WorldWideScience

Sample records for atom collisions

  1. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  2. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  3. Sixteenth International Conference on the physics of electronic and atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  4. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  5. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  6. Atom trap loss, elastic collisions, and technology

    Science.gov (United States)

    Booth, James

    2012-10-01

    The study of collisions and scattering has been one of the most productive approaches for modern physics, illuminating the fundamental structure of crystals, surfaces, atoms, and sub-atomic particles. In the field of cold atoms, this is no less true: studies of cold atom collisions were essential to the production of quantum degenerate matter, the formation of cold molecules, and so on. Over the past few years it has been my delight to investigate elastic collisions between cold atoms trapped in either a magneto-optical trap (MOT) or a magnetic trap with hot, background gas in the vacuum environment through the measurement of the loss of atoms from the trap. Motivated by the goal of creating cold atom-based technology, we are deciphering what the trapped atoms are communicating about their environment through the observed loss rate. These measurements have the advantages of being straightforward to implement and they provide information about the underlying, fundamental inter-atomic processes. In this talk I will present some of our recent work, including the observation of the trap depth dependence on loss rate for argon-rubidium collisions. The data follow the computed loss rate curve based on the long-range Van der Waals interaction between the two species. The implications of these findings are exciting: trap depths can be determined from the trap loss measurement under controlled background density conditions; observation of trap loss rate in comparison to models for elastic, inelastic, and chemical processes can lead to improved understanding and characterization of these fundamental interactions; finally the marriage of cold atoms with collision modeling offers the promise of creating a novel pressure sensor and pressure standard for the high and ultra-high vacuum regime.

  7. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  8. Positronium collisions with rare-gas atoms

    CERN Document Server

    Gribakin, G F; Wilde, R S; Fabrikant, I I

    2015-01-01

    We calculate elastic scattering of positronium (Ps) by the Xe atom using the recently developed pseudopotential method [Fabrikant I I and Gribakin G F 2014 Phys. Rev. A 90 052717] and review general features of Ps scattering from heavier rare-gas atoms: Ar, Kr and Xe. The total scattering cross section is dominated by two contributions: elastic scattering and Ps ionization (break-up). To calculate the Ps ionization cross sections we use the binary-encounter method for Ps collisions with an atomic target. Our results for the ionization cross section agree well with previous calculations carried out in the impulse approximation. Our total Ps-Xe cross section, when plotted as a function of the projectile velocity, exhibits similarity with the electron-Xe cross section for the collision velocities higher than 0.8 a.u., and agrees very well with the measurements at Ps velocities above 0.5 a.u.

  9. Spin Dependent Collision of Ultracold Metastable Atoms

    CERN Document Server

    Uetake, Satoshi; Doyle, John M; Takahashi, Yoshiro

    2015-01-01

    Spin-polarized metastable atoms of ultracold ytterbium are trapped at high density and their inelastic collisional properties are measured. We reveal that in collisions of Yb(3P2) with Yb(1S0) there is relatively weak inelastic loss, but with a significant spin-dependence consistent with Zeeman sublevel changes as being the dominant decay process. This is in strong contrast to our observations of Yb(3P2)-Yb(3P2) collisional loss, which are, at low field, much more rapid and have essentially no spin dependence. Our results give a guideline to use the 3P2 states in many possible applications.

  10. Polarization, alignment, and orientation in atomic collisions

    CERN Document Server

    Andersen, Nils

    2017-01-01

    This book covers polarization, alignment, and orientation effects in atomic collisions induced by electron, heavy particle, or photon impact. The first part of the book presents introductory chapters on light and particle polarization, experimental and computational methods, and the density matrix and state multipole formalism. Examples and exercises are included. The second part of the book deals with case studies of electron impact and heavy particle excitation, electron transfer, impact ionization, and autoionization. A separate chapter on photo-induced processes by new-generation light sources has been added. The last chapter discusses related topics and applications. Part III includes examples of charge clouds and introductory summaries of selected seminal papers of tutorial value from the early history of the field (1925 – 1975). The book is a significant update to the previous (first) edition, particularly in experimental and computational methods, the inclusion of key results obtained during the pas...

  11. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  12. Atom Collision-Induced Resistivity of Carbon Nanotubes

    National Research Council Canada - National Science Library

    Hugo E. Romero; Kim Bolton; Arne Rosén; Peter C. Eklund

    2005-01-01

    We report the observation of unusually strong and systematic changes in the electron transport in metallic single-walled carbon nanotubes that are undergoing collisions with inert gas atoms or small molecules...

  13. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  14. High Rydberg atoms: a nanoscale electron collisions laboratory

    Science.gov (United States)

    Dunning, F. Barry

    2000-10-01

    Atoms in which one electron is excited to a state of large principal quantum number n, termed Rydberg atoms, are physically very large. The average separation between the excited electron and core ion is such that, in collisions with neutral targets, they behave not as an atom but rather as a pair of independent particles. Studies of collision processes that are dominated by the electron/target interaction can provide information on electron/molecule scattering at energies that extend down to a few microelectronvolts. Collisions with attaching targets can lead to ion formation through electron capture in a binary interaction between the excited electron and target molecule. Capture leads to creation of transient, excited parent negative ions that may subsequently dissociate, undergo autodetachment, or be "stabilized" by intramolecular vibrational relaxation. New insights into each of these processes, and into the lifetime of the intermediate (on a ps timescale), can be obtained by measuring the angular and velocity distributions of the positive and/or negative ions produced in Rydberg atom collisions. Collisions with Rydberg atoms also provide a novel source of dipole-bound negative ions, and have demonstrated the importance of dipole-supported real and virtual states in superelastic electron scattering from polar targets. These applications of Rydberg atoms will be discussed together with some recent results. Research supported by the National Science Foundation and the Robert A. Welch Foundation.

  15. Resonant two-electron processes in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zavodszky, P.A. E-mail: paz@phys.ksu.edu; Richard, P.; Bhalla, C.P

    1999-06-03

    A review of some of the recent results in an effort to obtain electron-ion differential scattering cross sections using fast ion-atom collisions is given. In the projectile frame, if we neglect the effects from the target nucleus, the ion-atom collision can be described as an electron-ion scattering process where the energy distribution of the impinging quasi-free electrons is determined by the Compton-profile of the target. In this electron scattering model (ESM), in addition to the direct electron scattering, doubly excited state formation of the projectile ion is also possible. This is a resonant process in which the doubly excited states can subsequently decay by ejecting Auger-electrons. We have studied elastic, inelastic and superelastic electron scattering as a function of incoming electron energy by observing the outgoing electron energy in the ion-atom collision emission spectra.

  16. Characterization of non-Lorentzian line shapes in atom-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S. (Granada Univ. (Spain). Dept. de Fisica Nuclear; Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Kernphysik)

    Two different characterizations of the spectral line shape in the core region of resonance lines of atoms perturbed by other atoms in terms of 1) its moments about the origin and 2) its frequency moments are given. Simple expressions relating the line width and the asymmetry parameter of these collision-broadened lines with two of these moments are obtained. These expressions might lead to a new experimental determination of the average time of duration of atom-atom collisions since the involved moments are measurable.

  17. Spectroscopic measurement of the softness of ultracold atomic collisions

    Science.gov (United States)

    Coslovsky, Jonathan; Afek, Gadi; Mil, Alexander; Almog, Ido; Davidson, Nir

    2017-09-01

    The softness of elastic atomic collisions, defined as the average number of collisions each atom undergoes until its energy decorrelates significantly, can have a considerable effect on the decay dynamics of atomic coherence. In this paper we combine two spectroscopic methods to measure these dynamics and obtain the collisional softness of ultracold atoms in an optical trap: Ramsey spectroscopy to measure the energy decorrelation rate and echo spectroscopy to measure the collision rate. We obtain a value of 2.5(3) for the collisional softness, in good agreement with previously reported numerical molecular-dynamics simulations. This fundamental quantity is used to determine the s -wave scattering lengths of different atoms but has not been directly measured. We further show that the decay dynamics of the revival amplitudes in the echo experiment has a transition in its functional decay. The transition time is related to the softness of the collisions and provides yet another way to approximate it. These conclusions are supported by Monte Carlo simulations of the full echo dynamics. The methods presented here can allow measurement of a generalized softness parameter for other two-level quantum systems with discrete spectral fluctuations.

  18. Multiple electron capture in close ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.; Bernstein, E.M.; Clark, M.W.; DuBois, R.D.; Graham, W.G.; Morgan, T.J.; Mueller, D.W.; Stockli, M.P.; Tanis, J.A.; Woodland, W.T. (Lawrence Berkeley Lab., CA (USA); Western Michigan Univ., Kalamazoo, MI (USA); Pacific Northwest Lab., Richland, WA (USA); Queen' s Univ., Belfast, Northern Ireland (UK); Wesleyan Univ., Middletown, CT (USA); University of North Tex

    1989-07-24

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs.

  19. Non-Elastic Processes in Atom Rydberg-Atom Collisions: Review of ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Inour previous research, it has been demonstrated that inelastic processes in atom Rydberg-atom collisions, such as chemi-ionization and ( n − n ′ ) mixing, should be considered together. Here we will review the present state-of-the-art and the actual problems. In this context, we will consider the influence ...

  20. Theory of Electronic, Atomic and Molecular Collisions.

    Science.gov (United States)

    1983-09-01

    rare gas atoms (Section TV, Publications, No. 29). A strong forward peak and rapid angular variation, essentially a Fraunhofer diffraction pattern... triangular finite elements. Correct threshold behavior is built in by using momentum or wave number k as independent variables, and by starting the first...element at the continuum threshold. Since each triangular element has a finite and continuous HUbert transform, a smooth fit is obtained to both real

  1. Use of atomic hydrogen source in collision: technological challenges

    Science.gov (United States)

    Hovey, R. T.; Vargas, E. L.; Panchenko, D. I.; Rivas, D. A.; Andrianarijaona, V. M.

    2015-03-01

    Atomic hydrogen was extensively studied in the past due to its obvious fundamental aspect. Also, quite few investigations were dedicated to atomic hydrogen sources because the results of experimental investigations on systems involving H would provide very rigorous tests for theoretical models. But even if atomic hydrogen sources are currently widespread in experimental physics, their uses in experiments on collisions are still very challenging mainly due to threefold problem. First, there is the difficulty to create H in the laboratory in sufficiently large number densities. Second, there is the strain to adjust the velocities of the produced atomic hydrogens. And third, there is the toil to control the internal energies of these atomic hydrogens. We will present an outline of different techniques using atomic hydrogen sources in collisions, which could be found in the literatures, such as merged-beam technique, gas cell technique, and trap, and propose an experiment scheme using a turn-key atomic hydrogen source that experiments such as charge transfer could benefit from. This work is supported by the National Science Foundation under Grant No. PHY-1068877.

  2. Circular Dichroism in Laser-Assisted Ion-Atom Collisions

    Science.gov (United States)

    Feuerstein, Bernold; Thumm, Uwe

    2003-05-01

    We investigate theoretically the effects of a strong laser field on the dynamics of ion-atom collisions. The time-dependent Schrödinger equation is solved on a numerical grid for a reduced dimensionality model of the scattering system. The single active electron system is confined to the two dimensions of the scattering plane, which also includes the laser electric field vector. This allows the study of the influence of the laser intensity and polarization (linear, circular, elliptic) on the collision dynamics (capture and ionization probabilities) The projectile follows a classical trajectory with impact parameter b. We found a strong circular dirchroism in the capture probability P(b) for slow proton-hydrogen collisions. First results will be presented and discussed. Supported in part by NSF (grant PHY-0071035) and Division of Chemical Sciences, Office of Basic Energy Scienes, Office of Energy Research, US DOE.

  3. Half-Collision Studies of Excited Metal Atom - Molecule Interactions

    Science.gov (United States)

    Kleiber, P. D.; Chen, J.; Wong, T. H.

    1998-05-01

    We report on state-resolved studies of excited state molecular dynamics, including both reactive and nonreactive (energy transfer) processes using half-collision techniques. Scattering state spectroscopy is used to investigate electronic orbital alignment effects on the reactive quenching of excited p-state alkali and alkaline earth metal atoms in collisions with hydrogen and methane. These experiments give information about the shape of the Born-Oppenheimer potential energy surfaces for the collision complex, and about the nonadiabatic interactions that couple the surfaces. Experimental results indicate two distinct reaction mechanisms are operative in the alkali metal-hydrogen quenching system. In complementary experiments, the spectroscopy and dissociation dynamics of weakly bound metal ion-hydrocarbon bimolecular complexes are studied using photofragmentation spectroscopic techniques in a tandem time-of- flight mass spectrometer. Results suggest that the quenching mechanism involves metal ion activation of the hydrocarbon bonds througha bond- stretch insertion process.

  4. Atomic collision databases and data services -- A survey

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R. [Oak Ridge National Lab., TN (United States). Controlled Fusion Atomic Data Center

    1997-12-31

    Atomic collision databases and data services constitute an important resource for scientific and engineering applications such as astrophysics, lighting, materials processing, and fusion energy, as well as an important knowledge base for current developments in atomic collision physics. Data centers and research groups provide these resources through a chain of efforts that include producing and collecting primary data, performing evaluation of the existing data, deducing scaling laws and semiempirical formulas to compactly describe and extend the data, producing the recommended sets of data, and providing convenient means of maintaining, updating, and disseminating the results of this process. The latest efforts have utilized modern database, storage, and distribution technologies including the Internet and World Wide Web. Given here is an informal survey of how these resources have developed, how they are currently characterized, and what their likely evolution will lead them to become in the future.

  5. Energy distributions for ionization in ion-atom collisions

    CERN Document Server

    Amaya-Tapia, A

    2016-01-01

    In this paper we discuss how through the process of applying the Fourier transform to solutions of the Schr\\"odinger equation in the Close Coupling approach, good results for the ionization differential cross section in energy for electrons ejected in ion-atom collisions are obtained. The differential distributions are time dependent and through their time average, the comparison with experimental and theoretical data reported in the literature can be made. The procedure is illustrated with reasonable success in two systems, $p+H$ and $p+He$, and is expected to be extended without inherent difficulties to more complex systems. This allows advancing in the understanding of the calculation of ionization processes in ion-atom collisions.

  6. Atomic collisions involving C60 and collective excitation

    Science.gov (United States)

    Tribedi, L. C.; Kelkar, A. H.

    2011-12-01

    Here we review and discuss some of our recent investigations on collective excitation in a free C60 molecule and its influence on the atomic collisions. In particular, emphasis has been given for collisions with fast highly charged ions. It is demonstrated, from the charge-state-dependence studies of recoil-ion spectra, that the plasmon excitation plays a dominant role in the single and double ionization process. The observed linear charge-state-dependence is in contrast to the expected behavior predicted by ion-atom collisions models. This behavior was observed for different projectiles and at different energies. The time-of-flight recoil-ion mass spectroscopy experiments involve 1-5 MeV/u C, O, F and Si ion beams with different charge states, ranging between 4+ and 14+. In addition, the influence of the collective excitation on the electron capture process was also investigated. The wake-field induced Stark-mixing and splitting of sub-levels of projectile-ions following electron capture from C60 carries signature of the collective plasmon excitation. For the electron capture studies X-ray spectroscopic technique was used for collisions with bare and dressed S and Cl ion beams. The results on the TOF data on fullerene target obtained in last few years will be summarized.

  7. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    Science.gov (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  8. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Landi Degl’Innocenti, Egidio [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  9. Computer simulation of electronic excitation in atomic collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Duvenbeck, A.

    2007-04-05

    The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation

  10. Measurements of scattering processes in negative ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991.

  11. Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    CERN Document Server

    Swann, A R; Deller, A; Gribakin, G F

    2016-01-01

    Predicted twenty years ago, positron binding to neutral atoms has not yet been observed experimentally. A new scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer-reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for Ps charge transfer in collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.

  12. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions

    Science.gov (United States)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.

    1999-01-01

    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  13. Production of dimeson atoms in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2017-04-15

    The production of two-meson electromagnetic bound states and free meson pairs π{sup +}π{sup -}, K{sup +}K{sup -}, π{sup +}K{sup -+} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1S to 2P state, which is essential for the pionium Lamb shift measurements, has been obtained. (orig.)

  14. Classical theory of atomic collisions - The first hundred years

    Energy Technology Data Exchange (ETDEWEB)

    Grujic, Petar V., E-mail: simonovic@ipb.ac.rs [Institute of Physics, P.O. Box 57, 11000 Belgrade (Serbia)

    2012-05-15

    Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for {alpha} particles scattered on foil atoms . The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects . Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis , contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics . We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and epistemological

  15. Single electron capture in fast ion-atom collisions

    Science.gov (United States)

    Milojević, Nenad

    2014-12-01

    Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  16. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    Science.gov (United States)

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  17. Fast ion-atom and ion-molecule collisions

    CERN Document Server

    2013-01-01

    The principal goal of this book is to provide state-of-the art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this fiel...

  18. Atoms-for-Peace: A Galactic Collision in Action

    Science.gov (United States)

    2010-11-01

    European Southern Observatory astronomers have produced a spectacular new image of the famous Atoms-for-Peace galaxy (NGC 7252). This galactic pile-up, formed by the collision of two galaxies, provides an excellent opportunity for astronomers to study how mergers affect the evolution of the Universe. Atoms-for-Peace is the curious name given to a pair of interacting and merging galaxies that lie around 220 million light-years away in the constellation of Aquarius. It is also known as NGC 7252 and Arp 226 and is just bright enough to be seen by amateur astronomers as a very faint small fuzzy blob. This very deep image was produced by ESO's Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. A galaxy collision is one of the most important processes influencing how our Universe evolves, and studying them reveals important clues about galactic ancestry. Luckily, such collisions are long drawn-out events that last hundreds of millions of years, giving astronomers plenty of time to observe them. This picture of Atoms-for-Peace represents a snapshot of its collision, with the chaos in full flow, set against a rich backdrop of distant galaxies. The results of the intricate interplay of gravitational interactions can be seen in the shapes of the tails made from streams of stars, gas and dust. The image also shows the incredible shells that formed as gas and stars were ripped out of the colliding galaxies and wrapped around their joint core. While much material was ejected into space, other regions were compressed, sparking bursts of star formation. The result was the formation of hundreds of very young star clusters, around 50 to 500 million years old, which are speculated to be the progenitors of globular clusters. Atoms-for-Peace may be a harbinger of our own galaxy's fate. Astronomers predict that in three or four billion years the Milky Way and the Andromeda Galaxy will collide, much as has happened with Atoms-for-Peace. But don

  19. PREFACE: XXVIth International Conference on Photonic, Electronic and Atomic Collisions

    Science.gov (United States)

    Orel, Ann; Starace, Anthony F.; Nikolić, Dragan; Berrah, Nora; Gorczyca, Thomas W.; Kamber, Emanuel Y.; Tanis, John A.

    2009-12-01

    The XXVIth International Conference on Photonic, Electronic and Atomic Collisions was held on the campus of Western Michigan University (WMU) in Kalamazoo during 22-28 July 2009. Kalamazoo, the home of a major state university amid pleasant surroundings, was a delightful place for the conference. The 473 scientific participants, 111 of whom were students, had many fruitful discussions and exchanges that contributed to the success of the conference. Participants from 43 countries made the conference truly international in scope. The 590 abstracts that were presented on the first four days formed the heart of the conference and provided ample opportunity for discussion. This change, allowing the conference to end with invited talks, was a departure from the format used at previous ICPEAC gatherings in which the conferences ended with a poster session. The abstracts were split almost equally between the three main conference areas, i.e., photonic, electronic, and atomic collisions, and the posters were distributed across the days of the conference so that approximately equal numbers of abstracts in the different areas were scheduled for each day. Of the total number of presented abstracts, 517 of these are included in this proceedings volume, the first time that abstracts have been published by ICPEAC. There were 5 plenary lectures covering the different areas of the conference: Paul Corkum (University of Ottawa) talked on attosecond physics with atoms and molecules, Serge Haroche (Collège de France) on non-destructive photon counting, Toshiyuki Azuma (Tokyo Metropolitan University) on resonant coherent excitation of highly-charged ions in crystals, Eva Lindroth (Stockholm University) on atomic structure effects, and Alfred Müller (Justus Liebig University) on resonance phenomena in electron- and photon-ion collisions. Two speakers gave very illuminating public lectures that drew many people from the local area, as well as conference participants: Patricia Dehmer

  20. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    Science.gov (United States)

    2016-06-06

    Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular

  1. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    Science.gov (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  2. Quantum-mechanical calculations of cross sections for electron collisions with atoms and molecules

    CERN Document Server

    Bartschat, Klaus; Zatsarinny, Oleg

    2016-01-01

    An overview of quantum-mechanical methods to generate cross-section data for electron collisions with atoms and molecules is presented. Particular emphasis is placed on the time-independent close-coupling approach, since it is particularly suitable for low-energy collisions and also allows for systematic improvements as well as uncertainty estimates. The basic ideas are illustrated with examples for electron collisions with argon atoms and methane. For many atomic systems, such as e-Ar collisions, highly reliable cross sections can now be computed with quantified uncertainties. On the other hand, while electron collision calculations with molecules do provide key input data for plasma models, the methods and computer codes presently used require further development to make these inputs robust.

  3. Ultracold collisions of mixed atoms in optical dipole trap loaded from a dark magneto-optical trap

    Science.gov (United States)

    Zhao, Yanting; Gong, Ting; Li, Zhonghao; Ji, Zhonghua; Zhang, Xiang; Xiao, Liantuan; Jia, Suotang

    2017-10-01

    We study the cold collisions of mixed atoms in an optical dipole trap (ODT), which are loaded from a dark magneto-optical trap (MOT). A comprehensive, phenomenological rate equation is presented to derive the ultracold homonuclear and heteronuclear collision rates in loading and holding procedures. Our results show that the cold atoms in the dark MOT can provide a much better stable, initial atomic sample than MOT. The dependence of the heteronuclear collision rate on the trap depth is attributed to the hyperfine-changing collision by the ODT laser with a broad linewidth. The processes of deriving the collision rate are also universal for other kinds of atoms or even molecules.

  4. Time-of-Flight Experiments in Molecular Motion and Electron-Atom Collision Kinematics

    Science.gov (United States)

    Donnelly, Denis P.; And Others

    1971-01-01

    Describes a set of experiments for an undergraduate laboratory which demonstrates the relationship between velocity, mass, and temperature in a gas. The experimental method involves time-of-flight measurements on atoms excited to metastable states by electron impact. Effects resulting from recoil in the electron-atom collision can also be…

  5. A spectroscopic study of hydrogen atom and molecule collision. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kielkopf, John F.

    2002-07-01

    The fundamental processes which occur in low-energy collisions of excited states of the hydrogen atom with other neutral atoms, protons, and electrons in dense plasmas were investigated in this project. Theoretical and experimental results for the Lyman and Balmer series are described here, including references to recent publications resulting from this project.

  6. Quasi-free electron-ion scattering in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.; Bhalla, C.; Hagmann, S.; Zavodszky, P. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.

    1999-11-01

    The electron scattering model, ESM, for ion-atom collisions refers to the scattering of a quasi-free (loosely-bound) target electron in the field of a highly charged projectile ion. Many atomic processes have been successfully described by the ESM, which relates a differential scattering cross section for an ion-atom collision process to the cross section for the corresponding pure electron-ion collision process. The following processes have been studied in ion-atom collisions: resonant and non-resonant electron-ion elastic scattering, resonant and non-resonant inelastic electron-ion scattering, and dielectronic recombination. Recently, features have been observed in electron double differential cross sections from ion-atom collisions that have been attributed to ``super elastic`` electron-ion scattering, and intra-atomic double electron scattering in the case of molecular targets. Also, evidence for triply-excited states formed by resonance excitation has been observed. A survey of the results of these studies and the status of this field of research will be presented. (orig.) 31 refs.

  7. Contribution of electron-atom collisions to the plasma conductivity of noble gases

    Science.gov (United States)

    Rosmej, S.; Reinholz, H.; Röpke, G.

    2017-06-01

    We present an approach which allows the consistent treatment of bound states in the context of dc conductivity in dense partially ionized noble gas plasmas. Besides electron-ion and electron-electron collisions, further collision mechanisms owing to neutral constituents are taken into account. Especially at low temperatures of 104to105 K, electron-atom collisions give a substantial contribution to the relevant correlation functions. We suggest an optical potential for the description of the electron-atom scattering which is applicable for all noble gases. The electron-atom momentum-transfer cross section is in agreement with experimental scattering data. In addition, the influence of the medium is analyzed, the optical potential is advanced including screening effects. The position of the Ramsauer minimum is influenced by the plasma. Alternative approaches for the electron-atom potential are discussed. Good agreement of calculated conductivity with experimental data for noble gas plasmas is obtained.

  8. Time-evolution of many active electrons in slow ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Runge, K.; Micha, D.A.

    1996-05-01

    The previously developed Eikonal/Time-dependent Hartree-Fock method is applied to slow ionic and atomic collisions involving many active electrons. The electronic density matrix is written in a basis of traveling atomic orbitals including s, p, and d-type atomic basis functions. One- and two-electron integrals are calculated in a static basis and transformed to the traveling basis. Electronic orbital polarization parameters are calculated during the collision to determine the degree of electonic orientation and alignment as a function of time. This method is currently being applied to slow collisions of hydrogen, alkali, alkali earth and rare gas atoms and ions, to calculate the time evolution of electronic energy and charge transfer, as well as orbital polarization.

  9. Characterization of charge-exchange collisions between ultracold 6Li atoms and 40Ca+ ions

    Science.gov (United States)

    Saito, R.; Haze, S.; Sasakawa, M.; Nakai, R.; Raoult, M.; Da Silva, H.; Dulieu, O.; Mukaiyama, T.

    2017-03-01

    We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of 6Li atoms and 40Ca+ ions. Deliberately excited ion micromotion is used to control collision energy of atoms and ions. The energy dependence of the charge-exchange collision cross section obeys the Langevin model in the temperature range of the current experiment, and the measured magnitude of the cross section is correlated to the internal state of the 40Ca+ ions. Revealing the relationship between the charge-exchange collision cross sections and the interaction potentials is an important step toward the realization of the full quantum control of the chemical reactions at an ultralow-temperature regime.

  10. Atomic collision and spectroscopy experiments with ultra-low-energy antiprotons

    CERN Document Server

    Torii, Hiroyuki A; Toyoda, Hiroshi; Imao, Hiroshi; Kuroda, Naofumi; Varentsov, Victor L; Yamazaki, Yasunori

    2009-01-01

    Antiproton, the antiparticle of proton, is a unique projectile in the study of atomic collision physics, which can be treated theoretically either as a 'negative proton' or a 'heavy electron'. Atomic capture of an antiproton will result in formation of a highly excited exotic atom. Antiprotonic helium atom has been studied intensively by means of precision laser spectroscopy, which has led to a stringent determination of antiproton mass and charge to a level of ppb. Comparison of these values with those of proton gives one of the best tests of CPT invariance, the most fundamental symmetry in physics. However, the dynamic processes of antiproton capture remain unclarified. With an aim to produce an antiproton beam at atomic-physics energies for 'pure' collision experiments, we have so far developed techniques to decelerate, cool and confine antiprotons in vacuo, using a sequential combination of the Antiproton Decelerator (AD) at CERN, a Radio-Frequency Quadrupole Decelerator (RFQD), and an electromagnetic tra...

  11. Lectures on ion-atom collisions from nonrelativistic to relativistic velocities

    CERN Document Server

    Eichler, Jörg

    2005-01-01

    Atomic collisions offer some unique opportunities to study atomic structure and reaction mechanisms in experiment and theory, especially for projectiles of high atomic number provided by modern accelerators. The book is meant as an introduction into the field and provides some basic theoretical understanding of the atomic processes occurring when a projectile hits another atom. It also furnishes the tools for a mathematical description, however, without going deeper into the technical details, which can be found in the literature given. With this aim, the focus is on reactions, in which only a single active electron participates. Collisional excitation, ionization and charge transfer are discussed for collision velocities ranging from slow to comparable to thespeed of light. For the highest projectile velocities, energy can be converted into mass, so that electron-positron pairs are created. In addition to the systematic treatment, a theoretical section specializes on electron-electroncorrelations and three...

  12. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, H.

    1997-04-01

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  13. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2000-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  14. Quasiclassical trajectory study of fast H-atom collisions with acetylene.

    Science.gov (United States)

    Han, Yong-Chang; Sharma, Amit R; Bowman, Joel M

    2012-06-07

    Translationally hot H collisions with the acetylene are investigated using quasiclassical trajectory calculations, on a recent full-dimensional ab initio-based potential energy surface. Three outcomes are focused on: non-reactive energy transfer via prompt collisions, non-reactive energy transfer via the formation of the vinyl complex, and reactive chemical H-atom exchange, also via complex formation. The details of these outcomes are presented and correlated with the collision lifetime. Large energy transfer is found via complex formation, which can subsequently decay back to reactants, a non-reactive event, or to new products, a reactive event. For the present system, these two events are experimentally indistinguishable.

  15. On the treatment of ℓ-changing proton-hydrogen Rydberg atom collisions

    Science.gov (United States)

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R.

