WorldWideScience

Sample records for atom counting qspr

  1. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Hybrid statistics-simulations based method for atom-counting from ADF STEM images

    Energy Technology Data Exchange (ETDEWEB)

    De wael, Annelies, E-mail: annelies.dewael@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); De Backer, Annick [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Jones, Lewys; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Van Aert, Sandra, E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2017-06-15

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. - Highlights: • A hybrid method for atom-counting from ADF STEM images is introduced. • Image simulations are incorporated into a statistical framework in a reliable manner. • Limits of the existing methods for atom-counting are far exceeded. • Reliable counting results from an experimental low dose image are obtained. • Progress towards reliable quantitative analysis of beam-sensitive materials is made.

  3. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    Science.gov (United States)

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2017-03-01

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Estimation of atomic interaction parameters by photon counting

    DEFF Research Database (Denmark)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2014-01-01

    Detection of radiation signals is at the heart of precision metrology and sensing. In this article we show how the fluctuations in photon counting signals can be exploited to optimally extract information about the physical parameters that govern the dynamics of the emitter. For a simple two......-level emitter subject to photon counting, we show that the Fisher information and the Cram\\'er- Rao sensitivity bound based on the full detection record can be evaluated from the waiting time distribution in the fluorescence signal which can, in turn, be calculated for both perfect and imperfect detectors...

  5. An atom counting and electrophilicity based QSTR approach

    Indian Academy of Sciences (India)

    Quantitative-structure-toxicity-relationship (QSTR) models are developed for predicting the toxicity (pIGC50) of 252 aliphatic compounds on Tetrahymena pyriformis. The single parameter models with a simple molecular descriptor, the number of atoms in the molecule, provide reasonable results. Better QSTR models with ...

  6. Depth sectioning combined with atom-counting in HAADF STEM to retrieve the 3D atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Alania, M.; Altantzis, T.; De Backer, A.; Lobato, I.; Bals, S.; Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be

    2017-06-15

    Aberration correction in scanning transmission electron microscopy (STEM) has greatly improved the lateral and depth resolution. When using depth sectioning, a technique during which a series of images is recorded at different defocus values, single impurity atoms can be visualised in three dimensions. In this paper, we investigate new possibilities emerging when combining depth sectioning and precise atom-counting in order to reconstruct nanosized particles in three dimensions. Although the depth resolution does not allow one to precisely locate each atom within an atomic column, it will be shown that the depth location of an atomic column as a whole can be measured precisely. In this manner, the morphology of a nanoparticle can be reconstructed in three dimensions. This will be demonstrated using simulations and experimental data of a gold nanorod. - Highlights: • Depth sectioning in HAADF STEM is combined with atom-counting. • This can be used to retrieve the 3D atomic structure. • The theoretical precision with atoms can be located is investigated. • An algorithm is introduced to reconstruct the morphology of a nanoparticle. • The method is applied to reconstruct a gold nanorod.

  7. Proton and hydrogen atom detection efficiency of resistance strip magnetic electron multiplier particle-counting system

    Energy Technology Data Exchange (ETDEWEB)

    Wehrenberg, P.J.; Clark, K.C.

    1976-10-01

    The absolute detection efficiency for protons and for hydrogen atoms in the energy range 5--60 keV is determined for a resistance strip magnetic electron multiplier particle-counting system. Significant history-dependent gain variations are discussed. The detector system is suitable for use in coincidence experiments requiring particle-counting rates to 1.0 MHz and timing accuracies of 3.0 nsec. (AIP)

  8. Hybrid statistics-simulations based method for atom-counting from ADF STEM images.

    Science.gov (United States)

    De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra

    2017-06-01

    A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tracking of photochemical Ostwald ripening of nanoparticles through voltammetric atom counting.

    Science.gov (United States)

    Bartlett, Thomas R; Sokolov, Stanislav V; Plowman, Blake J; Young, Neil P; Compton, Richard G

    2016-09-15

    We report the tracking of atom count in individual nanoparticles during photochemical Ostwald ripening. The nano-impact technique, in conjunction with UV-Vis and TEM analysis, is used to follow the photochemical formation of silver nano-prisms from spherical seed particles. A mechanism of photochemical Ostwald ripening is deduced and key growth stages are identified.

  10. Current Mathematical Methods Used in QSAR/QSPR Studies

    Directory of Open Access Journals (Sweden)

    Peixun Liu

    2009-04-01

    Full Text Available This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP, Project Pursuit Regression (PPR and Local Lazy Regression (LLR have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR, Partial Least Squares (PLS, Neural Networks (NN, Support Vector Machine (SVM and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future.

  11. The Correlation of the N{sub A} Measurements by Counting {sup 28}Si Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mana, G., E-mail: g.mana@inrim.it; Massa, E.; Sasso, C. P. [INRIM—Istituto Nazionale di Ricerca Metrologica, Str. delle Cacce 91, 10135 Torino (Italy); Stock, M. [BIPM—Bureau International des Poids et Mesures BIPM, Pavillon de Breteuil, 92312 Sèvres Cedex (France); Fujii, K.; Kuramoto, N.; Mizushima, S.; Narukawa, T. [NMIJ—National Metrology Institute of Japan, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan); Borys, M.; Busch, I.; Nicolaus, A.; Pramann, A. [PTB—Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2015-09-15

    An additional value of the Avogadro constant was obtained by counting the atoms in isotopically enriched Si spheres. With respect to the previous determination, the spheres were etched and repolished to eliminate metal contaminations and to improve the roundness. In addition, all the input quantities—molar mass, lattice parameter, mass, and volume—were remeasured aiming at a smaller uncertainty. In order to make the values given in Andreas et al. [Metrologia 48, S1 (2011)] and Azuma et al. [Metrologia 52, 360 (2015)] usable for a least squares adjustment, we report about the estimate of their correlation.

  12. Progress on accurate measurement of the Planck constant: watt balance and counting atoms

    OpenAIRE

    Li, Shisong; Zhang, Zhonghua; Zhao, Wei; Li, Zhengkun; Huang, Songling

    2014-01-01

    The Planck constant $h$ is one of the most significant constants in quantum physics. Recently, the precision measurement of the numeral value of $h$ has been a hot issue due to its important role in establishment for both a new SI and a revised fundamental physical constant system. Up to date, two approaches, the watt balance and counting atoms, have been employed to determine the Planck constant at a level of several parts in $10^8$. In this paper, the principle and progress on precision mea...

  13. Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations.

    Science.gov (United States)

    De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S

    2013-11-01

    In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.

  14. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    Science.gov (United States)

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  15. A Review on Progress in QSPR Studies for Surfactants

    Science.gov (United States)

    Hu, Jiwei; Zhang, Xiaoyi; Wang, Zhengwu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants), biodegradation potential and some other properties of surfactants are evaluated. PMID:20479997

  16. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting

    Energy Technology Data Exchange (ETDEWEB)

    De Backer, A.; Martinez, G.T. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); MacArthur, K.E.; Jones, L. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Béché, A. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Nellist, P.D. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2015-04-15

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. - Highlights: • Limited size and beam sensitivity of nano-particles challenge their quantification. • Keeping the electron dose to a minimum is therefore important. • Reliability of quantitative ADF STEM for atom-counting is demonstrated. • Limits for single atom sensitivity are discussed. • Limits are diagnosed by combining simulations and a statistical method.

  17. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    Science.gov (United States)

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons.

  18. Development of a novel in silico model of zeta potential for metal oxide nanoparticles: a nano-QSPR approach

    Science.gov (United States)

    Wyrzykowska, Ewelina; Mikolajczyk, Alicja; Sikorska, Celina; Puzyn, Tomasz

    2016-11-01

    Once released into the aquatic environment, nanoparticles (NPs) are expected to interact (e.g. dissolve, agglomerate/aggregate, settle), with important consequences for NP fate and toxicity. A clear understanding of how internal and environmental factors influence the NP toxicity and fate in the environment is still in its infancy. In this study, a quantitative structure-property relationship (QSPR) approach was employed to systematically explore factors that affect surface charge (zeta potential) under environmentally realistic conditions. The nano-QSPR model developed with multiple linear regression (MLR) was characterized by high robustness ({{{Q}}{{2}}}{{CV}}=0.90) and external predictivity ({{{Q}}{{2}}}{{EXT}}=0.93). The results clearly showed that zeta potential values varied markedly as functions of the ionic radius of the metal atom in the metal oxides, confirming that agglomeration and the extent of release of free MexOy largely depend on their intrinsic properties. A developed nano-QSPR model was successfully applied to predict zeta potential in an ionized solution of NPs for which experimentally determined values of response have been unavailable. Hence, the application of our model is possible when the values of zeta potential in the ionized solution for metal oxide nanoparticles are undetermined, without the necessity of performing more time consuming and expensive experiments. We believe that our studies will be helpful in predicting the conditions under which MexOy is likely to become problematic for the environment and human health.

  19. A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC ...

    African Journals Online (AJOL)

    2013-12-31

    Dec 31, 2013 ... Keywords: QSPR; Model; Molecular descriptors; Normal Boiling point; multiple linear regression "Stepwise" . 1. INTRODUCTION. Being firstly and easily measured as a property of a compound, the normal boiling point (NBP) is an important property for the simulation of processes in chemical and petroleum ...

  20. A photon counting dynamic digital lock-in amplifier for background suppression in glow discharge atomic emission spectrometry

    Science.gov (United States)

    Gökmen, Ali; Ulgen, Ahmet; Yalçin, Şerife

    1996-01-01

    A photon counting dynamic digital lock-in amplifier, (PC-DDLIA), has been developed for the suppression of Ar lines in glow discharge lamp atomic emission spectrometry, (GDL-AES). The experimental set-up consists of a Grimm-type GDL, a prism-type scanning monochromator, photon counting electronics, an Apple Ile computer with an interface card and a computer controllable high voltage power supply. The photon counting electronics are designed to convert the photon pulses to logic pulses. A discriminator is used to reject pulses below a threshold level. The high voltage power supply is modulated with a square waveform generated from DAC and photon pulses are counted synchronously by the timer/counter chip, versatile interface adaptor (VIA-6522) on the interface card of computer. The data are analyzed in two steps. In the "learn mode", the GDL is modulated with a square waveform between 370 and 670 V and two spectra consisting of only Ar lines are obtained in a spectral window between 287.1 and 290.0 nm. A new modulation waveform is computed from these spectra which yields two overlapped spectra when the PC-DDLIA is scanned over the same spectral window. In the "analysis mode" of data acquisition, a target material with the analyte element(s) in it is used and the spectrometer is scanned with a dynamically varying rectangular waveform over the same spectral window. The net spectrum consists of pure atomic lines free from any Ar lines. The detection limit for the determination of Si (288.2 nm) in the presence of interfering Ar lines (288.1 and 288.4 nm) is found to be 0.083%, whereas suppression of Ar lines over the same spectral window lowers the detection limit to 0.013%.

  1. Strong Coupling on a Forbidden Transition in Strontium and Nondestructive Atom Counting

    CERN Document Server

    Norcia, Matthew A

    2015-01-01

    We observe strong collective coupling between an optical cavity and the forbidden spin singlet to triplet optical transition $^1$S$_0$ to $^3$P$_1$ in an ensemble of $^{88}$Sr. Despite the transition being 1000 times weaker than a typical dipole transition, we observe a well resolved vacuum Rabi splitting. We use the observed vacuum Rabi splitting to make non-destructive measurements of atomic population with the equivalent of projection-noise limited sensitivity and minimal heating ($<0.01$ photon recoils/atom). This technique may be used to enhance the performance of optical lattice clocks by generating entangled states and reducing dead time.

  2. Switching and counting with atomic vapors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Peyronel, Thibault; Bajcsy, Michal; Hofferberth, Sebastian

    2012-01-01

    We review our recent experiments demonstrating a hollow-core photonic-crystal fiber loaded with laser-cooled atomic vapor as a system for all-optical switching with pulses containing few hundred photons. Additionally, we discuss the outlooks for improving the efficiency of this switching scheme a...... and present preliminary results geared toward using the system as a photon-number resolving detector....

  3. Configurable memory system and method for providing atomic counting operations in a memory device

    Science.gov (United States)

    Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin

    2010-09-14

    A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.

  4. Strong coupling on a forbidden transition in strontium and nondestructive atom counting

    Science.gov (United States)

    Norcia, Matthew A.; Thompson, James K.

    2016-02-01

    We observe strong collective coupling between an optical cavity and the forbidden spin singlet to triplet optical transition S10 to P31 in an ensemble of 88Sr. Despite the transition being 1000 times weaker than a typical dipole transition, we observe a well-resolved vacuum Rabi splitting. We use the observed vacuum Rabi splitting to make nondestructive measurements of atomic population with the equivalent of projection-noise limited sensitivity between subsequent measurements and with minimal heating [lattice clocks by generating entangled states and reducing dead time.

  5. Three L-subshells atomic model to compute counting efficiency of electron-capture nuclides; Modelo con tres subcapas L para calcular la eficiencia de recuento de nucleidos que se desintegran por captura electronica

    Energy Technology Data Exchange (ETDEWEB)

    Grau, A.; Arcos, J. M. los

    1986-07-01

    The present paper develops a three L-subshell a and K, M-a hells atomic model in order to obtain the counting efficiency in liquid scintillation counting. Mathematical expressions are given to calculate the probabilities of 264 different atomic rearrangement way so as the corresponding effective energies. This new model will permit to test the influence of the different atomic and nuclear parameters upon the counting efficiency nuclides of low and medium atomic number decaying by electron capture. (Author) 8 refs.

  6. QSPR study of the water solubility of a diverse set of agrochemicals ...

    African Journals Online (AJOL)

    QSPR study of the water solubility of a diverse set of agrochemicals: hybrid. (GA/ MLR) approach. Etude QSPR ... A six descriptor model, with squared correlation coefficient (R2) of 0.8895 and standard error of estimation (s) of 0.52 log unit, was ..... solute with the bulk of the surrounding solvent. (macroscopic or non specific ...

  7. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies.

    Science.gov (United States)

    Consonni, Viviana; Todeschini, Roberto; Pavan, Manuela; Gramatica, Paola

    2002-01-01

    In a previous paper the theory of the new molecular descriptors called GETAWAY (GEometry, Topology, and Atom-Weights AssemblY) was explained. These descriptors have been proposed with the aim of matching 3D-molecular geometry, atom relatedness, and chemical information. In this paper prediction ability in structure-property correlations of GETAWAY descriptors has been tested extensively by analyzing the regressions of these descriptors for selected properties of some reference compound classes. Moreover, the general performance of the new descriptors in QSAR/QSPR has been evaluated with respect to other well-known sets of molecular descriptors.

  8. QSPR Studies on Aqueous Solubilities of Drug-Like Compounds

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2009-06-01

    Full Text Available A rapidly growing area of modern pharmaceutical research is the prediction of aqueous solubility of drug-sized compounds from their molecular structures. There exist many different reasons for considering this physico-chemical property as a key parameter: the design of novel entities with adequate aqueous solubility brings many advantages to preclinical and clinical research and development, allowing improvement of the Absorption, Distribution, Metabolization, and Elimination/Toxicity profile and “screenability” of drug candidates in High Throughput Screening techniques. This work compiles recent QSPR linear models established by our research group devoted to the quantification of aqueous solubilities and their comparison to previous research on the topic.

  9. QSPR prediction of physico-chemical properties for REACH.

    Science.gov (United States)

    Dearden, J C; Rotureau, P; Fayet, G

    2013-01-01

    For registration of a chemical, European Union REACH legislation requires information on the relevant physico-chemical properties of the chemical. Predicted property values can be used when the predictions can be shown to be valid and adequate. The relevant physico-chemical properties that are amenable to prediction are: melting/freezing point, boiling point, relative density, vapour pressure, surface tension, water solubility, n-octanol-water partition coefficient, flash point, flammability, explosive properties, self-ignition temperature, adsorption/desorption, dissociation constant, viscosity, and air-water partition coefficient (Henry's law constant). Published quantitative structure-property relationship (QSPR) methods for all of these properties are discussed, together with relevant property prediction software, as an aid for those wishing to use predicted property values in submissions to the European Chemicals Agency (ECHA).

  10. Novel enhanced applications of QSPR models: Temperature dependence of aqueous solubility.

    Science.gov (United States)

    Klimenko, Kyrylo; Kuz'min, Victor; Ognichenko, Liudmila; Gorb, Leonid; Shukla, Manoj; Vinas, Natalia; Perkins, Edward; Polishchuk, Pavel; Artemenko, Anatoly; Leszczynski, Jerzy

    2016-08-15

    A model developed to predict aqueous solubility at different temperatures has been proposed based on quantitative structure-property relationships (QSPR) methodology. The prediction consists of two steps. The first one predicts the value of k parameter in the linear equation lgSw=kT+c, where Sw is the value of solubility and T is the value of temperature. The second step uses Random Forest technique to create high-efficiency QSPR model. The performance of the model is assessed using cross-validation and external test set prediction. Predictive capacity of developed model is compared with COSMO-RS approximation, which has quantum chemical and thermodynamic foundations. The comparison shows slightly better prediction ability for the QSPR model presented in this publication. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. The QSPR-THESAURUS: the online platform of the CADASTER project.

    Science.gov (United States)

    Brandmaier, Stefan; Peijnenburg, Willie; Durjava, Mojca K; Kolar, Boris; Gramatica, Paola; Papa, Ester; Bhhatarai, Barun; Kovarich, Simona; Cassani, Stefano; Roy, Partha Pratim; Rahmberg, Magnus; Öberg, Tomas; Jeliazkova, Nina; Golsteijn, Laura; Comber, Mike; Charochkina, Larisa; Novotarskyi, Sergii; Sushko, Iurii; Abdelaziz, Ahmed; D'Onofrio, Elisa; Kunwar, Prakash; Ruggiu, Fiorella; Tetko, Igor V

    2014-03-01

    The aim of the CADASTER project (CAse Studies on the Development and Application of in Silico Techniques for Environmental Hazard and Risk Assessment) was to exemplify REACH-related hazard assessments for four classes of chemical compound, namely, polybrominated diphenylethers, per and polyfluorinated compounds, (benzo)triazoles, and musks and fragrances. The QSPR-THESAURUS website (http: / /qspr-thesaurus.eu) was established as the project's online platform to upload, store, apply, and also create, models within the project. We overview the main features of the website, such as model upload, experimental design and hazard assessment to support risk assessment, and integration with other web tools, all of which are essential parts of the QSPR-THESAURUS. 2014 FRAME.

  12. Four shells atomic model to computer the counting efficiency of electron-capture nuclides; Modelo de cuatro capas para calcular la eficiencia de deteccion en nucleidos que se desintegran por captura electronica pura

    Energy Technology Data Exchange (ETDEWEB)

    Grau Malonda, A.; Fernandez Martinez, A.

    1985-07-01

    The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs.

  13. Structure Modification toward Applicability Domain of a QSAR/QSPR Model Considering Activity/Property.

    Science.gov (United States)

    Ochi, Shoki; Miyao, Tomoyuki; Funatsu, Kimito

    2017-12-01

    In drug and material design, the activity and property values of the designed chemical structures can be predicted by quantitative structure-activity and structure-property relationship (QSAR/QSPR) models. When a QSAR/QSPR model is applied to chemical structures, its applicability domain (AD) must be considered. The predicted activity/property values are only reliable for chemical structures inside the AD. Chemical structures outside the AD are usually neglected, as the predicted values are unreliable. The purpose of this study is to develop a methodology for obtaining novel chemical structures with the desired activity or property based on a QSAR/QSPR model by making use of the neglected structures. We propose a structure modification strategy for the AD that considers the activity and property simultaneously. The AD is defined by a one-class support vector machine and the structure modification is guided by a partial derivative of the AD model and matched molecular pairs analysis. Three proof-of-concept case studies generate novel chemical structures inside the AD that exhibit preferable activity/property values according to the QSAR/QSPR model. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. AutoWeka: toward an automated data mining software for QSAR and QSPR studies.

    Science.gov (United States)

    Nantasenamat, Chanin; Worachartcheewan, Apilak; Jamsak, Saksiri; Preeyanon, Likit; Shoombuatong, Watshara; Simeon, Saw; Mandi, Prasit; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2015-01-01

    In biology and chemistry, a key goal is to discover novel compounds affording potent biological activity or chemical properties. This could be achieved through a chemical intuition-driven trial-and-error process or via data-driven predictive modeling. The latter is based on the concept of quantitative structure-activity/property relationship (QSAR/QSPR) when applied in modeling the biological activity and chemical properties, respectively, of compounds. Data mining is a powerful technology underlying QSAR/QSPR as it harnesses knowledge from large volumes of high-dimensional data via multivariate analysis. Although extremely useful, the technicalities of data mining may overwhelm potential users, especially those in the life sciences. Herein, we aim to lower the barriers to access and utilization of data mining software for QSAR/QSPR studies. AutoWeka is an automated data mining software tool that is powered by the widely used machine learning package Weka. The software provides a user-friendly graphical interface along with an automated parameter search capability. It employs two robust and popular machine learning methods: artificial neural networks and support vector machines. This chapter describes the practical usage of AutoWeka and relevant tools in the development of predictive QSAR/QSPR models. The software is freely available at http://www.mt.mahidol.ac.th/autoweka.

  15. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties.

    Science.gov (United States)

    Ali, Jogoth; Camilleri, Patrick; Brown, Marc B; Hutt, Andrew J; Kirton, Stewart B

    2012-11-26

    Recently the authors published a robust QSPR model of aqueous solubility which exploited the computationally derived molecular descriptor topographical polar surface area (TPSA) alongside experimentally determined melting point and logP. This model (the "TPSA model") is able to accurately predict to within ± one log unit the aqueous solubility of 87% of the compounds in a chemically diverse data set of 1265 molecules. This is comparable to results achieved for established models of aqueous solubility e.g. ESOL (79%) and the General Solubility Equation (81%). Hierarchical clustering of this data set according to chemical similarity shows that a significant number of molecules with phenolic and/or phenol-like moieties are poorly predicted by these equations. Modification of the TPSA model to additionally incorporate a descriptor pertaining to a simple count of phenol and phenol-like moieties improves the predictive ability within ± one log unit to 89% for the full data set (1265 compounds -8.48 < logS < 1.58) and 82% for a reduced data set (1160 compounds 6.00 < logS < 0.00) which excludes compounds at the sparsely populated extremities of the data range. This improvement can be rationalized as the additional descriptor in the model acting as a correction factor which acknowledges the effect of phenolic substituents on the electronic characteristics of aromatic molecules i.e. the generally positive contribution to aqueous solubility made by phenolic moieties.

  16. Heterogeneous fenton degradation of azo dyes catalyzed by modified polyacrylonitrile fiber fe complexes: QSPR (quantitative structure peorperty relationship) study.

    Science.gov (United States)

    Li, Bing; Dong, Yongchun; Ding, Zhizhong

    2013-07-01

    The amidoximated polyacrylonitrile (PAN) fiber Fe complexes were prepared and used as the heterogeneous Fenton catalysts for the degradation of 28 anionic water soluble azo dyes in water under visible irradiation. The multiple linear regression (MLR) method was employed to develop the quantitative structure property relationship (QSPR) model equations for the decoloration and mineralization of azo dyes. Moreover, the predictive ability of the QSPR model equations was assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride in water on QSPR model equations were also investigated. The results indicated that the heterogeneous photo-Fenton degradation of the azo dyes with different structures was conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for the dye decoloration and mineralization were successfully developed using MLR technique. MW/S (molecular weight divided by the number of sulphonate groups) and NN=N (the number of azo linkage) are considered as the most important determining factor for the dye degradation and mineralization, and there is a significant negative correlation between MW/S or NN=N and degradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloride did not alter the nature of the QSPR model equations.

  17. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    Science.gov (United States)

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  18. QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors.

    Science.gov (United States)

    Fayet, Guillaume; Rotureau, Patricia; Joubert, Laurent; Adamo, Carlo

    2010-04-01

    The quantitative structure-property relationship (QSPR) methodology was applied to predict the decomposition enthalpies of 22 nitroaromatic compounds, used as indicators of thermal stability. An extended series of descriptors (constitutional, topological, geometrical charge related and quantum chemical) was calculated at two different levels of theory: density functional theory (DFT) and semi-empirical AM1 approaches. Reliable models have been developed for each level, leading to similar correlations between calculated and experimental data (R(2) > 0.98). Hence, both of them can be employed as screening tools for the prediction of thermal stability of nitroaromatic compounds. If using the AM1 model presents the advantage to be less time consuming, DFT allows the calculation of more accurate molecular quantum properties, e.g., conceptual DFT descriptors. In this study, our best QSPR model is based on such descriptors, providing more chemical comprehensive relationships with decomposition reactivity, a particularly complex property for the specific class of nitroaromatic compounds.

  19. Developing (Quantitative Structure Property Relationships QSPR Techniques to Predict the Char Formation of Polybenzoxazines

    Directory of Open Access Journals (Sweden)

    Maryam Sairi

    2016-04-01

    Full Text Available This study uses the Molecular Operating Environment software (MOE to generate models to calculate the char yield of polybenzoxazines (PBz. A series of benzoxazine (Bz monomers were constructed to which a variety of parameters relating to the structure (e.g., water accessible surface, negative van der Waals surface area and hydrophobic volume, etc. were obtained and a quantitative structure property relationships (QSPR model was generated. The model was used to generate data for new Bz monomers with desired properties and a comparison was made of predictions based on the QSPR model with the experimental data. This study shows the quality of predictive models and confirms how useful computational screening is prior to synthesis.

  20. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita

    2017-11-01

    Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10  M -1  s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10  M -1  s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.

  1. QSPR study of molar diamagnetic susceptibility of diverse organic compounds using multiple linear regression analysis

    OpenAIRE

    *S. Saaidpour; S. A. Zarei; F. Nasri

    2012-01-01

    The multiple linear regression (MLR) was used to build the linear quantitative structure-property relationship (QSPR) model for the prediction of the molar diamagnetic susceptibility (χm) for 140 diverse organic compounds using the three significant descriptors calculated from the molecular structures alone and selected by stepwise regression method. Stepwise regression was employed to develop a regression equation based on 100 training compounds, and predictive ability was tested on 40 compo...

  2. Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Prana, Vinca [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris Cedex 05 (France); Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); Fayet, Guillaume [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); Rotureau, Patricia, E-mail: patricia.rotureau@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); Adamo, Carlo [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie, CNRS UMR-7575, Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris Cedex 05 (France)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We developed QSPR models to predict impact sensitivity of nitroaliphatic compounds. Black-Right-Pointing-Pointer Two efficient models were rigorously validated according to the OECD principles. Black-Right-Pointing-Pointer One model is based only on simple constitutional descriptors. Black-Right-Pointing-Pointer The other model also includes more complex quantum descriptors. - Abstract: The European regulation of chemicals named REACH implies the assessment of a large number of substances based on their hazardous properties. However, the complete characterization of physico-chemical, toxicological and eco-toxicological properties by experimental means is incompatible with the imposed calendar of REACH. Hence, there is a real need in evaluating the capabilities of alternative methods such as quantitative structure-property relationship (QSPR) models, notably for physico-chemical properties. In the present work, the molecular structures of 50 itroaliphatic compounds were correlated with their impact sensitivities (h{sub 50%}) using such predictive models. More than 400 olecular descriptors (constitutional, topological, geometrical, quantum chemical) were calculated and linear and multi-linear regressions were performed to find accurate quantitative relationships with experimental impact sensitivities. Considering different sets of descriptors, four predictive models were obtained and two of them were selected for their predictive reliability. To our knowledge, these QSPR models for the impact sensitivity of nitroaliphatic compounds are the first ones being rigorously validated (both internally and externally) with defined applicability domains. They hence follow all OECD principles for regulatory acceptability of QSPRs, allowing possible application in REACH.

  3. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    Science.gov (United States)

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides.

    Science.gov (United States)

    Prana, Vinca; Rotureau, Patricia; André, David; Fayet, Guillaume; Adamo, Carlo

    2017-10-01

    Quantitative structure-property relationships represent alternative method to experiments to access the estimation of physico-chemical properties of chemicals for screening purpose at R&D level but also to gather missing data in regulatory context. In particular, such predictions were encouraged by the REACH regulation for the collection of data, provided that they are developed respecting the rigorous principles of validation proposed by OECD. In this context, a series of organic peroxides, unstable chemicals which can easily decompose and may lead to explosion, were investigated to develop simple QSPR models that can be used in a regulatory framework. Only constitutional and topological descriptors were employed to achieve QSPR models predicting the heat of decomposition, which could be used without any time consuming preliminary structure calculations at quantum chemical level. To validate the models, the original experimental dataset was divided into a training and a validation set according to two methods of partitioning, one based on the property value and the other based on the structure of the molecules by the mean of PCA. Four QSPR models were developed upon the type of descriptors and the methods of partitioning. The 2 models issuing from the PCA based method were highlighted as they presented good predictive power and they are easier to apply than our previous quantum chemical based model, since they do not need any preliminary calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Prediction of the thermal decomposition of organic peroxides by validated QSPR models

    Energy Technology Data Exchange (ETDEWEB)

    Prana, Vinca [Institut de Recherche de Chimie Paris, Chimie ParisTech CNRS, 11 rue P. et M. Curie, Paris 75005 (France); Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, Verneuil-en-Halatte 60550 (France); Rotureau, Patricia, E-mail: patricia.rotureau@ineris.fr [Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, Verneuil-en-Halatte 60550 (France); Fayet, Guillaume [Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, Verneuil-en-Halatte 60550 (France); André, David; Hub, Serge [ARKEMA, rue Henri Moissan, BP63, Pierre Benite 69493 (France); Vicot, Patricia [Institut National de l’Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, Verneuil-en-Halatte 60550 (France); Rao, Li [Institut de Recherche de Chimie Paris, Chimie ParisTech CNRS, 11 rue P. et M. Curie, Paris 75005 (France); Adamo, Carlo [Institut de Recherche de Chimie Paris, Chimie ParisTech CNRS, 11 rue P. et M. Curie, Paris 75005 (France); Institut Universitaire de France, 103 Boulevard Saint Michel, Paris F-75005 (France)

    2014-07-15

    Highlights: • QSPR models were developed for thermal stability of organic peroxides. • Two accurate MLR models were exhibited based on quantum chemical descriptors. • Performances were evaluated by a series of internal and external validations. • The new QSPR models satisfied all OCDE principles of validation for regulatory use. - Abstract: Organic peroxides are unstable chemicals which can easily decompose and may lead to explosion. Such a process can be characterized by physico-chemical parameters such as heat and temperature of decomposition, whose determination is crucial to manage related hazards. These thermal stability properties are also required within many regulatory frameworks related to chemicals in order to assess their hazardous properties. In this work, new quantitative structure–property relationships (QSPR) models were developed to predict accurately the thermal stability of organic peroxides from their molecular structure respecting the OECD guidelines for regulatory acceptability of QSPRs. Based on the acquisition of 38 reference experimental data using DSC (differential scanning calorimetry) apparatus in homogenous experimental conditions, multi-linear models were derived for the prediction of the decomposition heat and the onset temperature using different types of molecular descriptors. Models were tested by internal and external validation tests and their applicability domains were defined and analyzed. Being rigorously validated, they presented the best performances in terms of fitting, robustness and predictive power and the descriptors used in these models were linked to the peroxide bond whose breaking represents the main decomposition mechanism of organic peroxides.

  6. Sherlock Holmes counts the atoms

    Science.gov (United States)

    Tuniz, C.; Zoppi, U.; Hotchkis, M. A. C.

