WorldWideScience

Sample records for atom bombardment mass

  1. Advances in fast-atom-bombardment mass spectroscopy

    International Nuclear Information System (INIS)

    Hemling, M.E.

    1986-01-01

    A comparison of fast atom bombardment and field desorption mass spectrometry was made to determine relative sensitivity and applicability. A series of glycosphingolipids and a series of protected oligonucleotides of known structure were analyzed to ascertain the potential utility of fast atom bombardment mass spectrometry in the structural elucidation of novel compounds in these classes. Negative ion mass markers were also developed. Fast atom bombardment was found to be one-to-two orders of magnitude more sensitive than field desorption based on the analysis of a limited number of compounds from several classes. Superior sensitivity was not universal and field desorption was clearly better in certain cases. In the negative ion mode in particular, fast atom bombardment was found to be a useful tool for the determination of the primary structure of glycosphingolipids and oligonucleotides. Carbohydrate sequence and branching information, and a fatty acid and lipid base composition were readily obtained from the mass spectra of glycosphingolipids while bidirectional nucleotide sequence, nucleotide base, and protecting group assignments were obtained for oligonucleotides. Based on this knowledge, a tentative structure of a human peripheral nervous system glycosphingolipid implicated in certain cases of disorders such as amyotrophic lateral sclerosis, Lou Gehrig's Disease, was proposed. Suitable negative ion mass markers were found in dispersions of poly(ethylene) and poly(propylene)glycols in a triethylenetetramine matrix, a matrix which also proved useful in the analysis of glycosphingolipids. These polyglycol dispersions provided ions for calibration to 2300 daltons

  2. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  3. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Gaskell, S.J.

    1990-01-01

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  4. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  5. Electrochemically assisted fast-atom-bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Phillips, L.R.

    1988-01-01

    The hybridization of electrochemistry and fast atom bombardment (FAB) mass spectrometry (MS) creates a new hyphenated technique, referred to as electrochemically assisted FAB (EFAB) MS, which improves the applicability of FAB MS in selectivity and extends the range of compounds to include low polarity molecules, and also reduces mass spectral complications due to matrix-related artifacts. FAB MS has proven to be indispensable in analysis of samples that are otherwise too intractable for conventional MS, such as peptides, oligosaccharides, and oligonucleotides, due to low volatility and ready thermal degradation. There are limits on its applicability, however, in that it works best with samples that are already ionic, or predisposed to become so by simple proton transfer to or from the matrix. A wide range of chemical substances can be ionized/analyzed by electrochemical methods. Therefore, a possible approach towards improving applicability of FAB MS is through its hybridization with electrochemistry. Samples are activated by electrolysis, carried out directly in the sample matrix through use of a modified FAB sample probe which was constructed containing a small electrolytic cell on the tip. In operation, one electrode is held at normal sample-probe/ion-source voltage, while the other electrode can be continuously varied ±15 volts to create electrochemical potentials. Several chemical substances, known to be unresponsive to FAB MS, have been examined by EFAB MS. Resultant spectra generally show a dramatic increases in signal/chemical noise ratio of structurally significant ions when compared to normal FAB spectra

  6. Quantitation of stable isotopic tracers of calcium by fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Jiang, X.; Smith, D.L.

    1987-01-01

    Instrumentation and methodology developed for quantitation of stable isotopic traces in urine are described. Calcium is isolated from urine as the insoluble oxalate salt which is subsequently dissolved in hydrochloric acid. The isotopic content of the acid solution is determined by use of a conventional mass spectrometer equipped with a fast atom bombardment ion source. Calcium ions are desorbed from the sample surface by a beam of high-energy xenon atoms and detected with a high-resolution mass spectrometer. A data acquisition system has been developed to control the mass spectrometer and record the ion signals. Detailed analysis of potential sources of error indicates that the precision of the method is presently limited primarily by an isotope effect that occurs during ion desorption. Results presented here demonstrate that the relative abundances of calcium isotopes in urine can be determined with high precision (coefficient of variation < 0.2%) and that the method is a viable alternative to conventional thermal ionization mass spectrometry. The method is especially attractive because it uses a conventional high-resolution mass spectrometer which is routinely used for analysis of organic substances

  7. Performance of a liquid-junction interface for capillary electrophoresis mass spectrometry using continuous-flow fast-atom bombardment

    NARCIS (Netherlands)

    Reinhoud, N.J.; Niessen, W.M.A.; Tjaden, U.R.; Gramberg, L.G.; Verheij, E.R.; Greef, J. van der

    1989-01-01

    The on-line coupling of capillary electrophoresis and mass spectrometry using a continuous-flow fast-atom bombardment system in combination with a liquid-junction interface is described. The influence of the liquid-junction coupling on the efficiency and the resolution is investigated. Qualitative

  8. Synthesis of a cyclic fibrin-like peptide and its analysis by fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.D.; Costello, C.E.; Langenhove, A. van; Haber, E.; Matsueda, G.R.

    1983-01-01

    For immunochemical purposes, a cyclic 12 peptide was synthesized to model the γ-γ-chain cross-link site in human fibrin. The model was based upon the structure proposed by Chen and Doolittle which is characterized by two reciprocating epsilon-(γ-Glu)Lys bonds between adjacent fibrin γ-chains oriented in an antiparallel manner. To achieve the antiparallel orientation of the peptide backbone, Pro and Gly were inserted at positions 6 and 7 of the linear 12-peptide: acetyl-Gly-Glu-Gln-His-His-Pro-Gly-Gly-Gly-Ala-Lys-Gly-amide. The insertions were made to facilitate a reverse turn of the peptide during the last synthetic step, which was formation of the epsilon-(γ-Glu)Lys bond between Glu at position 2 and Lys at position 11 with diphenylphosphorylazide. The resulting cyclic peptide represented half of the symmetrical cross-linked region in clotted fibrin. Following purification by HPLC, both linear and cyclic 12-peptides were analyzed by fast atom bombardment mass spectrometry. Abundant molecular protonated ions were observed for both peptides. In addition, the amino acid sequence of the linear peptide and the location of the epsilon-(γ-Glu)Lys bond in the cyclized peptide could be verified. (author)

  9. Syntheses of deuterated leu-enkephalins and their use as internal standards for the quantification of leu-enkephalin by fast atom bombardment mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benfenati, E. (Istituto di Ricerche Farmacologiche Mario Negri, Bergamo (Italy) Istituto di Ricerche Farmacologiche Mario Negri, Milan (Italy)); Icardi, G.; Chen, S. (Istituto di Ricerche Farmacologiche Mario Negri, Bergamo (Italy)); Fanelli, R. (Istituto di Ricerche Farmacologiche Mario Negri, Milan (Italy))

    1990-04-01

    We have developed a synthetic method for the preparation of di- and pentadeuterated leu-enkephalin (LE), Tyr-Gly-Gly-Phe-Leu, by proton-deuterium exchange using CF[sub 3]COOO[sup 2]H. Four to six deuterium atoms are introduced using a reaction temperature of 120[sup o]C and if 5% of [sup 2]H[sub 2]O is added the di-deuterated LE is obtained. These deuterated compounds are used as internal standards to plot calibration curves of LE using fast atom bombardment mass spectrometry. (author).

  10. Use of positive ion fast atom bombardment mass spectrometry for rapid identification of a bile alcohol glucuronide isolated from cerebrotendinous xanthomatosis patients

    International Nuclear Information System (INIS)

    Dayal, B.; Salen, G.; Tint, G.S.; Shefer, S.; Benz, S.W.

    1990-01-01

    The identification of a major biliary and plasma bile alcohol glucuronide, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol-3-0-beta-D-glucuronide, present in cerebrotendinous xanthomatosis (CTX) patients, was investigated by positive ion fast atom bombardment mass spectrometry (FAB-MS). The spectrum was characterized by abundant ions formed by attachment of a proton, [M + H]+, or of alkali ions, [M + Na]+ and [M + 39K]+, to the glucuronide salt. These ions allowed an unambiguous deduction of the molecular weight of the sample. It is suggested that FAB-MS could be used in the rapid diagnosis of CTX

  11. Comparison of electron ionization and fast atom bombardment-mass spectrometry for the determination of nickel, vanadyl and free-base porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.J.; Van Berkel, G.J.; Doolittle, F.G.; Filby, R.H. (Washington State Univ., Pullman (USA))

    1989-01-01

    Fast Atom Bombardment-Mass Spectrometry (FAB-MS) and Electron Ionization-Mass Spectrometry (EI-MS) at 12 and 70 eV, were used to obtain mass spectra of mesoporphyrin IX dimethylester (DME), tetraphenylporphyrin (TPP), octaethylporphyrin (OEP), and the metal-loporphyrins, Ni(DME), Ni(TPP), Ni(OEP), VO(TPP), VO(OEP), as well as a VO(II) porphyrin concentrate obtained from the New Albany oil shale bitumen (Mississippian-Devonian). A mixture of dithiothreitol/dithioerythritol (Magic Bullet) was used as the FAB matrix. Greater fragmentation of free-base and metalloporphyrins was observed in FAB mass spectra compared to the EI mass spectra. Adduct ions formed by addition of sulfur and a matrix molecule to the porphyrins were observed. In FAB spectra of the VO(II) complexes, loss of oxygen was noted. The FAB mass spectra of mixtures of VO(II) geoporphyrins are much more complex than corresponding EI mass spectra because of the greater fragmentation and the multiplicity of ions (M{sup +}, M + H, M + 2H, etc.) observed in the FAB mode. Using the matrices investigated, FAB is less suitable for EI for the mass spectrometric analysis of the geoporphyrins.

  12. Effect of a new matrix system for low-polar organic compounds in fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Takayama, Mitsuo; Fukai, Toshio; Nomura, Taro

    1988-01-01

    A new matrix system m-NBA-DTDE (1:1) for FABMS of low-polar compounds, such as cholesterol and stearic acid methyl ester, was prepared. The system, i.e., a 1:1 mixture of m-NBA (m-nitrobenzyl alcohol) to DTDE (2,2-dithiodiethanol or 2-hydroxyethyl disulfide), contributed to measuring the positive ion FAB mass spectra of above compounds and morusin permethyl ether, and it brought an effective result on the ion current lifetime and the reproducibility of their spectra. The positive ion FAB mass spectra of these low-polar compounds were compared with the corresponding positive ion EI and CI mass spectra. (author)

  13. The use of fast atom bombardment and laser desorption mass spectrometry in the analysis of complex carbohydrates

    International Nuclear Information System (INIS)

    Egge, H.; Peter-Katalinic, J.; Karas, M.; Stahl, B.

    1991-01-01

    Oligosaccharides occurring free in secretions or bound to lipid or protein, are known to modulate the biological response in many living systems. The structural characterization of these highly diverse oligosaccharides, that may be further complicated by the occurrence of non-carbohydrate substituents such as alkyl, acyl, sulfate, or phosphate groups, for example, represents the first step towards a rational approach that is able to relate structure to function. The structural delineation of carbohydrate residues at defined sites of attachment is especially important in recombinant glycoproteins because the type and extent of glycosylation affect their biological properties. In recent years the development of soft ionization procedures and the increase in mass range above 10,000 mass units at full acceleration, together with the development of highly sensitive detectors, has allowed the analysis of glycans containing more than 30 sugar units in the nano-and subnanomolar range. (author)

  14. Defect formation and desorption of metal atoms from alkali halide crystals under low energy electron bombardment studied by optical absorption and mass spectroscopy

    International Nuclear Information System (INIS)

    Seifert, N.R.