    2017-11-01

    Energy-conserving, angular momentum changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of atomic recombination at the photon decoupling era and the elemental abundance after primordial nucleosynthesis. Early approaches to ℓ-changing collisions used perturbation theory only for dipole-allowed (Δℓ = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at a computational cost for highly excited Rydberg states. In this paper, we show how to obtain a semiclassical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  16. Cross-sections for neutral atoms and molecules collisions with charged spherical nanoparticle

    CERN Document Server

    Shneider, M N

    2016-01-01

    The paper presents cross sections for collisions of neutral atoms/molecules with a charged nanoparticle, which is the source of the dipole potential. The accuracy of the orbital limited motion (OLM) approximation is estimated. It is shown that simple analytical formulas for the atoms/molecules and heat fluxes, obtained in the OLM approximation, give an error of not more than 15%, and are applicable in all reasonable range of nanoparticles and weakly ionized plasma parameters.

  17. A simple nonbinary scattering model applicable to atomic collisions is crystals at 1ow energies

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, Peter

    1966-01-01

    the projectile and each ring atom is described by a Born-Mayer potential, and the scattering is assumed to be elastic and governed by the classical equations of motion. Because of symmetry, the problem can be reduced to plane motion of a particle in a potential of elliptic symmetry. The elliptic force field...... the elliptic to the spherical potential are investigated. Special attention is paid to proper definitions of collision time and collision length which are important in collisions in crystals. Limitations to classical scattering arising from the uncertainty principle prove to be more serious than assumed...... previously. Inelastic contributions to the energy loss can easily be included. The oscillator forces binding lattice atoms turn out to influence the scattering process only at very small energies. The validity of the so-called momentum approximation and a related perturbation method are also investigated....

  18. Spin-axis relaxation in spin-exchange collisions of alkali-metal atoms

    Science.gov (United States)

    Kadlecek, S.; Walker, T.; Walter, D. K.; Erickson, C.; Happer, W.

    2001-05-01

    We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin-relaxation rates calculated with classical-path trajectories are nearly the same as those calculated with the distorted-wave Born approximation. We compare these calculations to recent experiments that used magnetic decoupling to isolate spin relaxation due to binary collisions from that due to the formation of triplet van der Waals molecules. The values of the spin-axis coupling coefficients deduced from measurements of binary collision rates are consistent with those deduced from molecular decoupling experiments, and follow a physically plausible scaling law for the spin-axis coupling coefficients.

  19. Experimental investigation of atomic collisions in time scales varying from nanosecond to microseconds

    Energy Technology Data Exchange (ETDEWEB)

    Glover, R D; Laban, D E; Matherson, K J; Wallace, W; Sang, R T, E-mail: R.Sang@griffith.edu.a [Centre for Quantum Dynamics, Griffith University, Nathan, Queensland 4111 (Australia)

    2010-02-01

    We present the results from two experiments investigating collisions that differ in time scale by three orders of magnitude. The first experiment enables the determination of absolute total collision cross sections using a technique that measures a change in the loss rate of trapped atoms from a magneto optical trap (MOT). We also investigate light assisted collision processes between cold metastable neon atoms in the {sup 3}P{sub 2} metastable state within the MOT. A catalysis laser is scanned in frequency across the {sup 3}P{sub 2} - {sup 3}D{sub 3} cooling transition and the ionization rate was observed. Ionization spectra are obtained which demonstrate a dependence on the magnetic sublevels of the transition that the catalysis laser is exciting.

  20. Cluster excitation and ionization in high velocity collisions:the atomic approach

    OpenAIRE

    Mezdari, Férid; Wohrer-Béroff, Karine; Chabot, Marin

    2004-01-01

    NIM; The independent atom and electron model [1] is introduced in a quantum context and associated approximations tentatively estimated. Confrontation of the model to measured ionization and excitation cross sections of small ionic carbon clusters Cn+ in collisions with helium at an impact velocity of 2.6 a.u is presented.

  1. Collision between two ortho-positronium (Ps) atoms: A four-body ...

    Indian Academy of Sciences (India)

    The elastic collision between two ortho-positronium (e.g. S = 1 ) atoms is studied using an {\\it ab-initio} static exchange model (SEM) in the centre of mass (CM) frame by considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly.

  2. Line broadening in a photoionization spectrometer due to elastic electron--atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, E.I.; Mishchenko, E.D.; Tumarkin, Y.N.

    1984-02-01

    Line broadening in a photoionization spectrometer due to elastic collisions between photoelectrons and atoms of the working gas is considered. Expressions are obtained for the stationary electron energy distribution function and for the initial part of the current-voltage characteristic in the case of monochromatic ionizing radiation for intensities of the retarding field close to the initial photoelectron energy.

  3. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  4. Light assisted collisions with cold metastable neon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Glover, R D; Laban, D E; Sang, R T, E-mail: R.Sang@griffith.edu.a [Centre for Quantum Dynamics, Griffith University, Brisbane, QLD 4111 (Australia)

    2009-11-01

    Control of the combined Penning and associative ionization cross section is demonstrated with cold ({approx}1mK) metastable Ne (3s{sup 3}P{sub 2}) atoms in a magneto-optical trap (MOT). By illuminating the trapped atoms with a near resonant probe laser beam, increased ionization rates are observed at several detunings. The probe beam is swept through a region from +500MHz to -500MHz. The increase in the Penning and associative ionization cross section is observed in both the red and blue regions of the spectrum.

  5. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Knudsen, H; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Hayano, R; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Leali, M; Diermaier, M; Kolbinger, B

    2002-01-01

    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  6. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B.

    1995-10-01

    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  7. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  8. Transformation theory and translation factors in inelastic atomic collisions

    Science.gov (United States)

    Schmid, G. B.

    1977-01-01

    It is shown through the use of transformation theory that unique semiclassical atomic scattering states which obey the asymptotic conditions of formal scattering theory can be derived by transforming 'nontraveling' atomic states, ie., states whose coordinate variables are referred to a stationary origin, to frames at rest with respect to the incoming or outgoing particles. An overview of the problem of properly defining such scattering states is presented. The operator which carries out the necessary transformation from inertial to noninertial frames is derived and its properties are discussed. The relation of this transformation operator to the 'translation factor' discussed in the literature is presented. The application of this operator to transform the time-dependent Schroedinger equation from an inertial to a noninertial frame is presented and shown to introduce new terms in the resulting equation. The implications of these new terms to scattering problems are discussed.

  9. On the Treatment of l-changing Proton-hydrogen Rydberg Atom Collisions

    Science.gov (United States)

    Vrinceanu, Daniel; Onofrio, Roberto; Sadeghpour, Hossein

    2018-01-01

    Energy-conserving, angular momentum-changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of the primordial recombination cascade, and the elemental abundance.Early approaches to l-changing collisions used perturbation theory for only dipole-allowed (Δl = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at computational cost for highly excited Rydberg states. In this note we show how to obtain a semi-classical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  10. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology

    Science.gov (United States)

    Bartschat, Klaus; Kushner, Mark J.

    2016-06-01

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.

  11. Nonradiative charge transfer in collisions of protons with rubidium atoms

    Science.gov (United States)

    Yan, Ling-Ling; Qu, Yi-Zhi; Liu, Chun-Hua; Zhang, Yu; Wang, Jian-Guo; Buenker, Robert J.

    2012-06-01

    The nonradiative charge-transfer cross sections for protons colliding with Rb(5s) atoms are calculated by using the quantum-mechanical molecularorbital close-coupling method in an energy range of 10-3 keV-10 keV. The total and state-selective charge-transfer cross sections are in good agreement with the experimental data in the relatively low energy region. The importance of rotational coupling for chargetransfer process is stressed. Compared with the radiative charge-transfer process, nonradiative charge transfer is a dominant mechanism at energies above 15 eV. The resonance structures of state-selective charge-transfer cross sections arising from the competition among channels are analysed in detail. The radiative and nonradiative charge-transfer rate coefficients from low to high temperature are presented.

  12. Penning collisions of laser-cooled metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Dos Santos, F.; Leonard, J.; Sinatra, A.; Wang, Junmin; Leduc, M. [Dept. de Physique, Ecole Normale Superieure, Paris (France); Perales, F. [Lab. de Physique des Lasers, Univ. Paris-Nord, Villetaneuse (France); Saverio Pavone, F. [Dept. of Physics, Univ. of Perugia, Via Pascoli, Perugia (Italy); Lens and INFM, Firenze (Italy); Rasel, E. [Univ. Hannover (Germany); Unnikrishnan, C.S. [TIFR, Mumbai (India)

    2001-04-01

    We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient {beta} on the excited state (2{sup 3}P{sub 2}) and metastable state (2{sup 3}S{sub 1}) populations is also investigated. From these results we infer a rather uniform rate constant K{sub sp} = (1{+-}0.4) x 10{sup -7} cm{sup 3}/s. (orig.)

  13. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  14. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  15. Corresponding aspects of strong-field multiquantum processes and ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, K.; Gibson, G.; Jara, H.; Luk, T.S.; McIntyre, I.A.; McPherson, A.; Rosman, R.; Solem, J.C.; Rhodes, C.K. (Lab. for Atomic, Molecular, and Radiation Physics, Dept. of Physics, Univ. of Illinois at Chicago, P.O. Box 4348, Chicago, IL (US))

    1988-10-01

    Corresponding aspects of multiphoton processes and ion-atom collisions are explored. With a simple model, a set of relationships is derived which relate the radiative power, frequency, and pulse width governing multiphoton coupling to the corresponding variables of ion charge, collisional velocity, and impact parameter involved in collisional reactions. Comparisons of spectral data in the extreme ultraviolet region for Ne, Ar, Kr, and Xe produced by collisional excitation and subpicosecond ultraviolet laser irradiation indicate approximate conformance with the expectations stemming from this analysis. These results suggest that, for ultraviolet radiation, this approach may be useful in understanding the gross features of the strong-field multiquantum interaction over the range of intensity spanning from --10/sup 16/ W/cm/sup 2/ to --10/sup 21/ W/cm/sup 2/. Collisional data on transfer ionization occurring in ion-atom collisions are also used to estimate the conditions under which multiphoton processes should be appreciably influenced by multielectron motions.

  16. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  17. Van der Waals universality in homonuclear atom-dimer elastic collisions

    CERN Document Server

    Giannakeas, P

    2016-01-01

    The universal aspects of atom-dimer elastic collisions are investigated within the framework of Faddeev equations. The two-body interactions between the neutral atoms are approximated by the separable potential approach. Our analysis considers a pure van der Waals potential tail as well as soft-core van der Waals interactions permitting us in this manner to address the universally general features of atom-dimer resonant spectra. In particular, we show that the atom-dimer resonances are solely associated with the {\\it excited} Efimov states. Furthermore, the positions of the corresponding resonances for a soft-core potentials with more than 5 bound states are in good agreement with the corresponding results from an infinitely deep pure van der Waals tail potential.

  18. Bibliography of atomic and molecular excitation in heavy particle collisions, 1950--1975

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, S.W.; Thomas, E.W.; Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Kirkpatrick, M.I.; McDaniel, E.W.; Phaneuf, R.A. (eds.)

    1979-02-01

    This annotated bibliography lists published work on atomic and molecular excitation in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactions and authors.

  19. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  20. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    Science.gov (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  1. Collisions of low-energy antiprotons and protons with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Luehr, Armin

    2010-02-18

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (<40 keV), stimulating a vivid theoretical activity. On the other hand, only very few theoretical anti p studies can be found considering molecular as well as other atomic targets, in contrast to proton (p) collisions. This is in particular true for anti p impacts on H{sub 2} despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H{sub 2} is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H{sub 2} molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H{sub 2}{sup +}, and H{sub 2} as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H{sub 2}, Li, Na, and K. The developed method is tested and validated by detailed

  2. A model for energy transfer in collisions of atoms with highly excited molecules.

    Science.gov (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2015-05-21

    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  3. Will Allis Prize for the Study of Ionized Gases Lecture: Electron and Photon Collisions with Atoms and Molecules

    Science.gov (United States)

    Burke, Philip G.

    2012-06-01

    After a brief historical introduction this talk will review the broad range of collision processes involving electron and photon collisions with atoms and molecules that are now being considered. Their application in the analysis of astronomical spectra, atmospheric observations and laboratory plasmas will be considered. The talk will review the R-matrix computational method which has been widely used by international collaborations and by other scientists in the field to obtain accurate scattering amplitudes and cross sections of importance in these applications. Results of some recent calculations of electron and photon collisions with atoms and molecules will be presented. In conclusion some challenges for future research will be briefly discussed.

  4. Electron capture by fluorinated fullerene anions in collisions with Xe atoms

    DEFF Research Database (Denmark)

    Boltalina, OV; Hvelplund, P; Jørgensen, Thomas J. D.

    2000-01-01

    Electron capture by 50-keV fluorinated fullerene anions (C60Fn- 18collisions with Xe atoms, The relative importance of nondissociative vs dissociative electron capture was found to depend strongly on the ion pro...... production method and on the number of attached F atoms. The absolute size of the cross section similar to 10(-16) cm(2) has been modeled within the over-the-barrier model......Electron capture by 50-keV fluorinated fullerene anions (C60Fn- 18atoms, The relative importance of nondissociative vs dissociative electron capture was found to depend strongly on the ion...

  5. Making More-Complex Molecules Using Superthermal Atom/Molecule Collisions

    Science.gov (United States)

    Shortt, Brian; Chutjian, Ara; Orient, Otto

    2008-01-01

    A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space atom/surface collision physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O atoms at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving atoms upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.

  6. Cooling, collisions and coherence of cold cesium atoms in a trap

    Science.gov (United States)

    Chin, Cheng

    Dynamics and interactions of atoms at low temperatures are quantum-mechanical in nature. Quantized motion in an optical trap can be resolved and manipulated by Raman transitions. A new cooling scheme, Raman-sideband cooling, is developed by pumping the atoms to the lowest vibrational level which dramatically reduces the temperature. After adiabatically releasing the atoms into the free space, a phase space density of 1/25 is observed, a factor of 104 improvement over the conventional optical molasses. After cooling, up to 3 × 108 cesium atoms are transferred into a far-detuned dipole trap with a density as high as 1013cm -3. Multiple Feshbach resonances are discovered when the Cs 2 molecular bound states are tuned into degeneracy with the scattering state. The S-wave scattering length, which parameterizes the low energy scattering processes, varies dispersively about the Feshbach resonances and results in the observed collision anomalies. Based on the Feshbach spectroscopy, the cesium long range interactions are determined quantitatively for the first time: C6 = 6859(25)a.u., C8 = 8.6(8) × 10 5a.u., as = 280.37(12)a0, at = 2437(25)a 0 and Sc = 2.6(5). When cold atoms are individually trapped and isolated in 3D optical lattices, they are immune from the collision events and a long coherence time is expected. Precision measurements on the electron's electric dipole moment and a scalable quantum computation scheme are proposed based on cold atoms in an optical lattice.

  7. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers

    Science.gov (United States)

    Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.

    2017-10-01

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very

  8. Coordinate space translation technique for simulation of electronic process in the ion-atom collision.

    Science.gov (United States)

    Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S

    2011-04-21

    Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.

  9. Collisions at thermal energy between metastable hydrogen atoms and hydrogen molecules: Total and differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, G.; Perales, F.; Miniatura, C.; Robert, J.; Reinhardt, J.; Vecchiocattivi, F.; Baudon, J. (Paris-13 Univ., 93 - Villetaneuse (France). Lab. de Physique des Lasers)

    1990-10-01

    A metastable hydrogen (deuterium) atom source in which groundstate atoms produced by a RF discharge dissociator are bombarded by electrons, provides a relatively large amount of slow metastable atoms (velocity 3-5 km/s). Total integral cross sections for H{sup *}(D{sup *})(2s)+H{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}, {nu}=0) collisions have been measured in a wide range of relative velocity (2,5-30 km/s), by using the attenuation method. A significant improvement of accuracy is obtained, with respect to previous measurements, at low relative velocities. Total cross sections for H{sup *} and D{sup *}, as functions of the relative velocity, are different, especially in the low velocity range. H{sup *}+H{sub 2} total differential cross sections have also been measured, with an angular spread of 3.6deg, for two different collision energy distributions, centered respectively at 100 meV and 390 meV. A first attempt of theoretical analysis of the cross sections, by means of an optical potential, is presented. (orig.).

  10. Quenching of the resonance 5s(3P1) state of krypton atoms in collisions with krypton and helium atoms

    Science.gov (United States)

    Zayarnyi, D. A.; L'dov, A. Yu; Kholin, I. V.

    2014-11-01

    The processes of collision quenching of the resonance 5s[3/2]1o(3P1) state of the krypton atom are studied by the absorption probe method in electron-beam-excited high-pressure He - Kr mixtures with a low content of krypton. The rate constants of plasmochemical reactions Kr* + Kr + He → Kr*2 + He [(4.21 ± 0.42) × 10-33 cm6 s-1], Kr* + 2He → HeKr* + He [(4.5 ± 1.2) × 10-36 cm6 s-1] and Kr* + He → products + He [(2.21 ± 0.22) × 10-15 cm3 s-1] are measured for the first time. The rate constants of similar reactions are refined for krypton in the metastable 5s[3/2]2o (3P2) state.

  11. Scattering of NH3 and ND3 with rare gas atoms at low collision energy.

    Science.gov (United States)

    Loreau, J; van der Avoird, A

    2015-11-14

    We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms.

  12. Distorted wave theories for dressed-ion-atom collisions with GSZ projectile potentials

    Energy Technology Data Exchange (ETDEWEB)

    Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D, E-mail: monti@ifir-conicet.gov.ar [Comision Nacional de EnergIa Atomica, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina)

    2011-10-14

    The continuum distorted wave and the continuum distorted wave-eikonal initial state approximations for electron emission in ion-atom collisions are generalized to the case of dressed projectiles. The interaction between the dressed projectile and the active electron is represented by the analytic Green-Sellin-Zachor (GSZ) potential. Doubly differential cross sections as a function of the emitted electron energy and angle are computed. The region of the binary encounter peak is analysed in detail. Interference structures appear in agreement with the experimental data and are interpreted as arising from the coherent interference between short- and long-range scattering amplitudes.

  13. Fine-structure transitions of interstellar atomic sulfur and silicon induced by collisions with helium.

    Science.gov (United States)

    Lique, F; Kłos, J; Le Picard, S D

    2017-10-02

    Atomic sulfur and silicon are important constituents of the interstellar matter and are both used as tracers of the physical conditions in interstellar shocks and outflows. We present an investigation of the spin-orbit (de-)excitation of S((3)P) and Si((3)P) atoms induced by collisions with helium with the aim to improve the determination of atomic sulfur and silicon abundances in the interstellar medium from S and Si emission spectra. Quantum-mechanical calculations have been performed in order to determine rate coefficients for the fine-structure transitions in the 5-1000 K temperature range. The scattering calculations are based on new highly correlated ab initio potentials. The theoretical results show that the (de-)excitation of Si is much faster than that of S. The rate coefficients deduced from this study are in good agreement with previous experimental and theoretical findings despite some deviations at low temperatures. From the computation of critical densities defined as the ratios between Einstein coefficients and the sum of the relevant collisional de-excitation rate coefficients, we show that local thermodynamic equilibrium conditions are not fulfilled for analyzing S and Si emission spectra observed in the interstellar medium. Hence, the present rate coefficients will be extremely useful for the accurate determination of interstellar atomic sulfur and silicon abundances.

  14. Forward electron production in heavy ion-atom and ion-solid collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table.

  15. Electron-atom collision studies using optically state selected beams. Progress report, May 15, 1987--May 14, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, R.J.; Kelley, M.H.

    1988-11-15

    This report discusses progress made during the current contract period on the authors research program to study collisions between spin-polarized electrons and optically prepared atoms. The objective of this work is to stimulate a deeper theoretical understanding of the electron-atom interaction by providing more complete experimental measurements on colliding systems. By preparing the internal states of the collision partners before scattering, they are able to extract substantially more information about the scattering process than is available from more conventional measurements of differential cross sections. The authors are principally interested in observing the role played by spin in low energy electron-atom collisions. The additional information provided by these spin-dependent measurements can greatly enhance understanding of both exchange and the spin-orbit interaction in the scattering process. They have made substantial progress in the past three years in their measurements both of elastic and superelastic scattering of spin-polarized electrons from optically pumped sodium.

  16. Adiabatic Variational Theory for Cold Atom-Molecule Collisions: Application to a Metastable Helium Atom Colliding with ortho- and para-Hydrogen Molecules.

    Science.gov (United States)

    Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod

    2017-03-16

    We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(23S1) + ortho/para-H2 → He(1s2) + ortho/para-H2+ + e- resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.

  17. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    Science.gov (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  18. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  19. 2nd International Symposium "Atomic Cluster Collisions : Structure and Dynamics from the Nuclear to the Biological Scale"

    CERN Document Server

    Solov'yov, Andrey; ISACC 2007; Latest advances in atomic cluster collisions

    2008-01-01

    This book presents a 'snapshot' of the most recent and significant advances in the field of cluster physics. It is a comprehensive review based on contributions by the participants of the 2nd International Symposium on Atomic Cluster Collisions (ISACC 2007) held in July 19-23, 2007 at GSI, Darmstadt, Germany. The purpose of the Symposium is to promote the growth and exchange of scientific information on the structure and properties of nuclear, atomic, molecular, biological and complex cluster systems studied by means of photonic, electronic, heavy particle and atomic collisions. Particular attention is devoted to dynamic phenomena, many-body effects taking place in cluster systems of a different nature - these include problems of fusion and fission, fragmentation, collective electron excitations, phase transitions, etc.Both the experimental and theoretical aspects of cluster physics, uniquely placed between nuclear physics on the one hand and atomic, molecular and solid state physics on the other, are discuss...

  20. Hard collisions of few keV diatomic molecular ions with atomic gas targets: Collision induced dissociation and target ionization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nora G; Sayler, A M; McKenna, J; Gaire, B; Zohrabi, M; Berry, Ben; Carnes, K D; Ben-Itzhak, I [J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506 (United States); Wolff, Wania, E-mail: ibi@phys.ksu.ed [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21945-970, RJ (Brazil)

    2009-11-01

    Target ionization in close encounters between few keV simple diatomic molecular ions and noble gas targets have been studied experimentally. Some of the projectile molecular ions fragment as a result of these violent collisions while others remain bound despite undergoing a 'hard' collision. The measured momenta shed light on the mechanisms responsible for this behavior.

  1. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  2. Rovibrational excitation of HD in collisions with atomic and molecular hydrogen

    Science.gov (United States)

    Flower, D. R.; Roueff, E.

    1999-11-01

    We have computed cross-sections and rate coefficients for rovibrational transitions in HD, induced by collisions with atomic and molecular hydrogen. We employed fully quantum-mechanical methods and the potential of Boothroyd et al. for H-HD, and that of Schwenke for H2-HD. The rate coefficients for vibrational relaxation v=1->0 of HD are compared with the corresponding values for H2. The influence of vibrationally excited channels on the rate coefficients for rotational transitions within the v=0 vibrational ground state of HD is shown to be small at T=500K, where T is the kinetic temperature. The rate coefficients, for 100http://ccp7.dur.ac.uk/.

  3. Recent theoretical studies of slow collisions between plasma impurity ions and H or He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Theoretische Physik; Tawara, H.

    1997-01-01

    We review recent progress in theoretical studies of slow collisions between light plasma impurity ions and atomic hydrogen or helium. We start with a brief overview of theory work that has been done by various groups in the past. We then proceed to discuss work that is published in the last two years. For the systems of Be{sup 2+}-He, Be{sup 4+}-He and C{sup 5+}-He we present yet unpublished work of our own. All of this work broadens our knowledge about systems that are of interest for the fusion community. Some of the new information is found to be at variance with what is known from other sources and hence needs further analysis. (author)

  4. Differential electron-Cu{sup 5+} elastic scattering cross sections extracted from electron emission in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Hagmann, S.; Bhalla, C.P.; Grabbe, S.R.; Cocke, C.L.; Richard, P. [J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506 (United States); Liao, C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    1999-04-01

    We present a method of deriving energy and angle-dependent electron-ion elastic scattering cross sections from doubly differential cross sections for electron emission in ion-atom collisions. By analyzing the laboratory frame binary encounter electron production cross sections in energetic ion-atom collisions, we derive projectile frame differential cross sections for electrons elastically scattered from highly charged projectile ions in the range between 60{degree} and 180{degree}. The elastic scattering cross sections are observed to deviate strongly from the Rutherford cross sections for electron scattering from bare nuclei. They exhibit strong Ramsauer-Townsend electron diffraction in the angular distribution of elastically scattered electrons, providing evidence for the strong role of screening played in the collision. Experimental data are compared with partial-wave calculations using the Hartree-Fock model. {copyright} {ital 1999} {ital The American Physical Society}

  5. The interaction of hyperthermal argon atoms with CO-covered Ru: Scattering and collision-induced desorption

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M. A.; Kleyn, A. W.

    2011-01-01

    Hyperthermal Ar atoms were scattered under grazing incidence (theta(i) = 60 degrees) from a CO-saturated Ru(0001) surface held at 180 K. Collision-induced desorption involving the ejection of fast CO (similar to 1 eV) occurs. The angularly resolved in-plane CO desorption distribution has a peak

  6. Cross section database for collision processes of helium atom with charged particles. 1. Electron impact processes

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Yu.V.; Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fursa, D.V.; Bray, I. [Flinder Univ., Adelaide (Australia); Heer, F.J. de [FOM Institute for Atomic and Molecular Physics, Amsterdam (Netherlands)

    2000-10-01

    A comprehensive and critically assessed cross section database for the inelastic collision processes of ground state and excited helium atoms colliding with electrons, protons and multiply-charged ions has been prepared at the Data and Planning Center at NIFS. The present report describes the first part of the database containing the recommended data for electron impact excitation and ionization of neutral helium. An states (atomic terms) with n {<=} 4 are treated individually while the states with n > 4 are considered degenerate. For the processes involving transitions to and from n > 4 levels, suitable cross section scaling relations are presented. For a large number of electron impact transitions, both from the ground and excited states, new convergent close coupling (CCC) calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in a graphical form. (author)

  7. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    Science.gov (United States)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  8. Cold collisions of polyatomic molecular radicals with S-state atoms in a magnetic field: an ab initio study of He + CH2(X) collisions.

    Science.gov (United States)

    Tscherbul, T V; Grinev, T A; Yu, H-G; Dalgarno, A; Kłos, Jacek; Ma, Lifang; Alexander, Millard H

    2012-09-14

    We develop a rigorous quantum mechanical theory for collisions of polyatomic molecular radicals with S-state atoms in the presence of an external magnetic field. The theory is based on a fully uncoupled space-fixed basis set representation of the multichannel scattering wave function. Explicit expressions are presented for the matrix elements of the scattering Hamiltonian for spin-1/2 and spin-1 polyatomic molecular radicals interacting with structureless targets. The theory is applied to calculate the cross sections and thermal rate constants for spin relaxation in low-temperature collisions of the prototypical organic molecule methylene [CH(2)(X(3)B(1))] with He atoms. To this end, two accurate three-dimensional potential energy surfaces (PESs) of the He-CH(2)(X(3)B(1)) complex are developed using the state-of-the-art coupled-cluster method including single and double excitations along with a perturbative correction for triple excitations and large basis sets. Both PESs exhibit shallow minima and are weakly anisotropic. Our calculations show that spin relaxation in collisions of CH(2), CHD, and CD(2) molecules with He atoms occurs at a much slower rate than elastic scattering over a large range of temperatures (1 μK-1 K) and magnetic fields (0.01-1 T), suggesting excellent prospects for cryogenic helium buffer-gas cooling of ground-state ortho-CH(2)(X(3)B(1)) molecules in a magnetic trap. Furthermore, we find that ortho-CH(2) undergoes collision-induced spin relaxation much more slowly than para-CH(2), which indicates that magnetic trapping can be used to separate nuclear spin isomers of open-shell polyatomic molecules.

  9. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  10. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Djuric, Z [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom); Ljepojevic, N N [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2004-11-28

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T{sub a}, and electronic, T{sub e}, temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree {approx}<10{sup -4}), and therefore have to be included in appropriate models of such plasmas.

  11. Atomic data on inelastic processes in low-energy manganese-hydrogen collisions

    Science.gov (United States)

    Belyaev, Andrey K.; Voronov, Yaroslav V.

    2017-10-01

    Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F

  12. Pion correlations as a function of atomic mass in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, A.D.

    1989-11-26

    The method of two pion interferometry was used to obtain source-size and lifetime parameters for the pions produced in heavy ion collisions. The systems used were 1.70 {center dot} A GeV {sup 56}Fe + Fe, 1.82 {center dot} A GeV {sup 40}Ar + KCl and 1.54 {center dot} A GeV {sup 93}Nb + Nb, allowing for a search for dependences on the atomic number. Two acceptances (centered, in the lab., at {approximately} 0{degrees} and 45{degrees}) were used for each system, allowing a search for dependences on the viewing angle. The correlation functions were calculated by comparing the data samples to background (or reference) samples made using the method of event mixing, where pions from different events are combined to produce a data sample in which the Bose-Einstein correlation effect is absent. The effect of the correlation function on the background samples is calculated, and a method for weighting the events to remove the residual correlation effect is presented. The effect of the spectrometer design on the measured correlation functions is discussed, as are methods for correcting for these effects during the data analysis. 58 refs., 39 figs., 18 tabs.

