Irreversibility (that is, the “one-sidedness” of time of a physical process can be characterized by using Lyapunov functions in the modern theory of stability. In this theoretical framework, entropy and its production rate have been generally regarded as Lyapunov functions in order to measure the irreversibility of various physical processes. In fact, the Lyapunov function is not always unique. In the represent work, a rigorous proof is given that the entransy and its dissipation rate can also serve as Lyapunov functions associated with the irreversibility of the heat conduction process without the conversion between heat and work. In addition, the variation of the entransy dissipation rate can lead to Fourier’s heat conduction law, while the entropy production rate cannot. This shows that the entransy dissipation rate, rather than the entropy production rate, is the unique action for the heat conduction process, and can be used to establish the finite element method for the approximate solution of heat conduction problems and the optimization of heat transfer processes.

  9. Process to produce excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment

  10. Studies on atom deceleration process by using the Zeeman-tuned technique

    International Nuclear Information System (INIS)

    Bagnato, V.S.

    1990-01-01

    The Zeeman-tuned technique to slow an atomic beam of sodium atoms was detailed studied. A new technique to study the deceleration which consists in monitoring the fluorescence along the deceleration path is used. This allows a direct observation of the process and open possibilities to investigate the adiabatic following of atoms in the magnetic field, and others very important aspects of the process. With a single laser and some modification of the magnetic field profile it is possible stop atoms outside the slower solenoid, which make a lot of experiments much simpler. A systematic study of the optical pumping effects and adiabatic following conditions allow to produce a very strong slow motion atomic beam. (author)

  11. Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction

    International Nuclear Information System (INIS)

    Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars

    2014-01-01

    We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form −log ρ; they involve dissipation or mobility terms of order ρ 2 for the linear heat equation, and a nonlinear function of ρ for the nonlinear heat equation

  12. Cold experiment of slag centrifugal granulation by rotary atomizer: Effect of atomizer configuration

    International Nuclear Information System (INIS)

    Wu, Jun-Jun; Wang, Hong; Zhu, Xun; Liao, Qiang; Li, Kai

    2017-01-01

    Centrifugal granulation has recently been employed to produce small blast furnace slag particles, so as to recover the waste heat from the high-temperature molten blast furnace slag. An appropriate atomizer enables centrifugal granulation to become a better cost-effective process for particle production. Thus, increasing emphasis has been placed on influence of atomizer configuration on granulation. In present study, three groups of atomizers were specially designed and the granulation performance of each atomizer was experimentally tested during cold experiments. The influences of atomizer configuration on granulation modes and droplet characteristics were investigated visually. Two modified correlations were proposed to predict the granulating droplet size by means of data fitting. The results indicated that the rotary cup atomizers can inhibit the film formation in contrast to rotary disc atomizer. Moreover, atomizers with outer angle of 90° was capable of producing smaller droplets. The revised correlation as well as the newly-developed correlation including the influence of atomizer configurations, presented in good agreement with the experiment data. In addition, an analysis on atomizer design was conducted to provide a good insight for industrialization. It was recommended to adopt cup-like atomizer in granulation for its ability to produce fine particles with smaller atomizer size.

  13. Radio-frequency heating and neutral atom transport in a fluid-magnetohydrodynamic treatment of burning tokamak plasmas

    International Nuclear Information System (INIS)

    Conn, R.W.; Mau, T.K.; Prinja, A.K.

    1983-01-01

    A physical model for the space and time evolution of the primary parameters of ordinary and burning tokamak plasmas is described by employing a fluid plasma treatment coupled to a magnetohydrodynamic equilibrium description, the solution to the appropriate Maxwell equations, and the solution of the linear transport equation describing neutral atom transport in plasmas. The specific problems of plasma heating by ion cyclotron radiofrequency (ICRF) waves and neutral atom transport in the plasma edge and in complicated geometrical components such as divertor channels or pumped limiter structures are analyzed. A theoretical, onedimensional slab model of ICRF heating at ω = 2ω/SUB cD/ is developed and applied to determine the space-time response of tokamak plasmas. Generally, strong single-pass absorption is found for high-density, high (β) plasmas using a low k 11 spectrum (0.05 to 0.1 cm -1 ) although for (β > 1%, electron Landau damping becomes important. Deterministic and Monte Carlo methods to solve the neutral atom transport problem are described. Specific application to determine the spectrum of neutral atoms emerging from the duct of a pump limiter shows it to be hard (mean energy > 20 eV), indicating very incomplete energy thermalization. Uncertainties are identified in the overall problem of dynamic burning plasma analysis caused by the complexity of the problem itself and by uncertainties in fundamental areas such as plasma transport coefficients, stability, and plasma edge physics

  14. METAL CHIP HEATING PROCESS INVESTIGATION (Part I

    Directory of Open Access Journals (Sweden)

    O. M. Dyakonov

    2007-01-01

    Full Text Available The main calculation methods for heat- and mass transfer in porous heterogeneous medium have been considered. The paper gives an evaluation of the possibility to apply them for calculation of metal chip heating process. It has been shown that a description of transfer processes in a chip has its own specific character that is attributed to difference between thermal and physical properties of chip material and lubricant-coolant components on chip surfaces. It has been determined that the known expressions for effective heat transfer coefficients can be used as basic ones while approaching mutually penetrating continuums. A mathematical description of heat- and mass transfer in chip medium can be considered as a basis of mathematical modeling, numerical solution and parameter optimization of the mentioned processes.

  15. An overview of atomic and molecular processes in critical velocity ionization

    International Nuclear Information System (INIS)

    Lai, S.T.; Murad, E.; McNeil, W.J.

    1989-01-01

    Alfven's critical ionization velocity (CIV) is a multistep process involving plasma physics and plasma chemistry. The authors present an overview of the time development of some atomic and molecular processes in CIV. In the pre-onset stage, metastable states play an important role: They provide an energy pooling mechanism allowing low energy electrons to participate in the ionization processes; they may explain the low energy threshold as well as the fast time scale in the onset of CIV. For a sustaining CIV to occur, Townsend's criterion has to be satisfied. The kinetic energies of the neutrals are transformed to plasma wave energies via beam-plasma instabilities, and the plasma waves that heat the electrons result in a tail formation. Excitation of neutrals with subsequent radiation is an important energy loss mechanism. Finite beam size also limits the instability growth rate. In the propagation of CIV, ion-molecule reactions and molecular dissociative recombination are important. Ion-molecule reactions change the temporal chemical composition in a CIV process and help explain some results in CIV experiments. Molecular dissociative recombination reduces the plasma density, lowers the effective neutral mass, and loses energy via excitation and radiation; it tends to quench the propagation of CIV. Depending on various parameters, oscillatory behavior of CIV may occur

  16. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  17. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  18. Numerical simulation of heat transfer process in automotive brakes

    OpenAIRE

    Gonzalo Voltas, David

    2013-01-01

    This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...

  19. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  20. Atomic Processes in Plasmas: Tenth Topical Conference. Proceedings

    International Nuclear Information System (INIS)

    Osterheld, A.L.; Goldstein, W.H.

    1997-01-01

    These proceedings contain the papers presented at the 10th topical conference on atomic processes in plasmas held in San Francisco, California. This conference series provides a forum for those whose research overlaps atomic and plasma physics. The topics discussed included tokamak plasmas, x-ray sources and x-ray lasers, dense plasmas, laser plasmas, radiative opacity and atomic databases. Among the sponsors of this conference were the Office of Fusion Energy and the Office of Energy Research of the U.S. department of Energy and Lawrence Livermore National Laboratory. There were 30 papers presented and 28 have been abstracted for the Energy Science and Technology database

  1. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  2. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  3. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    International Nuclear Information System (INIS)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J.

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory

  4. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J. (comps.)

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  5. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  6. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Science.gov (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Quantum information processing with atoms and photons

    International Nuclear Information System (INIS)

    Monroe, C.

    2003-01-01

    Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of Schroedinger's cat' from the bottom up. (author)

  8. High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon

    2010-01-01

    PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype

  9. Heat transfer in a thermoacoustic process

    International Nuclear Information System (INIS)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis aimed at determining the stability–instability border of the thermoacoustic system. In this paper, we present a project type of physical examination and modelling task. We employed an electrically heated Rijke tube in our thermoacoustic project work. The aim of our project is to help our students enlarge their knowledge about thermodynamics, mainly about thermoacoustics, and develop their applied information technology and mathematical skills. (paper)

  10. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  11. Analytical models of Ohmic heating and conventional heating in food processing

    Science.gov (United States)

    Serventi, A.; Bozzoli, F.; Rainieri, S.

    2017-11-01

    Ohmic heating is a food processing operation in which an electric current is passed through a food and the electrical resistance of the food causes the electric power to be transformed directly into heat. The heat is not delivered through a surface as in conventional heat exchangers but it is internally generated by Joule effect. Therefore, no temperature gradient is required and it origins quicker and more uniform heating within the food. On the other hand, it is associated with high energy costs and its use is limited to a particular range of food products with an appropriate electrical conductivity. Sterilization of foods by Ohmic heating has gained growing interest in the last few years. The aim of this study is to evaluate the benefits of Ohmic heating with respect to conventional heat exchangers under uniform wall temperature, a condition that is often present in industrial plants. This comparison is carried out by means of analytical models. The two different heating conditions are simulated under typical circumstances for the food industry. Particular attention is paid to the uniformity of the heat treatment and to the heating section length required in the two different conditions.

  12. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  13. Slowpoke - a new Canadian heat source

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Lynch, G.F.; Ohta, M.M.

    1987-07-01

    Atomic Energy of Canada Limited now has a new product, the SLOWPOKE Energy System, that provides low temperature heat suitable for building and process heating. The SLOWPOKE Energy System is sized to deliver up to 10 megawatts of hot water at up to 90 degrees C, appropriate for large buildings and industrial processes. It is designed for operation without the full-time attendance of dedicated staff and, because of its inherent safety, for siting close to users. At less than 2 cents/kWh, the heat is competitive with oil, gas and electricity in most regions of Canada and the world

  14. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  15. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  16. Molecular dynamics simulation study of the influence of the lattice atom potential function upon atom ejection processes

    International Nuclear Information System (INIS)

    Harrison, D.E. Jr.; Webb, R.P.

    1982-01-01

    A molecular dynamics simulation has been used to investigate the sensitivity of atom ejection processes from a single-crystal target to changes in the atom-atom potential function. Four functions, three constructed from the Gibson potentials with Anderman's attractive well, and a fouth specifically developed for this investigation, were investigated in the Cu/Ar/sup +/ system over a range of ion energies from 1.0 to 10.0 kev with the KSE-B ion-atom potential. Well depths and widths also were varied. The calculations were done at normal incidence on the fcc (111) crystal orientation. Computed values were compared with experimental data where they exist. Sputtering yields, multimer yield ratios, layer yield ratios, and the ejected atom energy distribution vary systematically with the parameters of the atom-atom potential function. Calculations also were done with the modified Moliere function. Yields and other properties fall exactly into the positions predicted from the Born-Mayer function analysis. Simultaneous analysis of the ejected atom energy distribution and the ion energy dependence of the sputtering yield curve provides information about the parameters of both the wall and well portions of the atom-atom potential function

  17. Atomic processes and application in honour of David R. Bates' 60th birthday

    CERN Document Server

    Burke, P G

    2013-01-01

    Atomic Processes and Applications is a collection of review articles that discusses major atomic and molecular processes and their applications to upper atmospheric physics and to astrophysics. The book also serves as a 60th birthday tribute to Dr. David R. Bates. The coverage of the text includes the overview of stratospheric aeronomy; upper atmosphere of the earth; and problems in atmospheric pollution. The book also deals with technical and highly specialized issues including photoionization of atomic systems; atomic structure and oscillator strengths; and atomic scattering computations. Th

  18. Energy considerations in spraying process of a spill-return pressure-swirl atomizer

    International Nuclear Information System (INIS)

    Jedelsky, Jan; Jicha, Miroslav

    2014-01-01

    Graphical abstract: - Highlights: • We analyse energy conversion in simplex and spill-return pressure-swirl atomizer. • Inlet (pressure) energy converts into liquid motion with nozzle efficiency ∼58%. • Kinetic energy of developed spray at closed spill line is ∼33% of the inlet energy. • It consists of energy of droplets (∼2/3) and entrained air (1/3). • Atomization efficiency is <0.3%; it declines with inlet pressure and spill opening. - Abstract: The work focuses on energy conversion during the internal flow, discharge and formation of the spray from a pressure-swirl (PS) atomizer in the simplex as well as spill-return mode. Individual energy forms are described in general and assessed experimentally for a particular PS atomizer and light heating oil as a medium. The PS spray was observed at various loads to investigate the liquid breakup process and the spray characteristics. Spatially resolved diameters and droplet velocities, measured by means of phase-Doppler anemometry, served for estimation of the energy characteristics in the PS spray. The input energy given by the potential energy of the supplied liquid partially converts into the kinetic energy (KE) in the swirling ports with hydraulic loss in per cent scale. Most of the pressure drop is associated with rotational motion in the swirl chamber with total conversion efficiency at the exit orifice ∼58%. The rest of the input energy ends up as friction loss, leaving room for improvement. The overall value (ID 32 ) of the Sauter mean diameter of droplets in the spray, D 32 , varies with pressure drop Δp l powered to −0.1. The radial profiles of D 32 widen with the increase in spill/feed ratio (SFR), but the ID 32 remain almost constant within the studied SFR range. The spray KE at closed spill line covers the droplet KE (21–26%) and that of entrained air (10–13%), both moderately varying with Δp l . The specific KEs of both the liquid and air markedly drop down with the spill line

  19. Technical review of process heat applications using the HTGR

    International Nuclear Information System (INIS)

    Brierley, G.

    1976-06-01

    The demand for process heat applications is surveyed. Those applications which can be served only by the high temperature gas-cooled reactor (HTGR) are identified and the status of process heat applications in Europe, USA, and Japan in December 1975 is discussed. Technical problems associated with the HTGR for process heat applications are outlined together with an appraisal of the safety considerations involved. (author)

  20. Advanced statistics to improve the physical interpretation of atomization processes

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Radu, Lucian

    2013-01-01

    Highlights: ► Finite pdf mixtures improves physical interpretation of sprays. ► Bayesian approach using MCMC algorithm is used to find the best finite mixture. ► Statistical method identifies multiple droplet clusters in a spray. ► Multiple drop clusters eventually associated with multiple atomization mechanisms. ► Spray described by drop size distribution and not only its moments. -- Abstract: This paper reports an analysis of the physics of atomization processes using advanced statistical tools. Namely, finite mixtures of probability density functions, which best fitting is found using a Bayesian approach based on a Markov chain Monte Carlo (MCMC) algorithm. This approach takes into account eventual multimodality and heterogeneities in drop size distributions. Therefore, it provides information about the complete probability density function of multimodal drop size distributions and allows the identification of subgroups in the heterogeneous data. This allows improving the physical interpretation of atomization processes. Moreover, it also overcomes the limitations induced by analyzing the spray droplets characteristics through moments alone, particularly, the hindering of different natures of droplet formation. Finally, the method is applied to physically interpret a case-study based on multijet atomization processes

  1. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  2. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Ataman, O. Yavuz

    2008-01-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C 0 , where the change in characteristic mass, m 0 , can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E max , maximum enhancement factor; E t , enhancement for 1.0 minute sampling and E v , enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  3. Hybrid Quantum Information Processing with Superconductors and Neutral Atoms

    Science.gov (United States)

    McDermott, Robert

    Hybrid approaches to quantum information processing (QIP) aim to capitalize on the strengths of disparate quantum technologies to realize a system whose capabilities exceed those of any single experimental platform. At the University of Wisconsin, we are working toward integration of a fast superconducting quantum processor with a stable, long-lived quantum memory based on trapped neutral atoms. Here we describe the development of a quantum interface between superconducting thin-film cavity circuits and trapped Rydberg atoms, the key technological obstacle to realization of superconductor-atom hybrid QIP. Specific accomplishments to date include development of a theoretical protocol for high-fidelity state transfer between the atom and the cavity; fabrication and characterization of high- Q superconducting cavities with integrated trapping electrodes to enhance zero-point microwave fields at a location remote from the chip surface; and trapping and Rydberg excitation of single atoms within 1 mm of the cavity. We discuss the status of experiments to probe the strong coherent coupling of single Rydberg atoms and the superconducting cavity. Supported by ARO under contract W911NF-16-1-0133.

  4. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  5. Process for adapting a heat source and a thermal machine by temporary heat storage

    International Nuclear Information System (INIS)

    Cahn, R.P.; Nicholson, E.W.

    1975-01-01

    The process described is intended to ensure the efficient use of the heat from a nuclear reactor or from a furnace burning fossil fuel at constant power, and of a boiler in a power station comprising a multi-stage steam turbine, the steam extracted from the turbine being used for pre-heating the boiler feed water. This process is most flexible with a varying load. It includes the high temperature storage of the excess heat energy in a low vapor pressure storage liquid (hydrocarbon oils, molten salts or liquid metals) at atmospheric pressure when the demand is low; then, when the energy demand is at its height, the reduction of steam extraction from the turbine with simultaneous utilisation of the hot heat storage liquid for the various maintenance heating functions of the power station by heat exchange, so that the heat can expand totally in the turbine with generation of energy [fr

  6. HTGR process heat program design and analysis. Semiannual progress report, October 1, 1979-March 28, 1980

    International Nuclear Information System (INIS)

    1980-10-01

    This report summarizes the results of concept design studies implemented at General Atomic Company (GA) during the first half of FY-80. The studies relate to a plant design for an 842-MW(t) High-Temperature Gas-Cooled Reactor utilizing an intermediate helium heat transfer loop to provide high temperature thermal energy for the production of hydrogen or synthesis gas (H 2 + CO) by steam-reforming a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. Work tasks conducted during this period included the 842-MW(t) plant concept design and cost estimate for an 850 0 C reactor outlet temperature. An assessment of the main-loop cooling shutdown system is reported. Major component cost models were prepared and programmed into the Process Heat Reactor Evaluation and Design (PHRED) code

  7. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  8. Atomic-process cross section data, 1

    International Nuclear Information System (INIS)

    1974-12-01

    Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)

  9. Improvements of reforming performance of a nuclear heated steam reforming process

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1996-10-01

    Performance of an energy production process by utilizing high temperature nuclear process heat was not competitive to that by utilizing non-nuclear process heat, especially fossil-fired process heat due to its less favorable chemical reaction conditions. Less favorable conditions are because a temperature of the nuclear generated heat is around 950degC and the heat transferring fluid is the helium gas pressurized at around 4 MPa. Improvements of reforming performance of nuclear heated steam reforming process were proposed in the present report. The steam reforming process, one of hydrogen production processes, has the possibility to be industrialized as a nuclear heated process as early as expected, and technical solutions to resolve issues for coupling an HTGR with the steam reforming system are applicable to other nuclear-heated hydrogen production systems. The improvements are as follows: As for the steam reformer, (1) increase in heat input to process gas by applying a bayonet type of reformer tubes and so on, (2) increase in reforming temperature by enhancing heat transfer rate by the use of combined promoters of orifice baffles, cylindrical thermal radiation pipes and other proposal, and (3) increase in conversion rate of methane to hydrogen by optimizing chemical compositions of feed process gas. Regarding system arrangement, a steam generator and superheater are set in the helium loop as downstream coolers of the steam reformer, so as to effectively utilize the residual nuclear heat for generating feed steam. The improvements are estimated to achieve the hydrogen production rate of approximately 3800 STP-m 3 /h for the heat source of 10 MW and therefore will provide the potential competitiveness to a fossil-fired steam reforming process. Those improvements also provide the compactness of reformer tubes, giving the applicability of seamless tubes. (J.P.N.)

  10. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  11. HTR's role in process heat applications

    International Nuclear Information System (INIS)

    Kuhr, Reiner

    2008-01-01

    Advanced high-temperature nuclear reactors create a number of new opportunities for nuclear process heat applications. These opportunities are based on the high-temperature heat available, smaller reactor sizes, and enhanced safety features that allow siting close to process plants. Major sources of value include the displacement of premium fuels and the elimination of CO 2 emissions from combustion of conventional fuels and their use to produce hydrogen. High value applications include steam production and cogeneration, steam methane reforming, and water splitting. Market entry by advanced high-temperature reactor technology is challenged by the evolution of nuclear licensing requirements in countries targeted for early applications, by the development of a customer base not familiar with nuclear technology and related issues, by convergence of oil industry and nuclear industry risk management, by development of public and government policy support, by resolution of nuclear waste and proliferation concerns, and by the development of new business entities and business models to support commercialization. New HTR designs may see a larger opportunity in process heat niche applications than in power given competition from larger advanced light water reactors. Technology development is required in many areas to enable these new applications, including the commercialization of new heat exchangers capable of operating at high temperatures and pressures, convective process reactors and suitable catalysts, water splitting system and component designs, and other process-side requirements. Key forces that will shape these markets include future fuel availability and pricing, implementation and monetization of CO 2 emission limits, and the formation of international energy and environmental policy that will support initiatives to provide the nuclear licensing frameworks and risk distribution needed to support private investment. This paper was developed based on a plenary

  12. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  13. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  14. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Canning with heat processing and hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Inspection Procedure § 355.25 Canning with heat...

  15. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C{sub 0}, where the change in characteristic mass, m{sub 0}, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E{sub max}, maximum enhancement factor; E{sub t}, enhancement for 1.0 minute sampling and E{sub v}, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  16. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  17. High-temperature process heat applications with an HTGR

    International Nuclear Information System (INIS)

    Quade, R.N.; Vrable, D.L.

    1980-04-01

    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  18. Laboratory Exercise for Studying the Morphology of Heat-Denatured and Amyloid Aggregates of Lysozyme by Atomic Force Microscopy

    Science.gov (United States)

    Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna

    2018-01-01

    To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…

  19. Recent trends and developments in infrared heating in food processing.

    Science.gov (United States)

    Rastogi, Navin K

    2012-01-01

    Fruit processing and preservation technologies must keep fresh-like characteristics while providing an acceptable and convenient shelf life as well as assuring safety and nutritional value. Processing technologies include a wide range of methodologies to inactivate microorganisms, improve quality and stability, and preserve and minimize changes of fruit fresh-like characteristics. Infrared (IR) heating offers many advantages over conventional heating under similar conditions, which include reduced heating time, uniform heating, reduced quality losses, versatile, simple and compact equipment, and significant energy saving. The integration of IR with other matured processing operations such as blanching, dehydration, freeze-dehydration, thawing, roasting, baking, cooking has been shown to open up new processing options. Combinations of IR heating with microwave heating and other common conductive and convective modes of heating have been gaining momentum because of increased energy throughput. A number of publications and patents have demonstrated novel and diverse uses of this technology. This review aims at identifying the opportunities and challenges associated with this technology. The effect of IR on food quality attributes is also discussed. The types of equipment commonly used for IR processing have also been summarized.