    1993-04-01

    This work presents an extensive investigation of electronically induced desorption of ground-state alkali atoms from alkali halides and for the first time correlates directly the desorption with the stability and spatial distribution of the defects formed during bombardment. The electron impact results in the formation of stable F-centers and F-center clusters in the bulk of the crystals. In striking contrast a significant metallization of the surface is observed. Even at temperatures as low as 90 deg C the metallization is achieved within the time resolution of our detection system, which can only be explained by the rapid diffusion of hot holes. Superimposed to the fast and short diffusion of hot holes is the slow F-center diffusion. Measuring the distribution of defects with low energy ion sputtering techniques indicates that at least in the case of LiF the observed diffusion constant of F-centers agrees with values derived by using methods different from that applied here. At low temperatures the formation of F-center clusters and metal on the surface dominates. Colloid formation clearly requires higher temperatures (typically around 200 deg C). This is a strong evidence that efficient F-center diffusion is necessary for the formation of metallic particles (colloids) in the bulk of the crystals. Desorption of alkali atoms from alkali halides at temperatures around room temperature is due to weakly bound alkali atoms. For elevated temperatures the stability of the metallic clusters in the bulk of the crystals (i.e. colloids) are the rate limiting process. (author)

  15. Impact and spreading behavior of cluster atoms bombarding substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Kang, Shao-Hui; Liao, Jia-Hung [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)

    2009-12-15

    The purpose of this study is to investigate the behavior of copper cluster atoms bombarding a substrate using molecule dynamics based on tight-binding second moment approximation (TB-SMA) potential. The simulated results show that a crater on the substrate surface was created by the impact of the clusters. The variations of kinetic energy of cluster bombardments can be divided into three stages. At the initial impact level, the kinetic energies of the clusters and the substrate were constant. Then, the system went into a sluggish stage of energy variation, in which the kinetic energy of the clusters reduced. In the final stage, the kinetic energy of the system became stable. The high slip vector region around the crater had a disorder damage zone. The symmetry-like cross-slip occurred beneath the top layer of the substrate along the <1 1 0> orientations. The spreading index, temperature, and potential functions that affect the bombardments are also discussed.

  16. Impact and spreading behavior of cluster atoms bombarding substrates

    International Nuclear Information System (INIS)

    Fang, Te-Hua; Kang, Shao-Hui; Liao, Jia-Hung

    2009-01-01

    The purpose of this study is to investigate the behavior of copper cluster atoms bombarding a substrate using molecule dynamics based on tight-binding second moment approximation (TB-SMA) potential. The simulated results show that a crater on the substrate surface was created by the impact of the clusters. The variations of kinetic energy of cluster bombardments can be divided into three stages. At the initial impact level, the kinetic energies of the clusters and the substrate were constant. Then, the system went into a sluggish stage of energy variation, in which the kinetic energy of the clusters reduced. In the final stage, the kinetic energy of the system became stable. The high slip vector region around the crater had a disorder damage zone. The symmetry-like cross-slip occurred beneath the top layer of the substrate along the orientations. The spreading index, temperature, and potential functions that affect the bombardments are also discussed.

  17. On the modification of metal/ceramic interfaces by low energy ion/atom bombardment during film growth

    International Nuclear Information System (INIS)

    Rigsbee, J.M.; Scott, P.A.; Knipe, R.K.; Hock, V.F.

    1986-01-01

    Elemental Cu and Ti films have been deposited onto ceramic substrates with a plasma-aided physical vapor deposition (ion-plating) process. This paper discusses how the structure and chemistry of the metallic film and the metal/ceramic interface are modified by low energy ion and neutral atom bombardment. Emphasis is placed on determining how low energy ion/neutral atom bombardment affects the strength of the metal/ceramic interface. Analyses of the film, interface and substrate regions have employed scanning Auger microprobe, secondary ion mass spectroscopy, SEM/STEM-energy dispersive X-ray and TEM/STEM imaging and microdiffraction techniques. (Auth.)

  18. Removal of foreign atoms from a metal surface bombarded with fast atomic particles

    Energy Technology Data Exchange (ETDEWEB)

    Dolotov, S.K.; Evstigneev, S.A.; Luk' yanov, S.Yu.; Martynenko, Yu.V.; Chicherov, V.M.

    1976-07-01

    A metal surface coated with foreign atoms was irradiated with periodically repeating ion current pulses. The energy of the ions bombarding the target was 20 to 30 keV, and inert gas ions were used. A study of the time dependences of the current of the dislodged foreign atoms showed that the rate of their removal from the target surface is determined by the sputtering coefficient of the substrate metal.

  19. Removal of foreign atoms from a metal surface bombarded with fast atomic particles

    International Nuclear Information System (INIS)

    Dolotov, S.K.; Evstigneev, S.A.; Luk'yanov, S.Yu.; Martynenko, Yu.V.; Chicherov, V.M.

    A metal surface coated with foreign atoms was irradiated with periodically repeating ion current pulses. The energy of the ions bombarding the target was 20 to 30 keV, and inert gas ions were used. A study of the time dependences of the current of the dislodged foreign atoms showed that the rate of their removal from the target surface is determined by the sputtering coefficient of the substrate metal

  20. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Doležal, Karel; Tarkowski, Petr; Astot, C.; Holub, Jan; Fuksová, K.; Schmülling, T.; Sandberg, G.; Strnad, Miroslav

    2003-01-01

    Roč. 117, č. 4 (2003), s. 579-590 ISSN 0031-9317 R&D Projects: GA ČR GA522/01/0275 Grant - others:Volkswagen Stiftung(DE) I/76 865 Institutional research plan: CEZ:AV0Z5038910; CEZ:MSM 153100008 Keywords : 9--D-ribofuranosyl derivatives * Agrobacterium tumefaciens * bombardment-mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 1.767, year: 2003

  1. Fast Atom Bombardment Spectrometry - a novel analytical method for biologically interesting, non-volatile substances

    International Nuclear Information System (INIS)

    Schmid, E.

    1987-03-01

    Today important chemical substances like proteins can be produced easily and in large amounts. The primary structure of proteins can be analysed automatically, however the procedure can take some months of time. A novel method, fast atom bombardment mass spectrometry (FAB-MS) in combination with enzymatic degradation not only decreases the analysis time, but gives also additional information about the primary structure. Especially for the verification of protein structures - which is important for recombinant proteins - FAB-MS is a very useful method. 40 refs., 56 figs. (P.W.)

  2. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Koster, Monika; Urbassek, Herbert M.

    2001-01-01

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  3. Excited-atom production by electron and ion bombardment of alkali halides

    International Nuclear Information System (INIS)

    Walkup, R.E.; Avouris, P.; Ghosh, A.P.

    1987-01-01

    We present experimental results on the production of excited atoms by electron and ion bombardment of alkali halides. For the case of electron bombardment, Doppler shift measurements show that the electronically excited atoms have a thermal velocity distribution in equilibrium with the surface temperature. Measurements of the absolute yield of excited atoms, the distribution of population among the excited states, and the systematic dependence on incident electron current and sample temperature support a model in which the excited atoms are produced by gas-phase collisions between desorbed ground-state atoms and secondary electrons. In contrast, for the case of ion bombardment, the excited atoms are directly sputtered from the surface, with velocity distributions characteristic of a collision cascade, and with typical energies of --10 eV

  4. Evolution of atomic-scale surface structures during ion bombardment: A fractal simulation

    International Nuclear Information System (INIS)

    Shaheen, M.A.; Ruzic, D.N.

    1993-01-01

    Surfaces of interest in microelectronics have been shown to exhibit fractal topographies on the atomic scale. A model utilizing self-similar fractals to simulate surface roughness has been added to the ion bombardment code TRIM. The model has successfully predicted experimental sputtering yields of low energy (less then 1000 eV) Ar on Si and D on C using experimentally determined fractal dimensions. Under ion bombardment the fractal surface structures evolve as the atoms in the collision cascade are displaced or sputtered. These atoms have been tracked and the evolution of the surface in steps of one monolayer of flux has been determined. The Ar--Si system has been studied for incidence energies of 100 and 500 eV, and incidence angles of 0 degree, 30 degree, and 60 degree. As expected, normally incident ion bombardment tends to reduce the roughness of the surface, whereas large angle ion bombardment increases the degree of surface roughness. Of particular interest though, the surfaces are still locally self-similar fractals after ion bombardment and a steady state fractal dimension is reached, except at large angles of incidence

  5. Theoretical simulations of atomic and polyatomic bombardment of an organic overlayer on a metallic substrate

    CERN Document Server

    Krantzman, K D; Delcorte, A; Garrison, B J

    2003-01-01

    Our previous molecular dynamics simulations on initial test systems have laid the foundation for understanding some of the effects of polyatomic bombardment. In this paper, we describe simulations of the bombardment of a more realistic model system, an overlayer of sec-butyl-terminated polystyrene tetramers on a Ag left brace 1 1 1 right brace substrate. We have used this model system to study the bombardment with Xe and SF sub 5 projectiles at kinetic energies ranging from 0.50 to 5.0 keV. SF sub 5 sputters more molecules than Xe, but a higher percentage of these are damaged rather than ejected intact when the bombarding energy is greater than 0.50 keV. Therefore, at energies comparable to experimental values, the efficiency, measured as the yield-to-damage ratio, is greater with Xe than SF sub 5. Stable and intact molecules are generally produced by upward moving substrate atoms, while fragments are produced by the upward and lateral motion of reflected projectile atoms and fragments from the target molecul...

  6. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  7. In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes

    International Nuclear Information System (INIS)

    Sangyuenyongpipat, S.; Yu, L.D.; Brown, I.G.; Seprom, C.; Vilaithong, T.

    2007-01-01

    A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar + ions at energy 25 keV and fluence1-2 x 10 15 ions/cm 2 , revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-implantation facility as a tool for the observation of these microcraters during ion beam bombardment. Here we describe some of the features of the in-situ AFM and outline some of the related work

  8. Dependence of ion - photon emission characteristics on the concentration of implanted atoms of the bombarding beam

    International Nuclear Information System (INIS)

    Belykh, S.F.; Evtukhov, R.N.; Redina, I.V.; Ferleger, V.Kh.

    1989-01-01

    Results of experiment, where Dy + beams, its spraying products emitting intensively optical radiation with continuous spectrum (CSR), are used for tantalum surface bombardment, are presented. The given experiment allowed one to separate the scattered particle CSR contribution and was conducted under controlled beam n atom concentration on the target surface. E 0 energy and j 0 dysprosium ion flux density made up respectively 3.5 keV and 3x10 5 Axcm -2 . The obtained result analysis has shown that a notable dependence of spectrum type on n value is detected. Dy scattered atoms to not emit CSR. The main contribution to CSR is made by sprayed particles, containing dysprosium atoms

  9. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  10. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  11. Atomic masses 1995. The 1995 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1995-01-01

    The 1995 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment or systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  12. Atomic masses 1993. The 1993 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1993-01-01

    The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  13. A fast atom bombardment study of the lead isotope ratios in early nineteenth century Niagara Peninsula pottery glazes

    International Nuclear Information System (INIS)

    Miller, J.M.; Jones, T.R.B.; Kenney, Tina; Rupp, D.W.

    1986-01-01

    The application of fast atom bombardment (FAB) mass spectrometry to the determination of lead isotope ratios in nineteenth century pottery glazes from the Niagara Peninsula has been investigated with the aim of determining the source of the lead used in the glazes. Methods of sampling have been compared, including direct analysis of glass chips, analysis of powdered glaze scrapings, analysis of acid extracts of the former, and simple acid leaching of the surface of a piece of pottery. The latter method gave the best results. The FAB data, as obtained on an older mass spectrometer, can distinguish lead from igneous vs. sedimentary deposits, but is not adequate to determine specific mining locations. Although newer FAB instrumentation can narrow this range, the overlap of data from the Niagara Peninsula and England precludes a simple answer to the archeological question as to English vs. Canadian origin of the lead used in the Jordan pottery glazes. However, the data do suggest that the potter used a local source for the lead

  14. Sequencing procyanidin oligomers by fast atom bombardment mass spectrometry

    Science.gov (United States)

    Joseph J. Karchesy; Richard W. Hemingway; L. Yeap Foo; Elisabeth Barofsky; Douglas F. Barofsky

    1986-01-01

    Polymeric procyanidins (condensed tannins) are present in a wide distribution of plants, occurring in particularly high concentrations in some barks, leaves, and fruits (1). These phenolic polymers complex with proteins and therefore inhibit enzyme activity (2), are important contributors to the flavor of foods (3, 4), and influence the nutritional value of plants (5,6...