  13. Collisions of electrons with hydrogen atoms I. Package outline and high energy code

    Science.gov (United States)

    Benda, Jakub; Houfek, Karel

    2014-11-01

    Being motivated by the applied researchers' persisting need for accurate scattering data for the collisions of electrons with hydrogen atoms, we developed a computer package-Hex-that is designed to provide trustworthy results for all basic discrete and continuous processes within non-relativistic framework. The package consists of several computational modules that implement different methods, valid for specific energy regimes. Results of the modules are kept in a common database in the unified form of low-level scattering data (partial-wave T-matrices) and accessed by an interface program which is able to produce various derived quantities like e.g. differential and integral cross sections. This article is the first one of a series of articles that are concerned with the implementation and testing of the modules. Here we give an overview of their structure and present (a) the command-line interface program hex-db that can be also easily compiled into a derived code or used as a backend for a web-page form and (b) simple illustrative module specialized for high energies, hex-dwba, that implements distorted and plane wave Born approximation.

  14. Three-body dynamical interference in electron and positron collision with positronium atom

    Directory of Open Access Journals (Sweden)

    E Ghanbari Adivi

    2010-12-01

    Full Text Available In this project, the Faddeev-Watson-Lovelace (FWL formalism is generalized to large scattering angles. The angular range includes 0-180 degrees. Using this method, the charge transfer differential cross-sections are calculated, in a second-order approximation, for collision of energetic positrons and electrons with neutral positronium atoms. In this approximation, the rearrangement amplitude contains two first-order and three second-order partial amplitudes. The first first-order term is the Born amplitude in a first-order approximation. The second one corresponds to capturing the transferred particle without perturbing the state of this particle. This term, in fact, describes a knock-on process. Since the masses of the particles and the absolute values of their charges are equal, one expects that the second-order terms be similar in magnitude. This aspect causes the instructive interference of the partial amplitudes in some angles and destructive interference in some others. However, it is predicted that these amplitudes have local maxima in direction of the recoiling of the projectile. In order to investigate this situation, the second-order partial amplitudes are calculated and their relations with the parity of the initial and final states of the scattering system are analyzed. In particular, the role of dynamical interference of these partial amplitudes in creation of the kinematical peak and the peak corresponding to the knock-on scattering in angular distribution of the differential cross sections is investigated.

  15. PREFACE: XXIX International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC2015)

    Science.gov (United States)

    Díaz, C.; Rabadán, I.; García, G.; Méndez, L.; Martín, F.

    2015-09-01

    The 29th International Conference on Photonic, Electronic and Atomic Collisions (XXIX ICPEAC) was held at the Palacio de Congresos ''El Greco'', Toledo, Spain, on 22-28 July, 2015, and was organized by the Universidad Autónoma de Madrid (UAM) and the Consejo Superior de Investigaciones Científicas (CSIC). ICPEAC is held biannually and is one of the most important international conferences on atomic and molecular physics. The topic of the conference covers the recent progresses in photonic, electronic, and atomic collisions with matter. With a history back to 1958, ICPEAC came to Spain in 2015 for the very first time. UAM and CSIC had been preparing the conference for six years, ever since the ICPEAC International General Committee made the decision to hold the XXIX ICPEAC in Toledo. The conference gathered 670 participants from 52 countries and attracted 854 contributed papers for presentation in poster sessions. Among the latter, 754 are presented in issues 2-12 of this volume of the Journal of Physics Conference Series. In addition, five plenary lectures, including the opening one by the Nobel laureate Prof. Ahmed H. Zewail and the lectures by Prof. Maciej Lewenstein, Prof. Paul Scheier, Prof. Philip H. Bucksbaum, and Prof. Stephen J. Buckman, 62 progress reports and 26 special reports were presented following the decision of the ICPEAC International General Committee. Detailed write-ups of most of the latter are presented in issue 1 of this volume, constituting a comprehensive tangible record of the meeting. On the occasion of the International Year of Light (IYL2015) and with the support of the Fundación Española para la Ciencia y la Tecnología (FECYT), the program was completed with two public lectures delivered by the Nobel laureate Prof. Serge Haroche and the Príncipe de Asturias laureate Prof. Pedro M. Echenique on, respectively, ''Fifty years of laser revolutions in physics'rquot; and ''The sublime usefulness of useless science''. Also a

  16. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  17. Rearrangement reactions in ion-ion and ion-atom collisions: results and problems

    Energy Technology Data Exchange (ETDEWEB)

    Presnyakov, L.P. [Lebedev Physical Institute, Moscow (Russian Federation); Tawara, H.

    1997-01-01

    Recent experimental and theoretical results are discussed for ionic collisions with large cross sections at intermediate and small energies of the relative motion. Single- and double-electron removal from H{sup -} ions in slow collisions with other ions is considered in more details. The theoretical methods are discussed from the viewpoint of general requirements of scattering theory. (author)

  18. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    DEFF Research Database (Denmark)

    Poel, Mike van der; Nielsen, C.V.; Rybaltover, M.

    2002-01-01

    We measure angle differential cross sections (DCS) in Li+ + Na --> Li + Na+ electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target...... of the de Broglie wavelength lambda(dB) = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) --> Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum...

  19. Anisotropy and linear polarization of radiative processes in energetic ion-atom collisions; Untersuchung zur Anisotropie und linearen Polarisation radiativer Prozesse in energiereichen Ion-Atom-Stoessen

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Guenter

    2010-06-16

    In the present thesis the linear polarization of radiation emitted in energetic ion-atom collisions at the ESR storage ring was measured by applying a novel type of position, timing and energy sensitive X-ray detector as a Compton polarimeter. In contrast to previous measurements, that mainly concentrate on studies of the spectral and angular distribution, the new detectors allowed the first polarization study of the Ly-{alpha}{sub 1} radiation (2p{sub 3/2}{yields}1s{sub 1/2}) in U{sup 91+}. Owing to the high precision of the polarimeters applied here, the experimental results indicate a significant depolarization of the Ly-{alpha}{sub 1} radiation caused by the interference of the E1 and M2 transition branches. Moreover, the current investigation shows that measurements of the linear polarization in combination with angular distribution studies provide a model-independent probe for the ratio of the E1 and M2 transition amplitudes and, consequently, of the corresponding transition probabilities. In addition, a first measurement of the linear polarization as well as an angular distribution study of the electron-nucleus Bremsstrahlung arising from ion-atom collisions was performed. The experimental results obtained were compared to exact relativistic calculations and, in case of the Bremsstrahlung, to a semirelativistic treatment. In general, good agreement was found between theoretical predictions and experimental findings. (orig.)

  20. Effects of autoionization in electron loss from heliumlike highly charged ions in fast collisions with atomic particles

    Science.gov (United States)

    Lyashchenko, K. N.; Andreev, O. Yu.; Voitkiv, A. B.

    2017-11-01

    We study theoretically single-electron loss from the ground state of a heliumlike highly charged ion in fast collisions with an atomic particle (a nucleus or an atom), focusing on electron emission energies where the so-called excitation-autoionization channel of electron loss becomes of importance. The presence of this channel leads to the appearance of sharp structures in the energy distribution of the emitted electrons and may also noticeably influence the angular distributions of the emission in the vicinity of autoionization resonances. We performed calculations for electron loss from Ca18 +(1 s2) and Zn28 +(1 s2) in 100 MeV/u collisions with neon. It is shown that two qualitatively different subchannels (which involve either one or two interactions between the electrons of the ion and the incident atomic particle) substantially contribute to excitation-autoionization and take active part in the interference with the direct channel of electron loss; however, they practically do not interfere with each other. Our consideration also shows that the account of QED corrections is important for an accurate description of electron loss even from relatively light heliumlike HCIs.

  1. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Alexey

    2010-01-29

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  2. Measurements of scattering processes in negative ion-atom collisions. Technical progress report, 1 September 1991--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kvale, T.J.

    1992-04-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991.

  3. The fifth international symposium ''atomic cluster collisions''. ISACC 2011. Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Fifth International Symposium ''Atomic Cluster Collisions'' (ISACC 2011) will take place in July 21-25, 2011 in Berlin, Germany. The venue of the meeting will be the St.-Michaels-Heim a lovely place located within a garden area of Berlin-Grunewald. The ISACC 2011 is organized by the Fritz-Haber-Institute of the Max- Planck Society along with the King Saud University, Rhiyadh and by the Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany. ISACC started as the international symposium on atomic cluster collisions in St. Petersburg, Russia in 2003. The second ISACC was held at the GSI, Darmstadt, Germany in 2007. Both first and second symposia were satellites of the International Conferences on Photonic Electronic and Atomic Collisions (ICPEAC). The third ISACC has returned to St. Petersburg, Russia in 2008. The last ISACC took place in Ann Arbor, again as a satellite meeting of the ICPEAC. Initially the symposium was mainly focused on dynamics of atomic clusters, especially in atomic cluster collisions, but since then its scope has been widened significantly to include dynamics of nanosystems, biomolecules, and macromolecules with the emphasis on the similarity of numerous essential clustering phenomena arising in different branches of physics, chemistry, and biology. After the four ISACC meetings it has become clear that there is a need for an interdisciplinary conference covering a broad range of topics related to the Dynamics of Systems on a Nanoscale. Therefore in 2010 it was decided to expand upon this series of meetings with a new conference organized under the new title ''Dynamics of Systems on the Nanoscale'', the DySoN Conference, since this title better reflects the interdisciplinary character of the earlier ISACC meetings embracing all the topics of interest under a common theme. The first DySoN Conference took place in Rome, Italy in 2010. The fifth ISACC symposium will be again a

  4. Precision measurements of cross sections of inelastic processes realized in collisions of alkali metal ions with atoms of rare gases

    CERN Document Server

    Lomsadze, R A; Mosulishvili, N O; Kezerashvili, R Ya

    2015-01-01

    This work presents a multifaceted experimental study of collisions of Na$^{+}$ and K$^{+}$ ions in the energy range 0.5 -- 10 keV with He and Ar atoms. Absolute cross sections for charge-exchange, ionization, stripping and excitation were measured using a refined version of the transfer electric field method, angle- and energy-dependent collection of product ions, energy loss, and optical spectroscopy. The experimental data and the schematic correlation diagrams have been employed to analyze and determine the mechanisms for these processes.

  5. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    Science.gov (United States)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  6. Quenching of krypton atoms in the metastable 5s (3P2) state in collisions with krypton and helium atoms

    Science.gov (United States)

    Zayarnyi, D. A.; L'dov, A. Yu; Kholin, I. V.

    2013-08-01

    We have used the absorption probe method to study the processes of collisional quenching of the metastable 5s [3/2]o2(3P2) state of the krypton atom in electron-beam-excited high-pressure He - Kr mixtures with a low content of krypton. The rate constants of plasma-chemical reactions Kr* + Kr + He → Kr*2+He [(2.88 +/- 0.29) × 10-33 cm6 s-1], Kr* + 2He → HeKr* + He [(4.6 +/- 1.3) × 10-36 cm6 s-1] and Kr* + He → products + He [(1.51 +/- 0.15) × 10-15 cm3 s-1] are measured for the first time. The rate constants of similar reactions in the Ar - Kr mixture are refined.

  7. Inelastic processes in collisions of lithium positive ions with hydrogen anions and atoms

    Science.gov (United States)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.; Kraemer, Wolfgang P.

    2017-11-01

    Inelastic processes in the low-energy collisions Li3+ + H-, Li2+ + H, Li2+ + H- and Li+ + H are investigated for all collisional channels with the excited ionic lithium states Li2+ ( nl) and Li+ (1 s nl) up to and including the corresponding ion-pair states for the temperature range 1000-20 000 K. For all possible processes in the Li3+ + H- and Li2+ + H collisions inelastic cross sections and rate coefficients are calculated for the transitions between the ion-pair channel Li3+ + H- and the 35 below lying contributing Li2+ ( nl) + H channels. It is found that the highest values of cross sections and rate coefficients are obtained for the recombination processes and their inverse, the ion-pair formation processes, involving the Li2+ (3 l), Li2+ (4 l), and Li2+ (5 l) states. For the processes in the Li2+ + H- and Li+ + H collisions, cross sections and rate coefficients are calculated for all transitions between 34 Li+ (1 s nl) + H channels lying below Li2+ + H- plus this ion-pair channel. In this case the highest rate coefficients correspond to the recombination processes with the Li+(1 s3 l 1,3 L) and Li+(1 s4 l 1,3 L) final states, as well as their inverse processes of ion-pair production. Rate coefficient values for these most efficient processes are rather high, of the order of 10-8 cm3/s. This leads to total recombination rate coefficients in Li3+ + H- and Li2+ + H- collisions with values larger than 10-7 cm3/s.

  8. Quasiclassical treatment of the Auger effect in slow ion-atom collisions

    Science.gov (United States)

    Frémont, F.

    2017-09-01

    A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.

  9. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes

    2012-09-20

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  10. Collisions of electrons with hydrogen atoms II. Low-energy program using the method of the exterior complex scaling

    Science.gov (United States)

    Benda, Jakub; Houfek, Karel

    2014-11-01

    While collisions of electrons with hydrogen atoms pose a well studied and in some sense closed problem, there is still no free computer code ready for ;production use;, that would enable applied researchers to generate necessary data for arbitrary impact energies and scattering transitions directly if absent in on-line scattering databases. This is the second article on the Hex program package, which describes a new computer code that is, with a little setup, capable of solving the scattering equations for energies ranging from a fraction of the ionization threshold to approximately 100 eV or more, depending on the available computational resources. The program implements the exterior complex scaling method in the B-spline basis.

  11. Monte Carlo calculation of collisions of directionally-incident electrons on highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kazuki; Fujimoto, Takasi [Kyoto Univ., Graduate School of Engineering, Kyoto (Japan)

    2001-10-01

    We treat classically the n-, l- and m{sub r}-changing transitions and ionization. Excitation cross sections against the final state energy continue smoothly to the 'ionization cross sections'. The steady state populations determined by elastic collisions among the degenerate states in the same n level show higher populations in the m{sub 1}=0 states, suggesting positive polarizations of Lyman lines emitted from plasmas having directional electrons. For ionization, the two outgoing electrons have large relative angles, suggesting reduced three body recombination rates for these plasmas. (author)

  12. Absolute fragmentation cross sections in atom-molecule collisions : Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    NARCIS (Netherlands)

    Chen, T.; Gatchell, M.; Stockett, M. H.; Alexander, J. D.; Zhang, Y.; Rousseau, P.; Domaracka, A.; Maclot, S.; Delaunay, R.; Adoui, L.; Huber, B. A.; Schlathölter, T.; Schmidt, H. T.; Cederquist, H.; Zettergren, H.

    2014-01-01

    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH+) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections

  13. Close-Coupling R-Matrix Approach to Simulating Ion-Atom Collisions for Accelerator Applications

    CERN Document Server

    Stoltz, Peter

    2005-01-01

    We have implemented an R-matrix close coupling approach to calculate capture, ionization, stripping and excitation cross-sections for 0.5 to 8.0 MeV K+ incident on Ar. This is relevant to the High Current Experiment at Lawrence Berkley National Laboratory. These cross sections are used to model accelerator particle dynamics where background gasses can interfere with beam quality. This code is a semi-classical approach that uses quantum mechanics to describe the particle interactions and uses classical mechanics to describe the nuclei trajectories. We compare a hydrogenic approximation for K+ with a pseudo-potential approach. Further we are developing a variational approach to quickly determine the best pseudo-potential parameters. Since many R-Matrix computationalists use this pseudo-potential approach, this approach will be useful for helping generate cross sections for any collision system.

  14. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    Science.gov (United States)

    Barklem, Paul S.

    2012-12-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H leftrightarrow X(n'l') + H and charge transfer processes X(nl) + H leftrightarrow X+ + H- have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  15. Towards sympathetic cooling of large molecules: cold collisions between benzene and rare gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, P; Tennyson, J; Barker, P F [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: p.barletta@ucl.ac.uk

    2009-05-15

    This paper reports on calculations of collisional cross sections for the complexes X-C{sub 6}H{sub 6} (X={sup 3}He, {sup 4}He, Ne) at temperatures in the range 1 {mu}K-10 K and shows that relatively large cross sections in the 10{sup 3}-10{sup 5} A{sup 2} range are available for collisional cooling. Both elastic and inelastic processes are considered in this temperature range. The calculations suggest that sympathetically cooling benzene to microkelvin temperatures is feasible using these co-trapped rare gas atoms in an optical trap.

  16. Quantum mechanical theory of a structured atom-diatom collision system - A + BC/1-Sigma/

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1977-01-01

    The problem of a 2-p state atom colliding with a singlet sigma state diatom, which involves multiple potential surfaces, is investigated. Within a diabatic representation for the electronic degrees of freedom (plus spin-orbit interaction), coupled scattering equations are derived in both space-fixed and body-fixed coordinate systems. Coefficients, analogous to Percival-Seaton coefficients, are obtained. Approximations to the exact equations, including angular momenta decoupling approximations, are discussed for both the space-fixed and body-fixed formalisms.

  17. Electrically tuned F\\"orster resonances in collisions of NH$_3$ with Rydberg He atoms

    OpenAIRE

    Zhelyazkova, V.; Hogan, S D

    2017-01-01

    Effects of weak electric fields on resonant energy transfer between NH$_3$ in the X $^1$A$_1$ ground electronic state, and Rydberg He atoms in triplet states with principal quantum numbers $n = 36$-$41$ have been studied in a crossed beam apparatus. For these values of $n$, electric-dipole transitions between the Rydberg states that evolve adiabatically to the $|ns\\rangle$ and $|np\\rangle$ states in zero electric field can be tuned into resonance with the ground-state inversion transitions in...

  18. Electrically tuned Forster resonances in collisions of NH3 with Rydberg He atoms

    OpenAIRE

    Zhelyazkova, V.; Hogan, S D

    2017-01-01

    The effects of weak electric fields on resonant energy transfer between NH3 in the X 1 A1 ground electronic state and Rydberg He atoms in triplet states with principal quantum numbers n = 36–41 have been studied in a crossed-beam apparatus. For these values of n, electric dipole transitions between the Rydberg states that evolve adiabatically to the |ns and |np states in zero electric field can be tuned into resonance with the ground-state inversion transitions in NH3 using ele...

  19. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  20. Collisions of energetic particles with atoms, molecules & solids: A theoretical study

    Science.gov (United States)

    Quashie, Edwin Exam

    used in studying the ion-molecule interactions at lower ion velocities. We reported here H+ + CH4 collision dynamics at E = 30 eV. Different exchange-correlation (XC) approximations were implemented and their important roles are studied systematically. For a single orientation of CH4 our rainbow angle at E = 30 eV agrees well with experimental and other theoretical values.

  1. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  2. Observation of correlated atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein condensates; Observation de paires d'atomes correles au travers de la collision de deux condensats de Bose-Einstein

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, A

    2007-11-15

    In this thesis, we report on the observation of pairs of correlated atoms produced in the collision of two Bose-Einstein condensates of metastable helium. Three laser beams perform a Raman transfer which extracts the condensate from the magnetic trap and separates it into two parts with opposite mean momenta. While the condensates propagate, elastic scattering of pairs of atoms occurs, whose momenta satisfy energy and momentum conservation laws. Metastable helium atoms large internal energy allows the use of a position-sensitive, single-atom detector which permits a three-dimensional reconstruction of the scattered atoms'momenta. The statistics of these momenta show correlations for atoms with opposite momenta. The measured correlation volume can be understood from the uncertainty-limited momentum spread of the colliding condensates. This interpretation is confirmed by the observation of the momentum correlation function for two atoms scattered in the same direction. This latter effect is a manifestation of the Hanbury Brown-Twiss effect for indistinguishable bosons. Such a correlated-atom-pair source is a first step towards experiments in which one would like to confirm the pairs'entanglement. (author)

  3. Free Ion Formation in K(np) Rydberg Atom Collisions at Low-to-Intermediate n: Velocity Dependence of Product Ion Properties.

    Science.gov (United States)

    Parthasarathy, R.; Suess, L.; Liu, Y.; Dunning, F. B.

    2003-05-01

    Post-attachment interactions between the product ion pair formed through electron transfer in collisions between Rydberg atoms and attaching molecules become important at low-to-intermediate n. These effects are investigated by controlling the collision energy through use of velocity selected K(np) Rydberg atoms and by measuring the lifetime of the product ions using a Penning ion trap. In the case of SF_6, where electron transfer leads to production of a valence-bound parent anion, analysis of the data points to significant internal-to-translational energy transfer in post-attachment interactions. This results in an n- and velocity-dependent increase of the fraction of product ion pairs that is able to separate and stabilizes the product ions against autodetachment. In contrast, no similar effects are observed following K(np)/CH_3CN collisions, which lead to the formation of dipole-bound parent anions. The reasons for this marked difference in behavior, which provides a new signature for the creation of dipole-bound anions, will be discussed.

  4. Real-time study of the adiabatic energy loss in an atomic collision with a metal cluster.

    Science.gov (United States)

    Baer, Roi; Siam, Nidal

    2004-10-01

    Gas-phase hydrogen atoms are accelerated towards metallic surfaces in their vicinity. As it approaches the surface, the velocity of an atom increases and this motion excites the metallic electrons, causing energy loss to the atom. This dissipative dynamics is frequently described as atomic motion under friction, where the friction coefficient is obtained from ab initio calculations assuming a weak interaction and slow atom. This paper tests the aforementioned approach by comparing to a real-time Ehrenfest molecular dynamics simulation of such a process. The electrons are treated realistically using standard approximations to time-dependent density functional theory. We find indeed that the electronic excitations produce a friction-like force on the atom. However, the friction coefficient strongly depends on the direction of the motion of the atom: it is large when the atom is moving towards the cluster and much smaller when the atom is moving away. It is concluded that a revision of the model for energy dissipation at metallic surfaces, at least for clusters, may be necessary. (c) 2004 American Institute of Physics

  5. A time-dependent wave packet approach to atom-diatom reactive collision probabilities - Theory and application to the H + H2(J = 0) system

    Science.gov (United States)

    Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.

    1990-01-01

    This paper describes a new approach to the study of atom-diatom reactive collisions in three dimensions employing wave packets and the time-dependent Schroedinger equation. The method uses a projection operator approach to couple the inelastic and reactive portions of the total wave function and optical potentials to circumvent the necessity of using product arrangement coordinates. Reactive transition probabilities are calculated from the state resolved flux of the wave packet as it leaves the interaction region in the direction of the reactive arrangement channel. The present approach is used to obtain such vibrationally resolved probabilities for the three-dimensional H + H2 (J = 0) hydrogen exchange reaction, using a body-fixed system of coordinates.

  6. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom; Etude des mecanismes elementaires de transfert d`energie au cours d`une collision entre un ion lourd rapide multi-charge et un atome neutre

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, P. [Caen Univ., 14 (France)

    1995-12-31

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature < 1 K). The association of time of flight and localisation techniques allows us, for each ionised target atom, to determine the three recoil velocity components with a very good accuracy (a few tens of meters per second). In chapter three, we describe the data analysis method. And then we present in the last chapter the results we have obtained for the collision systems Xe{sup 44+}(6.7 MeV/A) + Ar => Xe{sup 44} + Ar{sup q+}+qe{sup -} (q ranging from 1 to 7); Xe{sup 44+} (6.7 MeV/A) + He => Xe{sup 44+} He{sup 1+,2+}+1e{sup -},2e{sup -}. We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author) 44 refs.

  7. Differential and total excitation cross sections in the collision of protons with He atoms at intermediate and high energies under a three body formalism

    Directory of Open Access Journals (Sweden)

    R Fathi

    2011-09-01

    Full Text Available  A three-body model is devised to study differential and total cross sections for the excitation of helium atom under impact of energetic protons. The actual process is a four body one but in the present model the process is simplified into a three-body one. In this model, an electron of helium atom is assumed to be inactive and only one electron of the atom is active. Therefore, the active electron is assumed to be in an atomic state with a potential of the nucleus, T, being screened by the inactive electron, e, and, thus, an effective charge of Ze. As a result, the ground state, 11S, or the excited states, 21S and 21P, wave function of the active electron is deduced from similar hydrogenic wave functions assuming effective charge, Ze for the combined nucleus (T+e. In this three-body model, the Faddeev-Watson-Lovelace formalism for excitation channel is used to calculate the transition amplitude. In the first order approximation, electronic and nuclear interaction is assumed in the collision to be A(1e= and A(1n=, respectively. Here, A(1, Txy, |i> and |f> are the first order transition amplitude, the transition matrix for the interaction between particles x and y, the initial state and the final state, respectively. The transition matrix for the first order electronic interaction implemented into A(1e is approximated as the corresponding two-body interaction, Vxy. In order to calculate first order nuclear amplitude A(1n, the near-the-shell form of transition matrix TPT is used. Calculations are performed in the energy range of 50 keV up to 1MeV. The results are then compared with those of theoretical and experimental works in the literature.

  8. Differential electron-ion elastic scattering cross sections extracted from ion-atom collisions of 0.53 MeV/u Cu{sup 5+} on H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.]|[Jet Propulsion Lab., Pasadena, CA (United States); Hagmann, S.; Bhalla, C.P.; Grabbe, S.R. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.

    1997-12-31

    A method of extracting electron-ion elastic scattering cross sections from ion-atom collisions has been developed. By analyzing the binary encounter electron (BEe) production in energetic ion-atom collisions, which is due to loosely bound target electrons ionized through direct, hard collisions with the projectile ions, differential cross sections of electrons elastic scattered from highly charged ions are derived for a broad range of scattering angles. The cross sections are observed to deviate strongly from the Rutherford cross sections, and immediately yielded an electron diffraction in angular distribution of elastically scattered electrons. Experimental data are compared with a partial-wave treatment using the Hartree-Fock model. (orig.). 19 refs.

  9. International Conference on the Physics of Electronic and Atomic Collisions (14th) Held in Palo Alto, California on 24-30 July 1985 (Electronic and Atomic Collisions. Invited Papers)

    Science.gov (United States)

    1985-07-30

    1982) 6) H Schmidt, A. Bahring and R Witte, Z. Phys. D, Atoms, Molecules, Clusters, submitted 7) H Herzberg , Spectra of Diatomic Molecules, van...1963) 43. 3) P. R. Brooks, W. Lichten, and R. Reno, Phys. Rev. A 4, (1971) 2217. 4) G. Herzberg , Sci. Light (Tokyo) 16, (1967) 14. 5) 0. K...MULTICHANNEL THEORY OF MOLECULAR DISSOCIATION Paul S. JULIENNE and Frederick H. MIES Molecular*Spectroscopy Division, National Bureau of Standards

  10. Correction of the first Born approximation for ion-atom collision in excitation channel by multi-channel eikonal formalism

    Directory of Open Access Journals (Sweden)

    reza fathi

    2017-05-01

    Full Text Available In the present work has been tried to do a generalized formalism of semi-classical method used in ion-atom impact. One of the current method to calculation of the differential and total cross section for ion-atom impact at high energy range is the first Born approximation because of the simplicity of its calculations, but not necessarily sufficiently accurate. In particular this approximation in the excitation channel take into account orthogonality of the initial and the final state wave functions of the bound subsystem and then disappears inter-nuclear effect in the calculations and offers the poor picture for viewing impact process. Also in this approximation the most important coupling has been considered between the initial and the final state. However the close-coupling method because of some restrictions in high impact energies is unusable. Therefore the aim of this work is correction the first Born approximation by implemented the multi-channel eikonal formalism. At last it will be shown that by simplifying this generalized theory it can be achieved a number of current formalism in terms of ion-atom impact.

  11. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    Science.gov (United States)

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  12. Calculations of H2O microwave line broadening in collisions with He atoms - Sensitivity to potential energy surfaces

    Science.gov (United States)

    Green, Sheldon; Defrees, D. J.; Mclean, A. D.

    1991-01-01

    Theoretical computations of broadening parameters are reported for three microwave lines of H2O in a bath of He atoms. The potential-energy surfaces employed are corrected for basis-set superposition error, and their reliability is checked by repeating the calculations with a different basis set for orbital expansion. The results are presented in extensive tables and discussed in detail. The corrections applied are shown to have a significant impact on the accuracy of the room-temperature broadenings determined: 8.9 sq A for the 22.2-GHz line, 11.8 sq A for the 183,3-GHz line, and 10.0 sq A for the 380.2-GHz line, in good agreement with published experimental data. The importance of collisional broadening for the atmospheric transmission of radiation and for remote-sensing applications is indicated.

  13. Quantum dynamics through a wave packet method to study electron-hydrogen and atom-dihydrogen collisions; Dynamique quantique par une methode de paquets d'ondes. Etude des collisions electron-hydrogene et atome-dihydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, L

    2002-11-01

    The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)

  14. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  15. PREFACE: International Symposium on (e,2e), Double Photoionization and Related Topics & 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions

    Science.gov (United States)

    Martin, Nicholas L. S.; deHarak, Bruno A.