    2004-01-01

    Modern forensic science has to deal not only with homicides and other traditional crimes but also with more global threats such as smuggling of nuclear materials, clandestine production of weapons of mass destruction, stockpiling of illicit drugs by state-controlled groups and war crimes. Forensic applications have always benefited from the use of advanced analytical tools that can characterise materials found at crime scenes. In this paper we will discuss the use of accelerator mass spectrometry as an ultra sensitive tool for the crime labs of the third millennium.

  7. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents

    Science.gov (United States)

    Alencar Filho, Edilson B.; Santos, Aline A.; Oliveira, Boaz G.

    2017-04-01

    The proposal of this work includes the use of quantum chemical methods and cheminformatics strategies in order to understand the structural profile and reactivity of α-nucleophiles compounds such as oximes, amidoximes and hydroxamic acids, related to hydrolysis rate of organophosphates. Theoretical conformational study of 41 compounds were carried out through the PM3 semiempirical Hamiltonian, followed by the geometry optimization at the B3LYP/6-31+G(d,p) level of theory, complemented by Polarized Continuum Model (PCM) to simulate the aqueous environment. In line with the experimental hypothesis about hydrolytic power, the strength of the Intramolecular Hydrogen Bonds (IHBs) at light of the Bader's Quantum Theory of Atoms in Molecules (QTAIM) is related to the preferential conformations of α-nucleophiles. A set of E-Dragon descriptors (1,666) were submitted to a variable selection through Ordered Predictor Selection (OPS) algorithm. Five descriptors, including atomic charges obtained from the Natural Bond Orbitals (NBO) protocol jointly with a fragment index associated to the presence/absence of IHBs, provided a Quantitative Structure-Property Relationship (QSPR) model via Multiple Linear Regression (MLR). This model showed good validation parameters (R2 = 0.80, Qloo2 = 0.67 and Qext2 = 0.81) and allowed the identification of significant physicochemical features on the molecular scaffold in order to design compounds potentially more active against organophosphorus poisoning.

  8. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Jonsdottir, Svava Osk

    2003-01-01

    Quantitative Structure-Property Relationship (QSPR) models for prediction of various thermodynamic properties of simple organic compounds have been developed. A number of new descriptors are proposed and used alongside with descriptors available within the Codessa program. An important feature in...

  9. The interplay between QSAR/QSPR studies and partial order ranking and formal concept analyses.

    Science.gov (United States)

    Carlsen, Lars

    2009-04-17

    The often observed scarcity of physical-chemical and well as toxicological data hampers the assessment of potentially hazardous chemicals released to the environment. In such cases Quantitative Structure-Activity Relationships/Quantitative Structure-Property Relationships (QSAR/QSPR) constitute an obvious alternative for rapidly, effectively and inexpensively generatng missing experimental values. However, typically further treatment of the data appears necessary, e.g., to elucidate the possible relations between the single compounds as well as implications and associations between the various parameters used for the combined characterization of the compounds under investigation. In the present paper the application of QSAR/QSPR in combination with Partial Order Ranking (POR) methodologies will be reviewed and new aspects using Formal Concept Analysis (FCA) will be introduced. Where POR constitutes an attractive method for, e.g., prioritizing a series of chemical substances based on a simultaneous inclusion of a range of parameters, FCA gives important information on the implications associations between the parameters. The combined approach thus constitutes an attractive method to a preliminary assessment of the impact on environmental and human health by primary pollutants or possibly by a primary pollutant well as a possible suite of transformation subsequent products that may be both persistent in and bioaccumulating and toxic. The present review focus on the environmental - and human health impact by residuals of the rocket fuel 1,1-dimethylhydrazine (heptyl) and its transformation products as an illustrative example.

  10. Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds.

    Science.gov (United States)

    Prana, Vinca; Fayet, Guillaume; Rotureau, Patricia; Adamo, Carlo

    2012-10-15

    The European regulation of chemicals named REACH implies the assessment of a large number of substances based on their hazardous properties. However, the complete characterization of physico-chemical, toxicological and eco-toxicological properties by experimental means is incompatible with the imposed calendar of REACH. Hence, there is a real need in evaluating the capabilities of alternative methods such as quantitative structure-property relationship (QSPR) models, notably for physico-chemical properties. In the present work, the molecular structures of 50 itroaliphatic compounds were correlated with their impact sensitivities (h(50%)) using such predictive models. More than 400 olecular descriptors (constitutional, topological, geometrical, quantum chemical) were calculated and linear and multi-linear regressions were performed to find accurate quantitative relationships with experimental impact sensitivities. Considering different sets of descriptors, four predictive models were obtained and two of them were selected for their predictive reliability. To our knowledge, these QSPR models for the impact sensitivity of nitroaliphatic compounds are the first ones being rigorously validated (both internally and externally) with defined applicability domains. They hence follow all OECD principles for regulatory acceptability of QSPRs, allowing possible application in REACH. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The Interplay between QSAR/QSPR Studiesand Partial Order Ranking and Formal Concept Analyses

    Directory of Open Access Journals (Sweden)

    Lars Carlsen

    2009-04-01

    Full Text Available The often observed scarcity of physical-chemical and well as toxicological data hampers the assessment of potentially hazardous chemicals released to the environment. In such cases Quantitative Structure-Activity Relationships/Quantitative Structure-Property Relationships (QSAR/QSPR constitute an obvious alternative for rapidly, effectively and inexpensively generatng missing experimental values. However, typically further treatment of the data appears necessary, e.g., to elucidate the possible relations between the single compounds as well as implications and associations between the various parameters used for the combined characterization of the compounds under investigation. In the present paper the application of QSAR/QSPR in combination with Partial Order Ranking (POR methodologies will be reviewed and new aspects using Formal Concept Analysis (FCA will be introduced. Where POR constitutes an attractive method for, e.g., prioritizing a series of chemical substances based on a simultaneous inclusion of a range of parameters, FCA gives important information on the implications associations between the parameters. The combined approach thus constitutes an attractive method to a preliminary assessment of the impact on environmental and human health by primary pollutants or possibly by a primary pollutant well as a possible suite of transformation subsequent products that may be both persistent in and bioaccumulating and toxic.The present review focus on the environmental – and human health impact by residuals of the rocket fuel 1,1-dimethyl- hydrazine (heptyl and its transformation products as an illustrative example.

  12. Screening of persistent organic pollutants by QSPR classification models: a comparative study.

    Science.gov (United States)

    Papa, Ester; Gramatica, Paola

    2008-08-01

    A Quantitative Structure-Property Relationships (QSPRs) study for the prediction of the environmental persistence of a set of 250 heterogeneous organic compounds is here presented. Three a priori defined classes of environmental persistence were generated, by Hierarchical Cluster Analysis, from the combination of half-life data in air, water, soil and sediment available for all the studied compounds. QSPR classification models were successfully developed using different techniques (k-NN, CART and CP-ANN) and three interpretable theoretical molecular descriptors. Robust external validation was provided by statistical splitting and also on completely new data. The good performances of all these models were compared and their structural domains were analyzed. The analysis of the errors highlights a slight tendency of persistence overestimation, misclassifying chemicals from a lower to a higher class of persistence, in line with the precautionary principle. Finally, the reliability of the proposed QSPR models was verified further with new data from the literature. The structure-based classification models, applicable for the prediction of potential persistence of heterogeneous organic compounds, could be useful as preliminary support tools for the identification and prioritization of new potential POPs among already existing chemicals as well as "screening prior to synthesis" procedures to avoid the production, and consequent release into the environment, of new POPs.

  13. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.

    Science.gov (United States)

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-03-14

    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Seal Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Database of seal counts from aerial photography. Counts by image, site, species, and date are stored in the database along with information on entanglements and...

  15. Counting carbohydrates

    Science.gov (United States)

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... Many foods contain carbohydrates (carbs), including: Fruit and fruit juice Cereal, bread, pasta, and rice Milk and milk products, soy milk Beans, legumes, ...

  16. A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongmin; Park, Kiho; Yang, Dae Ryook [Korea University, Seoul (Korea, Republic of); Kwon, Yunkyung; Park, Taeyun [ChemEssen Inc., Seoul (Korea, Republic of)

    2017-10-15

    Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of R{sup 2}. In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.

  17. Quantitative Structure–Property Relationship (QSPR Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted-Cinnamic Acid Esterification

    Directory of Open Access Journals (Sweden)

    Cláudio E. Rodrigues-Santos

    2015-09-01

    Full Text Available In this work, the theoretical description of the 4- and 3-substituted-cinnamic acid esterification with different electron donating and electron withdrawing groups was performed at the B3LYP and M06-2X levels, as a two-step process: the O-protonation and the nucleophile attack by ethanol. In parallel, an experimental work devoted to the synthesis and characterization of the substituted-cinnamate esters has also been performed. In order to quantify the substituents effects, quantitative structure–property relationship (QSPR models based on the atomic charges, Fukui functions and the Frontier Effective-for-Reaction Molecular Orbitals (FERMO energies were investigated. In fact, the Fukui functions, ƒ+C and ƒ−O, indicated poor correlations for each individual step, and in contrast with the general literature, the O-protonation step is affected both by the FERMO energies and the O-charges of the carbonyl group. Since the process was shown to not be totally described by either charge- or frontier-orbitals, it is proposed to be frontier-charge-miscere controlled. Moreover, the observed trend for the experimental reaction yields suggests that the electron withdrawing groups favor the reaction and the same was observed for Step 2, which can thus be pointed out as the determining step.

  18. Predictive QSPR analysis of corrosion inhibitors for super 13% Cr steel in hydrochloric acid

    Directory of Open Access Journals (Sweden)

    S. P. Cardoso

    2007-12-01

    Full Text Available An experimental and theoretical study on the inhibition corrosion efficiencies of twenty three compounds in hydrochloric acid (15% w/v on 13% Cr modified stainless steel (martensitic has been carried out. This inhibitor set includes amines, thiourea derivatives and acetylenic alcohols. Experimental weight losses at 60ºC were correlated with group and quantum AM1 descriptors obtained from QSPR analysis. Such data, for a large set of molecules, offer a unique opportunity for searching for correlations between inhibition corrosion efficiency and molecular properties. Calculations based on three different statistical methodologies were carried out. The first method, using calibration procedures, employs an ordinary least squares (OLS methodology with a simple descriptor selection based on R² values. From this procedure, we obtained a model, Y15, having a R² value of 0,979 and a Q² value of 0.786. The second method employs a descriptor selection based on the second-order cross-validation OLS procedure (SOCV-OLS. In this process, the variables are chosen according to their ability to predict molecular inhibition efficiencies. The best model obtained using this methodology, Q5, had R² and Q² values of 0.859 and 0.785, respectively. The third method, based on regular partial least squares (PLS, resulted in R² and Q² values of 0.859 and 0.754, respectively. All calculations were carried out for the weight isoesteric Langmuir adsorption function (WILA function, ln(thetaM/(1-theta or ln Kads. A careful comparison between the calibration and the cross-validation descriptor selection indicated that they had very few descriptors in common. This article presents some key equations and the most relevant descriptors. We are unaware of any similar QSPR study on super 13% Cr stainless steel in the literature.

  19. Comparison of fate profiles of PAHs in soil, sediments and mangrove leaves after oil spills by QSAR and QSPR.

    Science.gov (United States)

    Tansel, Berrin; Lee, Mengshan; Tansel, Derya Z

    2013-08-15

    First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol-water partition coefficient, organic carbon-water partition coefficient, solubility, diffusivity in water, HOMO-LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms.

    Science.gov (United States)

    Fayet, Guillaume; Rotureau, Patricia; Joubert, Laurent; Adamo, Carlo

    2011-10-01

    The molecular structures of 77 nitroaromatic compounds have been correlated to their thermal stabilities by combining the quantitative structure-property relationship (QSPR) method with density functional theory (DFT). More than 300 descriptors (constitutional, topological, geometrical and quantum chemical) have been calculated, and multilinear regressions have been performed to find accurate quantitative relationships with experimental heats of decomposition (-ΔH). In particular, this work demonstrates the importance of accounting for chemical mechanisms during the selection of an adequate experimental data set. A reliable QSPR model that presents a strong correlation with experimental data for both the training and the validation molecular sets (R (2) = 0.90 and 0.84, respectively) was developed for non-ortho-substituted nitroaromatic compounds. Moreover, its applicability domain was determined, and the model's predictivity reached 0.86 within this applicability domain. To our knowledge, this work has produced the first QSPR model, developed according to the OECD principles of regulatory acceptability, for predicting the thermal stabilities of energetic compounds.

  1. Counting cormorants

    DEFF Research Database (Denmark)

    Bregnballe, Thomas; Carss, David N; Lorentsen, Svein-Håkon

    2013-01-01

    This chapter focuses on Cormorant population counts for both summer (i.e. breeding) and winter (i.e. migration, winter roosts) seasons. It also explains differences in the data collected from undertaking ‘day’ versus ‘roost’ counts, gives some definitions of the term ‘numbers’, and presents two e...

  2. Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  3. Tower counts

    Science.gov (United States)

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  4. Prediction of the thermal decomposition of organic peroxides by validated QSPR models.

    Science.gov (United States)

    Prana, Vinca; Rotureau, Patricia; Fayet, Guillaume; André, David; Hub, Serge; Vicot, Patricia; Rao, Li; Adamo, Carlo

    2014-07-15

    Organic peroxides are unstable chemicals which can easily decompose and may lead to explosion. Such a process can be characterized by physico-chemical parameters such as heat and temperature of decomposition, whose determination is crucial to manage related hazards. These thermal stability properties are also required within many regulatory frameworks related to chemicals in order to assess their hazardous properties. In this work, new quantitative structure-property relationships (QSPR) models were developed to predict accurately the thermal stability of organic peroxides from their molecular structure respecting the OECD guidelines for regulatory acceptability of QSPRs. Based on the acquisition of 38 reference experimental data using DSC (differential scanning calorimetry) apparatus in homogenous experimental conditions, multi-linear models were derived for the prediction of the decomposition heat and the onset temperature using different types of molecular descriptors. Models were tested by internal and external validation tests and their applicability domains were defined and analyzed. Being rigorously validated, they presented the best performances in terms of fitting, robustness and predictive power and the descriptors used in these models were linked to the peroxide bond whose breaking represents the main decomposition mechanism of organic peroxides. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Greedy and Linear Ensembles of Machine Learning Methods Outperform Single Approaches for QSPR Regression Problems.

    Science.gov (United States)

    Kew, William; Mitchell, John B O

    2015-09-01

    The application of Machine Learning to cheminformatics is a large and active field of research, but there exist few papers which discuss whether ensembles of different Machine Learning methods can improve upon the performance of their component methodologies. Here we investigated a variety of methods, including kernel-based, tree, linear, neural networks, and both greedy and linear ensemble methods. These were all tested against a standardised methodology for regression with data relevant to the pharmaceutical development process. This investigation focused on QSPR problems within drug-like chemical space. We aimed to investigate which methods perform best, and how the 'wisdom of crowds' principle can be applied to ensemble predictors. It was found that no single method performs best for all problems, but that a dynamic, well-structured ensemble predictor would perform very well across the board, usually providing an improvement in performance over the best single method. Its use of weighting factors allows the greedy ensemble to acquire a bigger contribution from the better performing models, and this helps the greedy ensemble generally to outperform the simpler linear ensemble. Choice of data preprocessing methodology was found to be crucial to performance of each method too. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solvent Extraction and QSPR of Catecholamines with a Bis(2-ethlhexyl) Hydrogen Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizuka, Kazuharu.; Fujimoto, Yuko.; Ota, Keisuke.; Inoue, Katsutoshi. [Saga University, Saga (Japan). Dept. of Applied Chemistry

    1999-02-01

    In order to develop an effective separation recess for catecholamine (CA), a basic investigation on solvent extraction of dopamine (DA), adrenaline (Ad) and noradrenaline (NA) from hydrochloric acid solution and their stripping is conducted at 30 degree C employing bis(2-ethylhexyl) hydrogen phosphate (D2EHPA) in chloroform, n-hexane and toluene as the organic diluents. From the dependencies of the distribution ratios on the concentrations of reactant species, i.e. CA, hydrogen ion and D2EHPA, it is elucidated that CA (RNH{sub 2}) is extracted with D2EHPA (HR`) according to the ion exchange mechanism, as the complex type, RNH{sub 3}R` (HR`){sub 3}, and the equilibrium constants (K{sub ex,CA}) for the extraction reactions are also evaluated. The quantitative structure property relationship (QSPR) of K{sub ex,CA} values for each organic diluent is discussed using molecular modeling with semi-empirical molecular orbital calculations considering the solvent effect. (author)

  7. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application.

    Science.gov (United States)

    Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J; Torrens, Francisco

    2012-11-01

    among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open "the doors" to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.

  8. Counting Penguins.

    Science.gov (United States)

    Perry, Mike; Kader, Gary

    1998-01-01

    Presents an activity on the simplification of penguin counting by employing the basic ideas and principles of sampling to teach students to understand and recognize its role in statistical claims. Emphasizes estimation, data analysis and interpretation, and central limit theorem. Includes a list of items for classroom discussion. (ASK)

  9. Counting Possibilia

    Directory of Open Access Journals (Sweden)

    Alfredo Tomasetta

    2010-06-01

    Full Text Available Timothy Williamson supports the thesis that every possible entity necessarily exists and so he needs to explain how a possible son of Wittgenstein’s, for example, exists in our world:he exists as a merely possible object (MPO, a pure locus of potential. Williamson presents a short argument for the existence of MPOs: how many knives can be made by fitting together two blades and two handles? Four: at the most two are concrete objects, the others being merely possible knives and merely possible objects. This paper defends the idea that one can avoid reference and ontological commitment to MPOs. My proposal is that MPOs can be dispensed with by using the notion of rules of knife-making. I first present a solution according to which we count lists of instructions - selected by the rules - describing physical combinations between components. This account, however, has its own difficulties and I eventually suggest that one can find a way out by admitting possible worlds, entities which are more commonly accepted - at least by philosophers - than MPOs. I maintain that, in answering Williamson’s questions, we count classes of physically possible worlds in which the same instance of a general rule is applied.

  10. QSPR study of the retention/release property of odorant molecules in pectin gels using statistical methods

    Directory of Open Access Journals (Sweden)

    Assia Belhassan

    2017-11-01

    Full Text Available The ACD/ChemSketch, MarvinSketch, and ChemOffice programmes were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters. The best descriptors were selected to establish the Quantitative Structure-Property Relationship (QSPR of the retention/release property of odorant molecules in pectin gels using Principal Components Analysis (PCA, Multiple Linear Regression (MLR, Multiple Non-linear Regression (MNLR and Artificial Neural Network (ANN methods We propose a quantitative model based on these analyses. PCA has been used to select descriptors that exhibit high correlation with the retention/release property. The MLR method yielded correlation coefficients of 0.960 and 0.958 for PG-0.4 (pectin concentration: 0.4% w/w and PG-0.8 (pectin concentration: 0.8% w/w media, respectively. Internal and external validations were used to determine the statistical quality of the QSPR of the two MLR models. The MNLR method, considering the relevant descriptors obtained from the MLR, yielded correlation coefficients of 0.978 and 0.975 for PG-0.4 and PG-0.8 media, respectively. The applicability domain of MLR models was investigated using simple and leverage approaches to detect outliers and outside compounds. The effects of different descriptors on the retention/release property are described, and these descriptors were used to study and design new compounds with higher and lower values of the property than the existing ones. Keywords: Odorant Molecules, Retention/Release, Pectin Gels, Quantitative Structure Property Relationship, Multiple Linear Regression, Artificial Neural Network

  11. Rationalizing fragment based drug discovery for BACE1: insights from FB-QSAR, FB-QSSR, multi objective (MO-QSPR) and MIF studies

    Science.gov (United States)

    Manoharan, Prabu; Vijayan, R. S. K.; Ghoshal, Nanda

    2010-10-01

    The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as FB-QSAR. The FB-QSAR methodology was validated on a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors, disclosed by GlaxoSmithKline Pharmaceuticals as potential anti-Alzheimer agents. To address the issue of target selectivity, a major confounding factor in the development of selective BACE1 inhibitors, FB-QSSR models were developed using the reported off target activity values. A heat map constructed, based on the activity and selectivity profile of the individual R-group fragments, and was in turn used to identify superior R-group fragments. Further, simultaneous optimization of multiple properties, an issue encountered in real-world drug discovery scenario, and often overlooked in QSAR approaches, was addressed using a Multi Objective (MO-QSPR) method that balances properties, based on the defined objectives. MO-QSPR was implemented using Derringer and Suich desirability algorithm to identify the optimal level of independent variables ( X) that could confer a trade-off between selectivity and activity. The results obtained from FB-QSAR were further substantiated using MIF (Molecular Interaction Fields) studies. To exemplify the potentials of FB-QSAR and MO-QSPR in a pragmatic fashion, the insights gleaned from the MO-QSPR study was reverse engineered using Inverse-QSAR in a combinatorial fashion to enumerate some prospective novel, potent and selective BACE1 inhibitors.

  12. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors.

    Science.gov (United States)

    Hemmateenejad, Bahram; Yazdani, Mahdieh

    2009-02-16

    Steroids are widely distributed in nature and are found in plants, animals, and fungi in abundance. A data set consists of a diverse set of steroids have been used to develop quantitative structure-electrochemistry relationship (QSER) models for their half-wave reduction potential. Modeling was established by means of multiple linear regression (MLR) and principle component regression (PCR) analyses. In MLR analysis, the QSPR models were constructed by first grouping descriptors and then stepwise selection of variables from each group (MLR1) and stepwise selection of predictor variables from the pool of all calculated descriptors (MLR2). Similar procedure was used in PCR analysis so that the principal components (or features) were extracted from different group of descriptors (PCR1) and from entire set of descriptors (PCR2). The resulted models were evaluated using cross-validation, chance correlation, application to prediction reduction potential of some test samples and accessing applicability domain. Both MLR approaches represented accurate results however the QSPR model found by MLR1 was statistically more significant. PCR1 approach produced a model as accurate as MLR approaches whereas less accurate results were obtained by PCR2 approach. In overall, the correlation coefficients of cross-validation and prediction of the QSPR models resulted from MLR1, MLR2 and PCR1 approaches were higher than 90%, which show the high ability of the models to predict reduction potential of the studied steroids.

  13. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    Science.gov (United States)

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  14. A Quantitative Structure-Property Relationship (QSPR) Study of aliphatic alcohols by the method of dividing the molecular structure into substructure.

    Science.gov (United States)

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure-property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol-water partition coefficient (lg P(OW)), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure-property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX(1CH)) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable.

  15. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    Directory of Open Access Journals (Sweden)

    Shahnaz Perveen

    2011-12-01

    Full Text Available Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber.

  16. A quasi-QSPR modelling for the photocatalytic decolourization rate constants and cellular viability (CV%) of nanoparticles by CORAL.

    Science.gov (United States)

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-01-01

    Most quantitative structure-property/activity relationships (QSPRs/QSARs) predict various endpoints related to organic compounds. Gradually, the variety of organic compounds has been extended to inorganic, organometallic compounds and polymers. However, the so-called molecular descriptors cannot be defined for super-complex substances such as different nanomaterials and peptides, since there is no simple and clear representation of their molecular structure. Some possible ways to define approaches for a predictive model in the case of super-complex substances are discussed. The basic idea of the approach is to change the traditionally used paradigm 'the endpoint is a mathematical function of the molecular structure' with another paradigm 'the endpoint is a mathematical function of available eclectic information'. The eclectic data can be (i) conditions of a synthesis, (ii) technological attributes, (iii) size of nanoparticles, (iv) concentration, (v) attributes related to cell membranes, and so on. Two examples of quasi-QSPR/QSAR analyses are presented and discussed. These are (i) photocatalytic decolourization rate constants (DRC) (10(-5)/s) of different nanopowders; and (ii) the cellular viability under the effect of nano-SiO(2).

  17. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth.

    Science.gov (United States)

    Xu, J; Zhu, L; Fang, D; Liu, L; Bai, Z; Wang, L; Xu, W

    2013-01-01

    A quantitative structure-property relationship (QSPR) model was proposed between the molecular descriptors representing the molecular structure and the Freundlich adsorbability parameter (K) for a set of 55 organic compounds onto activated carbon cloth. The best linear model was composed of three descriptors, which were selected by stepwise multiple linear regression (MLR) analysis. The statistical parameters provided by the linear model were r² = 0.7744, r²(adj) = 0.7551, s = 0.169 for the training set; and r² = 0.6725, r²(adj) = 0.6316, s = 0.196 for the external test set, respectively. The stability and predictive power of the proposed model were further verified using Y-randomization tests, five-fold cross-validation and leave-many-out cross-validation. The model may give some insight into the main structural features that affect the adsorption of the investigated compounds onto activated carbon cloth.

  18. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    Science.gov (United States)

    Mahmood, Uzma; Rashid, Sitara; Ali, S. Ishrat; Parveen, Rasheeda; Zaheer-ul-Haq; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR) technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps) help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber. PMID:22272108

  19. Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks.

    Science.gov (United States)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Starita, Antonina; Tiné, Maria Rosaria

    2009-04-01

    This paper reports some recent results from the empirical evaluation of different types of structured molecular representations used in QSPR analysis through a recursive neural network (RNN) model, which allows for their direct use without the need for measuring or computing molecular descriptors. This RNN methodology has been applied to the prediction of the properties of small molecules and polymers. In particular, three different descriptions of cyclic moieties, namely group, template and cyclebreak have been proposed. The effectiveness of the proposed method in dealing with different representations of chemical structures, either specifically designed or of more general use, has been demonstrated by its application to data sets encompassing various types of cyclic structures. For each class of experiments a test set with data that were not used for the development of the model was used for validation, and the comparisons have been based on the test results. The reported results highlight the flexibility of the RNN in directly treating different classes of structured input data without using input descriptors.

  20. A 2D-QSPR approach to predict blood-brain barrier penetration of drugs acting on the central nervous system

    Directory of Open Access Journals (Sweden)

    Matheus Malta de Sá

    2010-12-01

    Full Text Available Drugs acting on the central nervous system (CNS have to cross the blood-brain barrier (BBB in order to perform their pharmacological actions. Passive BBB diffusion can be partially expressed by the blood/brain partition coefficient (logBB. As the experimental evaluation of logBB is time and cost consuming, theoretical methods such as quantitative structure-property relationships (QSPR can be useful to predict logBB values. In this study, a 2D-QSPR approach was applied to a set of 28 drugs acting on the CNS, using the logBB property as biological data. The best QSPR model [n = 21, r = 0.94 (r² = 0.88, s = 0.28, and Q² = 0.82] presented three molecular descriptors: calculated n-octanol/water partition coefficient (ClogP, polar surface area (PSA, and polarizability (α. Six out of the seven compounds from the test set were well predicted, which corresponds to good external predictability (85.7%. These findings can be helpful to guide future approaches regarding those molecular descriptors which must be considered for estimating the logBB property, and also for predicting the BBB crossing ability for molecules structurally related to the investigated set.Fármacos que atuam no sistema nervoso central (SNC devem atravessar a barreira hematoencefálica (BHE para exercerem suas ações farmacológicas. A difusão passiva através da BHE pode ser parcialmente expressa pelo coeficiente de partição entre os compartimentos encefálico e sanguíneo (logBB, brain/blood partition coefficient. Considerando-se que a avaliação experimental de logBB é dispendiosa e demorada, métodos teóricos como estudos das relações entre estrutura química e propriedade (QSPR, Quantitative Structure-Property Relationships podem ser utilizados na previsão dos valores de logBB. Neste estudo, uma abordagem de QSPR-2D foi aplicada a um conjunto de 28 moléculas com ação central, usando logBB como propriedade biológica. O melhor modelo de QSPR [n = 21, r = 0,94 (r

  1. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature

  2. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  3. QSPR prediction of chromatographic retention times of pesticides: partition and fractal indices.

    Science.gov (United States)

    Torrens, Francisco; Castellano, Gloria

    2014-01-01

    The high-performance liquid-chromatographic retentions of red-wine pesticide residues are modeled by structure-property relationships. The effect of different types of features is analyzed: geometric, lipophilic, etc. The properties are fractal dimensions, partition coefficient, etc., in linear and nonlinear correlation models. Biological plastic evolution is an evolutionary perspective conjugating the effect of acquired characters and relations that emerge among the principles of evolutionary indeterminacy, morphological determination and natural selection. It is applied to design the co-ordination index that is used to characterize pesticide retentions. The parameters used to calculate the co-ordination index are the molar formation enthalpy, molecular weight and surface area. The morphological and co-ordination indices barely improve the correlations. The fractal dimension averaged for non‑buried atoms, partition coefficient, etc. distinguishes the pesticide molecular structures. The structural and constituent classification is based on nonplanarity, and the number of cycles, and O, S, N and Cl atoms. Different behavior depends on the number of cycles.

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close Clean Hands Count Centers for Disease Control and Prevention (CDC) ... intended to promote or encourage adherence to CDC hand hygiene recommendations. It is a component of the ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... Like this video? Sign in to make your opinion count. Sign in 117 2 Don't like this video? Sign in to make your opinion count. Sign in 3 Loading... Loading... Transcript The ...

  6. Clean Hands Count

    Medline Plus

    Full Text Available ... Like this video? Sign in to make your opinion count. Sign in 115 2 Don't like this video? Sign in to make your opinion count. Sign in 3 Loading... Loading... Transcript The ...

  7. Influence of atomic and nuclear constants on the counting efficiency for 55{sup F}e in liquid scintillators; Influencia de los parametros atomicos y nucleares en la calibracion de 55{sup F}e mediante centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Grau, A.; Arcos, J. M. los

    1985-07-01

    In this paper one considers the influence of the different parameters on the determination of the uncertainty of the detection efficiency for 55{sup F}e when the counting technique of liquid scintillation is applied. The following parameters are considered: the relative probabilities of X and Auger emission so as their corresponding energies, the fluorescence yields W{sup K} and W{sup L}, and the non-interaction probabilities of the emitted X photons. (Author) 11 refs.

  8. Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR

    Directory of Open Access Journals (Sweden)

    Piotr Urbaszek

    2017-03-01

    Full Text Available Many technological implementations in the field of nanotechnology have involved carbon nanomaterials, including fullerenes such as the buckminsterfullerene, C60. The unprecedented properties of such organic nanomaterials (in particular their large surface area gained extensive attention for their potential use as organic pollutant sorbents. Sorption interactions can be very hazardous and useful at the same time. This work investigates the influence of halogenation by bromine and/or chlorine in dibenzo-p-dioxins on their sorption ability on the C60 fullerene surface. Halogenated dibenzo-p-dioxins (PXDDs, where X = Br or Cl are ever-present in the environment and accidently produced in many technological processes in only approximately known quantities. If all combinatorial Br and/or Cl dioxin substitution possibilities are present in the environment, the experimental characterization and investigation of sorbent effectiveness is more than difficult. In this work, we have developed a quantitative structure–property relationship (QSPR model (R2 = 0.998, predicting the adsorption energy [kcal/mol] for 1,701 PXDDs adsorbed on C60 (PXDD@C60. Based on the QSPR model reported herein, we concluded that the lowest energy PXDD@C60 complexes are those that the World Health Organization (WHO considers to be less dangerous with respect to the aryl hydrocarbon receptor (AhR toxicity mechanism. Therefore, the effectiveness of fullerenes as sorbent agents may be underestimated as sorption could be less effective for toxic congeners than previously believed.