  15. Review of atomic mass formula

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1997-07-01

    Wapstra and Audi`s Table is famous for evaluation of experimental data of atomic nuclear masses (1993/1995 version) which estimated about 2000 kinds of nuclei. The error of atomic mass of formula is 0.3 MeV-0.8 MeV. Four kinds of atomic mass formula: JM (Jaenecke and Masson), TUYY (Tachibana, Uno, Yamada and Yamada), FRDM (Moeller, Nix, Myers and Swiatecki) and ETFSI (Aboussir, Pearson, Dutta and Tondeur) and their properties (number of parameter and error etc.) were explained. An estimation method of theoretical error of mass formula was presented. It was estimated by the theoretical error of other surrounding nuclei. (S.Y.)

  16. Photoluminescence of ultra-high molecular weight polyethylene modified by fast atom bombardment

    International Nuclear Information System (INIS)

    Toth, S.; Fuele, M.; Veres, M.; Pocsik, I.; Koos, M.; Toth, A.; Ujvari, T.; Bertoti, I.

    2006-01-01

    An increase in the application potential of the ultra-high molecular weight polyethylene (UHMWPE) may be achieved by producing a hard, wear resistant carbonaceous modified surface layer on it. In this study the surface of UHMWPE samples was treated by 1 keV N, H and He fast atom bombardment (FAB) to obtain amorphous carbon surface layer which produces an enhancement of microhardness. The untreated and FAB-modified samples were investigated by photoluminescence, infrared, Raman and optical absorption spectroscopy. The FAB-treatment caused a nearly complete disappearance of the characteristic luminescence bands of UHMWPE (at 335, 351, 363 and 381 nm), the appearance of new bands at 459 and 495 nm due to the formation of new recombination levels in the FAB-treated samples. The remarkable decrease in integrated luminescence intensity indicates the appearance of new non-radiative recombination levels caused by FAB treatment. Structural modifications in FAB treated samples result in the development of structural arrangement containing sp 2 bonded carbon sites in rings or chains of different sizes and the electronic levels corresponding to these structural elements are situated in the forbidden gap in the electronic density of states which brings forth the observed changes of the photoluminescence properties

  17. Changes in surface morphology and microcrack initiation in polymers under simultaneous exposure to stress and fast atom bombardment

    International Nuclear Information System (INIS)

    Michael, R.S.; Frank, S.; Stulik, D.; Dickinson, J.T.

    1987-01-01

    The authors present studies of the changes in surface morphology due to simultaneous exposure of polymers to stress and fast atom bombardment. The polymers examined were Teflon, Kapton, Nylon, and Kevlar-49. The incident particles were 6 keV xenon atoms. The authors show that in the presence of mechanical stress these polymers show topographical changes at particle doses considerably lower than similar changes produced on unstressed material. Applied stress also promotes the formation of surface microcracks which could greatly reduce mechanical strength of the material

  18. Pt.2. Charge and mass analysis at 217MeV bombarding energy

    International Nuclear Information System (INIS)

    Galin, J.; Gatty, B.; Guerreau, D.; Lefort, M.; Tarrago, X.; Agarwal, S.; Babinet, R.; Cauvin, B.; Girard, J.; Nifenecker, H.

    1977-01-01

    Atomic numbers and masses have been identified for the fragments (12 40 Ar (217MeV) + 197 Au. Even for such a large mass asymmetry in the entrance channel it is shown how difficult it is, for some part of the cross section, to distinguish between a classical deep inelastic phenomenon and the formation of a true compound nucleus followed by symmetric fission. The two reaction mechanisms are then studied separately in a critical way comparing with existing models

  19. MD simulation of atomic displacements in metals and metallic bilayers under low energy ion bombardment at 300 K

    International Nuclear Information System (INIS)

    Kornich, G.V.; Betz, G.; Bazhin, A.I.

    1999-01-01

    MD simulations of 100 eV Ar ion bombardment of (1 0 0) Ni and Al as well as Al/Ni bilayer crystals at 300 K have been performed and compared to previous calculations at 0 K. The Al/Ni bilayer crystal consisted of one Al layer on a (1 0 0) Ni substrate. Sputtering yields for Ni and Al/Ni show no temperature dependence, while for Al a pronounced increase with temperature was observed. The contributions of different mechanisms to the production of surface and bulk defects are discussed. The mean square displacement (MSD) of atoms is in all cases larger at 300 K as compared to 0 K. The larger MSD at 300 K is mainly due to an increase in lateral (perpendicular to the ion beam) motion of displaced atoms. Similar the number of atomic jumps, in which an atom leaves its original Wigner-Seitz cell, increases in all cases with temperature. For the pure elements the production of bulk vacancies and interstitials decreases with temperature, but the number of surface vacancies and ad-atoms increases with temperature. For the bilayer system practically no temperature dependence for defects was observed

  20. Symposium on fast atom and ion induced mass spectrometry of nonvolatile organic solids

    International Nuclear Information System (INIS)

    McNeal, C.J.

    1982-01-01

    The mechanisms of molecular and fragment ion production and the various parameters affecting ion yields were discussed by 6 invited speakers from Europe, Canada, and the US at this symposium. The work reported was almost equally divided between that using low-energy (keV) primary ion (or atom) beams, e.g. fast atom bombardment mass spectrometry (FABMS) and secondary ion mass spectrometry (SIMS) and that using high energy (MeV) particles, e.g. heavy ion induced mass spectrometry (HIIDMS) and 252 Cf-plasma desorption mass spectrometry ( 252 Cf-PDMS). Both theoretical foundations and observed experimental results for both techniques are included

  1. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  2. Atom counting with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Kutschera, Walter

    1995-01-01

    A brief review of the current status and some recent applications of accelerator mass spectrometry (AMS) are presented. Some connections to resonance ionization mass spectroscopy (RIS) as the alternate atom counting method are discussed

  3. New experiments in organic, fast-atom-bomdardment, and secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    DiDonato, G.C.

    1987-01-01

    The goal of research presented in this dissertation is the creative use of new ionization and instrumental techniques in mass spectrometry. This goal manifests itself in three areas of mass spectrometry. In the first portion, modern, state-of-the-art instrumentation and new experiments were used to re-examine the mass spectra of transition-metal acetates and acetylacetonates. High resolution, chemical ionization, negative chemical ionization, and extended-mass-range mass spectrometry uncovered a wealth of new gas-phase ionic species. Energy-resolved mass spectrometry/mass spectrometry was applied to the characterization of molecular and fragment ion first-row transition-metal acetylacetonates, and comprises the second portion of the thesis. Studies in fast-atom-bombardment mass spectrometry are the subject of the third portion of the dissertation. Since fast-atom bombardment samples a liquid matrix, absolute and relative abundances of sputtered secondary ions are influenced by solution chemistry. The design and construction of an imaging secondary-ion mass spectrometer is the subject of the final portion of the thesis. This instrument provides for direct mass-spectrometric analysis of thin-layer and paper chromatograms and electrophoretograms

  4. Mass defect effects in atomic clocks

    Science.gov (United States)

    Yudin, Valeriy; Taichenachev, Alexey

    2018-03-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.

  5. Effects of mass defect in atomic clocks

    Science.gov (United States)

    Taichenachev, A. V.; Yudin, V. I.

    2018-01-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (such as gravitational and quadratic Doppler shifts) can be interpreted as consequences of the mass defect, i.e., without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions..

  6. Atomic masses of rare-earth isotopes

    International Nuclear Information System (INIS)

    Schmidt-Ott, W.D.; Kantus, R.; Runte, E.

    1981-01-01

    A survey is given of decay energies of rare-earth isotopes measured in electron-capture decay by relative Psub(K) ratios, ECsub(K)/β + , and EC/β + ratios. Atomic masses of A = 147 isotopes and of 146 Gd and 148 Dy were derived. The masses of these isotopes and of α-decaying precessors are compared with predictions of current mass formulae. The subshell closure at Z = 64 is shown for N = 82, and 84 isotones. (orig.)

  7. Atomic mass formula with linear shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.

    1981-01-01

    An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)

  8. Nanoconstructive bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J [VSW Ion Beam Systems, Warrington (UK)

    1990-06-01

    Ion beams with energies as low as a few eV can be used, in the very clean environment of an ultra-high vacuum system, to achieve the fine control for atomic-scale experiments. They are becoming widely used in nanotechnology. Recent advances in beam quality, overcoming the mutual repulsion of the ions, have meant that mass-analysed low energy ion beams have been developed around the world for a variety of applications in material science, and physics. The structure of such devices is outlined and possible future applications noted. (U.K.).

  9. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  10. A statistical analysis of the lateral displacement of Si atoms in molecular dynamics simulations of successive bombardment with 20-keV C{sub 60} projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Krantzman, K.D., E-mail: krantzmank@cofc.edu [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Cook, E.L. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Wucher, A. [Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg (Germany); Garrison, B.J. [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-07-15

    An important factor that determines the possible lateral resolution in sputter depth profiling experiments is ion induced lateral displacement of substrate atoms. Molecular dynamics (MD) simulations are performed to model the successive bombardment of Si with 20 keV C{sub 60} at normal incidence. A statistical analysis of the lateral displacement of atoms that originate from the topmost layer is presented and discussed. From these results, it is determined that the motion is isotropic and can be described mathematically by a simple diffusion equation. A 'diffusion coefficient' for lateral displacement is determined to be 3.5 A{sup 2}/impact. This value can be used to calculate the average lateral distance moved as a function of the number of impacts. The maximum distance an atom may move is limited by the time that it remains on the surface before it is sputtered. After 800 impacts, 99% of atoms from the topmost layer have been removed, and the average distance moved by these atoms is predicted to be 100 A. Although the behavior can be described mathematically by the diffusion equation, the behavior of the atoms is different than what is thought of as normal diffusion. Atoms are displaced a large distance due to infrequent large hops.

  11. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  12. Comprehensive update of the atomic mass predictions

    International Nuclear Information System (INIS)

    Haustein, P.E.

    1987-01-01

    A project has been completed recently for a comprehensive update of atomic mass predictions. This last occurred in 1976. Over the last 10 years the reliability of these earlier predictions (and others published later) has been analyzed by comparisons of the predictions with new masses from isotopes that were not in the experimental data base when the predictions were prepared. This analysis has highlighted distinct systematic features in various models which frequently result in poor predictions for nuclei that lie far from stability. An overview of the new predictions from models with different theoretical approaches will be presented

  13. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    International Nuclear Information System (INIS)

    Eronen, Tommi

    2011-01-01

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  14. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, Tommi [Department of Physics, University of Jyvaeskylae, FI-40014 University of Jyvaeskylae (Finland); Collaboration: JYFLTRAP Collaboration

    2011-11-30

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  15. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  16. On the problem of whether mass or chemical bonding is more important to bombardment-induced compositional changes in alloys and oxides

    International Nuclear Information System (INIS)

    Kelly, R.

    1980-01-01

    The bombardment of alloys, oxides, and halides often leads to marked compositional changes at the surface, and these changes have been attributed to an interplay of mass-dependent effects, chemical bonding, electronic processes, and diffusion. We attempt here to answer the limited question of whether, considering only alloys and oxides, mass or bonding is normally more important. The relevant theory is reviewed and extended, with mass effects being shown to be associated most explicitly with recoil sputtering and bonding effects being shown to be associated with all three of cascade sputtering, thermal sputtering, and surface segregation. As far as experimental examples are concerned, mass correlations are found to be quite unsuccessful, whereas most observations can be understood rather well in terms of bonding. Nevertheless, there is a basic problem in that the cascade component of sputtering, normally judged to be predominant, should give significantly less compositional change than is observed. Thermal sputtering would lead to more significant changes, but there is a new problem that, at least with alloys, the absolute yields are probably rather small. A combination of surface segregation with sputtering would also lead to more significant changes, but it is unclear whether segregation is rapid enough to be important in room-temperature bombardments. (orig.)