  20. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    International Nuclear Information System (INIS)

    Mihajlov, A A; Ignjatovic, Lj M; Djuric, Z; Ljepojevic, N N

    2004-01-01

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T a , and electronic, T e , temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree ∼ -4 ), and therefore have to be included in appropriate models of such plasmas

  1. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  2. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    Aghajani-Talesh, Anoush

    2014-01-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  3. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  4. A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production

    International Nuclear Information System (INIS)

    Shin, Jae Sun; Cho, Sung Jin; Choi, Suk Hoon; Qasim, Faraz; Lee, Euy Soo; Park, Sang Jin; Lee, Heung N.; Park, Jae Ho; Lee, Won Jae

    2014-01-01

    SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions

  5. Characterization for coating processes of imidazole powders using an ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Sik; Kim, Jun Ki [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Kim, Mok Soon [Inha University, Incheon (Korea, Republic of); Lee, Jong Hyun [Seoul National University, Seoul (Korea, Republic of)

    2010-01-15

    Imidazole-curing accelerator powders were coated with stearic acid to increase the pot life of anisotropic conductive adhesive (ACA) formulations. To accomplish an efficient coating process, the coating was tested using an ultrasonic atomizer after mixing imidazole powders with a molten coating agent. Design of experiments analysis was organized to elucidate the effect of process parameters and to determine the most crucial parameter. The final formulation incorporating well-processed imidazole loaded powders indicated longer pot life, higher shear strength, and excellent highly accelerated stress test (HAST) reliability. Results show that the coating process using an ultrasonic atomizer is effective in increasing the pot life of ACA formulations

  6. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Glassgold, A. E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.

  7. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  8. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  9. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; McKellar, Michael; Anderson, Nolan

    2011-01-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  10. HTR process heat applications, status of technology and economical potential

    International Nuclear Information System (INIS)

    Barnet, H.

    1997-01-01

    The technical and industrial feasibility of the production of high temperature heat from nuclear fuel is presented. The technical feasibility of high temperature heat consuming processes is reviewed and assessed. The conclusion is drawn that the next technological step for pilot plant scale demonstration is the nuclear heated steam reforming process. The economical potential of HTR process heat applications is reviewed: It is directly coupled to the economical competitiveness of HTR electricity production. Recently made statements and pre-conditions on the economic competitiveness in comparison to world market coal are reported. (author). 8 figs

  11. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding at different process parameters

    Science.gov (United States)

    Konovalenko S., Iv.; Psakhie, S. G.

    2017-12-01

    Using the molecular dynamics method, we simulated the atomic scale butt friction stir welding on two crystallites and varied the onset FSW tool plunge depth. The effects of the plunge depth value on the thermomechanical evolution of nanosized crystallites and mass transfer in the course of FSW have been studied. The increase of plunge depth values resulted in more intense heating and reducing the plasticized metal resistance to the tool movement. The mass transfer intensity was hardly dependent on the plunge depth value. The plunge depth was recommended to be used as a FSW process control parameter in addition to the commonly used ones.

  12. Dynamical interaction of He atoms with metal surfaces: Charge transfer processes

    International Nuclear Information System (INIS)

    Flores, F.; Garcia Vidal, F.J.; Monreal, R.

    1993-01-01

    A self-consistent Kohn-Sham LCAO method is presented to calculate the charge transfer processes between a He * -atom and metal surfaces. Intra-atomic correlation effects are taken into account by considering independently each single He-orbital and by combining the different charge transfer processes into a set of dynamical rate equations for the different ion charge fractions. Our discussion reproduces qualitatively the experimental evidence and gives strong support to the method presented here. (author). 24 refs, 4 figs

  13. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  14. Atomic and molecular collision processes

    International Nuclear Information System (INIS)

    Norcross, D.W.

    1991-01-01

    530Accomplishments during the course of a 44-month program of code development and high precision calculations for electron collisions with atoms, atomic ions, and molecules are summarized. In electron-atom and -ion collisions, we were primarily concerned with the fundamental physics of the process that controls excitation in high temperature plasmas. In the molecular work, we pursued the development of techniques for accurate calculations of ro-vibrational excitation of polyatomic molecules, to the modeling of gas-phase laser systems. Highlights from the seven technical paper published as a result of this contract include: The resolution of a long history of unexplained anomalies and experimental/theoretical discrepancies by a demonstration that the Coulomb phase must be included in scattering amplitudes for electron-ion collisions. Definitive close-coupling calculations of cross sections for electron impact excitation of Be + , using a very elaborate expansion for the collision system and inclusion of both one- and two-body terms for the effect of core polarization. Detailed state-of-the-art calculations for electron-impact excitation of the sodium-like ion A ell 2+ that included core-polarization interactions, and which also produced new data on bound-state energy levels for the magnesium-like ion A ell + and oscillator strengths for A ell 2+ . Partial cross sections for excitation of the 3p level of sodium at energies just above threshold calculated using a four-state close-coupling approach, including both total cross sections and those for excitation as a function of the change in the spin and orbital angular momentum projection quantum numbers of the target electron. Generalization of our electron-molecule scattering code to carry out full vibrational close-coupling calculations with an exact treatment of exchange and with a parameter-free representation of correlation and polarization interactions, and application to HF and H 2

  15. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  16. Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. Q.; Cao, C. R.; Sun, Y. T.; Li, J.; Bai, H. Y.; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-01-07

    Till date, there have been no direct atomic-level experimental observations of the earliest stages of the nucleation and growth processes of nanocrystals formed by thermally induced crystallization in ultrathin metallic glasses (MGs). Here, we present a study of the crystallization process in atomically thin and highly stable MG films using double spherical aberration-corrected scanning transmission electron microscopy (Cs-TEM). Taking advantage of the stability of MG films with a slow crystallization process and the atomic-level high resolution of Cs-TEM, we observe the formation of the nucleus precursor of nanocrystals formed by atom aggregation followed by concomitant coalescence and stepwise evolution of the shape of the nanocrystals with a monodispersed and separated bimodal size distribution. Molecular dynamics simulation of the atomic motion in the glass film on a rigid amorphous substrate confirms the stepwise evolution processes of atom aggregation, cluster formation, cluster movement on the substrate, and cluster coalescence into larger crystalline particles. Our results might provide a better fundamental understanding of the nucleation and growth processes of nanocrystals in thin MG films.

  17. Physics. Examples and problems. Mechanics, heat, electricity and magnetism, oscillations and waves, atomic and nuclear physics

    International Nuclear Information System (INIS)

    Stroppe, Heribert; Streitenberger, Peter; Specht, Eckard; Zeitler, Juergen; Langer, Heinz

    2017-01-01

    The present book is the unification of the proved problem collections for the basic physical training of studyings of especially engineering courses at technical colleges and universities. The book contains - didactically prepared and structured in the style of a textbook as well as with increasing difficulty - a total of 960 exemplary and additional tasks from the fields mechanics, heat, electricity and magnetism, oscillations and waves, as well as atomic and nuclear physics. For the exemplary problems the whole solution path and the complete calculation process with explanation of the relevant physical laws are extensively presented, for the additional problems for the self-control only the solutions and, if necessary, intermediate calculations are given. The examples and problems with mostly practice-oriented content are selected in such a way that they largely cover the matter treated in courses and exercises and make by their didactical preparation an effective repetition and optimal examination-preparation possible.

  18. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  19. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J

    2003-01-01

    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  20. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab., Ames, IA (United States); Siemon, John [Alcoa Inc., Pittsburgh, PA (United States)

    2017-06-30

    The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pour tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.

  1. Industrial process heat market assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  2. Industrial process heat market assessment

    International Nuclear Information System (INIS)

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve

  3. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  4. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Djuric, Z [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom); Ljepojevic, N N [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2004-11-28

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T{sub a}, and electronic, T{sub e}, temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree {approx}<10{sup -4}), and therefore have to be included in appropriate models of such plasmas.

  5. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  6. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  7. Substrate heating and cooling during magnetron sputtering of copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, Viktor I.; Komlev, Andrey E.; Bondarenko, Anastasia S., E-mail: stopnastia@gmail.com; Baykov, Pavel B.; Karzin, Vitaliy V.

    2016-02-22

    Heating and cooling processes of the substrate during the DC magnetron sputtering of the copper target were investigated. The sensitive element of a thermocouple was used as a substrate. It was found, that the heat outflow rate from the substrate is lower when the magnetron is turned off rather than when it is turned on. Furthermore, the heating rate, the ultimate temperature, and the heat outflow rate related to the deposition of copper atoms are directly proportional to the discharge current density. - Highlights: • New effect of heat outflow from substrate when magnetron is on was discovered. • This new effect is linear in terms of heat outflow rate to target current ratio. • Kinetic equation for heating process additively considers this effect.

  8. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    Science.gov (United States)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  9. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  10. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  11. Mechanism of yttrium atom formation in electrothermal atomization from metallic and metal-carbide surfaces of a heated graphite atomizer in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wahab, H.S.; Chakrabarti, C.L.

    1981-01-01

    Mechanism of Y atom formation from pyrocoated graphite, tantalum and tungsten metal surfaces of a graphite tube atomizer has been studied and a mechanism for the formation for Y atoms is proposed for the first time. (author)

  12. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  13. Cooling atoms with extraresonant stimulated emission below the Doppler limit

    International Nuclear Information System (INIS)

    Shevy, Y.

    1989-01-01

    The process of cooling atoms with radiation pressure is well understood in terms of absorption and spontaneous emission of fluorescence photons. This process imposes a lower limit on the minimum equilibrium temperature of laser cooled two level atoms of K b T = ℎΓ 21 /2 (the Doppler limit), where Γ 21 is the excited state decay rate to the ground state. At high laser intensity, it has been demonstrated that the stimulated emission process changes the sign of the force to a heating force at the red side of the atomic resonance and to a cooling force at blue detunings. Although this stimulated force is more efficient than the radiation pressure force, it has been generally accepted that this force cannot lead to lower equilibrium temperatures due to the large heating caused by diffusion of momentum at high intensity. These conclusions are valid only when the sole damping mechanism is the excited state decay to the ground state by spontaneous emission. However, when the atomic system is opened, i.e., is allowed to decay to other levels, or the dipole decay rate is altered by dephasing events, the stimulated force is dramatically modified. Under this conditions the stimulated force can occur at lower laser intensity and can even reverse sign to provide damping at the red side of resonance. These phenomena originate from extraresonances in the stimulated emission process between the two counterpropagating waves. These resonances appear as a dispersive feature in pump probe spectra (Two Wave Mixing) and are closely related to the extraresonances in four wave mixing studied originally by Bloembergen and co-workers. This paper establishes this connection and the potential of these phenomena for laser cooling. The implications of these results to the recently observed ultra-cold Na and Cs atoms are also discussed

  14. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  15. Numerical simulation of electron behavior and beam heating on a material surface

    International Nuclear Information System (INIS)

    Shioda, K.; Hashidate, Y.; Kumagai, M.

    1991-01-01

    A method of numerical analysis is investigated for the manufacturing processes employing electron beam heating, such as hardening, cutting, and welding. High-energy electrons (10 ∼ 50 keV) impinge upon the surface of a material and diffuse by multiple elastic/nonelastic scattering caused by atoms. Although the electron collisions with atomic nuclei can be treated approximately as elastic, collisions with orbital electrons of atoms are nonelastic. Fast electrons are decelerated in the course of atomic excitation or X-ray radiation, transferring their kinetic energy to the lattice system as thermal energy. In this paper, the difference between the heat-generating density and the electron density is clarified numerically, as well as the penetration depth and the reflection ratio of the electron beam. Calculated results for these quantities show good agreement with the referenced data. In addition, the difference between the penetration depth of the electrons and that of the heat, which has never been discussed in detail before, is clarified

  16. Atomic force microscopy and Raman scattering spectroscopy studies on heat-induced fibrous aggregates of β-lactoglobulin

    OpenAIRE

    Ikeda, Shinya

    2003-01-01

    Nanometer-thick fibrous aggregates of β-lactoglobulin alone and its mixture with other globular proteins were formed by heating aqueous solutions at pH 2 with maintaining an effective level of electrostatic repulsion among denatured protein molecules. In atomic force microscopy (AFM) images, these fibrous aggregates appeared to be fairly uniform in width and height and composed of strings of globular elements. Fibrous aggregates formed in β-lactoglobulin individual systems were only slightly ...

  17. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  18. Proceedings of the solar industrial process heat symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

  19. Gasification of coal making use of nuclear processing heat

    International Nuclear Information System (INIS)

    Schilling, H.D.; Bonn, B.; Krauss, U.

    1981-01-01

    In the chapter 'Gasification of coal making use of nuclear processing heat', the steam gasification of brown coal and bituminous coal, the hydrogenating gasification of brown coal including nuclear process heat either by steam cracking methane in the steam reformer or by preheating the gasifying agent, as well as the hydrogenating gasification of bituminous coal are described. (HS) [de

  20. High-temperature industrial process heat: technology assessment and introduction rationale

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-03

    Three specific topics of interest to DOE are addressed: to establish the significance and identify the role of high-temperature process heat in the nation's energy economy; to identify the role of solar thermal power in these high-temperature industrial applications in terms of possible markets and economic potential; and to recommend programmatic approaches for these solar thermal high-temperature process heat activities, including proposed content for initial Request for Proposals (RFPs) to accomplish such activities. The scope of the work required to accomplish these three purposes included the following: review of US industrial energy requirements, survey of current DOE low-temperature Agricultural and Industrial Process Heat Program, examination of high-temperature solar thermal electric systems already developed or under development by DOE and industry, and coordination with the high-energy user segments of industry (i.e., cement, chemical and petroleum) to find additional markets for some or all of the systems or components being developed in the DOE solar thermal electric program. Statistical data are presented identifying energy allocations to process heat and defining DOE's involvement. Three current fossil fuel process heat system examples are provided and the corresponding solar potential is identified.

  1. Mini-channel heat exchangers for industrial distillation processes

    NARCIS (Netherlands)

    Van de Bor, D.M.

    2014-01-01

    In this thesis the technical and economic performance of compression-resorption heat pumps has been investigated. The main objective of this thesis was to improve the performance and reduce the investment costs of compression-resorption heat pumps applied in process industry. A model that is able to

  2. Multipurpose nuclear process heat for energy supply in Brazil

    International Nuclear Information System (INIS)

    Hansen, U.; Inden, P.; Oesterwind, D.; Hukai, R.Y.; Pessine, R.T.; Pieroni, R.R.; Visoni, E.

    1978-11-01

    The industrialized nations require 75% of the energy as heat and it is likely that developing countries in the course of industrialization will show a comparable energy consumption structure. The High Temperature Reactor (HTR) allows the utilization of nuclear energy at high temperatures as process heat. In the Federal Republic of Germany (FRG) the development in the relevant technical areas is well advanced and warrants investigation as a matter for transfer to Brazil. In Brazil nuclear process heat finds possible applications in steel making, shale oil extraction, petroleum refining, and in the more distant future coal gasification with distribution networks. Based on growth forecasts for these industries a theoretical potential market of 38-53 GW (th) can be identified. At present nuclear process heat is marginally more expensive than conventional fossil technologies but the anticipated development is expected to add an economic incentive to the emerging necessity of providing a sound energy base in the developing countries. (author)

  3. High temperature reactor and application to nuclear process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schulten, R; Kugeler, K [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1976-01-01

    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained.

  4. Heat and work integration: Fundamental insights and applications to carbon dioxide capture processes

    International Nuclear Information System (INIS)

    Fu, Chao; Gundersen, Truls

    2016-01-01

    Highlights: • The problem definition of heat and work integration is introduced. • The fundamental insights of heat and work integration are presented. • The design methodology is illustrated with two small test examples. • Applications of to three carbon dioxide capture processes are presented. - Abstract: The integration of heat has achieved a notable success in the past decades. Pinch Analysis is a well-established methodology for heat integration. Work is an equally important thermodynamic parameter. The enthalpy of a process stream can be changed by the transfer of heat and/or work. Heat and work are actually interchangeable and can thus be integrated. For example, compression processes consume more work at higher temperatures, however, the compression heat may be upgraded and utilized; expansion processes produce more work at higher temperatures, however, more heat may be required. The classical heat integration problem is thus extended to a new research topic about the integration of both heat and work. The aim of this paper is to present the problem definition, fundamental thermodynamic insights and industrial applications of heat and work integration. The results from studies on the three carbon dioxide capture processes show that significant energy savings can be achieved by proper heat and work integration. In the oxy-combustion process, the work consumption for cryogenic air separation is reduced by 10.1%. In the post-combustion membrane separation process, the specific work consumption for carbon dioxide separation is reduced by 12.9%. In the membrane air separation process, the net work consumption (excluding heat consumption) is reduced by 90%.

  5. Cogeneration using a nuclear reactor to generate process heat

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon

    2009-01-01

    Some of the new nuclear reactor technologies (Generation III+) are claiming the production of process heat as an additional value to electricity generation. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product. The current study assess the likeliness of generate process heat from a Pebble Bed Modular Reactor to be used for a refinery showing different plant balance and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor and also the challenges that this option has. (author)

  6. Solar process heat is becoming sexy

    Energy Technology Data Exchange (ETDEWEB)

    Morhart, Alexander

    2011-07-01

    Linear concentrating solar collectors for solar medium-temperature process heat: an exotic niche market has turned into a wide range of offers for commercial and private customers - and there is no end in sight to the technical developments. (orig.)

  7. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    Science.gov (United States)

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  8. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  9. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    Science.gov (United States)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  10. The low-temperature water-water reactor for district heating atomic power plant (DHPP)

    International Nuclear Information System (INIS)

    Skvortsov, S.A.; Sokolov, I.N.; Krauze, L.V.; Nikiporetz, Yu.G.; Philimonov, Yu.V.

    1977-01-01

    The district heating atomic power plant in the article is distinguished by the increased reliability and safety of operation that was provided by the use of following main principles: relatively low parameters of the coolant; the intergral arrangement of equipment and accordingly the minimum branching of the reactor circuit; the natural circulation of coolant of the primary circuit in the steady-state, transient and emergency regimes of reactor operation; the considerable reserves of cold water of the primary circuit in the reactor vessel, providing the emergency cooling; the application of two shells each of which is designed for the total working pressure, the second shell is made of prestressed reinforced concrete that eliminates its brittle failure. (M.S.)

  11. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  12. Quantum interference between two phonon paths and reduced heat transport in diamond lattice with atomic-scale planar defects

    Science.gov (United States)

    Kosevich, Yu. A.; Strelnikov, I. A.

    2018-02-01

    Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.

  13. Heat-pipe liquid-pool-blanket concept for the Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Johnson, G.L.

    1981-01-01

    The blanket concept for the tandem mirror reactor described in this paper was developed to produce the medium temperature heat (approx. 850 to 950 K) for the General Atomic sulfur-iodine thermochemical process for producing hydrogen. This medium temperature heat from the blanket constitutes about 81% of the total power output of the fusion reactor

  14. Survey of atomic and molecular data needs for fusion

    International Nuclear Information System (INIS)

    Lorenz, A.; Phillips, J.; Schmidt, J.J.; Lemley, J.R.

    1976-01-01

    Atomic and molecular data needs in five areas of plasma research and fusion technology are considered: Injection Systems (plasma heating by neutral particle beam injection and particle cluster beam injection); Plasma-Surface Interaction (sputtering, absorption, adsorption, reflection, evaporation, surface electron emission, interactions of atomic hydrogen isotopes, synchrotron radiation); Plasma Impurities and Cooling (electron impact ionization and excitation, recombination processes, charge exchange, reflection of H from wall surfaces); Plasma Diagnostics (atomic structure and transition probabilities, X-ray wave-length shift for highly ionized metals, electron capture collisions with H + and D + , heavy-ion collision ionization probe, photon scattering, emission spectroscopy); Laser-fusion Compression (microexplosion physics, diagnostics, microtarget design, laser systems requirements, laser development, reactor design needs)

  15. A minimalistic and optimized conveyor belt for neutral atoms.

    Science.gov (United States)

    Roy, Ritayan; Condylis, Paul C; Prakash, Vindhiya; Sahagun, Daniel; Hessmo, Björn

    2017-10-20

    Here we report of a design and the performance of an optimized micro-fabricated conveyor belt for precise and adiabatic transportation of cold atoms. A theoretical model is presented to determine optimal currents in conductors used for the transportation. We experimentally demonstrate a fast adiabatic transportation of Rubidium ( 87 Rb) cold atoms with minimal loss and heating with as few as three conveyor belt conductors. This novel design of a multilayered conveyor belt structure is fabricated in aluminium nitride (AlN) because of its outstanding thermal and electrical properties. This demonstration would pave a way for a compact and portable quantum device required for quantum information processing and sensors, where precise positioning of cold atoms is desirable.

  16. Financial barriers to the use of solar-industrial-process heat

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Industry concerns about solar process heat, attitudes toward investment in solar process heat, and decision processes and factors are reported. Four cases were selected from among 30 potential solar process heat installations that had been carried through the design stage, and case was analyzed using discounted cash flow to determine what internal rate of return would be earned under current tax laws over 10 years. No case showed any significant rate of return from capital invested in the solar installation. Several possible changes in the cost of solar equipment, its tax treatment or methods of financing were tested through computer simulation. A heavy load of extra tax incentives can improve the return on an investment, but such action is not recommended because they are not found to induce adoption of solar process heat, and if they were effective, capital may be drawn away from applications such as conservation were the potential to improve the nation's energy dilemma is greater. Tax shelter financing through limited partnership may be available. (LEW)

  17. Intensification of Evaporation and Condensation Processes in Heat Exchange Apparatus

    Directory of Open Access Journals (Sweden)

    L. L. Vasiliev

    2005-01-01

    Full Text Available The paper describes proposed design solutions for an intensification of heat transfer in evaporation and condensation heat exchangers. Complex experimental research of heat and mass transfer processes in flat and round cross-section miniature heat pipes is carried out. Optimization, development, manufacturing and an experimental investigation of copper miniature heat pipes with sintered powder are executed. Investigation results of capillary-porous structure properties that are used in evaporation and condensation heat-exchange apparatus are presented.

  18. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    International Nuclear Information System (INIS)

    Taylor, J'Tia Patrice; Shropshire, David E.

    2009-01-01

    This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system

  19. Line emission processes in atomic and molecular shocks

    International Nuclear Information System (INIS)

    Shull, J.M.