  9. Advanced In Silico Approaches for Drug Discovery: Mining Information from Multiple Biological and Chemical Data Through mtk- QSBER and pt-QSPR Strategies.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, Maria Natália Dias Soeiro

    2017-01-01

    The last decade has been seeing an increase of public-private partnerships in drug discovery, mostly driven by factors such as the decline in productivity, the high costs, time, and resources needed, along with the requirements of regulatory agencies. In this context, traditional computer-aided drug discovery techniques have been playing an important role, enabling the identification of new molecular entities at early stages. However, recent advances in chemoinformatics and systems pharmacology, alongside with a growing body of high quality, publicly accessible medicinal chemistry data, have led to the emergence of novel in silico approaches. These novel approaches are able to integrate a vast amount of multiple chemical and biological data into a single modeling equation. The present review analyzes two main kinds of such cutting-edge in silico approaches. In the first subsection, we discuss the updates on multitasking models for quantitative structure-biological effect relationships (mtk- QSBER), whose applications have been significantly increasing in the past years. In the second subsection, we provide detailed information regarding a novel approach that combines perturbation theory with quantitative structure-property relationships modeling tools (pt- QSPR). Finally, and most importantly, we show that the joint use of mtk-QSBER and pt- QSPR modeling tools are apt to guide drug discovery through its multiple stages: from in vitro assays to preclinical studies and clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Use of biopartitioning micellar chromatography and RP-HPLC for the determination of blood-brain barrier penetration of α-adrenergic/imidazoline receptor ligands, and QSPR analysis.

    Science.gov (United States)

    Vucicevic, J; Popovic, M; Nikolic, K; Filipic, S; Obradovic, D; Agbaba, D

    2017-03-01

    For this study, 31 compounds, including 16 imidazoline/α-adrenergic receptor (IRs/α-ARs) ligands and 15 central nervous system (CNS) drugs, were characterized in terms of the retention factors (k) obtained using biopartitioning micellar and classical reversed phase chromatography (log kBMC and log kwRP, respectively). Based on the retention factor (log kwRP) and slope of the linear curve (S) the isocratic parameter (φ0) was calculated. Obtained retention factors were correlated with experimental log BB values for the group of examined compounds. High correlations were obtained between logarithm of biopartitioning micellar chromatography (BMC) retention factor and effective permeability (r(log kBMC/log BB): 0.77), while for RP-HPLC system the correlations were lower (r(log kwRP/log BB): 0.58; r(S/log BB): -0.50; r(φ0/Pe): 0.61). Based on the log kBMC retention data and calculated molecular parameters of the examined compounds, quantitative structure-permeability relationship (QSPR) models were developed using partial least squares, stepwise multiple linear regression, support vector machine and artificial neural network methodologies. A high degree of structural diversity of the analysed IRs/α-ARs ligands and CNS drugs provides wide applicability domain of the QSPR models for estimation of blood-brain barrier penetration of the related compounds.

  11. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.

    Science.gov (United States)

    Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P

    2017-10-01

    Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Full counting statistics with determinantal quantum Monte Carlo

    Science.gov (United States)

    Humeniuk, Stephan

    Within the framework of determinantal quantum Monte Carlo a method is presented for computing the probability distribution of the total particle number and magnetization on a subregion of a system of interacting fermions. Such full counting statistics can be obtained from repeated projective measurements in cold atoms experiments with single-site and single-atom resolution. Applied to the attractive Hubbard model, the full counting statistics reveals the size of a preformed pair or Cooper pair as a function of interaction strength.

  13. Automated differential leukocyte counts.

    Science.gov (United States)

    Morse, E E; Nashed, A; Spilove, L

    1989-01-01

    Automated differential counts have the advantage of precision, efficiency, safety, and economy. They could potentially serve effectively in 90 percent of patients with normal counts or in 75 percent of patients with anemia only (64 percent of the total in this study). Even patients with increased white blood cell counts and major population shifts (toward granulocytes or lymphocytes) could be followed with automated differential counts. Such a tactic would decrease turnaround time for results, be less expensive, and reduce exposure of technologists to direct contact with patients' blood. However, presently available instruments fail to detect patients' blood samples with small numbers of abnormal cells, e.g., blasts in early relapse of acute leukemia, atypical lymphocytes in viral diseases such as infectious mononucleosis, eosinophils in allergic or parasitic disease, and band forms in early infectious diseases. Clinical judgment should be used in selectively ordering manual differential counts for these patients. While automated differential counts can be very useful in screening general medical and surgical patients in the ambulatory setting, in referral centers where hematologic abnormalities are more prevalent, the manual differential count and further examination of a smear is particularly necessary at least on initial presentation. Selective manual differential counts may improve efficiency, economy, and safety while not compromising patient care. Further studies of the correlation of clinical disease with automated differential counts are necessary.

  14. Health Physics counting room

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    The Health Physics counting room, where the quantity of induced radioactivity in materials is determined. This information is used to evaluate possible radiation hazards from the material investigated.

  15. EcoCount

    Directory of Open Access Journals (Sweden)

    Phillip P. Allen

    2014-05-01

    Full Text Available Techniques that analyze biological remains from sediment sequences for environmental reconstructions are well established and widely used. Yet, identifying, counting, and recording biological evidence such as pollen grains remain a highly skilled, demanding, and time-consuming task. Standard procedure requires the classification and recording of between 300 and 500 pollen grains from each representative sample. Recording the data from a pollen count requires significant effort and focused resources from the palynologist. However, when an adaptation to the recording procedure is utilized, efficiency and time economy improve. We describe EcoCount, which represents a development in environmental data recording procedure. EcoCount is a voice activated fully customizable digital count sheet that allows the investigator to continuously interact with a field of view during the data recording. Continuous viewing allows the palynologist the opportunity to remain engaged with the essential task, identification, for longer, making pollen counting more efficient and economical. EcoCount is a versatile software package that can be used to record a variety of environmental evidence and can be installed onto different computer platforms, making the adoption by users and laboratories simple and inexpensive. The user-friendly format of EcoCount allows any novice to be competent and functional in a very short time.

  16. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  17. QSPR models based on molecular mechanics and quantum chemical calculations. 1. Construction of Boltzmann-averaged descriptors for alkanes, alcohols, diols, ethers and cyclic compounds.

    Science.gov (United States)

    Dyekjaer, Jane; Rasmussen, Kjeld; Jónsdóttir, Svava

    2002-09-01

    Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann-averaged by selection of the most relevant conformers out of a set of possible molecular conformers generated by a systematic scheme presented in this paper. Six of these descriptors are calculated with molecular mechanics and three with quantum chemical methods. Especially interesting descriptors are the relative van der Waals energies and the molecular polarizabilities, which correlate very well with boiling points. Five more simple descriptors that only depend on the molecular constitutional formula are also discussed briefly.

  18. QSPR models for prediction of the soil sorption coefficient (log KOC) values of 209 polychlorinated trans-azobenzenes (PCt-ABs).

    Science.gov (United States)

    Wilczyńska-Piliszek, Agata J; Piliszek, Sławomir; Falandysz, Jerzy

    2012-01-01

    The values of the soil sorption coefficient (K(OC)) have been computed for 209 environmentally relevant trans polychlorinated azobenzenes (PCABs) lacking experimental partitioning data. The quantitative structure-property relationship (QSPR) approach and artificial neural networks (ANN) predictive ability used in models based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G** basis set and of the semi-empirical quantum chemistry method for property parameterization (PM6) of the molecular orbital package (MOPAC). An experimentally available data on physical and chemical properties of PCDD/Fs and PCBs were used as reference data for the QSPR models and ANNs predictions in this study. Both calculation methods gave similar results in term of absolute log K(OC) values, while the PM6 model generated in the MOPAC was a much more efficient compared to the DFT model in GAUSSIAN. The estimated values of log K(OC) varied between 4.93 and 5.62 for mono-, 5.27 and 7.46 for di-, 6.46 and 8.09 for tri-, 6.65 and 9.11 for tetra-, 6.75 and 9.68 for penta-, 6.44 and 10.24 for hexa-, 7.00 and 10.36 for hepta-, 7.09 and 9.82 octa-, 8.94 and 9.71 for nona-Ct-ABs, and 9.26 and 9.34 for deca-Ct-AB. Because of high log K(OC) values PCt-ABs could be classified as compounds with high affinity to the particles of soil, sediments and organic matter.

  19. Housing Inventory Count

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the data communities reported to HUD about the nature of their dedicated homeless inventory, referred to as their Housing Inventory Count (HIC)....

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... out why Close Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe ...

  1. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 59K ...

  3. Clean Hands Count

    Medline Plus

    Full Text Available ... Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 60K ...

  4. Clean Hands Count

    Medline Plus

    Full Text Available ... to CDC hand hygiene recommendations. It is a component of the Clean Hands Count campaign, which also ... views 3:56 Loading more suggestions... Show more Language: English Location: United States Restricted Mode: Off History ...

  5. Clean Hands Count

    Medline Plus

    Full Text Available ... to CDC hand hygiene recommendations. It is a component of the Clean Hands Count campaign, which also ... 3:56 Loading more suggestions... Show more Language: English Location: United States Restricted Mode: Off History Help ...

  6. White Blood Cell Count

    Science.gov (United States)

    ... Acidosis and Alkalosis Adrenal Insufficiency and Addison Disease Alcoholism Allergies Alzheimer Disease Anemia Angina Ankylosing Spondylitis Anthrax ... smoking status. It is not uncommon for the elderly to fail to develop high WBC count ( leukocytosis ) ...

  7. Calorie count - fast food

    Science.gov (United States)

    ... gov/ency/patientinstructions/000887.htm Calorie count - fast food To use the sharing features on this page, ... Nutrition Browse the Encyclopedia A.D.A.M., Inc. is accredited by URAC, also known as the ...

  8. Clean Hands Count

    Medline Plus

    Full Text Available ... why Close Clean Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed ...

  9. Clean Hands Count

    Medline Plus

    Full Text Available ... Sign in Share More Report Need to report the video? Sign in to report inappropriate content. Sign ... opinion count. Sign in 3 Loading... Loading... Transcript The interactive transcript could not be loaded. Loading... Loading... ...

  10. Clean Hands Count

    Medline Plus

    Full Text Available ... Hands Count Centers for Disease Control and Prevention (CDC) Loading... Unsubscribe from Centers for Disease Control and Prevention (CDC)? Cancel Unsubscribe Working... Subscribe Subscribed Unsubscribe 61K Loading... ...

  11. Reticulocyte Count Test

    Science.gov (United States)

    ... certain clinical conditions and in assessing iron deficiency anemia in children. Can the reticulocyte count be done on the ... Irwin, J. and Kirchner, J. (2001 October 15). Anemia in Children. American Family Physician [On-line journal]. Available online ...

  12. The Syntax and Semantics of Purepecha Noun Phrases and the Mass/Count Distinction

    Science.gov (United States)

    Vazquez Rojas Maldonado, Violeta

    2012-01-01

    Purepecha (isolate, central Western Mexico) nouns can be assigned to one of three classes depending on their inherent number characteristics: count nouns denote atomic units, mass nouns denote plural entities and count-mass nouns (Doetjes 1997) denote sets that contain pluralities and atomic units as well. This tri-partite distinction guides the…

  13. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  14. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  15. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  16. Rainflow counting revisited

    Energy Technology Data Exchange (ETDEWEB)

    Soeker, H. [Deutsches Windenergie-Institut (Germany)

    1996-09-01

    As state of the art method the rainflow counting technique is presently applied everywhere in fatigue analysis. However, the author feels that the potential of the technique is not fully recognized in wind energy industries as it is used, most of the times, as a mere data reduction technique disregarding some of the inherent information of the rainflow counting results. The ideas described in the following aim at exploitation of this information and making it available for use in the design and verification process. (au)

  17. What Counts as Evidence?

    Science.gov (United States)

    Dougherty Stahl, Katherine A.

    2014-01-01

    Each disciplinary community has its own criteria for determining what counts as evidence of knowledge in their academic field. The criteria influence the ways that a community's knowledge is created, communicated, and evaluated. Situating reading, writing, and language instruction within the content areas enables teachers to explicitly…

  18. Clean Hands Count

    Medline Plus

    Full Text Available ... is a component of the Clean Hands Count campaign, which also aims to address myths and misperceptions ... views 3:56 Creative Communication - LifeBouy Hand Washing Campaign - Duration: 2:08. LIQVD ASIA 15,338 views ...

  19. Platelet Count and Plateletcrit

    African Journals Online (AJOL)

    Aim: To determine whether platelet count, plateletcrit (PCT), mean platelet volume (MPV) and platelet distribution width. (PDW) and their ratios can predict mortality in hospitalised children. Methods: Children who died during hospital stay were the cases. Controls were age matched children admitted contempora- neously.

  20. Clean Hands Count

    Medline Plus

    Full Text Available ... starting stop Loading... Watch Queue Queue __count__/__total__ Music makes for happy holidays Loading... Even the scrooges ... smile at 3 free months of ad-free music with YouTube Red. Working... No thanks Try it ...

  1. What Counts as Prostitution?

    Directory of Open Access Journals (Sweden)

    Stuart P. Green

    2016-08-01

    Full Text Available What counts, or should count, as prostitution? In the criminal law today, prostitution is understood to involve the provision of sexual services in exchange for money or other benefits. But what exactly is a ‘sexual service’? And what exactly is the nature of the required ‘exchange’? The key to answering these questions is to recognize that how we choose to define prostitution will inevitably depend on why we believe one or more aspects of prostitution are wrong or harmful, or should be criminalized or otherwise deterred, in the first place. These judgements, in turn, will often depend on an assessment of the contested empirical evidence on which they rest. This article describes a variety of real-world contexts in which the ‘what counts as prostitution’ question has arisen, surveys a range of leading rationales for deterring prostitution, and demonstrates how the answer to the definition question depends on the answer to the normative question. The article concludes with some preliminary thoughts on how analogous questions about what should count as sexual conduct arise in the context of consensual offences such as adultery and incest, as well as non-consensual offences such as sexual assault.

  2. Clean Hands Count

    Medline Plus

    Full Text Available ... in to report inappropriate content. Sign in Transcript Statistics Add translations 30,667 views 113 Like this video? Sign in to make your opinion count. Sign in 114 2 Don't like this video? Sign in to ...

  3. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  4. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  5. An atom counting and electrophilicity based QSTR approach

    Indian Academy of Sciences (India)

    WINTEC

    2Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020. 3Department of Inorganic and Physical Chemistry, ... sciences including drug design and the possible eco- toxicological characteristics of the drug .... Internal validation is conducted with leave-one-out cross-validation and is given by Q. 2.

  6. sup 4 sup 4 Ti atom counting for nuclear astrophysics

    CERN Document Server

    Hui, S K; Berkovits, D; Boaretto, E; Ghelberg, S; Hass, M; Hershkowitz, A; Navon, E

    2000-01-01

    The nuclide sup 4 sup 4 Ti (T sub 1 sub / sub 2 =59.2 yr) has recently become an important asset to nuclear astrophysics through the measurement of its cosmic radioactivity, yielding significant information on fresh sup 4 sup 4 Ti nucleosynthesis in supernovae. We propose to use AMS to determine the production rate of sup 4 sup 4 Ti by the main channel believed to be responsible for sup 4 sup 4 Ti astrophysical production, namely sup 4 sup 0 Ca(alpha,gamma). A preliminary experiment conducted at the Koffler 14UD Pelletron accelerator demonstrates a sensitivity of 1x10 sup - sup 1 sup 4 for the sup 4 sup 4 Ti/Ti ratio. The AMS detection was performed using sup 4 sup 4 Ti sup - ions sputtered from a TiO sub 2 sample, reducing considerably the sup 4 sup 4 Ca isobaric interference. The present limit corresponds effectively to sup 4 sup 4 Ti production with resonance strength in the range 10-100 meV for a one-day sup 4 sup 0 Ca(alpha,gamma) activation. Several such resonances are known to be responsible for sup 4 ...

  7. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    Directory of Open Access Journals (Sweden)

    Supratik Kar

    2016-12-01

    Full Text Available Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs. Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron transfer step. This depends on the relative position of the sensitized organic dye in the metal oxide composite system. In the present work, we developed quantitative structure-property relationship (QSPR models to set up the quantitative relationship between the overall PCE and quantum chemical molecular descriptors. They were calculated from density functional theory (DFT and time-dependent DFT (TD-DFT methods as well as from DRAGON software. This allows for understanding the basic electron transfer mechanism along with the structural attributes of arylamine-organic dye sensitizers for the DSSCs explicit to cobalt electrolyte. The identified properties and structural fragments are particularly valuable for guiding time-saving synthetic efforts for development of efficient arylamine organic dyes with improved power conversion efficiency.

  8. PREDICTING THE BOILING POINT OF PCDD/Fs BY THE QSPR METHOD BASED ON THE MOLECULAR DISTANCE-EDGE VECTOR INDEX

    Directory of Open Access Journals (Sweden)

    Long Jiao

    2015-05-01

    Full Text Available The quantitative structure property relationship (QSPR for the boiling point (Tb of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs was investigated. The molecular distance-edge vector (MDEV index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR and artificial neural network (ANN, respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.

  9. The right to count does not always count

    DEFF Research Database (Denmark)

    Sodemann, Morten

    2013-01-01

    The best prescription against illness is learning to read and to count. People who are unable to count have a harder time learning to read. People who have difficulty counting make poorer decisions, are less able to combine information and are less likely to have a strategy for life...

  10. CalCOFI Egg Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish egg counts and standardized counts for eggs captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets], and...

  11. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  12. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  13. AdipoCount: A New Software for Automatic Adipocyte Counting

    Directory of Open Access Journals (Sweden)

    Xuhao Zhi

    2018-02-01

    Full Text Available Obesity has spread worldwide and become a common health problem in modern society. One typical feature of obesity is the excessive accumulation of fat in adipocytes, which occurs through the following two physiological phenomena: hyperplasia (increase in quantity and hypertrophy (increase in size of adipocytes. In clinical and scientific research, the accurate quantification of the number and diameter of adipocytes is necessary for assessing obesity. In this study, we present a new automatic adipocyte counting system, AdipoCount, which is based on image processing algorithms. Comparing with other existing adipocyte counting tools, AdipoCount is more accurate and supports further manual correction. AdipoCount counts adipose cells by the following three-step process: (1 It detects the image edges, which are used to segment the membrane of adipose cells; (2 It uses a watershed-based algorithm to re-segment the missing dyed membrane; and (3 It applies a domain connectivity analysis to count the cells. The outputs of this system are the labels and the statistical data of all adipose cells in the image. The AdipoCount software is freely available for academic use at: http://www.csbio.sjtu.edu.cn/bioinf/AdipoCount/.

  14. Counting Frequencies from Zotero Items

    Directory of Open Access Journals (Sweden)

    Spencer Roberts

    2013-04-01

    Full Text Available In Counting Frequencies you learned how to count the frequency of specific words in a list using python. In this lesson, we will expand on that topic by showing you how to get information from Zotero HTML items, save the content from those items, and count the frequencies of words. It may be beneficial to look over the previous lesson before we begin.

  15. LAWRENCE RADIATION LABORATORY COUNTING HANDBOOK

    Energy Technology Data Exchange (ETDEWEB)

    Group, Nuclear Instrumentation

    1966-10-01

    The Counting Handbook is a compilation of operational techniques and performance specifications on counting equipment in use at the Lawrence Radiation Laboratory, Berkeley. Counting notes have been written from the viewpoint of the user rather than that of the designer or maintenance man. The only maintenance instructions that have been included are those that can easily be performed by the experimenter to assure that the equipment is operating properly.

  16. SUMS Counts-Related Projects

    Data.gov (United States)

    Social Security Administration — Staging Instance for all SUMs Counts related projects including: Redeterminations/Limited Issue, Continuing Disability Resolution, CDR Performance Measures, Initial...

  17. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  18. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  19. Making environmental DNA count.

    Science.gov (United States)

    Kelly, Ryan P

    2016-01-01

    The arc of reception for a new technology or method--like the reception of new information itself--can pass through predictable stages, with audiences' responses evolving from 'I don't believe it', through 'well, maybe' to 'yes, everyone knows that' to, finally, 'old news'. The idea that one can sample a volume of water, sequence DNA out of it, and report what species are living nearby has experienced roughly this series of responses among biologists, beginning with the microbial biologists who developed genetic techniques to reveal the unseen microbiome. 'Macrobial' biologists and ecologists--those accustomed to dealing with species they can see and count--have been slower to adopt such molecular survey techniques, in part because of the uncertain relationship between the number of recovered DNA sequences and the abundance of whole organisms in the sampled environment. In this issue of Molecular Ecology Resources, Evans et al. (2015) quantify this relationship for a suite of nine vertebrate species consisting of eight fish and one amphibian. Having detected all of the species present with a molecular toolbox of six primer sets, they consistently find DNA abundances are associated with species' biomasses. The strength and slope of this association vary for each species and each primer set--further evidence that there is no universal parameter linking recovered DNA to species abundance--but Evans and colleagues take a significant step towards being able to answer the next question audiences tend to ask: 'Yes, but how many are there?' © 2015 John Wiley & Sons Ltd.

  20. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many

  1. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  2. Uncertainty in measurements by counting

    Science.gov (United States)

    Bich, Walter; Pennecchi, Francesca

    2012-02-01

    Counting is at the base of many high-level measurements, such as, for example, frequency measurements. In some instances the measurand itself is a number of events, such as spontaneous decays in activity measurements, or objects, such as colonies of bacteria in microbiology. Countings also play a fundamental role in everyday life. In any case, a counting is a measurement. A measurement result, according to its present definition, as given in the 'International Vocabulary of Metrology—Basic and general concepts and associated terms (VIM)', must include a specification concerning the estimated uncertainty. As concerns measurements by counting, this specification is not easy to encompass in the well-known framework of the 'Guide to the Expression of Uncertainty in Measurement', known as GUM, in which there is no guidance on the topic. Furthermore, the issue of uncertainty in countings has received little or no attention in the literature, so that it is commonly accepted that this category of measurements constitutes an exception in which the concept of uncertainty is not applicable, or, alternatively, that results of measurements by counting have essentially no uncertainty. In this paper we propose a general model for measurements by counting which allows an uncertainty evaluation compliant with the general framework of the GUM.

  3. High Count Rate Single Photon Counting Detector Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An optical communications receiver requires efficient and high-rate photon-counting capability so that the information from every photon, received at the aperture,...

  4. Make My Trip Count 2015

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Make My Trip Count (MMTC) commuter survey, conducted in September and October 2015 by GBA, the Pittsburgh 2030 District, and 10 other regional transportation...

  5. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  6. Single ion counting with a MCP (microchannel plate) detector

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, Hiroko; Sasaki, Shinichi; Miyajima, Mitsuhiro [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Shibamura, Eido

    1996-07-01

    In this study, a single-ion-counting method using alpha-particle-impact ionization of Ar atoms is demonstrated and the preliminary {epsilon}{sub mcp} for Ar ions with incident energies of 3 to 4.7 keV is determined. The single-ion counting by the MCP is aimed to be performed under experimental conditions as follows: (1) A signal from the MCP is reasonably identified as incidence of single Ar-ion. (2) The counting rate of Ar ions is less than 1 s{sup -1}. (3) The incident Ar ions are not focused on a small part of an active area of the MCP, namely, {epsilon}{sub mcp} is determined with respect to the whole active area of the MCP. So far, any absolute detection efficiency has not been reported under these conditions. (J.P.N.)

  7. Machine Learning Estimation of Atom Condensed Fukui Functions.

    Science.gov (United States)

    Zhang, Qingyou; Zheng, Fangfang; Zhao, Tanfeng; Qu, Xiaohui; Aires-de-Sousa, João

    2016-02-01

    To enable the fast estimation of atom condensed Fukui functions, machine learning algorithms were trained with databases of DFT pre-calculated values for ca. 23,000 atoms in organic molecules. The problem was approached as the ranking of atom types with the Bradley-Terry (BT) model, and as the regression of the Fukui function. Random Forests (RF) were trained to predict the condensed Fukui function, to rank atoms in a molecule, and to classify atoms as high/low Fukui function. Atomic descriptors were based on counts of atom types in spheres around the kernel atom. The BT coefficients assigned to atom types enabled the identification (93-94 % accuracy) of the atom with the highest Fukui function in pairs of atoms in the same molecule with differences ≥0.1. In whole molecules, the atom with the top Fukui function could be recognized in ca. 50 % of the cases and, on the average, about 3 of the top 4 atoms could be recognized in a shortlist of 4. Regression RF yielded predictions for test sets with R(2) =0.68-0.69, improving the ability of BT coefficients to rank atoms in a molecule. Atom classification (as high/low Fukui function) was obtained with RF with sensitivity of 55-61 % and specificity of 94-95 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hanford whole body counting manual

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  9. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  10. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  11. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  12. Playing pinball with atoms.

    Science.gov (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W

    2009-05-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  13. Counting a Culture of Mealworms

    Science.gov (United States)

    Ashbrook, Peggy

    2007-01-01

    Math is not the only topic that will be discussed when young children are asked to care for and count "mealworms," a type of insect larvae (just as caterpillars are the babies of butterflies, these larvae are babies of beetles). The following activity can take place over two months as the beetles undergo metamorphosis from larvae to adults. As the…

  14. Verbal Counting in Bilingual Contexts

    Science.gov (United States)

    Donevska-Todorova, Ana

    2015-01-01

    Informal experiences in mathematics often include playful competitions among young children in counting numbers in as many as possible different languages. Can these enjoyable experiences result with excellence in the formal processes of education? This article discusses connections between mathematical achievements and natural languages within…

  15. Shakespeare Live! and Character Counts.

    Science.gov (United States)

    Brookshire, Cathy A.

    This paper discusses a live production of Shakespeare's "Macbeth" (in full costume but with no sets) for all public middle school and high school students in Harrisonburg and Rockingham, Virginia. The paper states that the "Character Counts" issues that are covered in the play are: decision making, responsibility and…

  16. On modelling overdispersion of counts

    NARCIS (Netherlands)

    Poortema, Klaas

    1999-01-01

    For counts it often occurs that the observed variance exceeds the nominal variance of the claimed binomial, multinomial or Poisson distributions. We study how models can be extended to cope with this phenomenon: a survey of literature is given. We focus on modelling, not on estimation or testing

  17. Kids Count Data Sheet, 2000.

    Science.gov (United States)

    Annie E. Casey Foundation, Baltimore, MD.

    Data from the 50 United States are listed for 1997 from Kids Count in an effort to track state-by-state the status of children in the United States and to secure better futures for all children. Data include percent low birth weight babies; infant mortality rate; child death rate; rate of teen deaths by accident, homicide, and suicide; teen birth…

  18. Vote Counting as Mathematical Proof

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Pattinson, Dirk

    2015-01-01

    -based formalisation of voting protocols inside a theorem prover, we synthesise vote counting programs that are not only provably correct, but also produce independently verifiable certificates. These programs are generated from a (formal) proof that every initial set of ballots allows to decide the election winner...

  19. Kids Count New Hampshire, 1996.

    Science.gov (United States)

    Terry, Susan Palmer; Hall, Douglas E.

    This Kids Count report presents statewide trends in the well-being of New Hampshire's children. The statistical report is based on 14 indicators of child well being: (1) children in poverty; (2) fatherless families; (3) maternal education; (4) teen births; (5) births to unmarried mothers; (6) low birth weight births; (7) insurance coverage; (8)…

  20. Counting electrons on supported nanoparticles

    Science.gov (United States)

    Lykhach, Yaroslava; Kozlov, Sergey M.; Skála, Tomáš; Tovt, Andrii; Stetsovych, Vitalii; Tsud, Nataliya; Dvořák, Filip; Johánek, Viktor; Neitzel, Armin; Mysliveček, Josef; Fabris, Stefano; Matolín, Vladimír; Neyman, Konstantin M.; Libuda, Jörg

    2016-03-01

    Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials.

  1. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)

    2003-04-15

    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  2. Temporal trends in sperm count

    DEFF Research Database (Denmark)

    Levine, Hagai; Jørgensen, Niels; Martino-Andrade, Anderson

    2017-01-01

    , method of measuring SC and semen volume, exclusion criteria and indicators of completeness of covariate data]. The slopes of SC and TSC were estimated as functions of sample collection year using both simple linear regression and weighted meta-regression models and the latter were adjusted for pre......-determined covariates and modification by fertility and geographic group. Assumptions were examined using multiple sensitivity analyses and nonlinear models. OUTCOMES: SC declined significantly between 1973 and 2011 (slope in unadjusted simple regression models -0.70 million/ml/year; 95% CI: -0.72 to -0.69; P ...BACKGROUND: Reported declines in sperm counts remain controversial today and recent trends are unknown. A definitive meta-analysis is critical given the predictive value of sperm count for fertility, morbidity and mortality. OBJECTIVE AND RATIONALE: To provide a systematic review and meta-regression...

  3. 1/Nc Countings in Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Jose Goity

    2004-05-01

    The 1/N{sub c} power countings for baryon decays and configuration mixings are determined by means of a non-relativistic quark picture. Such countings are expected to be robust as the quark masses are decreased towards the chiral limit. It is shown that excited baryons have natural widths of {Omicron}(N{sub c}{sup 0}). These dominant widths are due to the decays that proceed directly to the ground state baryons, with cascade decays being suppressed to {Omicron}(1/N{sub c}). Configuration mixings, defined as mixings between states belonging to different O(3) x SU(2N{sub f}) multiplets, are shown to be sub-leading in an expansion in 1/{radical}N{sub c}, except for certain mixings between excited multiplets belonging to the mixed-symmetric spin-flavor representation and different O(3) representations, where the mixings are of zeroth order in 1/N{sub c}.

  4. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  5. A novel interference fringes software counting method

    Science.gov (United States)

    Yang, Yuanzhao; Chen, Benyong; Wu, Xiaowei; Li, Dacheng

    2005-02-01

    Conventional interference fringes counting methods often process two sinusoidal interference signals with a phase difference of π/2 to realize fringe-counting. But when the signals fluctuate in half a period of the signal, the conventional fringe-counting method sometimes produces direction-distinguishing mistakes, then resulting in counting errors. To address the problem, this paper presents a novel interference fringes counting method that uses software to distinguish the forward or backward direction of interference fringe and to count. This fringe-counting method can accurately distinguish the moving direction induced by the fluctuation of interference fringes, so it has the advantages of exact counting, intelligence and reliability. An experimental setup based on a Michelson interferometer is constructed to demonstrate the utility of this fringe-counting method for displacement measurement, and experimental results with a range of 1036mm is presented.

  6. Use of quantitative-structure property relationship (QSPR) and artificial neural network (ANN) based approaches for estimating the octanol-water partition coefficients of the 209 chlorinated trans-azobenzene congeners.

    Science.gov (United States)

    Wilczyńska-Piliszek, Agata J; Piliszek, Sławomir; Falandysz, Jerzy

    2012-01-01

    Polychlorinated azobenzenes (PCABs) can be found as contaminant by products in 3,4-dichloroaniline and its derivatives and in the herbicides Diuron, Linuron, Methazole, Neburon, Propanil and SWEP. Trans congeners of PCABs are physically and chemically more stable and so are environmentally relevant, when compared to unstable cis congeners. In this study, to fulfill gaps on environmentally relevant partitioning properties of PCABs, the values of n-octanol/water partition coefficients (log K(OW)) have been determined for 209 congeners of chloro-trans-azobenzene (Ct-AB) by means of quantitative structure-property relationship (QSPR) approach and artificial neural networks (ANN) predictive ability. The QSPR methods used based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G basis set in Gaussian 03 and of the semi-empirical quantum chemistry method (PM6) of the molecular orbital package (MOPAC). Polychlorinated dibenzo-p-dioxins (PCDDs), -furans (PCDFs) and -biphenyls (PCBs), to which PCABs are related, were reference compounds in this study. An experimentally obtained data on physical and chemical properties of PCDD/Fs and PCBs were reference data for ANN predictions of log K(OW) values of Ct-ABs in this study. Both calculation methods gave similar results in term of absolute log K(OW) values, while the models generated by PM6 are considered highly efficient in time spent, when compared to these by DFT. The estimated log K(OW) values of 209 Ct-ABs varied between 5.22-5.57 and 5.45-5.60 for Mono-, 5.56-6.00 and 5.59-6.07 for Di-, 5.89-6.56 and 5.91-6.46 for Tri-, 6.10-7.05 and 6.13-6.80 for Tetra-, 6.43-7.39 and 6.48-7.14 for Penta-, 6.61-7.78 and 6.98-7.42 for Hexa-, 7.41-7.94 and 7.34-7.86 for Hepta-, 7.99-8.17 and 7.72-8.20 for Octa-, 8.35-8.42 and 8.10-8.62 for NonaCt-ABs, and 8.52-8.60 and 8.81-8.83 for DecaCt-AB. These log K(OW) values

  7. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  8. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  9. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  10. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  11. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  12. CalCOFI Larvae Counts Positive Tows

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for eggs captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  13. Alaska Steller Sea Lion Pup Count Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of Steller sea lion pups on rookeries in Alaska made between 1961 and 2015. Pup counts are conducted in late June-July. Pups are...