  17. History and status of atomic mass measurement and evaluation

    International Nuclear Information System (INIS)

    Huang Wenxue; Zhu Zhichao; Wang Meng; Wang Yue; Tian Yulin; Xu Hushan; Xiao Guoqing

    2010-01-01

    Mass is one of the most fundamental properties that can be obtained about an atomic nucleus. High-accuracy mass values for atoms let us study the atomic and nuclear binding energies that represent the sum of all the atomic and nucleonic interactions. Looking on the history of nuclear masses, it can be found that it is almost as old as that of nuclear physics itself. The experimental methods for masses and the relevant outcomes are so rich that the evaluation is needed to check the consistency among the various results and obtain more reliable data. The atomic mass evaluation is a considerate and complicated process. This paper introduces briefly the history and status of atomic mass measurement and evaluation. (authors)

  18. Nolen-Schiffer anomaly and atomic masses

    International Nuclear Information System (INIS)

    Fayans, S. A.

    1998-01-01

    A new form of the nuclear energy-density functional for describing the ground state properties of finite nuclei up to the drip lines and beyond is proposed. The surface energy-density term has a fractional form containing (∇ρ) 2 both in the numerator and in the denominator. An effective ρ-dependent Coulomb-nuclear correlation term is added. A fit to the nuclear masses and radii shows that the latter term gives contribution of the same order of magnitude as the Nolen-Schiffer anomaly in Coulomb displacement energy. The self-consistent run with the suggested functional, performed for about 100 spherical nuclei, has given the rms deviations from the experiment of ≅1.2 Mev in masses and ≅0.01 fm in radii. The extrapolation to the drip lines goes in between the ETFSI and the macroscopic-microscopic model predictions

  19. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  20. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  1. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  2. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  3. Analysis of tumour-localizing haematoporphyrin derivative by high-performance liquid chromatography and fast-atom bombardment mass spectrometry

    NARCIS (Netherlands)

    Meijers, J. C.; Lim, C. K.; Lawson, A. M.; Peters, T. J.

    1986-01-01

    Reversed-phase chromatography using a MOS-Hypersil (C8) column with methanol-1 M ammonium acetate buffer (pH 4.6) (60:40) as mobile phase has been developed for the isolation of tumour-localizing haematoporphyrin derivative (HPD). The system effectively resolved the diastereoisomers of

  4. Impurity 'hot' atoms 67Ga in a role a physical-chemical studies at an estimation of radiation damage in Zn cyclotron targets after bombardment with charged particles

    International Nuclear Information System (INIS)

    Alekseev, I.E.; Lazarev, V.V.

    2006-01-01

    In this paper, the migration of impurity 'hot atoms' 67 Ga produced from various types of nuclear reaction on zinc targets is reported. The type of charged particles as well as their energy, beam current, total fluency was varied

  5. New discovery: Quantization of atomic and nuclear rest mass differences

    International Nuclear Information System (INIS)

    Gareev, F. A.; Zhidkova, I. E.

    2007-01-01

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize [1] phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔ M = n 1 /n 2 x 0.0076294 (in MeV/c 2 ), n i =1,2,3,... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research fields can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste. References [1] F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0610002 2006

  6. New Isotope Analysis Method: Atom Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young

    2011-01-01

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Some fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of artificially produced radioactive isotopes has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10 -10 . In general, radio-chemical method has been applied to detect ultra-trace radio isotopes. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The Accelerator Mass Spectrometer has high isotope selectivity, but the system is huge and its selectivity is affected by isobars. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) has the advantage of isobar-effect free characteristics. But the system size is still huge for high isotope selective system. Recently, ATTA (Atom Trap Trace Analysis) has been successfully applied to detect ultra-trace isotope, Kr-81 and Kr-85. ATTA is the isobar-effect free detection with high isotope selectivity and the system size is small. However, it requires steady atomic beam source during detection, and is not allowed simultaneous detection of several isotopes. In this presentation, we introduce new isotope detection method which is a coupled method of Atom Trap Mass Spectrometry (ATMS). We expect that it can overcome the disadvantage of ATTA while it has both advantages of ATTA and mass spectrometer. The basic concept and the system design will be presented. In addition, the experimental status of ATMS will also be presented

  7. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  8. Universality of spectator fragmentation at relativistic bombarding energies

    International Nuclear Information System (INIS)

    Schuettauf, A.; Woerner, A.

    1996-06-01

    Multi-fragment decays of 129 Xe, 197 Au, and 238 U projectiles in collisions with Be, C, Al, Cu, In, Au, and U targets at energies between E/A=400 MeV and 1000 MeV have been studied with the ALADIN forward-spectrometer at SIS. By adding an array of 84 Si-CsI(Tl) telescopes the solid-angle coverage of the setup was extended to θ lab =16 . This permitted the complete detection of fragments from the projectile-spectator source. The dominant feature of the systematic set of data is the Z bound universality that is obeyed by the fragment multiplicities and correlations. These observables are invariant with respect to the entrance channel if plotted as a function of Z bound , where Z bound is the sum of the atomic numbers Z i of all projectile fragments with Z i ≥2. No significant dependence on the bombarding energy nor on the target mass is observed. The dependence of the fragment multiplicity on the projectile mass follows a linear scaling law. The reasons for and the limits of the observed universality of spectator fragmentation are explored within the realm of the available data and with model studies. It is found that the universal properties should persist up to much higher bombarding energies than explored in this work and that they are consistent with universal features exhibited by the intranuclear cascade and statistical multifragmentation models. (orig.)

  9. On-line mass separator of superheavy atoms

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T 1/2 ≥ 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/ΔM ∼ 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected α-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams

  10. On-Line Mass Separator of Superheavy Atoms

    CERN Document Server

    Oganessian, Yu T

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T_{1/2}\\ge 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/\\Delta M\\sim 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected alpha-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams.

  11. Estimation of atomic masses of heavy and superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)

    1997-07-01

    To estimate unknown atomic masses of heavy and superheavy elements, three kinds of formula: FRDM (finite range droplet model by Moeller et al.), TUYY (an empirical formula by Tachibana et al.) and our KUTY are explained. KUTY estimates the crude shell energies of spherical nucleus from sum of single-particle energies. Then, the refined shell energies in due consideration of paring and deformation are obtained by mixing with the functions of the crude shell energies. Experimental values of U and Fm isotopes were compared with estimation mass of KUTY and FRDM. In the field with experimental values of U isotopes, the value of KUTY and FRDM separated the same difference from the experimental value. The behavior of KUTY and FRDM for Fm isotopes were same as that of U, but ETFSI deviated a little from the experimental values. (S.Y.)

  12. Guided mass spectrum labelling in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D., E-mail: daniel.haley@materials.ox.ac.uk [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Choi, P.; Raabe, D. [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany)

    2015-12-15

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  13. Guided mass spectrum labelling in atom probe tomography

    International Nuclear Information System (INIS)

    Haley, D.; Choi, P.; Raabe, D.

    2015-01-01

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  14. Infinite nuclear matter based for mass of atomic nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    1987-01-01

    The ground-state energy of an atomic nucleus with asymmetry β is considered to be equivalent to the energy of a perfect sphere made up of infinite nuclear matter of the same asymmetry plus a residual energy eta, called the local energy. Eta represents the energy due to shell, deformation, diffuseness and exchange Coulomb effects, etc. Using this picture and the generalised Hugenholtz-Van Hove theorem of many-body theory, the previously proposed mass relation is derived in a transport way in which eta drops away in a very natural manner. The validity of this mass relation is studied globally using the latest mass table. The model is suitable for the extraction of the saturation properties of nuclear matter. The binding energy per nucleon and the saturation Fermi momentum of nuclear matter obtained through this model are 18.33 MeV and 1.48 fm -1 respectively. It is shown in several representative cases in the Periodic Table that the masses of nuclei in the far unknown region can be reliably predicted. (author)

  15. Atomic mass determinations for 183W and 199Hg and the mercury problem

    International Nuclear Information System (INIS)

    Barillari, D.K.; Vaz, J.V.; Barber, R.C.; Sharma, K.S.

    2003-01-01

    Recent modifications to the 'Manitoba II' high resolution mass spectrometer are described. Mass differences among the members of the triplet 199 Hg - 183 W 16 O- 12 C 2 35 Cl 5 have been measured. These self-consistent mass differences give masses for 183 W and 199 Hg, as well as the mass difference across the W to Hg region of the mass table. These masses and the mass difference provide important constraints for the least squares atomic mass evaluation

  16. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    Science.gov (United States)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  17. Atomic scale mass delivery driven by bend kink in single walled carbon nanotube

    International Nuclear Information System (INIS)

    Kan Biao; Ding Jianning; Ling Zhiyong; Yuan Ningyi; Cheng Guanggui

    2010-01-01

    The possibility of atomic scale mass delivery by bend kink in single walled carbon nanotube was investigated with the aid of molecular dynamics simulation. By keeping the bending angle while moving the tube end, the encapsulated atomic scale mass such as atom, molecule and atom group were successfully delivered through the nanotube. The van der Waals interaction between the encapsulated mass and the tube wall provided the driving force for the delivery. There were no dramatic changes in the van der Waals interaction, and a smooth and steady delivery was achieved when constant loading rate was applied. The influence of temperature on the atom group delivery was also analyzed. It is found raising temperature is harmful to the smooth movement of the atom group. However, the delivery rate can be promoted under higher temperature when the atom group is situated before the kink during the delivery.

  18. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  19. Surface roughening under ion bombardment

    International Nuclear Information System (INIS)

    Bhatia, C.S.

    1982-01-01

    Ion bombardment can cause roughening of a surface. Inadequate step coverage and poor adhesion of films on such surfaces are of concern. An extreme case of surface roughening results in cone formation under ion bombardment. The results of the investigation, using scanning electron microscopy, is discussed in terms of the role of (a) embedded particles, (b) impurities and (c) surface migration in cone formation on the target surface. (Auth.)

  20. Photon mass attenuation coefficients, effective atomic numbers and ...

    Indian Academy of Sciences (India)

    of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon ..... This photon build-up is a function of thickness and atomic number of the sample and also the incident photon energy, which combine to ...

  1. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takashi; Kurosawa, Tadahiro; Nakamura, Takashi E-mail: nakamura@cyric.tohoku.ac.jp

    2002-03-21

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z{sub p}, mass number A{sub p}, energy per nucleon E{sub p} for projectile, and atomic number Z{sub T}, mass number A{sub T} for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emission angle of 0-90 deg. for bombardment with heavy ions and protons in the aforementioned energy region. This method will be quite useful to estimate the neutron source term in the neutron shielding design of high energy proton and heavy ion accelerators.

  2. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-05-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  3. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L.D.

    2014-01-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms

  4. Measuring and engineering the atomic mass density wave of a Gaussian mass-polariton pulse in optical fibers

    Science.gov (United States)

    Partanen, Mikko; Tulkki, Jukka

    2018-02-01

    Conventional theories of electromagnetic waves in a medium assume that only the energy of the field propagates inside the medium. Consequently, they neglect the transport of mass density by the medium atoms. We have recently presented foundations of a covariant theory of light propagation in a nondispersive medium by considering a light wave simultaneously with the dynamics of the medium atoms driven by optoelastic forces [Phys. Rev. A 95, 063850 (2017)]. In particular, we have shown that the mass is transferred by an atomic mass density wave (MDW), which gives rise to mass-polariton (MP) quasiparticles, i.e., covariant coupled states of the field and matter having a nonzero rest mass. Another key observation of the mass-polariton theory of light is that, in common semiconductors, most of the momentum of light is transferred by moving atoms, e.g., 92% in the case of silicon. In this work, we generalize the MP theory of light for dispersive media and consider experimental measurement of the mass transferred by the MDW atoms when an intense light pulse propagates in a silicon fiber. In particular, we consider optimal intensity and time dependence of a Gaussian pulse and account for the breakdown threshold irradiance of the material. The optical shock wave property of the MDW, which propagates with the velocity of light instead of the velocity of sound, prompts for engineering of novel device concepts like very high frequency mechanical oscillators not limited by the acoustic cutoff frequency.