    2010-01-01

    From 30 July to 1 August 2009, over a hundred scientists from 18 countries attended the International Symposium on (e,2e), Double Photoionization and Related Topics and the 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions which were held at the W T Young Library of the University of Kentucky, USA. Both conferences were satellite meetings of the XXVI International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) held in Kalamazoo, Michigan, USA, 21-28 July 2009. These symposia covered a broad range of experimental and theoretical topics involving excitation, ionization (single and multiple), and molecular fragmentation, of a wide range of targets by photons and charged particles (polarized and unpolarized). Atomic targets ranged from hydrogen to the heavy elements and ions, while molecular targets ranged from H2 to large molecules of biological interest. On the experimental front, cold target recoil ion momentum spectroscopy (COLTRIMS), also known as the Reaction Microscope because of the complete information it gives about a wide variety of reactions, is becoming commonplace and has greatly expanded the ability of researchers to perform previously inaccessible coincidence experiments. Meanwhile, more conventional spectrometers are also advancing and have been used for increasingly sophisticated and exacting measurements. On the theoretical front great progress has been made in the description of target states, and in the scattering calculations used to describe both simple and complex reactions. The international nature of collaborations between theorists and experimentalists is exemplified by, for example, the paper by Ren et al which has a total of 13 authors of whom the experimental group of six is from Heidelberg, Germany, one theoretical group is from Australia, with the remainder of the theoreticians coming from several different institutions in the United States. A total of 52 invited talks and

  16. The influence of (n-n{sup '})-mixing processes in He*(n)+He(1s{sup 2}) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj.M. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)], E-mail: ljuba@phy.bg.ac.yu; Sreckovic, V.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia); Djuric, Z. [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2008-03-15

    The results of semi-classical calculations of rate coefficients of (n-n{sup '})-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s{sup 2}) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n{sup '})-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n{sup '} in ranges 4{<=}natom and electron temperatures, T{sub a},T{sub e}, in domains 5000K{<=}T{sub a}{<=}T{sub e}{<=}20000K. It is shown that the (n-n{sup '})-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree {approx}10{sup -4}. Therefore, these processes have to be included in the appropriate models of such plasmas.

  17. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  18. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  19. Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initio analysis and prospects for sympathetic cooling of SrOH (+2Σ) by Li (2S)

    Science.gov (United States)

    Morita, Masato; Kłos, Jacek; Buchachenko, Alexei A.; Tscherbul, Timur V.

    2017-06-01

    We use accurate ab initio and quantum scattering calculations to explore the prospects for sympathetic cooling of the heavy molecular radical SrOH (2Σ+) by ultracold Li atoms in a magnetic trap. Our ab initio calculations show that the chemical reaction between spin-polarized Li and SrOH, which occurs on the triplet Li-SrOH potential energy surface (PES), is strongly endothermic and hence energetically forbidden at ultralow temperatures. The chemical reaction Li (2S) +SrOH (2Σ+) →Sr (1S) +LiOH (1Σ+) occurs barrierlessly on the singlet PES and is exothermic by 2505 cm-1. A two-dimensional PES for the triplet electronic state of Li-SrOH is calculated ab initio using the partially spin-restricted coupled cluster method with single, double, and perturbative triple excitations and a large correlation-consistent basis set. The highly anisotropic PES has a deep global minimum in the skewed Li-HOSr geometry with De=4932 cm-1 and saddle points in collinear configurations. Our quantum scattering calculations predict low spin-relaxation rates in fully spin-polarized Li + SrOH collisions with the ratios of elastic to inelastic collision rates well in excess of 100 over a wide range of magnetic fields (1-1000 G) and collision energies (10-5 to 0.1 K), suggesting favorable prospects for sympathetic cooling of SrOH molecules with spin-polarized Li atoms in a magnetic trap. We find that spin relaxation in Li + SrOH collisions occurs via a direct mechanism mediated by the magnetic dipole-dipole interaction between the electron spins of Li and SrOH, and that the indirect (spin-rotation) mechanism is strongly suppressed. The upper limit to the Li + SrOH reaction rate coefficient calculated for the singlet PES using adiabatic capture theory is found to decrease from 4 ×10-10cm3 /s to a limiting value of 3.5 ×10-10cm3 /s with decreasing temperature from 0.1 K to 1 μ K .

  20. Population of metastable ionic states in electron-capture collisions

    Energy Technology Data Exchange (ETDEWEB)

    Seim, W.; Mueller, A.; Salzborn, E.

    1981-07-01

    The population of metastable states of singly and doubly charged rare-gas ions created by electron capture in keV ion-atom collisions is investigated by means of a subsequent electron stripping or capture collision.

  1. Electronic structures of 1-adamantanol, cyclohexanol and cyclohexanone and anisotropic interactions with He*(2{sup 3}S) atoms: collision-energy-resolved Penning ionization electron spectroscopy combined with quantum chemistry calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tian Shanxi; Kishimoto, Naoki; Ohno, Koichi

    2002-12-15

    He I ultraviolet photoelectron spectra and He*(2{sup 3}S) Penning ionization electron spectra have been measured for 1-adamantanol, cyclohexanol and cyclohexanone. Four stable isomeric conformers of cyclohexanol were predicted by Becke's three-parameter hybrid density functional B3LYP/6-31+G(d,p) calculations. Since the orbital reactivity in Penning ionizations is simply related to the electron density extending outside the molecular surface, the theoretical Penning ionization electron spectra were synthesized using the calculated molecular orbital wave functions and ionization potentials. They were in good agreement with the experimental spectra except for the low-electron-energy bands. Collision energy dependence of partial ionization cross sections for the oxygen lone pair orbitals exhibited that there are strong steric hindrances by the neighboring hydrogen atoms in 1-adamantanol and cyclohexanol.

  2. D/sup -/ production by multiple charge-transfer collisions of low-energy D ions and atoms in cesium vapor

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B. Jr.; Willmann, P.A.; Schlachter, A.S.

    1978-01-22

    The production of D/sup -/ by multiple charge-transfer collisions of a D/sup +/ beam in a cesium-vapor target is considered for D/sup +/ energies above 300 eV. The cross sections relevant to D/sup -/ formation are obtained by a least-squares fit of three-charge-state differential equations to experimental yield curves. Implications for production of intense negative-ion beams are discussed, and speculations are made about extrapolation to lower engeries.

  3. International Conference on the Physics of Electronic and Atomic Collisions (16th), Held in New York, NY on 26 July-1 August 1989. Third Conference Program

    Science.gov (United States)

    1989-08-01

    468 Wed 101 V.J. Montemayor and G. Schiwietz Low-Energy Limit Corrections To The Electronic Stopping Power 469 Wed 102 Equation For Ions N. Ozturk, A.J...Collision System C6 + On He 443 Thu 121 K. Scmner, N. Stotterfoht, V. Montemayor , C.C. Havener, J.K. Swenson, R.A. Phaneuf and F.W. Meyer K-Shell...169 Approximation Hernann Marxer and John S. Briggs Classical Trajectory Monte Carlo Description Of The Dynamical Formation 600 Thu 170 And Structure

  4. Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface.

    Science.gov (United States)

    Schüller, A; Winter, H

    2008-03-07

    Fast atoms with keV energies are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index azimuthal directions within the surface plane ("axial surface channeling") we observe pronounced peak structures in the angular distributions for scattered projectiles that are attributed to "supernumerary rainbows." This phenomenon can be understood in the framework of quantum scattering only and is observed here up to projectile energies of 20 keV. We demonstrate that the interaction potential and, in particular, its corrugation for fast atomic projectiles at surfaces can be derived with a high accuracy.

  5. Cross section measurements of the processes occurring in the fragmentation of H{sub n}{sup +} (3 {<=} n {<=} 35) hydrogen clusters induced by high speed (60 keV/u) collisions on helium atoms; Mesure des sections efficaces des differents processus intervenant dans la fragmentation d`agregats d`hydrogene H{sub n}{sup +} (3 {<=} n {<=} 35) induite par collision a haute vitesse (60 keV/u) sur un atome d`helium

    Energy Technology Data Exchange (ETDEWEB)

    Louc, Sandrine [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1997-09-15

    Different processes involved in the fragmentation of ionised hydrogen clusters H{sub 3} + (H{sub 2}){sub (n-3)/2} (n = 5-35) have been studied in the same experiment: the fragmentation of the cluster is induced by the collision with an helium atom at high velocity ({approx_equal} c/100). The collision is realised in reversed kinematic - clusters are accelerated - which allows the detection of neutral and charged fragments. The different channels of fragmentation are identified by using coincidence techniques. For all the cluster sizes studied the capture cross sections of one electron of the target by the cluster is equal to the capture cross section of the H{sub 3}{sup +} ion. In the same way, the dissociation cross section of the H{sub 3}{sup +} core of the cluster does not depend on cluster size. These fragmentation processes are due to the interaction of H{sub 3}{sup +} core of the cluster and the helium atom without ionization of another component of the cluster. On the contrary, the cross sections of loss of one, two and three molecules by the cluster and the dissociation cross section of the cluster in all its molecular components depends strongly on the cluster size. This dependence is different from the one measured for the metastable decay of the cluster. Thus, the process of loss of molecules induced by a collision should correspond to a different dissociation mechanism. In regard of the singularities observed for the size dependence, the H{sub 9}{sup +}, H{sub 15}{sup +}, H{sub 19}{sup +} and H{sub 29}{sup +} clusters could be the `core` of the biggest clusters. These observation are in agreement with the size effects of smaller magnitude observed for the dissociation cross section (all the processes). The values of the cross section for the process of at least one ionization of the cluster indicate that about 80% of the fragmentation events result from this process. (author) 114 refs., 74 figs., 9 tabs.

  6. Cold molecules, collisions and reactions

    Science.gov (United States)

    Hecker Denschlag, Johannes

    2016-05-01

    I will report on recent experiments of my group where we have been studying the formation of ultracold diatomic molecules and their subsequent inelastic/reactive collisions. For example, in one of these experiments we investigate collisions of triplet Rb2 molecules in the rovibrational ground state. We observe fast molecular loss and compare the measured loss rates to predictions based on universality. In another set of experiments we investigate the formation of (BaRb)+ molecules after three-body recombination of a single Ba+ ion with two Rb atoms in an ultracold gas of Rb atoms. Our investigations indicate that the formed (BaRb)+ molecules are weakly bound and that several secondary processes take place ranging from photodissociation of the (BaRb)+ molecule to reactive collisions with Rb atoms. I will explain how we can experimentally distinguish these processes and what the typical reaction rates are. Support from the German Research foundation DFG and the European Community is acknowledged.

  7. Control of the 133 cesium cold collisions, search for a variation of the fine structure constant using a dual rubidium-cesium atomic fountain; Controle des collisions froides du cesium {sup 133}Cs: tests de la variation de la constante de structure fine a l'aide d'une fontaine atomique double rubidium-cesium

    Energy Technology Data Exchange (ETDEWEB)

    Marion, H

    2005-03-15

    We developed a method of measurement of the frequency shift due to the collisions between cold atoms. This is the main systematic limitation for the accuracy of the Cs{sup 133} based fountains ({approx} 10{sup -15} in relative frequency). Consequently, we can measure this effect near 0.5% This opens prospects for improvements of the fountains performances in term of accuracy until 10{sup -16}. The fountain has also obtained a stability about 10{sup -14} at 1 s. We discovered for the first time, at very low magnetic field (5 {+-} 1 mG), Feshbach resonances. We also took a new absolute measurement of the hyperfine transition of the Rb{sup 87}, which is the most precise ever carried out and is used now as definition for the secondary standard. By comparing this value with those measured the previous years, we could carry out a test of the stability of the fine structure constant on the level of 10{sup -15} /yr. We led local comparisons between atomic fountains and the other fountains of the laboratory. Most stable it is unrolled with a combined stability of 5.10{sup -14} at 1 s. The behavior of the difference of the two clocks goes like white frequency noise up to 3.10{sup -16}. The assessment of the dual fountain accuracy budget has been evaluated at 7.10{sup -16} for the cesium part and 8.10{sup -16} for the rubidium part. We contributed to the realization of the scale of International Atomic Time, by series of calibrations of hydrogen masers. An atomic comparison of fountain by satellite links was tested between our laboratory and our German counterpart. This measurement has determined the good agreement between the two clocks. (author)

  8. Collision Mechanics

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Servis, D.P.; Zhang, Shengming

    1999-01-01

    The first section of the present report describes the procedures that are being programmed at DTU for evaluation of the external collision dynamics. Then follows a detailed description of a comprehensive finite element analysis of one collision scenario for MS Dextra carried out at NTUA. The last...

  9. Spin-exchange frequency shift in a cesium atomic fountain

    NARCIS (Netherlands)

    Tiesinga, E.; Verhaar, B.J.; Stoof, H.T.C.; Bragt, D. van

    1992-01-01

    In connection with experiments aiming at the improvement of the cesium atomic beam clock by means of a fountain of laser-cooled cesium atoms, we present expressions for the line shift and line broadening due to collisions between cesium atoms. The coherent collision cross sections occurring in these

  10. collision zone of an ISR

    CERN Multimedia

    This is a collision region from the world’s first proton collider, the Intersecting Storage Rings. The ISR was used at CERN from 1971-84 to study proton-proton collisions at the highest energy then available (60GeV). When operational, ISR collision regions were surrounded by detectors as shown in the photo. In 1972, the surprising discovery of fragments flying out sideways from head-on proton-proton collisions was the first evidence of quark-quark scattering inside the colliding protons . This was similar to Rutherford’s observation in 1911 of alpha particles scattering off the tiny nucleus inside atoms of gold. The ISR beamtubes had to be as empty as outer space, a vacuum 100 000 times better than other CERN machines at the time.

  11. Collision region of the ISR

    CERN Multimedia

    1970-01-01

    This is a collision region from the world’s first proton collider, the Intersecting Storage Rings. The ISR was used at CERN from 1971-84 to study proton-proton collisions at the highest energy then available (60GeV). When operational, ISR collision regions were surrounded by detectors as shown in the photo. In 1972, the surprising discovery of fragments flying out sideways from head-on proton-proton collisions was the first evidence of quark-quark scattering inside the colliding protons . This was similar to Rutherford’s observation in 1911 of alpha particles scattering off the tiny nucleus inside atoms of gold. The ISR beamtubes had to be as empty as outer space, a vacuum 100 000 times better than other CERN machines at the time.

  12. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  13. Advective collisions

    OpenAIRE

    Andersson, B.; Gustavsson, K.; Mehlig, B.; Wilkinson, M.

    2007-01-01

    Small particles advected in a fluid can collide (and therefore aggregate) due to the stretching or shearing of fluid elements. This effect is usually discussed in terms of a theory due to Saffman and Turner [J. Fluid Mech., 1, 16-30, (1956)]. We show that in complex or random flows the Saffman-Turner theory for the collision rate describes only an initial transient (which we evaluate exactly). We obtain precise expressions for the steady-state collision rate for flows with small Kubo number, ...

  14. Collisional Losses from a Light-Force Atom Trap

    Science.gov (United States)

    Sesko, D.; Walker, T.; Monroe, C.; Gallagher, A.; Wieman, C.

    We have studied the collisional loss rates for very cold cesium atoms held in a spontaneous-force optical trap. In contrast with previous work, we find that collisions involving excitation by the trapping light fields are the dominant loss mechanism. We also find that hyperfine-changing collisions between atoms in the ground state can be significant under some circumstances.

  15. Muonium/muonic hydrogen formation in atomic hydrogen

    Indian Academy of Sciences (India)

    Abstract. The muonium/muonic hydrogen atom formation in µ±–H collisions is in- vestigated, using a two-state approximation in a time dependent formalism. It is found that muonium cross-section results are similar to the cross-section results obtained for positronium formation in e+–H collision. Muonic hydrogen atom ...

  16. Replacement collision sequence studies in iron

    CERN Document Server

    Hou, M; Becquart, C S

    2002-01-01

    The properties of replacement collision sequences (RCS) in iron and their contribution to radiation damage are studied as they are generated in atomic collision cascades with the binary collision approximation Marlowe. Length distributions of RCS in collision cascades generated by primaries with a couple of ten keV kinetic energies are predicted short. Whatever the interatomic potential employed, at least 90% of the generated RCS have a length of no more than three successive collisions, whatever the directions. This property was found for all the known phases of iron at standard pressure (bcc and fcc). The RCS length distributions are not significantly influenced by the temperature nor by the accurate form of the model describing the energy loss in RCS. Close to 50% of the stable Frenkel pairs (FP) created result from RCS that are shorter than the vacancy-interstitial recombination distance estimated on the basis of molecular dynamics calculations. The other half results from longer RCS (about five successiv...

  17. Cold Collisions in a Molecular Synchrotron

    Science.gov (United States)

    van der Poel, Aernout P. P.; Zieger, Peter C.; van de Meerakker, Sebastiaan Y. T.; Loreau, Jérôme; van der Avoird, Ad; Bethlem, Hendrick L.

    2018-01-01

    We study collisions between neutral, deuterated ammonia molecules (ND3 ) stored in a 50 cm diameter synchrotron and argon atoms in copropagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By storing ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) the collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross section for ND3+Ar collisions in the energy range of 40 - 140 cm-1 , with a resolution of 5 - 10 cm-1 and an uncertainty of 7%-15%. Our measurements are in good agreement with theoretical scattering calculations.

  18. The degenerate-internal-states approximation for cold collisions

    NARCIS (Netherlands)

    Maan, A.C.; Tiesinga, E.; Stoof, H.T.C.; Verhaar, B.J.

    1990-01-01

    The Degenerate-Internal-States approximation as well as its first-order correction are shown to provide a convenient method for calculating elastic and inelastic collision amplitudes for low temperature atomic scattering.

  19. Role of spontaneous emission in ultracold two-color optical collisions

    Science.gov (United States)

    Sukenik, C. I.; Walker, T.

    1999-01-01

    We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. By varying the detuning of the lasers, we have clearly identified the effect of spontaneous emission on the collision process.

  20. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  1. Electron capture and ionization processes in high velocity Cn+, C-Ar and Cn+, C-He collisions

    OpenAIRE

    Labaigt, G; Jorge, A; Illescas, C; Béroff, K; Dubois, A; Pons, B; Chabot, M

    2015-01-01

    International audience; Single and double electron capture as well as projectile single and multiple ionization processes occurring in 125keV/u Cn+-He, Ar collisions have been studied experimentally and theoretically for 1 ≤ n ≤ 5. The Independent atom and electron (IAE) model has been used to describe the cluster-atom collision. The ion/atom-atom probabilities required for the IAE simulations have been determined by classical trajectory Monte Carlo (CTMC) and semiclassical atomic orbital clo...

  2. Magnetic trapping of cold bromine atoms.

    Science.gov (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  3. Global Lambda hyperon polarization in nuclear collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 548, č. 7665 (2017), č. článku 23004. ISSN 0028-0836 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * heavy ion collisions * vorticity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 40.137, year: 2016

  4. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  5. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  6. Theory of Electron-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Donald C

    2009-10-02

    Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 - August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.

  7. Three-body collision contributions to recombination and collision-induced dissociation. 1: Cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Pack, R.T.; Walker, R.B.; Kendrick, B.K.

    1998-04-10

    Atomic and molecular recombination and collision-induced dissociation (CID) reactions comprise two of the most fundamental types of chemical reactions. They are important in all gas phase chemistry; for example, about half of the 196 reactions identified as important in combustion chemistry are recombination or CID reactions. Many of the current chemical kinetics textbooks and kinetics papers treat atomic and molecular recombination and CID as occurring only via sequences of two-body collisions. Actually, there is considerable evidence from experiment and classical trajectory calculations for contributions by true three-body collisions to the recombination of atomic and diatomic radicals, and that evidence is reviewed. Then, an approximate quantum method treating both two-body and three-body collisions simultaneously and on equal footing is used to calculate cross sections for the reaction Ne{sub 2} + H {rightleftharpoons} Ne + Ne + H. The results provide clear quantum evidence that direct three-body collisions do contribute significantly to recombination and CID.

  8. Quasimolecular emission near the Xe(5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance lines induced by collisions with He atoms

    Science.gov (United States)

    Alekseeva, O. S.; Devdariani, A. Z.; Grigorian, G. M.; Lednev, M. G.; Zagrebin, A. L.

    2017-02-01

    This study is devoted to the theoretical investigation of the quasimolecular emission of Xe*-He and Kr*-He collision pairs near the Xe (5p 56s 1,3 P 1 - 5p 6 1 S 0) and Kr (4p 55s 1,3 P 1 - 4p 6 1 S 0) resonance atomic lines. The potential curves of the quasimolecules Xe(5p 56s) + He and Kr(4p 55s) + He have been obtained with the use of the effective Hamiltonian and pseudopotential methods. Based on these potential curves the processes of quasimolecular emission of Xe*+He and Kr*+He mixtures have been considered and the spectral distributions I(ħΔω) of photons emitted have been obtained in the framework of quasistatic approximation.

  9. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  10. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  11. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  12. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  13. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    Science.gov (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  14. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  15. Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision-Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ with 1-4 Water Molecules

    NARCIS (Netherlands)

    Magnera, Thomas F.; David, Donald E.; Stulik, Dusan; Orth, Robert G.; Jonkman, Harry T.; Michl, Josef

    1989-01-01

    Low-temperature sputtering of frozen aqueous solutions of metal salts, of hydrated crystalline transition-metal salts, of frosted metal surfaces, and of frosted metal salts with kiloelectronvolt energy rare gas atoms or ions produces copious amounts of cluster ions, among which M+(H2O)n and/or

  16. Global Λ hyperon polarization in nuclear collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  17. Collision Risk and Damage after Collision

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Hansen, Peter Friis; Nielsen, Lars Peter

    1996-01-01

    The paper presents a new and complete procedure for calculation of ship-ship collision rates on specific routes and the hull damage caused by such collisions.The procedure is applied to analysis of collision risks for Ro-Ro pasenger vessels. Given a collision the spatial probability distribution...... of the damage risk is calculated by a numerical procedure. These directly calculated distributions for hull damages are subsequently approximated by analytical expressions suited for probabilistic damage stability calculations similar to the procedure described in IMO regulation A.265.Numerical results...... are presented for threee different Ro-Ro passenger vessels of length 98 m 150 m and 180 m, respectively operating at three different routes. These routes are the Danish Great Belt route, a Finland-Sweden route and the Dover-Calais route....

  18. Collision frequency of Lennard–Jones fluids at high densities by ...

    Indian Academy of Sciences (India)

    We showed that during collision, the time spent by an atom in the fields of force of other atoms is so small compared with its relaxation time, leading to a possible reduction in local velocity autocorrelation between atoms. Keywords. Viscosity; diffusion; molecular dynamics; theory of simple liquids. PACS Nos 51.20.+d; 61.20.

  19. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser

    Science.gov (United States)

    Traxler, Mallory A.

    In this thesis, I explore a variety of experiments within linear, two-wire, magnetic atom guides. Experiments include guiding of Rydberg atoms; transferring between states while keeping the atoms contained within the guide; and designing, constructing, and testing a new experimental apparatus. The ultimate goal of the atom guiding experiments is to develop a continuous atom laser. The guiding of 87Rb 59D5/2 Rydberg atoms is demonstrated. The evolution of the atoms is driven by the combined effects of dipole forces acting on the center-of-mass degree of freedom as well as internal-state transitions. Time delayed microwave and state-selective field ionization, along with ion detection, are used to investigate the evolution of the internal-state distribution as well as the Rydberg atom motion while traversing the guide. The observed decay time of the guided-atom signal is about five times that of the initial state. A population transfer between Rydberg states contributes to this lengthened lifetime, and also broadens the observed field ionization spectrum. The population transfer is attributed to thermal transitions and, to a lesser extent, initial state-mixing due to Rydberg-Rydberg collisions. Characteristic signatures in ion time-of-flight signals and spatially resolved images of ion distributions, which result from the coupled internal-state and center-of-mass dynamics, are discussed. Some groups have used a scheme to make BECs where atoms are optically pumped from one reservoir trap to a final state trap, irreversibly transferring those atoms from one trap to the other. In this context, transfer from one guided ground state to another is studied. In our setup, before the atoms enter the guide, they are pumped into the | F = 1, mF = --1> state. Using two repumpers, one tuned to the F = 1 → F' = 0 transition (R10) and the other tuned to the F = 1 → F' = 2 transition (R12), the atoms are pumped between these guided states. Magnetic reflections within the guide

  20. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  1. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  2. Low Saturation Intensities in Two-Photon Ultracold Collisions

    Science.gov (United States)

    Sukenik, C. I.; Hoffmann, D.; Bali, S.; Walker, T.

    1998-07-01

    We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding.

  3. LEXUS heavy ion collisions

    CERN Document Server

    Sang Yong Jeon

    1997-01-01

    We use a Glauber-like approach to describe very energetic nucleus- nucleus collisions as a sequence of binary nucleon-nucleon collisions. No free parameters are needed: all the information comes from simple parametrizations of nucleon-nucleon collision data. Produced mesons are assumed not to interact with each other or with the original baryons. Comparisons are made to published experimental measurements of baryon rapidity and transverse momentum distributions, negative hadron rapidity and transverse momentum distributions, average multiplicities of pions, kaons, hyperons, and antihyperons, and zero degree energy distributions for sulfur-sulfur collisions at 200 GeV/c per nucleon and for lead-lead collisions at 158 GeV/c per nucleon. Good agreement is found except that the number of strange particles produced, especially antihyperons, is too small compared with experiment. We call this model LEXUS: Linear EXtrapolation of Ultrarelativistic nucleon-nucleon Scattering to heavy ion collisions. (11 refs).

  4. Positronium impact ionization of Alkali atoms

    CERN Document Server

    Ghosh, D

    2015-01-01

    Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are noted both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.

  5. Midair Collisions: Aeromedical Considerations.

    Science.gov (United States)

    AVIATION ACCIDENTS , * COLLISION AVOIDANCE, FLIGHT CREWS, REACTION TIME, CASE STUDIES, INFLIGHT, HYPOXIA, VISION, VISUAL PERCEPTION, AVIATION SAFETY, VISUAL ACUITY, PSYCHOPHYSIOLOGY, AVIATION MEDICINE, GLARE.

  6. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  7. Davisson-Germer Prize in Atomic or Surface Physics Talk: Few-body processes in the quantum limit

    Science.gov (United States)

    Greene, Chris

    2010-03-01

    Recent theoretical studies of low energy collisions and resonant processes will be reviewed. These include the process of molecular dissociation induced by electron collision, and the role of universal Efimov physics in collisions of three or four atoms in an ultracold gas. The role of experiment in testing and advancing our understanding of these few-body studies will also be discussed.

  8. Review of quantum collision dynamics in Debye plasmas

    Directory of Open Access Journals (Sweden)

    R.K. Janev

    2016-09-01

    Full Text Available Hot, dense plasmas exhibit screened Coulomb interactions, resulting from the collective effects of correlated many-particle interactions. In the lowest particle correlation order (pair-wise correlations, the interaction between charged plasma particles reduces to the Debye–Hückel (Yukawa-type potential, characterized by the Debye screening length. Due to the importance of Coulomb interaction screening in dense laboratory and astrophysical plasmas, hundreds of theoretical investigations have been carried out in the past few decades on the plasma screening effects on the electronic structure of atoms and their collision processes employing the Debye–Hückel screening model. The present article aims at providing a comprehensive review of the recent studies in atomic physics in Debye plasmas. Specifically, the work on atomic electronic structure, photon excitation and ionization, electron/positron impact excitation and ionization, and excitation, ionization and charge transfer of ion-atom/ion collisions will be reviewed.

  9. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    Science.gov (United States)

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  10. Observation of CH A (sup 2)Delta approaches X (sup 2)Pi(sub r) and B (sup 2)Sigma(sup -) approaches X (sup 2)Pi(sub r) emissions in gas-phase collisions of fast O((sup 3)P) atoms with acetylene

    Science.gov (United States)

    Orient, O. J.; Chutjian, A.; Murad, E.

    1995-01-01

    Optical emissions in single-collision, beam-beam reactions of fast (3-22 eV translational energy) O(P-3) atoms with C2H2 have been measured in the wavelength range 300-850 nm. Two features were observed, one with a peak wavelength at 431 nm, corresponding to the CH A (sup 2)Delta yields X (sup 2)Pi(sub r) transition, and a second weaker emission in the range 380-400 nm corresponding to the B (sup 2)Sigma(sup -) yields X (sup 2)Pi(sub r) transition. Both the A yields X and B yields X emissions were fit to a synthetic spectrum of CH(A) at a vibrational temperature T(sub v) of 10,000 K (0.86 eV) and a rotational temperature T(r) of approximately 5000 K (0.43 eV); and CH(B) to T(sub v) = 2500 K (0.22 eV) and T(sub r) = 1000 K (0.09 eV). The energy threshold for the A yields X emission was measured to be 7.3 +/- 0.4 eV (lab) or 4.5 +/- 0.2 eV (c.m.). This agrees with the energy threshold of 7.36 eV (lab) for the reaction O(P-3) + C2H2 yields CH(A) + HCO.

  11. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  12. Partial wave analysis of oriented collisions

    Science.gov (United States)

    Harris, A. L.; Amami, S.; Saxton, T.; Madison, D. H.