  14. White blood cell count - series (image)

    Science.gov (United States)

    The White Blood Cell (WBC) Count measures two components: the total number of WBC's (leukocytes), and the differential count. ... and basophils) and non-granulocytes (lymphocytes and monocytes). White blood cells are a major component of the ...

  15. Modeling and Simulation of Count Data

    Science.gov (United States)

    Plan, E L

    2014-01-01

    Count data, or number of events per time interval, are discrete data arising from repeated time to event observations. Their mean count, or piecewise constant event rate, can be evaluated by discrete probability distributions from the Poisson model family. Clinical trial data characterization often involves population count analysis. This tutorial presents the basics and diagnostics of count modeling and simulation in the context of pharmacometrics. Consideration is given to overdispersion, underdispersion, autocorrelation, and inhomogeneity. PMID:25116273

  16. Rational Formulation of Alternative Fuels using QSPR Methods: Application to Jet Fuels Développement d’un outil d’aide à la formulation des carburants alternatifs utilisant des méthodes QSPR (Quantitative Structure Property Relationship: application aux carburéacteurs

    Directory of Open Access Journals (Sweden)

    Saldana D.A.

    2013-06-01

    Full Text Available Alternative fuels are a promising solution for road transport but also for aircraft. In the aviation field, a huge amount of work has been done in the past years with the approval to use up to 50 % by volume of SPK (Synthetic Paraffinic Kerosene in blends with conventional fossil Jet A-1. SPK are Fischer-Tropsch (FT fuels but also Hydroprocessed Esters and Fatty Acids (HEFA. However, these alternative fuels can have different chemical properties depending on the process used for their production. These properties include normal to iso paraffin ratio, carbon chain length and level of branching. R&D studies of alternative fuels are based on the evaluation of products coming from identified production processes. However, it appears that a better way of studying them could be firstly to determine the best chemical composition regarding aviation problems and secondly to find the best process and finishing process in order to obtain such a product. The objective of this work is to design a tool that aims to guide the future formulation of alternative fuels for aviation through the prediction of targeted physical properties. Thus, it is proposed to apply a methodology that identifies relationships between the structure and properties of a molecule (QSPR for Quantitative Structure Property Relationship, with the aim of establishing predictive models. These models will be built for hydrocarbons (normal and iso paraffins, naphthenes, aromatics, etc. and oxygenated compounds (esters and alcohols. For aviation, oxygenated compounds are not considered as a drop-in fuel. It could be seen as a disruptive solution in a long term view. There are concerns with oxygenates in aviation that are covered in this paper such as the flash point but others such as the energetic content, the water affinity that are not taken into account in this paper. The properties currently studied are flash point, cetane number, density and viscosity. The data sets will contain data

  17. 7 CFR 1220.625 - Counting requests.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Counting requests. 1220.625 Section 1220.625... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.625 Counting requests. (a) The requests for a referendum shall be counted by county FSA offices on the same day as the requests are...

  18. How much do women count if they not counted?

    Directory of Open Access Journals (Sweden)

    Federica Taddia

    2006-01-01

    Full Text Available The condition of women throughout the world is marked by countless injustices and violations of the most fundamental rights established by the Universal Declaration of human rights and every culture is potentially prone to commit discrimination against women in various forms. Women are worse fed, more exposed to physical violence, more exposed to diseases and less educated; they have less access to, or are excluded from, vocational training paths; they are the most vulnerable among prisoners of conscience, refugees and immigrants and the least considered within ethnic minorities; from their very childhood, women are humiliated, undernourished, sold, raped and killed; their work is generally less paid compared to men’s work and in some countries they are victims of forced marriages. Such condition is the result of old traditions that implicit gender-differentiated education has long promoted through cultural models based on theories, practices and policies marked by discrimination and structured differentially for men and women. Within these cultural models, the basic educational institutions have played and still play a major role in perpetuating such traditions. Nevertheless, if we want to overcome inequalities and provide women with empowerment, we have to start right from the educational institutions and in particular from school, through the adoption of an intercultural approach to education: an approach based on active pedagogy and on methods of analysis, exchange and enhancement typical of socio-educational animation. The intercultural approach to education is attentive to promote the realisation of each individual and the dignity and right of everyone to express himself/herself in his/her own way. Such an approach will give women the opportunity to become actual agents of collective change and to get the strength and wellbeing necessary to count and be counted as human beings entitled to freedom and equality, and to have access to all

  19. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  20. High Time Resolution Photon Counting 3D Imaging Sensors

    Science.gov (United States)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    2016-09-01

    Novel sealed tube microchannel plate (MCP) detectors using next generation cross strip (XS) anode readouts and high performance electronics have been developed to provide photon counting imaging sensors for Astronomy and high time resolution 3D remote sensing. 18 mm aperture sealed tubes with MCPs and high efficiency Super-GenII or GaAs photocathodes have been implemented to access the visible/NIR regimes for ground based research, astronomical and space sensing applications. The cross strip anode readouts in combination with PXS-II high speed event processing electronics can process high single photon counting event rates at >5 MHz ( 80 ns dead-time per event), and time stamp events to better than 25 ps. Furthermore, we are developing a high speed ASIC version of the electronics for low power/low mass spaceflight applications. For a GaAs tube the peak quantum efficiency has degraded from 30% (at 560 - 850 nm) to 25% over 4 years, but for Super-GenII tubes the peak quantum efficiency of 17% (peak at 550 nm) has remained unchanged for over 7 years. The Super-GenII tubes have a uniform spatial resolution of MCP gain photon counting operation also permits longer overall sensor lifetimes and high local counting rates. Using the high timing resolution, we have demonstrated 3D object imaging with laser pulse (630 nm 45 ps jitter Pilas laser) reflections in single photon counting mode with spatial and depth sensitivity of the order of a few millimeters. A 50 mm Planacon sealed tube was also constructed, using atomic layer deposited microchannel plates which potentially offer better overall sealed tube lifetime, quantum efficiency and gain stability. This tube achieves standard bialkali quantum efficiency levels, is stable, and has been coupled to the PXS-II electronics and used to detect and image fast laser pulse signals.

  1. AuAg alloy nanomolecules with 38 metal atoms

    Science.gov (United States)

    Kumara, Chanaka; Dass, Amala

    2012-06-01

    Au38-nAgn(SCH2CH2Ph)24 alloy nanomolecules were synthesized, purified and characterized by MALDI TOF mass spectrometry. Similar to 25 and unlike 144 metal atom count AuAg alloy nanomolecules, incorporation of Ag atoms here results in loss or smearing out of distinct UV-vis features. We propose that the short and long staples contain Au atoms, while the inner core consists of both Au and Ag atoms.Au38-nAgn(SCH2CH2Ph)24 alloy nanomolecules were synthesized, purified and characterized by MALDI TOF mass spectrometry. Similar to 25 and unlike 144 metal atom count AuAg alloy nanomolecules, incorporation of Ag atoms here results in loss or smearing out of distinct UV-vis features. We propose that the short and long staples contain Au atoms, while the inner core consists of both Au and Ag atoms. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11781a

  2. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  3. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  4. Counting paths with Schur transitions

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, Pablo [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Kemp, Garreth [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Véliz-Osorio, Alvaro, E-mail: aveliz@gmail.com [Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2016-10-15

    In this work we explore the structure of the branching graph of the unitary group using Schur transitions. We find that these transitions suggest a new combinatorial expression for counting paths in the branching graph. This formula, which is valid for any rank of the unitary group, reproduces known asymptotic results. We proceed to establish the general validity of this expression by a formal proof. The form of this equation strongly hints towards a quantum generalization. Thus, we introduce a notion of quantum relative dimension and subject it to the appropriate consistency tests. This new quantity finds its natural environment in the context of RCFTs and fractional statistics; where the already established notion of quantum dimension has proven to be of great physical importance.

  5. Discrete calculus methods for counting

    CERN Document Server

    Mariconda, Carlo

    2016-01-01

    This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...

  6. Atomization characteristics of a prefilming airblast atomizer

    Science.gov (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu

    1992-01-01

    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  7. Single atom electrochemical and atomic analytics

    Science.gov (United States)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  8. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    Science.gov (United States)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  9. Lifetime measurement of excited atomic and ionic states of some ...

    Indian Academy of Sciences (India)

    Abstract. High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have ...

  10. Lifetime measurement of excited atomic and ionic states of some ...

    Indian Academy of Sciences (India)

    High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have been ...

  11. VizieR Online Data Catalog: Number counts produced by the EGG (Schreiber+, 2017)

    Science.gov (United States)

    Schreiber, C.; Elbaz, D.; Pannella, M.; Merlin, E.; Castellano, M.; Fontana, A.; Bourne, N.; Boutsia, K.; Cullen, F.; Dunlop, J.; Ferguson, H. C.; Michalowski, M. J.; Okumura, K.; Santini, P.; Shu, X. W.; Wang, T.; White, C.

    2017-03-01

    The Empirical Galaxy Generator (EGG) is a tool to produce mock galaxy catalogs for deep fields. This table compiles the number counts generated by the tool (v1.0.5) in multiple bands from the U band (0.35um) to the millimeter (2mm). These counts were generated from three different mock catalogs of increasing area and decreasing depth, to obtain a large dynamic range on the fluxes. The counts only include the contribution of the stellar and dust emission of galaxies. They do not account for emission from ionized/atomic/molecular gas, or active galactic nuclei, and they assume no attenuation by clouds from our own galaxy. Differential counts are defined as dN/dlog(flux)/dV. (1 data file).

  12. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  13. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  14. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

  15. Solar Spectroscopy: Atomic Processes

    Science.gov (United States)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  16. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  17. Counting losses due to saturation effects of scintillation counters at high count rates

    CERN Document Server

    Hashimoto, K

    1999-01-01

    The counting statistics of a scintillation counter, with a preamplifier saturated by an overloading input, are investigated. First, the formulae for the variance and the mean number of counts, accumulated within a given gating time, are derived by considering counting-loss effects originating from the saturation and a finite resolving time of the electronic circuit. Numerical examples based on the formulae indicate that the saturation makes a positive contribution to the variance-to-mean ratio and that the contribution increases with count rate. Next the ratios are measured under high count rates when the preamplifier saturation can be observed. By fitting the present formula to the measured data, the counting-loss parameters can be evaluated. Corrections based on the parameters are made for various count rates measured in a nuclear reactor. As a result of the corrections, the linearity between count rate and reactor power can be restored.

  18. Tropical count of curves on abelian varieties

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Rose, Simon Charles Florian

    2017-01-01

    We investigate the problem of counting tropical genus g curves ing-dimensional tropical abelian varieties. We do this by studyingmaps from principally polarized tropical abelian varieties into afixed abelian variety. For g = 2, 3, we prove that the tropical countmatches the count provided in [Göt98...

  19. Is It Counting, or Is It Adding?

    Science.gov (United States)

    Eisenhardt, Sara; Fisher, Molly H.; Thomas, Jonathan; Schack, Edna O.; Tassell, Janet; Yoder, Margaret

    2014-01-01

    The Common Core State Standards for Mathematics (CCSSI 2010) expect second grade students to "fluently add and subtract within 20 using mental strategies" (2.OA.B.2). Most children begin with number word sequences and counting approximations and then develop greater skill with counting. But do all teachers really understand how this…

  20. It Is Time to Count Learning Communities

    Science.gov (United States)

    Henscheid, Jean M.

    2015-01-01

    As the modern learning community movement turns 30, it is time to determine just how many, and what type, of these programs exist at America's colleges and universities. This article first offers a rationale for counting learning communities followed by a description of how disparate counts and unclear definitions hamper efforts to embed these…

  1. Lazy reference counting for the Microgrid

    NARCIS (Netherlands)

    Poss, R.; Grelck, C.; Herhut, S.; Scholz, S.-B.

    2012-01-01

    This papers revisits non-deferred reference counting, a common technique to ensure that potentially shared large heap objects can be reused safely when they are both input and output to computations. Traditionally, thread-safe reference counting exploit implicit memory-based communication of counter

  2. Power-counting theorem for staggered fermions

    CERN Document Server

    Giedt, J

    2006-01-01

    One of the assumptions that is used in Reisz's power-counting theorem does not hold for staggered fermions, as was pointed out long ago by Lüscher. Here, we generalize the power-counting theorem, and the methods of Reisz's proof, such that the dif culties posed by staggered fermions are overcome.

  3. Counting sequences, Gray codes and lexicodes

    NARCIS (Netherlands)

    Suparta, I.N.

    2006-01-01

    A counting sequence of length n is a list of all 2^n binary n-tuples (binary codewords of length n). The number of bit positions where two codewords differ is called the Hamming distance of these two codewords. The average Hamming distance of a counting sequence of length n is defined as the average

  4. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  5. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  6. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  7. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    Atomicity in Electronic Commerce J. D. Tygar January 1996 CMU-CS-96-112 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213...other research sponsor. Keywords: electronic commerce , atomicity, NetBill, IBIP, cryptography, transaction pro- cessing, ACID, franking, electronic ...goods over networks. Electronic commerce has inspired a large variety of work. Unfortunately, much of that work ignores traditional transaction

  8. Surgical count process: evidence for patient safety.

    Science.gov (United States)

    Freitas, Patrícia Scotini; Mendes, Karina Dal Sasso; Galvão, Cristina Maria

    2017-02-23

    To analyze the surgical count process according to reports of nurses working in surgical centers of a city in the state of São Paulo. Cross-sectional study with a sample of 55 nurses. Data collection occurred from August to December 2013, with application of an instrument submitted to face and content validation, composed of data on variables regarding characteristics of nurses, hospital, and surgical count process. Fifty-two (94.5%) nurses reported that the surgical count process was carried out in their workplaces. A statistically significant association was found between the surgical count process and the type of institution (P=0.046), and between the presence of a surgical technologist and the processes for counting surgical instruments (Pprocess was carried out in the studied hospital.

  9. Cluster counting in helium based gas mixtures

    Science.gov (United States)

    Cataldi, G.; Grancagnolo, F.; Spagnolo, S.

    1997-02-01

    The statistical advantages deriving from counting primary ionization, as opposed to the conventional energy loss measurement, are extensively discussed. A primary ionization counting method is proposed for a "traditional", cylindrical, single sense wire cell drift chamber, which makes use of a helium based gas mixture. Its conceptual feasibility is proven by means of a simple Monte Carlo simulation. A counting algorithm is developed and tested on the simulation output. A definition of the parameters of the read-out and of the digitizing electronics is given, assuming the described counting algorithm applied to a general detector design, in order to have a complete and realistic planning of a cluster counting measurement. Finally, some interesting results from a beam test, performed according to the described parameters, on primary ionization measurements and on {π}/{μ} separation are shown.

  10. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  11. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  12. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  13. Kids Count in Delaware, Families Count in Delaware: Fact Book, 2002.

    Science.gov (United States)

    Delaware Univ., Newark. Kids Count in Delaware.

    This Kids Count Fact Book is combined with the Families Count Fact Book to provide information on statewide trends affecting children and families in Delaware. The Kids Count statistical profile is based on 11 main indicators of child well-being: (1) births to teens 15-17 years; (2) births to teens 10 to 14 years; (3) low birth weight babies; (3)…

  14. Diprotonation process of meso-tetraphenylporphyrin derivatives designed for Photodynamic Therapy of cancers: From Multivariate Curve Resolution to predictive QSPR modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Benoit, E-mail: benoit.chauvin@u-psud.fr [Univ. Paris-Sud, EA 4041, IFR 141, Faculte de Pharmacie, F-92296 Chatenay-Malabry (France); Institut Curie, UMR 176 CNRS, Centre Universitaire, Univ Paris-Sud, F-91405 Orsay (France); Kasselouri, Athena; Chaminade, Pierre; Quiameso, Rita [Univ. Paris-Sud, EA 4041, IFR 141, Faculte de Pharmacie, F-92296 Chatenay-Malabry (France); Nicolis, Ioannis [Laboratoire de Biomathematiques et Informatique, Departement de Sante publique et biostatistiques et EA 4466, Faculte de Pharmacie, Universite Paris Descartes, 4, avenue de l' Observatoire, 75270 Paris cedex 06 (France); Maillard, Philippe [Institut Curie, UMR 176 CNRS, Centre Universitaire, Univ Paris-Sud, F-91405 Orsay (France); Prognon, Patrice [Univ. Paris-Sud, EA 4041, IFR 141, Faculte de Pharmacie, F-92296 Chatenay-Malabry (France)

    2011-10-31

    Highlights: {yields} Diprotonation of 17 meso-tetraphenylporphyrin derivatives. {yields} MCR-ALS resolution of multi-component mixtures. {yields} Determination of stepwise protonation constants. {yields} Prediction of protonation constants from ET-State indices. - Abstract: Tetrapyrrole rings possess four nitrogen atoms, two of which act as Broendsted bases in acidic media. The two protonation steps occur on a close pH range, particularly in the case of meso-tetraphenylporphyrin (TPP) derivatives. If the cause of this phenomenon is well known - a protonation-induced distortion of the porphyrin ring - data on stepwise protonation constants and on electronic absorption spectra of monoprotonated TPPs are sparse. A multivariate approach has been systematically applied to a series of glycoconjugated and hydroxylated TPPs, potential anticancer drugs usable in Photodynamic Therapy. The dual purpose was determination of protonation constants and linking substitution with basicity. Hard-modeling version of MCR-ALS (Multivariate Curve Resolution Alternating Least Squares) has given access to spectra and distribution profile of pure components. Spectra of monoprotonated species (H{sub 3}TPP{sup +}) in solution resemble those of diprotonated species (H{sub 4}TPP{sup 2+}), mainly differing by a slight blue-shift of bands. Overlap of H{sub 3}TPP{sup +} and H{sub 4}TPP{sup 2+} spectra reinforces the difficulty to evidence an intermediate form only present in low relative abundance. Depending on macrocycle substitution, pK values ranged from 3.5 {+-} 0.1 to 5.1 {+-} 0.1 for the first protonation and from 3.2 {+-} 0.2 to 4.9 {+-} 0.1 for the second one. Inner nitrogens' basicity is affected by position, number and nature of peripheral substituents depending on their electrodonating character. pK values have been used to establish a predictive Multiple Linear Regression (MLR) model, relying on atom-type electrotopological indices. This model accurately describes our results and

  15. Generalised count distributions for modelling parity

    Directory of Open Access Journals (Sweden)

    Bilal Barakat

    2017-03-01

    Full Text Available Background: Parametric count distributions customarily used in demography - the Poisson and negative binomial models - do not offer satisfactory descriptions of empirical distributions of completed cohort parity. One reason is that they cannot model variance-to-mean ratios below unity, i.e., underdispersion, which is typical of low-fertility parity distributions. Statisticians have recently revived two generalised count distributions that can model both over- and underdispersion, but they have not attracted demographers' attention to date. Objective: The objective of this paper is to assess the utility of these alternative general count distributions, namely the Conway-Maxwell-Poisson and gamma count models, for the modeling of distributions of completed parity. Methods: Simulations and maximum-likelihood estimation are used to assess their fit to empirical data from the Human Fertility Database (HFD. Results: The results show that the generalised count distributions offer a dramatically improved fit compared to customary Poisson and negative binomial models in the presence of under- dispersion, without performance loss in the case of equidispersion or overdispersion. Conclusions: This gain in accuracy suggests generalised count distributions should be used as a matter of course in studies of fertility that examine completed parity as an outcome. Contribution: This note performs a transfer of the state of the art in count data modelling and regression in the more technical statistical literature to the field of demography, allowing demographers to benefit from more accurate estimation in fertility research.

  16. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  17. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  18. B Counting at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Grant Duncan

    2008-12-16

    In this thesis we examine the method of counting B{bar B} events produced in the BABAR experiment. The original method was proposed in 2000, but improvements to track reconstruction and our understanding of the detector since that date make it appropriate to revisit the B Counting method. We propose a new set of cuts designed to minimize the sensitivity to time-varying backgrounds. We find the new method counts B{bar B} events with an associated systematic uncertainty of {+-} 0.6%.

  19. Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities.

    Science.gov (United States)

    De Backer, A; Jones, L; Lobato, I; Altantzis, T; Goris, B; Nellist, P D; Bals, S; Van Aert, S

    2017-06-29

    In order to fully exploit structure-property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.

  20. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  1. The Casimir atomic pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Razmi, H. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: razmi@qom.ac.ir; Abdollahi, M. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: mah.abdollahi@gmail.com

    2008-11-10

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock{exclamation_point}.

  2. The Casimir atomic pendulum

    Science.gov (United States)

    Razmi, H.; Abdollahi, M.

    2008-11-01

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock!

  3. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  4. Dalton's Atomic Theory

    National Research Council Canada - National Science Library

    DOBBIN, LEONARD

    1896-01-01

    WITH reference to the communications from the authors and from the reviewer of the "New View of the Origin of Dalton's Atomic Theory," published in NATURE for May 14, I beg leave to offer the following remarks...

  5. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  6. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  7. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  8. Atomic Clocks Research - An Overview.

    Science.gov (United States)

    1987-08-15

    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  9. Furbearer track count index testing and development

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Indices of abundance can be useful in monitoring furbearer populations where actual counts of individual animals are difficult. I sampled marten and snowshoe hare...

  10. CoC Housing Inventory Count Reports

    Data.gov (United States)

    Department of Housing and Urban Development — Continuum of Care (CoC) Homeless Assistance Programs Housing Inventory Count Reports are a snapshot of a CoC’s housing inventory, available at the national and state...

  11. Mourning Dove Call-count Survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Mourning Dove (Zenaida macroura) Call-Count Survey was developed to provide an index to population size and to detect annual changes in mourning dove breeding...

  12. Four square mile survey pair count instructions

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This standard operating procedure (SOP) provides guidance for conducting bird pair count measurements on wetlands for the HAPETs Four-Square-Mile survey. This set of...

  13. Global Population Count Grid Time Series Estimates

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global...

  14. 2013 bobwhite whistle count : performance report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Performance report for the 2013 spring whistle count to monitor northern bobwhite abundance in Kansas state. This survey was initiated in 1998, and is preformed on...

  15. 2012 bobwhite whistle count : performance report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Performance report for the 2012 spring whistle count to monitor northern bobwhite abundance in Kansas state. This survey was initiated in 1998, and is preformed on...

  16. Calorie count - sodas and energy drinks

    Science.gov (United States)

    ... ency/patientinstructions/000888.htm Calorie count - sodas and energy drinks To use the sharing features on this page, ... 150 Wild Cherry Pepsi 12 oz 160 Energy Drinks AMP Energy Strawberry Lemonade 16 oz 220 AMP Energy Boost ...

  17. Why calories count: from science to politics

    National Research Council Canada - National Science Library

    Nestle, Marion; Nesheim, Malden C

    2012-01-01

    .... They are also hard to understand. In Why Calories Count, Marion Nestle and Malden Nesheim explain in clear and accessible language what calories are and how they work, both biologically and politically...

  18. VSRR Provisional Drug Overdose Death Counts

    Data.gov (United States)

    U.S. Department of Health & Human Services — This data contains provisional counts for drug overdose deaths based on a current flow of mortality data in the National Vital Statistics System. National...

  19. White Blood Cell Counts and Malaria

    National Research Council Canada - National Science Library

    McKenzie, F. E; Prudhomme, Wendy A; Magill, Alan J; Forney, J. R; Permpanich, Barnyen; Lucas, Carmen; Gasser, Jr., Robert A; Wongsrichanalai, Chansuda

    2005-01-01

    .... At each site and in each year, WBC counts in the Plasmodium falciparum infected patients were lower than those in the Plasmodium vivax infected patients, which, in turn, were lower than those in the uninfected patients...

  20. White Blood Cell Counts and Malaria

    National Research Council Canada - National Science Library

    McKenzie, F. E; Prudhomme, Wendy A; Magill, Alan J; Forney, J. R; Permpanich, Barnyen; Lucas, Carmen; Gasser, Jr., Robert A; Wongsrichanalai, Chansuda

    2005-01-01

    White blood cells (WBCs) were counted in 4697 individuals who presented to outpatient malaria clinics in Maesod, Tak Province, Thailand, and Iquitos, Peru, between 28 May and 28 August 1998 and between 17 May and 9 July 1999...

  1. Wave Atom Based Watermarking

    OpenAIRE

    Bukhari, Ijaz; Nuhman-ul-Haq; Hyat, Khizar

    2013-01-01

    Watermarking helps in ensuring originality, ownership and copyrights of a digital image. This paper aims at embedding a Watermark in an image using Wave Atom Transform. Preference of Wave Atoms on other transformations has been due to its sparser expansion, adaptability to the direction of local pattern, and sharp frequency localization. In this scheme, we had tried to spread the watermark in an image so that the information at one place is very small and undetectable. In order to extract the...

  2. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  3. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  4. Atomic Bomb Health Benefits

    OpenAIRE

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation,...

  5. Atomic interferometry; Interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baudon, J.; Robert, J. [Paris-13 Univ., 93 - Saint-Denis (France)

    2004-07-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation {lambda} = h/(mv), where {lambda} is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  6. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T. (Nagasaki Univ. (Japan). School of Medicine)

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  7. Adaptive and Approximate Orthogonal Range Counting

    DEFF Research Database (Denmark)

    Chan, Timothy M.; Wilkinson, Bryan Thomas

    2013-01-01

    ]. •We give an O(n loglog n)-space data structure for approximate 2-D orthogonal range counting that can compute a (1+δ)-factor approximation to the count in O(loglog n) time for any fixed constant δ>0. Again, our bounds match the state of the art for the 2-D orthogonal range emptiness problem. •Lastly...

  8. How to count an introduction to combinatorics

    CERN Document Server

    Allenby, RBJT

    2010-01-01

    What's It All About? What Is Combinatorics? Classic Problems What You Need to Know Are You Sitting Comfortably? Permutations and Combinations The Combinatorial Approach Permutations CombinationsApplications to Probability Problems The Multinomial Theorem Permutations and Cycles Occupancy Problems Counting the Solutions of Equations New Problems from Old A ""Reduction"" Theorem for the Stirling Numbers The Inclusion-Exclusion Principle Double Counting Derangements A Formula for the Stirling NumbersStirling and Catalan Numbers Stirling Numbers Permutations and Stirling Numbers Catalan Numbers Pa

  9. Discrete Derivatives for Atom-Pairs as a Novel Graph-Theoretical Invariant for Generating New Molecular Descriptors: Orthogonality, Interpretation and QSARs/QSPRs on Benchmark Databases.

    Science.gov (United States)

    Martínez-Santiago, Oscar; Millán-Cabrera, Reisel; Marrero-Ponce, Yovani; Barigye, Stephen J; Martínez-López, Yoan; Torrens, Francisco; Pérez-Giménez, Facundo

    2014-05-01

    This report presents a new mathematical method based on the concept of the derivative of a molecular graph (G) with respect to a given event (S) to codify chemical structure information. The derivate over each pair of atoms in the molecule is defined as ∂G/∂S(vi  , vj )=(fi -2fij +fj )/fij , where fi (or fj ) and fij are the individual frequency of atom i (or j) and the reciprocal frequency of the atoms i and j, respectively. These frequencies characterize the participation intensity of atom pairs in S. Here, the event space is composed of molecular sub-graphs which participate in the formation of the G skeleton that could be complete (representing all possible connected sub-graphs) or comprised of sub-graphs of certain orders or types or combinations of these. The atom level graph derivative index, Δi , is expressed as a linear combination of all atom pair derivatives that include the atomic nuclei i. Global [total or local (group or atom-type)] indices are obtained by applying the so called invariants over a vector of Δi values. The novel MDs are validated using a data set of 28 alkyl-alcohols and other benchmark data sets proposed by the International Academy of Mathematical Chemistry. Also, the boiling point for the alcohols, the adrenergic blocking activity of N,N-dimethyl-2-halo-phenethylamines and physicochemical properties of polychlorinated biphenyls and octanes are modeled. These models exhibit satisfactory predictive power compared with other 0-3D indices implemented successfully by other researchers. In addition, tendencies of the proposed indices are investigated using examples of various types of molecular structures, including chain-lengthening, branching, heteroatoms-content, and multiple bonds. On the other hand, the relation of atom-based derivative indices with (17) O NMR of a series of ethers and carbonyls reflects that the new MDs encode electronic, topological and steric information. Linear independence between the graph derivative

  10. Full Counting Statistics for Interacting Fermions with Determinantal Quantum Monte Carlo Simulations

    Science.gov (United States)

    Humeniuk, Stephan; Büchler, Hans Peter

    2017-12-01

    We present a method for computing the full probability distribution function of quadratic observables such as particle number or magnetization for the Fermi-Hubbard model within the framework of determinantal quantum Monte Carlo calculations. Especially in cold atom experiments with single-site resolution, such a full counting statistics can be obtained from repeated projective measurements. We demonstrate that the full counting statistics can provide important information on the size of preformed pairs. Furthermore, we compute the full counting statistics of the staggered magnetization in the repulsive Hubbard model at half filling and find excellent agreement with recent experimental results. We show that current experiments are capable of probing the difference between the Hubbard model and the limiting Heisenberg model.

  11. Gamma camera based method for 131I capsule counting: an alternate method to Uptake probe method.

    Science.gov (United States)

    Menon, Biju K; Uday, Awasare S; Singh, Baghel N

    2017-11-10

    The main objective of this study was to check the validity of using gamma camera as an alternate method to thyroid uptake probe, for counting 25uCi (0.925 MBq) and 50uCi (1.85 MBq) 131I capsules before administration to thyroid patients. Methods: - 10 sets each of 25uCi (0.925 MBq) and 50uCi (1.85 MBq) 131I capsules received from Board Of Radiation and Isotope Technology, Department Of Atomic Energy, India (BRIT, DAE) have been counted individually using thyroid uptake probe for 10 seconds following institutional protocol and also by keeping individual capsule of a set with 8cm gap between each of them .These capsules were also scanned by Scintillation gamma camera for 100 seconds. Capsules having counts within the range of mean ±2 Standard Deviation (SD) were accepted for patient administration. After analysing both the data, correlation coefficient between these two methods has been evaluated. Results: Scanned images were analysed by drawing Identical ROI around each set of 25uCi (0.925 MBq) and 50uCi (1.85 MBq) 131I capsules. Capsules with counts within 2 Standard Deviation from mean were accepted for patient administration. Good correlation coefficient (r >0.95) was observed between these two counts set. Conclusion: Gamma camera based 131I -capsule counting method is an easy and time saving method compared to probe based capsule counting method as we can scan a set of capsules in a single acquisition. It can provide uniformity information for a batch of 131I -capsules and avoid the time consuming method of individual capsule counting with the thyroid uptake probe. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Benjamin Thompson, Count Rumford Count Rumford on the nature of heat

    CERN Document Server

    Brown, Sanborn C

    1967-01-01

    Men of Physics: Benjamin Thompson - Count Rumford: Count Rumford on the Nature of Heat covers the significant contributions of Count Rumford in the fields of physics. Count Rumford was born with the name Benjamin Thompson on March 23, 1753, in Woburn, Massachusetts. This book is composed of two parts encompassing 11 chapters, and begins with a presentation of Benjamin Thompson's biography and his interest in physics, particularly as an advocate of an """"anti-caloric"""" theory of heat. The subsequent chapters are devoted to his many discoveries that profoundly affected the physical thought

  13. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  14. Blood Count Tests: MedlinePlus Health Topic

    Science.gov (United States)

    ... Spanish WBC count (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Blood Count Tests ... WBC count Show More Show Less Related Health Topics Bleeding Disorders Blood Laboratory Tests National Institutes of ...