  5. A molecular dynamics study of helium bombardments on tungsten nanoparticles

    Science.gov (United States)

    Li, Min; Hou, Qing; Cui, Jiechao; Wang, Jun

    2018-06-01

    Molecular dynamics simulations were conducted to study the bombardment process of a single helium atom on a tungsten nanoparticle. Helium atoms ranging from 50 eV to 50 keV were injected into tungsten nanoparticles with a diameter in the range of 2-12 nm. The retention and reflection of projectiles and sputtering of nanoparticles were calculated at various times. The results were found to be relative to the nanoparticle size and projectile energy. The projectile energy of 100 eV contributes to the largest retention of helium atoms in tungsten nanoparticles. The most obvious difference in reflection exists in the range of 3-10 keV. Around 66% of sputtering atoms is in forward direction for projectiles with incident energy higher than 10 keV. Moreover, the axial direction of the nanoparticles was demonstrated to influence the bombardment to some degree.

  6. Computer simulation of the topography evolution on ion bombarded surfaces

    CERN Document Server

    Zier, M

    2003-01-01

    The development of roughness on ion bombarded surfaces (facets, ripples) on single crystalline and amorphous homogeneous solids plays an important role for example in depth profiling techniques. To verify a faceting mechanism based not only on sputtering by directly impinging ions but also on the contribution of reflected ions and the redeposition of sputtered material a computer simulation has been carried out. The surface in this model is treated as a two-dimensional line segment profile. The model describes the topography evolution on ion bombarded surfaces including the growth mechanism of a facetted surface, using only the interplay of reflected and primary ions and redeposited atoms.

  7. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    An historical overview of the main advances in the understanding of bombardment-induced surface topography is presented. The implantation and sputtering mechanisms which are relevant to ion bombardment modification of surfaces and consequent structural, electronic and compositional changes are described. Descriptions of plasma and ion-beam sputtering-induced film formation, primary ion-beam deposition, dual beam techniques, cluster of molecule ion-beam deposition, and modification of thin film properties by ion bombardment during deposition are presented. A detailed account is given of the analytical and computational modelling of topography from the viewpoint of first erosion theory. Finally, an account of the possible application and/or importance of textured surfaces in technologies and/or experimental techniques not considered in previous chapters is presented. refs.; figs.; tabs

  8. Proposal for an absolute, atomic definition of mass

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1991-11-01

    It is proposed that the mass of a particle be defined absolutely as its de Broglie frequency, measured as the mean de Broglie wavelength of the particle when it has a mean speed (v) and Lorentz factor γ; the masses of systems too large to have a measurable de Broglie wavelength mean are then to be derived by specifying the usual inertial and additive properties of mass. This definition avoids the use of an arbitrary macroscopic standard such as the prototype kilogram, and, if present theory is correct, does not even require the choice of a specific particle as a mass standard. Suggestions are made as to how this absolute mass can be realized and measured at the macroscopic level and, finally, some comments are made on the effect of the new definition on the form of the equations of physics. 19 refs

  9. Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy

    Science.gov (United States)

    Wu, Yingwei; Peng, Kun

    2018-06-01

    Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.

  10. Kinetics of heterogeneous nucleation of gas-atomized Sn-5 mass%Pb droplets

    International Nuclear Information System (INIS)

    Li Shu; Wu Ping; Zhou Wei; Ando, Teiichi

    2008-01-01

    A method for predicting the nucleation kinetics of gas-atomized droplets has been developed by combining models predicting the nucleation temperature of cooling droplets with a model simulating the droplet motion and cooling in gas atomization. Application to a Sn-5 mass%Pb alloy has yielded continuous-cooling transformation (CCT) diagrams for the heterogeneous droplet nucleation in helium gas atomization. Both internal nucleation caused by a catalyst present in the melt and surface nucleation caused by oxidation are considered. Droplets atomized at a high atomizing gas velocity get around surface oxidation and nucleate internally at high supercoolings. Low atomization gas velocities promote oxidation-catalyzed nucleation which leads to lower supercoolings. The developed method enables improved screening of atomized powders for critical applications where stringent control of powder microstructure is required

  11. Quantization of Differences Between Atomic and Nuclear Rest Masses and Self-organization of Atoms and Nuclei

    Science.gov (United States)

    Gareev, F. A.; Zhidkova, I. E.

    2007-03-01

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.

  12. Doubly versus singly positively charged oxygen ions back-scattered from a silicon surface under dynamic O2+ bombardment

    International Nuclear Information System (INIS)

    Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek

    2003-01-01

    Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation

  13. Mass survey of lung cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Sasaki, Hideo; Itoh, Chikako; Mitsuyama, Toyofumi; Mishima, Yasuhiro; Katsuta, Shizutomo.

    1978-01-01

    Men atomic bomb survivors over the age of 40 years received a survey of lung cancer by questionnaire together with the general survey for atomic bomb survivors, and the following results were obtained. The survey by questionnaire was carried out on 29780 cases during one year 1977 to 1978, and 6 cases of lung cancer were discovered. The discovery rate was 20.1 persons against a hundred thousand persons. Lung cancer discovered during 2 years from April, 1976 was 14 cases, and the discovery rate was 23.9 persons against a hundred thousand persons. The discovery rate according to exposure conditions was higher in order of a group entering Hiroshima city after A-bomb explosion and other group (33.2 persons), a group directly exposed over 2 km from the center of explosion (20.0 persons), and a group directly exposed within 2 km (1.5 persons). Therefore, results that the discovery rate of lung cancer was higher in short-distance group could not be obtained. (Tsunoda, M.)

  14. Measurement of atomic number and mass attenuation coefficient in ...

    Indian Academy of Sciences (India)

    literature on the measurement of mass attenuation coefficient in magnesium ferrite. The knowledge of photon ... pure) MgO and Fe2O3. The details of experimental ... and (4 4 0) planes belonging to cubic spinel structure. The XRD pattern ...

  15. A study of beta decay energies and atomic masses

    International Nuclear Information System (INIS)

    Spanier, L.

    1988-04-01

    The q β energies of 123-131 In have been determined using the end points of β spectra recorded in β-γ coincidence experiments. A HPGe planar detector was used to detect the β-particles and a semi-empirical response function was used when unfolding the electron distribution. The mass excesses were deduced and when they were compared with the predictions of various mass formulae, the cadmium isotopes were found to be heavier than those predicted by most of the mass formulae. The excitation energy of the 1/2 - proton-hole state in the odd indium isotopes was shown to be constant for all the heavy isotopes. The Q EC energies of 148 Dy and 96 Pd were determined using the β + /EC intensity ratio method. The ratio of the intensity of the β+ branch to the total beta decay intensity was determined by means of γ-spectroscopic methods. The mass excesses were deduced. The two-proton binding energy for the N=82 isotones showed only a small step of approximately 0.5 MeV when the doubly-magic nucleus 146 Gd was encountered. A liquid drop type mass formula with deformation and shell energy corrections and with few free parameters is presented. The shell energy correction is a simple analytical expression for the equilibrium deformation of the nucleus. An analytical expression for the equilibrium nuclear deformation is also presented. The mass formula was applied to nuclei with Z and N greater than 50. The RMS deviation is 0.55 milli mass units. The reaction 98 Mo(p,n) 98 Tc was investigated through the counter ratio method, the ratio of the number of slow neutrons to the number of fast neutrons. The Q pn energy value of a low-spin state in 98 Tc was determined. The state at 90.9 keV excitation energy is proposed to be the 14.6 m u s isomer and have spin and parity 1 + . (author)

  16. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  17. Electron emission from molybdenum under ion bombardment

    International Nuclear Information System (INIS)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-01-01

    Measurements are reported of electron emission yields of clean molybdenum surfaces under bombardment with H + , H 2 + , D + , D 2 + , He + , N + , N 2 + , O + , O 2 + , Ne + , Ar + , Kr + and Xe + in the wide energy range 0.7-60.2 keV. The clean surfaces were produced by inert gas sputtering under ultrahigh vacuum. The results are compared with those predicted by a core-level excitation model. The disagreement found when using correct values for the energy levels of Mo is traced to wrong assumptions in the model. A substantially improved agreement with experiment is obtained using a model in which electron emission results from the excitation of valence electrons from the target by the projectiles and fast recoiling target atoms. (author)

  18. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  19. Evidence of incomplete relaxation in the reaction Ag+40Ar at 288 and 340 MeV bombarding energies

    International Nuclear Information System (INIS)

    Galin, J.; Moretto, L.G.; Babinet, R.; Schmitt, R.; Jared, R.; Thompson, S.G.

    1975-01-01

    The particles emitted in the reaction induced by 40 Ar on natural Ag at 288 and 340 MeV bombarding energy have been studied. The fragments have been identified in atomic number, their kinetic energy distribution and their angular distributions have been measured. The kinetic energy spectra show two components: a high-energy component related to the beam energy, or quasi-elastic component, and a low kinetic energy component, close to the Coulomb energy called relaxed component. The relaxed component is present at all angles and for all particles. The quasi-elastic component is present close to the grazing angle for atomic numbers close to that of the projectile. The relaxed cross section increases with atomic number for Z>9. The increase in cross section is sharper for the lower bombarding energy. The angular distributions are forward peaked, in excess of 1/sin(theta) for all the measured atomic numbers. The forward peaking is larger for particles close in Z to the projectile. The results are interpreted in terms of characteristic times associated with a short-lived intermediate complex. The cross sections and angular distributions are satisfactorily reproduced on the basis of a model accounting for a diffusion process occurring along the mass asymmetry coordinate of the intermediate complex. (Auth.)

  20. Kaon mass by critical absorption of kaonic atom x rays

    International Nuclear Information System (INIS)

    Lum, G.K.

    1979-10-01

    The energy of the kaonic 6h → 5g transition has been determined using the calculated μ/rho curve. Because the detectors used could not resolve the noncircular transitions, the predictions from a calculated cascade program were used. According to the cascade results for potassium, the number of noncircular x-rays was about 10% of all the transitions between n = 6 to n = 5. Based on the available information, the mass of the kaon was measured to be 493.576/sub -0.069//sup +0.044/ MeV

  1. Actinide production from xenon bombardments of curium-248

    International Nuclear Information System (INIS)

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of 129 Xe and 132 Xe with 248 Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a 136 Xe + 248 Cm reaction at a similar energy. When compared to the reaction with 136 Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, 129 Xe, 132 Xe, and 136 Xe with 197 Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions

  2. New discovery: quantization of atomic and nuclear rest mass differences and self-organization of atoms and nuclei

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.; )

    2007-01-01

    Full text: We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schroedinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principles which are not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔM = n 1 /n 2 ·0.0076294 (in MeV/ ), n i =1,.2,3... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research field can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste

  3. Mass survey of lung cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Sasaki, Hideo; Itoh, Chikako; Mitsuyama, Toyofumi; Mishima, Yasuhiro; Ohmura, Toshio.