    1988-01-01

    The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks

  20. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  1. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  2. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  3. High Magnetic Field Processing - A Heat-Free Heat Treating Method

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kenik, Edward A [ORNL; Parish, Chad M [ORNL; Rios, Orlando [ORNL; Rogers, Hiram [ORNL; Manuel, Michele [University of Florida, Gainesville; Kisner, Roger A [ORNL; Watkins, Thomas R [ORNL; Murphy, Bart L [ORNL

    2012-08-01

    The High and Thermal Magnetic Processing/Electro-magnetic Acoustic Transducer (HTMP/EMAT) technology has been shown to be an enabling disruptive materials processing technology, that can achieve significant improvements in microstructure and consequently material performance beyond that achievable through conventional processing, and will lead to the next generation of advanced performance structural and functional materials. HTMP exposure increased the reaction kinetics enabling refinement of microstructural features such as finer martensite lath size, and finer, more copious, homogeneous dispersions of strengthening carbides leading to combined strength and toughness improvements in bainitic steels. When induction heating is applied in a high magnetic field environment, the induction heating coil is configured so that high intensity acoustic/ultrasonic treatment occurs naturally. The configuration results in a highly effective electromagnetic acoustical transducer (EMAT). HTMP combined with applying high-field EMAT, produce a non-contact ultrasonic treatment that can be used to process metal alloys in either the liquid state resulting in significant microstructural changes over conventional processing. Proof-of-principle experiments on cast irons resulted in homogeneous microstructures in small castings along with improved casting surface appearance. The experiment showed that by exposing liquid metal to the non-contact acoustic/ultrasonic processing technology developed using HMFP/EMAT wrought-like microstructures were developed in cast components. This Energy Intensive Processes (EIP) project sponsored by the DOE EERE Advanced Manufacturing Office (AMO) demonstrated the following: (1) The reduction of retained austenite in high carbon/high alloy steels with an ambient temperature HTMP process, replacing either a cryogenic or double tempering thermal process normally employed to accomplish retained austenite transformation. HTMP can be described as a 'heat

  4. Fundamental atomic plasma chemistry for semiconductor manufacturing process analysis

    International Nuclear Information System (INIS)

    Ventzek, P.L.G.; Zhang, D.; Stout, P.J.; Rauf, S.; Orlowski, M.; Kudrya, V.; Astapenko, V.; Eletskii, A.

    2002-01-01

    An absence of fundamental atomic plasma chemistry data (e.g. electron impact cross-sections) hinders the application of plasma process models in semiconductor manufacturing. Of particular importance is excited state plasma chemistry data for metallization applications. This paper describes important plasma chemistry processes in the context of high density plasmas for metallization application and methods for the calculation of data for the study of these processes. Also discussed is the development of model data sets that address computational tractability issues. Examples of model electron impact cross-sections for Ni reduced from multiple collision processes are presented

  5. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  6. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  7. Influence of Heat Treatment on Ordering Process in Fe72Al28 Alloy Studied by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Kansy, J.; Hanc, A.; Giebel, D.

    2011-01-01

    The paper discusses a theoretical model that associates the shape of Moessbauer spectrum with the configuration of atoms in local surroundings of the Moessbauer nuclide. The model has been implemented to a computer program which was used to analyse the Moessbauer spectra of Fe 72 Al 28 alloys after various heat treatments. Basing on the determined configuration of atoms, the long range ordering parameter was estimated. (authors)

  8. Evaluation methodology for advance heat exchanger concepts using analytical hierarchy process

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Patterson, Mike

    2012-01-01

    This study describes how the major alternatives and criteria being developed for the heat exchangers for next generation nuclear reactors are evaluated using the analytical hierarchy process (AHP). This evaluation was conducted as an aid in developing and selecting heat exchangers for integrating power production and process heat applications with next generation nuclear reactors. The basic setup for selecting the most appropriate heat exchanger option was established with evaluation goals, alternatives, and criteria. The two potential candidates explored in this study were shell-and-tube (helical coiled) and printed circuit heat exchangers. Based on study results, the shell-and-tube (helical coiled) heat exchanger is recommended for a demonstration reactor in the near term, mainly because of its reliability.

  9. Simultaneous multiphoton processes in the interaction of atoms with electromagnetic fields

    International Nuclear Information System (INIS)

    Levine, A.M.; Schreiber, W.M.; Weiszmann, A.N.

    1984-01-01

    It is impossible to obtain an exact description of multiphoton processes in the interaction of electromagnetic fields with atomic systems. Approximate approaches must be used to describe the physically different effects that can occur. One effect is the stepwise absorption/emission of many photons by a N-level system that evolves dynamically in between each absorption/emission. Another effect is described in the theories of Raman processes where the simultaneous absorption/emission of many photons is considered. In this paper, consideration is given to both processes allowing interference between the stepwise and simultaneous absorptions. An approximate Hamiltonian is obtained from the quantum mechanical multipole expansion. An exact solution of an atom-field system subject to this Hamiltonian will be presented. The extension of the method to multiple electromagnetic fields is discussed

  10. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  11. European research and development on HTGR process heat applications

    International Nuclear Information System (INIS)

    Verfondern, Karl; Lensa, Werner von

    2003-01-01

    The High-Temperature Gas-Cooled Reactor represents a suitable and safe concept of a future nuclear power plant with the potential to produce process heat to be utilized in many industrial processes such as reforming of natural gas, coal gasification and liquefaction, heavy oil recovery to serve for the production of the storable commodities hydrogen or energy alcohols as future transportation fuels. The paper will include a description of the broad range of applications for HTGR process heat and describe the results of the German long-term projects ''Prototype Nuclear Process Heat Reactor Project'' (PNP), in which the technical feasibility of an HTGR in combination with a chemical facility for coal gasification processes has been proven, and ''Nuclear Long-Distance Energy Transportation'' (NFE), which was the demonstration and verification of the closed-cycle, long-distance energy transmission system EVA/ADAM. Furthermore, new European research initiatives are shortly described. A particular concern is the safety of a combined nuclear/chemical facility requiring a concept against potential fire and explosion hazards. (author)

  12. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    Science.gov (United States)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  13. Oil shales and the nuclear process heat

    International Nuclear Information System (INIS)

    Scarpinella, C.A.

    1974-01-01

    Two of the primary energy sources most dited as alternatives to the traditional fossil fuels are oil shales and nuclear energy. Several proposed processes for the extraction and utilization of oil and gas from shale are given. Possible efficient ways in which nuclear heat may be used in these processes are discussed [pt

  14. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    OpenAIRE

    Becker, Emilene M.; Rampazzo, Roger T.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Silva, Márcia M. da; Welz, Bernhard; Katskov, Dmitri A.

    2011-01-01

    Acesso restrito: Texto completo. In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd+0.03% (m/v) Mg+0.05% (v/v) Triton X-...

  15. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  16. HTGR process heat program design and analysis. Final report, FY-79

    International Nuclear Information System (INIS)

    1979-12-01

    This report summarizes the results of concept design studies at General Atomic Company during FY-79 for an 842-MW(t) Very High Temperature Reactor (VHTR) utilizing an intermediate helium heat transfer loop to provide thermal energy for the production of hydrogen or reducing gas (H 2 + CO) by steam-reforming of a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. The report summarizes conceptual design tasks conducted on the prestressed concrete reactor vessel, thermal barrier, intermediate heat exchanger, reformer, and steam generator. The substantial completion of first generation programming for a performance/optimization code and the preparation of a topical safety report and other safety evaluation studies are reported. The completion of balance of plant criteria specifications and a balance of plant cost estimate is also reported

  17. Pressurized Recuperator For Heat Recovery In Industrial High Temperature Processes

    Directory of Open Access Journals (Sweden)

    Gil S.

    2015-09-01

    Full Text Available Recuperators and regenerators are important devices for heat recovery systems in technological lines of industrial processes and should have high air preheating temperature, low flow resistance and a long service life. The use of heat recovery systems is particularly important in high-temperature industrial processes (especially in metallurgy where large amounts of thermal energy are lost to the environment. The article presents the process design for a high efficiency recuperator intended to work at high operating parameters: air pressure up to 1.2 MPa and temperature of heating up to 900°C. The results of thermal and gas-dynamic calculations were based on an algorithm developed for determination of the recuperation process parameters. The proposed technical solution of the recuperator and determined recuperation parameters ensure its operation under maximum temperature conditions.

  18. Assessment of very high-temperature reactors in process applications. Appendix II. VHTR process heat application studies

    International Nuclear Information System (INIS)

    Jones, J.E.; Gambill, W.R.; Cooper, R.H.; Fox, E.C.; Fuller, L.C.; Littlefield, C.C.; Silverman, M.D.

    1977-06-01

    A critical review is presented of the technology and economics for coupling a very high-temperature gas-cooled reactor to a variety of process applications. It is concluded that nuclear steam reforming of light hydrocarbons for coal conversion could be a near-term alternative and that direct nuclear coal gasification could be a future consideration. Thermochemical water splitting appears to be more costly and its availability farther in the future than the coal-conversion systems. Nuclear steelmaking is competitive with the direct reduction of iron ore from conventional coal-conversion processes but not competitive with the reforming of natural gas at present gas prices. Nuclear process heat for petroleum refining, even with the necessary backup systems, is competitive with fossil energy sources. The processing with nuclear heat of oil shale and tar sands is of marginal economic importance. An analysis of peaking power applications using nuclear heat was also made. It is concluded that steam reforming methane for energy storage and production of peaking power is not a viable economic alternative, but that energy storage with a high-temperature heat transfer salt (HTS) is competitive with conventional peaking systems. An examination of the materials required in process heat exchangers is made

  19. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    Energy Technology Data Exchange (ETDEWEB)

    J' Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  20. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  1. Shake-off processes at the electron transitions in atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.; Parilis, Eh.S.

    1982-01-01

    Elementary processes in multielectron atoms - radiative and Auger transitions, photoionization and ionization by an electron impact etc. are usually followed by the relaxation of electron shells. The conditions under which such multielectron problem could be solved in the shake-off approximation are considered. The shake-off processes occurring. as a result of the electron transitions are described from the general point of view. The common characteristics and peculiar features of this type of excitation in comparison with the electron shake-off under nuclear transformations are pointed out. Several electron shake-off processes are considered, namely: radiative Auger effect, the transition ''two electrons-one photon'', dipole ionization, spectral line broadening, post collision interaction, Auger decay stimulated by collision with fast electrons, three-electron Auger transitions: double and half Auger effect. Their classification is given according to the type of the electron transition causing the shake-off process. The experimental data are presented and the methods of theoretical description are reviewed. Other similar effects, which could follow the transitions in electron shells are pointed out. The deduction of shake-off approximation is presented, and it is pointed out that this approach is analogous to the distorted waves approximation in the theory of scattering. It was shown that in atoms the shake-off approximation is a very effective method, which allows to obtain the probability of different electronic effects

  2. Atomization of U3Si2 for research reactor fuel

    International Nuclear Information System (INIS)

    Kim, C.K.; Kim, K.H.; Lee, C.T.; Kuk, I.H.

    1995-01-01

    Rotating disk atomization technique is applied to KMRR (Korea Multi-purpose Research Reactor) fuel fabrication. A rotating disk atomizer is designed and manufactured locally and U-4.0 wt. % Si alloy powders are produced. The atomized powders are heat-treated to transform into U 3 Si and the mixture of U 3 Si and Al are extruded to fuel meat. Most of the atomized powders are spherical in shape. The microstructure of the powder is fine due to the rapid solidification. The time required for peritectoid reaction is reduced due to the fine microstructures and the resultant U 3 Si grain size is finer than ever obtained from ingot process. The mechanical properties of the fuel meat are improved: yield strength about 30 %, tensile strength 10% and elongation 250 % increased. (author)

  3. Inert annealing of irradiated graphite by inductive heating

    International Nuclear Information System (INIS)

    Botzem, W.; Woerner, J.

    2001-01-01

    Fission neutrons change physical properties of graphite being used in nuclear reactors as moderator and as structural material. The understanding of these effects on an atomic model is expressed by dislocations of carbon atoms within the graphite and the thereby stored energy is known as Wigner Energy. The dismantling of the Pile 1 core may necessitate the thermal treatment of the irradiated but otherwise undamaged graphite. This heat treatment - usually called annealing - initiates the release of stored Wigner Energy in a controlled manner. This energy could otherwise give rise to an increase in temperature under certain conditions during transport or preparation for final storage. In order to prevent such an effect it is intended to anneal the major part of Pile 1 graphite before it is packed into boxes suitable for final disposal. Different heating techniques have been assessed. Inductive heating in an inert atmosphere was selected for installation in the Pile 1 Waste Processing Facility built for the treatment and packaging of the dismantled Pile 1 waste. The graphite blocks will be heated up to 250 deg. C in the annealing ovens, which results in the release of significant amount of the stored energy. External heat sources in a final repository will never heat up the storage boxes to such a temperature. (author)

  4. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  5. System and process for determining the basis weight of a low atomic number material in a mixture with a higher atomic number material

    International Nuclear Information System (INIS)

    Hegland, P.; Dahlquist, J.

    1985-01-01

    A process for determining the relative quantity of low atomic energy material mixed with a higher atomic energy material is carried out by directing a first and second beam of x-rays into the mixture. The process includes transmitting x-rays directly to detectors to set one criterion, shielding the detectors from the x-ray sources to set another criterion and then passing samples of known relative composition to provide data for storage and calibration carrying out the process of mixtures to be measured

  6. Coherence effects in atomic impact processes

    International Nuclear Information System (INIS)

    Blum, K.

    1980-01-01

    The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)

  7. Building a Better Capacitor with Thin-Film Atomic Layer Deposition Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Christopher [North Seattle College, WA (United States)

    2015-08-28

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesn’t release many tons of greenhouse gases, gases which cause global warming, into the Earth’s atmosphere. These trap in more heat from the Sun’s solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  8. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation

    International Nuclear Information System (INIS)

    Wang Fei-Long; Dai Bin; Liu Xue-Feng; Sun Yi-Ning; Sun Zhi-Bin; Yu Qiang; Zhai Guang-Jie

    2015-01-01

    We present the containerless heating process of a deeply undercooled metal droplet by electrostatic levitation. The problem of surface charge loss in the heating process is discussed and specific formulas are given to describe the basic process of charge supplement by the photoelectric and thermoelectric effects. The pure metal zirconium is used to be melted and solidified to analyze the heating process. The temperature-time curve clearly shows the features including melting, undercooling, recalescence and solid-state phase transformation. (paper)

  9. Induction heating in in-line strip production process

    International Nuclear Information System (INIS)

    Costa, P.; Santinelli, M.

    1995-05-01

    ISP (In-line Strip Production), a continuous process for steel strip production, has recently been set in an italian innovative plant, where ecological impact and power requirements are lighter than usual. This report describes the studies performed by ENEA (Italian Agency for New Technologies, Energy and the Environment), while a prototype reheating facility was arranged by Acciaieria ISP in Cremona (Italy). The authors, after a study of the prototype electromagnetic field, calculate the heating rate, with the thermal network method. Then they detect, with a 1-D-FEM, the heat diffusion through the strip cross section. Afterward, since the heat distribution depends on the eddy current density one, which is given by the magnetic field distribution, the authors, with a 3-D-FEM, carry out a coupled, electromagnetic and thermal, analysis in time domain. The strip temperature map is established by the balance between skin depth heating and surface cooling: a thermal analysis, performed with a moving 2-D-FEM, take into account the effects of the different heating and cooling situations, originated by the strip moving at a speed of 6m/min through four consecutive reheating facilities. The temperatures of a strip sample heated by the prototype have been monitored, acquired by a computer and related with the simulation results. The little difference between experiment and simulation assessed the qualitative and quantitative validity of this analysis, that has come out to be a tool, useful to evaluate the effects of possible improvements to the ISP process

  10. Cross sections for atomic processes, vol. 2

    International Nuclear Information System (INIS)

    Takayanagi, Kazuo; Suzuki, Hiroshi; Otani, Shunsuke

    1977-09-01

    This data collection book contains the data on all processes involving hydrogen and helium isotopes, their ions, electrons and photons, collected systematically and comprehensively, and is compiled subsequently to Vol. 1 as one of the works of the data collection study group in the Institute of Plasma Physics, Nagoya University, Japan. The items of the contents will include energy level, multiplicately excited state, radiation process, electron collision, ionic collision, recombination, collision of neutral atoms, colliding process involving molecules, and other processes. However, the first edition this time contains energy level, radiation process, electron collision and ionic collision, and the data on remaining items are now under collection. Though some criticisms have been heard about Vol. 1, the authors consider that such comprehensive collection based on systematic classification is the foundation of making a generalized data bank expected to become necessary in future. Thus the data collection book includes all relevant processes, and records the experimental data and theoretically calculated results in principle without modification by selecting them systematically. This year, investigation on data evaluation is taken up also as one of the tasks of the study group. (Wakatsuki, Y.)

  11. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    Science.gov (United States)

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  12. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  13. Opportunities for low-grade heat recovery in the UK food processing industry

    International Nuclear Information System (INIS)

    Law, Richard; Harvey, Adam; Reay, David

    2013-01-01

    Energy efficiency in the process industry is becoming an increasingly important issue due to the rising costs of both electricity and fossil fuel resources, as well as the tough targets for the reduction in greenhouse gas emissions outlined in the Climate Change Act 2008. Utilisation of waste heat sources is key to improving industrial energy efficiency, with an estimated 11.4 TWh of recoverable heat being wasted each year, a quarter of which is from the food and drinks processing sector. This paper examines the low-grade waste heat sources common to the food and drinks processing sector and the various opportunities for the use of this heat. A review of the best available technologies for recovery of waste heat is provided, ranging from heat transfer between source and sink, to novel technologies for the generation of electricity and refrigeration. Generally, the most economic option for waste heat recovery is heat exchange between nearby/same process source and sink, with a number of well-developed heat exchangers widely available for purchase. More novel options, such as the use of organic Rankine cycles for electricity generation prove to be less economical due to high capital outlays. However, with additional funding provision for demonstration of such projects and development of modular units, such technologies would become more common

  14. Fundamentals of electroheat electrical technologies for process heating

    CERN Document Server

    Lupi, Sergio

    2017-01-01

    This book provides a comprehensive overview of the main electrical technologies for process heating, which tend to be treated separately in specialized books. Individual chapters focus on heat transfer, electromagnetic fields in electro-technologies, arc furnaces, resistance furnaces, direct resistance heating, induction heating, and high-frequency and microwave heating. The authors highlight those topics of greatest relevance to a wide-ranging teaching program, and at the same time offer a detailed review of the main applications of the various technologies. The content represents a synthesis of the extensive knowledge and experience that the authors have accumulated while researching and teaching at the University of Padua’s Engineering Faculty. This text on industrial electroheating technologies is a valuable resource not only for students of industrial, electrical, chemical, and material science engineering, but also for engineers, technicians and others involved in the application of electroheating and...

  15. Atomic and molecular processes with lithium in peripheral plasmas

    International Nuclear Information System (INIS)

    Murakami, I.; Kato, D.; Hirooka, Y.; Sawada, K.

    2010-01-01

    Atomic and molecular processes for Li chemistry are examined for low temperature plasma such as peripheral plasmas in fusion research laboratory devices. Particle abundances of Li, Li ions, LiH and LiH ion are calculated by solving rate equations in which all reactions of the Li chemistry are considered for low temperature plasma.

  16. Potential applications of helium-cooled high-temperature reactors to process heat use

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1981-01-01

    High-Temperature Gas-Cooled Reactors (HTRs) permit nuclear energy to be applied to a number of processes presently utilizing fossil fuels. Promising applications of HTRs involve cogeneration, thermal energy transport using molten salt systems, steam reforming of methane for production of chemicals, coal and oil shale liquefaction or gasification, and - in the longer term - energy transport using a chemical heat pipe. Further, HTRs might be used in the more distant future as the energy source for thermochemical hydrogen production from water. Preliminary results of ongoing studies indicate that the potential market for Process Heat HTRs by the year 2020 is about 150 to 250 GW(t) for process heat/cogeneration application, plus approximately 150 to 300 GW(t) for application to fossil conversion processes. HTR cogeneration plants appear attractive in the near term for new industrial plants using large amounts of process heat, possibly for present industrial plants in conjunction with molten-salt energy distribution systems, and also for some fossil conversion processes. HTR reformer systems will take longer to develop, but are applicable to chemicals production, a larger number of fossil conversion processes, and to chemical heat pipes

  17. On the effect of atomic structure on the deactivation of catalytic gold nanoparticles

    International Nuclear Information System (INIS)

    Walsh, M J; Gai, P L; Boyes, E D

    2012-01-01

    Here we present atomic scale studies into the nature of both the internal structure and external surfaces of catalytic Au nanoparticles using aberration corrected in-situ electron microscopy. The activity of catalytic nanoparticles is thought to be highly sensitive to the particles' structure, meaning typical local atomic rearrangements are likely to significantly affect the overall performance of the catalyst. As-deposited Au nanoparticles are found to exhibit a variety of morphologies, with many being internally strained or highly stepped at the surface. Upon heating, surface atoms are observed to minimise the particles' surface energy by restructuring towards planar (111) facets, resulting in the removal of low co-ordinated sites thought to be crucial in catalysis by Au nanoparticles. These results suggest the process of surface energy minimisation made possible by heating may lead to a loss of active sites and consequently contribute to the deactivation of the catalyst.

  18. Laser Control of Atoms and Molecules

    CERN Document Server

    Letkhov, V S

    2007-01-01

    This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.

  19. Effects of Atomization Injection on Nanoparticle Processing in Suspension Plasma Spray

    Directory of Open Access Journals (Sweden)

    Hong-bing Xiong

    2016-05-01

    Full Text Available Liquid atomization is applied in nanostructure dense coating technology to inject suspended nano-size powder materials into a suspension plasma spray (SPS torch. This paper presents the effects of the atomization parameters on the nanoparticle processing. A numerical model was developed to simulate the dynamic behaviors of the suspension droplets, the solid nanoparticles or agglomerates, as well as the interactions between them and the plasma gas. The plasma gas was calculated as compressible, multi-component, turbulent jet flow in Eulerian scheme. The droplets and the solid particles were calculated as discrete Lagrangian entities, being tracked through the spray process. The motion and thermal histories of the particles were given in this paper and their release and melting status were observed. The key parameters of atomization, including droplet size, injection angle and velocity were also analyzed. The study revealed that the nanoparticle processing in SPS preferred small droplets with better atomization and less aggregation from suspension preparation. The injection angle and velocity influenced the nanoparticle release percentage. Small angle and low initial velocity might have more nanoparticles released. Besides, the melting percentage of nanoparticles and agglomerates were studied, and the critical droplet diameter to ensure solid melting was drawn. Results showed that most released nanoparticles were well melted, but the agglomerates might be totally melted, partially melted, or even not melted at all, mainly depending on the agglomerate size. For better coating quality, the suspension droplet size should be limited to a critical droplet diameter, which was inversely proportional to the cubic root of weight content, for given critical agglomerate diameter of being totally melted.

  20. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  1. Forecasting of heat capacity of molecular inorganic liquids

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Neganov, O.S.