    2018-01-01

    We present fully differential cross sections (FDCSs) for two collision processes with oriented atoms. The first collision is electron-impact ionization of oriented Mg (3p), and the second collision is electron-impact excitation-ionization (EI) of helium with an oriented final state He+(2p0) ion. Surprisingly, the theoretical functional form of the FDCS is the same for both processes, despite the fact that the only physical similarity is an oriented excited state in both processes. We present FDCS as a function of orientation angle and ejected electron angle for both ionization of oriented Mg(3p) and EI of helium in order to explore possible physical similarities between the two processes. We examine the contributions to the FDCS of individual partial waves of the ionized electron and projectile. For the ionization of oriented Mg, we show that the FDCS are dominated by larger partial waves of the ejected electron, with the dominant partial waves having a dependence on scattering angle and outgoing electron energy sharing. For the EI process, the FDCS is dominated by the L = 2 partial wave, independent of scattering angle or energy sharing. Also, for EI it is possible to have angular momentum transferred from either the target helium atom or the incident projectile.

  13. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  14. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    Energy Technology Data Exchange (ETDEWEB)

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Roncero, Octavio; Sanz-Sanz, Cristina [Instituto de Física Fundamental (IFF-CSIC), CSIC, Serrano 123, E-28006 Madrid (Spain); Aguado, Alfredo, E-mail: octavio.roncero@csic.es [Departamento de Química Física, Unidad Asociada UAM-CSIC, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  15. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    2015-04-29

    Apr 29, 2015 ... Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider. Subrata Pal. Volume 84 Issue 5 May 2015 pp ... Subrata Pal1. Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  16. Development of a new experimental setup for studying collisions of ...

    Indian Academy of Sciences (India)

    Development of a new electron-recoil ion/photon coincidence setup for investigating some of the electron induced collision processes, such as electron bremsstrahlung, electron backscattering, innershell excitation and multiple ionization of target atoms/molecules in bombardment of electrons having energies from 2.0 keV ...

  17. Molecular processes in plasmas collisions of charged particles with molecules

    CERN Document Server

    Itikawa, Yukikazu

    2007-01-01

    Molecular Processes in Plasmas describes elementary collision processes in plasmas, particularly those involving molecules or molecular ions. Those collision processes (called molecular processes) maintain plasmas, produce reactive species and emissions, and play a key role in energy balance in plasmas or more specifically in determining the energy distribution of plasma particles. Many books on plasma physics mention the elementary processes, but normally rather briefly. They only touch upon the general feature or fundamental concept of the collision processes. On the other hand, there are many books on atomic and molecular physics, but most of them are too general or too detailed to be useful to people in the application fields. The present book enumerates all the possible processes in the collisions of electrons, as well as ions, with molecules. For each process, a compact but informative description of its characteristics is given together with illustrative examples. Since the author has much experience a...

  18. Monte Carlo simulation of excitation and ionization collisions with complexity reduction

    Science.gov (United States)

    Le, Hai P.; Yan, Bokai; Caflisch, Russel E.; Cambier, Jean-Luc

    2017-10-01

    Kinetic simulation of plasmas with detailed excitation and ionization collisions presents a significant computational challenge due to the multiscale feature of the collisional rates. In the present work, we propose a complexity reduction method based on atomic level grouping for modeling excitation and ionization collisions. High order of accuracy of the reduction method is realized by allowing an internal distribution within each group. We apply the reduction method to the standard Monte Carlo collision algorithm to model an atomic Hydrogen plasma. Numerical results suggest that the stiffness of the collisional kinetics can be significantly reduced with minimal loss in accuracy.

  19. SMARTER Collision avoidance

    National Research Council Canada - National Science Library

    Keith Burton

    2017-01-01

    .... By 1981, researchers had developed the Traffic Collision Avoidance System, or TCAS, a box of electronics and software that transmits a radar signal that interrogates transponders on nearby planes...

  20. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    The clustering of sulphuric acid with base molecules is one of the main pathways of new-particle formation in the Earth's atmosphere. First step in the clustering process is likely the formation of a (sulphuric acid)1(base)1(water)n cluster. Here, we present results from direct first......-principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  1. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  2. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  3. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  4. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  5. Collision-induced dissociation of aflatoxins.

    Science.gov (United States)

    Tóth, Katalin; Nagy, Lajos; Mándi, Attila; Kuki, Ákos; Mézes, Miklós; Zsuga, Miklós; Kéki, Sándor

    2013-02-28

    The aflatoxin mycotoxins are particularly hazardous to health when present in food. Therefore, from an analytical point of view, knowledge of their mass spectrometric properties is essential. The aim of the present study was to describe the collision-induced dissociation behavior of the four most common aflatoxins: B1, B2, G1 and G2. Protonated aflatoxins were produced using atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) combined with high-performance liquid chromatography (HPLC). For the tandem mass spectrometry (MS/MS) experiments nitrogen was used as the collision gas and the collision energies were varied in the range of 9-44 eV (in the laboratory frame). The major APCI-MS/MS fragmentations of protonated aflatoxins occurred at 30 eV collision energy. The main fragmentation channels were found to be the losses of a series of carbon monoxide molecules and loss of a methyl radical, leading to the formation of radical-type product ions. In addition, if the aflatoxin molecule contained an ether- or lactone-oxygen atom linked to a saturated carbon atom, loss of a water molecule was observed from the [M + H](+) ion, especially in the case of aflatoxins G1 and G2. A relatively small modification in the structure of aflatoxins dramatically altered the fragmentation pathways and this was particularly true for aflatoxins B1 and B2. Due to the presence of a C = C double bond connected to the ether group in aflatoxin B1 no elimination of water was observed but, instead, formation of radical-type product ions occurred. Fragmentation of protonated aflatoxin B1 yielded the most abundant radical-type cations. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  7. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  8. Low energy heavy particle collisions relevant to gas divertor physics

    Energy Technology Data Exchange (ETDEWEB)

    Onda, Kunizo [Science Univ. of Tokyo (Japan)

    1997-01-01

    Cross sections for rotational and vibrational excitations of H{sub 2} molecules caused by impact of electron, proton, H atom, H{sub 2}, H{sub 2}{sup +}, or H{sup -} are compared with one another and reviewed for rotational excitations by examining an interaction potential between collision partners. It is pointed out what are difficulties in theoretical approaches to collision of atoms with H{sub 2} molecules initially in vibrationally and rotationally excited states. A theoretical approach developed by our group, which aims quantum mechanically to investigate vibrationally inelastic scattering, exchange reaction, or dissociation of molecule in vibrationally excited states collided with an atom or its ion, is presented. Newly obtained dissociation cross sections of H{sub 2} in vibrationally excited states by He impact are presented and compared in magnitude with those of H{sub 2} caused by electron impact. (author)

  9. Measurements of hadron mean free path for the particle-producing collisions in nuclear matter

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.

  10. The role of final-state correlations in recombination of atomic hydrogen

    NARCIS (Netherlands)

    Stoof, H.T.C.; Goey, L.P.H. de; Verhaar, B.J.; Glöckle, W.

    1987-01-01

    We calculate the rate-constant for recombination in the bulk of a spin-polarized atomic hydrogen gas. We use an exact initial state and include the most essential collision aspects of the final state, except for rearrangement.

  11. Atomic physics of strongly correlated systems. Progress report, 1 August 1980-31 July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.D.

    1981-03-01

    Studies of electron correlations of doubly-excited electrons in hyperspherical coordinates, and differential and total cross sections for charge transfer and ionization in fast ion-atom collisions are reported. (GHT)

  12. Relative-velocity distributions for two effusive atomic beams in counterpropagating and crossed-beam geometries

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke

    2012-01-01

    Formulas are presented for calculating the relative velocity distributions in effusive, orthogonal crossed beams and in effusive, counterpropagating beams experiments, which are two important geometries for the study of collision processes between atoms. In addition formulas for the distributions...

  13. Suprathermal oxygen atoms in the Martian upper atmosphere: Contribution of the proton and hydrogen atom precipitation

    Science.gov (United States)

    Shematovich, V. I.

    2017-07-01

    This is a study of the kinetics and transport of hot oxygen atoms in the transition region (from the thermosphere to the exosphere) of the Martian upper atmosphere. It is assumed that the source of the hot oxygen atoms is the transfer of momentum and energy in elastic collisions between thermal atmospheric oxygen atoms and the high-energy protons and hydrogen atoms precipitating onto the Martian upper atmosphere from the solar-wind plasma. The distribution functions of suprathermal oxygen atoms by the kinetic energy are calculated. It is shown that the exosphere is populated by a large number of suprathermal oxygen atoms with kinetic energies up to the escape energy 2 eV; i.e., a hot oxygen corona is formed around Mars. The transfer of energy from the precipitating solar-wind plasma protons and hydrogen atoms to the thermal oxygen atoms leads to the formation of an additional nonthermal escape flux of atomic oxygen from the Martian atmosphere. The precipitation-induced escape flux of hot oxygen atoms may become dominant under the conditions of extreme solar events, such as solar flares and coronal mass ejections, as shown by recent observations onboard NASA's MAVEN spacecraft (Jakosky et al., 2015).

  14. Atomic data for controlled fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B.

    1977-02-01

    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy.

  15. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  16. Premiere production d'atomes d'antimatiere au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    In September 1995, Prof. Walter Oelert and an international team from J lich IKP-KFA, Erlangen-Nuernberg University, GSI Darmstadt and Genoa University succeeded for the first time in synthesising atoms of antimatter from their constituent antiparticles. Nine of these atoms were produced in collisions between antiprotons and xenon atoms over a period of three weeks. Each one remained in existence for about forty billionths of a second, travelled at nearly the speed of light over a path of ten metres and then annihilated with ordinary matter. The annihilation produced the signal which showed that the anti-atoms had been created.

  17. Adiabatic theory for anisotropic cold molecule collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  18. Ice particle collisions

    Science.gov (United States)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  19. Spacecraft Collision Avoidance

    Science.gov (United States)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  20. Collisions of carbon and oxygen ions with electrons, H, H/sub 2/ and He: Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, R.A.; Janev, R.K.; Pindzola, M.S.

    1987-02-01

    This report provides a handbook for fusion research of recommended cross-section and rate-coefficient data for collisions of carbon and oxygen ions with electrons, hydrogen atoms and molecules, and helium atoms. Published experimental and theoretical data have been collected and evaluated, and recommended data are presented in tabular, graphical, and parametrized form. Processes considered include exciation, ionization, and charge exchange at collision energies appropriate to applications in fusion-energy research.

  1. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  2. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  3. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.

    2014-01-01

    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for

  4. CMS SEES FIRST COLLISIONS

    CERN Multimedia

      A very special moment.  On 23rd November, 19:40 we recorded our first collisions with 450GeV beams well centred in CMS.   If you have any comments / suggestions please contact Karl Aaron GILL (Editor)

  5. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.

    2015-01-01

    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model of t...

  6. Collisions in soccer kicking

    DEFF Research Database (Denmark)

    Andersen, Thomas Bull; Dörge, Henrik C.; Thomsen, Franz Ib

    1999-01-01

    An equation to describe the velocity of the soccer ball after the collision with a foot was derived. On the basis of experimental results it was possible to exclude certain factors and only describe the angular momentum of the system, consisting of the shank, the foot and the ball, leading...

  7. Galilean invariance in the exponential model of atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    del Pozo, A.; Riera, A.; Yaez, M.

    1986-11-01

    Using the X/sup n//sup +/(1s/sup 2/)+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He/sup +/(1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed.

  8. Collisions between low-energy antihydrogen and atoms

    CERN Document Server

    Armour, E A G; Liu, Y; Martin, G D R

    2004-01-01

    Antihydrogen is currently the subject of great interest as cold H has recently been prepared at CERN by the ATHENA and ATRAP projects. This work is described elsewhere in this volume. In this paper, we describe a calculation that we have carried out recently for very low-energy HH scattering using the Kohn variational method and including three rearrangement channels in addition to the elastic channel. We also consider the He-H system and give a progress report on the calculation that we are currently carrying out for this system.

  9. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  10. Potential energy curves and collision integrals of air components

    Science.gov (United States)

    Partridge, Harry; Stallcop, James R.; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances with an emphasis on the accuracy that is obtainable. Results for interactions, e.g. N+N, N+O, O+O, and H+N2 will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  11. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  12. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J

    2003-01-01

    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  13. Collision Probability Analysis

    DEFF Research Database (Denmark)

    Hansen, Peter Friis; Pedersen, Preben Terndrup

    1998-01-01

    It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...... characteristics are: ship speed, ship manoeuvrability, the layout of the navigational bridge, the radar system, the number and the training of navigators, the presence of a look out etc. The main parameters affecting the navigational environment are ship traffic density, probability distributions of wind speeds...... probability, i.e. a study of the navigator's role in resolving critical situations, a causation factor is derived as a second step.The report documents the first step in a probabilistic collision damage analysis. Future work will inlcude calculation of energy released for crushing of structures giving...

  14. Success probability of atom-molecule sympathetic cooling: A statistical approach

    Science.gov (United States)

    Morita, Masato; Krems, Roman; Tscherbul, Timur

    2017-04-01

    Sympathetic cooling with ultracold atoms is a promising route toward creating colder and denser ensembles of polar molecules at temperatures below 1 mK. Rigorous quantum scattering calculations can be carried out to identify atom-molecule collision systems with suitable collisional properties for sympathetic cooling experiments. The accuracy of such calculations is limited by the uncertainties of the underlying ab initio interaction potentials. To overcome these limitations, we introduce a statistical approach based on cumulative probability distributions for the ratio of elastic-to-inelastic collision cross sections, from which the success probability of atom-molecule sympathetic cooling can be estimated. Our analysis shows that, for a range of experimentally relevant collision systems, the cumulative probabilities are not sensitive to the number of rotational states in the basis set, potentially leading to a dramatic reduction of the computational cost of simulating cold molecular collisions in external fields.

  15. Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction.

    Science.gov (United States)

    Zhang, Weiqing; Zhou, Yong; Wu, Guorong; Lu, Yunpeng; Pan, Huilin; Fu, Bina; Shuai, Quan; Liu, Lan; Liu, Shu; Zhang, Liling; Jiang, Bo; Dai, Dongxu; Lee, Soo-Ying; Xie, Zhen; Xie, Zeng; Braams, Bastiaan J; Bowman, Joel M; Collins, Michael A; Zhang, Dong H; Yang, Xueming

    2010-07-20

    Crossed molecular beam experiments and accurate quantum scattering calculations have been carried out for the polyatomic H + CD(4) --> HD + CD(3) reaction. Unprecedented agreement has been achieved between theory and experiments on the energy dependence of the integral cross section in a wide collision energy region that first rises and then falls considerably as the collision energy increases far over the reaction barrier for this simple hydrogen abstraction reaction. Detailed theoretical analysis shows that at collision energies far above the barrier the incoming H-atom moves so quickly that the heavier D-atom on CD(4) cannot concertedly follow it to form the HD product, resulting in the decline of reactivity with the increase of collision energy. We propose that this is also the very mechanism, operating in many abstraction reactions, which causes the differential cross section in the backward direction to decrease substantially or even vanish at collision energies far above the barrier height.

  16. Fragmentation processes of OCS in collision with highly charged ions

    Science.gov (United States)

    Matsumoto, J.; Tezuka, T.; Fukutome, A.; Karimi, R.; Wales, B.; Sanderson, J. H.; Shiromaru, H.

    2014-04-01

    Fragmentation of (OCS)3+ and (OCS)4+ produced by 120 keV Ar8+ collision was studied by using a position-sensitive time-of-flight (PS-TOF) method. We identified stepwise processes involving CO2+ and CS2+ metastable species as well as the concerted process (simultaneous breakup of the two bonds). For the (OCS)4+ events, the stepwise processes were found for fragmentation channels containing a doubly-charged terminal atom.

  17. Scattering of muonic hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mulhauser, F. [Universite de Fribourg (Switzerland); Adamczak, A. [Institute of Nuclear Physics (Poland); Beer, G.A. [University of Victoria (Canada); Bystritsky, V.M. [Joint Institute for Nuclear Research (Russian Federation); Filipowicz, M. [Institute of Physics and Nuclear Techniques (Poland); Fujiwara, M.C. [University of British Columbia (Canada); Huber, T.M. [Gustavus Adolphus College (United States); Jacot-Guillarmod, R. [Universite de Fribourg (Switzerland); Kammel, P. [University of California (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P. [Universite de Fribourg (Switzerland); Kunselman, A.R. [University of Wyoming (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Olin, A. [University of Victoria (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T.A. [University of Victoria (Canada); Stolupin, V.A. [Joint Institute for Nuclear Research (Russian Federation); Wozniak, J. [Institute of Physics and Nuclear Techniques (Poland)] (and others)

    1999-06-15

    Our measurement compares the energy dependence of the scattering cross-sections of muonic deuterium and tritium on hydrogen molecules for collisions in the energy range 0.1-45 eV. A time-of-flight method was used to measure the scattering cross-section as a function of the muonic atom beam energy and shows clearly the Ramsauer-Townsend effect. The results are compared with theoretical calculations by using Monte Carlo simulations. The molecular pd{mu} and pt{mu} formation creates background processes. We measure the formation rates in solid hydrogen by detecting the 5.5 MeV (pd{mu}) and 19.8 MeV (pt{mu}) {gamma}-rays emitted during the subsequent nuclear fusion processes.

  18. The role of multiple parton collisions in hadron collisions

    CERN Document Server

    Walker, W D

    2000-01-01

    We have examined charged multiplicities arising from p-p and p-p collisions over the range of center of mass energies from 30 GeV to 1800 GeV. We find that a portion of each distribution does obey KNO scaling. Those parts of the distributions that do not scale are the result of multiparton collisions. Results from experiment E735 show not only double but also triple parton collisions. These multiparton collisions seem to account for a large part of the increase in the cross section in this energy domain. (4 refs).

  19. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  20. Playing pinball with atoms.

    Science.gov (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W

    2009-05-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  1. Road rage and collision involvement.

    Science.gov (United States)

    Mann, Robert E; Zhao, Jinhui; Stoduto, Gina; Adlaf, Edward M; Smart, Reginald G; Donovan, John E

    2007-01-01

    To assess the contribution of road rage victimization and perpetration to collision involvement. The relationship between self-reported collision involvement and road rage victimization and perpetration was examined, based on telephone interviews with a representative sample of 4897 Ontario adult drivers interviewed between 2002 and 2004. Perpetrators and victims of both any road rage and serious road rage had a significantly higher risk of collision involvement than did those without road rage experience. This study provides epidemiological evidence that both victims and perpetrators of road rage experience increased collision risk. More detailed studies of the contribution of road rage to traffic crashes are needed.

  2. Low-energy measurements of electron capture by multicharged ions from excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Havener, C.C. (Oak Ridge National Laboratory, Oak Ridge, Tennesse 37831-6372 (United States)); Haque, M.A. (Alcorn State University, Lorman, Mississippi 39096 (United States)); Smith, A.C.H. (University College London, WC1E 6BT (United Kingdom)); Urbain, X. (Universite Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)); Zeijlmans van Emmichoven, P.A. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831-6374 (United States))

    1993-06-05

    For very low collision energies electron capture from excited hydrogen by multicharged ions is characterized by enormous cross sections, the predicted maximum being comparable to the geometric size of the Rydberg atom. The ion-atom merged-beams technique is being used to study these collisions for the variety of charge states and the wide range of energies (0.1 to 1000 eV/amu) accessible to the apparatus. A neutral D beam containing a Rydberg atom population proportional to 1/n[sup 3] is produced by collisional electron detachment of 8 keV D[sup [minus

  3. The dynamics of milk droplet-droplet collisions

    Science.gov (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  4. Theoretical atomic physics for fusion. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Pindzola, M.S.

    1995-12-31

    The understanding of electron-ion collision processes in plasmas remains a key factor in the ultimate development of nuclear fusion as a viable energy source for the nation. The 1993--1995 research proposal delineated several areas of research in electron-ion scattering theory. In this report the author summarizes his efforts in 1995. The main areas of research are: (1) electron-impact excitation of atomic ions; (2) electron-impact ionization of atomic ions; and (3) electron-impact recombination of atomic ions.

  5. Atom loss resonances in a Bose-Einstein condensate.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2013-07-12

    Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.

  6. Electron loss and transfer for 20-110-keV iodine-rare-gas collisions

    Science.gov (United States)

    Hird, B.; Orakzai, M. W.; Rahman, F.

    1989-05-01

    Atomic cross sections have been measured for the loss and transfer of an electron during a collision between a neutral iodine atom and a rare-gas atom. The neutral iodine beam, with energy between 20 to 110 keV, was unlikely to contain a significant mixture of metastable-state atoms because it was produced by neutralizing a negative-iodine-ion beam. The σ0+ cross section is largest for the argon and krypton targets, not for xenon, as might have been expected. The σ0- cross section is very small for the light targets and only becomes appreciable for xenon at the highest energy used.

  7. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Schueller, A.; Winter, H. [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2011-06-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  8. Fast metastable hydrogen atoms from H2 molecules: twin atoms

    Directory of Open Access Journals (Sweden)

    Trimèche A.

    2015-01-01

    Full Text Available It is a difficult task to obtain “twin atoms”, i.e. pairs of massive particles such that one can perform experiments in the same fashion that is routinely done with “twin photons”. One possible route to obtain such pairs is by dissociating homonuclear diatomic molecules. We address this possibility by investigating the production of metastable H(2s atoms coming from the dissociation of cold H2 molecules produced in a Campargue nozzle beam crossing an electron beam from a high intensity pulsed electron gun. Dissociation by electron impact was chosen to avoid limitations of target molecular excited states due to selection rules. Detectors placed several centimeters away from the collision center, and aligned with respect to possible common molecular dissociation channel, analyze the neutral fragments as a function of their time-of-flight (TOF through Lyman-α detection. Evidence for the first time observed coincidence of pairs of H(2s atoms obtained this way is presented.

  9. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms

    Science.gov (United States)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield

  10. Molecular collision theory

    CERN Document Server

    Child, M S

    2010-01-01

    This high-level monograph offers an excellent introduction to the theory required for interpretation of an increasingly sophisticated range of molecular scattering experiments. There are five helpful appendixes dealing with continuum wavefunctions, Green's functions, semi-classical connection formulae, curve-crossing in the momentum representation, and elements of classical mechanics.The contents of this volume have been chosen to emphasize the quantum mechanical and semi-classical nature of collision events, with little attention given to purely classical behavior. The treatment is essentiall

  11. Fragments detection of the Ar{sup +} collision in air; Deteccion de fragmentos de la colision de Ar{sup +} en aire

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro V, F. J. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Fuentes M, B. E. [UNAM, Facultad de Ciencias, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Yousif, F. B. [Universidad Autonoma del Estado de Morelos, Facultad de Ciencias, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos (Mexico); Roa N, J. A. E., E-mail: javierfranciscocv@gmail.com [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Ciencias Basicas, Av. San Pablo Xalpa No. 1802, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico)

    2012-10-15

    The different components of a lineal accelerator of particles to low energy that will be used in experiments of atomic and molecular collisions are described. By means of the technique of flight time the fragments of the collision of positive ions were identified in gases. In this work values of some parameters are presented guided to optimize the operation of the accelerator, as well as preliminary data of the collision of argon ions in air. (Author)

  12. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)

    2003-04-15

    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  13. Outer Dynamics of Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    The purpose is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisions with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the colliding structures....

  14. A Changing Wind Collision

    Science.gov (United States)

    Nazé, Yaël; Koenigsberger, Gloria; Pittard, Julian M.; Parkin, Elliot Ross; Rauw, Gregor; Corcoran, Michael F.; Hillier, D. John

    2018-02-01

    We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ∼2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions. Based on XMM-Newton and Chandra data.

  15. Collision in space

    Science.gov (United States)

    Ellis, S. R.

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  16. Ship Collision and Grounding Analysis

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    2010-01-01

    It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human, e......, environmental and economic costs of collision and grounding events. The main goal of collision and grounding research should be to identify the most economic risk control options associated with prevention and mitigation of collision and grounding events......It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human...

  17. Reversible simulations of elastic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Perumalla, Kalyan S.; Protopopescu, Vladimir A.

    2013-05-01

    Consider a system of N identical hard spherical particles moving in a d-dimensional box and undergoing elastic, possibly multi-particle, collisions. We develop a new algorithm that recovers the pre-collision state from the post-collision state of the system, across a series of consecutive collisions, \\textit{with essentially no memory overhead}. The challenge in achieving reversibility for an n-particle collision (where, in general, n<< N) arises from the presence of nd-d-1 degrees of freedom (arbitrary angles) during each collision, as well as from the complex geometrical constraints placed on the colliding particles. To reverse the collisions in a traditional simulation setting, all of the particular realizations of these degrees of freedom (angles) during the forward simulation must be tracked. This requires memory proportional to the number of collisions, which grows very fast with N and d, thereby severely limiting the \\textit{de facto} applicability of the scheme. This limitation is addressed here by first performing a pseudo-randomization of angles, which ensures determinism in the reverse path for any values of n and d. To address the more difficult problem of geometrical and dynamic constraints, a new approach is developed which correctly samples the constrained phase space. Upon combining the pseudo-randomization with correct phase space sampling, perfect reversibility of collisions is achieved, as illustrated for n<=3, d=2, and n=2, d=3. This result enables, for the first time, reversible simulations of elastic collisions with essentially zero memory accumulation. In principle, the approach presented here could be generalized to larger values of n, which would be of definite interest for molecular dynamics simulations at high densities.

  18. Trapping of molecular Oxygen together with Lithium atoms

    CERN Document Server

    Akerman, Nitzan; Segev, Yair; Bibelnik, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-01-01

    We demonstrate simultaneous deceleration and trapping of a cold atomic and molecular mixture. This is the first step towards studies of cold atom-molecule collisions at low temperatures as well as application of sympathetic cooling. Both atoms and molecules are cooled in a supersonic expansion and are loaded into a moving magnetic trap which brings them to rest via the Zeeman interaction from an initial velocity of 375 m/s. We use a beam seeded with molecular Oxygen, and entrain it with Lithium atoms by laser ablation prior to deceleration. The deceleration ends with loading of the mixture into a static quadrupole trap, which is generated by two permanent magnets. We estimate $10^9$ trapped O$_2$ molecules and $10^5$ Li atoms with background pressure limited lifetime on the order of 1 second. With further improvements to Lithium entrainment we expect that sympathetic cooling of molecules is within reach.

  19. Calculation of tin atomic data and plasma properties.

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, V.; Tolkach, V.; Hassanein, A.

    2005-08-26

    This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.

  20. Implementing quantum electrodynamics with ultracold atomic systems

    Science.gov (United States)

    Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.

    2017-02-01

    We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.

  1. Incomplete optical shielding in cold sodium atom traps

    Science.gov (United States)

    Yurovsky, Vladimir; Ben-Reuven, Abraham

    1997-01-01

    A simple two-channel model, based on the semiclassical Landau-Zener (LZ) approximation, with averaging over angle-dependent exponents, is proposed as a fast means for accounting for the incomplete optical shielding of collisions, as observed in recent experiments conducted by Weiner and co-workers on ultracold sodium-atom traps, and its dependence on the laser polarization. The model yields a reasonably good agreement with the recent quantum close-coupling calculations of Julienne and co-workers. The remaining discrepancy between both theories and the data is qualitatively attributed to a partial overlap of the collision ranges at which loss processes and optical shielding occur.

  2. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda

    2011-01-01

    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  3. Laser Cooling and Trapping of Neutral Atoms

    Science.gov (United States)

    1992-07-01

    Weiner, Dept of Chemistry, University of Maryland.) Studies of ultra cold collisions in traps can probe the lowest energy interactions of atoms but are...Ramsey resonance. The experimental set up is shown in fig. 10. VL.-Abt) T ~5cm :- TE, avity 9.2GH,7input/ =. molasses VL molasses fluorecence " TOF~~ sinl...implies that there is a rich resonant structure to be probed by superimposing a separately tunable laser on the trap laser. Unfortunately, we cannot tune

  4. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Energy Technology Data Exchange (ETDEWEB)

    Kashlev, Y.A., E-mail: yakashlev@yandex.ru

    2017-04-15

    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  5. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  6. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  7. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  8. Cooperative Retransmissions Through Collisions

    CERN Document Server

    Qureshi, Jalaluddin; Foh, Chuan Heng

    2011-01-01

    Interference in wireless networks is one of the key capacity-limiting factors. Recently developed interference-embracing techniques show promising performance on turning collisions into useful transmissions. However, the interference-embracing techniques are hard to apply in practical applications due to their strict requirements. In this paper, we consider utilising the interference-embracing techniques in a common scenario of two interfering sender-receiver pairs. By employing opportunistic listening and analog network coding (ANC), we show that compared to traditional ARQ retransmission, a higher retransmission throughput can be achieved by allowing two interfering senders to cooperatively retransmit selected lost packets at the same time. This simultaneous retransmission is facilitated by a simple handshaking procedure without introducing additional overhead. Simulation results demonstrate the superior performance of the proposed cooperative retransmission.