    1980-01-01

    Mass survey of lung cancer was performed only by questionnaire together with general health examinations of a-bomb survivors during 3 years between April 1976 and March 1979, and the following results were obtained. The number of men aged more than 40 years old who had questionnaire was 89,778, and those who were required to have detailed examinations because they had bloody sputum and paroxysmal cough + a history of smoking were 1,453. Out of them, 861 a-bomb survivors had detailed examinations. The performance rate of detailed examinations was 59.3%. Lung cancer was found in 23 a-bomb survivors. The discovery rate was 25.6 per 100,000 persons, and it was a little higher than discovery rates reported by many researchers. It was low in men aged more than 40 years old. There was a straight line relationship between logarithm values of the discovery rate of lung cancer and age, and the discovery rate increased markedly with aging. Cytodiagnosis of sputum by Saccomanno method showed a positive test which was 20% higher than that by 3 days serial smear method. To discover lung cancer at an early stage, it is advisable to perform the first screening by chest x-ray examination and questionnaire on men aged over 40 years old, and to perform cytodiagnosis by Saccomanno method on men who were required to have detailed examinations. (Tsunoda, M.)

  4. Rotational Energy as Mass in H3 + and Lower Limits on the Atomic Masses of D and 3He

    Science.gov (United States)

    Smith, J. A.; Hamzeloui, S.; Fink, D. J.; Myers, E. G.

    2018-04-01

    We have made precise measurements of the cyclotron frequency ratios H3 +/HD+ and H3 +/ 3He+ and observe that different H3+ ions result in different cyclotron frequency ratios. We interpret these differences as due to the molecular rotational energy of H3 + changing its inertial mass. We also confirm that certain high J , K rotational levels of H3+ have mean lifetimes exceeding several weeks. From measurements with the lightest H3+ ion we obtain lower limits on the atomic masses of deuterium and helium-3 with respect to the proton.

  5. Rotational Energy as Mass in H_{3}^{+} and Lower Limits on the Atomic Masses of D and ^{3}He.

    Science.gov (United States)

    Smith, J A; Hamzeloui, S; Fink, D J; Myers, E G

    2018-04-06

    We have made precise measurements of the cyclotron frequency ratios H_{3}^{+}/HD^{+} and H_{3}^{+}/^{3}He^{+} and observe that different H_{3}^{+} ions result in different cyclotron frequency ratios. We interpret these differences as due to the molecular rotational energy of H_{3}^{+} changing its inertial mass. We also confirm that certain high J, K rotational levels of H_{3}^{+} have mean lifetimes exceeding several weeks. From measurements with the lightest H_{3}^{+} ion we obtain lower limits on the atomic masses of deuterium and helium-3 with respect to the proton.

  6. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  7. Development of accelerator mass spectrometry in China Institute of Atomic Energy

    International Nuclear Information System (INIS)

    He Ming; Jiang Shan; Dong Kejun; Qiu Jiuzi; Peng Bo; Guan Yongjing; Yin Xinyi; Wu Shaoyong; Li Shihong; Zhou Duo

    2005-01-01

    The measurement method for some radio isotope such as 99 Tc, 182 Hf, 151 Sm is developing in China Institute of Atomic Energy (CIAE) accelerator mass spectrometry (AMS) system, and applications in the fields of nuclear physics, geosciences, life science and materials science is carried out. The brief introduction of these methods and applications are described in this paper. (authors)

  8. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  9. Anomalous microstructural changes in III-nitrides under ion bombardment

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Williams, J.S.; Jagadish, C.

    2002-01-01

    Full text: Group-III nitrides (GaN, AlGaN, and InGaN) are currently a 'hot topic' in the physics and material research community due to very important technological applications of these materials in (opto)electronics. In the fabrication of III-nitride-based devices, ion bombardment represents a very attractive processing tool. However, ion-beam-produced lattice disorder and its undesirable consequences limit technological applications of ion implantation. Hence, studies of ion-beam-damage processes in Ill-nitrides are not only physically interesting but also technologically important. In this study, wurtzite GaN, AlGaN, and InGaN films exposed to ion bombardment under a wide range of irradiation conditions are studied by a combination of transmission electron microscopy (TEM), environmental scanning electron microscopy (ESEM), energy dispersive x-ray spectrometry (EDS), atomic force microscopy (AFM), cathodoluminescence (CL), and Rutherford backscattering/channeling (RBS/C) spectrometry. Results show that, unlike the situation for mature semiconductors such as Si and GaAs, Ill-nitrides exhibit a range of intriguing behavior involving extreme microstructural changes under ion bombardment. In this presentation, the following aspects are discussed: (i) formation of lattice defects during ion bombardment, (ii) ion-beam-induced phase transformations, (iii) ion-beam-produced stoichiometric imbalance and associated material decomposition, and (iv) an application of charging phenomena during ESEM imaging for studies of electrical isolation in GaN by MeV light ion irradiation. Emphasis is given to the (powerful) application of electron microscopy techniques for the understanding of physical processes occurring in Ill-nitrides under ion bombardment. Copyright (2002) Australian Society for Electron Microscopy Inc

  10. 32S-induced reactions at 10 MeV/u bombarding energy

    International Nuclear Information System (INIS)

    Betz, J.; Graef, H.; Novotny, R.; Pelte, D.; Winkler, U.

    1983-01-01

    The deep-inelastic processes of the reactions 32 S+ 28 Si, sup(nat)S, 40 Ca, 58 Ni, 74 Ge are studied at 10 MeV/u bombarding energy employing a kinematical coincidence spectrometer. From the measured energies, momenta, masses and atomic numbers of two heavy fragments the corresponding parameters for the unobserved reaction products and the reaction Q-values are deduced. It is found that the reactions generally show the pattern of a normal deep-inelastic process which is followed by the evaporation of several light particles. But with much less intensities other processes also seem to occur: three-fragment excit channels and incomplete energy damping which is correlated with the emission of a few light particles of high momenta. (orig.)

  11. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    Ion bombardment-induced modification of surfaces may be considered one of the significant scientific and technological developments of the last two decades. The understanding acquired concerning the underlying mechanisms of several phenomena occurring during ion-surface interactions has led to applications within different modern technologies. These include microelectronics, surface acoustical and optical technologies, solar energy conversion, thin film technology, ion implantation metallurgy, nuclear track technology, thermonuclear fusion, vacuum technology, cold welding technology, biomedicine (implantology). It has become clear that information on many relevant advances, regarding ion bombardment modification of surfaces is dispersed among journals involving fields sometimes not clearly related. This may result, in some cases, in a loss of the type of interdisciplinary exchange of ideas, which has proved to be so fruitful for the advancement of science and technology. This book has been planned in an attempt to collect at least some of today's relevant information about the experimental and theoretical knowledge related to surface modification and its application to technology. (Auth.)

  12. Italian Mass Media and the Atom in the 1960s: The Memory of Hiroshima and Nagasaki and the Peaceful Atom (1963-1967)

    International Nuclear Information System (INIS)

    Ciglioni, Laura

    2017-01-01

    The chapter investigates the representations of both fears and hopes related to atomic issues in Italian mass media from 1963 to 1967, through the analysis of a selection of highly circulated mass-market magazines (representing a broad spectrum of political cultures) and of television programs broadcast by the two Italian public networks of the time. The fears of the “atomic age” are analyzed through the memory of Hiroshima and Nagasaki, which represents one of the privileged venues for both molding representations of the atomic bomb and negotiating fears. “Atomic hopes” are investigated, instead, examining the emergent fascination for the peaceful uses of atomic energy, analyzed as the catalyst for a positive perception of the atom at a time when national energy policies were at a crucial turning point.

  13. A comparison of atom and ion induced SSIMS - evidence for a charge induced damage effect in insulator materials

    International Nuclear Information System (INIS)

    Brown, A.; Berg, J.A. van den; Vickerman, J.C.

    1985-01-01

    A static secondary ion mass spectrometry (SSIMS) study of two very low conductivity materials, polystyrene and niobium pentoxide, using on the one hand a primary ion beam with electron neutralisation, and on the other, atom bombardment, shows that whilst the initial spectra obtained were quite similar, subsequent damage effects were much greater under ion impact conditions. For an equivalent flux density the half-life of the polystyrene surface structure was four times longer under atom bombardment. Significant reduction of the niobium surface was observed under ion bombardment whereas an equivalent atom flux had little apparent effect on the surface oxidation state. These data suggest that the requirement to dissipate the charge delivered to the sample by the primary ion beam contributes significantly to the damage mechanisms in electrically insulating materials. (author)

  14. Atomic mass and characteristic constant of nuclear ground state (CENPL.MCC). Pt. 1

    International Nuclear Information System (INIS)

    Su Zongdi; Ma Lizhen; Zhou Chunmei; Ge Zhigang

    1994-01-01

    Atomic mass and characteristic constants for nuclear ground states are basic data for nuclear physics, and necessary ones for basic researches, theoretical calculations, as well as many applied researches. The atomic mass of exotic nuclei quite far from the valley stability are also very important for astrophysics researches. The above-requirement is paid attention to in our setting up this file. The recent and as many as possible data (such as the half-lives of the new nuclides 202 Pt, 208 Hg and 185 Hf and the mass excess of 199 Ir, which were produced and distinguished by Chinese scientists) have been collected, and put into the computer-based data file in brief table format. (1 fig.)

  15. Significancy in atomic mass measurements and the topography of the mass-surface

    International Nuclear Information System (INIS)

    Audi, G.

    1991-01-01

    It is discussed how to explore new regions of the chart of the nuclides through masses, and what has to be understood under significant mass measurements. In the exploratory phase of a new region of the chart, a result with almost any accuracy is appropriate. The higher the accuracy is, the better the possibility is to see finer structures. (G.P.) 24 refs.; 10 figs

  16. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  17. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  18. Use of a discharge in an hollow cathode as neutral atom source for resonant ionization mass spectrometry

    International Nuclear Information System (INIS)

    Berthoud, T.; Briand, A.; Khelifa, N.; Mauchien, P.

    1987-01-01

    The resonance ionization mass spectrometry in our laboratory is aimed at simplification of isotope measurements of elements present in mixtures and at measurement of very small isotopes. An atomization source which produces an atomic beam collimated from a discharge in a hollow cathode has been developed. First results of this spectrometry with an uranium atomic jet are presented [fr

  19. Gas chromatography of organic microcontaminants using atomic emission and mass spectrometric detection combined in one instrument (GC-AED/MS)

    NARCIS (Netherlands)

    Mol, H.G.J.; Hankemeier, T.; Brinkman, U.A.T.

    1999-01-01

    This study describes the coupling of an atomic-emission detector and mass-spectrometric detector to a single gas chromatograph. Splitting of the column effluent enables simultaneous detection by atomic-emission detection (AED) and mass spectrometry (MS) and yields a powerful system for the target

  20. The Ame2012 atomic mass evaluation. Pt. 1. Evaluation of input data, adjustment procedures

    International Nuclear Information System (INIS)

    Audi, G; Wang, M.; Wapstra, A.H.; Kondev, F.G.; MacCormick, M.; Xu, X.; Pfeiffer, B.

    2012-01-01

    This paper is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, Ame2012. It includes complete information on the experimental input data (including not used and rejected ones), as well as details on the evaluation procedures used to derive the tables with recommended values given in the second part. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometer results. These input values were entered in the least-squares adjustment procedure for determining the best values for the atomic masses and their uncertainties. Calculation procedures and particularities of the AME are then described. All accepted and rejected data, including outweighed ones, are presented in a tabular format and compared with the adjusted values (obtained using the adjustment procedure). Differences with the previous Ame2003 evaluation are also discussed and specific information is presented for several cases that may be of interest to various AME users. The second Ame2012 article, the last one in this issue, gives a table with recommended values of atomic masses, as well as tables and graphs of derived quantities, along with the list of references used in both this Ame2012 evaluation and the Nubase2012 one (the first paper in this issue). (authors)

  1. The AME2003 atomic mass evaluation (I). Evaluation of input data, adjustment procedures

    International Nuclear Information System (INIS)

    Wapstra, A.H.; Audi, G.; Thibault, C.