  15. The Acquisition of Counting Skill in Preschooler

    Directory of Open Access Journals (Sweden)

    Kadir Çakır

    2013-03-01

    Full Text Available Abstract- The aim of this study was to find out more information on the acquisition of counting skill in preschool children. For this purpose, children’s judgment of acceptability of a counting activity was used to investigate whether children’s counting skills are governed by their implicit knowledge of a number of counting principles. Data showed that children easily recognized the violation of one or more counting principles in a one’s application of counting principles in sequences of English and Turkish count words, implying that children have the understanding of counting principles. The sessions on counting in Turkish make it very likely that the children were responding to violations of rules rather than merely violation of well-learning of count words. These results give additional support to the assumption that there are innate counting principles that rule young children’s counting. Keywords: counting principles, error-detection task, mathematical development. Özet- Okul Öncesi Çocuklarda Sayma İlkeleri. Bu çalışmada çocukların bir sayma etkinliğinin geçerli olup olmadığı hakkındaki yargıları kullanılarak, sayma becerisinin doğuştan sahip olunan bir dizi örtük ilkeler tarafından yönlendirilip yönlendirilmediği incelenmiştir. Bu amaç doğrultusunda, bir grup okul öncesi çocuklardan videodan izledikleri bir aktör çocuğun hem anadilinde (İngilizce hem de bilmedikleri bir yabancı dilde (Türkçe yaptığı farklı hatalar içeren sayma serilerinin doğru veya yanlış olup olmadığı belirtmesi istenmiştir. Elde edilen sonuçlar çocukların sayma etkinliklerine rehberlik eden doğuştan getirdikleri örtük “sayma ilkelerine” sahip olduklarına ilişkin görüşleri destekler yönündedir. Örneğin, gerek İngilizce gerekse Türkçe sayma serilerinde, “standart (doğru sayma” serisi diğer tüm serilere göre anlamlı ölçüde “doğru” bir sayma olarak değerlendirilirken, T

  16. Protecting count queries in study design

    Science.gov (United States)

    Sarwate, Anand D; Boxwala, Aziz A

    2012-01-01

    Objective Today's clinical research institutions provide tools for researchers to query their data warehouses for counts of patients. To protect patient privacy, counts are perturbed before reporting; this compromises their utility for increased privacy. The goal of this study is to extend current query answer systems to guarantee a quantifiable level of privacy and allow users to tailor perturbations to maximize the usefulness according to their needs. Methods A perturbation mechanism was designed in which users are given options with respect to scale and direction of the perturbation. The mechanism translates the true count, user preferences, and a privacy level within administrator-specified bounds into a probability distribution from which the perturbed count is drawn. Results Users can significantly impact the scale and direction of the count perturbation and can receive more accurate final cohort estimates. Strong and semantically meaningful differential privacy is guaranteed, providing for a unified privacy accounting system that can support role-based trust levels. This study provides an open source web-enabled tool to investigate visually and numerically the interaction between system parameters, including required privacy level and user preference settings. Conclusions Quantifying privacy allows system administrators to provide users with a privacy budget and to monitor its expenditure, enabling users to control the inevitable loss of utility. While current measures of privacy are conservative, this system can take advantage of future advances in privacy measurement. The system provides new ways of trading off privacy and utility that are not provided in current study design systems. PMID:22511018

  17. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  18. A new 28Si single crystal: counting the atoms for the new kilogram definition

    Science.gov (United States)

    Bartl, G.; Becker, P.; Beckhoff, B.; Bettin, H.; Beyer, E.; Borys, M.; Busch, I.; Cibik, L.; D'Agostino, G.; Darlatt, E.; Di Luzio, M.; Fujii, K.; Fujimoto, H.; Fujita, K.; Kolbe, M.; Krumrey, M.; Kuramoto, N.; Massa, E.; Mecke, M.; Mizushima, S.; Müller, M.; Narukawa, T.; Nicolaus, A.; Pramann, A.; Rauch, D.; Rienitz, O.; Sasso, C. P.; Stopic, A.; Stosch, R.; Waseda, A.; Wundrack, S.; Zhang, L.; Zhang, X. W.

    2017-10-01

    A new single crystal from isotopically enriched silicon was used to determine the Avogadro constant N A by the x-ray-crystal density method. The new crystal, named Si28-23Pr11, has a higher enrichment than the former ‘AVO28’ crystal allowing a smaller uncertainty of the molar mass determination. Again, two 1 kg spheres were manufactured from this crystal. The crystal and the spheres were measured with improved and new methods. One sphere, Si28kg01a, was measured at NMIJ and PTB with very consistent results. The other sphere, Si28kg01b, was measured only at PTB and yielded nearly the same Avogadro constant value. The mean result for both 1 kg spheres is N A  =  6.022 140 526(70)  ×  1023 mol-1 with a relative standard uncertainty of 1.2  ×  10-8. This value deviates from the Avogadro value published in 2015 for the AVO28 crystal by about 3.9(2.1)  ×  10-8. Possible reasons for this difference are discussed and additional measurements are proposed.

  19. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  20. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  1. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  2. Atoms in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Thomas S. [University of Tennessee

    1965-01-01

    Agriculture benefits from the applications of research. Radioactive techniques have been used to study soils, plants, microbes, insects, farm animals, and new ways to use and preserve foodstuffs. Radioactive atoms are not used directly by farmers but are used in research directed by the U. S. Department of Agriculture and Atomic Energy Commission, by the agricultural experiment stations of the various states, and by numerous public and private research institutions. From such research come improved materials and methods which are used on the farm.

  3. From Atoms to Solids

    Science.gov (United States)

    1999-01-31

    Honea. M.L. Homer, J.L. Persson, R.L. Whetten , Chem. atoms Phys. Lett. 171 (1990) 147. [17] M.R. Hoare, Adv. Chem. Phys. 40 (1979) 49. Two types of...Persson, M.E. LaVilla, R.L. tal conditions, the clusters become rigid. Thereafter, Whetten , J. Phys. Chem. 93 (1989) 2869. each newly added atom condenses...106 (1981) 265. M. Broyer, Phys. Rev. A 39 (1989) 6056. [9] W. Ekardt, Ber. Bunsenges. Phys. Chem. 88 (1984) 289. [38] R.L. Whetten , private

  4. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  5. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, Michito; Tomonaga, Masao; Amenomori, Tatsuhiko; Matsuo, Tatsuki (Nagasaki Univ. (Japan). School of Medicine)

    1991-03-01

    Characteristic features of leukemia among atomic bomb survivors were studied. The ratio of a single leukemia type to all leukemias was highest for CML in Hiroshima, and the occurrence of CML was thought to be most characteristic for atomic bomb radiation induced leukemia. In the distribution of AML subtypes of FAB classification, there was no M3 cases in 1 Gy or more group, although several atypical AML cases of survivors were observed. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral blood of proximal survivors. (author).

  6. Carbohydrate counting-1: South Asian framework.

    Science.gov (United States)

    Gupta, Lovely; Khandelwal, Deepak; Kalra, Sanjay

    2017-08-01

    Carbohydrate counting or "carb counting" is a meal planning technique for persons with diabetes for managing blood glucose levels by tracking the grams of carbohydrate consumed at meals. It has shown to improve glycaemic control and glycaemic variability and decreases risk of hypoglycaemia in persons with diabetes especially on insulins. It needs basic education of the patient regarding meal plan, assessment of carbohydrate content of various foods and also exchange lists. It also gives flexibility of food choice, helps to identify patterns in blood glucose levels and adjustment of pre meals short acting insulins as related to food intake. In this short review we have summarised basic principles of carbohydrate counting, its application in clinical practice and also exchange lists primarily pertaining to South Asian population.

  7. Colours, luminosity functions and counts of galaxies

    Science.gov (United States)

    Saracco, P.; Chincarini, G.; Iovino, A.

    1996-12-01

    Standard models for deep galaxy counts are based on luminosity functions (LFs) that have a relatively flat faint end (alpha~-1.0). Galaxy counts in the B band exceed the prediction of such models from a factor of 2 to more than a factor of 5, forcing the introduction of strong luminosity and/or density evolution. Recently Marzke, Huchra & Geller, using the CfA redshift survey sample, found that the number of galaxies in the range -16<2.5 for dwarf galaxies, we reproduce well also the observed K-band deep galaxy counts. This assumption is supported by the strong correlation we found between B-K colour of galaxies and their infrared absolute magnitude: galaxies become bluer with decreasing luminosity.

  8. CERN_DxCTA counting mode chip

    CERN Document Server

    Moraes, D; Nygård, E

    2008-01-01

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 μm CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e−, for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors.

  9. Detection limits for radioanalytical counting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.

    1975-06-01

    In low-level radioanalysis it is usually necessary to test the sample net counts against some ''Critical Level'' in order to determine if a given result indicates detection. This is an interpretive review of the work by Nicholson (1963), Currie (1968) and Gilbert (1974). Nicholson's evaluation of three different computational formulas for estimation of the ''Critical Level'' is discussed. The details of Nicholson's evaluation are presented along with a basic discussion of the testing procedures used. Recommendations are presented for calculation of confidence intervals, for reporting of analytical results, and for extension of the derived formula to more complex cases such as multiple background counts, multiple use of a single background count, and gamma spectrometric analysis. (auth)

  10. Sub electron readout noise & photon counting devices

    Science.gov (United States)

    Gach, J.-L.; Balard, Ph.; Daigle, O.; Destefanis, G.; Feautrier, Ph.; Guillaume, Ch.; Rothman, J.

    We present recent advances on ultra low noise visible detectors at Laboratoire d'Astrophysique de Marseille, photon counting and EMCCD developments in collaboration with Observatoire de haute provence, Laboratoire d'astrophysique de l'observatoire de Grenoble and Laboratoire d'Astrophysique Experimentale (Montreal). After a review of the progress with third generation Image Photon Counting Systems (IPCS), we present the OCAM camera, based on the E2V CCD220 EMCCD, part of the Opticon JRA2 programme, and the CCCP controller, a new controller for the 3DNTT instrument that reduces the clock induced charge of an EMCCD by a factor 10, making it competitive with IPCS detectors for very faint fluxes. We will finally present the RAPID project and the concept of photon counting avalanche photodiode CMOS device (in collaboration with CEA-LETI) which is foreseen to be the ultimate detector for the visible-IR range providing no readout noise, high QE and extremely fast readout.

  11. Lifetime measurement of the 9s level of atomic francium.

    Science.gov (United States)

    Aubin, S; Gomez, E; Orozco, L A; Sprouse, G D

    2003-11-01

    We use two-photon resonant excitation and time-correlated single-photon counting techniques on a sample of 210Fr atoms confined and cooled in a magneto-optical trap to measure the lifetime of the 9s excited level. Direct measurement of the decay through the 7P(3/2) level at 851 nm yields a lifetime of 107.53 +/- 0.80 ns.

  12. Total lymphocyte count as a surrogate marker for CD4 count in resource-limited settings.

    Science.gov (United States)

    Obirikorang, Christian; Quaye, Lawrence; Acheampong, Isaac

    2012-06-07

    CD4 testing is the recognized gold standard used to stage HIV/AIDS, guide treatment decisions for HIV-infected persons and evaluate effectiveness of therapy. The need for a less expensive surrogate marker that can be used in resource-limited setting is however necessary. The study sought to assess the suitability of Total lymphocyte count (TLC) as a surrogate marker for CD4 count in resource-limited localities in Ghana. This observational study was conducted at the Central Regional Hospital, which has one of the established antiretroviral therapy centres in Ghana. A total of one hundred and eighty-four (184) confirmed HIV I seropositive subjects were included in the study. Blood samples were taken from all the subjects for estimation of CD4 and total lymphocyte counts. The study subjects were further categorised into three (3) groups according to the Centers for Disease Control and Prevention (CDC) classification criteria as follows: CD4 counts (1) ≥ 500 cells/mm3 (2) 200-499 cells/mm3 and (3) Lymphocyte count obtained. The sensitivity, specificity, positive and negative predictive values of TLC 1200 cells/ mm3 to predict CD4 count were Lymphocyte count can therefore adequately serve as a surrogate marker for CD4 count in HIV patients who are naïve for antiretroviral therapy in resource-limited areas.

  13. Optical planar waveguide for cell counting

    Science.gov (United States)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  14. FAC: Flexible Atomic Code

    Science.gov (United States)

    Gu, Ming Feng

    2018-02-01

    FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

  15. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  16. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  17. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  18. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  19. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  20. Counting Women's Work in Vietnam | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-07-31

    Jul 31, 2017 ... “The success of women's entrepreneurship and economic participation, as well as national efforts to improve gender equality, is an example to other countries in the region.” Globally, methodologies to count women's work are essential to achieving Sustainable Development Goal 5 on gender equality and ...

  1. ESL Proficiency and a Word Frequency Count.

    Science.gov (United States)

    Harlech-Jones, Brian

    1983-01-01

    In a study of the vocabulary proficiency of some South African ESL teacher trainees, the General Service List of English Words' validity was evaluated. It was found that mastery of this list would meet most of the vocabulary needs of the test group. Recommendations are made for practical uses of word counts. (MSE)

  2. Photon Counting Chirped Amplitude Modulation Ladar

    Science.gov (United States)

    2008-03-01

    a computer simulation of the photon counting chirped AM ladar technique in MathCAD * and presented results from the computer simulation using a two... MathCAD is a trademark of Mathsoft Inc. 4 Figure 3. Magnitude spectrum of the IF waveform from the first chirped AM

  3. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  4. Stalking the count. Dracula, Fandom and Tourism

    NARCIS (Netherlands)

    S.L. Reijnders (Stijn)

    2011-01-01

    textabstractLarge numbers of tourists travel to Transylvania every year, looking for traces of Count Dracula. This article investigates why people feel the need to connect fictional stories, such as Dracula, with identifiable physical locations, and why they subsequently want to visit these

  5. Counting Processes for Retail Default Modeling

    DEFF Research Database (Denmark)

    Kiefer, Nicholas Maximilian; Larson, C. Erik

    in a discrete state space. In a simple case, the states could be default/non-default; in other models relevant for credit modeling the states could be credit scores or payment status (30 dpd, 60 dpd, etc.). Here we focus on the use of stochastic counting processes for mortgage default modeling, using data...

  6. Maine KIDS COUNT 2002 Data Book.

    Science.gov (United States)

    Maine Children's Alliance, Augusta.

    This KIDS COUNT data book details statewide trends in the well-being of Maine's children. Following a brief overview of the data book and a summary of indicators, state trend data are presented in the areas of: (1) poverty; (2) child and adolescent suicide; (3) public high school dropouts; (4) teen pregnancy; (5) public high school graduates…

  7. Reduced Component Count RGB LED Driver

    NARCIS (Netherlands)

    De Pedro, I.; Ackermann, B.

    2008-01-01

    The goal of this master thesis is to develop new drive and contrololutions, for creating white light from mixing the light of different-color LEDs, aiming at a reduced component count resulting in less space required by the electronics and lower cost. It evaluates the LED driver concept proposed in

  8. An analytical model of crater count equilibrium

    Science.gov (United States)

    Hirabayashi, Masatoshi; Minton, David A.; Fassett, Caleb I.

    2017-06-01

    Crater count equilibrium occurs when new craters form at the same rate that old craters are erased, such that the total number of observable impacts remains constant. Despite substantial efforts to understand this process, there remain many unsolved problems. Here, we propose an analytical model that describes how a heavily cratered surface reaches a state of crater count equilibrium. The proposed model formulates three physical processes contributing to crater count equilibrium: cookie-cutting (simple, geometric overlap), ejecta-blanketing, and sandblasting (diffusive erosion). These three processes are modeled using a degradation parameter that describes the efficiency for a new crater to erase old craters. The flexibility of our newly developed model allows us to represent the processes that underlie crater count equilibrium problems. The results show that when the slope of the production function is steeper than that of the equilibrium state, the power law of the equilibrium slope is independent of that of the production function slope. We apply our model to the cratering conditions in the Sinus Medii region and at the Apollo 15 landing site on the Moon and demonstrate that a consistent degradation parameterization can successfully be determined based on the empirical results of these regions. Further developments of this model will enable us to better understand the surface evolution of airless bodies due to impact bombardment.

  9. Spontaneous Non-verbal Counting in Toddlers

    Science.gov (United States)

    Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco

    2016-01-01

    A wealth of studies have investigated numerical abilities in infants and in children aged 3 or above, but research on pre-counting toddlers is sparse. Here we devised a novel version of an imitation task that was previously used to assess spontaneous focusing on numerosity (i.e. the predisposition to grasp numerical properties of the environment)…

  10. pulmonary candidiasis and cd4 count

    African Journals Online (AJOL)

    boaz

    sputum of HIV sero-positive patient's presenting to hospital with complaint of cough for more than two weeks and related the level of CD4 count to Pulmonary candidiasis. Methods: Using sterile wire loop, each sputum sample was inoculated into duplicate SDA (Thermo Scientific, UK); one tube without antibiotics, another ...

  11. KidsCount in Colorado! 1998.

    Science.gov (United States)

    Staberg, Christine

    This Kids Count report examines statewide and county trends in the well-being of Colorado's children. The statistical portrait is based on 12 indicators of well-being: (1) infant mortality; (2) low birth weight births; (3) immunizations; (4) child poverty; (5) early prenatal care; (6) child abuse deaths; (7) health insurance; (8) paternity…

  12. KidsCount in Colorado! 1999.

    Science.gov (United States)

    Staberg, Christine

    This Kids Count report examines statewide and county trends in the well-being of Colorado's children. The statistical portrait is based on 12 indicators of well-being: (1) infant mortality; (2) low birth weight births; (3) immunizations; (4) child poverty; (5) early prenatal care; (6) child abuse deaths; (7) health insurance; (8) paternity…

  13. The analysis of dependent count data

    NARCIS (Netherlands)

    Engel, J.

    1987-01-01

    In the literature, methods have been presented for the analysis of count data classified by fixed and crossed factors under the assumptions that this data can be modeled by independent binomial or Poisson distributions. In general, the mean value of these distributions depends on the levels

  14. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... Modelling the Energetics of Encapsulation of. Atoms and Atomic Clusters into Carbon. Nanotubes: Insights from Analytical Approaches. R. S. Swathi. School of Chemistry. Indian Institute of Science Education and Research. Thiruvananthapuram, Kerala, India ...

  15. Role of atoms in atomic gravitational-wave detectors

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.

    2017-10-01

    Recently, it has been proposed that space-based atomic sensors may be used to detect gravitational waves. These proposals describe the sensors either as clocks or as atom interferometers. Here, we seek to explore the fundamental similarities and differences between the two types of proposals. We present a framework in which the fundamental mechanism for sensitivity is identical for clock and atom interferometer proposals, with the key difference being whether or not the atoms are tightly confined by an external potential. With this interpretation in mind, we propose two major enhancements to detectors using confined atoms, which allow for an enhanced sensitivity analogous to large momentum transfer used in atom interferometry (though with no transfer of momentum to the atoms), and a way to extend the useful coherence time of the sensor beyond the atom's excited-state lifetime.

  16. Automated microfluidic cartridges for point-of-care cell counting

    CSIR Research Space (South Africa)

    Smith, S

    2016-10-01

    Full Text Available This work presents microfluidic cartridges for automated blood cell counting towards a point-of-care (POC) full blood count (FBC). Total white blood cell count (WBC) and red blood cell count (RBC) tests were implemented using low-cost, disposable...

  17. Estimation of malaria parasite density using leukocyte counts as an ...

    African Journals Online (AJOL)

    Leukocyte counts and screening for malaria parasites were carried out on 252 apparently healthy blood donors attending a transfusion centre in Ibadan. The leukocyte count range for the donors was 2.5-9.6 x 109 /l; the mean leukocyte count being 4.98 x 109 /l. 193 (76.6%) had leukocyte count less than 6.0 x 109 /l.

  18. To count or not to count: the effect of instructions on expecting a break in timing.

    Science.gov (United States)

    Gaudreault, Rémi; Fortin, Claudette

    2013-04-01

    When a break is expected during a time interval production, longer intervals are produced as the break occurs later during the interval. This effect of break location was interpreted as a result of distraction related to break expectancy in previous studies. In the present study, the influence of target duration and of instructions about chronometric counting strategies on the break location effect was examined. Using a strategy such as chronometric counting enhances the reliability of temporal processing, typically in terms of reduced variability, and could influence how timing is affected by break expectancy, especially when relatively long target durations are used. In two experiments, results show that time productions lengthened with increasing value of break location at various target durations and that variability was greater in the no-counting than in the counting instruction condition. More important, the break location effect was stronger in the no-counting than in the counting instruction condition. We conclude that chronometric counting orients attention toward timing processes, making them less likely to be disrupted by concurrent nontemporal processes.

  19. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  20. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  1. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  2. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  3. Atomes et rayonnement

    OpenAIRE

    Dalibard, Jean; Haroche, Serge

    2013-01-01

    Matière et lumière sont intimement liées dans notre modélisation du monde physique. De l’élaboration de la théorie quantique à l’invention du laser, l’interaction entre atomes et rayonnement a joué un rôle central dans le développement de la science et de la technologie d’aujourd’hui. La maîtrise de cette interaction permet désormais d’atteindre les plus basses températures jamais mesurées. Le refroidissement de gaz d’atomes par la lumière d’un laser conduit à une « matière quantique » aux pr...

  4. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    stability of the design and will be measured at a future time. Angle random walk can be calculated from first principles from the shot-noise limited...interferometer cannot distinguish between the two sources of phase shifts. We describe a design for a dual atom interferometer to simultaneously...stability. This paper is organized as follows: we first describe the basic building blocks of the interferometer: beam splitters and mirrors. We then

  5. Into the atom and beyond

    CERN Document Server

    1989-01-01

    Magnifying an atom to football pitch size. The dense nucleus, carrying almost all the atomic mass, is much smaller than the ball. The players (the electrons) would see something about the size of a marble!

  6. Nuclear effects in atomic transitions

    CERN Document Server

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

  7. Should the Standard Count Be Excluded from Neutron Probe Calibration?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuanfang

    2017-10-12

    About 6 decades after its introduction, the neutron probe remains one of the most accurate methods for indirect measurement of soil moisture content. Traditionally, the calibration of a neutron probe involves the ratio of the neutron count in the soil to a standard count, which is the neutron count in the fixed environment such as the probe shield or a specially-designed calibration tank. The drawback of this count-ratio-based calibration is that the error in the standard count is carried through to all the measurements. An alternative calibration is to use the neutron counts only, not the ratio, with proper correction for radioactive decay and counting time. To evaluate both approaches, the shield counts of a neutron probe used for three decades were analyzed. The results show that the surrounding conditions have a substantial effect on the standard count. The error in the standard count also impacts the calculation of water storage and could indicate false consistency among replicates. The analysis of the shield counts indicates negligible aging effect of the instrument over a period of 26 years. It is concluded that, by excluding the standard count, the use of the count-based calibration is appropriate and sometimes even better than ratio-based calibration. The count-based calibration is especially useful for historical data when the standard count was questionable or absent

  8. Atomic and Molecular Physics Program

    Science.gov (United States)

    2013-03-05

    Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban...et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber -coupled chip... PMMA -diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light

  9. Elaborate Item Count Questioning: Why Do People Underreport in Item Count Responses?

    National Research Council Canada - National Science Library

    Takahiro Tsuchiya; Yoko Hirai

    2010-01-01

    ... `applies/does not apply' responses to each item. Because this inconsistency, which we refer to as the underreporting effect, often disturbs proper item count estimates, the causes of this effect are explored in this paper...

  10. Lasers, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Basic information for understanding the laser is provided including discussion of the electromagnetic spectrum, radio waves, light and the atom, coherent light, controlled…

  11. Breaking the atom with Samson

    NARCIS (Netherlands)

    Väänänen, J.; Coecke, B.; Ong, L.; Panangaden, P.

    2013-01-01

    The dependence atom =(x,y) was introduced in [11]. Here x and y are finite sets of attributes (or variables) and the intuitive meaning of =(x,y) is that the attributes x completely (functionally) determine the attributes y. One may wonder, whether the dependence atom is truly an atom or whether it

  12. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  13. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    lished the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly ellipti- cal. Keywords. Rydberg atom; quantum trajectory. PACS No. 03.65.Ge. 1. Introduction. Ever since the advent of quantum ...

  14. TasselNet: counting maize tassels in the wild via local counts regression network.

    Science.gov (United States)

    Lu, Hao; Cao, Zhiguo; Xiao, Yang; Zhuang, Bohan; Shen, Chunhua

    2017-01-01

    Accurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and increased computational resources. Naturally image-based approaches have also received much attention in plant-related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond the ability of conventional image processing techniques. This calls for further robust computer vision approaches to address in-field variations. This paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that a plant-related counting problem is considered using computer vision technologies under unconstrained field-based environment. With 361 field images collected in four experimental fields across China between 2010 and 2015 and corresponding manually-labelled dotted annotations, a novel Maize Tassels Counting (MTC) dataset is created and will be released with this paper. To alleviate the in-field challenges, a deep convolutional neural network-based approach termed TasselNet is proposed. TasselNet can achieve good adaptability to in-field variations via modelling the local visual characteristics of field images and regressing the local counts of maize tassels. Extensive results on the MTC dataset demonstrate that TasselNet outperforms other state-of-the-art approaches by large margins and achieves the overall best counting

  15. Platelet counting with a laser nephelometer.

    Science.gov (United States)

    Giannitsis, D J

    1979-08-01

    A method for platelet counting is described, based on the Laser nephelometric principle. Experimental results are reported, together with the practical considerations for the standardisation and correlation of the method, and for application of the method in the routine biochemical laboratory. Venous blood, taken with EDTA-NaCL solution according to Schulz et al (1071, Z. Klin. Chem. Klin. Biochem. 9, 329-333) is used. The blood is centrifuged at 100 g for 10 min and 10 microliter of the supernatant is added to 3000 microliter of a suspending medium (dilution 1:80); 300 microliter platelet suspension are read in a nephelometer cuvet or tube against blank. The number of platelets per liter blood are determined with the aid of a standard curve. The sensitivity and reproducibility of the method, and the correlation with the "electronic coulter counting" method are satisfactory.

  16. [Significance of the automated blood count].

    Science.gov (United States)

    Gratwohl, A; Tichelli, A; Speck, B

    1992-03-28

    Modern hematology depends on rapid and accurate determination of quantitative and qualitative blood counts. Fully automated analyzers based on the principles of flow cytometry have replaced the traditional blood smear in the routine laboratory. They count the number of red cells, platelets and leukocytes with high precision. In addition, they divide the cells into different populations according to their physical or chemical properties. This population distribution pattern mimics a "differential" blood smear. Normality can be assessed with a high degree of accuracy, rapidly and reproducibly. The qualitative changes frequently provide pointers to the final diagnosis. In case of abnormalities the reports are flagged. A microscopic analysis should be added according to internal laboratory guidelines. It clarifies pathological findings and is essential in the search for specific abnormalities such as malaria. This underlines the need for exchange of information between physician and laboratory.

  17. Going Online to Make Learning Count

    Directory of Open Access Journals (Sweden)

    Cathy Brigham

    2011-01-01

    Full Text Available Adult students often come to higher education with college-level learning that they have acquired outside of the classroom – from the workplace, military service, self-study, or hobbies. For decades, many forward-thinking colleges and universities have been offering services to evaluate that learning and award it college credit that counts towards a degree. However, for a range of reasons, not every institution can offer prior learning assessment (PLA in every discipline or for every student. With funding from several U.S. philanthropic organizations, the Council for Adult and Experiential Learning (CAEL is launching Learning Counts, a national online service that will offer students a range of opportunities to have their learning evaluated for college credit. This online service will expand the capacity of institutions offering PLA to students and provide an efficient and scalable delivery mechanism for the awarding of credit through PLA.

  18. Low level counting from meteorites to neutrinos

    Science.gov (United States)

    Heusser, Gerd

    2005-09-01

    The development in low level counting at Heidelberg with NaI(Tl) crystals, proportional counters and Germanium detectors is reviewed throughout the course of almost 40 years of experience. Research subjects changed from cosmogenic radionuclides in meteorites to solar neutrinos and double beta decay. Driven by screening measurements for these rare event experiments, the sensitivity in single gamma counting has gained almost 3 orders of magnitude. With Ge spectrometry the μBq/kg range is now accessible. It is discussed how further improvements can be realized. There is potential to reach a sensitivity at the level of 10 to 100 nBq/kg for cryogenic liquid type Gespectroscopy, a technique which the next generation 76Ge double beta decay experiment GERDA is based on.

  19. Double hard scattering without double counting

    Science.gov (United States)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  20. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  1. Counting and mining research data with Unix

    Directory of Open Access Journals (Sweden)

    James Baker

    2014-09-01

    Full Text Available This lesson will look at how research data, when organised in a clear and predictable manner, can be counted and mined using the Unix shell. The lesson builds on the lessons “Preserving Your Research Data: Documenting and Structuring Data” and “Introduction to the Bash Command Line”. Depending on your confidence with the Unix shell, it can also be used as a standalone lesson or refresher.

  2. Methods for precise photoelectron counting with photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Dossi, R.; Ianni, A.; Ranucci, G.; Smirnov, O.Ju. E-mail: smirnov@lngs.infn.itsmipol@cv.jinr.ru

    2000-09-11

    A series of measurements has been performed on a THORN EMI 9351 phototube in order to investigate its response to a low light intensity. Precise procedures to determine the intensity of the incident photon flux have been developed and compared. The data show that the various approaches give consistent and reliable results, thus allowing the precise calibration of the device for applications of photon counting.

  3. Relationship between platelet count and hemodialysis membranes

    Directory of Open Access Journals (Sweden)

    Nasr R

    2013-08-01

    Full Text Available Rabih Nasr,1 Chadi Saifan,1 Iskandar Barakat,2 Yorg Al Azzi,2 Ali Naboush,2 Marc Saad,2 Suzanne El Sayegh1 1Department of Nephrology, Staten Island University Hospital, Staten Island, NY, USA; 2Department of Medicine, Staten Island University Hospital, Staten Island, NY, USA Background: One factor associated with poor outcomes in hemodialysis patients is exposure to a foreign membrane. Older membranes are very bioincompatible and increase complement activation, cause leukocytosis by activating circulating factors, which sequesters leukocytes in the lungs, and activates platelets. Recently, newer membranes have been developed that were designed to be more biocompatible. We tested if the different “optiflux” hemodialysis membranes had different effects on platelet levels. Methods: Ninety-nine maintenance hemodialysis patients with no known systemic or hematologic diseases affecting their platelets had blood drawn immediately prior to, 90 minutes into, and immediately following their first hemodialysis session of the week. All patients were dialyzed using a Fresenius Medical Care Optiflux polysulfone membrane F160, F180, or F200 (polysulfone synthetic dialyzer membranes, 1.6 m2, 1.8 m2, and 2.0 m2 surface area, respectively, electron beam sterilized. Platelet counts were measured from each sample by analysis using a CBC analyzer. Results: The average age of the patients was 62.7 years; 36 were female and 63 were male. The mean platelet count pre, mid, and post dialysis was 193 (standard deviation ±74.86, 191 (standard deviation ±74.67, and 197 (standard deviation ±79.34 thousand/mm3, respectively, with no statistical differences. Conclusion: Newer membranes have no significant effect on platelet count. This suggests that they are, in fact, more biocompatible than their predecessors and may explain their association with increased survival. Keywords: platelet count, polysulfone membranes, complement activation, electron beam sterilized

  4. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.