    1992-01-01

    On the basis of analysis of experimental material on heat capacity of liquids, covering 350 molecular inorganic compounds, atomic parts of heat capacity for 58 elements of the Periodic system were obtained. Data on the accuracy of heat capacity calculation by the Neumann-Kopp rule using the recommended atomic parts C p are presented. For the Kelli rule it is assertained that the factor of proportiomality between heat capacity and the number of atoms in compound molecule in the general case depends on the type of anion and compound coordination. The Neumann-Kopp-Kelli rules provide a satisfactory accuracy of prediction

  2. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    Science.gov (United States)

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  3. Atomic processes in high-density plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1982-01-01

    This review covers dense atomic plasmas such as that produced in inertial confinement fusion. The target implosion physics along with the associated atomic physics, i.e., free electron collision phenomena, electron states I, electron states II, and nonequilibrium plasma states are described

  4. Developing maintenance technologies for FBR's heat exchanger units by advanced laser processing

    International Nuclear Information System (INIS)

    Nishimura, Akihiko; Shimada, Yukihiro

    2011-01-01

    Laser processing technologies were developed for the purpose of maintenance of FBR's heat exchanger units. Ultrashort laser processing fabricated fiber Bragg grating sensor for seismic monitoring. Fiber laser welding with a newly developed robot system repair cracks on inner wall of heat exchanger tubes. Safety operation of the heat exchanger units will be improved by the advanced laser processing technologies. These technologies are expected to be applied to the maintenance for the next generation FBRs. (author)

  5. Nuclear process heat at high temperature: Application, realization and development programme

    International Nuclear Information System (INIS)

    Sammeck, K.H.; Fischer, R.

    1976-01-01

    Studies in the Federal Republic of Germany (FRG), the USA and the United Kingdom have shown that high-temperature helium energy from an HTR can advantageously be utilized for coal gasification and other fossil fuel conversion processes, and that a substantial demand for substitute natural gas (SNG) can be expected in the future. These results are based on plant design studies, economic assessments and basic development efforts in the field of coal gasification with nuclear heat, which in the FRG were carried out by Arbeitsgemeinschaft Nukleare Prozesswaerme (ANP)-members, HRB and KFA Juelich. Nuclear process plants are based on different gasification processes, resulting in different concepts of the nuclear heat system. In the case of hydro-gasification it is expected that steam reformers, arranged within the primary circuit of the reactor, will be heated directly by the primary helium. In the case of steam gasification, the high-temperature energy must be transferred to the gasification process via an intermediate circuit which is coupled to a gasifier outside the containment. In both cases the design of the nuclear reactor resembles an HTR for electricity generation. The main objectives of the development of nuclear process heat are to increase the helium outlet temperature of the reactor up to 950 0 C, to develop metallic alloys for high-temperature components such as heat exchangers, to design and construct a hot-gas duct, a steam reformer and a helium-helium heat exchanger and to develop the gasification processes. The nuclear safety regulations and the interface problems between the reactor, the process plant and the electricity generating plant have to be considered thoroughly. The Arbeitsgemeinschaft Nukleare Prozesswaerme and HRB started a development programme, in close collaboration with KFA Juelich, which will lead to the construction of a prototype plant for coal gasification with nuclear heat within 5 to 5 1/2 years. A survey of the main objectives

  6. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Braams, Bastiaan J.; Chung, Hyun-Kyung [Nuclear Data Section, NAPC Division, International Atomic Energy Agency P. O. Box 100, Vienna International Centre, AT-1400 Vienna (Austria)

    2012-05-25

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  7. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    Science.gov (United States)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-05-01

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  8. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    International Nuclear Information System (INIS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-01-01

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  9. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  10. Heat and mass transfer enhancement in absorbing processes

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Lee, S.K.

    1993-01-01

    The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)

  11. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  12. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  13. Numerical Simulation of the Moving Induction Heating Process with Magnetic Flux Concentrator

    Directory of Open Access Journals (Sweden)

    Feng Li

    2013-01-01

    Full Text Available The induction heating with ferromagnetic metal powder bonded magnetic flux concentrator (MPB-MFC demonstrates more advantages in surface heating treatments of metal. However, the moving heating application is mostly applied in the industrial production. Therefore, the analytical understanding of the mechanism, efficiency, and controllability of the moving induction heating process becomes necessary for process design and optimization. This paper studies the mechanism of the moving induction heating with magnetic flux concentrator. The MPB-MFC assisted moving induction heating for Inconel 718 alloy is studied by establishing the finite element simulation model. The temperature field distribution is analyzed, and the factors influencing the temperature are studied. The conclusion demonstrates that the velocity of the workpiece should be controlled properly and the heat transfer coefficient (HTC has little impact on the temperature development, compared with other input parameters. In addition, the validity of the static numerical model is verified by comparing the finite element simulation with experimental results on AISI 1045 steel. The numerical model established in this work can provide comprehensive understanding for the process control in production.

  14. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  15. Melting of size-selected gallium clusters with 60-183 atoms.

    Science.gov (United States)

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  16. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Toman, Jakub; Stevens, Erica L.; Hughes, Eamonn T.; Krimer, Yuval L.; Chmielus, Markus

    2017-01-01

    In this study, we investigate the effect of powders resulting from different atomization methods on properties of binder jet printed and heat-treated samples. Air-melted gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet print samples for a detailed comparative study on microstructural evolution and mechanical properties. GA printed samples achieved higher sintering density (99.2%) than WA samples (95.0%) due to differences in powder morphology and chemistry. Grain sizes of GA and WA samples at their highest density were 89 ± 21 μm and 88 ± 26 μm, respectively. Mechanical tests were conducted on optimally sintered samples and sintered plus aged samples; aging further improved microstructure and mechanical properties. This study shows that microstructural evolution (densification, and carbide, oxide and intermetallic phase formation) is very different for GA and WA binder jet printed and heat-treated samples. This difference in microstructural evolution results in different mechanical properties with the superior sintered and aged GA specimen reaching a hardness of 327 ± 7 HV_0_._1, yield strength of 394 ± 15 MPa, and ultimate tensile strength of 718 ± 14 MPa which are higher than cast alloy 625 values.

  17. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  18. Process heat utilization from HTGR type reactors

    International Nuclear Information System (INIS)

    1985-01-01

    Work performed by the Special Research Unit 163 to supplement industrial development projects in the subject field was devoted to specific problems. The major goal was to analyse available industrial developments for potential improvements in terms of process design and engineering in line with the latest know-how, in order to enhance the economic efficiency of available techniques and methods. So research into coal gasification by nuclear processes concentrated on the potentials of a method allowing significantly higher gasification temperatures due to the use of a so-called high-temperature heat pump operating on the basis of the gas turbine principle. Exergetic analyses were made for the processes using nuclear heat in order to optimise their energy consumption. Major steps in these processes are gas purification and gas separation. Especially for the latter step, novel techniques were studied and tested on lab scale, results being used for development towards technical scale application. One novel technique is a method for separating hydrogen from methane and carbon monoxide by means of a gas turbine process step, another research task resulted in a novel absorption technique in the liquid phase. Further, alternative solutions were studied which, other than the conventional gasification processes, comprise electrochemical and other chemical process steps. The important research topic concerned with the kinetics of coal gasification was made part of a special research program on the level of fundamental research. (orig./GL) [de

  19. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2018-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  20. Status and prospect of solar heat for industrial processes in China

    DEFF Research Database (Denmark)

    jia, Teng; Huang, Junpeng; Li, Rui

    2017-01-01

    In the past decades, solar heat for industrial processes (SHIP) have been rapidly developed and applied, and also getting more attention in the world. China is still the largest energy consumer with industry accounting for almost 70% of total energy consumption. Low- and medium-temperature heat...... takes up 45% of process heat, holding 50%-70% of industrial energy consumption, which provides a favorable condition for solar application. China has built some demonstration projects to make industrial processes well integrated with solar heating systems. This paper briefly presents the status of China......'s energy consumption, integration of SHIP, as well as available solar technologies. 10 typical industrial sectors are selected to specifically describe their potential of SHIP. Moreover, 26 SHIP cases covering the 10 sectors in China are presented by field researches, with their capacity of energy saving...

  1. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design

  2. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Xihu-qu, Hangzhou-shi, Zhejiang 300027 (China)

    2008-06-15

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design.

  3. Influence of microwave heating on the stability of processed samn

    OpenAIRE

    Farag, Radwan S.; Taha, Soad H.

    1991-01-01

    Butter was converted to samn by microwave and conventional heating. The quality of the processed samn by the two methods was followed by determining the acid, peroxide and TBA values over a period of six weeks at 60°C. The fatty acid composition of samn samples was determined by gas-liquid chromatographic technique. The data show that butter conversion to samn by microwave heating was accomplished in about one half of the time that conventional heating requires. Microwave heating obviously in...

  4. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  5. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  6. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  7. Energy efficiency improvement of a Kraft process through practical stack gases heat recovery

    International Nuclear Information System (INIS)

    Mostajeran Goortani, B.; Mateos-Espejel, E.; Moshkelani, M.; Paris, J.

    2011-01-01

    A process scheme for the optimal recovery of heat from stack gases considering energy and technical constraints has been developed and applied to an existing Kraft pulping mill. A system based on a closed loop recirculation of hot oil is used to recover the heat from stack gases and distribute it to the appropriate cold streams. The recovery of heat from stack gases is part of an overall optimization of the Kraft mill. Tools such as Pinch Analysis and exergy analysis are used to evaluate the process streams. The results indicate that 10.8 MW of heat from stack gases can be reused to heat process streams such as the deaerator water, hot water, drying filtrates, and black liquor. A simulation model of the recirculation loop has been developed to determine the specifications of the recovery system. The total heat exchanger surface area required by the system is 3460 m 2 , with a hot oil recirculation temperature of 137 o C. The anticipated total investment is $10.3 M, with a payback time of 1.8 years. - Highlights: → We developed a process design for recovering heat from stack gases in a Kraft mill. → The recovered heat is optimally distributed to the process cold streams. → Heat recovery system has a total surface area of 3500 m 2 without gases condensation. → A reduction of 7 percent in total process steam demand is anticipated. → A total investment of 10.3 M$ is needed with a payback time of less than two years

  8. Proposal of flexible atomic and molecular process management for Monte Carlo impurity transport code based on object oriented method

    International Nuclear Information System (INIS)

    Asano, K.; Ohno, N.; Takamura, S.

    2001-01-01

    Monte Carlo simulation code on impurity transport has been developed by several groups to be utilized mainly for fusion related edge plasmas. State of impurity particle is determined by atomic and molecular processes such as ionization, charge exchange in plasma. A lot of atomic and molecular processes have been considered because the edge plasma has not only impurity atoms, but also impurity molecules mainly related to chemical erosion of carbon materials, and their cross sections have been given experimentally and theoretically. We need to reveal which process is essential in a given edge plasma condition. Monte Carlo simulation code, which takes such various atomic and molecular processes into account, is necessary to investigate the behavior of impurity particle in plasmas. Usually, the impurity transport simulation code has been intended for some specific atomic and molecular processes so that the introduction of a new process forces complicated programming work. In order to evaluate various proposed atomic and molecular processes, a flexible management of atomic and molecular reaction should be established. We have developed the impurity transport simulation code based on object-oriented method. By employing object-oriented programming, we can handle each particle as 'object', which enfolds data and procedure function itself. A user (notice, not programmer) can define property of each particle species and the related atomic and molecular processes and then each 'object' is defined by analyzing this information. According to the relation among plasma particle species, objects are connected with each other and change their state by themselves. Dynamic allocation of these objects to program memory is employed to adapt for arbitrary number of species and atomic/molecular reactions. Thus we can treat arbitrary species and process starting from, for instance, methane and acetylene. Such a software procedure would be useful also for industrial application plasmas

  9. Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes

    Science.gov (United States)

    Guo, Jian-long; Bao, Yan-ping; Wang, Min

    2017-12-01

    During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-II). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-II. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-II. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-II than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-II. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.

  10. Kinetical analysis of the heat treatment procedure in SmCo5 and other rare-earth transition-metal sintered magnets

    International Nuclear Information System (INIS)

    Campos, Marcos Flavio de; Rangel Rios, Paulo

    2004-01-01

    In the processing of all types of commercial sintered rare-earth transition-metal magnets (SmCo 5 , Sm(CoCuFeZr) z , NdFeB) a post-sintering heat treatment is included, which is responsible for large increase of the coercive field. During this post-sintering heat treatment, there are phase transformations with diffusion of the alloying elements, moving the system towards the thermodynamic equilibrium. Due to the larger size of the rare-earth atoms, the diffusion of the rare-earth atoms in the lattice of rare-earth transition-metal phases like SmCo 5 , Sm 2 (Co, Fe) 17 or Nd 2 Fe 14 B should be very slow, implying that the diffusion of the rare-earth atoms should be controlling the overall kinetics of the process. From the previous assumption, a parameter named 'diffusion length of rare-earth atoms' is introduced as a tool to study the kinetics of the heat treatment in rare-earth magnets. Detailed microstructural characterization of SmCo 5 and NdFeB magnets did not indicate significant microstructural changes between sintering and heat treatment temperatures and it was suggested that the increase of coercivity can be related to decrease of the content of lattice defects. The sintering temperature is high, close to melting temperature, and in this condition there are large amount of defects in the lattice, possibly rare-earth solute atoms. Phase diagram analysis has suggested that a possible process for the coercivity increase can be the elimination of excess rare-earth atoms, i.e. solute atoms from a supersatured matrix. The 'diffusion length of rare-earth atoms' estimated from diffusion kinetics is compatible with the diffusion length determined from microstructure. For the case of SmCo 5 , it was found that the time of heat treatment necessary is around 20 times lower if an isothermal treatment at 850 deg. C is substituted by a slow cooling from sintering temperature 1150 to 850 deg. C. These results give support for the thesis that the coercivity increase is

  11. Inelastic Processes in the Interaction of an Atom with an Ultrashort Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring during the interaction of a heavy relativistic atom with a spatially inhomogeneous ultrashort electromagnetic pulse are considered by solving the Dirac equation. The corresponding transition probabilities are expressed in terms of known inelastic atomic form factors, which are widely used in the theory of relativistic collisions between charged particles and atoms. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into account exactly not only the spatial inhomogeneity of an ultrashort electromagnetic pulse, but also the magnetic interaction

  12. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-01-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called hollow atoms must be taken into account for adequate description of plasma radiation

  13. Electron beam processing in wire and cables and heat shrinkable products

    International Nuclear Information System (INIS)

    Tikku, V.K.

    2001-01-01

    In this paper in a general manner the commercially successful E-beam crosslinking in wire and cable and heat shrinkable products being manufactured first time in India are illustrated. We at NICCO in India have established first industrial electron accelerator of 150 kW power with 3 MeV beam energy and 50 mA beam current, near Calcutta; the facility is likely to be commissioned by January, 2002. This facility was conceived and the developmental work was carried out with the active support of our R and D partners at Rubber Technology Centre, IIT, Kharagpur and Bhabha Atomic Research Centre, Mumbai. The polymeric compound developments, its extrusion on to the cable samples and radiation crosslinking were successfully achieved in this joint R and D efforts. We have already executed the developmental order with the know-how developed indigenously with our research partners and using the 2 MeV electron accelerator facility at Bhabha Atomic Research Centre, Mumbai. (author)

  14. Heat transfer in condensation and evaporation. Application to industrial and environmental processes

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, C [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DRN-GRETh), 38 (France); Vidil, R [CEA/Saclay, Direction des Technologies Avancees (DTA), 38 - Grenoble (France)

    1999-07-01

    Eurotherm Seminar number 62 objective is to provide a European forum for the presentation and the discussion of recent researches on heat transfer in condensation and evaporation and recent developments relevant to evaporators, condensers technology for: industrial processes; air conditioning and refrigeration processes; environmental processes; food industry processes; cooling processes of electronic or mechanical devices. The following topics are to be addressed: fundamentals of phase with pure fluids and mixtures; enhanced surfaces for improved tubular or plate heat exchangers; advanced methods and software for condenser and evaporator simulation and design; innovative design and concept of heat exchangers. This 2-days Seminar will be interest to a large group of researches and engineers from universities, research centres and industry. (authors)

  15. Computerized property prediction and process planning in heat treatment of steels

    Energy Technology Data Exchange (ETDEWEB)

    Gergely, M. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary)); Somogyi, S. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary)); Kohlheb, R. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary))

    1994-01-01

    Recent years have seen widespread interest in the establishment of prediction methods, based on phenomenological description and computer simulation of transformation processes during heat treatment, and in the introduction of software for technological planning. The steady development of this approach is aimed at meeting the requirement of metallurgists, design engineers dealing with material selection and dimensioning, and technologists planning heat treatment processes. Research in this field of computer simulation has been concentrated so far on two main areas of interest: . Modelling of transformation processes and the prediction of microstructures and/or properties, . Developing program packages to help solve concrete tasks such as material selection, on-line process control and monitoring, and the design of heat-treating operations. During the last two decades in the field of heat treatment, various mathematical models with different accuracy and complexity have been developed. In this paper, an attempt is made to outline some important results in computer simulation and computerized property prediction without aiming at completeness. The topic is restricted to quenched and tempered, and case-hardened steels. (orig.)

  16. Collective effects in isolated atoms (many-body aspects of photoionization process)

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1983-01-01

    This chapter examines outer and intermediate many-electron shells and demonstrates that photoionization is of collective nature because in the atomic reaction to the external electromagnetic field at least all electrons of the ionized subshell take part. Performs the calculation of complex atom photoionization using random phase approximation with exchange (RPAE). Explains that in RPAE the ionization amplitude is presented as a sum of two terms, describing the direct knock-out and the induced one which is connected with a variation of the self-consistent field, caused by polarization of atomic shells under the action of the external field. Discusses collective effects in outer shells; deviation from RPAE prediction in outer shells; excitations ''two electrons-two holes'' and autoionizing states; collective effects in inner shells; and bremsstrahlung. Observes a large number of many-particle effects which manifest themselves practically in all atomic processes. Finds that by correcting and improving the one-electron approximation it becomes possible even in its frame to include much of what seems to be many-electron corrections

  17. Heat integration options based on pinch and exergy analyses of a thermosolar and heat pump in a fish tinning industrial process

    International Nuclear Information System (INIS)

    Quijera, José Antonio; García, Araceli; Alriols, María González; Labidi, Jalel

    2013-01-01

    Thermosolar technology is being inserted gradually in industrial activities. In order to reach high energy efficiency, thermosolar can be linked to heat pump technology, combining more efficient conventional and renewable energy support for processes. Their integration in complex processes can be improved systematically through well established analytical tools, like pinch and exergy analyses. This work presents a methodological procedure for the analysis of different options of heat integration of a solar thermal and heat pump technologies in a tuna fish tinning process. The plant is located in a climatic zone where diffuse irradiation contributes more energy to the process than beam irradiation does. Pinch and exergy analyses are applied in the context of a low and middle temperatures, where the process demands big amounts of hot water and middle pressure steam. In order to recover internal heat, pinch analysis allows to understand the complexity of the heat exchange network of the process and to define thermal tendency objectives for energy optimization. Exergy analysis quantifies the variation that the quality of energy undergoes while it is used in the process according to the different way of integration. Both analytical tools, in combination with economical variables, provide a powerful methodological procedure finding the most favourable heat integration and, by this, they help in the technological decision making and in the design phase. - Highlights: ► Integration of solar thermal energy in batch canning process was assessed. ► Pinch and exergy analyses were used to determine the optimal energy supply configuration. ► Combination of heat pump and solar thermal energy improves the energy efficiency and reduces fossil fuel consumption

  18. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  19. Thermal-fluid assessment of multijet atomization for spray cooling applications

    International Nuclear Information System (INIS)

    Panao, Miguel R.O.; Moreira, Antonio L.N.; Durao, Diamantino F.G.

    2011-01-01

    Thermal management is a particularly difficult challenge to the miniaturization of electronic components because it requires high performance cooling systems capable of removing large heat loads at fast rates in order to keep the operating temperature low and controlled. To meet this challenge, the Intermittent Spray Cooling (ISC) concept has been suggested as a promising technology which uses a proper match between the frequency and duration of consecutive injection cycles to control heat transfer. This concept also depends on: the atomization strategy; a homogeneous dispersion of droplets impinging on the hot surface; and the quantitative control of the liquid deposited, avoiding excessive secondary atomization or pre-impingement-evaporation. In this work, the use of liquid atomization by multiple jets impact, also referred as multijet atomization, is the subject of a thermal-fluid assessment using heat transfer correlations previously derived for intermittent sprays. Simultaneous measurements of droplet size and velocity are provided as input for the correlations and the analysis explores the influence of the number of impinging jets on the heat removal pattern and magnitude. Emphasis is put on the promising applicability of multijet atomization for promoting an intelligent use of energy in the thermal management of electronic devices.

  20. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  1. Integrated design and optimization of technologies for utilizing low grade heat in process industries

    International Nuclear Information System (INIS)

    Kwak, Dong-Hun; Binns, Michael; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Implementation of a modeling and design framework for the utilization of low grade heat. • Application of process simulator and optimization techniques for the design of technologies for heat recovery. • Systematic and holistic exploitation for the recovery of industrial low grade heat. • Demonstration of the applicability and benefit of integrated design and optimization framework through a case study. - Abstract: The utilization of low grade heat in process industries has significant potential for improving site-wide energy efficiency. This paper focuses on the techno-economic analysis of key technologies for energy recovery and re-use, namely: Organic Rankine Cycles (ORC), boiler feed water heating, heat pumping and absorption refrigeration in the context of process integration. Process modeling and optimization in a holistic manner identifies the optimal integrated configuration of these technologies, with rigorous assessment of costs and technical feasibility of these technologies. For the systematic screening and evaluation of design options, detailed process simulator models are evaluated and optimization proceeds subject to design constraints for the particular economic scenarios where technology using low grade heat is introduced into the process site. Case studies are presented to illustrate how the proposed modeling and optimization framework can be useful and effective in practice, in terms of providing design guidelines and conceptual insights for the application of technologies using low grade heat. From the case study, the best options during winter are the ORC giving a 6.4% cost reduction for the ideal case with low grade heat available at a fixed temperature and boiler feed water heating giving a 2.5% cost reduction for the realistic case with low grade heat available at a range of temperatures. Similarly during summer boiler feed water heating was found to be the best option giving a 3.1% reduction of costs considering a

  2. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  3. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  4. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  5. Utilization of process heat from the HTR in the chemical and related industries

    International Nuclear Information System (INIS)

    Schad, M.; Didas, U.; Ebeling, F.; Kreutzkamp, G.; Renner, H.