    2003-01-01

    This paper is the first of two parts presenting the result of a new evaluation of atomic masses (AME2003). In this first part we give full information on the used and rejected input data and on the procedures used in deriving the tables in the second part. We first describe the philosophy and procedures used in selecting nuclear-reaction, decay, and mass spectrometric results as input values in a least-squares evaluation of best values for atomic masses. The calculation procedures and particularities of the AME are then described. All accepted data, and rejected ones with a reported precision still of interest, are presented in a table and compared there with the adjusted values. The differences with the earlier evaluation are briefly discussed and information is given of interest for the users of this AME. The second paper for the AME2003, last in this issue, gives a table of atomic masses, tables and graphs of derived quantities, and the list of references used in both this evaluation and the NUBASE2003 table (first paper in this issue). AMDC: http://csnwww.in2p3.fr/AMDC/

  2. Time-of-flight mass spectrographs—From ions to neutral atoms

    Science.gov (United States)

    Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.

    2016-12-01

    After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.

  3. The Ame2012 atomic mass evaluation. Pt. 2. Tables, graphs and references

    International Nuclear Information System (INIS)

    Wang, M.; Audi, G.; Wapstra, A.H.; Kondev, F.G.; MacCormick, M.; Xu, X.; Pfeiffer, B.

    2012-01-01

    This paper is the second part of the new evaluation of atomic masses, Ame2012. From the results of a least-squares calculation, described in Part I, for all accepted experimental data, we derive here tables and graphs to replace those of Ame2003. The first table lists atomic masses. It is followed by a table of the influences of data on primary nuclides, a table of separation energies and reaction energies, and finally, a series of graphs of separation and decay energies. The last section in this paper lists all references to the input data used in Part I of this Ame2012 and also to the data included in the Nubase2012 evaluation (first paper in this issue). (authors)

  4. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    International Nuclear Information System (INIS)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  5. A mass conserving level set method for detailed numerical simulation of liquid atomization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kun; Shao, Changxiao [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China); Yang, Yue [State Key Laboratory of Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Fan, Jianren, E-mail: fanjr@zju.edu.cn [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2015-10-01

    An improved mass conserving level set method for detailed numerical simulations of liquid atomization is developed to address the issue of mass loss in the existing level set method. This method introduces a mass remedy procedure based on the local curvature at the interface, and in principle, can ensure the absolute mass conservation of the liquid phase in the computational domain. Three benchmark cases, including Zalesak's disk, a drop deforming in a vortex field, and the binary drop head-on collision, are simulated to validate the present method, and the excellent agreement with exact solutions or experimental results is achieved. It is shown that the present method is able to capture the complex interface with second-order accuracy and negligible additional computational cost. The present method is then applied to study more complex flows, such as a drop impacting on a liquid film and the swirling liquid sheet atomization, which again, demonstrates the advantages of mass conservation and the capability to represent the interface accurately.

  6. VizieR Online Data Catalog: Atomic mass excesses (Schatz+, 2017)

    Science.gov (United States)

    Schatz, H.; Ong, W.-J.

    2018-03-01

    X-ray burst model predictions of light curves and the final composition of the nuclear ashes are affected by uncertain nuclear masses. However, not all of these masses are determined experimentally with sufficient accuracy. Here we identify the remaining nuclear mass uncertainties in X-ray burst models using a one-zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated-a typical mixed H/He burst with a limited rapid proton capture process (rp-process) and an extreme mixed H/He burst with an extended rp-process. When allowing for a 3σ variation, only three remaining nuclear mass uncertainties affect the light-curve predictions of a typical H/He burst (27P, 61Ga, and 65As), and only three additional masses affect the composition strongly (80Zr, 81Zr, and 82Nb). A larger number of mass uncertainties remain to be addressed for the extreme H/He burst, with the most important being 58Zn, 61Ga, 62Ge, 65As, 66Se, 78Y, 79Y, 79Zr, 80Zr, 81Zr, 82Zr, 82Nb, 83Nb, 86Tc, 91Rh, 95Ag, 98Cd, 99In, 100In, and 101In. The smallest mass uncertainty that still impacts composition significantly when varied by 3σ is 85Mo with 16keV uncertainty. For one of the identified masses, 27P, we use the isobaric mass multiplet equation to improve the mass uncertainty, obtaining an atomic mass excess of -716(7)keV. The results provide a roadmap for future experiments at advanced rare isotope beam facilities, where all the identified nuclides are expected to be within reach for precision mass measurements. (1 data file).

  7. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  8. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  9. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    CERN Document Server

    Oganessian, Yu T; Dmitriev, S N; Itkis, M G; Gulbekyan, G G; Khabarov, M V; Bekhterev, V V; Bogomolov, S L; Efremov, A A; Pashenko, S V; Stepantsov, S V; Yeremin, A V; Yavor, M I; Kalimov, A G

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 sup - sup 3. The set up can work in the wide mass range from A approx 20 to A approx 500, its mass acceptance is as large as +-2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considere...

  10. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu.Ts.; Shchepunov, V.A.; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G.

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . The set up can work in the wide mass range from A∼20 to A∼500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given

  11. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Shchepunov, V.A. E-mail: shchepun@sunhe.jinr.rushchepun@cv.jinr.ru; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10{sup -3}. The set up can work in the wide mass range from A{approx}20 to A{approx}500, its mass acceptance is as large as {+-}2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  12. [Mass spectrometric and quantum chemical study of dimeric associates of nucleosides].

    Science.gov (United States)

    Sukhodub, L F; Aksenov, S A; Boldeskul, A I

    1995-01-01

    Deoxyribonucleosides H-bonded pairs were investigated using fast atom bombardment mass spectrometry and MNDO/H quantum chemistry method. It was shown that "rare" (enol or imin) forms of the nitrogen bases could form pairs with energy comparable with "canonical" base pair energy. It was shown that pair stability rows, which are measured using different experimental techniques, were in conformity each with other.

  13. Blind deconvolution of time-of-flight mass spectra from atom probe tomography

    International Nuclear Information System (INIS)

    Johnson, L.J.S.; Thuvander, M.; Stiller, K.; Odén, M.; Hultman, L.

    2013-01-01

    A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the field evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within ±0.33at%. The application of this model to experimental APT data is exemplified with Fe–Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances. - Highlights: • A method for the deconvolution of atom probe mass spectra is proposed. • Applied to synthetic randomly generated spectra the accuracy was ±0.33 at. • Application of the method to an experimental Fe–Cr spectrum is demonstrated

  14. Universal charge-mass relation: From black holes to atomic nuclei

    International Nuclear Information System (INIS)

    Hod, Shahar

    2010-01-01

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q≤μ 2/3 E c -1/3 , where q and μ are the charge and mass of the physical system respectively, and E c is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z≤Z * =α -1/3 A 2/3 , where α=e 2 /h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  15. Universal charge-mass relation: From black holes to atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.co [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2010-10-04

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q{<=}{mu}{sup 2/3}E{sub c}{sup -1/3}, where q and {mu} are the charge and mass of the physical system respectively, and E{sub c} is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z{<=}Z{sup *}={alpha}{sup -1/3}A{sup 2/3}, where {alpha}=e{sup 2}/h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  16. Damage and redistribution of impurities by ionic bombardment

    International Nuclear Information System (INIS)

    Tognetti, N.P.

    1982-01-01

    Some aspects of displacement collisions in solids bombarded with ions in the medium energy range have been studied using the backscattering and channelling techniques. The production of lattice damage and the spatial redistribution of atoms within the collision cascade were the two main effects considered and experimentally studied. A comprehensive study of disorder production in GaAs was carried out at 40 K for a variety of ions and ion energies, providing insight into the mechanisms of damage generation from both the macro and microscopic points of view. Experiments on thermal recovery of partially disordered substrates revealed that annealing occurs from approximately 100 K to 300 K. A direct procedure developed for the obtainment of damage profiles from backscattering-channelling measurements is described. The net spatial redistribution of displaced atoms, in combined impurity-matrix substrates was studied and compared with existing theories of ion beam mixing. The Ag-Si system was studied for a wide range of fluence of bombarding Ar + ions. Furthermore, the contribution of atomic mixing in the experimental observation of Ge implantation at high doses into Si is discussed. (M.E.L) [es

  17. Effective mass of 4He atom in superfluid and normal phases

    International Nuclear Information System (INIS)

    Vakarchuk, Yi.O.; Grigorchak, O.Yi.; Pastukhov, V.S.; Pritula, R.O.

    2016-01-01

    The formula for the temperature dependence of the effective mass of a 4 He atom in the superfluid and normal phases is obtained. This expression for the effective mass allows one to eliminate infra-red divergences, being applicable at all temperatures, except for a narrow fluctuation region 0.97< < approx T/T c <=1. In the high and low temperature limits, as well as in the interactionless limit, the obtained expression reproduces the well known results. The temperature dependence of the heat capacity and the phase transition temperature T c ∼2.18 K are calculated, by using the formula obtained for the effective mass. In the framework of the approach proposed in this work, the small critical index η is determined in the random phase approximation. The obtained value corresponds to the well known result

  18. The role of atomic hydrogen in regulating the scatter of the mass-metallicity relation

    Science.gov (United States)

    Brown, Toby; Cortese, Luca; Catinella, Barbara; Kilborn, Virginia

    2018-01-01

    In this paper, we stack neutral atomic hydrogen (H I) spectra for 9720 star-forming galaxies along the mass-metallicity relation. The sample is selected according to stellar mass (109 ≤ M⋆/M⊙ ≤ 1011) and redshift (0.02 ≤ z ≤ 0.05) from the overlap of the Sloan Digital Sky Survey and Arecibo Legacy Fast ALFA survey. We confirm and quantify the strong anticorrelation between H I mass and gas-phase metallicity at fixed stellar mass. Furthermore, we show for the first time that the relationship between gas content and metallicity is consistent between different metallicity estimators, contrary to the weaker trends found with star formation which are known to depend on the observational techniques used to derive oxygen abundances and star formation rates. When interpreted in the context of theoretical work, this result supports a scenario where galaxies exist in an evolving equilibrium between gas, metallicity and star formation. The fact that deviations from this equilibrium are most strongly correlated with gas mass suggests that the scatter in the mass-metallicity relation is primarily driven by fluctuations in gas accretion.

  19. Characterization techniques for ion bombarded insulators

    International Nuclear Information System (INIS)

    Borders, J.A.

    1987-01-01

    The chapter gives a comprehensive review of the experimental methods for the analysis of ion-bombarded insulators including optical and structural methods, resonance, energetic ion methods, and surface techniques. 48 refs.; 34 figs

  20. How can we probe the atom mass currents induced by synthetic gauge fields?

    Science.gov (United States)

    Paramekanti, Arun; Killi, Matthew; Trotzky, Stefan

    2013-05-01

    Ultracold atomic fermions and bosons in an optical lattice can have quantum ground states which support equilibrium currents in the presence of synthetic magnetic fields or spin orbit coupling. As a tool to uncover these mass currents, we propose using an anisotropic quantum quench of the optical lattice which dynamically converts the current patterns into measurable density patterns. Using analytical calculations and numerical simulations, we show that this scheme can probe diverse equilibrium bulk current patterns in Bose superfluids and Fermi fluids induced by synthetic magnetic fields, as well as detect the chiral edge currents in topological states of atomic matter such as quantum Hall and quantum spin Hall insulators. This work is supported by NSERC of Canada and the Canadian Institute for Advanced Research.