  9. Consumers’ Collision Insurance Decisions

    DEFF Research Database (Denmark)

    Austin, Laurel; Fischhoff, Baruch

    Using interviews with 74 drivers, we elicit and analyse how people think about collision coverage and, more generally, about insurance decisions. We compare the judgments and behaviours of these decision makers to the predictions of a range of theoretical models: (a) A model developed by Lee (2007......), which refines EU theory to incorporate income and predicts that property insurance is a normal good; (b) a mental accounting model based on the idea that consumers budget their income across consumption categories (Thaler, 1985); and (c) the baseline, classic EU theory, which predicts that insurance...... is an inferior good (Mossin, 1968). The behaviour reported by subjects in our study suggests that insurance is a normal good, while their verbal reports reveal desires to balance two conflicting goals in deductible decisions, keeping premiums “affordable” and keeping deductibles “affordable,” which suggests...

  10. On Impact Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship-ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived ...

  11. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species......, which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium...... operator, even for like-particle collisions....

  12. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Mendoza

    2014-05-01

    Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workflows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.

  13. Ionization and fragmentation modes of nucleobases after collisions with multiply charged ions

    NARCIS (Netherlands)

    Hoekstra, R.; Morgenstern, R.; Schlathoelter, T.

    2004-01-01

    We studied multiply charged ion (MCI) induced ionization, excitation and fragmentation of the nucleobases uracil and thymine. Ions of different charge state at velocities between 0.2 and 0.4 atomic units were used as projectiles. By means of time-of-flight spectrometry of the collision products in a

  14. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  15. Estimating inelastic heavy-particle-hydrogen collision data. I. Simplified model and application to potassium-hydrogen collisions

    Science.gov (United States)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-10-01

    Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147

  16. On impact mechanics in ship collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship–ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived...... of illustrative examples are presented. The procedure presented in the paper is well suited for inclusion in a probabilistic calculation model for damage of ship structures due to collisions....

  17. Collision attack against Tav-128 hash function

    Science.gov (United States)

    Hariyanto, Fajar; Hayat Susanti, Bety

    2017-10-01

    Tav-128 is a hash function which is designed for Radio Frequency Identification (RFID) authentication protocol. Tav-128 is expected to be a cryptographically secure hash function which meets collision resistance properties. In this research, a collision attack is done to prove whether Tav-128 is a collision resistant hash function. The results show that collisions can be obtained in Tav-128 hash function which means in other word, Tav-128 is not a collision resistant hash function.

  18. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  19. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  20. Neuromorphic UAS Collision Avoidance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Using biologically-inspired neuromorphic optic flow algorithms is a novel approach in collision avoidance for UAS. Traditional computer vision algorithms rely on...

  1. Anisotropy and polarization in charge changing collisions of C4+ with Na(3s) and laser aligned Na(3p)

    NARCIS (Netherlands)

    Hoekstra, R; Morgenstern, R; Olson, RE

    1996-01-01

    Absolute cross sections for C3+(6-->5) emission at 465.7 nm after collisions of C4+ ions with ground state Na(3s) and laser excited aligned Na(Sp) atoms are measured over the collision energy range of 3-7 keV amu(-1). For Na(3s) polarizations are observed by measuring the linear polarization of the

  2. Multifragmentation in Au + Au collisions studied with AMD-V

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Akira [Tohoku Univ., Sendai (Japan). Faculty of Science

    1998-07-01

    AMD-V is an optimum model for calculation of multifragmentation in Au + Au collisions. AMD-V consider anti-symmetry of incident nucleus, target nucleus and fragments, furthermore, it treat the quantum effect to exist many channels in the intermediate and final state. 150 and 250 MeV/nucleon incident energy were used in the experiments. The data of multifragment atom in {sup 197}Au + {sup 197}Au collisions was reproduced by AMD-V calculation using Gognny force, corresponding to the imcompressibility of nuclear substance K = 228 MeV and its mean field depend on momentum. When other interaction (SKG 2 force, corresponding to K = 373 KeV) was used an mean field does not depend on momentum, the calculation results could not reproduce the experimental values, because nucleus and deuteron were estimated too large and {alpha}-particle and intermediate fragments estimated too small. (S.Y.)

  3. European Group for Atomic Spectroscopy. Summaries of contributions, eleventh annual conference, Paris-Orsay, July 10-13, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Summaries are presented of talks given at the eleventh conference of the European group for atomic spectroscopy. Topics covered include: lifetimes; collisions; line shape; hyperfine structure; isotope shifts; saturation spectroscopy; Hanle effect; Rydberg levels; quantum beats; helium and helium-like atoms; metrology; and molecules. (GHT)

  4. Atomization characteristics of a prefilming airblast atomizer

    Science.gov (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu

    1992-01-01

    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  5. Single atom electrochemical and atomic analytics

    Science.gov (United States)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  6. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    Science.gov (United States)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  7. Optical traps for ultracold metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Juliette [LKB ENS, Paris (France)

    2009-07-01

    One of the main characteristics of metastable helium atoms is their high internal energy (20 eV). This energy can be released when a metastable atom hits a surface, ejecting one electron. Therefore, using a Channeltron Electron Multiplier (CEM), one can detect atoms with a time resolution of up to 5 ns. However, this high internal energy raises the problem of inelastic Penning ionizations, following: He{sup *}+He{sup *}{yields}He+He{sup +}+e{sup *}. This process has a rate of the order of 10 x 10 cm{sup 3} cot s{sup -}1 but is reduced by four orders of magnitude if the atoms are spin polarized due to total spin conservation. We report on the progress of the set up of a dipole trap for ultracold metastable helium using a red detuned fiber laser at 1560 nm. One of the aims of this optical trap is to release the constraint on the magnetic field value. We plan to measure the magnetic field dependance of inelastic collision rates for temperatures smaller than 10 {mu}K. In a spin polarized gas of helium, the spin-spin interaction produces spin relaxation and relaxation induced Penning ionization if the polarization condition is no longer maintained. We also present the development of a optical lattices in 1D and later in 3D. We intend to monitor the Penning ionization rate in order to follow the real-time dynamics of the superfluid-Mott insulator quantum phase transition.

  8. Pulsed metastable atom source for low vapour-pressure metals

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Urena, A.; Verdasco Costales, E. (Universidad Complutense de Madrid (Spain). Facultad de Quimica); Saez Rabanos, V. (Universidad Politecnica de Madrid (Spain). Escuela Tecnica Superior de Ingenieros Industriales)

    1990-03-01

    The basic design and most relevant experimental conditions of a pulsed metastable atomic-beam oven are described. The stainless steel oven is suitable for vaporising metals and salts up to around 1400 K producing intense beams of metastable alkaline-earth atoms when pulsed or continuous wave low voltage discharges are used. Several applications using atomic calcium in its {sup 3}P and {sup 1}D electronic state are reported. The beam characterisation and discharge efficiency have been measured by time-of-flight or laser-induced fluorescence techniques. In addition, a method of changing the metastable n{sup 3}P/n{sup 1}D ratio, by raising the oven temperature, is described which looks very promising for the study of electronic selectivity in reactive collision processes. Finally several spectroscopic applications for atomic and molecular beam determinations are reported. (author).

  9. Transitions between hyperfine-structure states of the 2s metastable muonic hydrogen in collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Czaplinski, W.

    1992-12-31

    Hyperfine effects in the symmetric collisions of the 2s metastable muonic hydrogen with hydrogen atoms: (p{mu}){sub 2s} + H, (d{mu}){sub 2s} + D, (t{mu}){sub 2s} + t are presented. Elastic and spin-flip cross sections for the scattering of The 2s muonic atoms are calculated in the two-level approximation as a function of collision energy. The corresponding formulae are derived with inclusion of electron screening and Lamb-shift between 2s and 2p energy levels of the muonic atom. The obtained spin-flip cross sections are about two orders of magnitude higher than their ground state counterparts and are much more influenced by electron screening. The rates of the spin-flip transitions are also calculated and are found to be about three orders of magnitude higher than the decay rate of the 2s state. (author). 65 refs, 15 figs, 4 tabs.

  10. Estimating inelastic heavy-particle - hydrogen collision data. II. Simplified model for ionic collisions and application to barium-hydrogen ionic collisions

    Science.gov (United States)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-12-01

    Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33

  11. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  12. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  13. Galaxy collisions: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Smith, B.F.

    1980-01-15

    Collisions of spherical galaxies were studied in a series of numerical experiments to see what happens when galaxies collide. Each experiment starts with two model galaxies, each consisting of 50,000 stars, moving toward each other along a specified orbit. Th series of experiments provides a systematic sampling of the parameter space spanned by the initial orbital energy and the initial angular momentum. Deeply penetrating collisions are emphasized. The collisions reported here scale to relative velocities as great as 500 km s/sup -1/, well into the range for collisions within clusters of galaxies. We find: (1) The galaxies contract momentarily to about half their original sizes shortly after close passage. This means that (a) the galaxies have ample time to respond dynamically during close passage; (b) energy first transfers into coherent mass flows within each galaxy; (c) in turn, (a) means that the impulsive and restricted three-body approximations, in which the response is ignored, are not valid for collisions of 1000 km s/sup -1/ or less. (2) The initial galaxies blend into a single dynamical system while they are near each other. This means that concepts such as energy transfer from orbital motion to internal degrees of freedom are not well defined until long after close approach, when two density maxima are well separated and each has settled down to a reasonably steady state.

  14. Automatic Collision Avoidance Technology (ACAT)

    Science.gov (United States)

    Swihart, Donald E.; Skoog, Mark A.

    2007-01-01

    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  15. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  16. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

  17. Solar Spectroscopy: Atomic Processes

    Science.gov (United States)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  18. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  19. Collision matrix for Leo satellites

    Science.gov (United States)

    McKnight, Darren; Lorenzen, Gary

    The Low Earth Orbit (LEO) is becoming cluttered with thousands of satellites, rocket bodies, and a variety of space garbage. This collection of objects crossing paths at speeds on the order of 10 km/s is creating an increasing collision hazard to many operational systems. The effect that the destruction of LEO satellites will have on other users of the near-Earth environment is of great concern. A model is examined which quantifies the effect of one satellite fragmentation on neighboring satellites. This model is used to evaluate the interdependent hazard to a series of satellite systems. A number of space system fragmentation events are numerically simulated and the collision hazard to each is tabulated. Once all satellites in the matrix have been fragmented separately, a complete collision hazard representation can be depicted. This model has potential for developing an enhanced understanding of a number of aspects of the growing debris hazard in LEO.

  20. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-04-10

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  1. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  2. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  3. Outreach Materials for the Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  4. Collision Risk Analysis for HSC

    DEFF Research Database (Denmark)

    Urban, Jesper; Pedersen, Preben Terndrup; Simonsen, Bo Cerup

    1999-01-01

    High Speed Craft (HSC) have a risk profile, which is distinctly different from conventional ferries. Due to different hull building material, structural layout, compartmentation and operation, both frequency and consequences of collision and grounding accidents must be expected to be different from...... conventional ships. To reach a documented level of safety, it is therefore not possible directly to transfer experience with conventional ships. The purpose of this paper is to present new rational scientific tools to assess and quantify the collision risk associated with HSC transportation. The paper...

  5. Collision Analysis for MS DEXTRA

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1999-01-01

    It is a major challenge for the maritime community to develop probability-based procedures for design against collision and grounding events. To quantify the risks involved in ship traffic in specific geographic areas implies that probabilities as well as inherent consequences of various collisio...... the more long term goal to develop probability-based codes for design against collision and grounding events, similar to the present development towards the use of reliability-based procedures for strength design of ships subjected to the traditional environmental loads....

  6. The influence of collisions on the temporary shape of stimulated echo hologram in gas

    Science.gov (United States)

    Akhmedshina, E. N.; Nefediev, L. A.; Garnaeva, G. I.; Shigapova, E. D.

    2017-06-01

    In this paper, we investigate the influence of collisions with the change of particle velocity direction in a gas on the reproduction of the temporary shape of the object laser pulse in the stimulated echo hologram response. Due to such collisions, the frequency shifts of the radiation of atoms in the gas randomly vary (spectral diffusion within the heterogeneously broadened line). It is shown, that such diffusion leads to the not correlated heterogeneous broadening in the gas at the different time intervals and the partial loss of system phase memory, which results in a partial loss of retrieved information encoded in the temporal form of the object laser pulse.

  7. A laser-cooled cesium fountain frequency standard and a measurement of the frequency shift due to ultra-cold collisions

    Science.gov (United States)

    Gibble, Kurt; Kasapi, Steven; Chu, Steven

    1993-01-01

    A frequency standard based on an atomic fountain of cesium atoms may have an accuracy of 10(exp -16) due to longer interaction times and smaller anticipated systematic errors. All of the known systematic effects that now limit the accuracy of the Cs frequency standard increase either linearly or as some higher power of the atom's velocity. The one systematic frequency shift which is dramatically different is the frequency shift due to the collisions between the laser cooled atoms. At a temperature of a few micro-K, the de Broglie wavelength (lambda(sub deB) = h/p, where h is Planck's constant and p is the momentum of the atom) is much larger than the scale of the interatomic potential. Under these conditions the collision cross sections can be as large as (lambda(sub deB)(sup 2))/Pi and the frequency shift due to these collisions was recently calculated. In our Cs atomic fountain, we laser cooled and trapped 10(exp 10) Cs atoms in 0.4 s. By shifting the frequencies of the laser beams, the atoms were launched upwards at 2.5 m/s and a fraction of the atoms were optically pumped into the F=3 ground state. The unwanted atoms in the F=4 ground state were removed from the fountain with radiation pressure from a laser beam tuned to excite only those atoms. The Cs atoms in the F=3 state traveled ballistically upwards, were excited by the microwave cavity, and then returned back through the same cavity in the atomic fountain configuration. By varying the cold atom density, a density dependent shift of -12.9 +/- 0.7 mHz or -1.4 x 10-12 for an average fountain density of (2.7 +/- 1.5) 10(exp 9) atoms/cm(sup 3) was measured.

  8. Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins

    Science.gov (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-08-01

    The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO2) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability of mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.

  9. Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins

    Energy Technology Data Exchange (ETDEWEB)

    Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K. [Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Doan, Baochi D., E-mail: patrick.schelling@ucf.edu [Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2017-08-01

    The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability of mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.

  10. Effects of adsorption and roughness upon the collision processes at the convertor surface of a plasma sputter negative ion sourcea)

    Science.gov (United States)

    Kenmotsu, T.; Wada, M.

    2012-02-01

    Atomic collision processes associated with surface production of negative hydrogen ions (H-) by particle reflection at molybdenum surface immersed in hydrogen plasma have been investigated. To calculate sputtering yields of Cs, as well as energy spectra and angular distributions of reflected hydrogen atoms from molybdenum surface by H+ ion and Cs+ ion bombardments, a Monte Carlo simulation code ACAT (Atomic Collision in Amorphous Target) was run with the corresponding surface conditions. A fractal surface model has been developed and adopted to ACAT for evaluating the effect due to roughness of target material. The results obtained with ACAT have indicated that the retention of hydrogen atoms leads to the reduction in sputtering yields of Cs, and the surface roughness does largely affect the sputtering yields of Cs.

  11. Collisional interaction between metastable neon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Drunen, Wouter Johannes van

    2008-07-07

    In this thesis, the study of cold gases of neon atoms in different metastable states is described. It contains measurements of the collisional parameters for both the 3s[3/2]{sub 2} and the 3s'[1/2]{sub 0} metastable state and the dependence of the inelastic loss on external fields. Furthermore, the investigation of frequency dependent laser-induced collisions, and the possibility to excite photoassociation resonances is presented. For the measurements described here, neon atoms have been confined in a magnetooptical trap, in a magnetostatic trap, or in an optical dipole trap, respectively. By laser cooling inside the magnetic trap, atomic samples with more than 95 percent occupation of the magnetic substate m{sub J} = +2 could be prepared. They have a typical temperature of 0.5 mK, central densities up to 10{sup 11} cm{sup -3}, and a central phase-space density of up to 2.2.10{sup -7}. After loading the optical dipole trap from the magnetic trap, 2.5.10{sup 6} atoms with typical temperatures of 0.1 mK, and central densities up to 5.10{sup 10} cm{sup -3} were trapped. By evaporative cooling of the atoms in the magnetic trap we could increase the phase-space density by a factor of 200 to 5.10{sup -5}. Investigating the frequency dependence of laser-induced collisions did not reveal an experimental signature for the excitation of photoassociation resonances. For the {sup 3}D{sub 3} line a frequency dependence of laser enhanced Penning ionization was observed. Measurement of the two-body loss coefficient as function of the magnetic field showed a field dependence of the inelastic loss. These losses increase towards both small and large offset fields. The implementation of an optical dipole trap allowed us to trap the {sup 3}P{sub 0} metastable state. From the trap loss measurements we determined the two-body loss coefficient of the {sup 3}P{sub 0} metastable state for both bosonic isotopes {sup 20}Ne and {sup 22}Ne. For {sup 20}Ne we obtained {beta}=6{sup +5}{sub

  12. NA49: lead-lead collision

    CERN Multimedia

    1996-01-01

    This is an image of an actual lead ion collision taken from tracking detectors on the NA49 experiment, part of the heavy ion project at CERN. These collisions produce a very complicated array of hadrons as the heavy ions break up. It is hoped that one of these collisions will eventually create a new state of matter known as quark-gluon plasma.

  13. Distraction-related road traffic collisions

    African Journals Online (AJOL)

    is a sprouting serious road safety issue that causes a pro- portion of preventable deaths4,5. Pre-crash driver's dis- traction was reported to be responsible for about 80% of collisions and 65% of near-collisions6. We aimed to pro- spectively study distraction-related road traffic collision injuries, their contributory factors, ...

  14. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  15. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  16. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  17. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    Atomicity in Electronic Commerce J. D. Tygar January 1996 CMU-CS-96-112 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213...other research sponsor. Keywords: electronic commerce , atomicity, NetBill, IBIP, cryptography, transaction pro- cessing, ACID, franking, electronic ...goods over networks. Electronic commerce has inspired a large variety of work. Unfortunately, much of that work ignores traditional transaction

  18. Circular dichroism in laser-assisted proton-hydrogen collisions

    Science.gov (United States)

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-08-01

    We investigate the effects of a strong laser field on the dynamics of electron capture and emission in ion-atom collisions within a reduced dimensionality model of the scattering system in which the motion of the active electron and the laser electric field vector are confined to the scattering plane. We examine the probabilities for electron capture and ionization as a function of the laser intensity, the projectile impact parameter b , and the laser phase ϕ that determines the orientation of the laser electric field with respect to the internuclear axis at the time of closest approach between target and projectile. Our results for the b -dependent ionization and capture probabilities show a strong dependence on both ϕ and the helicity of the circularly polarized laser light. For intensities above 5×1012W/cm2 our model predicts a noticeable circular dichroism in the capture probability for slow proton-hydrogen collisions, which persists after averaging over ϕ . Capture and electron emission probabilities defer significantly from results for laser-unassisted collisions. Furthermore, we find evidence for a charge-resonance-enhanced ionization mechanism that may enable the measurement of the absolute laser phase ϕ .

  19. GMC Collisions as Triggers of Star Formation. V. Observational Signatures

    Science.gov (United States)

    Bisbas, Thomas G.; Tanaka, Kei E. I.; Tan, Jonathan C.; Wu, Benjamin; Nakamura, Fumitaka

    2017-11-01

    We present calculations of molecular, atomic, and ionic line emission from simulations of giant molecular cloud (GMC) collisions. We post-process snapshots of the magnetohydrodynamical simulations presented in an earlier paper in this series by Wu et al. of colliding and non-colliding GMCs. Using photodissociation region (PDR) chemistry and radiative transfer, we calculate the level populations and emission properties of the transitions of 12CO J = 1-0, [C I] {}3{{{P}}}1\\to {}3{{{P}}}0 at 609 μm, [C II] 158 μm, and [O I] {}3{{{P}}}1\\to {}3{{{P}}}0 at 63 μm. From emission maps of integrated intensity and position-velocity diagrams, we find that fine-structure lines, particularly [C II] 158 μm, can be used as a diagnostic tracer for cloud-cloud collision activity. These results hold even in more evolved systems in which the collision signature in molecular lines has been diminished.

  20. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  1. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  2. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  3. Quantum Degenerate Gases of Atomic Strontium

    Science.gov (United States)

    Killian, T. C.

    2010-03-01

    This talk will describe the production and properties of a Bose-Einstein condensate of ^84Sr and a quantum degenerate mixture of ^87Sr (fermion) and ^88Sr (boson). ^88Sr has a small negative scattering length leading to a maximum condensate size for our trapping conditions of about 10^4 atoms. ^87Sr is used to sympathetically cool ^88Sr, but it is also of interest for study of quantum degenerate Fermi gases because it has a large nuclear spin (I=9/2). Alkaline-earth metal atoms and atoms with similar electronic structure are of interest for quantum computing proposals, cold collision studies, and investigation of quantum fluids. There are a wealth of isotopes that allow mass-tuning of interactions and creation of various quantum mixtures. The two-valence electrons lead to a singlet ground state and narrow intercombination transitions to metastable triplet states, offering the promise of low-loss optical Feshbach resonances for manipulating scattering lengths. Fermions often have large nuclear spin, which is decoupled from electronic degrees of freedom and leads to a large degree of symmetry and degeneracy in the interaction Hamiltonian. Work done in collaboration with Y.N. Martinez de Escobar, P.G. Mickelson, M. Yan, B.J. DeSalvo, and S.B. Nagel, Rice University.

  4. Quarkonium production in hadronic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gavai, R. [Tata Institute for Fundamental Research, Bombay (India); Schuler, G.A.; Sridhar, K. [CERN, Geneva (Switzerland)] [and others

    1995-07-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.

  5. Duration of an Elastic Collision

    Science.gov (United States)

    de Izarra, Charles

    2012-01-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…

  6. Outer Dynamics of Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    The purpose of these notes is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisons with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the colliding...

  7. Perspective on relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, N.K.

    1979-05-01

    The importance of experiments detecting more than one particle is pointed out. The production of nuclei far from stability in peripheral collisions and the expectations for the explosive disassembly of dense nuclear matter (nuclear fireball) and some evidence for it are related. Pion interferometry concerns the measurement of correlations in the momentum and energy of two identical pions; the subject is discussed in relation to incoherent production, coherent production, partially coherent production, final-state interactions, impact parameter average, and outlook. Much of the paper deals with an assessment of the possibility of determining the form of the hadronic spectrum in the high-mass region through nuclear collisions at ultrarelativistic energies. The subject is developed under the following topics: perspective, the initial fireball, isoergic equilibrium expansion of the fireball, quasi-dynamical expansion, quark matter, and the mass degree of freedom. The quasi-dynamical model obtained indicates that certain parameters, such as the ..pi../N and K/N ratios at high kinetic energy, will survive the collision; therefore, a determination of the asymptotic form of the hadron spectrum probably can be made by studying nuclear collisions at very high energies (10 GeV/nucleon in the center of mass). 16 figures. (RWR)

  8. Dijet imbalance in hadronic collisions

    NARCIS (Netherlands)

    Boer, Daniel; Mulders, Piet J.; Pisano, Cristian

    2009-01-01

    The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance that could complicate or even hamper this extraction. They are due to polarization of

  9. Cern collisions light up Copenhagen

    CERN Multimedia

    Banks, Michael

    2010-01-01

    "Anyone passing by the Niels Bohr Institute in Copenhagen, Denmark, might be startled by some strange moving lights on the facade of the institute's main building. In fact, the dancing beams show, almost in real time, collisions form the Atlas experiment at Cern's Large Hadron Collider (LHC)" (1 paragraph)

  10. Collision of hydrogen molecules interacting with two grapheme sheets

    Directory of Open Access Journals (Sweden)

    Malivuk-Gak Dragana

    2017-01-01

    Full Text Available It have been performed the computational experiments with two hydrogen molecules and two graphene sheets. Hydrogen - hydrogen and hydrogen - carbon interactions are described by Lennard - Jones potential. Equations of motion of the wave packet centre are solved numerically. The initial molecule velocity was determined by temperature and collisions occur in central point between two sheets. The molecules after collision stay near or get far away of graphene sheets. Then one can find what temperatures, graphene sheet sizes and their distances are favourable for hydrogen storage. It is found that quantum corrections of the molecule classical trajectories are not significant here. Those investigations of possibility of hydrogen storage by physisorption are of interest for improvement of the fuel cell systems. The main disadvantages of computational experiments are: (1 it cannot compute with very large number of C atoms, (2 it is assumed that carbon atoms are placed always in their equilibrium positions and (3 the changes of wave packet width are not considered.

  11. Atomic homodyne detection of continuous-variable entangled twin-atom states.

    Science.gov (United States)

    Gross, C; Strobel, H; Nicklas, E; Zibold, T; Bar-Gill, N; Kurizki, G; Oberthaler, M K

    2011-11-30

    Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution, the realization of quantum teleportation and quantum memories, or the demonstration of the Einstein-Podolsky-Rosen paradox. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose-Einstein condensate reveals continuous-variable entanglement, as well as the twin-atom character of the state. Our results provide a rare example of continuous-variable entanglement of massive particles. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles.

  12. Vector correlations in rotationally inelastic molecular collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lemeshko, Mikhail

    2011-04-13

    diffractive part of the scattering amplitude which is governed by a single Legendre moment characterizing the anisotropy of the hard-core part of the system's potential energy surface. The alignment moments obtained for He-OH(X{sup 2}{pi}), He-O{sub 2}(X{sup 3}{sigma}), and He-CaH(X{sup 2}{sigma}) allowed to identify the fingerprints of diffraction, which can be used to discern diffraction-driven stereodynamics in future experiments and exact computations. Analytic results for the Ne-NO(A{sup 2}{sigma}) system were found to be in good agreement with experiment and exact computations for low rotational energy transfer; the discrepancy found for higher excitation channels could be traced back to the breakdown of the sudden approximation. The model was also applied to the k-j-k{sup '} and k-j-k{sup '}-j{sup '} correlations in rotationally inelastic Ar-NO(X{sup 2}{pi}) scattering. It was shown that preparing the reagents with polarized angular momentum j makes it possible to significantly alter the collision dynamics and stereodynamics. In the final part of the thesis the analytic theory was extended to the study of multiple scattering of matter waves propagating through atomic and molecular gases. The combination of the Fraunhofer model with the semiclassical approximation to account, respectively, for the repulsive and attractive part of the potential energy surface resulted in a simple analytic formula, which agree well with experiment for the refraction of a Li beam passing through Xe gas. (orig.)

  13. Projectile atomic-number effect on ion-induced fragmentation and ionization of fullerenes

    NARCIS (Netherlands)

    Hadjar, O; Hoekstra, R; Morgenstern, R; Schlatholter, T

    The delocalized pi electrons of a C-60 cluster can be well described as an electron gas. Electronic friction experienced by a multicharged ion colliding with a fullerene might then be modeled in terms of the electronic stopping power. We investigated such collisions for projectile atomic numbers Z

  14. Ionization and excitation of some atomic targets and metal oxides by ...

    Indian Academy of Sciences (India)

    We have calculated total inelastic and total ionization cross-sections for collisions of electrons on atomic targets oxygen (O), aluminium (Al) and copper (Cu) and metal oxides AlO and Al2O, at impact energies from near excitation threshold to 2000 eV. A complex (optical) energy-dependent interaction potential is used to ...

  15. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    Science.gov (United States)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  16. Lattice location of dopant atoms: An N-body model calculation

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... The close encounter yield from dopant atoms in silicon is determined from the flux density, using the Bontemps and Fontenille method. All previous works reported in literature so far have been done with computer programmes using a statistical analytical expression or by a binary collision model or a ...

  17. The epidemiology of bicyclist's collision accidents

    DEFF Research Database (Denmark)

    Larsen, L. B.

    1994-01-01

    The number of bicyclists injured in the road traffic in collision accidents and treated at the emergency room at Odense University Hospital has increased 66% from 1980 to 1989. The aim of this study was to examine the epidemiology of bicyclist's collision accidents and identify risk groups...... of collision accidents with motor vehicles it is necessary to separate the bicyclists from the 'hard road traffic' especially at crossings. Preventive measures must also be directed at the bicyclists. Information must be given to warn the bicyclists against the risks, not only for collisions with motor...... injured in collision accidents, and 1502 bicyclists injured in single accidents was used as a reference group. The young bicyclists 10-19 years of age had the highest incidence of injuries caused by collision accidents. The collision accidents had different characteristics according to counterpart. One...

  18. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  19. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  20. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  1. Laser Cooling, Trapping, and Bose-Einstein Condensation of Atoms and Molecules

    Science.gov (United States)

    Leduc, Michèle; Dugué, Julien; Simonet, Juliette

    2009-04-01

    In this paper we first focus on the methods developed to control the position and the velocity of atoms, taking advantage of the radiative forces exerted on atoms placed in a laser beam. Temperatures in the range of μK can be reached for dilute atomic clouds trapped under vacuum in a very small region of space. The application to fountain clocks based on cold cesium atoms is presented. We then describe the characterization and the main features of Bose-Einstein condensates, a new state of matter of purely quantum origin, which can be obtained by subsequent evaporative cooling. The methods in use for cooling molecules are considered, in particular the collision processes or the photoassociation of cold atoms. The possibility of changing interactions between ultracold particles is also explained and photoassociation is illustrated by the recent experiments of our group dealing with metastable helium atoms.