    1988-12-01

    The wide introduction of the HTRI as heat and energy sources would be beneficial when the HTRI operating parameters were more suitable for flexible adaptation to the wide possible field of applications and requirements of the potential customer. Here of importance are: Guaranteed reliable, easily adaptable as well as effective process heat provision; a small HTRI size, under 100 MW if possible, for economic process plant operation never negatively influenced by the operational behaviour of the individual HTRI; avoidance of a secondary heat transfer circulation system for economic reasons by an extremely clean primary helium at all times and under all circumstances; greater flexibility in the HTRI helium inlet and outlet temperatures. Initially at least a helium inlet temperature of 300deg C or better 350deg C. At 250deg C too much heat is often offered in the low-temperature range which can in the main be used for domestic heating and power export only. The processes technically and economically interesting which could be provided with heat from the HTRI cover the field of mineral oil technology. Their process temperatures are below 600deg C, a temperature range demanding conventional technology. Thus, for this purpose it is only necessary to: Test the heat exchangers to be designed new; find the most effective combined plant concept in each case; carry out the necessary safety examinations into the combined operation of the two plant sections - HTRI and process plant. In addition, the market for the process heat supply in mineral oil technology has a considerable potential. (orig./GL)

  6. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  7. Heat recovery networks synthesis of large-scale industrial sites: Heat load distribution problem with virtual process subsystems

    International Nuclear Information System (INIS)

    Pouransari, Nasibeh; Maréchal, Francois

    2015-01-01

    Highlights: • Synthesizing industrial size heat recovery network with match reduction approach. • Targeting TSI with minimum exchange between process subsystems. • Generating a feasible close-to-optimum network. • Reducing tremendously the HLD computational time and complexity. • Generating realistic network with respect to the plant layout. - Abstract: This paper presents a targeting strategy to design a heat recovery network for an industrial plant by dividing the system into subsystems while considering the heat transfer opportunities between them. The methodology is based on a sequential approach. The heat recovery opportunity between process units and the optimal flow rates of utilities are first identified using a Mixed Integer Linear Programming (MILP) model. The site is then divided into a number of subsystems where the overall interaction is resumed by a pair of virtual hot and cold stream per subsystem which is reconstructed by solving the heat cascade inside each subsystem. The Heat Load Distribution (HLD) problem is then solved between those packed subsystems in a sequential procedure where each time one of the subsystems is unpacked by switching from the virtual stream pair back into the original ones. The main advantages are to minimize the number of connections between process subsystems, to alleviate the computational complexity of the HLD problem and to generate a feasible network which is compatible with the minimum energy consumption objective. The application of the proposed methodology is illustrated through a number of case studies, discussed and compared with the relevant results from the literature

  8. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  9. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  10. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  11. Microstructure, Properties and Atomic Level Strain in Severely Deformed Rare Metal Niobium

    Directory of Open Access Journals (Sweden)

    Lembit KOMMEL

    2012-12-01

    Full Text Available The mechanical and physical properties relationship from atomic level strain/stress causes dislocation density and electrical conductivity relationship, as well as crystallites deformation and hkl-parameter change in the severely deformed pure refractory rare metal Nb at ambient temperature and during short processing times. The above mentioned issues are discussed in this study. For ultrafine-grained and nanocrystalline microstructure forming in metal the equal-channel angular pressing and hard cyclic viscoplastic deformation were used. The flat deformation and heat treatment at different parameters were conducted as follows. The focused ion beam method was used for micrometric measures samples manufacturied under nanocrystalline microstructure study by transmission electron microscope. The microstructure features of metal were studied under different orientations by X-ray diffraction scattering method, and according to the atomic level strains, dislocation density, hkl-parameters and crystallite sizes were calculated by different computation methods. According to results the evolutions of atomic level strains/stresses, induced by processing features have great influence on the microstructure and advanced properties forming in pure Nb. Due to cumulative strain increase the tensile stress and hardness were increased significantly. In this case the dislocation density of Nb varies from 5.0E+10 cm–2 to 2.0E+11 cm–2. The samples from Nb at maximal atomic level strain in the (110 and (211 directions have the maximal values of hkl-parameters, highest tensile strength and hardness but minimal electrical conductivity. The crystallite size was minimal and relative atomic level strain maximal in (211 orientation of crystal. Next, flat deformation and heat treatment increase the atomic level parameters of severely deformed metal.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3091

  12. Momentum diffusion for coupled atom-cavity oscillators

    International Nuclear Information System (INIS)

    Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.

    2006-01-01

    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light

  13. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  14. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    International Nuclear Information System (INIS)

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  15. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  16. Indistinguishability and interference in the coherent control of atomic and molecular processes

    International Nuclear Information System (INIS)

    Gong Jiangbin; Brumer, Paul

    2010-01-01

    The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible 'which-way' information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while 'incoherent interference control' scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.

  17. Physics. Examples and problems. Mechanics, heat, electricity and magnetism, oscillations and waves, atomic and nuclear physics; Physik. Beispiele und Aufgaben. Mechanik, Waermelehre, Elektrizitaet und Magnetismus, Schwingungen und Wellen, Atom- und Kernphysik

    Energy Technology Data Exchange (ETDEWEB)

    Stroppe, Heribert; Streitenberger, Peter; Specht, Eckard; Zeitler, Juergen; Langer, Heinz

    2017-07-01

    The present book is the unification of the proved problem collections for the basic physical training of studyings of especially engineering courses at technical colleges and universities. The book contains - didactically prepared and structured in the style of a textbook as well as with increasing difficulty - a total of 960 exemplary and additional tasks from the fields mechanics, heat, electricity and magnetism, oscillations and waves, as well as atomic and nuclear physics. For the exemplary problems the whole solution path and the complete calculation process with explanation of the relevant physical laws are extensively presented, for the additional problems for the self-control only the solutions and, if necessary, intermediate calculations are given. The examples and problems with mostly practice-oriented content are selected in such a way that they largely cover the matter treated in courses and exercises and make by their didactical preparation an effective repetition and optimal examination-preparation possible.

  18. Heat explosion approach to radiofrequency heating of a conductor film on silicon substrate: Application for silicide film formation

    International Nuclear Information System (INIS)

    Pelleg, J.; Rosenberg, S.; Sinder, M.

    2011-01-01

    A qualitative analysis of the kinetics of phase formation in a conductor film/Si substrate system by radiofrequency (RF) heating is presented. The analysis is done by using the mathematical approach of the heat explosion theory. It is shown that the system can experience heating at constant temperature or a sudden temperature increase, i.e. heat explosion. The relation between the parameters of the system in the heat explosion regime is presented in a simple analytical form. It was found that measurable quantities, such as film thickness, sheet resistance, specimen dimensions and applied magnetic field, determine whether the process occurs in the constant heating or heat explosion stages. The model was tested for the Ta-Ti-Si system by considering some of the mentioned measurable quantities which were obtained by RF induction heating of Ta-Ti film on Si(1 1 1) and Si(1 0 0) substrates. The agreement of theory with experiment is reasonable. Concentration of Ta in the conductor film, film thickness and the orientation of the Si substrate might influence the reaction rate. On Si(1 1 1) substrates the reaction goes to completion, whereas on Si(1 0 0) intermediate phases remain. This observation was explained in terms of an interface reaction-controlled process of Si atoms transferring from the substrate to the film.

  19. Experimental data processing technique for nonstationary heat transfer on fuel rod simulators

    International Nuclear Information System (INIS)

    Nikonov, S.P.; Nikonov, A.P.; Belyukin, V.A.

    1982-01-01

    Non-stationary heat-transfer data processing is considered in connection with experimental studies of the emergency cooling whereat fuel rod imitators both with direct and indirect shell heating were used. The objective of data processing was obtaining the temperature distribution within the imitator, the heat flux removed by the coolant and the shell-coolant heat-transfer coefficient. The special attention was paid to the temperature distribution calculation at the data processing during the reflooding experiments. In this case two factors are assumed to be known: the time dependency of temperature variation at a certain point within the imitator cross-section and the heat flux at some point of the same cross-section. The initial data preparation for calculations, employing the procedure of smoothing by cubic spline functions, is considered as well, with application of an algorithm reported in the literature, which is efficient for the given functional dependency wherein the deviation in each point is known [ru

  20. Numerical simulation of plasma processes driven by transverse ion heating

    Science.gov (United States)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  1. Systematic approach to optimal design of induction heating installations for aluminum extrusion process

    Science.gov (United States)

    Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.

    2018-03-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.

  2. Economic and environmental benefits of converting industrial processes to district heating

    International Nuclear Information System (INIS)

    Djuric Ilic, Danica; Trygg, Louise

    2014-01-01

    Highlights: • The potential for converting industrial processes to district heating is analyzed. • The study includes 83 manufacturing companies in three Swedish counties. • The energy costs for the companies decrease after the conversions. • The conversion opens up for a reduction of global greenhouse gas emissions. • CHP plants in the local district heating system are better utilized. - Abstract: The aim of this study was to analyse the possibilities of converting industrial processes from electricity and fossil fuels to district heating in 83 companies in three Swedish counties. Effects on the local district heating systems were explored, as well as economic effects and impacts on global emissions of greenhouse gases. The study was conducted considering two different energy market conditions for the year 2030. The results show that there is a potential for increasing industrial district heating use in all analysed counties. The greatest potential regarding percentage is found in Jönköping, where the annual district heating use in the manufacturing companies could increase from 5 GW h to 45 GW h. The annual industrial district heating use could increase from 84 GW h to 168 GW h in Östergötland and from 14 GW h to 58 GW h in Västra Götaland. The conversion of the industrial production processes to district heating would lead to district heating demand curves which are less dependent on outdoor temperature. As a result, the utilization period of the base load plants (above all of the combined heat and power plants) would be prolonged; this would decrease district heating production costs due to the increased income from the electricity production. The energy costs for the industrial companies decrease after the conversions as well. Furthermore, the increased electricity production in the combined heat and power plants, and the decreased electricity and fossil fuel use in the industrial sector opens up a possibility for a reduction of global

  3. Process Design of Aluminum Tailor Heat Treated Blanks

    Directory of Open Access Journals (Sweden)

    Alexander Kahrimanidis

    2015-12-01

    Full Text Available In many industrials field, especially in the automotive sector, there is a trend toward lightweight constructions in order to reduce the weight and thereby the CO2 and NOx emissions of the products. An auspicious approach within this context is the substitution of conventional deep drawing steel by precipitation hardenable aluminum alloys. However, based on the low formability, the application for complex stamping parts is challenging. Therefore, at the Institute of Manufacturing Technology, an innovative technology to enhance the forming limit of these lightweight materials was invented. The key idea of the so-called Tailor Heat Treated Blanks (THTB is optimization of the mechanical properties by local heat treatment before the forming operation. An accurate description of material properties is crucial to predict the forming behavior of tailor heat treated blanks by simulation. Therefore, within in this research project, a holistic approach for the design of the THTB process in dependency of the main influencing parameters is presented and discussed in detail. The capability of the approach for the process development of complex forming operations is demonstrated by a comparison of local blank thickness of a tailgate with the corresponding results from simulation.

  4. Intermediate heat exchanger for HTR process heat application

    International Nuclear Information System (INIS)

    Crambes, M.

    1980-01-01

    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH 4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  5. Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes

    Science.gov (United States)

    Taranto, Philip; Modi, Kavan; Pollock, Felix A.

    2018-05-01

    In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.

  6. Process for preparing a normal lighting and heating gas etc

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J

    1910-12-11

    A process for preparing a normal lighting and heating gas from Australian bituminous shale by distillation and decomposition in the presence of water vapor is characterized by the fact that the gasification is suitably undertaken with gradual filling of a retort and with simultaneous introduction of water vapor at a temperature not exceeding 1,000/sup 0/ C. The resulting amount of gas is heated in the same or a second heated retort with freshly supplied vapor.

  7. Influence of inductive heating on microstructure and material properties in roll forming processes

    Science.gov (United States)

    Guk, Anna; Kunke, Andreas; Kräusel, Verena; Landgrebe, Dirk

    2017-10-01

    The increasing demand for sheet metal parts and profiles with enhanced mechanical properties by using high and ultra-high-strength (UHS) steels for the automotive industry must be covered by increasing flexibility of tools and machines. This can be achieved by applying innovative technologies such as roll forming with integrated inductive heating. This process is similar to indirect press hardening and can be used for the production of hardened profiles and profiles with graded properties in longitudinal and traverse direction. The advantage is that the production of hardened components takes place in a continuous process and the integration of heating and quenching units in the profiling system increases flexibility, accompanied by shortening of the entire process chain and minimizing the springback risk. The features of the mentioned process consists of the combination of inhomogeneous strain distribution over the stripe width by roll forming and inhomogeneity of microstructure by accelerated inductive heating to austenitizing temperature. Therefore, these two features have a direct influence on the mechanical properties of the material during forming and hardening. The aim of this work is the investigation of the influence of heating rates on microstructure evolution and mechanical properties to determine the process window. The results showed that heating rate should be set at 110 K/s for economic integration of inductive heating into the roll forming process.

  8. Atomic-scale observation of hydrogen-induced crack growth by atom-probe FIM

    International Nuclear Information System (INIS)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    Formation and propagation of a microcrack due to hydrogen in a Fe-0.29 wt.% Ti alloy was observed at the atomic scale by field ion microscopy. A microcrack (-20 nm in length) formed and became noticeably large when the tip was heated at 950 0 C in the presence of about 1 torr of Hg. Propagation was reported several times by reheating, until a portion of the tip ruptured and became detached from the tip. Compositional analysis, performed in situ using a high performance atom-probe, identified atomic hydrogen in quantity and some hydrogen molecules and FEH in the crack, but not elsewhere on the surface

  9. PECULIARITIES OF GENERALIZATION OF SIMILAR PHENOMENA IN THE PROCESS OF FISH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    V. A. Pokhol’chenko

    2015-01-01

    Full Text Available The theoretical presuppositions for the possibility of generalizing and similarity founding in dehydration and wet materials heating processes are studieded in this article. It is offered to carry out the given processes generalization by using dimensionless numbers of similarity. At the detailed analyzing of regularities of heat treatment processes of fish in different modes a significant amount of experienced material was successfully generalized on the basis of dimensionless simplex (similarity numbers. Using the dimensionless simplex allowed to detect a number of simple mathematical models for the studied phenomena. The generalized kinetic models of fish dehydration, the generalized dynamic models (changing moisture diffusion coefficients, the generalized kinetic models of fish heating (the temperature field changing in the products thickness, average volume and center were founded. These generalized mathematical models showed also relationship of dehydration and heating at the processes of fish semi-hot, hot smoking (drying and frying. The relationship of the results from the physical nature of the dehydration process, including a change in the binding energy of the moisture with the material to the extent of the process and the shrinkage impact on the rate of the product moisture removal is given in the article. The factors influencing the internal structure and properties of the raw material changing and retarding the dehydration processes are described there. There was a heating rate dependence of fish products on the chemical composition the geometric dimensions of the object of heating and on the coolant regime parameters. A unique opportunity is opened by using the generalized models, combined with empirically derived equations and the technique of engineering calculation of these processes, to design a rational modes of heat treatment of raw materials and to optimize the performance of thermal equipment.

  10. The maximum power condition of the brayton cycle with heat exchange processes

    International Nuclear Information System (INIS)

    Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack

    1985-01-01

    The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)

  11. Multiphoton processes in isolated atoms and molecules

    International Nuclear Information System (INIS)

    Sudbo, A.S.

    1979-11-01

    The theory of coherent excitation of a multilevel quantum mechanical system is developed. Damping of the system is taken into account by the use of a density matrix formalism. General properties of the wave function and/or the density matrix are discussed. The physical implications for the behavior of the system are described, together with possible applications of the formalism, including the infrared multiphoton excitation of molecules, and optical pumping in alkali atoms. Experimental results are presented on the infrared multiphoton dissociation of molecules, followed by a discussion of the general features of this process. The experimental results were obtained using a crossed laser and molecular beam method, and the emphasis is on determining the properties of the dissociating molecule and the dissociation products. The dissociation process is shown to be described very well by the standard statistical theory (RRKM theory) of unimolecular reactions, a brief presentation of which is also included

  12. Heat receivers for solar dynamic space power systems

    Science.gov (United States)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  13. Abnormal Grain Growth in the Heat Affected Zone of Friction Stir Welded Joint of 32Mn-7Cr-1Mo-0.3N Steel during Post-Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Yijun Li

    2018-04-01

    Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.

  14. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  15. Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu

    The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...

  16. Inelastic processes in interaction of an atom with ultrashort pulse of an electromagnetic field

    International Nuclear Information System (INIS)

    Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.

    2005-01-01

    Electron transitions occurring when a heavy relativistic atom interacts with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. Transition probabilities are expressed in terms of the known inelastic atomic form factors. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into exact account magnetic interaction besides spatial inhomogeneity of an ultrashort electromagnetic pulse [ru

  17. Formation of Cu, Ag and Au nanofiims under the influence of hydrogen atoms

    Directory of Open Access Journals (Sweden)

    Zhavzharov E. L.

    2015-12-01

    Full Text Available Due to their electrical properties, thin metallic films are widely used in modern micro- and nanoelectronics. These properties allow solving fundamental problems of surface and solid state physics. Up-to-date methods of producing thin films involve high vacuum or multi-stage processes, which calls for complicated equipment. The authors propose an alternative method of producing thin metallic films using atomic hydrogen. Exothermal reaction of atoms recombination in a molecule (about 4.5 eV / recombination act initiated on the solid surface by atomic hydrogen may stimulate local heating, spraying and surface atoms transfer. We investigated the process of atomic hydrogen treatment of Cu, Ag and Au metal films, obtained by thermal vacuum evaporation. There are two methods of obtaining nanofilms using atomic hydrogen treatment: sputtering and vapor-phase epitaxy. In the first method, a film is formed by reducing the thickness of the starting film. This method allows obtaining a film as thick as the monolayer. In the second method, a nanofilm is formed by deposition of metal atoms from the vapor phase. This method allows obtaining a film thickness from monolayer to ~10 nm. These methods allow creating nanofilms with controlled parameters and metal thickness. Such films would be technologically pure and have good adhesion.

  18. Monomode microwave-assisted atom transfer radical polymerization

    NARCIS (Netherlands)

    Zhang, H.; Schubert, U.S.

    2004-01-01

    The first monomode microwave-assisted atom transfer radical polymerization (ATRP) is reported. The ATRP of methyl methacrylate was successfully performed with microwave heating, which was well controlled and provided almost the same results as experiments with conventional heating, demonstrating the

  19. Separating uranium by laser: the atomic process

    Energy Technology Data Exchange (ETDEWEB)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados

    1996-07-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  20. Separating uranium by laser: the atomic process

    International Nuclear Information System (INIS)

    Destro, Marcelo G.; Damiao, Alvaro J.; Neri, Jose W.; Schwab, Carlos; Rodrigues, Nicolau A.S.; Riva, Rudimar

    1996-01-01

    Among the countries around the world that utilizes nuclear energy, several ones are investing significantly in the development of laser techniques applied to isotope separation. In Brazil these studies are concentrated in one research institute, the IEAv (Institute for Advanced Studies), and aim at demonstrating the viability of this process using, as much as possible, resources available in the country. In this paper we briefly describe the laser methods for isotope separation, giving an overview of the present research and development status in this area. We also show some results obtained our laboratories. We focused this report on the atomic route for laser isotope separation, mainly in the areas of laser development and spectroscopy. (author)

  1. An Innovative VHTR Waste Heat Integration with Forward Osmosis Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    The integration concept implies the coupling of the waste heat from VHTR with the draw solute recovery system of FO process. By integrating these two novel technologies, advantages, such as improvement of total energy utilization, and production of fresh water using waste heat, can be achieved. In order to thermodynamically analyze the integrated system, the FO process and power conversion system of VHTR are simulated using chemical process software UNISIM together with OLI property package. In this study, the thermodynamic analysis on the VHTR and FO integrated system has been carried out to assess the feasibility of the concept. The FO process including draw solute recovery system is calculated to have a higher GOR compared to the MSF and MED when reasonable FO performance can be promised. Furthermore, when FO process is integrated with the VHTR to produce potable water from waste heat, it still shows a comparable GOR to typical GOR values of MSF and MED. And the waste heat utilization is significantly higher in FO than in MED and MSF. This results in much higher water production when integrated to the same VHTR plant. Therefore, it can be concluded that the suggested integrated system of VHTR and FO is a very promising and strong system concept which has a number of advantages over conventional technologies.

  2. Modern trends in increasing the quality of the steels intended for cutting and metal-working tools: I. Improvement of granule metallurgy processes

    Science.gov (United States)

    Belyanchikov, L. N.

    2008-12-01

    The following new technological processes for producing fine gas-atomized powders of tool and high-speed steels with a low content of nonmetallic inclusions are considered: the process designed by Böhler Uddeholm Powder Technology (Austria) and processes involving a heated gas. In the former process, a metal is poured from a ladle with electroslag heating, and the atomizing unit consists of three injectors. A new process of producing tools from fine powders by three-dimensional printing, i.e., so-called 3D-printing, is described.

  3. High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV) - Macroscopic High-Temperature Elastic-Plastic Analysis -

    International Nuclear Information System (INIS)

    Song, Kee Nam; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X was scheduled for testing in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a part of the evaluation of the high-temperature structural integrity of the PHE prototype, high-temperature structural analysis modeling, and macroscopic thermal and elastic-plastic structural analysis of the PHE prototype were carried out under the gas-loop test conditions as a preliminary qwer123$ study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype

  4. A novel NGL (natural gas liquid) recovery process based on self-heat recuperation

    International Nuclear Information System (INIS)

    Van Duc Long, Nguyen; Lee, Moonyong

    2013-01-01

    This study examined an innovative self-heat-recuperation technology that circulates latent and sensible heat in the thermal process and applied it to the NGL (natural gas liquid) recovery process. A CGCC (column grand composite curve) was used to assess the thermodynamic feasibility of implementing the heat pump system and self-heat-recuperation technology into a conventional distillation column. The proposed distillation based on self-heat recuperation reduced the energy consumption dramatically by compressing the effluent stream, whose temperature was increased to provide the minimum temperature difference for the heat exchanger, and circulating the stream heat in the process. According to a simulation of the proposed sequence, up to 73.43 and 83.48% of the condenser and reboiler energy, respectively, were saved compared to a conventional column. This study also proposes heat integration to improve the performance of self-heat recuperation. The results showed that the modified sequence saves up 64.35, 100.00 and 31.60% of the condenser energy requirements, reboiler energy requirements and OP (operating cost), respectively, compared to a classical heat pump system, and 90.24, 100.00, and 67.19%, respectively, compared to a conventional column. The use of these sequences to retrofit a distillation column to save energy was also considered. - Highlights: • Innovative self-heat-recuperation technology that circulates latent and sensible heat. • A CGCC (column grand composite curve) is used to assess the thermodynamic feasibility. • The proposed sequence saves up 67.19% of the OP (operating cost). • The proposed sequences can be used to retrofit a distillation column to save energy

  5. Heat and work distributions for mixed Gauss–Cauchy process

    International Nuclear Information System (INIS)

    Kuśmierz, Łukasz; Gudowska-Nowak, Ewa; Rubi, J Miguel

    2014-01-01

    We analyze energetics of a non-Gaussian process described by a stochastic differential equation of the Langevin type. The process represents a paradigmatic model of a nonequilibrium system subject to thermal fluctuations and additional external noise, with both sources of perturbations considered as additive and statistically independent forcings. We define thermodynamic quantities for trajectories of the process and analyze contributions to mechanical work and heat. As a working example we consider a particle subjected to a drag force and two statistically independent Lévy white noises with stability indices α = 2 and α = 1. The fluctuations of dissipated energy (heat) and distribution of work performed by the force acting on the system are addressed by examining contributions of Cauchy fluctuations (α = 1) to either bath or external force acting on the system. (paper)

  6. Silicon Nano fabrication by Atomic Force Microscopy-Based Mechanical Processing

    International Nuclear Information System (INIS)

    Miyake, Sh.; Wang, M.; Kim, J.