    Science.gov (United States)

    Klumpp, John; Brandl, Alexander

    2015-03-01

    A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.

  5. Energy Conservation, Counting Statistics, and Return to Equilibrium

    Science.gov (United States)

    Jakšić, Vojkan; Panangaden, Jane; Panati, Annalisa; Pillet, Claude-Alain

    2015-07-01

    We study a microscopic Hamiltonian model describing an N-level quantum system coupled to an infinitely extended thermal reservoir . Initially, the system is in an arbitrary state while the reservoir is in thermal equilibrium at inverse temperature . Assuming that the coupled system is mixing with respect to the joint thermal equilibrium state, we study the Full Counting Statistics (FCS) of the energy transfers and in the process of return to equilibrium. The first FCS describes the increase of the energy of the system . It is an atomic probability measure, denoted , concentrated on the set of energy differences ( is the Hamiltonian of , t is the length of the time interval during which the measurement of the energy transfer is performed, and is the strength of the interaction between and ). The second FCS, , describes the decrease of the energy of the reservoir and is typically a continuous probability measure whose support is the whole real line. We study the large time limit of these two measures followed by the weak coupling limit and prove that the limiting measures coincide. This result strengthens the first law of thermodynamics for open quantum systems. The proofs are based on modular theory of operator algebras and on a representation of by quantum transfer operators.

  6. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  7. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  8. Cavity QED with atomic mirrors

    Science.gov (United States)

    Chang, D. E.; Jiang, L.; Gorshkov, A. V.; Kimble, H. J.

    2012-06-01

    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated ‘impurity’ atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a ‘strong coupling’ regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.

  9. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  10. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  11. Electroless atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  12. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  13. Counting efficiency of the lung monitor for sup 2 sup 4 sup 1 Am

    CERN Document Server

    Kinase, S; Sekiguchi, M

    2003-01-01

    The counting efficiencies of two lung monitor systems, phoswich detector system and germanium detector system, were measured for lungs and liver loaded with sup 2 sup 4 sup 1 Am in the Japan Atomic Energy Research Institute (JAERI) phantom. It was found that the germanium detector system for sup 2 sup 4 sup 1 Am loaded lungs counting gives the full-energy peak predominated by the absorption of the gamma-ray photon in a single photoelectric interaction and is less sensitive to sup 2 sup 4 sup 1 Am loaded liver. The sup 2 sup 4 sup 1 Am loaded lung activities could be reasonably estimated using germanium detector system rather than phoswich detector system.

  14. Determination of 14C-labelled ketone bodies by liquid-scintillation counting.

    Science.gov (United States)

    Mayes, P A; Felts, J M

    1967-01-01

    1. A method of assaying (14)C in ketone bodies present in blood by using liquid-scintillation counting is described. 2. d(-)-beta-Hydroxy[(14)C]butyrate is converted quantitatively into [(14)C]acetoacetate by means of a coupled oxidoreduction reaction involving NAD(+), d(-)-beta-hydroxybutyrate dehydrogenase and malic dehydrogenase in the presence of a high concentration of oxaloacetate. 3. [(14)C]Acetoacetate is decarboxylated to acetone and carbon dioxide which are trapped separately in a double-well flask and counted subsequently. 4. The method permits the determination of (14)C activity in the individual ketone bodies and allows the activity in the carboxyl carbon atoms of acetoacetate or of d(-)-beta-hydroxybutyrate to be assayed separately from the activity in the remainder of the molecule. 5. Recoveries of (14)C-labelled ketone bodies added to blood approach 100% with good reproducibility in replicate analyses.

  15. Counting, Measuring And The Semantics Of Classifiers

    Directory of Open Access Journals (Sweden)

    Susan Rothstein

    2010-12-01

    Full Text Available This paper makes two central claims. The first is that there is an intimate and non-trivial relation between the mass/count distinction on the one hand and the measure/individuation distinction on the other: a (if not the defining property of mass nouns is that they denote sets of entities which can be measured, while count nouns denote sets of entities which can be counted. Crucially, this is a difference in grammatical perspective and not in ontological status. The second claim is that the mass/count distinction between two types of nominals has its direct correlate at the level of classifier phrases: classifier phrases like two bottles of wine are ambiguous between a counting, or individuating, reading and a measure reading. On the counting reading, this phrase has count semantics, on the measure reading it has mass semantics.ReferencesBorer, H. 1999. ‘Deconstructing the construct’. In K. Johnson & I. Roberts (eds. ‘Beyond Principles and Parameters’, 43–89. Dordrecht: Kluwer publications.Borer, H. 2008. ‘Compounds: the view from Hebrew’. In R. Lieber & P. Stekauer (eds. ‘The Oxford Handbook of Compounds’, 491–511. Oxford: Oxford University Press.Carlson, G. 1977b. Reference to Kinds in English. Ph.D. thesis, University of Massachusetts at Amherst.Carlson, G. 1997. Quantifiers and Selection. Ph.D. thesis, University of Leiden.Carslon, G. 1977a. ‘Amount relatives’. Language 53: 520–542.Chierchia, G. 2008. ‘Plurality of mass nouns and the notion of ‘semantic parameter”. In S. Rothstein (ed. ‘Events and Grammar’, 53–103. Dordrecht: Kluwer.Danon, G. 2008. ‘Definiteness spreading in the Hebrew construct state’. Lingua 118: 872–906.http://dx.doi.org/10.1016/j.lingua.2007.05.012Gillon, B. 1992. ‘Toward a common semantics for English count and mass nouns’. Linguistics and Philosophy 15: 597–640.http://dx.doi.org/10.1007/BF00628112Grosu, A. & Landman, F. 1998. ‘Strange relatives of the third kind

  16. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  17. Delay in atomic photoionization

    CERN Document Server

    Kheifets, A S

    2010-01-01

    We analyze the time delay between emission of photoelectrons from the outer valence $ns$ and $np$ sub-shells in noble gas atoms following absorption of an attosecond XUV pulse. By solving the time dependent Schr\\"odinger equation and carefully examining the time evolution of the photoelectron wave packet, we establish the apparent "time zero" when the photoelectron leaves the atom. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the quantum phase of the dipole transition matrix element, the energy dependence of which defines the emission timing. This qualitatively explains the time delay between photoemission from the $2s$ and $2p$ sub-shells of Ne as determined experimentally by attosecond streaking [{\\em Science} {\\bf 328}, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than a half of the measured time delay of $21\\pm5$~as. We argue that the XUV pulse alone cannot produce such a larg...

  18. Point-by-point compositional analysis for atom probe tomography.

    Science.gov (United States)

    Stephenson, Leigh T; Ceguerra, Anna V; Li, Tong; Rojhirunsakool, Tanaporn; Nag, Soumya; Banerjee, Rajarshi; Cairney, Julie M; Ringer, Simon P

    2014-01-01

    This new alternate approach to data processing for analyses that traditionally employed grid-based counting methods is necessary because it removes a user-imposed coordinate system that not only limits an analysis but also may introduce errors. We have modified the widely used "binomial" analysis for APT data by replacing grid-based counting with coordinate-independent nearest neighbour identification, improving the measurements and the statistics obtained, allowing quantitative analysis of smaller datasets, and datasets from non-dilute solid solutions. It also allows better visualisation of compositional fluctuations in the data. Our modifications include:.•using spherical k-atom blocks identified by each detected atom's first k nearest neighbours.•3D data visualisation of block composition and nearest neighbour anisotropy.•using z-statistics to directly compare experimental and expected composition curves. Similar modifications may be made to other grid-based counting analyses (contingency table, Langer-Bar-on-Miller, sinusoidal model) and could be instrumental in developing novel data visualisation options.

  19. Elaborate Item Count Questioning: Why Do People Underreport in Item Count Responses?

    Directory of Open Access Journals (Sweden)

    Takahiro Tsuchiya

    2010-12-01

    Full Text Available The item count technique, used often to investigate illegal or socially undesirable behaviours, requires respondents to indicate merely the number of applicable items from among a list. However, the number of applicable items indicated via the item count question tends to be smaller than when it is calculated from the direct `applies/does not apply' responses to each item. Because this inconsistency, which we refer to as the underreporting effect, often disturbs proper item count estimates, the causes of this effect are explored in this paper. Web survey results revealed that the order of the response alternatives is irrelevant to the underreporting effect, and that the underreporting effect is caused by the response format in which the item count question requests merely the number of applicable items and not the number of non-applicable items. It is also shown that the magnitude of the underreporting effect decreases when the respondents are asked to indicate the numbers of both applicable and non-applicable items, which we refer to as elaborate item count questioning.

  20. Manipulating and probing microwave fields in a cavity by quantum non-demolition photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Haroche, S; Dotsenko, I; Deleglise, S; Sayrin, C; Zhou, X; Gleyzes, S; Guerlin, C; Kuhr, S; Brune, M; Raimond, J-M [Laboratoire Kastler Brossel, Departement de Physique de l' Ecole Normale Superieure, CNRS and Universite Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05 (France)], E-mail: haroche@lkb.ens.fr

    2009-12-15

    We perform quantum non-demolition (QND) photon counting on a microwave field trapped in a very high Q superconducting cavity, employing circular Rydberg atoms as non-absorbing light probes. Beyond realizing fundamental tests of quantum measurement theory, we use this QND method to prepare non-classical Fock and Schroedinger cat states of the field and to reconstruct their Wigner functions. Monitoring the evolution of these functions provides a direct observation of the decoherence process. Quantum feedback procedures will enable us to steer the field towards target states and to protect them against decoherence.

  1. Manipulating and probing microwave fields in a cavity by quantum non-demolition photon counting

    Science.gov (United States)

    Haroche, S.; Dotsenko, I.; Deléglise, S.; Sayrin, C.; Zhou, X.; Gleyzes, S.; Guerlin, C.; Kuhr, S.; Brune, M.; Raimond, J.-M.

    2009-12-01

    We perform quantum non-demolition (QND) photon counting on a microwave field trapped in a very high Q superconducting cavity, employing circular Rydberg atoms as non-absorbing light probes. Beyond realizing fundamental tests of quantum measurement theory, we use this QND method to prepare non-classical Fock and Schrödinger cat states of the field and to reconstruct their Wigner functions. Monitoring the evolution of these functions provides a direct observation of the decoherence process. Quantum feedback procedures will enable us to steer the field towards target states and to protect them against decoherence.

  2. STATISTICAL ANALYSIS OF THE HEAVY NEUTRAL ATOMS MEASURED BY IBEX

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeewoo; Kucharek, Harald; Möbius, Eberhard [Space Science Center and Department of Physics, University of New Hampshire, 8 College Road, Durham, NH 03824 (United States); Galli, André [Pysics Institute, University of Bern, Bern 3012 (Switzerland); Livadiotis, George; Fuselier, Steve A.; McComas, David J., E-mail: jtl29@wildcats.unh.edu [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States)

    2015-10-15

    We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O and Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O and Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath.

  3. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole

    2013-01-01

    BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA....../ppb. INTERPRETATION: Circulating T-lymphocyte levels may decline after surgery, regardless of implant type. Metal ions-particularly cobalt-may have a general depressive effect on T- and B-lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762....

  4. Applied categorical and count data analysis

    CERN Document Server

    Tang, Wan; Tu, Xin M

    2012-01-01

    Introduction Discrete Outcomes Data Source Outline of the BookReview of Key Statistical ResultsSoftwareContingency Tables Inference for One-Way Frequency TableInference for 2 x 2 TableInference for 2 x r TablesInference for s x r TableMeasures of AssociationSets of Contingency Tables Confounding Effects Sets of 2 x 2 TablesSets of s x r TablesRegression Models for Categorical Response Logistic Regression for Binary ResponseInference about Model ParametersGoodness of FitGeneralized Linear ModelsRegression Models for Polytomous ResponseRegression Models for Count Response Poisson Regression Mode

  5. Tackling the single molecule counting problem

    Science.gov (United States)

    Pressé, Steve

    2015-03-01

    Protein-protein interactions - that give rise to spatiotemporal organization in the cell - are the basis for most biological information processing and cellular control. Quantitatively understanding these interactions is an essential prerequisite for developing mechanistic models of cell biology. However, there is currently no routine answer to ``how many proteins of type X are in this complex?'' in living cells. Here we discuss methods developed in our group (Geoff Rollins, Kostas Tsekouras) for tackling this ``single molecule counting problem'' starting from photobleaching data and data from a superresolution microscopy technique called PALM (PhotoActivated Localization Microscopy). We gratefully acknowledge the NSF (MCB-1412259)

  6. Strange Curves, Counting Rabbits, & Other Mathematical Explorations

    CERN Document Server

    Ball, Keith

    2011-01-01

    How does mathematics enable us to send pictures from space back to Earth? Where does the bell-shaped curve come from? Why do you need only 23 people in a room for a 50/50 chance of two of them sharing the same birthday? In Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Keith Ball highlights how ideas, mostly from pure math, can answer these questions and many more. Drawing on areas of mathematics from probability theory, number theory, and geometry, he explores a wide range of concepts, some more light-hearted, others central to the development of the field and used dai

  7. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  8. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  9. Change-Point Methods for Overdispersed Count Data

    National Research Council Canada - National Science Library

    Wilken, Brian A

    2007-01-01

    .... Although the Poisson model is often used to model count data, the two-parameter gamma-Poisson mixture parameterization of the negative binomial distribution is often a more adequate model for overdispersed count data...

  10. CalCOFI Larvae Counts, Scientific Names C to CE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  11. CalCOFI Larvae Counts, Scientific Names EV to GN

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  12. CalCOFI Larvae Counts, Scientific Names SJ to ST

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  13. CalCOFI Larvae Counts, Scientific Names CP to DE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  14. CalCOFI Larvae Counts, Scientific Names HB to HI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  15. CalCOFI Larvae Counts, Scientific Names SU to TE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  16. CalCOFI Larvae Counts, Scientific Names PP to PZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  17. CalCOFI Larvae Counts, Scientific Names SD to SI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  18. CalCOFI Larvae Counts, Scientific Names TF to U

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  19. CalCOFI Larvae Counts, Scientific Names PL to PO

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  20. Alaska Steller sea lion Count Database (Non-pups)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database contains counts of adult and juvenile (non-pup) Steller sea lions on rookeries and haulouts in Alaska made between 1904 and 2015. Non-pup counts have...

  1. CalCOFI Larvae Counts, Scientific Names OM to OX

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  2. CalCOFI Larvae Counts, Scientific Names HJ to ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  3. Baseline CD4 lymphocyte count among HIV patients in Kano ...

    African Journals Online (AJOL)

    lymphocytes; hence CD4 count has become a valuable indicator of immune function in the management of HIV infection. Consequently, we evaluated baseline CD4 counts of 500 HIV seropsitive adults in a government sponsored anti-retroviral ...

  4. CalCOFI Larvae Counts, Scientific Names OY to PI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish larvae counts and standardized counts for larvae captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets],...

  5. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  6. Optical nanofibres and neutral atoms

    CERN Document Server

    Nieddu, Thomas; Chormaic, Sile Nic

    2015-01-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed ...

  7. Atomic iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program.

  8. Leucocyte Counts in Pregnant Nigerian Women with Sickle Cell Trait

    African Journals Online (AJOL)

    White blood count (WBC) with differential counts and packed cell volume (PCV) were studied in 100 pregnant and 30 non-pregnant control women aged 18-45 years. Eighty of the pregnant women were homozygous HbAA and 20 heterozygous HbAS. The non-pregnant women\\'s PCV, lymphocyte and eosinophils counts ...

  9. Differences in meristic counts of the genus Clarias (pisces: clariidae ...

    African Journals Online (AJOL)

    Specific differences in meristic counts were exhibited in both the anal fin ray count and the vertebral count in the clariids of Anambra rver, Nigeria. There was a close numerical relationship between the number of anal fin rays and the number of vertebrae. The present study further justifies the taxonomic importance of anal fin ...

  10. Automated vehicle counting using image processing and machine learning

    Science.gov (United States)

    Meany, Sean; Eskew, Edward; Martinez-Castro, Rosana; Jang, Shinae

    2017-04-01

    Vehicle counting is used by the government to improve roadways and the flow of traffic, and by private businesses for purposes such as determining the value of locating a new store in an area. A vehicle count can be performed manually or automatically. Manual counting requires an individual to be on-site and tally the traffic electronically or by hand. However, this can lead to miscounts due to factors such as human error A common form of automatic counting involves pneumatic tubes, but pneumatic tubes disrupt traffic during installation and removal, and can be damaged by passing vehicles. Vehicle counting can also be performed via the use of a camera at the count site recording video of the traffic, with counting being performed manually post-recording or using automatic algorithms. This paper presents a low-cost procedure to perform automatic vehicle counting using remote video cameras with an automatic counting algorithm. The procedure would utilize a Raspberry Pi micro-computer to detect when a car is in a lane, and generate an accurate count of vehicle movements. The method utilized in this paper would use background subtraction to process the images and a machine learning algorithm to provide the count. This method avoids fatigue issues that are encountered in manual video counting and prevents the disruption of roadways that occurs when installing pneumatic tubes

  11. Relationships between blood cell counts and the density of malaria ...

    African Journals Online (AJOL)

    The findings depicted a negative correlation between parasite load and haemoglobin concentration [Hb], mean cell volume (MCV), and mean cell haemoglobin (MCH); a positive correlation of parasite density with white blood cell counts (WBC), red blood cell counts (RBC), and the differential white blood cell counts ...

  12. Somatic chromosome counts and yield performance of some ...

    African Journals Online (AJOL)

    Investigation in 20 accessions of Citrullus lanatus ('egusi' melon) revealed somatic chromosome counts ranging from 18 to 24 with 2n = 22 being the most frequent. Polyploid counts of 2n = 40 and 2n =44 were made for accessions DD98/4 and L6, respectively. Diploid chromosome counts varying from 2n = 22 suggest ...

  13. Patterns in exoplanet count and eccentricity distributions

    Science.gov (United States)

    Taylor, Stuart F.

    2018-01-01

    The distribution of exoplanets of contains an unexpected level of features, starting with an unexpected gap the splits the main pileup of much of the planet population. In the population of planets of metal-rich sunlike single stars (SLSS objects), which comprises 40% of planets found by the radial velocity method, when counting logarithmic periods the main pileup of planets with periods longer than 100 days is split into two peaks separated by a significant gap. There is a wide region which has so few planets that none are found in the current data set. We show that this gap is extremely unlikely to occur by random. Because this gap is well-filled among planets of low surface gravity and low metallicity stars with 31 objects, it is unlikely that the bimodal nature of the metal rich SLSS population is due to observational effects. Comparisons of eccentricity of the metal-rich and metal-poor SLSS populations depend strongly on the two-peak-gap structure of counts of the metal-rich SLSS (rSLSS) population. Consideration of these features is essential to properly study the correlations of eccentricity with other planet-system parameters given how the eccentricity of rSLSS objects is highest in the two peaks of the rSLSS population.

  14. Robustifying Bayesian nonparametric mixtures for count data.

    Science.gov (United States)

    Canale, Antonio; Prünster, Igor

    2017-03-01

    Our motivating application stems from surveys of natural populations and is characterized by large spatial heterogeneity in the counts, which makes parametric approaches to modeling local animal abundance too restrictive. We adopt a Bayesian nonparametric approach based on mixture models and innovate with respect to popular Dirichlet process mixture of Poisson kernels by increasing the model flexibility at the level both of the kernel and the nonparametric mixing measure. This allows to derive accurate and robust estimates of the distribution of local animal abundance and of the corresponding clusters. The application and a simulation study for different scenarios yield also some general methodological implications. Adding flexibility solely at the level of the mixing measure does not improve inferences, since its impact is severely limited by the rigidity of the Poisson kernel with considerable consequences in terms of bias. However, once a kernel more flexible than the Poisson is chosen, inferences can be robustified by choosing a prior more general than the Dirichlet process. Therefore, to improve the performance of Bayesian nonparametric mixtures for count data one has to enrich the model simultaneously at both levels, the kernel and the mixing measure. © 2016, The International Biometric Society.

  15. Counting BPS operators in N=4 SYM

    CERN Document Server

    Dolan, F A

    2007-01-01

    The free field partition function for a generic U(N) gauge theory, where the fundamental fields transform in the adjoint representation, is analysed in terms of symmetric polynomial techniques. It is shown by these means how this is related to the cycle polynomial for the symmetric group and how the large N result may be easily recovered. Higher order corrections for finite N are also discussed in terms of symmetric group characters. For finite N, the partition function involving a single bosonic fundamental field is recovered and explicit counting of multi-trace quarter BPS operators in free \\N=4 super Yang Mills discussed, including a general result for large N. The partition function for BPS operators in the chiral ring of \\N=4 super Yang Mills is analysed in terms of plane partitions. Asymptotic counting of BPS primary operators with differing R-symmetry charges is discussed in both free \\N=4 super Yang Mills and in the chiral ring. Also, general and explicit expressions are derived for SU(2) gauge theory...

  16. Language and counting: Some recent results

    Science.gov (United States)

    Bell, Garry

    1990-02-01

    It has long been recognised that the language of mathematics is an important variable in the learning of mathematics, and there has been useful work in isolating and describing the linkage. Steffe and his co-workers at Georgia, for example, (Steffe, von Glasersfeld, Richardson and Cobb, 1983) have suggested that young children may construct verbal countable items to count objects which are hidden from their view. Although there has been a surge of research interest in counting and early childhood mathematics, and in cultural differences in mathematics attainment, there has been little work reported on the linkage between culture as exemplified by language, and initial concepts of numeration. This paper reports on some recent clinical research with kindergarten children of European and Asian background in Australia and America. The research examines the influence that number naming grammar appears to have on young children's understandings of two-digit numbers and place value. It appears that Transparent Standard Number Word Sequences such as Japanese, Chinese and Vietnamese which follow the numerical representation pattern by naming tens and units in order ("two tens three"), may be associated with distinctive place value concepts which may support sophisticated mental algorithms.

  17. Atmospheric pollen count in Monterrey, Mexico.

    Science.gov (United States)

    González-Díaz, Sandra N; Rodríguez-Ortiz, Pablo G; Arias-Cruz, Alfredo; Macías-Weinmann, Alejandra; Cid-Guerrero, Dagoberto; Sedo-Mejia, Giovanni A

    2010-01-01

    There are few reports of pollen count and identification in Mexico; therefore, it is important to generate more information on the subject. This study was designed to describe the prevalence of pollen in the city of Monterrey, Mexico, during the year 2004. Atmospheric pollen was collected with a Hirst air sampler, with an airflow of 10 L/minute during 2004. Pollen was identified with light microscopy; the average monthly pollen count as well as total was calculated from January 2004 to January 2005. The months with the highest concentration of pollen were February and March (289 and 142 grains/m(3) per day, respectively), and July and November had the lowest concentration (20 and 11 grains/m(3) per day, respectively). Most of the pollen recollected corresponded to tree pollen (72%). Fraxinus spp had the highest concentration during the year (19 grains/m(3) per day; 27.5% of the total concentration of pollen). Tree pollen predominated from January through March; with Fraxinus spp, Morus spp, Celtis spp, Cupressus spp, and Pinus spp as the most important. Weed pollen predominated in May, June, and December and the most frequently identified, were Amaranthaceae/Chenopodiaceae, Ambrosia spp, and Parietaria spp. The highest concentration of grass pollen was reported during the months of May, June, September, October, and December with Gramineae/Poaceae predominating. Tree pollen was the most abundant during the year, with the ash tree having the highest concentration. Weed and grass pollen were perennial with peaks during the year.

  18. Counting Majorana bound states using complex momenta

    Directory of Open Access Journals (Sweden)

    I. Mandal

    2016-09-01

    Full Text Available Recently, the connection between Majorana fermions bound to the defects in arbitrary dimensions, and complex momentum roots of the vanishing determinant of the corresponding bulk Bogoliubov–de Gennes (BdG Hamiltonian, has been established (EPL, 2015, 110, 67005. Based on this understanding, a formula has been proposed to count the number (n of the zero energy Majorana bound states, which is related to the topological phase of the system. In this paper, we provide a proof of the counting formula and we apply this formula to a variety of 1d and 2d models belonging to the classes BDI, DIII and D. We show that we can successfully chart out the topological phase diagrams. Studying these examples also enables us to explicitly observe the correspondence between these complex momentum solutions in the Fourier space, and the localized Majorana fermion wavefunctions in the position space. Finally, we corroborate the fact that for systems with a chiral symmetry, these solutions are the so-called "exceptional points", where two or more eigenvalues of the complexified Hamiltonian coalesce.

  19. Automated body hair counting and length measurement.

    Science.gov (United States)

    Vallotton, P; Thomas, N

    2008-11-01

    Hair loss or hair excess is a common condition. There is a growing need to quantitatively assess the success of interventions aimed at replenishing areas that lack hair or at removing hair from areas such as the back, the legs, or the arms. Non-invasive methods that do not require staining are highly desirable because the staining process itself may affect the efficacy of the treatment. We introduce a system based on a flatbed scanner and on novel and sensitive image analysis algorithms to count the number of hairs and their individual length. Additionally, a measure of hair visibility is introduced, which allows assessing objectively the severity of the condition. Our system is able to detect even hairs that are difficult to see to a human observer. It is robust to skin impurities or variations in the skin texture and colour. Scanner imaging ensures a sharp image over the whole field. The system analyses on the order of two images per minute, making it suitable for large clinical studies. Counts delivered by a human counter vs. the software were within 10% of each other (N=12). Based on our results, we expect that the software will be useful to a number of researchers investigating medical and cosmetic issues involving objective assessment of pilosity. The algorithm itself may be of use for other applications.

  20. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  1. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  2. HPAM: Hirshfeld partitioned atomic multipoles

    Science.gov (United States)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  3. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser

    Science.gov (United States)

    Traxler, Mallory A.

    In this thesis, I explore a variety of experiments within linear, two-wire, magnetic atom guides. Experiments include guiding of Rydberg atoms; transferring between states while keeping the atoms contained within the guide; and designing, constructing, and testing a new experimental apparatus. The ultimate goal of the atom guiding experiments is to develop a continuous atom laser. The guiding of 87Rb 59D5/2 Rydberg atoms is demonstrated. The evolution of the atoms is driven by the combined effects of dipole forces acting on the center-of-mass degree of freedom as well as internal-state transitions. Time delayed microwave and state-selective field ionization, along with ion detection, are used to investigate the evolution of the internal-state distribution as well as the Rydberg atom motion while traversing the guide. The observed decay time of the guided-atom signal is about five times that of the initial state. A population transfer between Rydberg states contributes to this lengthened lifetime, and also broadens the observed field ionization spectrum. The population transfer is attributed to thermal transitions and, to a lesser extent, initial state-mixing due to Rydberg-Rydberg collisions. Characteristic signatures in ion time-of-flight signals and spatially resolved images of ion distributions, which result from the coupled internal-state and center-of-mass dynamics, are discussed. Some groups have used a scheme to make BECs where atoms are optically pumped from one reservoir trap to a final state trap, irreversibly transferring those atoms from one trap to the other. In this context, transfer from one guided ground state to another is studied. In our setup, before the atoms enter the guide, they are pumped into the | F = 1, mF = --1> state. Using two repumpers, one tuned to the F = 1 → F' = 0 transition (R10) and the other tuned to the F = 1 → F' = 2 transition (R12), the atoms are pumped between these guided states. Magnetic reflections within the guide

  4. Introduction to light forces, atom cooling, and atom trapping

    OpenAIRE

    Savage, Craig

    1995-01-01

    This paper introduces and reviews light forces, atom cooling and atom trapping. The emphasis is on the physics of the basic processes. In discussing conservative forces the semi-classical dressed states are used rather than the usual quantized field dressed states.

  5. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  6. Intermolecular atom-atom bonds in crystals - a chemical perspective.

    Science.gov (United States)

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-03-01

    Short atom-atom distances between molecules are almost always indicative of specific intermolecular bonding. These distances may be used to assess the significance of all hydrogen bonds, including the C-H⋯O and even weaker C-H⋯F varieties.

  7. Improved Tracking of an Atomic-Clock Resonance Transition

    Science.gov (United States)

    Prestage, John D.; Chung, Sang K.; Tu, Meirong

    2010-01-01

    An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.

  8. Atom-surface studies with Rb Rydberg atoms

    Science.gov (United States)

    Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathon; Shaffer, James

    2015-05-01

    We report on experimental and theoretical progress studying atom-surface interactions using rubidium Rydberg atoms. Rydberg atoms can be strongly coupled to surface phonon polariton (SPhP) modes of a dielectric material. The coherent interaction between Rydberg atoms and SPhPs has potential applications for quantum hybrid devices. Calculations of TM-mode SPhPs on engineered surfaces of periodically poled lithium niobate (PPLN) and lithium tantalate (PPLT) for different periodic domains and surface orientations, as well as natural materials such as quartz, are presented. Our SPhP calculations account for the semi-infinite anisotropic nature of the materials. In addition to theoretical calculations, we show experimental results of measurements of adsorbate fields and coupling of Rydberg atoms to SPhPs on quartz.

  9. Coherent Atom Optics with fast metastable rare gas atoms

    Science.gov (United States)

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Bocvarski, V.; Vassilev, G.; Ducloy, M.

    2006-12-01

    Coherent atom optics experiments making use of an ultra-narrow beam of fast metastable atoms generated by metastability exchange are reported. The transverse coherence of the beam (coherence radius of 1.7 μm for He*, 1.2 μm for Ne*, 0.87 μm for Ar*) is demonstrated via the atomic diffraction by a non-magnetic 2μm-period reflection grating. The combination of the non-scalar van der Waals (vdW) interaction with the Zeeman interaction generated by a static magnetic field gives rise to "vdW-Zeeman" transitions among Zeeman sub-levels. Exo-energetic transitions of this type are observed with Ne*(3P2) atoms traversing a copper micro-slit grating. They can be used as a tunable beam splitter in an inelastic Fresnel bi-prism atom interferometer.

  10. Absolute Lymphocyte Count Is Not a Suitable Alternative to CD4 Count for Determining Initiation of Antiretroviral Therapy in Fiji

    Science.gov (United States)

    Balak, Dashika A.; Ram, Sharan; Devi, Rachel R.; Graham, Stephen M.