  2. Direct virtual photon production in Au plus Au collisions at root s(NN)=200 GeV STAR Collaboration

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 770, JUL (2017), s. 451-458 ISSN 0370-2693 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR collaboration * transverse mementum * Au Au collisions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.807, year: 2016

  3. STRONG VELOCITY DEPENDENCE OF ELECTRON-CAPTURE IN COLLISIONS BETWEEN ALIGNED NA-ASTERISK(3P) AND HE-2+

    NARCIS (Netherlands)

    SCHLATMANN, AR; HOEKSTRA, R; MORGENSTERN, R; OLSON, RE; PASCALE, J

    1993-01-01

    By analyzing spectra of emitted photons, we have studied state-selective electron capture in collisions of He2+ on aligned Na*(3p) atoms that span the ''velocity-matching'' energy between projectile and target electron. We find a strong dependence of the capture cross sections on the Na*(3p) orbital

  4. Laser-assisted electron capture and emission in slow proton-hydrogen collisions.

    Science.gov (United States)

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-03-01

    We investigate the effects of a strong laser field on the dynamics of ion-atom collisions by solving the time-dependent Schrödinger equation (TDSE) on a numerical grid for a 2D (reduced dimensionality) and a full 3D model of the scattering system. In the 2D model the electron system is confined to the two dimensions of the scattering plane, which also includes the laser electric field vector. This allows us to study the influence of the laser intensity and polarization (linear, circular, elliptic) on the capture and ionization probabilities for a large number of collision and laser parameters. After intergrating over impact parameters of the classical projectile trajectory and after averagering over the relative phase between the laser electric field and the collision, we find for intensities above 10^13 W/cm^2 noticeable laser electric field effects and circular dichroism in the capture probability.

  5. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  6. The Casimir atomic pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Razmi, H. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: razmi@qom.ac.ir; Abdollahi, M. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: mah.abdollahi@gmail.com

    2008-11-10

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock{exclamation_point}.

  7. The Casimir atomic pendulum

    Science.gov (United States)

    Razmi, H.; Abdollahi, M.

    2008-11-01

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock!

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  9. Dalton's Atomic Theory

    National Research Council Canada - National Science Library

    DOBBIN, LEONARD

    1896-01-01

    WITH reference to the communications from the authors and from the reviewer of the "New View of the Origin of Dalton's Atomic Theory," published in NATURE for May 14, I beg leave to offer the following remarks...

  10. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  11. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  12. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  13. Atomic Clocks Research - An Overview.

    Science.gov (United States)

    1987-08-15

    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  14. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    Energy Technology Data Exchange (ETDEWEB)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  15. Wave Atom Based Watermarking

    OpenAIRE

    Bukhari, Ijaz; Nuhman-ul-Haq; Hyat, Khizar

    2013-01-01

    Watermarking helps in ensuring originality, ownership and copyrights of a digital image. This paper aims at embedding a Watermark in an image using Wave Atom Transform. Preference of Wave Atoms on other transformations has been due to its sparser expansion, adaptability to the direction of local pattern, and sharp frequency localization. In this scheme, we had tried to spread the watermark in an image so that the information at one place is very small and undetectable. In order to extract the...

  16. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  17. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  18. Atomic Bomb Health Benefits

    OpenAIRE

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation,...

  19. Atomic interferometry; Interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baudon, J.; Robert, J. [Paris-13 Univ., 93 - Saint-Denis (France)

    2004-07-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation {lambda} = h/(mv), where {lambda} is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  20. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T. (Nagasaki Univ. (Japan). School of Medicine)

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  1. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  2. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  3. A stochastic, local mode study of neon-liquid surface collision dynamics.

    Science.gov (United States)

    Packwood, Daniel M; Phillips, Leon F

    2011-01-14

    Equations of motion for a fast, light rare gas atom passing over a liquid surface are derived and used to infer the dynamics of neon collisions with squalane and perfluorinated polyether surfaces from experimental data. The equations incorporate the local mode model of a liquid surface via a stochastic process and explicitly account for impulsive collisional energy loss to the surface. The equations predict angular distributions for scattering of neon that are in good quantitative agreement with experimental data. Our key dynamical conclusions are that experimental angular distributions derive mainly from local mode surface topography rather than from structural features of individual surface molecules, and that the available data for these systems can be accounted for almost exclusively by single collisions between neon atoms and the liquid surface.

  4. Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at root s(NN)=2.76 TeV at the LHC

    Czech Academy of Sciences Publication Activity Database

    Acharya, S.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Contreras, J. G.; Ferencei, Jozef; Hladký, Jan; Horák, D.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Lavička, R.; Mareš, Jiří A.; Petráček, V.; Šumbera, Michal; Vaňát, Tomáš; Závada, Petr

    2017-01-01

    Roč. 77, č. 10 (2017), č. článku 658. ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * heavy ion collisions * relativistic nuclear collisions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 5.331, year: 2016

  5. Collisions engineering. Theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Fremond, Michel [Rome ' ' Tor Vergata' ' Univ. (Italy). Dept. of Civil Engineering and Computer Science

    2017-02-01

    This book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.

  6. Collisions engineering theory and applications

    CERN Document Server

    Frémond, Michel

    2017-01-01

    This book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.

  7. Correlated electron-ion collisions in a strong laser field; Korrelierte Elektron-Ion-Stoesse in starken Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Ristow, T.

    2007-12-17

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  8. Electron collisions with nitrous oxide

    OpenAIRE

    Winstead, Carl; McKoy, Vincent

    1998-01-01

    We have carried out theoretical studies of low-energy elastic electron collisions with nitrous oxide (N2O), obtaining differential, integral, and momentum-transfer cross sections. Polarization effects are incorporated in the electron-molecule scattering dynamics. A simple, objective, and physically motivated criterion is introduced for constructing a compact set of configurations that accurately accounts for polarization in resonant symmetries while avoiding overcorrelation. Our cross section...

  9. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  10. Continuum considerations for Rydberg atom formation in low-density ultracold neutral plasmas

    Science.gov (United States)

    Chen, Wei-Ting; Roberts, Jacob

    2016-10-01

    Rydberg atoms are formed in ultracold neutral plasmas primarily through three-body recombination for typical experimental conditions. At low densities, the relative importance of electron-Rydberg state-changing collisions in the dynamical evolution of the Rydberg atom state populations increases, leading to temperature scalings different from the usual T - 9 / 2 scaling associated with the three-body recombination rate. We report our measurement of Rydberg atom formation rates in low-density ultracold neutral plasmas. We also discuss continuum considerations in the calculation of the three-body recombination rate and its relation to our observations. This work supported by the AFOSR.

  11. QCD studies in ep collisions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  12. Trapping cold molecules and atoms: Simultaneous magnetic deceleration and trapping of cold molecular Oxygen with Lithium atoms

    Science.gov (United States)

    Akerman, Nitzan; Karpov, Michael; Segev, Yair; Bibelink, Natan; Narevicius, Julia; Narevicius, Edvardas

    2016-05-01

    Cooling molecules to the ultra-cold regime remains a major challenge in the growing field of cold molecules. The molecular internal degrees of freedom complicate the effort of direct application of laser cooling. An alternative and general path towards ultra-cold molecules relies on sympathetic cooling via collisions with laser-cooled atoms. Here, we demonstrate the first step towards application of sympathetic cooling by co-trapping of molecular Oxygen with Lithium atoms in a magnetic trap at a temperature of 300 mK. Our experiment begins with a pulsed supersonic beam which is a general source for cold high-flux atomic and molecular beams. Although the supersonic expansion efficiently cools the beam to temperatures below 1K, it also accelerates the beam to high mean velocities. We decelerate a beam of O2 in a moving magnetic trap decelerator from 375 m/s to a stop. We entrained the molecular beam with Li atoms by laser ablation prior to deceleration. The deceleration ends with loading the molecules and atoms into a static quadrupole trap, which is generated by two permanent magnets. We estimate 109 trapped molecules with background limited lifetime of 0.6 Sec. Our achievement enables application of laser cooling on the Li atoms in order to sympathetically cool the O2.

  13. How Tiny Collisions Shape Mercury

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the

  14. A Collective Collision Operator for DSMC

    Energy Technology Data Exchange (ETDEWEB)

    GALLIS,MICHAIL A.; TORCZYNSKI,JOHN R.

    2000-06-21

    A new scheme to simulate elastic collisions in particle simulation codes is presented. The new scheme aims at simulating the collisions in the highly collisional regime, in which particle simulation techniques typically become computationally expensive.The new scheme is based on the concept of a grid-based collision field. According to this scheme, the particles perform a single collision with the background grid during a time step. The properties of the background field are calculated from the moments of the distribution function accumulated on the grid. The collision operator is based on the Langevin equation. Based on comparisons with other methods, it is found that the Langevin method overestimates the collision frequency for dilute gases.

  15. The Concept of Collision-Free Motion Planning Using a Dynamic Collision Map

    Directory of Open Access Journals (Sweden)

    Keum-Bae Cho

    2014-09-01

    Full Text Available In this paper, we address a new method for the collision-free motion planning of a mobile robot in dynamic environments. The motion planner is based on the concept of a conventional collision map (CCM, represented on the L(travel length-T(time plane. We extend the CCM with dynamic information about obstacles, such as linear acceleration and angular velocity, providing useful information for estimating variation in the collision map. We first analyse the effect of the dynamic motion of an obstacle in the collision region. We then define the measure of collision dispersion (MOCD. The dynamic collision map (DCM is generated by drawing the MOCD on the CCM. To evaluate a collision-free motion planner using the DCM, we extend the DCM with MOCD, then draw the unreachable region and deadlocked regions. Finally, we construct a collision-free motion planner using the information from the extended DCM.

  16. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions

    Science.gov (United States)

    Verkhovtsev, Alexey; Korol, Andrei V.; Solovyov, Andrey V.

    2017-08-01

    We present the results of classical molecular dynamics simulations of collision-induced fusion and fragmentation of C60 fullerenes, performed by means of the MBN Explorer software package. The simulations provide information on structural differences of the fused compound depending on kinematics of the collision process. The analysis of fragmentation dynamics at different initial conditions shows that the size distributions of produced molecular fragments are peaked for dimers, which is in agreement with a well-established mechanism of C60 fragmentation via preferential C2 emission.Atomic trajectories of the colliding particles are analyzed and different fragmentation patterns are observed and discussed. On the basis of the performed simulations, characteristic time of C2 emission is estimated as a function of collision energy.The results are compared with experimental time-of-flight distributions of molecular fragments and with earlier theoretical studies. Considering the widely explored case study of C60-C60 collisions, we demonstrate broad capabilities of the MBN Explorer software, which can be utilized for studying collisions of a broad variety of nanoscale and biomolecular systems by means of classical molecular dynamics.

  17. Optical collisions in crossed beams and Bose-Einstein condensation in a microtrap

    Energy Technology Data Exchange (ETDEWEB)

    Figl, C

    2004-05-01

    Optical collisions are studied in a crossed beams experiment. Differential cross sections of K-Ar collisions are measured and are used to derive the repulsive parts of the X{sigma} and B{sigma} potential curves. The achieved accuracy has not been realized with scattering experiments before. A collision energy resolved analysis of the final state probes the relative population of the fine-structure states K(4p1/2) and K(4p3/2) which depends on details of the outer part of the potentials. Calculations from the determined potentials are in concordance with the experimental results. The relative population of the Na fine-structure states after Na-N{sub 2} and Na-O{sub 2} collisions is determined similarly. The results for N{sub 2} are in very good agreement with the theory. Differential cross sections of Ca-Ar optical collisions are measured for an asymptotically forbidden transition. The spectral dependence of the signal intensity shows a characteristic maximum. The experimental data are in good agreement with ab initio calculations. Wires on a micro-chip create a magnetic trap that is used to obtain a Rb{sup 87} Bose-Einstein condensate. The roughness of the magnetic potential is characterized by the measured density of a cold atom cloud. The measured roughness is compared to the roughness that is calculated from the geometry of the micro-wire. (author)

  18. New parameter-free polarization potentials in low-energy positron collisions

    Science.gov (United States)

    Jain, Ashok

    1990-01-01

    The polarization potential plays a decisive role in shaping up the cross sections in low energy positron collisions with atoms and molecules. However, its inclusion without involving any adjustable parameter, is still a challenge. Various other techniques employed so far for positron collisions are summarized, and a new, nonadjustable and very simple form of the polarization potential for positron-atom (molecule) collisions below the threshold of positronium formation is discussed. This new recently proposed potential is based on the correlation energy of a single positron in a homogeneous electron gas. The correlation energy was calculated by solving the Schrodinger equation of the positron-electron system and fitted to an analytical form in various ranges of the density parameter. In the outside region, the correlation energy is joined smoothly with the correct asymptotic form. This new positron correlation polarization (PCOP) potential was tested on several atomic and molecular targets such as the Ar, CO, and CH4. The results on the total and differential cross sections on these targets are shown along with the experimental data where available.

  19. Simulations of Ground and Space-Based Oxygen Atom Experiments

    Science.gov (United States)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    Fast, pulsed atomic oxygen sources are a key tool in ground-based investigations of spacecraft contamination and surface erosion effects. These technically challenging ground-based studies provide a before and after picture of materials under low-earth-orbit (LEO) conditions. It would be of great interest to track in real time the pulsed flux from the source to the surface sample target and beyond in order to characterize the population of atoms and molecules that actually impact the surface and those that make it downstream to any coincident detectors. We have performed simulations in order to provide such detailed descriptions of these ground-based measurements and to provide an assessment of their correspondence to the actual LEO environment. Where possible we also make comparisons to measured fluxes and erosion yields. To perform the calculations we use a detailed description of a measurement beam and surface geometry based on the W, pulsed apparatus at Montana State University. In this system, a short pulse (on the order of 10 microseconds) of an O/O2 beam impacts a flat sample about 40 cm downstream and slightly displaced &om the beam s central axis. Past this target, at the end of the beam axis is a quadrupole mass spectrometer that measures the relative in situ flux of 0102 to give an overall normalized erosion yield. In our simulations we use the Direct Simulation Monte Carlo (DSMC) method, and track individual atoms within the atomic oxygen pulse. DSMC techniques are typically used to model rarefied (few collision) gas-flows which occur at altitudes above approximately 110 kilometers. These techniques are well suited for the conditions here, and multi-collision effects that can only be treated by this or a similar technique are included. This simulation includes collisions with the surface and among gas atoms that have scattered from the surface. The simulation also includes descriptions of the velocity spread and spatial profiles of the O/O2 beam

  20. Suggested improvements for ship-installation collision risk models to reflect current collision avoidance systems

    OpenAIRE

    Flohberger, Margaret Loudon

    2010-01-01

    Master's thesis in Offshore technology Accurate quantification of risks for vessel-to-platform collisions has been a goal of the petroleum industry for many years; however, technological advances in collision avoidance systems have not been reflected in current models. Additionally, new modeling theories have been developed which capture the complexities of modern socio-technical systems. This paper recommends that a new collision model be developed to reflect current collision...

  1. Suggested improvements for ship-installation collision risk models to reflect current collision avoidance systems

    OpenAIRE

    Flohberger, Margaret Loudon

    2010-01-01

    Accurate quantification of risks for vessel-to-platform collisions has been a goal of the petroleum industry for many years; however, technological advances in collision avoidance systems have not been reflected in current models. Additionally, new modeling theories have been developed which capture the complexities of modern socio-technical systems. This paper recommends that a new collision model be developed to reflect current collision avoidance systems. Today’s navigati...

  2. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  3. Telerobotics with whole arm collision avoidance

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsen, K.; Strenn, S.

    1993-09-01

    The complexity of teleorbotic operations in a cluttered environment is exacerbated by the need to present collision information to the operator in an understandable fashion. In addition to preventing movements which will cause collisions, a system providing some form of virtual force reflection (VFR) is desirable. With this goal in mind, Lawrence Livermore National Laboratory (LLNL) has installed a kinematically master/slave system and developed a whole arm collision avoidance system which interacts directly with the telerobotic controller. LLNL has also provided a structure to allow for automated upgrades of workcell models and provide collision avoidance even in a dynamically changing workcell.

  4. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  5. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  6. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  7. Atoms in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Thomas S. [University of Tennessee

    1965-01-01

    Agriculture benefits from the applications of research. Radioactive techniques have been used to study soils, plants, microbes, insects, farm animals, and new ways to use and preserve foodstuffs. Radioactive atoms are not used directly by farmers but are used in research directed by the U. S. Department of Agriculture and Atomic Energy Commission, by the agricultural experiment stations of the various states, and by numerous public and private research institutions. From such research come improved materials and methods which are used on the farm.

  8. From Atoms to Solids

    Science.gov (United States)

    1999-01-31

    Honea. M.L. Homer, J.L. Persson, R.L. Whetten , Chem. atoms Phys. Lett. 171 (1990) 147. [17] M.R. Hoare, Adv. Chem. Phys. 40 (1979) 49. Two types of...Persson, M.E. LaVilla, R.L. tal conditions, the clusters become rigid. Thereafter, Whetten , J. Phys. Chem. 93 (1989) 2869. each newly added atom condenses...106 (1981) 265. M. Broyer, Phys. Rev. A 39 (1989) 6056. [9] W. Ekardt, Ber. Bunsenges. Phys. Chem. 88 (1984) 289. [38] R.L. Whetten , private

  9. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  10. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, Michito; Tomonaga, Masao; Amenomori, Tatsuhiko; Matsuo, Tatsuki (Nagasaki Univ. (Japan). School of Medicine)

    1991-03-01

    Characteristic features of leukemia among atomic bomb survivors were studied. The ratio of a single leukemia type to all leukemias was highest for CML in Hiroshima, and the occurrence of CML was thought to be most characteristic for atomic bomb radiation induced leukemia. In the distribution of AML subtypes of FAB classification, there was no M3 cases in 1 Gy or more group, although several atypical AML cases of survivors were observed. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral blood of proximal survivors. (author).

  11. A Reconciliation of Collision Theory and Transition State Theory

    OpenAIRE

    Yi, Y. G.

    2001-01-01

    A statistical-mechanical treatment of collision leads to a formal connection with transition-state theory, suggesting that collision theory and transition-state theory might be joined ultimately as a collision induced transition state theory.

  12. Octree Bin-to-Bin Fractional-NTC Collisions

    Science.gov (United States)

    2015-09-17

    Important Collisions in Spacecraft Propulsion: Discharge and Breakdown in FRC Collisional Radiative Cooling/Ionization Combustion Chemistry Common Features...PUBLIC RELEASE 3 / 15 IMPORTANCE OF COLLISION PHYSICS Important Collisions in Spacecraft Propulsion: Discharge and Breakdown in FRC Collisional

  13. Convergent close-coupling approach to light and heavy projectile scattering on atomic and molecular hydrogen

    Science.gov (United States)

    Bray, I.; Abdurakhmanov, I. B.; Bailey, J. J.; Bray, A. W.; Fursa, D. V.; Kadyrov, A. S.; Rawlins, C. M.; Savage, J. S.; Stelbovics, A. T.; Zammit, M. C.

    2017-10-01

    The atomic hydrogen target has played a pivotal role in the development of quantum collision theory. The key complexities of computationally managing the countably infinite discrete states and the uncountably infinite continuum were solved by using atomic hydrogen as the prototype atomic target. In the case of positron or proton scattering the extra complexity of charge exchange was also solved using the atomic hydrogen target. Most recently, molecular hydrogen has been used successfully as a prototype molecule for developing the corresponding scattering theory. We concentrate on the convergent close-coupling computational approach to light projectiles, such as electrons and positrons, and heavy projectiles, such as protons and antiprotons, scattering on atomic and molecular hydrogen.

  14. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  15. FAC: Flexible Atomic Code

    Science.gov (United States)

    Gu, Ming Feng

    2018-02-01

    FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

  16. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  17. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  18. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  19. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  20. Cold atoms in microscopic traps from wires to chips

    CERN Document Server

    Cassettari, D

    2000-01-01

    Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled collisions between trapped atoms. Finally, by combining two wire guides we have experimentally realized an innovative kind of beam splitter for guided atoms. We have investigated the splitting potential generated by a Y-shaped wire which has one input, i.e. the central arm of the Y, and two outputs corresponding to the left and right arms of the Y. By tuning the current ratio in the two outputs we have observed atoms switching from left to right as well as symmetric splitting. This and other similar des...

  1. Laboratory investigations involving high-velocity oxygen atoms

    Science.gov (United States)

    Leger, Lubert J.; Koontz, Steven L.; Visentine, James T.; Cross, Jon B.

    1989-01-01

    Facilities for measuring material reactive characteristics have been under development for several years and span the atom energy range from thermal to 5 eV, the orbital collision energy. One of the high-atom energy facilities (The High Intensity/Energy Atomic Oxygen Source) capable of simulating the reactive part of LEO is described, along with results of beam characterization and preliminary material studies. The oxygen atom beam source was a continuous wave plasma produced by focusing a high-power CO2 laser through a lens system into a rare gas/molecular oxygen mixture chamber at elevated temperature. Material samples were exposed to the high velocity beam through an external feedthrough. The facility showed good stability in continued operation for more than 100 hours, producing fluences of 10 to the 21st to 10 to the 22nd atoms/sq cm. Reaction efficiencies and surface morphology have been measured for several materials at energies of 1.5 and 2.8 eV, matching with data generated from previous space flights. Activation energies for carbon and Kapton as measured in this facility were 800 cal/mole.

  2. Inhomogeneous Spin Diffusion in Traps with Cold Atoms

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    The spin diusion and damped oscillations are studied in the collision of two spin polarized clouds of cold atoms with resonant interactions. The strong density dependence of the diusion coecient leads to inhomogeneous spin diusion that changes from central to surface spin ow as the temperature...... increases. The inhomogeneity and the smaller nite trap size signicantly reduce the spin diusion rate at low temperatures. The resulting spin diusion rates and spin drag at longer time scales are compatible with measurements at low to high temperatures for resonant attractive interactions...

  3. Recent progress in electron scattering from atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brunger, M. J. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Buckman, S. J. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia and Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Sullivan, J. P.; Palihawadana, P. [Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Chiari, L.; Pettifer, Z. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Lopes, M. C. A. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Duque, H. V. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Masin, Z.; Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Garcia, G. [Instituto de Fisica Fundamental, CSIC, Madrid E-28006 (Spain); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-03-05

    We present and discuss recent results, both experimental and theoretical (where possible), for electron impact excitation of the 3s[3/2 ]{sub 1} and 3s′[1/2 ]{sub 1} electronic states in neon, elastic electron scattering from the structurally similar molecules benzene, pyrazine, and 1,4-dioxane and excitation of the electronic states of the important bio-molecule analogue α-tetrahydrofurfuryl alcohol. While comparison between theoretical and experimental results suggests that benchmarked cross sections for electron scattering from atoms is feasible in the near-term, significant further theoretical development for electron-molecule collisions, particularly in respect to discrete excitation processes, is still required.

  4. Single-collision studies of energy transfer and chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, J.J. [Columbia Univ., New York, NY (United States)

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  5. Successive combination jet algorithm for hadron collisions

    CERN Document Server

    Ellis, S D; Ellis, Stephen D.; Soper, Davision E.

    1993-01-01

    Jet finding algorithms, as they are used in $e^+ e^-$ and hadron collisions, are reviewed and compared. It is suggested that a successive combination style algorithm, similar to that used in $e^+ e^-$ physics, might be useful also in hadron collisions, where cone style algorithms have been used previously.

  6. Mechanical Energy Changes in Perfectly Inelastic Collisions

    Science.gov (United States)

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  7. Predicting Collision Damage and Resulting Consequences

    DEFF Research Database (Denmark)

    Ravn, Erik Sonne; Friis-Hansen, Peter

    2004-01-01

    This paper presents an Artificial Neutral Network (ANN)that is trained to predict the structural damage in the shipside resulting from ship-ship collisions. The input to the ANN is the absorbed energy, the length of the involved ships, the draught of the struck ship, and the angle of collision. T...

  8. Reducing deaths in single vehicle collisions.

    NARCIS (Netherlands)

    Adminaite, D. Jost, G. Stipdonk, H. & Ward, H.

    2017-01-01

    A third of road deaths in the EU are caused by collisions that involve a single motorised vehicle where the driver, rider and/or passengers are killed but no other road users are involved. These single vehicle collisions (SVCs), and how to prevent them occurring, are the subject of this report.

  9. Z to Muon Muon Collision Event Animation

    CERN Multimedia

    ATLAS experiment

    2010-01-01

    This animation was created of an actual ATLAS collision event in 2010. This animation shows from the particle view the race through the LHC, ending in the detector where the particle collision occurs. Candidate for an event with a Z boson decaying to two muons.

  10. Freestart collision for full SHA-1

    NARCIS (Netherlands)

    M.M.J. Stevens (Marc); P. Karpman (Pierre); T. Peyrin (Thomas)

    2015-01-01

    htmlabstractWe present in this article a freestart collision example for SHA-1, i.e., a collision for its internal compression function. This is the first practical break of the full SHA-1, reaching all 80 out of 80 steps, while only 10 days of computation on a 64 GPU cluster were necessary to

  11. Spectroscopy and reaction dynamics of collision complexes containing hydroxyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    Lester, M.I. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    The DOE supported work in this laboratory has focused on the spectroscopic characterization of the interaction potential between an argon atom and a hydroxyl radical in the ground X{sup 2}II and excited A {sup 2}{summation}{sup +} electronic states. The OH-Ar system has proven to be a test case for examining the interaction potential in an open-shell system since it is amenable to experimental investigation and theoretically tractable from first principles. Experimental identification of the bound states supported by the Ar + OH (X {sup 2}II) and Ar + OH(A {sup 2}{summation}{sup +}) potentials makes it feasible to derive realistic potential energy surfaces for these systems. The experimentally derived intermolecular potentials provide a rigorous test of ab initio theory and a basis for understanding the dramatically different collision dynamics taking place on the ground and excited electronic state surfaces.

  12. Radiative charge transfer in collisions of C with He+

    CERN Document Server

    Babb, James F

    2016-01-01

    Radiative charge exchange collisions between a carbon atom C(${}^3$P) and a helium ion He+, both in their ground state, are investigated theoretically. Detailed quantum chemistry calculations are carried out to obtain potential energy curves and transition dipole matrix elements for doublet and quartet molecular states of the HeC+ cation. Radiative charge transfer cross sections and rate coefficients are calculated and are found at thermal and lower energies to be large compared to those for direct charge transfer. The present results might be applicable to modelling the complex interplay of [C II] (or C+), C, and CO at the boundaries of photon dominated regions (PDRs) and in xray dominated regions (XDRs), where the abundance of He+ affects the abundance of CO.

  13. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  14. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  15. Spectr-W3 Online Database On Atomic Properties Of Atoms And Ions

    Science.gov (United States)

    Faenov, A. Ya.; Magunov, A. I.; Pikuz, T. A.; Skobelev, I. Yu.; Loboda, P. A.; Bakshayev, N. N.; Gagarin, S. V.; Komosko, V. V.; Kuznetsov, K. S.; Markelenkov, S. A.

    2002-10-01

    Recent progress in the novel information technologies based on the World-Wide Web (WWW) gives a new possibility for a worldwide exchange of atomic spectral and collisional data. This facilitates joint efforts of the international scientific community in basic and applied research, promising technological developments, and university education programs. Special-purpose atomic databases (ADBs) are needed for an effective employment of large-scale datasets. The ADB SPECTR developed at MISDC of VNIIFTRI has been used during the last decade in several laboratories in the world, including RFNC-VNIITF. The DB SPECTR accumulates a considerable amount of atomic data (about 500,000 records). These data were extracted from publications on experimental and theoretical studies in atomic physics, astrophysics, and plasma spectroscopy during the last few decades. The information for atoms and ions comprises the ionization potentials, the energy levels, the wavelengths and transition probabilities, and, to a lesser extent, -- also the autoionization rates, and the electron-ion collision cross-sections and rates. The data are supplied with source references and comments elucidating the details of computations or measurements. Our goal is to create an interactive WWW information resource based on the extended and updated Web-oriented database version SPECTR-W3 and its further integration into the family of specialized atomic databases on the Internet. The version will incorporate novel experimental and theoretical data. An appropriate revision of the previously accumulated data will be performed from the viewpoint of their consistency to the current state-of-the-art. We are particularly interested in cooperation for storing the atomic collision data. Presently, a software shell with the up-to-date Web-interface is being developed to work with the SPECTR-W3 database. The shell would include the subsystems of information retrieval, input, update, and output in/from the database and

  16. Excitation and charge transfer in He/sup +/ + H collisions. A molecular approach including two-electron translation factors

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-06-01

    In a previous paper we have pointed out that the common-translation-factor (CTF) method is the only one which, at present, and within the framework of the molecular model of atomic collisions, can be shown to be both convergent and computationally fast, even for many-electron systems. In this Communication we check that this second statement is correct, presenting, for the first time, a molecular calculation involving two-electron translation factors, for He/sup +/ + H collisions. A careful study of the sensitivity of the calculated cross sections to the choice of the CTF is performed, and conclusions on that sensitivity are drawn, for several types of processes.