    2014-01-01

    This paper reviews silicon nano fabrication processes using atomic force microscopy (AFM). In particular, it summarizes recent results obtained in our research group regarding AFM-based silicon nano fabrication through mechanochemical local oxidation by diamond tip sliding, as well as mechanical, electrical, and electromechanical processing using an electrically conductive diamond tip. Microscopic three-dimensional manufacturing mainly relies on etching, deposition, and lithography. Therefore, a special emphasis was placed on nano mechanical processes, mechanochemical reaction by potassium hydroxide solution etching, and mechanical and electrical approaches. Several important surface characterization techniques consisting of scanning tunneling microscopy and related techniques, such as scanning probe microscopy and AFM, were also discussed.

  7. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  8. Development of a revolving drum reactor for open-sorption heat storage processes

    International Nuclear Information System (INIS)

    Zettl, Bernhard; Englmair, Gerald; Steinmaurer, Gerald

    2014-01-01

    To evaluate the potential of an open sorption storage process using molecular sieves to provide thermal energy for space heating and hot water, an experimental study of adsorption heat generation in a rotating reactor is presented. Dehydrated zeolite of the type 4A and MSX were used in form of spherical grains and humidified room air was blown through the rotating bed. Zeolite batches of about 50 kg were able to generate an adsorption heat up to 12 kWh and temperature shifts of the process air up to 36 K depending on the inlet air water content and the state of dehydration of the storage materials. A detailed study of the heat transfer effects, the generated adsorption heat, and the evolving temperatures show the applicability of the reactor and storage concept. - Highlights: • Use of an open adsorption concept for domestic heat supply was proved. • A rotating heat drum reactor concept was successfully applied. • Zeolite batches of 50 kg generated up to 12 kWh adsorption heat (580 kJ/kg). • Temperature shift in the rotating material bed was up to 60 K during adsorption

  9. Experiments Demonstrate Geothermal Heating Process

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  10. Tunneling of heat: Beyond linear response regime

    Science.gov (United States)

    Walczak, Kamil; Saroka, David

    2018-02-01

    We examine nanoscale processes of heat (energy) transfer as carried by electrons tunneling via potential barriers and molecular interconnects between two heat reservoirs (thermal baths). For that purpose, we use Landauer-type formulas to calculate thermal conductance and quadratic correction to heat flux flowing via quantum systems. As an input, we implement analytical expressions for transmission functions related to simple potential barriers and atomic bridges. Our results are discussed with respect to energy of tunneling electrons, temperature, the presence of resonant states, and specific parameters characterizing potential barriers as well as heat carriers. The simplicity of semi-analytical models developed by us allows to fit experimental data and extract crucial information about the values of model parameters. Further investigations are expected for more realistic transmission functions, while time-dependent aspects of nanoscale heat transfer may be addressed by using the concept of wave packets scattered on potential barriers and point-like defects within regular (periodic) nanostructures.

  11. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    Science.gov (United States)

    Santi, S. S.; Renanto; Altway, A.

    2018-01-01

    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  12. Research and development prospects for the atomic uranium laser isotope separation process. Research report 442

    International Nuclear Information System (INIS)

    Janes, G.S.; Forsen, H.K.; Levy, R.H.

    1977-06-01

    Research and development activities are being conducted on many aspects of the atomic uranium laser isotope separation process. Extensive laser spectroscopy studies have been made in order to identify attractive multi-step selective ionization schemes. Using low density (10 10 atoms/cm 3 ) apparatus, the excited state spectra of atomic uranium have been investigated via multiple step laser excitation and photoionization studies using two, three and four pulsed lasers. Observation of the spectra was accomplished by observing the yield of 235 U and 238 U ions as a function of the wavelength, intensities and delays of the various lasers. These data yielded information on the photoexcitation and photoionizatin cross sections, and on the location, J values, lifetimes, isotope shifts and hyperfine structure of the various atomic levels of uranium. Experiments on selective ionization of uranium vapor by multiple step laser excitation followed by ion extraction at 10 13 atoms/cm 3 density have produced 6% enriched 235 U. These indicate that this process is well adapted to produce light water reactor fuel but less suitable for highly enriched material. Application has been made for license for a 1979 experimental facility to provide data for a mid-1980 commercial plant

  13. The mechanism of three-body process of energy transfer from excited xenon atoms to molecules

    International Nuclear Information System (INIS)

    Wojciechowski, K.; Forys, M.

    1999-01-01

    The mechanism of energy transfer from Xe(6 s[3/2] 1 ) resonance state (E=8.44 eV) and higher excited Xe(6p, 6p', 6 d) atoms produced in pulse radiolysis to molecules have been discussed. The analysis of the kinetic data for these processes shows that in the sensitized photolysis and radiolysis of Xe-M mixtures the excited atoms decay in 'ordinary' two-body reaction: Xe(6s[3/2] 1 0 )+M→products (r.1) and in fast 'accelerated' third order process: Xe(6s[3/2] 1 0 )+M+Xe→products (r.2) The discussion shows that three-body process occurs via reactions: Xe(6s[3/2] 1 0 )+Xe k w ↔ k d Xe 2 ** (r.2a) Xe 2 **+M k q →[Xe 2 M]*→products (r.2b) It was shown that this mechanism concerns also higher excited Xe atoms and can explain a similar process in He-M mixtures and suggests that it is a general mechanism of energy transfer in all irradiated rare gas-molecule systems

  14. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  15. Overview on collision processes of highly charged ions with atoms present status and problems

    International Nuclear Information System (INIS)

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms

  16. Signal Processing in Cold Atom Interferometry-Based INS

    Science.gov (United States)

    2014-03-27

    angular rotation. Additionally, because of their particle nature, the atoms may be treated as inertial masses and their movement is used to determine the...G(τ)δβ(τ) = Φ(∆t)xi + wdi where β(t) is a Brownian motion process with dispersion Q, andΦ is the discrete-time state transition matrix [14]. That is...identity matrix, I. βA and βG are 3 × 1 vectors of independent, unity Brownian motions, that is, βA(t) ∼ N (0, t · I) and βG(t) ∼ N (0, t · I). The rate

  17. Failure analysis of a heat exchanger used of a wood pulp bleaching process; Analise de falha de um trocador de calor utilizado no processo de branqueamento da polpa de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.B.V.; Moreto, J.A.; Rossino, L.S.; Spinelli, D.; Tarpani, J.R. [Universidade de Sao Paulo (SMM/EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica

    2010-07-01

    This study involved an investigation of the failure of a heat exchanger used in the ozone destruction stage of a wood pulp bleaching process at a pulp plant. The following procedures were carried out to determine the causes of the failure: a chemical analysis of the component, atomic absorption spectroscopy, measurements of hardness and of corrosion-related mass loss, characterization by scanning electron microscopy, and chemical microanalysis by X-ray energy dispersive spectroscopy. The corrosion damage of the heat exchanger was caused by chloric and sulfuric acid, which led to pitting, grooving and cracking, as well as generalized corrosion of the component (AISI 316L steel). Nitric acid caused minimal damage to the heat exchanger, with minor generalized corrosion and occasional pitting. White crystals rich in sulfur and chlorine were identified as the corrosive agents acting inside the heat exchanger. (author)

  18. Development of shelf stable, processed, low acid food products using heat-irradiation combination treatments

    International Nuclear Information System (INIS)

    Minnaar, A.

    1998-01-01

    The amount of ionizing irradiation needed to sterilize low acid vegetable and starch products (with and without sauces) commercially impairs their sensorial and nutritive qualities, and use of thermal processes for the same purpose may also have an adverse effect on the product quality. A systematic approach to the establishment of optimized combination parameters was developed for heat-irradiation processing to produce high quality, shelf stable, low acid food products. The effects of selected heat, heat-irradiation combination and irradiation treatments on the quality of shelf stable mushrooms in brine and rice, stored at ambient temperature, were studied. From a quality viewpoint, use of heat-irradiation combination treatments favouring low irradiation dose levels offered a feasible alternative to thermally processed or radappertized mushrooms in brine. However, shelf stable rice produced by heat-irradiation combination treatments offered a feasible alternative only to radappertized rice from the standpoint of quality. The technical requirements for the heat and irradiation processing of a long grain rice cultivar from the United States of America oppose each other directly, thereby reducing the feasibility of using heat-irradiation combination processing to produce shelf stable rice. The stability of starch thickened white sauces was found to be affected severely during high dose irradiation and subsequent storage at ambient temperature. However, use of pea protein isolate as a thickener in white sauces was found to have the potential to maintain the viscosity of sauces for irradiated meat and sauce products throughout processing and storage. (author)

  19. Theoretical study of charge exchange, ionization and electron loss processes, relevant to controlled thermonuclear research

    International Nuclear Information System (INIS)

    Janev, R.

    1981-03-01

    The following processes have been studied: a) Single and double charge exchange in low, medium and high energy collisions of atoms with multiply charged ions; b) Excitation and ionization processes in low, medium and high energy collisions between multiply charged ions and atoms; c) Ion-ion recombination and ion-pair formation collision processes between hydrogen and alkali atoms (ions); d) Resonant and Auger processes in slow collisions of atomic particles with solid surfaces (including surfaces covered by a sub-monoatomic layer). Processes a) and b) are important for the ''impurity problem'' of magnetically confined tokamak plasmas, whereas processes c) and d) for the production and transport of intense neutral beams for plasma heating

  20. Application of induction heating in food processing and cooking: A Review

    Science.gov (United States)

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  1. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  2. Gasification of coal using nuclear process heat. Chapter D

    International Nuclear Information System (INIS)

    Schilling, H.-D.; Bonn, B.; Krauss, U.

    1979-01-01

    In the light of the high price of coal and the enormous advances made recently in nuclear engineering, the possibility of using heat from high-temperature nuclear reactors for gasification processes was discussed as early as the 1960s. The advantages of this technology are summarized. A joint programme of development work is described, in which the Nuclear Research Centre at Juelich is aiming to develop a high-temperature reactor which will supply process heat at as high a temperature as possible, while other organizations are working on the hydrogasification of lignites and hard coals, and steam gasification. Experiments are at present being carried out on a semi-technical scale, and no operational data for large-scale plants are available as yet. (author)

  3. Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching

    Science.gov (United States)

    Engstrom, James R.; Kummel, Andrew C.

    2017-02-01

    Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.

  4. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  5. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  6. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  7. Heating Processes Of The Axle-Boxes Of Rolling-Stock On Railway Track Curves

    Directory of Open Access Journals (Sweden)

    Olegas Lunys

    2013-12-01

    Full Text Available The article deals with the heating process of the axle-boxes ofrolling stock when the train is in motion and discusses the forcesacting on the wheel-set when rolling stock moves along the trackcurves. The paper analyses scientific publications relevant tothe forces acting on the wheel-set of rolling stock and focuseson the axle-box heating process. The article also discusses theresults of theoretical studies on wheel-set forces that affect theheat exchange process of axle-boxes for a railway vehicle. Theresearch has determined a change in heating temperatures ofdifferent axle-boxes of rolling stock and reasons for their variationsand tendencies. The paper has estimated an effect of thetrain running along the track curves on the heating intensity ofthe axle-box. Finally, valid conclusions and recommendationshave been provided.

  8. Heat supply analysis of steam reforming hydrogen production process in conventional and nuclear

    International Nuclear Information System (INIS)

    Siti Alimah; Djati Hoesen Salimy

    2015-01-01

    Tile analysis of heat energy supply in the production of hydrogen by natural gas steam reforming process has been done. The aim of the study is to compare the energy supply system of conventional and nuclear heat. Methodology used in this study is an assessment of literature and analysis based on the comparisons. The study shows that the heat sources of fossil fuels (natural gas) is able to provide optimum operating conditions of temperature and pressure of 850-900 °C and 2-3 MPa, as well as the heat transfer is dominated by radiation heat transfer, so that the heat flux that can be achieved on the catalyst tube relatively high (50-80 kW/m"2) and provide high thermal efficiency of about 85 %. While in the system with nuclear energy, due to the demands of safety, process operating at less than optimum conditions of temperature and pressure of 800-850 °C and 4.5 MPa, as well as the heat transfer is dominated by convection heat transfer, so that the heat flux that can be achieved catalyst tube is relatively low (1020 kW/m"2) and it provides a low thermal efficiency of about 50 %. Modifications of reformer and heat utilization can increase the heat flux up to 40 kW/m"2 so that the thermal efficiency can reach 78 %. Nevertheless, the application of nuclear energy to hydrogen production with steam reforming process is able to reduce the burning of fossil fuels which has implications for the potential decrease in the rate of CO2 emissions into the environment. (author)

  9. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    International Nuclear Information System (INIS)

    Makarov, D.N.; Matveev, V.I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  10. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  11. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  12. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  13. Fractional-Order Identification and Control of Heating Processes with Non-Continuous Materials

    Directory of Open Access Journals (Sweden)

    Riccardo Caponetto

    2016-11-01

    Full Text Available The paper presents a fractional order model of a heating process and a comparison of fractional and standard PI controllers in its closed loop system. Preliminarily, an enhanced fractional order model for the heating process on non-continuous materials has been identified through a fitting algorithm on experimental data. Experimentation has been carried out on a finite length beam filled with three non-continuous materials (air, styrofoam, metal buckshots in order to identify a model in the frequency domain and to obtain a relationship between the fractional order of the heating process and the different materials’ properties. A comparison between the experimental model and the theoretical one has been performed, proving a significant enhancement of the fitting performances. Moreover the obtained modelling results confirm the fractional nature of the heating processes when diffusion occurs in non-continuous composite materials, and they show how the model’s fractional order can be used as a characteristic parameter for non-continuous materials with different composition and structure. Finally, three different kinds of controllers have been applied and compared in order to keep constant the beam temperature constant at a fixed length.

  14. Kinetic and radiation processes in cluster plasmas

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1996-01-01

    The analysis of processes is made for a cluster plasma which is a xenon arc plasma of a high pressure with an admixture of tungsten cluster ions. Because cluster ions emit radiation, this system is a light source which parameters are determined by various processes such as heat release and transport of charged particles in the plasma, radiative processes involving clusters, processes of cluster evaporation and attachment of atoms to it that leads to an equilibrium between clusters and vapor of their atoms, processes of cluster generation, processes of the ionization equilibrium between cluster ions and plasma electrons, transport of cluster ions in the discharge plasma in all directions. These processes govern by properties of a specific cluster plasma under consideration. (author)

  15. [Modeling of processes of heat transfer in whole-body hyperthermia].

    Science.gov (United States)

    Kinsht, D N

    2006-01-01

    The method of whole-body hyperthermia in which the body temperature for a short time reaches values up to 43-44 degrees C holds currently much promise. However, at body temperatures above 42 degrees C, the risks associated with the hemodynamic instability and the appearance of arrhythmia in the patient increase. A model of heat transfer has been created to increase the efficiency and safety of the immersion-convectional method of whole-body hyperthermia. This model takes into account changes in the skin blood flow and the dynamics of pulse rate depending on body temperature. The model of heat transfer adequately reflects processes of heating of the organism and can form a basis for the calculation of distribution of heat inside the organism.

  16. Theoretical calculations of electron-impact and radiative processes in atoms

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1975-01-01

    Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated

  17. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  18. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  19. Analysis of heating effect on the process of high deposition rate microcrystalline silicon

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; He, Zhang; Chang-Chun, Wei; Jian, Sun; Guo-Fu, Hou; Shao-Zhen, Xiong; Xin-Hua, Geng; Ying, Zhao

    2010-01-01

    A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated

  20. Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers

    Science.gov (United States)

    Johansson, M.; Baxter, D. C.; Ohlsson, K. E. A.; Frech, W.

    1997-05-01

    The cross-sectional and longitudinal spatial distributions of lead atoms in a quartz tube (QT) atomizers coupled to a gas chromatograph have been investigated. A uniform analyte atom distribution over the cross-section was found in a QT having an inner diameter (i.d.) of 7 mm, whereas a 10 mm i.d. QT showed an inhomogeneous distribution. These results accentuate the importance of using QTs with i.d.s below 10 mm to fulfil the prerequirement of the Beer—Lambert law to avoid bent calibration curves. The influence of the make up gas on the formation of lead atoms from alkyllead compounds has been studied, and carbon monoxide was found equally efficient in promoting free atom formation as hydrogen. This suggests that hydrogen radicals are not essential for mediating the atomization of alkyllead in QT atomizers at ˜ 1200 K. Furthermore, thermodynamic equilibrium calculations describing the investigated system were performed supporting the experimental results. Based on the presented data, a mechanism for free lead atom formation in continuously heated QT atomizers is proposed; thermal atomization occurs under thermodynamic equilibrium conditions in a reducing gas. The longitudinal atom distribution has been further investigated applying other make up gases, N 2 and He. These results show the effect of the influx of atmospheric oxygen on the free lead atom formation. Calculations of the partial pressure of oxygen in the atomizer gas phase assuming thermodynamic equilibrium have been undertaken using a convective-diffusional model.

  1. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  2. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  3. Evaporative cooling of cold atoms in a surface trap

    International Nuclear Information System (INIS)

    Hammes, M.; Rychtarik, D.; Grimm, R.

    2001-01-01

    Full text: Trapping cold atom close to a surface is a promising route for attaining a two-dimensional quantum gas. We present our gravito-optical surface trap (LOST), which consists of a horizontal evanescent-wave atom mirror in combination with a blue-detuned hollow beam for transverse confinement. Optical pre-cooling based on inelastic reflections from the evanescent wave provides good starting conditions for subsequent evaporative cooling, which can be realized by ramping down the optical potentials of the trap. Already our preliminary experiments (performed at the MPI fuer Kernphysik in Heidelberg) show a 100-fold increase in phase-space density and temperature reduction to 300 nK. Substantial further improvements can be expected in our greatly improved set-up after the recent transfer of the experiment to Innsbruck. By eliminating heating processes, optimizing the evaporation ramp, polarizing the atoms and by using an additional far red-detuned laser beam we expect to soon reach the conditions of quantum degeneracy and/or two-dimensionality. (author)

  4. Study of the Dissociative Processes in O_2 Discharges. Development of an Atomic Oxygen Beam Source

    International Nuclear Information System (INIS)

    Pagnon, Daniel

    1992-01-01

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [fr

  5. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  6. Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.; (UNC)

    2010-09-30

    The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the {approx} 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 {angstrom} resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.

  7. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  8. End-use matching for solar industrial process heat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  9. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  10. Diabatic and adiabatic representations for atomic collision processes

    International Nuclear Information System (INIS)

    Delos, J.B.; Thorson, W.R.

    1979-01-01

    A consistent general definition of diabatic representations has not previously been given, even though many practical examples of such representations have been constructed for specific problems. Such a definition is provided in this paper. Beginning with a classical trajectory formulation, we describe the form and behavior of velocity-dependent couplings in slow collisions, including the effects of electron-translation factors (ETF's). We compare the couplings arising from atomic representations and atomic ETF's with those arising from molecular representations and ''switching function'' ETF's. We show that a unique set of switching functions makes the two descriptions identical in their effects. We then show that an acceptable general definition of a diabatic representation is provided by the condition P+A=0, where P is the usual nonadiabatic coupling matrix and A represents corrections to it arising from electron translation factors (ETF's). Two distinct types of diabatic representation result, depending on the definition taken for A. States that undergo no deformation are called F diabatic; those that have no velocity-dependent couplings are called M diabatic. Finally, we discuss the properties of representations that are partially diabatic and partially adiabatic, and we give some rules for the construction of representations that should be nearly optimal for describing many types of collision processes

  11. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Directory of Open Access Journals (Sweden)

    Voytkov Ivan V.

    2016-01-01

    Full Text Available The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  12. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  14. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    Energy Technology Data Exchange (ETDEWEB)

    Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Rosyidah, Nurul, E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Darminto, E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Campus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2014-02-24

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.

  15. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    International Nuclear Information System (INIS)

    Wachid, Frischa M.; Perkasa, Adhi Y.; Prasetya, Fandi A.; Rosyidah, Nurul; Darminto

    2014-01-01

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX

  16. Physics for all, who want to join in conversation. On atomic power, dirty bombs, space research, solar energy, and the global heating

    International Nuclear Information System (INIS)

    Muller, Richard A.

    2009-01-01

    Which dangers contains the global heating really? What can happen at an attack on a atomic power plant?. Which chances offer renewable energies? Questions which are put daily in the pursuing of news - but to which we have only seldomly answers ready, because basic physical knowledge is absent. But it must not even be the great world policy. Already at the decision wether solar cells shall be mounted on the roof or punted on geothermal heat physics are not unimportant. More often than we think it are natural sciences, which yield the foundations for important decisions. Richard A. Muller explains simply and illustratively, how physics determines our life. Thereby he removes prejudices and mediates quite surprising insights

  17. Development program for the high-temperature nuclear process heat system

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1975-09-01

    A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning

  18. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  19. Heat-processing method and facility for helium-containing metal material

    International Nuclear Information System (INIS)

    Kato, Takahiko; Kodama, Hideyo; Matsumoto, Toshimi; Aono, Yasuhisa; Nagata, Tetsuya; Hattori, Shigeo; Kaneda, Jun-ya; Ono, Shigeki.

    1996-01-01

    Electric current is supplied to an objective portion of a He-containing metal material to be applied with heat processing without causing melting, to decrease the He content of the portion. Subsequently, the defect portion of the tissues of the He-containing metal is modified by heating the portion with melting. Since electric current can be supplied to the metal material in a state where the metal material is heated and the temperature thereof is elevated, an effect of further reducing the He content can be obtained. Further, if the current supply and/or the heating relative to the metal material is performed in a vacuum or inert gas atmosphere, an effect of reducing the degradation of the surface of the objective portion to be supplied with electric current can be obtained. (T.M.)

  20. Improved process for the treatment of bituminous materials. [two heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    1947-04-30

    A continuous process for recovering valuable hydrocarbon oils from solid minerals adapted to produce such oils upon application of heat, consists of reducing the raw minerals to a powder, suspending the powdered minerals in a gaseous medium and subjecting the suspension thus formed to heat treatment in a primary reaction zone, followed by heat treatment in a secondary reaction zone separate from the primary reaction zone. The temperature during the second of said treatments being substantially higher than that of the first.