    2014-01-01

    Introduction. An absolute lymphocyte count is commonly used as an alternative to a CD4 count to determine initiation of antiretroviral therapy for HIV-infected individuals in Fiji when a CD4 count is unavailable. Methods. We conducted a retrospective analysis of laboratory results of HIV-infected individuals registered at all HIV clinics in Fiji. Results. Paired absolute lymphocyte and CD4 counts were available for 101 HIV-infected individuals, and 96% had a CD4 count of ≤500 cells/mm3. Correlation between the counts in individuals was poor (Spearman rank correlation r = 0.5). No absolute lymphocyte count could be determined in this population as a suitable surrogate for a CD4 count of either 350 cells/mm3 or 500 cells/mm3. The currently used absolute lymphocyte count of ≤2300 cells/μL had a positive predictive value of 87% but a negative predictive value of only 17% for a CD4 of ≤350 cells/mm3 and if used as a surrogate for a CD4 of ≤500 cells/mm3 it would result in all HIV-infected individuals receiving ART including those not yet eligible. Weight, CD4 count, and absolute lymphocyte count increased significantly at 3 months following ART initiation. Conclusions. Our findings do not support the use of absolute lymphocyte count to determine antiretroviral therapy initiation in Fiji. PMID:25400669

  11. Improving EWMA Plans for Detecting Unusual Increases in Poisson Counts

    Directory of Open Access Journals (Sweden)

    R. S. Sparks

    2009-01-01

    adaptive exponentially weighted moving average (EWMA plan is developed for signalling unusually high incidence when monitoring a time series of nonhomogeneous daily disease counts. A Poisson transitional regression model is used to fit background/expected trend in counts and provides “one-day-ahead” forecasts of the next day's count. Departures of counts from their forecasts are monitored. The paper outlines an approach for improving early outbreak data signals by dynamically adjusting the exponential weights to be efficient at signalling local persistent high side changes. We emphasise outbreak signals in steady-state situations; that is, changes that occur after the EWMA statistic had run through several in-control counts.

  12. Effects of Sampling Strategy, Detection Probability, and Independence of Counts on the Use of Point Counts

    Science.gov (United States)

    Grey W. Pendleton

    1995-01-01

    Many factors affect the use of point counts for monitoring bird populations, including sampling strategies, variation in detection rates, and independence of sample points. The most commonly used sampling plans are stratified sampling, cluster sampling, and systematic sampling. Each of these might be most useful for different objectives or field situations. Variation...

  13. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  14. Statistical Methods for Unusual Count Data

    DEFF Research Database (Denmark)

    Guthrie, Katherine A.; Gammill, Hilary S.; Kamper-Jørgensen, Mads

    2016-01-01

    microchimerism data present challenges for statistical analysis, including a skewed distribution, excess zero values, and occasional large values. Methods for comparing microchimerism levels across groups while controlling for covariates are not well established. We compared statistical models for quantitative...... microchimerism values, applied to simulated data sets and 2 observed data sets, to make recommendations for analytic practice. Modeling the level of quantitative microchimerism as a rate via Poisson or negative binomial model with the rate of detection defined as a count of microchimerism genome equivalents per...... total cell equivalents tested utilizes all available data and facilitates a comparison of rates between groups. We found that both the marginalized zero-inflated Poisson model and the negative binomial model can provide unbiased and consistent estimates of the overall association of exposure or study...

  15. Counting and Arithmetic of the Inca

    Directory of Open Access Journals (Sweden)

    Ximena Catepillán

    2012-08-01

    Full Text Available The Inca Empire - the greatest pre-Columbian empire on the American continent - extended from Ecuador to central Chile for more than five thousand miles. Its capital was Cuzco established in the high Peruvian Andes. This highly advanced civilization developed a counting system used to run the empire - in particular, to build the 14,000 mile road structure and monumental architecture. Some of the algorithms believed to be used by the Inca to do computations using a yupana, an ancient calculating device, will be presented, as well as classroom activities for the course “Mathematics in Non-European Cultures” for non Mathematics and Science majors offered at Millersville University of Pennsylvania.

  16. Application Guide to Neutron Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    D. G. Langner; J. E. Stewart; M. M. Pickrell; M. S. Krick; N. Ensslin; W. C. Harker

    1998-11-01

    This document is intended to serve as a comprehensive applications guide to passive neutron multiplicity counting, a new nondestructive assay (NDA) technique developed over the past ten years. The document describes the principles of multiplicity counter design, electronics, and mathematics. Existing counters in Department of Energy (DOE) facilities are surveyed, and their operating requirements and procedures and defined. Current applications to plutonium material types found in DOE facilities are described, and estimates of the expected assay precision and bias are given. Lastly, guidelines for multiplicity counter selection and procurement are summarized. The document also includes a detailed collection of references on passive neutron coincidence and multiplicity publications over the last ten to fifteen years.

  17. Neutron triples counting data for uranium

    Science.gov (United States)

    Croft, Stephen; LaFleur, Adrienne M.; McElroy, Robert D.; Swinhoe, Martyn T.

    2015-06-01

    Correlated neutron counting using multiplicity shift register logic extracts the first three factorial moments from the detected neutron pulse train. The descriptive properties of the measurement item (mass, the ratio of (α,n) to spontaneous fission neutron production, and leakage self-multiplication) are related to the observed singles (S), doubles (D) and triples (T) rates, and this is the basis of the widely used multiplicity counting assay method. The factorial moments required to interpret and invert the measurement data in the framework of the point kinetics model may be calculated from the spontaneous fission prompt neutron multiplicity distribution P(ν). In the case of 238U very few measurements of P(ν) are available and the derived values, especially for the higher factorial moments, are not known with high accuracy. In this work, we report the measurement of the triples rate per gram of 238U based on the analysis of a set of measurements in which a collection of 10 cylinders of UO2F2, each containing about 230 g of compound, were measured individually and in groups. Special care was taken to understand and compensate the recorded multiplicity histograms for the effect of random cosmic-ray induced background neutrons, which, because they also come in bursts and mimic fissions but with a different and harder multiplicity distribution. We compare our fully corrected (deadtime, background, efficiency, multiplication) experimental results with first principles expectations based on evaluated nuclear data. Based on our results we suspect that the current evaluated nuclear data is biased, which points to a need to undertake new basic measurements of the 238U prompt neutron multiplicity distribution.

  18. Is total lymphocyte count a predictor for CD4 cell count in initiation antiretroviral therapy in HIV-infected patients?

    Science.gov (United States)

    Abdollahi, Alireza; Saffar, Hana; Shoar, Saeed; Jafari, Siroos

    2014-07-01

    Since laboratory assessments of HIV-infected patients by flow cytometric methods are expensive and unavailable in resource-limited countries, total lymphocyte count by haematology cell counter is supposed to be a suitable surrogate marker to initiate and monitor course of the disease in these patients. The aim of this study was to evaluate the utility of total lymphocyte count as a surrogate marker for CD4 count in HIV-infected patients. In a prospective study 560 HIV-positive individuals evaluated for total and CD4 lymphocyte count. For correlation between CD4 count and total lymphocyte count, haemoglobin and haematocrit we defined cut-off values as 200 cell/μl, 1200 cell/μl, 12 gr/dl and 30%, respectively, and compared CD4 count with each parameter separately. Positive predictive value, negative predictive value, sensitivity and specificity of varying total lymphocyte count cutoffs were computed for CD4 count ≤ 200 cell/μl and ≤ 350 cell/μl. Strong degree of correlation was noted between CD4 and total lymphocyte count (r: 0.610, P lymphocyte count, haemoglobin and haematocrit in relation to CD4 count were calculated which indicated significant correlation between these variables. Kappa coefficient for agreement was also calculated which showed fair correlation between CD4 200 cell/μl and total lymphocyte count 1200 cell/μl (0.35). This study reveals that despite low sensitivity and specificity of total lymphocyte count as a surrogate marker for CD4, total lymphocyte count is of great importance and benefit in resource-limited settings.

  19. Traps for neutral radioactive atoms

    CERN Document Server

    Sprouse, G D; Grossman, J S; Orozco, L A; Pearson, M R

    2002-01-01

    We describe several methods for efficiently injecting a small number of radioactive atoms into a laser trap. The characteristics of laser traps that make them desirable for physics experiments are discussed and several different experimental directions are described. We describe recent experiments with the alkali element Fr and point to future directions of the neutral atom trapping program.

  20. The Stair-Step Atom.

    Science.gov (United States)

    Jordan, Thomas M.; And Others

    1992-01-01

    Presents a model of a generic atom that is used to represent the movement of electrons from lower to higher levels and vice-versa due to excitation and de-excitation of the atom. As the process of de-excitation takes place, photons represented by colored ping-pong balls are emitted, indicating the emission of light. (MDH)

  1. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  2. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    Abstract. Unlike the previous theoretical results based on standard quantum mechanics that established the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly elliptical.

  3. Estimation of atomic interaction parameters by quantum measurements

    DEFF Research Database (Denmark)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    Quantum systems, ranging from atomic systems to field modes and mechanical devices are useful precision probes for a variety of physical properties and phenomena. Measurements by which we extract information about the evolution of single quantum systems yield random results and cause a back actio...... strategies, we address the Fisher information and the Cramér-Rao sensitivity bound. We investigate monitoring by photon counting, homodyne detection and frequent projective measurements respectively, and exemplify by Rabi frequency estimation in a driven two-level system....

  4. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  5. Deep atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  6. Atom mapping with constraint programming.

    Science.gov (United States)

    Mann, Martin; Nahar, Feras; Schnorr, Norah; Backofen, Rolf; Stadler, Peter F; Flamm, Christoph

    2014-01-01

    Chemical reactions are rearrangements of chemical bonds. Each atom in an educt molecule thus appears again in a specific position of one of the reaction products. This bijection between educt and product atoms is not reported by chemical reaction databases, however, so that the "Atom Mapping Problem" of finding this bijection is left as an important computational task for many practical applications in computational chemistry and systems biology. Elementary chemical reactions feature a cyclic imaginary transition state (ITS) that imposes additional restrictions on the bijection between educt and product atoms that are not taken into account by previous approaches. We demonstrate that Constraint Programming is well-suited to solving the Atom Mapping Problem in this setting. The performance of our approach is evaluated for a manually curated subset of chemical reactions from the KEGG database featuring various ITS cycle layouts and reaction mechanisms.

  7. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  8. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  9. Cavity Quantum Electrodynamics of Continuously Monitored Bose-Condensed Atoms

    Directory of Open Access Journals (Sweden)

    Mark D. Lee

    2015-09-01

    Full Text Available We study cavity quantum electrodynamics of Bose-condensed atoms that are subjected to continuous monitoring of the light leaking out of the cavity. Due to a given detection record of each stochastic realization, individual runs spontaneously break the symmetry of the spatial profile of the atom cloud and this symmetry can be restored by considering ensemble averages over many realizations. We show that the cavity optomechanical excitations of the condensate can be engineered to target specific collective modes. This is achieved by exploiting the spatial structure and symmetries of the collective modes and light fields. The cavity fields can be utilized both for strong driving of the collective modes and for their measurement. In the weak excitation limit the condensate–cavity system may be employed as a sensitive phonon detector which operates by counting photons outside the cavity that have been selectively scattered by desired phonons.

  10. Atomic form factor for twisted vortex photons interacting with atoms

    Science.gov (United States)

    Guthrey, Pierson; Kaplan, Lev; McGuire, J. H.

    2014-04-01

    The relatively new atomic form factor for twisted (vortex) beams, which carry orbital angular momentum (OAM), is considered and compared to the conventional atomic form factor for plane-wave beams that carry only spin angular momentum. Since the vortex symmetry of a twisted photon is more complex that that of a plane wave, evaluation of the atomic form factor is also more complex for twisted photons. On the other hand, the twisted photon has additional parameters, including the OAM quantum number, ℓ, the nodal radial number, p, and the Rayleigh range, zR, which determine the cone angle of the vortex. This Rayleigh range may be used as a variable parameter to control the interaction of twisted photons with matter. Here we address (i) normalization of the vortex atomic form factor, (ii) displacement of target atoms away from the center of the beam vortex, and (iii) formulation of transition probabilities for a variety of photon-atom processes. We attend to features related to experiments that can test the range of validity and accuracy of calculations of these variations of the atomic form factor. Using the absolute square of the form factor for vortex beams, we introduce a vortex factor that can be directly measured.

  11. Atomic Configuration and Conductance of Tantalum Single-Atom Contacts and Single-Atom Wires

    Science.gov (United States)

    Kizuka, Tokushi; Murata, Satoshi

    2017-09-01

    The tensile deformation and successive fracture process of tantalum (Ta) nanocontacts (NCs) while applying various bias voltages was observed in situ by high-resolution transmission electron microscopy using a picometer-precision dual-goniometer nanotip manipulation technique. Simultaneously, the variation in the conductance of the contacts was measured. The NCs were thinned atom by atom during mechanical elongation, resulting in the formation of two types of single-atom cross-sectional contacts: single-atom contacts (SACs) and single-atom wires (SAWs), in which two electrodes, typically nanotips, are connected by a single shared atom or a one-line array of single atoms, respectively. When the bias voltage was 11 mV, Ta SACs were formed during tensile deformation; however, elongation of the single-atom cross-sectional part did not occur. In contrast, when the bias voltage was increased to 200 mV, Ta SACs were first formed during the tensile deformation, followed by elongation of the single-atom cross section up to a length of three atoms, i.e., the formation of SAWs. Thus, the present observation shows that Ta SAWs are stable even at such a high bias voltage. The conductance of the SACs was approximately 0.10G0 (G0 = 2e2/h, where e is the electron charge and h is Planck’s constant), whereas the conductance of the three-atom-long SAWs ranged from 0.01G0 to 0.22G0. Lower conductances were observed for linear SAWs, whereas higher conductances resulted from kinked SAWs.

  12. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  13. Atoms, Light, and Lasers

    Science.gov (United States)

    Bellac, Michel Le

    2014-11-01

    Up to now, the spatial properties of quantum particles played no more than a secondary role: we only needed the de Broglie relation (1.4) which gives the quantum particles wavelength, and our discussion of the quantum properties of photons was based mainly on their polarization, which is an internal degree of freedom of the photon. The probability amplitudes which we used did not involve the positions or velocities of the particles, which are spatial, or external degrees of freedom. In the present chapter, we shall introduce spatial dependence by defining probability amplitudes a(ěc r) that are functions of the position ěc r. In full generality, a(ěc r) is a complex number, but we shall avoid this complication and discuss only cases where the probability amplitudes may be taken real. For simplicity, we also limit ourselves to particles propagating along a straight line, which we take as the Ox axis: x will define the position of the particle and the corresponding probability amplitude will be a function of x, a(x). In our discussion, we shall need to introduce the so-called potential well, where a particle travels back and forth between two points on the straight line. One important particular case is the infinite well, where the particle is confined between two infinitely high walls over which it cannot pass. This example is not at all academic, and we shall meet it again in Chapter 6 when explaining the design of a laser diode! Furthermore, it will allow us to introduce the notion of energy level, to write down the Heisenberg inequalities, to understand the interaction of a light wave with an atom and finally to explain schematically the principles of the laser.

  14. Counting on working memory when learning to count and to add: a preschool study.

    Science.gov (United States)

    Noël, Marie-Pascale

    2009-11-01

    In this study, the author aimed at measuring how much limited working memory capacity constrains early numerical development before any formal mathematics instruction. To that end, 4- and 5-year-old children were tested for their memory skills in the phonological loop (PL), visuo-spatial sketchpad (VSSP), and central executive (CE); they also completed a series of tasks tapping their addition and counting skills. A general vocabulary test was given to examine the difference between the children's numerical and general vocabulary. The results indicated that measures of the PL and the CE, but not those of the VSSP, were correlated with children's performance in counting, addition and general vocabulary. However, the predictive power of the CE capacity was significantly stronger than that of the PL capacity. Poor CE capacity should thus be taken into consideration when identifying children at risk of experiencing learning disabilities.

  15. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  16. Statistical mapping of count survey data

    Science.gov (United States)

    Royle, J. Andrew; Link, W.A.; Sauer, J.R.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.

    2002-01-01

    We apply a Poisson mixed model to the problem of mapping (or predicting) bird relative abundance from counts collected from the North American Breeding Bird Survey (BBS). The model expresses the logarithm of the Poisson mean as a sum of a fixed term (which may depend on habitat variables) and a random effect which accounts for remaining unexplained variation. The random effect is assumed to be spatially correlated, thus providing a more general model than the traditional Poisson regression approach. Consequently, the model is capable of improved prediction when data are autocorrelated. Moreover, formulation of the mapping problem in terms of a statistical model facilitates a wide variety of inference problems which are cumbersome or even impossible using standard methods of mapping. For example, assessment of prediction uncertainty, including the formal comparison of predictions at different locations, or through time, using the model-based prediction variance is straightforward under the Poisson model (not so with many nominally model-free methods). Also, ecologists may generally be interested in quantifying the response of a species to particular habitat covariates or other landscape attributes. Proper accounting for the uncertainty in these estimated effects is crucially dependent on specification of a meaningful statistical model. Finally, the model may be used to aid in sampling design, by modifying the existing sampling plan in a manner which minimizes some variance-based criterion. Model fitting under this model is carried out using a simulation technique known as Markov Chain Monte Carlo. Application of the model is illustrated using Mourning Dove (Zenaida macroura) counts from Pennsylvania BBS routes. We produce both a model-based map depicting relative abundance, and the corresponding map of prediction uncertainty. We briefly address the issue of spatial sampling design under this model. Finally, we close with some discussion of mapping in relation to

  17. The lost castle of Count Rodrigo Gonzalez

    Directory of Open Access Journals (Sweden)

    Ehrlich, Michael

    2015-12-01

    Full Text Available This article suggests that a castle called Toron built in 1137 by Count Rodrigo of Lara, and granted to the Templar Order was in Summil, where remains of a Crusader castles are still visible (ca. 25 km from Ascalon, in south west Israel. This opinion opposes a consensual view that the castle built by Count Rodrigo was in Latrun, midway between Tel-Aviv and Jerusalem. This identifi cation is based on names’ similarity and on the universal opinion that Latrun was a Templar castle. In this article it is demonstrated that the geographic setting of Summil fi ts the Count’s castle, whereas Latrun does not; that Toron was a common name in the Crusader Kingdom; and, moreover, it is not certain that Latrun was a Templar castle. The article also suggest that there was a village near the castle, called Casale Sancti Salvatoris, and also discusses Frankish fortifi cation and settlement policy during the twelfth century.Este artículo sugiere que un castillo llamado Toron, construido el año 1137 por el conde Rodrigo González de Lara, y que fue luego otorgado a la orden del Temple, estaba en Summil, donde todavía permanecen las ruinas de un castillo de los cruzados (a unos 25 km de Ascalon, en el sudoeste de Israel. Esta opinión se contrapone a la tesis general que sostiene que el castillo construido por el conde estuvo situado en Latrun, a medio camino entre Tel-Aviv y Jerusalén. Una identificación basada en la similitud de nombres y en la común opinión que Latrun era un castillo templario. En este estudio se demuestra que la ubicación geográfica de Summil encaja con la del castillo del conde, mientras que Latrun no lo hace; que Toron fue un nombre habitual en el reino cruzado y que, por otra parte, no es cierto que Latrun fuera un castillo templario. Se sugiere también que cerca del castillo de Summil existía un pueblo llamado casale Sancti Salvatoris, analizándose asimismo la política de fortificación y colonización llevada a cabo por

  18. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  19. Quantum Electronics for Atomic Physics

    CERN Document Server

    Nagourney, Warren

    2010-01-01

    Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques

  20. Fundamentals in hadronic atom theory

    CERN Document Server

    Deloff, A

    2003-01-01

    Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know

  1. Tutorial on Using Regression Models with Count Outcomes Using R

    Directory of Open Access Journals (Sweden)

    A. Alexander Beaujean

    2016-02-01

    Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.

  2. Analysis of general power counting rules in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, Belen; Merlo, Luca [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Jenkins, Elizabeth E.; Manohar, Aneesh V. [University of California at San Diego, Department of Physics, La Jolla, CA (United States); CERN TH Division, Geneva 23 (Switzerland)

    2016-09-15

    We derive the general counting rules for a quantum effective field theory (EFT) in d dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χPT). The relation between Λ and f is generalized to d dimensions. We show that the naive dimensional analysis 4π counting is related to ℎ counting. The EFT counting rules are applied to χPT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT. (orig.)

  3. Image-based red cell counting for wild animals blood.

    Science.gov (United States)

    Mauricio, Claudio R M; Schneider, Fabio K; Dos Santos, Leonilda Correia

    2010-01-01

    An image-based red blood cell (RBC) automatic counting system is presented for wild animals blood analysis. Images with 2048×1536-pixel resolution acquired on an optical microscope using Neubauer chambers are used to evaluate RBC counting for three animal species (Leopardus pardalis, Cebus apella and Nasua nasua) and the error found using the proposed method is similar to that obtained for inter observer visual counting method, i.e., around 10%. Smaller errors (e.g., 3%) can be obtained in regions with less grid artifacts. These promising results allow the use of the proposed method either as a complete automatic counting tool in laboratories for wild animal's blood analysis or as a first counting stage in a semi-automatic counting tool.

  4. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  5. TOTAL LYMPHOCYTE COUNT AS A SUBSTITUTE TO CD4 COUNT IN MANAGEMENT OF HIV INFECTED INDIVIDUALS IN RESOURCE LIMITED SOCIETY.

    Science.gov (United States)

    Daud, Muhammad Yousuf; Qazi, Rizwan Aziz; Bashir, Naila

    2015-01-01

    Pakistan is a resource limited society and gold standard parameters to monitor HIV disease activity are very costly. The objective of the study was to evaluate total lymphocyte count (TLC) as a surrogate to CD4 count to monitor disease activity in HIV/AIDS in resource limited society. This cross sectional study was carried out at HIV/AIDS treatment centre, Pakistan Institute of Medical Sciences (PIMS), Islamabad. A total of seven hundred and seventy four (774) HIV positive patients were enrolled in this study, and their CD4 count and total lymphocyte count were checked to find any correlation between the two by using Spearman ranked correlation coefficient. Results: The mean CD4 count was (434.30 +/- 269.23), with minimum CD4 count of (9.00), and maximum of (1974.00). The mean total lymphocyte count (TLC) was (6764.0052 +/- 2364.02) with minimum TLC (1200.00) and maximum TLC was (20200.00). Using the Pearson's correlation (r) there was a significant and positive correlation between TLC and CD4 count. (r2=0.127 and p=0.000) at 0.01 level. Our study showed a significant positive correlation between CD4 count and total lymphocyte count (TLC), so TLC can be used as a marker of disease activity in HIV infected patients.

  6. Photon counting arrays for AO wavefront sensors

    CERN Document Server

    Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva

    2005-01-01

    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...

  7. Quantum Biometrics with Retinal Photon Counting

    Science.gov (United States)

    Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.

    2017-10-01

    It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.

  8. Oral Lactobacillus Counts Predict Weight Gain Susceptibility

    DEFF Research Database (Denmark)

    Rosing, Johanne Aviaja; Walker, Karen Christina; Jensen, Benjamin A. H.

    2017-01-01

    Background: Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. Aim: We examined the associat......Background: Recent studies have shown an association between weight change and the makeup of the intestinal microbiota in humans. Specifically, Lactobacillus, a part of the entire gastrointestinal tract's microbiota, has been shown to contribute to weight regulation. Aim: We examined...... the association between the level of oral Lactobacillus and the subsequent 6-year weight change in a healthy population of 322 Danish adults aged 35-65 years at baseline. Design: Prospective observational study. Results: In unadjusted analysis the level of oral Lactobacillus was inversely associated...... with subsequent 6-year change in BMI. A statistically significant interaction between the baseline level of oral Lactobacillus and the consumption of complex carbohydrates was found, e.g. high oral Lactobacillus count predicted weight loss for those with a low intake of complex carbohydrates, while a medium...

  9. Absolute nuclear material assay using count distribution (LAMBDA) space

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Dimer-atom-atom recombination in the universal four-boson system

    OpenAIRE

    Deltuva, A.

    2012-01-01

    The dimer-atom-atom recombination process in the system of four identical bosons with resonant interactions is studied. The description uses the exact Alt, Grassberger and Sandhas equations for the four-particle transition operators that are solved in the momentum-space framework. The dimer-dimer and atom-trimer channel contributions to the ultracold dimer-atom-atom recombination rate are calculated. The dimer-atom-atom recombination rate greatly exceeds the three-atom recombination rate.

  11. Development of a mobile application for manual traffic counts

    Directory of Open Access Journals (Sweden)

    Ghanim Mohammad

    2017-01-01

    Full Text Available The use of technology in performing traffic counts has become widely used by many transportation agencies and private sectors. Different technologies have been employed to perform such counts, such as inductive loops, image processing, Bluetooth technologies, and laser and infrared technologies. However, the use of these advanced technologies come with extra cost to develop, install, and maintain. While the use of advanced technologies provide reliable traffic counts and vehicle classifications data, the use of manual traffic is an inevitable task. Manual traffic counts can serve different purposes, such as performing quality control or conducting short-term traffic survey. Manual traffic counts are usually conducted with the use of the traditional paper-and-pencil approach or the use of hand-held devices that are specifically developed to assess performing manual traffic counts. In this paper, the development of a mobile app that can be used to assist those who need to perform manual traffic counts. The app can be used by many public agencies, private sectors, and college students to collect their traffic data. It also provides users with the capabilities of sharing their traffic counts instantly, where traffic counts can be extracted and processed quickly by other parties.

  12. Cell counting system by using single fiber interferometer

    Science.gov (United States)

    Lee, Seung Seok; Kim, Joo Ha; Choi, Eun Seo

    2017-02-01

    We proposed a cell-counting method using optical fiber interferometer and demonstrated the performance of the proposed method. The cell counting means the counting or the quantification of individual cells. Its application ranges from the biological research to practical disease diagnosis. As a conventional approach for cell counting, various methods are employed. Among them, flow cytometry is quite accurate and exact method but it uses bulk and expensive optical equipment. When image-based methods are exploited, the limited field of view obtained by microscope is considered for cell counting. From this reason, problem of time consuming for whole cell counting is to be solved. The proposed method utilized single-mode optical fiber and high-speed spectrometer. Light beam having broad spectral bandwidth over 100 nm at 850-nm central wavelength is irradiated to a flow channel through fiber from top to bottom. Different optical path length differences are made whether the cell is passing though the flow channel across the beam area or not. The difference of optical path lengths in the beam area due to the cell induces interference signal depending on optical thickness of the cell. By measuring a series of interferences, the number of cells can be analyzed. The proposed system can be implemented without any expensive and perform the cell counting in the absence of complex image analysis. Interferometer-based cell counting can be a good alternative to the reported cell-counting methods.

  13. Men of physics Count Rumford on the nature of heat

    CERN Document Server

    Brown, Sanborn C

    2013-01-01

    Men of Physics: Benjamin Thompson—Count Rumford: Count Rumford on the Nature of Heat presents the life and works of Count Rumford, an American-born British physicist and inventor. This book is divided in two parts. The first part gives a biographical sketch of Count Rumford, Benjamin Thompson, who was born on March 23, 1753 and died in 1814. This part also discusses the contemporary caloric theory and the reason why Rumford disbelieved the theory. The second part presents his technical works, discoveries, and contributions in the field of physics. Some of which are his demonstration of the e

  14. Particle number counting statistics in ideal Bose gases

    National Research Council Canada - National Science Library

    Christoph Weiss; Martin Wilkens

    1997-01-01

    We discuss the exact particle number counting statistics of degenerate ideal Bose gases in the microcanonical, canonical, and grand-canonical ensemble, respectively, for various trapping potentials...

  15. Counting skills intervention for low-performing first graders

    Directory of Open Access Journals (Sweden)

    Riikka Mononen

    2016-09-01

    Conclusion: A relatively short counting skills intervention that applied explicit teaching showed promising effects in improving low-performing children’s mathematical performance as a supplemental instruction.

  16. A multiwire proportional counter for very high counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, A.F.; Guedes, G.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tamura, E. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Pepe, I.M.; Oliveira, N.B. [Bahia Univ., Salvador, BA (Brazil). Inst. de Fisica

    1997-12-01

    Preliminary measurements in a proportional counter with two independently counting wires showed that counting rates up to 10{sup 6} counts/s per wire can be reached without critical loss in the true versus measured linearity relation. Results obtained with a detector containing 30 active wires (2 mm pitch) are presented. To each wire is associated a fast pre-amplifier and a discriminator channel. Global counting rates in excess to 10{sup 7} events/s are reported. Data acquisition systems are described for 1D (real time) and 2D (off-line) position sensitive detection systems. (author) 13 refs., 6 figs.

  17. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  18. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  19. Rydberg atoms: Two to tango

    Science.gov (United States)

    Löw, Robert

    2014-12-01

    The old adage that you can't tango alone is certainly true for humans. But recent experiments show that it may also be applicable to Rydberg atoms, which keep a beat through the coherent exchange of energy.

  20. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  1. Chain formation of metal atoms

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Jacobsen, Karsten Wedel

    2001-01-01

    The possibility of formation of single-atomic chains by manipulation of nanocontacts is studied for a selection of metals (Ni, Pd, Pt, Cu, Ag, Au). Molecular dynamics simulations show that the tendency for chain formation is strongest for Au and Pt. Density functional theory calculations indicate...... that the metals which form chains exhibit pronounced many-atom interactions with strong bonding in low coordinated systems....

  2. Copper atomic-scale transistors

    Directory of Open Access Journals (Sweden)

    Fangqing Xie

    2017-03-01

    Full Text Available We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4 in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate. The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (Ubias influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G0 (G0 = 2e2/h; with e being the electron charge, and h being Planck’s constant or 2G0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  3. Rydberg Atom Quantum Hybrid Systems

    Science.gov (United States)

    Chao, Yuanxi; Sheng, Jiteng; Kumar, Santosh; Bigelow, Nicholas P.; Shaffer, James P.

    2017-04-01

    We report on our recent experimental and theoretical work with Rydberg atom-cavity and Rydberg atom-surface hybrid quantum systems. In the atom-cavity system, Rb contained in a dipole trap is transported into a high-finesse optical cavity using a focus-tunable lens. Cavity assisted Rydberg EIT is observed in the cavity transmission and used to characterize the electric fields in the cavity. The electric fields are attributed to surface adsorbates adhering to the cavity mirrors. We also investigate the coupling of a Rydberg atom ensemble to surface phonon polaritons (SPhPs) propagating on piezoelectric superlattices made from thin film ferroelectric materials. Strong coupling between the atomic and surface excitations can be achieved, due to the large Rydberg transition dipole moments and the local field enhancement of the SPhP modes. The system has many advantages for information transport since the atoms need only be placed at distances on the order of mms from the surface and the SPhPs do not couple to free space electro-magnetic fields. Experimental progress will be discussed, including the fabrication of submicron-period periodically poled Lithium Niobate using the direct e-beam writing technique. This work is supported by AFOSR.

  4. Dynamics of hollow atom formation in intense x-ray pulses probed by partial covariance mapping.

    Science.gov (United States)

    Frasinski, L J; Zhaunerchyk, V; Mucke, M; Squibb, R J; Siano, M; Eland, J H D; Linusson, P; v d Meulen, P; Salén, P; Thomas, R D; Larsson, M; Foucar, L; Ullrich, J; Motomura, K; Mondal, S; Ueda, K; Osipov, T; Fang, L; Murphy, B F; Berrah, N; Bostedt, C; Bozek, J D; Schorb, S; Messerschmidt, M; Glownia, J M; Cryan, J P; Coffee, R N; Takahashi, O; Wada, S; Piancastelli, M N; Richter, R; Prince, K C; Feifel, R

    2013-08-16

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called "partial covariance mapping" to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  5. Improving global health: counting reasons why.

    Science.gov (United States)

    Selgelid, Michael J

    2008-08-01

    This paper examines cumulative ethical and self-interested reasons why wealthy developed nations should be motivated to do more to improve health care in developing countries. Egalitarian and human rights reasons why wealthy nations should do more to improve global health are that doing so would (1) promote equality of opportunity (2) improve the situation of the worst-off, (3) promote respect of the human right to have one's most basic needs met, and (4) reduce undeserved inequalities in well-being. Utilitarian reasons for improving global health are that this would (5) promote the greater good of humankind, and (6) achieve enormous benefits while requiring only small sacrifices. Libertarian reasons are that this would (7) amend historical injustices and (8) meet the obligation to amend injustices that developed world countries have contributed to. Self-interested reasons why wealthy nations should do more to improve global health are that doing so would (9) reduce the threat of infectious diseases to developed countries, (10) promote developed countries' economic interests, and (11) promote global security. All of these reasons count, and together they add up to make an overwhelmingly powerful case for change. Those opposed to wealthy government funding of developing world health improvement would most likely appeal, implicitly or explicitly to the idea that coercive taxation for redistributive purposes would violate the right of an individual to keep his hard-earned income. The idea that this reason not to improve global health should outweigh the combination of rights and values embodied in the eleven reasons enumerated above, however is implausibly extreme, morally repugnant and perhaps imprudent.