  17. Simulating Collisions for Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  18. Ground Collision Avoidance System (Igcas)

    Science.gov (United States)

    Skoog, Mark A (Inventor); Prosser, Kevin (Inventor); Hook, Loyd (Inventor)

    2017-01-01

    The present invention is a system and method for aircraft ground collision avoidance (iGCAS) comprising a modular array of software, including a sense own state module configured to gather data to compute trajectory, a sense terrain module including a digital terrain map (DTM) and map manger routine to store and retrieve terrain elevations, a predict collision threat module configured to generate an elevation profile corresponding to the terrain under the trajectory computed by said sense own state module, a predict avoidance trajectory module configured to simulate avoidance maneuvers ahead of the aircraft, a determine need to avoid module configured to determine which avoidance maneuver should be used, when it should be initiated, and when it should be terminated, a notify Module configured to display each maneuver's viability to the pilot by a colored GUI, a pilot controls module configured to turn the system on and off, and an avoid module configured to define how an aircraft will perform avoidance maneuvers through 3-dimensional space.

  19. Collision-induced dissociation of protonated water clusters

    Science.gov (United States)

    Berthias, F.; Buridon, V.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.; Märk, T. D.

    2014-06-01

    Collision-induced dissociation (CID) has been studied for protonated water clusters H+(H2O)n, with n = 2-8, colliding with argon atoms at a laboratory energy of 8 keV. The experimental data have been taken with an apparatus (Device for Irradiation of Molecular Clusters, `Dispositif d'Irradiation d'Agrégats Moléculaire,' DIAM) that has been recently constructed at the Institut de Physique Nucléaire de Lyon. It includes an event-by-event mass spectrometry detection technique, COINTOF (correlated ion and neutral fragment time of flight). The latter device allows, for each collision event, to detect and identify in a correlated manner all produced neutral and charged fragments. For all the studied cluster ions, it has allowed us to identify branching ratios for the loss of i = 1 to i = n water molecules, leading to fragment ions ranging from H+(H2O)i=n-1 all the way down to the production of protons. Using a corresponding calibration technique we determine total charged fragment production cross sections for incident protonated water clusters H+(H2O)n, with n = 2-7. Observed trends for branching ratios and cross sections, and a comparison with earlier data on measured attenuation cross sections for water clusters colliding with other noble gases (He and Xe), give insight into the underlying dissociation mechanisms.

  20. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... Modelling the Energetics of Encapsulation of. Atoms and Atomic Clusters into Carbon. Nanotubes: Insights from Analytical Approaches. R. S. Swathi. School of Chemistry. Indian Institute of Science Education and Research. Thiruvananthapuram, Kerala, India ...

  1. Role of atoms in atomic gravitational-wave detectors

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.

    2017-10-01

    Recently, it has been proposed that space-based atomic sensors may be used to detect gravitational waves. These proposals describe the sensors either as clocks or as atom interferometers. Here, we seek to explore the fundamental similarities and differences between the two types of proposals. We present a framework in which the fundamental mechanism for sensitivity is identical for clock and atom interferometer proposals, with the key difference being whether or not the atoms are tightly confined by an external potential. With this interpretation in mind, we propose two major enhancements to detectors using confined atoms, which allow for an enhanced sensitivity analogous to large momentum transfer used in atom interferometry (though with no transfer of momentum to the atoms), and a way to extend the useful coherence time of the sensor beyond the atom's excited-state lifetime.

  2. Electronic and Atomic Collisions. Abstracts of Contributed Papers. International Conference on the Physics of Electronic and atomic Collisions (14th) Held at Palo Alto, California in 1985,

    Science.gov (United States)

    1985-01-01

    in this case. * Financial support from Oouncil of Scientific and Industrial Research, New Delhi for this research work is gratefully acknow- ledged. 1... Ingenieria ". C. H. G. received % . the few-particle wave function in hyperspherical support in the form of an Alfred P. Sloan Foundation...Reading, Proc. Rth sinqle-electron capture, ai a ! 010v and non-capture Conf. Applic. of Accelerators in Research and Industry , N.-.. l Nucl. Instrum

  3. Development of a new UHV/XHV pressure standard (Cold Atom Vacuum Standard).

    Science.gov (United States)

    Scherschligt, Julia; Fedchak, James A; Barker, Daniel S; Eckel, Stephen; Klimov, Nikolai; Makrides, Constantinos; Tiesinga, Eite

    2017-12-01

    The National Institute of Standards and Technology has recently begun a program to develop a primary pressure standard that is based on ultra-cold atoms, covering a pressure range of 1 × 10-6 Pa to 1 × 10-10 Pa and possibly lower. These pressures correspond to the entire ultra-high vacuum (UHV) range and extend into the extreme-high vacuum (XHV). This cold-atom vacuum standard (CAVS) is both a primary standard and absolute sensor of vacuum. The CAVS is based on the loss of cold, sensor atoms (such as the alkali-metal lithium) from a magnetic trap due to collisions with the background gas (primarily H2) in the vacuum. The pressure is determined from a thermally-averaged collision cross section, which is a fundamental atomic property, and the measured loss rate. The CAVS is primary because it will use collision cross sections determined from ab initio calculations for the Li + H2 system. Primary traceability is transferred to other systems of interest using sensitivity coefficients.

  4. Development of a new UHV/XHV pressure standard (cold atom vacuum standard)

    Science.gov (United States)

    Scherschligt, Julia; Fedchak, James A.; Barker, Daniel S.; Eckel, Stephen; Klimov, Nikolai; Makrides, Constantinos; Tiesinga, Eite

    2017-12-01

    The National Institute of Standards and Technology has recently begun a program to develop a primary pressure standard that is based on ultra-cold atoms, covering a pressure range of 1  ×  10‑6 Pa–1  ×  10‑10 Pa and possibly lower. These pressures correspond to the entire ultra-high vacuum range and extend into the extreme-high vacuum. This cold-atom vacuum standard (CAVS) is both a primary standard and absolute sensor of vacuum. The CAVS is based on the loss of cold, sensor atoms (such as the alkali-metal lithium) from a magnetic trap due to collisions with the background gas (primarily H2) in the vacuum. The pressure is determined from a thermally-averaged collision cross section, which is a fundamental atomic property, and the measured loss rate. The CAVS is primary because it will use collision cross sections determined from ab initio calculations for the Li  +  H2 system. Primary traceability is transferred to other systems of interest using sensitivity coefficients.

  5. Electron transfer processes of atomic and molecular doubly charged ions: information from beam experiments

    Science.gov (United States)

    Herman, Zdenek

    2013-07-01

    Single-electron transfer reactions in collisions of atomic and molecular doubly charged ions, with atoms and molecules, were investigated in a series of crossed-beam scattering, translational spectroscopy and product luminescence experiments. Investigation of a series of atomic dication-atom electron transfer at collision energies of 0.1-10 eV provided data on differential and relative total cross sections of state-to-state processes. Populations of electronic and vibrational states and rotational temperatures of molecular product ions were obtained from studies of non-dissociative electron transfer in systems containing simple molecular dications and/or molecular targets. The product electronic states populated with highest probability were those for which the translational energy release was 3-5 eV, indicating that the 'reaction window' concept, based on the Landau-Zener formalism, is applicable also to molecular systems. Population of the vibrational states of the molecular products could be described by Franck-Condon factors of the vertical transitions between the reactant and product states, especially at higher (keV) collision energies. Rotational temperature of the product molecular cations was found to be surprisingly low, mostly 400-500 K, practically the temperature of the ion source.

  6. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  7. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  8. Mechanical characterization of cellulose single nanofiber by atomic force microscopy

    Science.gov (United States)

    Zhai, Lindong; Kim, Jeong Woong; Lee, Jiyun; Kim, Jaehwan

    2017-04-01

    Cellulose fibers are strong natural fibers and they are renewable, biodegradable and the most abundant biopolymer in the world. So to develop new cellulose fibers based products, the mechanical properties of cellulose nanofibers would be a key. The atomic microscope is used to measure the mechanical properties of cellulose nanofibers based on 3-points bending of cellulose nanofiber. The cellulose nanofibers were generated for an aqueous counter collision system. The cellulose microfibers were nanosized under 200 MPa high pressure. The cellulose nanofiber suspension was diluted with DI water and sprayed on the silicon groove substrate. By performing a nanoscale 3-points bending test using the atomic force microscopy, a known force was applied on the center of the fiber. The elastic modulus of the single nanofiber is obtained by calculating the fiber deflection and several parameters. The elastic modulus values were obtained from different resources of cellulose such as hardwood, softwood and cotton.

  9. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  10. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  11. Atomes et rayonnement

    OpenAIRE

    Dalibard, Jean; Haroche, Serge

    2013-01-01

    Matière et lumière sont intimement liées dans notre modélisation du monde physique. De l’élaboration de la théorie quantique à l’invention du laser, l’interaction entre atomes et rayonnement a joué un rôle central dans le développement de la science et de la technologie d’aujourd’hui. La maîtrise de cette interaction permet désormais d’atteindre les plus basses températures jamais mesurées. Le refroidissement de gaz d’atomes par la lumière d’un laser conduit à une « matière quantique » aux pr...

  12. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    Science.gov (United States)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    Experimental studies of heavy and highly charged ions have made remarkable progress in recent years. Today it is possible to produce virtually any ion up to hydrogen-like uranium; to study collisions of those ions with atoms, electrons, and solid surfaces; to excite such an ion and accurately measure the radiation emitted. This progress is largely due to the development of new experimental methods, for instance, the high-energy ion accelerators, laser-produced plasmas, advanced ion sources and ion traps (such as EBIS, EBIT, ECR, etc.), high temperature magnetically confined plasmas and heavy-ion storage rings. The motivations for studies of collisions with highly charged ions and for the understanding of the structure of heavy atomic systems are multi-faceted. Besides of the basic scientific aspects which are mainly the subject of this symposium, much incentive is experienced by applications, e.g., the interpretation of spectra from space (solar corona, solar flares and hot stars), the modelling of stellar atmospheres, the diagnostics of fusion plasma impurities, and the development of X-ray lasers. Since quite some time highly charged ions play a key role for high-precision metrology of atomic structure. These studies have been benchmarks for tests of advanced theories, including many-body theories of interelectronic correlations, relativistic and quantum-electrodynamic (QED) effects, effects due to the finite size of the nucleus and to parity non-conservation (PNC). The interest in QED effects in heavy ions has increased drastically in the last few years. The remarkable experiment on Li-like uranium, recently reported from Berkeley, has stimulated several groups to perform very accurate Lamb-shift calculations on such systems, and reports from three groups were given about such work. The agreement between the calculations as well as with experiment was generally very good, which implies that the problem of evaluating the first-order Lamb shift for any element is

  13. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  14. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    stability of the design and will be measured at a future time. Angle random walk can be calculated from first principles from the shot-noise limited...interferometer cannot distinguish between the two sources of phase shifts. We describe a design for a dual atom interferometer to simultaneously...stability. This paper is organized as follows: we first describe the basic building blocks of the interferometer: beam splitters and mirrors. We then

  15. Into the atom and beyond

    CERN Document Server

    1989-01-01

    Magnifying an atom to football pitch size. The dense nucleus, carrying almost all the atomic mass, is much smaller than the ball. The players (the electrons) would see something about the size of a marble!

  16. Nuclear effects in atomic transitions

    CERN Document Server

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

  17. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  18. Electronic excitation and deexcitation of atoms and molecules in nonequilibrium plasmas; Hiheiko plasma chu no denshi reiki ryushi hanno katei

    Energy Technology Data Exchange (ETDEWEB)

    Shimamori, H. [Fukui University of Technology, Fukui (Japan)

    1997-05-20

    Regarding excitation and deexcitation due to collision of electrons and deexcitation due to collision of baryons in nonequilibrium plasma, explanation is made about the general characteristics of the elementary processes involving their formation and disappearance and about the prediction of their sectional areas and velocity constants. As for the process of the formation of excited atoms and molecules by collision of electrons, it may be divided into the direct excitation in the ground state, excitation and light emission toward the resonance state, reexcitation and transformation of excited particles, recombination of electrons and positive atomic ions, and dissociation and recombination of electrons and positive molecular ions. As for the process of the disappearance of excited particles, there exist various courses it may follow, and it is quite complicated because it is dependent on the types of particles involved and the conditions the process proceeds under. Although the skeleton has been built of the theory of derivation of the sectional area of excitation due to collision of electrons and atoms/molecules, yet it is accurate enough only when applied to simple atomic/molecular systems, is far from satisfying in general, and is to be augmented by data from future experiments. 22 refs., 3 figs., 1 tab.

  19. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  20. Atomic and Molecular Physics Program

    Science.gov (United States)

    2013-03-05

    Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban...et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber -coupled chip... PMMA -diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light

  1. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    Directory of Open Access Journals (Sweden)

    Youngjun You

    2013-06-01

    Full Text Available In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA and Time to the Closest Point of Approach (TCPA information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972 and collision avoidance rules (2001 are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  2. Calculation of the Trubnikov and Nanbu Collision Kernels: Implications for Numerical Modeling of Coulomb Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A M; Wang, C; Caflisch, R; Cohen, B I; Huang, Y

    2008-08-06

    We investigate the accuracy of and assumptions underlying the numerical binary Monte-Carlo collision operator due to Nanbu [K. Nanbu, Phys. Rev. E 55 (1997)]. The numerical experiments that resulted in the parameterization of the collision kernel used in Nanbu's operator are argued to be an approximate realization of the Coulomb-Lorentz pitch-angle scattering process, for which an analytical solution for the collision kernel is available. It is demonstrated empirically that Nanbu's collision operator quite accurately recovers the effects of Coulomb-Lorentz pitch-angle collisions, or processes that approximate these (such interspecies Coulomb collisions with very small mass ratio) even for very large values of the collisional time step. An investigation of the analytical solution shows that Nanbu's parameterized kernel is highly accurate for small values of the normalized collision time step, but loses some of its accuracy for larger values of the time step. Careful numerical and analytical investigations are presented, which show that the time dependence of the relaxation of a temperature anisotropy by Coulomb-Lorentz collisions has a richer structure than previously thought, and is not accurately represented by an exponential decay with a single decay rate. Finally, a practical collision algorithm is proposed that for small-mass-ratio interspecies Coulomb collisions improves on the accuracy of Nanbu's algorithm.

  3. Young-type interferences with electrons basics and theoretical challenges in molecular collision systems

    CERN Document Server

    Frémont, François

    2014-01-01

    Since the discovery that atomic-size particles can be described as waves, many interference experiments have been realized with electrons to demonstrate their wave behavior. In this book, after describing the different steps that led to the present knowledge, we focus on the strong link existing between photon and electron interferences, highlighting the similarities and the differences. For example, the atomic centers of a hydrogen molecule are used to mimic the slits in the Young's famous interference experiment with light. We show, however, that the basic time-dependent ionization theories that describe these Young-type electron interferences are not able to reproduce the experiment. This crucial point remains a real challenge for theoreticians in atomic collision physics.

  4. Electron-molecule collision calculations using the R-matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.u [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2010-06-15

    The R-matrix method is an embedding procedure which is based on the division of space into an inner region where the physics is complicated and an outer region for which greatly simplified equations can be solved. The method developed out of nuclear physics, where the effects of the inner region were simply parametrized, into atomic and molecular physics, where the full problem can be formulated and hopefully solved ab initio. In atomic physics R-matrix based procedures are the method of choice for the ab initio calculation of electron collision parameters. There has been a number of R-matrix procedures developed to treat the low-energy electron-molecule collision problem or particular aspects of this problem. These methods have been extended to both positron physics and the R-matrix treatment of vibrational motion. The physical basis of the R-matrix method as well as its theoretical formulation are presented. Various electron scattering models within an R-matrix formulation including static exchange, static exchange plus polarization and close coupling are described with reference to various computational implementations of the method; these are compared to similar models used within other scattering methods. The need for a balanced treatment of the target and continuum wave functions is emphasised. Extensions of close-coupling based models into the intermediate energy regime using pseudo-states is discussed, as is the adaptation of R-matrix methods to problems involving photons. The numerical realisation of the R-matrix method is based on the adaptation of quantum chemistry codes in the inner region and asymptotic electron-atom scattering programs in the outer region. Use of bound state codes in scattering calculations raises issues involving continuum basis sets, appropriate orbitals, integral evaluation, orthogonalization, Hamiltonian construction and diagonalization which need to be addressed. The algorithms developed to resolve these issues are described as

  5. Lasers, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Basic information for understanding the laser is provided including discussion of the electromagnetic spectrum, radio waves, light and the atom, coherent light, controlled…

  6. Breaking the atom with Samson

    NARCIS (Netherlands)

    Väänänen, J.; Coecke, B.; Ong, L.; Panangaden, P.

    2013-01-01

    The dependence atom =(x,y) was introduced in [11]. Here x and y are finite sets of attributes (or variables) and the intuitive meaning of =(x,y) is that the attributes x completely (functionally) determine the attributes y. One may wonder, whether the dependence atom is truly an atom or whether it

  7. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  8. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    lished the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly ellipti- cal. Keywords. Rydberg atom; quantum trajectory. PACS No. 03.65.Ge. 1. Introduction. Ever since the advent of quantum ...

  9. Symmetrical collision of multiple vortex rings

    Science.gov (United States)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  10. Jet Production in p-Pb Collisions

    CERN Document Server

    Connors, Megan

    2014-01-01

    One of the major results from the study of high energy heavy ion collisions is the observation of jet quenching. The suppression of the number of jets observed in heavy ion collisions relative to pp collisions at the same energy scaled by the number of binary collisions, is attributed to partonic energy loss in the quark gluon plasma (QGP). However, cold nuclear matter effects due to the presence of a nucleus in the initial state could also influence this measurement. To disentangle these effects p-Pb collisions are studied, where QGP formation is not expected to occur and only cold nuclear matter effects are present. In addition to being an important baseline for understanding jet quenching, jets in p-Pb collisions may also be used to provide constraints on the nuclear parton distribution functions. Fully reconstructed jets measured using the ALICE tracking system and electro-magnetic calorimeter in p-Pb collisions at $\\sqrt{s_{NN}}=5.02$ TeV are reported. In addition to the spectra, studies of the jet fragm...

  11. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J; Paul E. Johns, P

    2007-05-23

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  12. Wireless vehicular networks for car collision avoidance

    CERN Document Server

    2013-01-01

    Wireless Vehicular Networks for Car Collision Avoidance focuses on the development of the ITS (Intelligent Transportation Systems) in order to minimize vehicular accidents. The book presents and analyses a range of concrete accident scenarios while examining the causes of vehicular collision and proposing countermeasures based on wireless vehicular networks. The book also describes the vehicular network standards and quality of service mechanisms focusing on improving critical dissemination of safety information. With recommendations on techniques and protocols to consider when improving road safety policies in order to minimize crashes and collision risks.

  13. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  14. Measurements of jet quenching with semi-inclusive hadron plus jet distributions in Au plus Au collisions at root s(NN)=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 96, č. 2 (2017), č. článku 024905. ISSN 2469-9985 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * heavy ion collisions * centrality dependence Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.820, year: 2016

  15. Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at root s=2.76 TeV

    Czech Academy of Sciences Publication Activity Database

    Abelev, B.; Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Ferencei, Jozef; Hladký, Jan; Křelina, M.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Pachr, M.; Petráček, V.; Petráň, M.; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Wagner, V.; Zach, Č.; Závada, Petr

    2015-01-01

    Roč. 91, č. 1 (2015), 012001 ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE * proton-proton collisions * J/psi production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.643, year: 2014

  16. Isotope effects on the charge transfer into the n=1, 2, and 3 shells of He2+ in collisions with H, D, and T

    NARCIS (Netherlands)

    Stolterfoht, N.; Cabrera-Trujillo, R.; Krstic, P. S.; Hoekstra, R.; Oehrn, Y.; Deumens, E.; Sabin, J. R.

    Processes for charge transfer into He2+ colliding with the atomic isotopes hydrogen (H), deuterium (D), and tritium (T) are theoretically studied at collision energies as low as 30 eV/amu. Probabilities and cross sections for electron capture into different shells of the projectile are calculated

  17. Cavity QED with atomic mirrors

    Science.gov (United States)

    Chang, D. E.; Jiang, L.; Gorshkov, A. V.; Kimble, H. J.

    2012-06-01

    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated ‘impurity’ atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a ‘strong coupling’ regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.

  18. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  19. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  20. Electroless atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  1. Symmetry-protected collisions between strongly interacting photons.

    Science.gov (United States)

    Thompson, Jeff D; Nicholson, Travis L; Liang, Qi-Yu; Cantu, Sergio H; Venkatramani, Aditya V; Choi, Soonwon; Fedorov, Ilya A; Viscor, Daniel; Pohl, Thomas; Lukin, Mikhail D; Vuletić, Vladan

    2017-02-09

    Realizing robust quantum phenomena in strongly interacting systems is one of the central challenges in modern physical science. Approaches ranging from topological protection to quantum error correction are currently being explored across many different experimental platforms, including electrons in condensed-matter systems, trapped atoms and photons. Although photon-photon interactions are typically negligible in conventional optical media, strong interactions between individual photons have recently been engineered in several systems. Here, using coherent coupling between light and Rydberg excitations in an ultracold atomic gas, we demonstrate a controlled and coherent exchange collision between two photons that is accompanied by a π/2 phase shift. The effect is robust in that the value of the phase shift is determined by the interaction symmetry rather than the precise experimental parameters, and in that it occurs under conditions where photon absorption is minimal. The measured phase shift of 0.48(3)π is in excellent agreement with a theoretical model. These observations open a route to realizing robust single-photon switches and all-optical quantum logic gates, and to exploring novel quantum many-body phenomena with strongly interacting photons.

  2. RAPID COMMUNICATION: A TALIF calibration method for quantitative oxygen atom density measurement in plasma jets

    Science.gov (United States)

    Dilecce, G.; Vigliotti, M.; DeBenedictis, S.

    2000-03-01

    In this communication we propose a calibration method for two-photon absorption laser induced fluorescence (TALIF). It can be carried out without any addition or modification to the O atom TALIF set-up. It is based on the measurement of the collision quenching of the laser-excited state (3p3 P2 ) in a pure O2 system in which a high dissociation degree can be achieved. Since the collision rate constant by O is largely lower than that by O2 , the quenching rate can be correlated to the O density. The incertitude in this procedure is comparable to other calibration techniques. We have applied this method to the spatially resolved measurement of O atom density in an O2 rf plasma jet.

  3. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  4. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  5. Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact

    CERN Document Server

    Chaudhry, Afzal

    2011-01-01

    Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...

  6. Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms

    Science.gov (United States)

    González-Cuadra, Daniel; Zohar, Erez; Cirac, J. Ignacio

    2017-06-01

    We present a quantum simulation scheme for the Abelian-Higgs lattice gauge theory using ultracold bosonic atoms in optical lattices. The model contains both gauge and Higgs scalar fields, and exhibits interesting phases related to confinement and the Higgs mechanism. The model can be simulated by an atomic Hamiltonian, by first mapping the local gauge symmetry to an internal symmetry of the atomic system, the conservation of hyperfine angular momentum in atomic collisions. By including auxiliary bosons in the simulation, we show how the Abelian-Higgs Hamiltonian emerges effectively. We analyze the accuracy of our method in terms of different experimental parameters, as well as the effect of the finite number of bosons on the quantum simulator. Finally, we propose possible experiments for studying the ground state of the system in different regimes of the theory, and measuring interesting high energy physics phenomena in real time.

  7. Coherent source radius in ppbar collisions

    OpenAIRE

    Zhang, Q. H.; Li, X. Q.

    1997-01-01

    We use a recently derived result to extract from two-pion interferometry data from $p\\bar{p}$ collisions the radius of the coherent component in the source. We find a coherent source radius of about $2 fm$.

  8. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    1) exhibit certain novel inelastic (energy sharing) collisions [11] in contrast to single-component NLS system. Kanna et al have obtained multisoliton solu- tions for the multicomponent Manakov system (2) using the Hirota's method [15]. Thus,.

  9. Evidence for collective phenomena in pp collisions

    CERN Document Server

    Chen, Zhenyu

    2017-01-01

    Observation of long-range ridge-like correlations in high-multiplicity pp collisions opened up new opportunities for exploring novel QCD dynamics in small collision systems. Based on data collected in 2015 and 2016 with the CMS detector at the LHC, the second-order ($v_{2}$) and third-order ($v_{3}$) azimuthal anisotropy harmonics of $K_{s}^{0}$, $\\Lambda$ and inclusive charged particles are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For the first time in pp collisions, the $v_{2}$ signals are also extracted from multi-particle correlations, providing direct evidence of the collective nature of observed particle correlations. These results provide new insights on the origin of observed long-range correlations in pp collisions, and may shed light on how quantum fluctuations affect the proton structure at a very short time scale.

  10. Active Collision Avoidance for Planetary Landers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in radar technology have resulted in commercial, automotive collision avoidance radars. These radar systems typically use 37GHz or 77GHz interferometry...

  11. VT Vehicle-Animal Collisions - 2006

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This data (ROADKILL06) describes the locations of vehicle-animal collisions. This shapefile is a collection of collsion information collected by...

  12. LHC: Collisions on course for 2007

    CERN Multimedia

    2006-01-01

    In the LHC tunnel and caverns, a particle accelerator and detectors are rapidly taking shape. At last week's Council meeting, delegates took stock of the year's progress towards first collisions in 2007.

  13. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  14. Delay in atomic photoionization

    CERN Document Server

    Kheifets, A S

    2010-01-01

    We analyze the time delay between emission of photoelectrons from the outer valence $ns$ and $np$ sub-shells in noble gas atoms following absorption of an attosecond XUV pulse. By solving the time dependent Schr\\"odinger equation and carefully examining the time evolution of the photoelectron wave packet, we establish the apparent "time zero" when the photoelectron leaves the atom. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the quantum phase of the dipole transition matrix element, the energy dependence of which defines the emission timing. This qualitatively explains the time delay between photoemission from the $2s$ and $2p$ sub-shells of Ne as determined experimentally by attosecond streaking [{\\em Science} {\\bf 328}, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than a half of the measured time delay of $21\\pm5$~as. We argue that the XUV pulse alone cannot produce such a larg...

  15. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation

    Science.gov (United States)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.

    2017-09-01

    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  16. ALICE: Simulated lead-lead collision

    CERN Document Server

    2003-01-01

    This track is an example of simulated data modelled for the ALICE detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. ALICE will focus on the study of collisions between nuclei of lead, a heavy element that produces many different particles when collided. It is hoped that these collisions will produce a new state of matter known as the quark-gluon plasma, which existed billionths of a second after the Big Bang.

  17. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...... cargo ship regulations, was based on a very simplified presumption of bow heights. This paper investigates the development of this damage extent distribution based on three independent methodologies; actual casualty measurements, world fleet bow height statistics, and collision simulation modeling...

  18. Malignant collision tumors in two dogs.

    Science.gov (United States)

    Scott, Jacqueline E; Liptak, Julius M; Powers, Barbara E

    2017-10-15

    CASE DESCRIPTION A 13-year-old Labrador Retriever with a 4-cm-diameter ulcerated perianal mass and a 12-year-old Golden Retriever with a 5-cm-diameter ulcerated caudolateral abdominal mass were brought to a referral oncology practice for evaluation of the dermal masses. Both masses were resected with wide margins without reported postoperative complications. For both dogs, a diagnosis of collision tumor was made. The database of the Veterinary Diagnostic Laboratories at Colorado State University was searched for other examples of collision tumors in dogs. CLINICAL FINDINGS Histologic assessment of the masses revealed collision tumors in both patients. The perianal mass was diagnosed as a perianal gland carcinoma with adjacent hemangiosarcoma. The flank mass was diagnosed as a fibrosarcoma with an adjacent mast cell tumor. The university database search of sample submissions in 2008 through 2014 for the keywords collision, admixed, or adjacent yielded 37 additional cases of dogs with malignant nontesticular collision tumors. TREATMENT AND OUTCOME Both dogs were treated with surgery alone and received no adjunctive treatments. Both tumors were completely excised. There was no evidence of either local tumor recurrence or metastasis in the Labrador Retriever and the Golden Retriever at 1,009 and 433 days after surgery, respectively. CLINICAL RELEVANCE Collision tumors are rare, and there is minimal information regarding treatment recommendations and outcome for animals with collision tumors. On the basis of the 2 cases described in this report, the outcome associated with treatment of collision tumors may be similar to the expected outcome for treatment of any of the individual tumor types in dogs.

  19. Ultra-Peripheral Collisions in PHENIX

    CERN Document Server

    Conesa del Valle, Zaida

    2010-01-01

    Ultra-peripheral nuclei collisions provide means to study photon-induced interactions in a nuclear environment. We discuss the PHENIX collaboration results on J/ and e+e− photoproduction in Au+Au ultra-peripheral collisions at psNN = 200 GeV [1, 2]. Their production cross-section and transverse momentum spectra are presented. The results are compared and found to be consistent with various theoretical calculations.

  20. Conservative Bin-to-Bin Fractional Collisions

    Science.gov (United States)

    2016-06-28

    Collisionless Tiny Early e− or Radical Populations Critical to Induction Delay Many types of Inelastic Collisions with Unknown Effects on Distribution...Transitions from Collisional to Collisionless Tiny Early e− or Radical Populations Critical to Induction Delay Many types of Inelastic Collisions with... Structures , Sort->Sums, v-Bounds, Morton curve) TURF: Np/Cell - Standard DSMC TURF: (Np/Cell) SWPM+Octree TURF: Np/Cell - Standard DSMC ROBERT MARTIN (AFRL