  1. Matter, energy, and heat transfer in a classical ballistic atom pump.

    Science.gov (United States)

    Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B

    2014-11-01

    A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.

  2. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  3. Distribution of tritium in a nuclear process heat plant with HTR

    International Nuclear Information System (INIS)

    Steinwarz, W.; Stoever, D.; Hecker, R.; Thiele, W.

    1984-01-01

    The application of HTR-process heat in chemical processes involves low contamination of the product by tritium permeation through the heat exchanger walls. According to conservative assumptions for the tritium release rate and based on experimental permeation data of the German R und D-program a tritium concentration in the PNP-product gas of about 10 pCi/g was calculated. The domestic use of the product gas in unvented kitchen ranges as the most important direct radiation exposure pathway then leads to an effective equivalent radiation dose of only 20 μrem/a. (orig.)

  4. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  5. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  6. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  7. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  8. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  9. Process heat recovery: hot prospects

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    By updating established technologies to recover heat at higher temperatures and under more corrosive conditions, British industry could recover six to eight million tons of coal equivalent that it currently wastes. Organic liquids in organic Rankine cycle (ORC) engines and simpler designs than steam turbines can increase efficiency. They also eliminate the need for vacuum pumps and permit the use of air cooling. Cooperative government-private industry research programs are exploring the use of ORC engines. Other heat-recovery projects include a Scottish paper mill, a metal decorating and printing plant, a falling-cloud heat exchanger, and heat-pipe development. 4 figures, 1 table. (DCK)

  10. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Science.gov (United States)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  11. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  12. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  13. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  14. Atomic data on inelastic processes in low-energy manganese-hydrogen collisions

    Science.gov (United States)

    Belyaev, Andrey K.; Voronov, Yaroslav V.

    2017-10-01

    Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F

  15. The thermodynamic quantity minimized in steady heat and fluid flow processes: A control volume approach

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.

    2012-01-01

    Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.

  16. Preparation of silicon carbide nanowires via a rapid heating process

    International Nuclear Information System (INIS)

    Li Xintong; Chen Xiaohong; Song Huaihe

    2011-01-01

    Silicon carbide (SiC) nanowires were fabricated in a large quantity by a rapid heating carbothermal reduction of a novel resorcinol-formaldehyde (RF)/SiO 2 hybrid aerogel in this study. SiC nanowires were grown at 1500 deg. C for 2 h in an argon atmosphere without any catalyst via vapor-solid (V-S) process. The β-SiC nanowires were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) equipped with energy dispersive X-ray (EDX) facility, Fourier transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The analysis results show that the aspect ratio of the SiC nanowires via the rapid heating process is much larger than that of the sample produced via gradual heating process. The SiC nanowires are single crystalline β-SiC phase with diameters of about 20-80 nm and lengths of about several tens of micrometers, growing along the [1 1 1] direction with a fringe spacing of 0.25 nm. The role of the interpenetrating network of RF/SiO 2 hybrid aerogel in the carbothermal reduction was discussed and the possible growth mechanism of the nanowires is analyzed.

  17. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  18. Design of the steam reformer for the HTR-10 high temperature process heat application

    International Nuclear Information System (INIS)

    Ju Huaiming; Xu Yuanhui; Jia Haijun

    2000-01-01

    The 10 MW High Temperature Reactor Test Module (HTR-10) is being constructed now and planned to be operational in 2000. One of the objectives is to develop the high temperature process heat application. The methane steam reformer is one of the key-facilities for the nuclear process heat application system. The paper describes the conceptual design of the HTR-10 Steam Reformer with He heating, and the design optimization computer code. It can be used to perform sensitivity analysis for parameters, and to improve the design. Principal parameters and construction features of the HTR-10 reformer heated by He are introduced. (author)

  19. Analysis of nuclear grade uranium oxides by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.; Pazos, A.L.

    1986-01-01

    The application of atomic absorption spectrometry for the determination of five trace impurities in nuclear grade uranium oxides is described. The elements were separated from the uranium matrix by extraction chromatography and determined in 5.5 M nitric acid by electrothermal atomization using pyrolytic graphite coated tubes. Two elements, cadmium and chromium, with different volatility characteristics were employed to investigate the operating conditions. Drying and ashing conditions were studied for both elements. Ramp and constant potential (step) heating modes have also been studied and compared. Good reproducibility and a longer life of graphite tubes were obtained with ramp atomization. Detection limits (in micrograms per gram of uranium) were: Cd 0.01; Cr 0.1; Cu 0.4; Mn 0.04 and Ni 0.2. (author) [es

  20. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  1. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  2. Gas atomization processing of tin and silicon modified LaNi5 for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB5 alloys for battery applications. These studies involved LaNi5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB5 alloy powder for further processing advantage. Gas atomization processing of the AB5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle

  3. Site determination of Ni atoms in Cu-Al-Ni shape memory alloys by electron channelling enhanced microanalysis

    International Nuclear Information System (INIS)

    Nakata, Yoshiyuki; Tadaki, Tsugio; Shimizu, Ken-ichi

    1990-01-01

    The crystallographic site of Ni atoms in the parent phase of differently heat-treated Cu-28.6Al-3.7Ni (at.%) shape memory alloys has been examined by electron channelling enhanced microanalysis (ALCHEMI) in order to clarify effects of heat-treatments on the Ni atom site and M s temperature. The heat-treatments were as follows: (a) Quenching into a 10% NaOH solution at 263 K, (b) Quenching into hot water at 363 K and (c) Aging at 523 K for 3.6 ks after treatment (b). The M s temperatures of specimens (a), (b) and (c) were 158, 185 and 259 K, respectively, increasing with lowering quenching rate or aging. ALCHEMI revealed that Ni atoms occupied an identical site in all the three kinds of specimens: The Ni atoms were located at the nearest neighbor sites around Al atoms. This preferential occupation of Ni atoms was attributed to the strong binding force between Ni and Al atoms. Thus, the change in M s temperature due to different heat-treatments was not directly related to the crystallographic site of Ni atoms, but might be caused by the ordering between the next nearest neighbor Cu and Al atoms. (author)

  4. Isomorphic Properties of Atoms, Molecules, Water, DNA, Crystals, Earth, SolarSystem and Galaxies

    Science.gov (United States)

    Gareev, F. A.; Gareeva, G. F.; Zhidkova, I. E.

    2009-03-01

    We discuss the cooperative resonance synchronization enhancement mechanisms of Low Energy Nuclear Reactions (LENR). Some of the low energy external fields can be used as triggers for starting and enhancing exothermic LENR. Any external field shortening distances between protons in nuclei and electrons in atoms should enhance beta-decay (capture) or double-beta decay (capture). We have proposed a new mechanism of LENR: cooperative resonance synchronization processes in the whole system nuclei+atoms+condensed matter+gaseuos+plasma medium, which we suggest can occur at a smaller threshold than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy, and transmutations at LENR are the result of redistribution inner energy of the whole system.

  5. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    Science.gov (United States)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the

  6. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  7. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  8. Atomic process calculations in hot dense plasmas using average atom models

    International Nuclear Information System (INIS)

    Velarde, G.; Aragones, J.M.; Gamez, L.; Honrubia, J.J.; Martinez-Val, J.M.; Minguez, E.; Ocana, J.L.; Perlado, J.M.; Serrano, J.F.

    1987-01-01

    During the past years, an important effort has been devoted in the authors Institute to develop the NORCLA code, which in the first version was characterized by the following features: one-dimensional lagrangian mesh; equilibrium between radiation, ion and electron species; local alpha energy deposition; neutron transport by the discrete ordinates method and analytical equation of state, opacities and conductivities. In the successive versions of NORCLA, EOS and electron conductivities were modified by the pressure ionization and degeneracy corrections; a module was also developed for computing the energy deposition of the incident ion beams coupled to the energy equation, and a code to calculate the alpha particle transport and energy deposition. Recently, a 3T version of the NORCLA code, with tabular EOS, opacities and conductivities, laser ray tracing and suprathermal electrons transport has been produced. In this article, the atomic physic models developed to determine more accurate the atomic data, such as EOS and opacities are explained, giving a brief description and a comparison of them. As a result of this development, a DENIM Atomic Data Library is being generated, taking some data and procedures from the SESAME Library. This library is presented, including a comparison of the opacity data for aluminium and iron at different densities and temperatures. Conclusions about this work are presented, and the ongoing developments summarized

  9. Higher-order processes in x-ray photoionization of atoms

    International Nuclear Information System (INIS)

    Kanter, E. P.; Dunford, R. W.; Krassig, B.; Southworth, S. H.; Young, L.

    2006-01-01

    There are several fourth-generation X-ray light source projects now underway around the world and it is anticipated that by the end of the decade, one or more of these X-ray free-electron lasers will be operational. In this contribution, we describe recent measurements and future plans to study both multielectron and multiphoton atomic photoionization. Although such higher-order processes are rare with present third-generation sources, they will be commonplace in experimental work with the new sources. The topics we discuss here are double K-shell ionization and two-photon X-ray photoionization

  10. Processing of light and heat-resistant alloys. Obrabotka legkikh i zharoprochnykh splavov

    Energy Technology Data Exchange (ETDEWEB)

    Belova, A F

    1976-01-01

    Results are given on the latest studies undertaken by Academician A.F. Belov. An examination is made of general problems in the processing (pressure, welding, thermal treatment, and others) of light and heat-resistant metals, problems in the technology and metal science studies of aluminum alloys, and problems of metallurgy and the processing of titanium and heat-resistant alloys. The publication is designed for researchers, designers, metallurgists, metal science specialists, machine building specialists, and students at corresponding institutions of higher learning.

  11. To problem of experimental determination of parameters of μ-atom charge-exchange process of hydrogen isotopes on He nuclei

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Stolupin, V.A.

    1990-01-01

    The kinetics of μ-atomic and μ-molecular processes occuring in hydrogen isotopes-helium mixture is observed. The expressions are obtained to determine the parameters of a process of the muon transition from hydrogen isotope μ atoms to helium nuclei with the use of different experimental methods. 18 refs.; 3 figs.; 1 tab

  12. In-situ observation of Cu-Pt core-shell nanoparticles in the atomic scale by XAFS

    International Nuclear Information System (INIS)

    Zheng, Xusheng; Liu, Shoujie; Chen, Xing; Cheng, Jie; Ye, Qing; Pan, Zhiyun; Chu, Wangsheng; Wu, Ziyu; Marcelli, Augosto

    2013-01-01

    Bimetallic nanoparticles play an important role in potential industrial applications, such as catalysis, optoelectronics, information storage and biological labeling. Herein, homogeneous Cu-Pt core-shell nanoparticles with the averaged size of 8 nm have been synthesized by chemical methods. Cu atoms diffusion process, which motivated by heating, was observed in-situ by using temperature-dependent x-ray absorption fine-structure (XAFS) spectroscopy. Results show that Cu diffuse gradually from Cu core to Pt shell in these nanoparticles with increasing temperature. We also found the surface ligand (O) bonded Pt at the room temperature and were removed gradually by heating the sample. The analysis of the diffusion process in bimetallic nanoparticles will provide important guideline for their designing and tuning.

  13. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  14. Development of laser atomic spectroscopic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Ohr, Young Gie; Cha, Hyung Ki

    1990-06-01

    Some preliminary results on the resonant ionization spectroscopy for Na and Pb atoms are presents both in theory and in experiment. A single color multiphoton ionization process is theoretically analysed in detail, for the resonant and non-resonant cases, and several parameters determining the overall ionization rate are summarized. In particular, the AC stark shift, the line width and the non-linear coefficient of ionization rate are recalculated using the perturbation theory in resolvent approach. On the other hand, the fundamental equipments for spectroscopic experiments have been designed and manufactured, which include a Nd:YAG laser, a GIM-type dye laser, a vacuum system ionization cells, a heat pipe oven, and an ion current measuring system. The characteristics of the above equipments have also been examined. Using the spectroscopic data available, several ionization schemes are considered and the relative merits for ionization have been discussed. Moreover, the effects due to the buffer gas pressure, laser intensity, vapor density and electrode voltage have been investigated in detail. The experiments will be extended to multi-color processes with several resonances, and the ultimate goal is to develop a ultrasensitive analytical method for pollutive heavy metal atoms using the resonant ionization spectroscopy. (author)

  15. Ion-atom collisions for materials study

    International Nuclear Information System (INIS)

    Loaiza S, N.S.

    1976-01-01

    The diffusion process of silver in aluminium was studied in thin films as a function of temperature, the most important characteristics of dispersor atoms that technique permits us to study are the atomic mass and depth into the solid. This is possible because when a sample is bombarded with ions of a given energy, the ions are dispersed with different energies for different masses and depths, hence this technique is a useful instrument for research into the physical processes which ocurr in thin films up to depths of several microns, one of the results obtained after the bombardment of the target with protons having an energy of 650 KeV was that when the target reached a temperature of approximately 40 0 C, 80 0 C, 110 0 C and 160 0 C during 15 minutes and the spectra of heated and unheated targets were compared it was found that the aluminium peak, the valley, the silver peak and the peak over the silver peak change with the increase of temperature and tend to get mixed, that is to say that silver and the aluminium are diffusing themselves. The analysis is essentially qualitative with this technique we ca also measure the thickness of thin films, the silver thickness was measured (3320A). (author)

  16. Dislocations and elementary processes of plasticity in FCC metals: atomic scale simulations

    International Nuclear Information System (INIS)

    Rodney, D.

    2000-01-01

    We present atomic-scale simulations of two elementary processes of FCC crystal plasticity. The first study consists in the simulation by molecular dynamics, in a nickel crystal, of the interactions between an edge dislocation and glissile interstitial loops of the type that form under irradiation in displacement cascades. The simulations show various atomic-scale interaction processes leading to the absorption and drag of the loops by the dislocation. These reactions certainly contribute to the formation of the 'clear bands' observed in deformed irradiated materials. The simulations also allow to study quantitatively the role of the glissile loops in irradiation hardening. In particular, dislocation unpinning stresses for certain pinning mechanisms are evaluated from the simulations. The second study consists first in the generalization in three dimensions of the quasi-continuum method (QCM), a multi-scale simulation method which couples atomistic techniques and the finite element method. In the QCM, regions close to dislocation cores are simulated at the atomic-scale while the rest of the crystal is simulated with a lower resolution by means of a discretization of the displacement fields using the finite element method. The QCM is then tested on the simulation of the formation and breaking of dislocation junctions in an aluminum crystal. Comparison of the simulations with an elastic model of dislocation junctions shows that the structure and strength of the junctions are dominated by elastic line tension effects, as is assumed in classical theories. (author)

  17. Assessment of very high temperature reactors in process applications

    International Nuclear Information System (INIS)

    Jones, J.E. Jr.; Spiewak, I.; Gambill, W.R.

    1976-01-01

    In April 1974, the United States Energy Research and Development Administration (ERDA) authorized General Atomic Company, General Electric Company, and Westinghouse Astronuclear Laboratory to assess the available technology for producing process heat utilizing a very high temperature nuclear reactor (VHTR). The VHTR is defined as a gas-cooled graphite-moderated reactor. Oak Ridge National Laboratory has been given a lead role in evaluating the VHTR reactor studies and potential applications of the VHTR. Process temperatures up to the 760 to 871 0 C range appear to be achievable with near-term technology. The major development considerations are high temperature materials, the safety questions (especially regarding the need for an intermediate heat exchanger) and the process heat exchanger. The potential advantages of the VHTR over competing fossil energy sources are conservation of fossil fuels and reduced atmospheric impacts. Costs are developed for nuclear process heat supplied from a 3000-MW(th) VHTR. The range of cost in process applications is competitive with current fossil fuel alternatives

  18. Weldability of general purpose heat source new-process iridium

    International Nuclear Information System (INIS)

    Kanne, W.R.

    1987-01-01

    Weldability tests on General Purpose Heat Source (GPHS) iridium capsules showed that a new iridium fabrication process reduced susceptibility to underbead cracking. Seventeen capsules were welded (a total of 255 welds) in four categories and the number of cracks in each weld was measured

  19. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1991-01-01

    This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic targets at intermediate energies. The immediate goal is to study elastic scattering, single electron detachment, and target excitation/ionization in H - scattering from noble gas targets. For the target inelastic processes, these cross sections are unknown both experimentally and theoretically. The present measurements will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion collisions. This series of experiments required the construction of a new facility, and significant progress toward its operation has been realized during this period. The proposed research is described in this report. The progress on and the status of the apparatus is also detailed in this report

  20. Multiphoton processes for atoms in intense electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.A.; Abdallah, J.; Csanak, G.

    1995-12-31

    Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  1. Prototype plant for nuclear process heat (PNP), reference phase

    International Nuclear Information System (INIS)

    Fladerer, R.; Schrader, L.

    1982-07-01

    The coal gasification processes using nuclear process heat being developed within the framwork of the PNP project, have the advantages of saving feed coal, improving efficiency, reducing emissions, and stabilizing energy costs. One major gasification process is the hydrogasification of coal for producing SNG or gas mixture of carbon monoxide and hydrogen; this process can also be applied in a conventional route. The first steps to develop this process were planning, construction and operation of a semi-technical pilot plant for hydrogasification of coal in a fluidized bed having an input of 100 kg C/h. Before the completion of the development phase (reference phase) describing here, several components were tested on part of which no operational experience had so far been gained; these were the newly developed devices, e.g. the inclined tube for feeding coal into the fluidized bed, and the raw gas/hydrogenation gas heat exchanger for utilizing the waste heat of the raw gas leaving the gasifier. Concept optimizing of the thoroughly tested equipment parts led to an improved operational behaviour. Between 1976 and 1980, the semi-technical pilot plant was operated for about 19,400 hours under test conditions, more than 7,400 hours of which it has worked under gasification conditions. During this time approx. 1,100 metric tons of dry brown coal and more than 13 metric tons of hard coal were gasified. The longest coherent operational phase under gasification conditions was 748 hours in which 85.4 metric tons of dry brown coal were gasified. Carbon gasification rates up to 82% and methane contents in the dry raw gas (free of N 2 ) up to 48 vol.% were obtained. A detailed evaluation of the test results provided information of the results obtained previously. For the completion of the test - primarily of long-term tests - the operation of the semi-technical pilot plant for hydrogasification of coal is to be continued up to September 1982. (orig.) [de

  2. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2015-01-01

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  3. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  4. Emission spectrum of a harmonically trapped Λ-type three-level atom

    International Nuclear Information System (INIS)

    Guo Hong; Tang Pei

    2013-01-01

    We theoretically investigate the emission spectrum for a Λ-type three-level atom trapped in the node of a standing wave. We show that the atomic center-of-mass motion not only directly affects the peak number, peak position, and peak height in the atomic emission spectrum, but also influences the effects of the cavity field and the atomic initial state on atomic emission spectrum. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  6. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  7. Analysis of prompt supercritical process with heat transfer and temperature feedback

    Institute of Scientific and Technical Information of China (English)

    ZHU BO; ZHU Qian; CHEN Zhiyun

    2009-01-01

    The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper.Considering the effect of heat transfer on temperature of the reactor,a new model is set up.For any initial power,the variations of output power and reactivity with time are obtained by numerical method.The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed.It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power,and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper,and the analytical solution can be adopted.The results provide a theoretical base for safety analysis and operation management of a power reactor.

  8. District heating for increased biogas production. Technical and economical evaluation of district heating as heating source in biogas processes; Fjaerrvaerme foer utoekad biogasproduktion. Teknisk och ekonomisk utvaerdering av fjaerrvaerme foer uppvaermning av biogasprocesser

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Per (AaF-Consult AB, Stockholm (Sweden))

    2009-11-15

    This report presents a technical evaluation, the potential and an economical evaluation of the increased net biogas production by using district heating as energy supply for different types of biogas production units. The study presents generalized results for different plant sizes. The district heating is considered as replacement of the heat produced by burning biogas in a hot-water boiler. Hence more biogas could be available for upgrading to fuel-gas quality to be used in vehicles as a renewable fuel. The study is aimed at biogas producers, district heating and combined heat and power (CHP) companies. Biogas has a composition of mostly methane (about 65 %) and carbon dioxide (about 35 %) and small amounts of other gases e.g. sulphur dioxide (H{sub 2}S). Biogas up-grading is a process where the methane content is increased to about 97 % by removing most of the other gases in e.g. an absorption unit. The Swedish biogas is mainly produced in several sewage treatment plants and some co-digestion units but is also collected from dumps. Biogas is produced by anaerobic microorganisms at temperatures of about 36 and 55 deg C which correspond to the thermal optimum for mesophile and thermophile bacteria respectively. Co-digestion of animal material which e.g. is contained in collected organic household waste has to be pasteurized at 70 deg C for 1h according to EU-regulations. Such regulations may also be introduced to the sludge from municipal sewage treatment plants. Due to the fact that the process temperature is higher than the temperature of the substrate (sludge or organic waste material) as well as the outdoor temperature, both heating of the incoming substrate and compensation of heat losses are required. Traditionally most of the biogas has been burnt to generate the necessary heat for the process and premises at the plant. The excess gas has been burnt in a torch. In recent years the biogas produced in Sweden has found increased use as a renewable vehicle fuel

  9. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  10. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    International Nuclear Information System (INIS)

    Boudreault, E; Hazel, B; Côté, J; Godin, S

    2014-01-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated C A6NM . This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named S compi . This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions

  11. Study on VCSEL laser heating chip in nuclear magnetic resonance gyroscope

    Science.gov (United States)

    Liang, Xiaoyang; Zhou, Binquan; Wu, Wenfeng; Jia, Yuchen; Wang, Jing

    2017-10-01

    In recent years, atomic gyroscope has become an important direction of inertial navigation. Nuclear magnetic resonance gyroscope has a stronger advantage in the miniaturization of the size. In atomic gyroscope, the lasers are indispensable devices which has an important effect on the improvement of the gyroscope performance. The frequency stability of the VCSEL lasers requires high precision control of temperature. However, the heating current of the laser will definitely bring in the magnetic field, and the sensitive device, alkali vapor cell, is very sensitive to the magnetic field, so that the metal pattern of the heating chip should be designed ingeniously to eliminate the magnetic field introduced by the heating current. In this paper, a heating chip was fabricated by MEMS process, i.e. depositing platinum on semiconductor substrates. Platinum has long been considered as a good resistance material used for measuring temperature The VCSEL laser chip is fixed in the center of the heating chip. The thermometer resistor measures the temperature of the heating chip, which can be considered as the same temperature of the VCSEL laser chip, by turning the temperature signal into voltage signal. The FPGA chip is used as a micro controller, and combined with PID control algorithm constitute a closed loop control circuit. The voltage applied to the heating resistor wire is modified to achieve the temperature control of the VCSEL laser. In this way, the laser frequency can be controlled stably and easily. Ultimately, the temperature stability can be achieved better than 100mK.

  12. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Science.gov (United States)

    2010-01-01

    ... processing systems. 318.305 Section 318.305 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing...