  6. [Relationship between leukocyte count and risk of hypertension].

    Science.gov (United States)

    Xi, Lu; Hao, Yongchen; Liu, Jing; Wang, Wei; Wang, Miao; Qi, Yue; Zhao, Fan; Xie, Wuxiang; Li, Yan; Liu, Jun; Sun, Jiayi; Qin, Lanping; Zhao, Dong

    2015-04-01

    To observe the association between the leukocyte count and blood pressure value and hypertension risk in a Chinese community-based population. A total of 4 188 participants who took part in the baseline examination in 1992 and the follow-up survey in 2007 from the Chinese Multi-Provincial Cohort Study were included in this study. The relationship of leukocyte and blood pressure value and hypertension risk were evaluated by cross-sectional analyses.The prospective association between baseline leukocyte count and blood pressure changes and risk of hypertension were analyzed in 2 954 normotensive individuals at baseline examination.The associations between leukocyte count and blood pressure was evaluated with Spearman's rank correlation analyses and linear regression models,and the associations between leukocyte count and risk of hypertension was evaluated with logistic regression models. (1) The cross-sectional study results showed that the correlation coefficient of leukocyte count and systolic blood pressure and diastolic blood pressure was 0.208 and 0.154 (both P leukocyte count was associated with 1.41 mmHg (1 mmHg = 0.133 kPa) systolic blood pressure increase (95% CI: 1.20-1.63 mmHg, P leukocyte count was associated with a 15% increased risk of hypertension (OR: 1.15, 95% CI: 1.12-1.19, P leukocyte count and systolic blood pressure change and diastolic blood pressure change was 0.062 (P = 0.003) and 0.102 (P leukocyte count was associated with 1.03 mmHg systolic blood pressure increase (95% CI: 0.74-1.32 mmHg, P leukocyte count was associated with a 9% increased risk of incident hypertension (OR: 1.09, 95% CI: 1.06-1.13, P leukocyte count is associated with increased blood pressure value and hypertension among Chinese community-based population, suggesting that inflammation may participate in the pathogenesis of hypertension.

  7. Atom-by-Atom Construction of a Quantum Device.

    Science.gov (United States)

    Petta, Jason R

    2017-03-28

    Scanning tunneling microscopes (STMs) are conventionally used to probe surfaces with atomic resolution. Recent advances in STM include tunneling from spin-polarized and superconducting tips, time-domain spectroscopy, and the fabrication of atomically precise Si nanoelectronics. In this issue of ACS Nano, Tettamanzi et al. probe a single-atom transistor in silicon, fabricated using the precision of a STM, at microwave frequencies. While previous studies have probed such devices in the MHz regime, Tettamanzi et al. probe a STM-fabricated device at GHz frequencies, which enables excited-state spectroscopy and measurements of the excited-state lifetime. The success of this experiment will enable future work on quantum control, where the wave function must be controlled on a time scale that is much shorter than the decoherence time. We review two major approaches that are being pursued to develop spin-based quantum computers and highlight some recent progress in the atom-by-atom fabrication of donor-based devices in silicon. Recent advances in STM lithography may enable practical bottom-up construction of large-scale quantum devices.

  8. Differential Leucocyte Count and Total Colony Count Changes in Heat Stressed Broiler

    Directory of Open Access Journals (Sweden)

    Ramadan D. EL Shoukary

    2015-01-01

    Full Text Available The present study aimed to explain the role of additives in alleviation of the negative effect of heat stress on differential leucocytes count, heterophil / lymphocytic ratio with especial studies on the microbial count of duodenum, jejunum, ileum and caecum. A total of 270 day-old (Ross308 broiler chickens randomly divided into 6 groups, which were kept under elevated temperature (34-36◦C and feed diet containing 1% Nigella Sativa (G2 or a mixture of sodium bicarbonate and potassium chloride (0.3% KCL+ 0.5% NaHCO3 (G3 or 2% coriander seed (G4 or 0.03% Acetylsalicylic acid (aspirin (G5 or 250 mg of Ascorbic acid (Vitamin C (G6 for 6 weeks. The previous parameters were recorded after slaughtering to take microbial sample and collecting blood parameters. The results explained that, there was a significant increase lymphocyte percentage in case of G2, G3, G4, G5 and G6. while, there was significant decreases in Heterophil percentage, heterophil/lymphocyte ratio (H/L, eosinophils percentage, monocytes percentage, jejunum total colony count and caecum total colony in case of (G2, G3, G4, G5, (G6, G2, G3, G4, G5, (G6, G3, (G5; G2, (G3; G2 and (G2, G4 respectively in compared with control group (P<0.05. It could be concluded that black seed and coriander seed have a positive effect on heat stress broiler diet.

  9. M1 AFLATOXIN, TOTAL BACTERIAL COUNT AND SOMATIC CELL COUNT IN ORGANIC AND CONVENTIONAL MILK

    Directory of Open Access Journals (Sweden)

    A. Coccollone

    2009-09-01

    Full Text Available Comparative quality evaluation of organic and conventional milk produced in similar environmental condition was performed. Bulk-tank milk was sampled once a week during 30 weeks from 10 organic and 10 conventional dairy farms where aflatoxin M1 level was previous tested during 11 months on bulk-tank milk from tanker at the processing plant. Somatic Cells and Total Microbial Counts did not show differences that can be related to the organic production system, suggesting an effect induced by farm size and technical factors. Higher level of Aflatoxin M1 was found in organic than conventional milk.

  10. Use of absolute lymphocyte count or neutrophil ingestion rate of ...

    African Journals Online (AJOL)

    The present study was designed to evaluate absolute lymphocyte count or neutrophil ingestion rate of NBT as alternative indices to CD4+ T cell count in the management of HIV/AIDS subjects. 158 adult participants (male = 70, female = 88) were recruited for the study and grouped as: (i) Symptomatic HIV subjects with or ...

  11. Factor V Leiden is associated with increased sperm count

    DEFF Research Database (Denmark)

    van Mens, T E; Joensen, U N; Bochdanovits, Z

    2017-01-01

    STUDY QUESTION: Is the thrombophilia mutation factor V Leiden (FVL) associated with an increased total sperm count? SUMMARY ANSWER: Carriers of FVL have a higher total sperm count than non-FVL-carriers, which could not be explained by genetic linkage or by observations in a FVL-mouse model. WHAT...

  12. The effect of Plasmodium falciparum malaria on platelet counts in ...

    African Journals Online (AJOL)

    The reduction in platelet count and haematocrit values was found to be independent of the degree of parasitaemia. Thrombocytopenia might therefore be one of the useful indicators of 166 ± 85 x 109/L (t = 4.696, P<0.001). The platelet count of 103 ± 41 x 10/L observed in pregnant women was also statistically significant ...

  13. 34 CFR 200.91 - SEA counts of eligible children.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false SEA counts of eligible children. 200.91 Section 200.91... Prevention and Intervention Programs for Children and Youth Who are Neglected, Delinquent, or At-Risk of Dropping Out § 200.91 SEA counts of eligible children. To receive an allocation under part D, subpart 1 of...

  14. Cell Counts in Cerebral Cortex of an Autistic Patient.

    Science.gov (United States)

    Coleman, Paul D.; And Others

    1985-01-01

    Numbers of neurons and glia were counted in the cerebral cortex of one case of autism and two age- and sex-matched controls. Cell counts were made in primary auditory cortex, Broca's speech area, and auditory association cortex. No consistent differences in cell density were found between brains of autistic and control patients. (Author/CL)

  15. Counting in visual question answering : A concept detector based approach

    NARCIS (Netherlands)

    Boer, M.H.T. de; Reitsma, S.; Schutte, K.

    2016-01-01

    Visual Question Answering is a field that combines vision techniques and natural language processing techniques. One of the most challenging question types in this field is counting, such as How many sheep are in this picture. In this paper, we focus on counting questions and improve upon the

  16. Reference Values of CD4-Lymphocyte Counts in HIV Seronegative ...

    African Journals Online (AJOL)

    Pregnancy is a physiologically immunocompromised state, during which alterations in T-lymphocyte subsets may occur. Reference values for CD4 counts in pregnancy have not been established particularly in sub-Saharan populations. This study aimed at describing expected ('normal') values of CD4 counts in healthy ...

  17. Analysis of spatial count data using Kalman smoothing

    DEFF Research Database (Denmark)

    Dethlefsen, Claus

    2007-01-01

    We consider spatial count data from an agricultural field experiment. Counts of weed plants in a field have been recorded in a project on precision farming. Interest is in mapping the weed intensity so that the dose of herbicide applied at any location can be adjusted to the amount of weed presen...... approximate Kalman filter techniques with importance sampling....

  18. Analysis of spatial count data using Kalman smoothing

    DEFF Research Database (Denmark)

    Dethlefsen, Claus

    This paper considers spatial count data from an agricultural field experiment. Counts of weed plants in a field have been recorded in a project on precision farming. Interest is in mapping the weed intensity so that the dose of herbicide applied at any location can be adjusted to the amount of we...... by combining approximate Kalman filter techniques with importance sampling....

  19. Modification of Poisson Distribution in Radioactive Particle Counting.

    Science.gov (United States)

    Drotter, Michael T.

    This paper focuses on radioactive practicle counting statistics in laboratory and field applications, intended to aid the Health Physics technician's understanding of the effect of indeterminant errors on radioactive particle counting. It indicates that although the statistical analysis of radioactive disintegration is best described by a Poisson…

  20. Leucocyte Counts in Pregnant Nigerian Women with Sickle Cell Trait

    African Journals Online (AJOL)

    HbAA pregnant women had no change in PCV but significant changes occured in leucocyte and neurophil counts with increase in the second trimester with decreasing lymphocyte and eosinophil counts in the second and third trimesters. However, HbAS pregnant women had significant increase in PCV in their first trimester ...

  1. Automatic counting and classification of bacterial colonies using hyperspectral imaging

    Science.gov (United States)

    Detection and counting of bacterial colonies on agar plates is a routine microbiology practice to get a rough estimate of the number of viable cells in a sample. There have been a variety of different automatic colony counting systems and software algorithms mainly based on color or gray-scale pictu...

  2. Counting rises and levels in r-color compositions

    Indian Academy of Sciences (India)

    In this paper, we address the problem of counting the r -color compositions having a prescribed number of rises. Formulas for the relevant generating functions are computed which count the compositions in question according to a certain statistic. Furthermore, we find explicit formulas for the total number of rises within all of ...

  3. Changes in total and differential white cell counts, total lymphocyte ...

    African Journals Online (AJOL)

    Background: Published reports on the possible changes in the various immune cell populations, especially the total lymphocyte and CD4 cell counts, during the menstrual cycle in Nigerian female subjects are relatively scarce. Aim: To determine possible changes in the total and differential white blood cell [WBC] counts, ...

  4. Platelet counts and mean platelet volume amongst elderly Nigerians ...

    African Journals Online (AJOL)

    determining reference values of Platelet Counts, Mean Platelet Volume and the relationship between the Platelet Count and Mean Platelet Volume. These parameters were determined from 400 healthy elderly subjects comprising 210 males and 190 females. with a mean age of 69.4±7.9 years . 400 young adults were used ...

  5. Automated counting of white blood cells in synovial fluid.

    NARCIS (Netherlands)

    R. de Jonge (Robert); R.W. Brouwer (Reinoud); M. Smit (Marij); M. de Frankrijker-Merkestijn; R.J. Dolhain; J.M.W. Hazes (Mieke); A.W. van Toorenenbergen (Albert); J. Lindemans (Jan)

    2004-01-01

    textabstractOBJECTIVES: To evaluate the performance of automated leucocyte (white blood cell; WBC) counting by comparison with manual counting. METHODS: The number of WBC was determined in heparinized synovial fluid samples by the use of (i) a standard urine cytometer (Kova) and a

  6. The limits of counting: numerical cognition between evolution and culture.

    Science.gov (United States)

    Beller, Sieghard; Bender, Andrea

    2008-01-11

    Number words that, in principle, allow all kinds of objects to be counted ad infinitum are one basic requirement for complex numerical cognition. Accordingly, short or object-specific counting sequences in a language are often regarded as earlier steps in the evolution from premathematical conceptions to greater abstraction. We present some instances from Melanesia and Polynesia, whose short or object-specific sequences originated from the same extensive and abstract sequence. Furthermore, the object-specific sequences can be shown to be cognitively advantageous for calculations without notation because they use larger counting units, thereby abbreviating higher numbers, enhancing the counting process, and extending the limits of counting. These results expand our knowledge both regarding numerical cognition and regarding the evolution of numeration systems.

  7. Computed neutron coincidence counting applied to passive waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R. [Nuclear Research Centre, Mol (Belgium)

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  8. An Automatic Car Counting System Using OverFeat Framework.

    Science.gov (United States)

    Biswas, Debojit; Su, Hongbo; Wang, Chengyi; Blankenship, Jason; Stevanovic, Aleksandar

    2017-06-30

    Automatic car counting is an important component in the automated traffic system. Car counting is very important to understand the traffic load and optimize the traffic signals. In this paper, we implemented the Gaussian Background Subtraction Method and OverFeat Framework to count cars. OverFeat Framework is a combination of Convolution Neural Network (CNN) and one machine learning classifier (like Support Vector Machines (SVM) or Logistic Regression). With this study, we showed another possible application area for the OverFeat Framework. The advantages and shortcomings of the Background Subtraction Method and OverFeat Framework were analyzed using six individual traffic videos with different perspectives, such as camera angles, weather conditions and time of the day. In addition, we compared the two algorithms above with manual counting and a commercial software called Placemeter. The OverFeat Framework showed significant potential in the field of car counting with the average accuracy of 96.55% in our experiment.

  9. Measuring emotional expression with the Linguistic Inquiry and Word Count.

    Science.gov (United States)

    Kahn, Jeffrey H; Tobin, Renée M; Massey, Audra E; Anderson, Jennifer A

    2007-01-01

    The Linguistic Inquiry and Word Count (LIWC) text analysis program often is used as a measure of emotion expression, yet the construct validity of its use for this purpose has not been examined. Three experimental studies assessed whether the LIWC counts of emotion processes words are sensitive to verbal expression of sadness and amusement. Experiment 1 determined that sad and amusing written autobiographical memories differed in LIWC emotion counts in expected ways. Experiment 2 revealed that reactions to emotionally provocative film clips designed to manipulate the momentary experience of sadness and amusement differed in LIWC counts. Experiment 3 replicated the findings of Experiment 2 and found generally weak relations between LIWC emotion counts and individual differences in emotional reactivity, dispositional expressivity, and personality. The LIWC therefore appears to be a valid method for measuring verbal expression of emotion.

  10. Atomic-cascade experiment with detection of the recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Huelga, S.F. (Dept. de Fisica, Univ. de Oviedo (Spain)); Ferrero, M. (Dept. de Fisica, Univ. de Oviedo (Spain)); Santos, E. (Dept. de Fisica Moderna, Univ. de Cantabria (Spain))

    1994-07-20

    Bell's inequalities cannot be violated in atomic-cascade experiments, even with ideal apparatus, due to the three-body character of the atomic decay. Here we propose a new experiment that would block this loophole by means of a suitable selection of an ensemble of photon pairs. A threshold value for the quantum efficiency is found which may allow the discrimination between quantum mechanics and local-hidden-variables theories. Experimental requirements for performing such a test are discussed. (orig.).

  11. Trapping cells in paper for white blood cell count.

    Science.gov (United States)

    Zhang, Yi; Bai, Jianhao; Wu, Hong; Ying, Jackie Y

    2015-07-15

    White blood cell count is an important indicator of each individual's health condition. An abnormal white blood cell count usually results from an infection, cancer, or other conditions that trigger systemic inflammation responses. White blood cell count also provides predictive information on the incidence of cardiovascular diseases and Type 2 diabetes. Therefore, monitoring white blood cell count on a regular basis can potentially help individuals to take preventive measures and improve healthcare outcomes. Currently, white blood cell count is primarily conducted in centralized laboratories, and it requires specialized equipment and dedicated personnel to perform the test and interpret the results. So far there has been no rapid test that allows white blood cell count in low-resource settings. In this study, we have demonstrated a vertical flow platform that quantifies white blood cells by trapping them in the paper. White blood cells were tagged with gold nanoparticles, and flowed through the paper via a small orifice. The white blood cell count was determined by measuring the colorimetric intensity of gold nanoparticles on the surface of white blood cells that were trapped in the paper mesh. Using this platform, we were able to quantify white blood cells in 15 μL of blood, and visually differentiate the abnormal count of white blood cells from the normal count. The proposed platform enabled rapid white blood cell count in low resource settings with a small sample volume requirement. Its low-cost, instrument-free operations would be attractive for point-of-care applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Efficient transfer of francium atoms

    Science.gov (United States)

    Aubin, Seth; Behr, John; Gorelov, Alexander; Pearson, Matt; Tandecki, Michael; Collister, Robert; Gwinner, Gerald; Shiells, Kyle; Gomez, Eduardo; Orozco, Luis; Zhang, Jiehang; Zhao, Yanting; FrPNC Collaboration

    2016-05-01

    We report on the progress of the FrPNC collaboration towards Parity Non Conservation Measurements (PNC) using francium atoms at the TRIUMF accelerator. We demonstrate efficient transfer (higher than 40%) to the science vacuum chamber where the PNC measurements will be performed. The transfer uses a downward resonant push beam from the high-efficiency capture magneto optical trap (MOT) towards the science chamber where the atoms are recaptured in a second MOT. The transfer is very robust with respect to variations in the parameters (laser power, detuning, alignment, etc.). We accumulate a growing number of atoms at each transfer pulse (limited by the lifetime of the MOT) since the push beam does not eliminate the atoms already trapped in the science MOT. The number of atoms in the science MOT is on track to meet the requirements for competitive PNC measurements when high francium rates (previously demonstrated) are delivered to our apparatus. The catcher/neutralizer for the ion beam has been tested reliably to 100,000 heating/motion cycles. We present initial tests on the direct microwave excitation of the ground hyperfine transition at 45 GHz. Support from NSERC and NRC from Canada, NSF and Fulbright from USA, and CONACYT from Mexico.

  13. Observation of relativistic antihydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  14. Atomic memory access hardware implementations

    Science.gov (United States)

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  15. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    Science.gov (United States)

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule.

    Science.gov (United States)

    Yamazaki, Masakazu; Hosono, Masaki; Tang, Yaguo; Takahashi, Masahiko

    2017-06-01

    We have developed multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule. It combines the features of both a spherical electron energy analyzer and a large-area position sensitive detector, thereby having an ability to cover almost completely the azimuthal angle range available for quasi-elastic electron Rutherford backscattering at an angle of 135°. Details and performance of the apparatus are reported, together with experimental results measured for Xe and CH4 at an incident electron energy of 2 keV. In particular, it is shown that the instrumental sensitivity is remarkably high, which has increased the signal count rate by nearly three orders of magnitude compared to existing setups. This technical progress would be useful for advancing atomic momentum spectroscopy studies.

  17. Laser manipulation of atoms and nanofabrication

    NARCIS (Netherlands)

    Jurdík, Erich

    2001-01-01

    Fundamental interaction processes between atoms and photons are exploited to control external degrees of freedom of the atoms. Laser light, when properly tuned near an atomic resonance, exerts such forces that the atoms are repelled from or attracted to the regions with low light intensities. We use

  18. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  19. Using DNA to test the utility of pellet-group counts as an index of deer counts

    Science.gov (United States)

    T. J. Brinkman; D. K. Person; W. Smith; F. Stuart Chapin; K. McCoy; M. Leonawicz; K. Hundertmark

    2013-01-01

    Despite widespread use of fecal pellet-group counts as an index of ungulate density, techniques used to convert pellet-group numbers to ungulate numbers rarely are based on counts of known individuals, seldom evaluated across spatial and temporal scales, and precision is infrequently quantified. Using DNA from fecal pellets to identify individual deer, we evaluated the...

  20. Evaluation of Coli-Count Samplers for Possible Use in Standard Counting of Total and Fecal Coliforms in Recreational Waters

    Science.gov (United States)

    Hedberg, Mary; Connor, Douglas A.

    1975-01-01

    Millipore Coli-Count Samplers were used to enumerate colonies of laboratory cultures of coliform bacteria. The samplers gave significantly lower counts than standard membrane-filter procedures for both total and fecal coliforms. Although the samplers are useful for semiquantitative analysis as indicated by the manufacturer, they are not suitable for standard examinations of recreational waters. PMID:1106326

  1. The Effect of Hemodialysis on Hemoglobin Concentration, Platelets count and White Blood Cells Count in End Stage Renal Failure

    Directory of Open Access Journals (Sweden)

    Yasir A.H. Hakim

    2016-05-01

    Full Text Available To evaluate the effect of hemodialysis machine in complete blood count with focus on hemoglobin, platelets and total white blood cells count for patients of end stage renal disease, to evaluate the effect of dialysis on hemoglobin, platelets and white blood count, to estimate the values of change session of dialysis, to clarify the major cause of End Stage Renal Failure among the study group. 3 ml of blood were collected from 199 patients, aseptically by standard phlebotomy technique by trained phlebotomist from each patient and dispensed in to tri-potassium Ethylenediamine tetra-acetic acid(K3 EDTA anticoagulant containers about 10-15 minutes after the hemodialysis. The study revealed that (83,9% of patients with higher decrease range reach to 4.3g, about.(14.1% have stable concentration, and only( 2% their Hb increased after dialysis, 83.9% of patients have noticeable increase in , 14.1% of patients show decrease in TWBCs and 2% have stable count, there is decrease in platelets count in (99.5% of patients almost in and only one patient showed stable count after dialysis (0.5%, The study revealed that a significant number of low hemoglobin concentration , low platelets count and high white blood count.

  2. Cooling Atomic Gases With Disorder

    Science.gov (United States)

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G.; Scalettar, Richard T.

    2015-12-01

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.

  3. Quantum tiltmeter with atom interferometry

    Science.gov (United States)

    Xu, Wen-Jie; Zhou, Min-Kang; Zhao, Miao-Miao; Zhang, Ke; Hu, Zhong-Kun

    2017-12-01

    Matter-wave sensors with cold atoms have progressed tremendously over recent decades. We report a sensitive tilt sensor based on quantum technology employing cold atoms. This quantum tiltmeter is constructed with the configuration of a Ramsey-Bordé atom interferometer, achieving an improvement of nearly three orders of magnitude for tilt measurements with a short-term sensitivity of 1.3 μ rad/Hz 1 /2 , with resolution down to 55 nrad at an integration time of 1000 s. The deformation of the Earth's surface has been monitored in a continuous run of 31 h, showing that a quantum tiltmeter can be applied to record tilt tides and can be an valuable sensor in geophysics and various scientific facilities.

  4. Atom-specific surface magnetometry

    Science.gov (United States)

    Sirotti, Fausto; Panaccione, Giancarlo; Rossi, Giorgio

    1995-12-01

    A powerful atom-specific surface magnetometry can be based on efficient measurements of magnetic dichroism in l>~0 core level photoemission. The temperature dependence M(T) of the Fe(100) surface magnetization was obtained from the photoemission magnetic asymmetry of 3p core levels, providing the measure of the surface exchange coupling via the spin-wave stiffness and of the surface critical exponent. Beyond the magnetic order the photoemission dichroism allows us to derive the energy splitting of the magnetic sublevels of the photoexcited core hole. Fe 3p photoemission dichroism probes directly the magnetic moment changes of iron atoms at Fe(100) surfaces as a function of structural disorder or sulfur segregation. The appearance of dichroism in the 2p photoemission of segregated sulfur atoms in the c(2×2)S/Fe(100) superstructure measures the magnetic-moment transfer and shows the possibility of investigating surface magnetochemistry in a very direct way.

  5. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-05-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures.

  6. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  7. Atomic horror deal; Atom-Deal des Grauens

    Energy Technology Data Exchange (ETDEWEB)

    May, Hanne

    2010-10-15

    The German government is opting out of the decided nuclear phaseout and will ensure good profits for operators of nuclear power plants. Complex contracts and the disregard of safety regulations will result in a continued atomic energy policy, even beyond the next elections and in disrespect of democratic procedures and bodies. (orig.)

  8. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  9. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  10. Acceleration effects on atomic clocks

    CERN Document Server

    Dahia, F

    2014-01-01

    We consider a free massive particle inside a box which is dragged by Rindler observers. Admitting that the particle obeys the Klein-Gordon equation, we find the frequencies of the stationary states of this system. Transitions between the stationary states are employed to set a standard frequency for a toy atomic clock. Comparing the energy spectrum of the accelerated system with the energy spectrum of an identical system in an inertial frame, we determine the influence of the instantaneous acceleration on the rate of atomic clocks. We argue that our result does not violate the clock hypothesis.

  11. Pathology of atomic bomb casualties.

    Science.gov (United States)

    Iijima, S

    1982-01-01

    Thirty seven years ago, 6 August 1945 marks the date of the first atomic bombing never experienced in human history. It was dropped on Hiroshima and this was followed by a second bombing three days later on Nagasaki. The total deaths following exposure to the bomb by the end of 1945 totalled 140,000 (+/- 10,000) in Hiroshima and 70,000 (+/- 10,000) in Nagasaki. The present article described and outline of the physical effects of the atomic bomb and injury to the human body by exposure to the bomb.

  12. Collective dynamics of accelerated atoms

    Science.gov (United States)

    Richter, Benedikt; Terças, Hugo; Omar, Yasser; de Vega, Inés

    2017-11-01

    We study the collective dynamics of accelerated atoms interacting with a massless field via an Unruh-deWitt-type interaction. We first derive a general Hamiltonian describing such a system and then, employing a Markovian master equation, we study the corresponding collective dynamics. In particular, we observe that the emergence of entanglement between two-level atoms is linked to the building up of coherences between them and to superradiant emission. In addition, we show that the derived Hamiltonian can be experimentally implemented by employing impurities in Bose-Einstein condensates.

  13. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  14. Tutorial on X-ray photon counting detector characterization.

    Science.gov (United States)

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2017-11-16

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  15. Determining Gate Count Reliability in a Library Setting

    Directory of Open Access Journals (Sweden)

    Jeffrey Phillips

    2016-09-01

    Full Text Available Objective – Patron counts are a common form of measurement for library assessment. To develop accurate library statistics, it is necessary to determine any differences between various counting devices. A yearlong comparison between card reader turnstiles and laser gate counters in a university library sought to offer a standard percentage of variance and provide suggestions to increase the precision of counts. Methods – The collection of library exit counts identified the differences between turnstile and laser gate counter data. Statistical software helped to eliminate any inaccuracies in the collection of turnstile data, allowing this data set to be the base for comparison. Collection intervals were randomly determined and demonstrated periods of slow, average, and heavy traffic. Results – After analyzing 1,039,766 patron visits throughout a year, the final totals only showed a difference of .43% (.0043 between the two devices. The majority of collection periods did not exceed a difference of 3% between the counting instruments. Conclusion – Turnstiles card readers and laser gate counters provide similar levels of reliability when measuring patron activity. Each system has potential counting inaccuracies, but several methods exist to create more precise totals. Turnstile card readers are capable of offering greater detail involving patron identity, but their high cost makes them inaccessible for libraries with lower budgets. This makes laser gate counters an affordable alternative for reliable patron counting in an academic library.

  16. A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy

    OpenAIRE

    Bennun, Leonardo

    2016-01-01

    A new smoothing method for the improvement on the identification and quantification of spectral functions based on the previous knowledge of the signals that are expected to be quantified, is presented. These signals are used as weighted coefficients in the smoothing algorithm. This smoothing method was conceived to be applied in atomic and nuclear spectroscopies preferably to these techniques where net counts are proportional to acquisition time, such as particle induced X-ray emission (PIXE...

  17. Study on advancement of in vivo counting using mathematical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kinase, Sakae [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and measurements. Consequently, the calculations are in good agreement with the measurements. The method for the determination of counting efficiency curves as a function of energy was developed using the present technique and a physiques correction equation was derived from the relationship between parameters of correction factor and counting efficiencies of the JAERI whole-body counter. The uncertainties in body burdens of {sup 137}Cs estimated with the JAERI whole-body counter were also investigated using the Monte Carlo simulation and measurements. It was found that the uncertainties of body burdens estimated with the whole-body counter are strongly dependent on various sources of uncertainty such as radioactivity distribution within the body and counting statistics. Furthermore, the evaluation method of the peak efficiencies of a Ge semi-conductor detector was developed by Monte Carlo simulation for optimum arrangement of Ge semi-conductor detectors for

  18. BOOK REVIEW: Computational Atomic Structure

    Science.gov (United States)

    Post, Douglass E.

    1998-02-01

    The primary purpose of `Computational Atomic Structure' is to give a potential user of the Multi-Configuration Hartree-Fock (MCHF) Atomic Structure Package an outline of the physics and computational methods in the package, guidance on how to use the package, and information on how to interpret and use the computational results. The book is successful in all three aspects. In addition, the book provides a good overview and review of the physics of atomic structure that would be useful to the plasma physicist interested in refreshing his knowledge of atomic structure and quantum mechanics. While most of the subjects are covered in greater detail in other sources, the book is reasonably self-contained, and, in most cases, the reader can understand the basic material without recourse to other sources. The MCHF package is the standard package for computing atomic structure and wavefunctions for single or multielectron ions and atoms. It is available from a number of ftp sites. When the code was originally written in FORTRAN 77, it could only be run on large mainframes. With the advances in computer technology, the suite of codes can now be compiled and run on present day workstations and personal computers and is thus available for use by any physicist, even those with extremely modest computing resources. Sample calculations in interactive mode are included in the book to illustrate the input needed for the code, what types of results and information the code can produce, and whether the user has installed the code correctly. The user can also specify the calculational level, from simple Hartree-Fock to multiconfiguration Hartree-Fock. The MCHF method begins by finding approximate wavefunctions for the bound states of an atomic system. This involves minimizing the energy of the bound state using a variational technique. Once the wavefunctions have been determined, other atomic properties, such as the transition rates, can be determined. The book begins with an

  19. Probabilities and energies to obtain the counting efficiency of electron-capture nuclides. KLMN model; Probabilidades y energias de reestructuracion atomica subsiguientes a la captura electronica. Modelo KLMN

    Energy Technology Data Exchange (ETDEWEB)

    Galiano, G.; Grau, A.

    1994-07-01

    An intelligent computer program has been developed to obtain the mathematical formulae to compute the probabilities and reduced energies of the different atomic rearrangement pathways following electron-capture decay. Creation and annihilation operators for Auger and X processes have been introduced. Taking into account the symmetries associated with each process, 262 different pathways were obtained. This model allows us to obtain the influence of the M-electro capture in the counting efficiency when the atomic number of the nuclide is high. (Author)

  20. A Novel Method for Ion Track Counting in Polycarbonate Detector

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Roshani

    2013-01-01

    Full Text Available A computer program for recognizing and counting the track of ions that are detected with polycarbonate detector has been written using MATLAB software. There are different programs for counting the track of ions in different detectors. Algorithm of this program specially has been written for polycarbonate detector and also for low magnification of optical microscope. Thus, with this method as per image of optical microscope, greater numbers of ions are visible and general distribution of ions can be better known. However, the accuracy of counting program is very high.