  13. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  14. Tube with helical grooving for a heat exchanger and its manufacturing process

    International Nuclear Information System (INIS)

    Yampolsky, J.S.

    1980-01-01

    This claim broadly concerns heat transfer tubes for heat exchangers of the kind described in the main patent specification and, in particular, a heat transfer tube and a process for manufacturing it. This tube includes a strip of metal, the opposite sides of which extend to form a certain number of longitudinal grooves of specific profile and height. This strip is helically wound and the lateral edges are joined butt to butt so as to be leak tight to fluids [fr

  15. Ionisation of hydrogen-like atoms by a multiphoton absorption process

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.

    1967-01-01

    The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr

  16. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  17. The processing and management of wastes from atomic reactors

    International Nuclear Information System (INIS)

    Cerre, P.; Mestre, E.; Bourdrez, J.

    1964-01-01

    The policy concerning radioactive wastes studied by all Atomic Centres has led to various procedures which, while apparently numerous, come under a few standard headings. Whether the wastes are in the liquid or solid state their management depends on their physical and chemical nature. The procedure adopted is governed by three general principles: - determination of the most economical means possible of storage and processing by volume reduction; - conversion to a solid compact form; - complete acceptance of the accepted standards at all places and all times. In this communication all the standard solutions adopted and used by the various Centres of the Commissariat a l'Energie Atomique will be examined bearing in mind the preceding remarks. Particular mention will be made of the following: - For liquids, physical, chemical and physico-chemical processing - For solids, decontamination, volume reduction and long-term conditioning techniques. The different procedures for collecting and storing solid wastes before and after processing are also discussed. The paper ends with a brief review of the studies, both technical and economic, being pursued on this subject. (authors) [fr

  18. In-situ observation of atomic self-organization processes in Xe nanocrystals embedded in Al

    International Nuclear Information System (INIS)

    Mitsuishi, K.; Song, M.; Furuya, K.; Birtcher, R. C.; Allen, C. W.; Donnelly, S. E.

    1998-01-01

    Self-organization processes in Xe nanocrystals embedded in Al are observed with in-situ high-resolution electron microscopy. Under electron irradiation, stacking fault type defects are produced in Xe nanocrystals. The defects recover in a layer by layer manner. Detailed analysis of the video reveals that the displacement of Xe atoms in the stacking fault was rather small for the Xe atoms at boundary between Xe and Al, suggesting the possibility of the stacking fault in Xe precipitate originating inside of precipitate, not at the Al/Xe interface

  19. Effect of heat processing on the proximate composition and energy ...

    African Journals Online (AJOL)

    Dr J. T. Ekanem

    Received 5 August 2006. MS/No BKM/2006/027, ... In each of these locations, heat processing generally increased moisture ... underground water with hydrocarbons and dispersant products1. ..... Technology of Yam Tubers, Vol. 1. ed by.

  20. Estimating the potential for solar thermal applications in the industrial process heat market 1990-2030

    International Nuclear Information System (INIS)

    Demeter, C.P.; Gray, E.E.; Carwile, C.

    1991-01-01

    This paper reports the results of a preliminary evaluation of the potential domestic market for solar thermal energy supply technologies matched to industrial process heat applications. The study estimates current and projects future industrial process heat demand to the year 2030 by two-digit standard industrial classification code for the manufacturing industrial sector and discusses the potential to displace conventional fossil fuel sources such as natural gas with alternative sources of supply. The PC Industrial Model, used by DOE's Energy Information Administration in support of the National Energy Strategy (NES) is used for forecast industrial energy demand. Demand is disaggregated by census region to account for geographic variations in solar insolation, and by heat medium and temperature to facilitate end-use matching with appropriate solar energy supply technologies. Levelized energy costs (LEC) are calculated for flat plate collectors for low- temperature preheat applications, parabolic troughs for intermediate temperature process steam and direct heat, and parabolic dish technologies for high-temperature, direct heat applications. LEC is also developed for a conventional natural gas-fueled Industrial Process Heat (IPH) supply source assuming natural gas price escalation consistent with NES forecasts to develop a relative figure of merit used in a market penetration model

  1. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  2. The structure and properties of a nickel-base superalloy produced by osprey atomization-deposition

    Science.gov (United States)

    Bricknell, Rodger H.

    1986-04-01

    The production of a nickel-base superalloy, René* 80, by the Osprey atomization-deposition process has been investigated. Dense (>99 pct) material with a fine-grained equiaxed microstructure was deposited using either argon or nitrogen as the atomizing gas. Defects present in the material included a chill region at the collector plate interface, entrapped recirculated particles, porosity, and ceramic particles from the melting and dispensing system. In contrast to other rapid solidification techniques, low oxygen pick-ups are noted in the current technique. Tensile strengths above those displayed by castings are found in both nitrogen and argon atomized material, and in both the as-deposited and heat treated conditions. In addition, no profound mid-temperature ductility loss is displayed by this low oxygen material, in contrast to results on other rapidly solidified material with high oxygen contents. These results are explained in terms of oxygen embrittlement. In view of the excellent properties measured, the attractive economics of the process, and the fact that fine control of the gas/metal flow ratio is shown to be unnecessary, it is concluded that atomization-deposition presents an attractive potential production route for advanced alloys.

  3. Method and apparatus for quantum information processing using entangled neutral-atom qubits

    Science.gov (United States)

    Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan

    2018-04-03

    A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.

  4. Transverse resonance-radiation pressure on atomic beams and the influence of fluctuations

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Freeman, R.R.; Ashkin, A.; Pearson, D.B.

    1979-01-01

    We have experimentally demonstrated that a beam of neutral sodium atoms can be focused to a spot diameter of approx. 50 μ using the transverse dipole resonance-radiation pressure exerted by a 40 mW laser beam. Simple analysis shows that in some cases the spot sizes are limited by the random fluctuations of the spontaneous radiation pressure; with 1 W of laser power, spot sizes less than 10 μ should be attainable. The effects of heating by spontaneous scattering can have important detrimental effects in other applications of resonance - radiation pressure on atoms, such as the slowing or guiding of atoms. Consideration of heating effects is of paramount importance in the design of optical traps for neutral atoms. (KBE)

  5. Optical ferris wheel for ultracold atoms

    Science.gov (United States)

    Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.

    2007-07-01

    We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.

  6. Avaliacão de programas de aquecimento para espectrometria de absorção atômica com atomizacão eletrotérmica em filamento de tungstênio Evaluation of heating programs for electrothermal atomic absorption spectrometry using a tungsten coil

    Directory of Open Access Journals (Sweden)

    Pedro V. Oliveira

    2000-10-01

    Full Text Available A tungsten coil atomizer was used to investigate the effect of heating programs with constant or variable drying temperatures on the atomization of Al, Cd, Cr and Pb. The variation of the surface temperature in the tungsten coil furnace can occur during each heating step due to the design of the power supply, that may apply constant voltages during a programmed time. For volatile elements (Cd, losses in sensitivity were observed when the program with a variable temperature was used. On the other hand, these effects are negligible for less volatile elements (Al and Cr and any tested program, in different acidic media, could be used without appreciable changes in sensitivities. The results allow the establishment of proper heating programs for elements with different thermochemical behavior in the tungsten coil atomizer.

  7. Characterization and processing of heat treated aluminium matrix composite

    Science.gov (United States)

    Doifode, Yogesh; Kulkarni, S. G.

    2018-05-01

    The present study is carried out to determine density and porosity of Aluminium bagasse ash reinforced composite produced by powder metallurgy method. Bagasse ash is used as reinforcement material having high silica and alumina contents and varied from 5 weight % to 40 weight%. The manufactured composite is heat treated, the main objective of heat treatment is to prepare the material structurally and physically fit for engineering application. The results showed that the density decreases with percentage increase in reinforcement of bagasse ash from 2.6618 gm/cm3 to 1.9830 gm/cm3 with the minimum value at 40 weight% bagasse ash without heat treatment whereas after heat treatment density of composite increases due filling up of voids and porous holes. Heat treatment processing is the key to this improvement, with the T6 heat treated composite to convene the reduced porosity of composite. Consequently aluminium metal matrix composite combines the strength of the reinforcement to achieve a combination of desirable properties not available in any single material. It may observe that porosity in case of powder metallurgy samples showed more porosity portions compare to the casting samples. In order to achieve optimality in structure and properties of Bagasse ash-reinforcement heat treatment techniques have evolved. Generally, the ceramic reinforcements increase the density of the base alloy during fabrication of composites. However, the addition of lightweight reinforcements reduces the density of the hybrid composites. The results also showed that, the density varies from to with minimum value at 40 wt. % BA. The results of the statistical analysis showed that there are significant differences among the means of each property of the composites at various levels of BA replacement .It was concluded that bagasse ash can be used as reinforcement and the produced composites have low density and heat treatment reduces porosity which could be used in automobile industry for

  8. Summary of some feasibility studies for site-specific solar industrial process heat

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

  9. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    Science.gov (United States)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  10. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  11. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  12. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  13. Thermal design of heat-exchangeable reactors using a dry-sorbent CO2 capture multi-step process

    International Nuclear Information System (INIS)

    Moon, Hokyu; Yoo, Hoanju; Seo, Hwimin; Park, Yong-Ki; Cho, Hyung Hee

    2015-01-01

    The present study proposes a multi-stage CO 2 capture process that incorporates heat-exchangeable fluidized-bed reactors. For continuous multi-stage heat exchange, three dry regenerable sorbents: K 2 CO 3 , MgO, and CaO, were used to create a three-stage temperature-dependent reaction chain for CO 2 capture, corresponding to low (50–150 °C), middle (350–650 °C), and high (750–900 °C) temperature stages, respectively. Heat from carbonation in the high and middle temperature stages was used for regeneration for the middle and low temperature stages. The feasibility of this process is depending on the heat-transfer performance of the heat-exchangeable fluidized bed reactors as the focus of this study. The three-stage CO 2 capture process for a 60 Nm 3 /h CO 2 flow rate required a reactor area of 0.129 and 0.130 m 2 for heat exchange between the mid-temperature carbonation and low-temperature regeneration stages and between the high-temperature carbonation and mid-temperature regeneration stages, respectively. The reactor diameter was selected to provide dense fluidization conditions for each bed with respect to the desired flow rate. The flow characteristics and energy balance of the reactors were confirmed using computational fluid dynamics and thermodynamic analysis, respectively. - Highlights: • CO 2 capture process is proposed using a multi-stage process. • Reactor design is conducted considering heat exchangeable scheme. • Reactor surface is designed by heat transfer characteristics of fluidized bed

  14. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  15. Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms

    Science.gov (United States)

    Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.

    2018-05-01

    The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.

  16. Metallic materials for heat exchanger components and highly stressed internal of HTR reactors for nuclear process heat generation

    International Nuclear Information System (INIS)

    1982-01-01

    The programme was aimed at the development and improvement of materials for the high-temperature heat exchanger components of a process steam HTR. The materials must have high resistance to corrosion, i.e. carburisation and internal oxidation, and high long-term toughness over a wide range of temperatures. They must also meet the requirements set in the nuclear licensing procedure, i.e. resistance to cyclic stress and irradiation, non-destructive testing, etc. Initially, it was only intended to improve and qualify commercial alloys. Later on an alloy development programme was initiated in which new, non-commercial alloys were produced and modified for use in a nuclear process heat facility. Separate abstracts were prepared for 19 pays of this volume. (orig./IHOE) [de

  17. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  19. Phenomenological rate process theory for the storage of atomic H in solid Hsub(2)sup(*)

    International Nuclear Information System (INIS)

    Rosen, G.

    1976-01-01

    A phenomenological rate process theory is developed for the storage and rapid recombination of atomic hydrogen fuel radical in a crystalline molecular hydrogen solid at temperatures in the range o.1K(<=)T(<=K. It is shown that such a theory can account quantitatively for the recently observed dependence of the storage time on the storage temperature, for the maximum concentration of trapped H atom, and for the time duration of the energy release in the tritium decay experiments of Webeler

  20. Heat pipe cooling of power processing magnetics

    Science.gov (United States)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  1. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Tsolakoglou Nikolas P.

    2017-01-01

    Full Text Available This work investigates melting and solidification processes of four different Phase Change Materials (PCM used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF. Both charging (melting and discharging (solidification processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates. Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  2. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Science.gov (United States)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  3. Studies on the low temperature infrared heat processing of soybeans and maize

    NARCIS (Netherlands)

    Kouzeh Kanani, M.

    1985-01-01

    A modified process for the infrared heat processing of oilseeds and cereal grains at relatively low temperatures is put forward. The process which involves an additional holding step and potentials for saving energy was investigated on a pilot plant on the basis of which a design is proposed for

  4. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  5. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  6. KINETICS PROCESSES OF DEHYDRATION AND HEATING FISH DURING FRYING, DURING SEMI HOT AND HOT SMOKING

    Directory of Open Access Journals (Sweden)

    V. A. Pokholchenko

    2014-01-01

    Full Text Available Summary. Calculated methods of graphing of curves for kinetics of dehydration and fish heating during the processes of frying, semi hot smoking and hot smoking have been developed. The offered methods of calculating are based on the basic regularities of heat and mass exchanges of these processes. Based on the research of the regularities of dehydration on the kinetic curves, critical points were identified, that characterize the transition from the moisture removal with lower energy of its bond with material to the removal of one with higher energy bond, also the influence of the product shrinkage on the velocity of the moisture removal. These points are characteristic for the temperature curves as well. It’s suggested for the temperature curve to be replaced by broken line that consists of three straight lines that are crossing in points, corresponded with the critical moistures and critical temperatures. Significant amount of the experimental material of the research of the kinetics of dehydration and fish heating under different modes is shown by authors in the form of generalized dependencies. The method allows modeling the processes of heating and dehydrating of fish and choosing the most rational modes based on the calculated data. The proposed technique makes it possible to construct the curves of the kinetics of heating and dehydration kinetics in processes of roasting, semi hot and hot smoked fish, which allows to optimize a particular process, design more efficient in terms of consumption of raw materials and energy technology, as well as to create better machines or upgrade existing equipment into account the relationship of heat and mass transfer processes.

  7. Control of the tritium path in process heat HTR's

    International Nuclear Information System (INIS)

    Kirch, N.; Scheidler, G.

    1985-01-01

    Nuclear Process Heat plant converting fossil fuels into liquid or gaseous secondary energy carriers generate tritium by several nuclear reactions. Control of the tritium path through the walls of the heat exchanger is highly important to meet regulatory requirements on the acceptable contamination in the product gas or liquid. Therefore, significant effort in the project 'Prototypanlage Nukleare Prozesswaerme' was put not only into generating a data base, but also into means of reducing tritium generation and permeation. Clean graphites with lithium impurities in the ppb level provide a low tritium source term. Realistic modeling of graphite retention and special helium purification systems are essentials. The main barrier to tritium permeation are heat exchanger walls requiring detailed characterization of in-situ surface layers. Studies to optimize the water/steam mass flow in the conversion process offer possibilities for further tritium retention. Progress can be demonstrated as follows: In 1980, between 2 and 8 Bq tritium per gram of product were predicted based on available data and even higher concentrations during startup. However, present day validated code predictions are below required 0.5 Bq/g equilibrium concentration level. During transients - particularly startup - this limit cannot be guaranteed as yet, but further retention potential is being offered by tritium gettering or filtering. An expected increase of the German regulatory requirement to 5 Bq/g will easily be met by present plant design under all operational conditions. (author)

  8. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  9. ANALYSIS OF NONMAGNETIC METAL INDUCTION HEATING PROCESSES BY FLAT-TYPE CIRCULAR SOLENOIDAL FIELD

    Directory of Open Access Journals (Sweden)

    Yu. Batygin

    2016-12-01

    Full Text Available The article analyzes the electromagnetic processes in the system of induction heating with estimating the main characteristics of heating the non-magnetic sheet metal. The analytical expressions for numerical estimates of the induced current in terms of the phase of the excitation signal are presented. The dependence for the heating temperature of the considered circular sheet metal area for the time corresponding to the interval phase has been determined.

  10. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  11. 5. All-Russian (international) scientific conference. Physicochemical processes during selection of atoms and molecules. Collection of reports

    International Nuclear Information System (INIS)

    Baranov, V.Yu.; Kolesnikov, Yu.A.

    2000-01-01

    The materials of the 5. All-Russian (international) scientific conference: Physicochemical processes during selection of atoms and molecules, are presented. The conference took place in Zvenigorod, 2-6 October, 2000. A wide range of items connected with uranium enrichment, selection of atoms and molecules by isotopic composition: laser methods, ion cyclotron-resonance method, are discussed. The selection of molecules and atoms by rectification and chemical isotopic exchange methods, the selection in the field of centrifugal forces are treated. The questions of search for the new advanced methods for selection of atoms and molecules were discussed at the conference, the problems of radioisotope production were represented. The subject matter of the use of stable isotopes and radionuclides is demonstrated widely. The subjects connected with experimental and engineering equipment for selection of atoms and molecules are embodied in the paper [ru

  12. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  13. Seawater desalination plant using nuclear heating reactor coupled with MED process

    International Nuclear Information System (INIS)

    Wu Shaorong; Dong Duo; Zhang Dafang; Wang Xiuzhen

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. this seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. the intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10-200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m 3 /d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented

  14. Modeling studies of multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1989-01-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repositorywide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow effects from corrosion of low-level waste packages

  15. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  16. A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Smith, Robin

    2016-01-01

    Highlights: • MILP model developed for integration of waste heat recovery technologies in process sites. • Five thermodynamic cycles considered for exploitation of industrial waste heat. • Temperature and quantity of multiple waste heat sources considered. • Interactions with the site utility system considered. • Industrial case study presented to illustrate application of the proposed methodology. - Abstract: Thermodynamic cycles such as organic Rankine cycles, absorption chillers, absorption heat pumps, absorption heat transformers, and mechanical heat pumps are able to utilize wasted thermal energy in process sites for the generation of electrical power, chilling and heat at a higher temperature. In this work, a novel systematic framework is presented for optimal integration of these technologies in process sites. The framework is also used to assess the best design approach for integrating waste heat recovery technologies in process sites, i.e. stand-alone integration or a systems-oriented integration. The developed framework allows for: (1) selection of one or more waste heat sources (taking into account the temperatures and thermal energy content), (2) selection of one or more technology options and working fluids, (3) selection of end-uses of recovered energy, (4) exploitation of interactions with the existing site utility system and (5) the potential for heat recovery via heat exchange is also explored. The methodology is applied to an industrial case study. Results indicate a systems-oriented design approach reduces waste heat by 24%; fuel consumption by 54% and CO_2 emissions by 53% with a 2 year payback, and stand-alone design approach reduces waste heat by 12%; fuel consumption by 29% and CO_2 emissions by 20.5% with a 4 year payback. Therefore, benefits from waste heat utilization increase when interactions between the existing site utility system and the waste heat recovery technologies are explored simultaneously. The case study also shows

  17. Optimization of a Gas Switching Combustion process through advanced heat management strategies

    International Nuclear Information System (INIS)

    Cloete, Schalk; Zaabout, Abdelghafour; Romano, Matteo C.; Chiesa, Paolo; Lozza, Giovanni; Gallucci, Fausto; Sint Annaland, Martin van; Amini, Shahriar

    2017-01-01

    Highlights: • GSC is a promising new reactor concept for power production with cost effective CO 2 capture. • The standalone fluidized bed reactors employed will allow for easy process scale-up. • The GSC simple configuration achieves higher efficiencies than conventional solutions. • Further increases in efficiency can be achieved via advanced heat management. • The 41.9% maximum efficiency is in line with other CLC–IGCC configurations. - Abstract: Gas Switching Combustion (GSC) is a promising new process concept for energy efficient power production with integrated CO 2 capture. In comparison to conventional Chemical Looping Combustion (CLC) carried out in interconnected fluidized beds, the GSC concept will be substantially easier to design and scale up, especially for pressurized conditions. One potential drawback of the GSC concept is the gradual temperature variation over the transient process cycle, which leads to a drop in electric efficiency of the plant. This article investigates heat management strategies to mitigate this issue both through simulations and experiments. Simulation studies of the GSC concept integrated into an IGCC power plant show that heat management using a nitrogen recycle stream can increase plant efficiency by 3 percentage points to 41.6% while maintaining CO 2 capture ratios close to 90%. Reactive multiphase flow simulations of the GSC reactor also showed that heat management can eliminate fuel slip problems. In addition, the GSC concept offers the potential to remove the need for a nitrogen recycle stream by implementing a concentrated air injection that extracts heat while only a small percentage of oxygen reacts. Experiments have shown that, similar to nitrogen recycle, this strategy reduces transient temperature variations across the cycle and therefore merits further investigation.

  18. The entanglement of two moving atoms interacting with a single-mode field via a three-photon process

    International Nuclear Information System (INIS)

    Chao, Wu; Mao-Fa, Fang

    2010-01-01

    In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process. (general)

  19. A new impetus for developing industrial process heat applications of HTR in europe - HTR2008-58259

    International Nuclear Information System (INIS)

    Hittner, D.; De Groot, S.; Griffay, G.; Yvon, P.; Pienkowski, L.; Ruer, J.; Angulo, C.; Laquaniello, G.

    2008-01-01

    Due to its high operating temperature (up to 850 deg. C with present technologies, possibly higher in the longer term), and its power range (a few hundred MW), the modular HTR could address a larger scope of industrial process heat needs than other present nuclear systems. Even if HTR can contribute to competitive electricity generation, this potential for industrial heat applications is the main incentive for developing this type of reactor, as it could open to nuclear energy a large non-electricity market. However several issues must be addressed and solved successfully for HTR to actually enter the market of industrial process heat: 1) as an absolute prerequisite, to develop a strategic alliance of nuclear industry and R and D with process heat user industries. 2) to solve some key technical issues, as for instance the design of a reactor and of a coupling system flexible enough to reconcile a single reactor design with multiple applications and versatile requirements for the heat source, and the development of special adaptations of the application processes or even of new processes to fit with the assets and constraints of HTR heat supply, 3) to solve critical industrial issues such as economic competitiveness, availability and 4) to address the licensing issues raised by the conjunction of nuclear and industrial risks. In line with IAEA initiatives for supporting non-electric applications of nuclear energy and with the orientations of the SET-Plan of the European Commission, the (European) HTR Technology Network (HTR-TN) proposes a new project, together with industrial process heat user partners, to provide a first impetus to the strategic alliance between nuclear and non-nuclear industries. End user requirements will be expressed systematically on the basis of inputs from industrial partners on various types of process heat applications. These requirements will be confronted with the capabilities of the HTR heat source, in order to point out possible

  20. Inelastic scattering and local heating in atomic gold wires

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Brandbyge, Mads; Lorente, N.

    2004-01-01

    We present a method for including inelastic scattering in a first-principles density-functional computational scheme for molecular electronics. As an application, we study two geometries of four-atom gold wires corresponding to two different values of strain and present results for nonlinear...