  1. Spring meeting of the scientific associations for atomic physics, high speed physics, mass spectrometry, molecular physics, plasma physics

    International Nuclear Information System (INIS)

    1996-01-01

    The volume contains the abstracts of the contributions to the Spring Meeting in Rostock with aspects of atomic physics, molecular physics, high speed physics, plasma physics and mass spectrometry. (MM)

  2. Investigation of /sup 16/O+/sup 27/Al reaction at bombarding energies below 5. 3 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Qing, Shen; Yong-Tai, Zhu; Wen-Long, Zhan; Zhong-Yan, Guo; Shu-Zhi, Yin; Wei-Min, Qiao; En-Chiu, Wu

    1987-03-01

    Quasi elastic and deep inelastic collision induced by /sup 16/O+/sup 27/Al at the bombarding energies below 5.3 MeV/A have been studied in detail. Experimental angular energy atomic charge distribution and contour plots of the differential cross sections d/sup 3/sigma/dEd..cap omega..dZ on E-theta plan are presented, their evolution with the bombarding energies are analysed. The competion between quasi elastic and deep inelastic collision as a functon of the bombarding energies has been discussed.

  3. Formation mechanism and yield of molecules ejected from ZnS, CdS, and FeS2 during ion bombardment

    International Nuclear Information System (INIS)

    Nikzad, S.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Gruen, D.M.; Tombrello, T.A.

    1994-01-01

    Neutral species ejected from single crystals of ZnS, CdS, and FeS 2 during ion bombardment by 3 keV Ar + were detected by laser post-ionization followed by time-of-flight mass spectrometry. While metal atoms (Fe, Zn, Cd) and S 2 were the dominant species observed, substantial amounts of S, FeS, Zn 2 , ZnS, Cd 2 , and CdS were also detected. The experimental results demonstrate that molecules represent a larger fraction of the sputtered yield than was previously believed from secondary ion mass spectrometry experiments. In addition, the data suggest that the molecules are not necessarily formed from adjacent atoms in the solid and that a modified form of the recombination model could provide a mechanism for their formation

  4. Small sample analysis using sputter atomization/resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Christie, W.H.; Goeringer, D.E.

    1986-01-01

    We have used secondary ion mass spectrometry (SIMS) to investigate the emission of ions via argon sputtering from U metal, UO 2 , and U 3 O 8 samples. We have also used laser resonance ionization techniques to study argon-sputtered neutral atoms and molecules emitted from these same samples. For the case of U metal, a significant enhancement in detection sensitivity for U is obtained via SA/RIMS. For U in the fully oxidized form (U 3 O 8 ), SA/RIMS offers no improvement in U detection sensitivity over conventional SIMS when sputtering with argon. 9 refs., 1 fig., 2 tabs

  5. A note on the random walk theory of recoil movement in prolonged ion bombardment

    International Nuclear Information System (INIS)

    Koponen, Ismo

    1994-01-01

    A characteristic function is derived for the probability distribution of final positions of recoil atoms in prolonged ion bombardment of dense matter. The derivation is done within the framework of Poissonian random walk theory using a jump distribution, which is somewhat more general than those studied previously. ((orig.))

  6. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    International Nuclear Information System (INIS)

    Montaser, A.

    1993-01-01

    In this research, new high-temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. During the period January 1993--December 1993, emphasis was placed on (a) analytical investigations of atmospheric-pressure helium inductively coupled plasma (He ICP) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies; (b) simulation and computer modeling of plasma sources to predict their structure and fundamental and analytical properties without incurring the enormous cost of experimental studies; (c) spectrosopic imaging and diagnostic studies of high-temperature plasmas; (d) fundamental studies of He ICP discharges and argon-nitrogen plasma by high-resolution Fourier transform spectrometry; and (e) fundamental and analytical investigation of new, low-cost devices as sample introduction systems for atomic spectrometry and examination of new diagnostic techniques for probing aerosols. Only the most important achievements are included in this report to illustrate progress and obstacles. Detailed descriptions of the authors' investigations are outlined in the reprints and preprints that accompany this report. The technical progress expected next year is briefly described at the end of this report

  7. Sputtering and reflection of self-bombardment of tungsten material

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian [University of Science and Technology of China, Hefei (China); Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Luo, Guang-nan, E-mail: gnluo@ipp.ac.cn [University of Science and Technology of China, Hefei (China); Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-04-15

    In present research, the sputtering and reflection yield of self-bombardment of tungsten are investigated with the aid of molecular dynamics simulations. The source of sputtered and reflected atoms is detected by traced the original locations of sputtered and reflected atoms. Results show that for the reflected atoms no specific region exists which means cluster atoms are randomly reflected. But almost all of sputtered atoms are from a conical region under the landing point of cluster. So we can determine the sputtering yield by study the dimension of the sputtering region. Molecular dynamics shows the depth and radius of the conical are power functions of impacting energy. The effects of cluster size and temperature of target on sputtering and reflection rate are also preformed in present study. Both sputtering and reflection yield are proportion to cluster size in present cluster size, i.e. 66–2647 atoms. Higher target temperature can increase sputtering yield and deduce sputtering threshold energy, but little effect on reflection rate.

  8. Sputtering and reflection of self-bombardment of tungsten material

    International Nuclear Information System (INIS)

    Niu, Guo-jian; Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi; Luo, Guang-nan

    2015-01-01

    In present research, the sputtering and reflection yield of self-bombardment of tungsten are investigated with the aid of molecular dynamics simulations. The source of sputtered and reflected atoms is detected by traced the original locations of sputtered and reflected atoms. Results show that for the reflected atoms no specific region exists which means cluster atoms are randomly reflected. But almost all of sputtered atoms are from a conical region under the landing point of cluster. So we can determine the sputtering yield by study the dimension of the sputtering region. Molecular dynamics shows the depth and radius of the conical are power functions of impacting energy. The effects of cluster size and temperature of target on sputtering and reflection rate are also preformed in present study. Both sputtering and reflection yield are proportion to cluster size in present cluster size, i.e. 66–2647 atoms. Higher target temperature can increase sputtering yield and deduce sputtering threshold energy, but little effect on reflection rate

  9. Total β-decay energies and atomic masses in regions far from β-stability

    International Nuclear Information System (INIS)

    Aleklett, K.

    1977-01-01

    This thesis is a summary of experimental investigations on total β-decay energies and deduced atomic masses of nuclei far from the region of β-stability. The Qsub(β) values are given for isotopes of Zn, Ga, Ge, As, Br, Rb, In, Sn, Sb, Te, Cs, Fr, Ra and Ac, with β-unstable nuclei. These unstable nuclei have very short half-lives, often below 10s, and the experimental techniques for the production, separation and collection of these short-lived nuclei are described. Neutron deficient nuclides were produced by spallation, in the ISOLDE facility, and neutron deficient nuclides were produced by thermal neutron induced fission of 235 U in the OSIRIS facility. β-spectra were recorded using an Si(Li)-detector and a coincidence system. Qsub(β) values obtained from mass formulae have been compared with experimental values obtained in different mass regions and a comparison made between results obtained from different droplet mass formulae. (B.D.)

  10. Statistical characterization of surface defects created by Ar ion bombardment of crystalline silicon

    International Nuclear Information System (INIS)

    Ghazisaeidi, M.; Freund, J. B.; Johnson, H. T.

    2008-01-01

    Ion bombardment of crystalline silicon targets induces pattern formation by the creation of mobile surface species that participate in forming nanometer-scale structures. The formation of these mobile species on a Si(001) surface, caused by sub-keV argon ion bombardment, is investigated through molecular dynamics simulation of Stillinger-Weber [Phys. Rev. B 31, 5262 (1985)] silicon. Specific criteria for identifying and classifying these mobile atoms based on their energy and coordination number are developed. The mobile species are categorized based on these criteria and their average concentrations are calculated

  11. Study on evolution of gases from fluoropolymer films bombarded with heavy ions

    International Nuclear Information System (INIS)

    Minamisawa, Renato Amaral; Zimmerman, Robert Lee; Budak, Satilmis; Ila, Daryush

    2008-01-01

    Ion beam bombardment provides a unique way of material modification by inducing a high degree of localized electronic excitation. The ion track, or affected volume along the ion path through the material is related to the total damage and possible structural changes. Here we study the evolution of gases emitted by poly(tetrafluorethylene-co-perfluoro-(propyl vinyl ether)) (PFA) fluoropolymer bombarded with MeV gold ions. The gas was monitored by a residual gas analyzer (RGA), as a function of the ion fluence. Micro-Raman, atomic force microscopy and optical absorption were used to analyze the chemical structure changes and sputtering yield

  12. Study and optimisation of SIMS performed with He+ and Ne+ bombardment

    International Nuclear Information System (INIS)

    Pillatsch, L.; Vanhove, N.; Dowsett, D.; Sijbrandij, S.; Notte, J.; Wirtz, T.

    2013-01-01

    The combination of the high-brightness He + /Ne + atomic level ion source with the detection capabilities of secondary ion mass spectrometry (SIMS) opens up the prospect of obtaining chemical information with high lateral resolution and high sensitivity on the Zeiss ORION helium ion microscope (HIM). A feasibility study with He + and Ne + ion bombardment is presented in order to determine the performance of SIMS analyses using the HIM. Therefore, the sputtering yields, useful yields and detection limits obtained for metallic (Al, Ni and W) as well as semiconductor samples (Si, Ge, GaAs and InP) were investigated. All the experiments were performed on a Cameca IMS4f SIMS instrument which was equipped with a caesium evaporator and oxygen flooding system. For most of the elements, useful yields in the range of 10 −4 to 3 × 10 −2 were measured with either O 2 or Cs flooding. SIMS experiments performed directly on the ORION with a prototype secondary ion extraction and detection system lead to results that are consistent with those obtained on the IMS4f. Taking into account the obtained useful yields and the analytical conditions, such as the ion current and typical dwell time on the ORION HIM, detection limits in the at% range and better can be obtained during SIMS imaging at 10 nm lateral resolution with Ne + bombardment and down to the ppm level when a lateral resolution of 100 nm is chosen. Performing SIMS on the HIM with a good detection limit while maintaining an excellent lateral resolution (<50 nm) is therefore very promising.

  13. On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation

    Science.gov (United States)

    Scherrer, Arne; Agostini, Federica; Sebastiani, Daniel; Gross, E. K. U.; Vuilleumier, Rodolphe

    2017-07-01

    Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well. We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy particles are the oxygen atoms to which the proton is bounded. Inclusion of the light-particle inertia allows us to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate position-dependent mass corrections using density functional theory for a few polyatomic molecules at their equilibrium geometry. These data can serve as input for the

  14. Prediction of mass excess, β-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and β-decay energies (β-decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV

  15. Prediction of mass excess, #betta#-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami.

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and #betta#-decay energies (#betta# - -decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV. (author)

  16. A molecular dynamics study of energetic particle bombardment on diamond

    International Nuclear Information System (INIS)

    Li Rongbin; Dai Yongbing; Hu Xiaojun; Shen Hesheng; He Xianchang

    2003-01-01

    Molecular dynamic simulations, utilizing the Tersoff many-body potential, are used to investigate the microscopic processes of a single boron atom with an energy of 500 eV implanted into the diamond (001) 2 x 1 reconstructed surface. By calculating the variation of the mean coordination number with time, the lifetime of a thermal spike created by B bombardment is about 0.18 ps. Formation of the split-interstitial composed of projectile and lattice atom (B-C) is observed. The total potential energy of the system decreases about 0.56 eV with a stable B split-interstitial existing in diamond. Lattice relaxations in the diamond (001) 2 x 1 reconstructed surface or near surface of the simulated have been discussed, and the results show that the outermost layer atoms tend to move inward and other atoms move outward, while the interplanar distance between the outermost layer and the second layer has been shortened by 15%, compared with its starting interplanar distance. Stress distribution in the calculated diamond configuration is inhomogeneous. After boron implanted into diamond with an energy of 500 eV, there is an excess of compressively stressed atoms in the lattice, which induces the total stress being compressive

  17. Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys

    International Nuclear Information System (INIS)

    Hudson, D.; Smith, G.D.W.; Gault, B.

    2011-01-01

    Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate. -- Research Highlights: → Realistic simulated mass spectra were generated so as to reproduce experimental data with a perfectly determined composition. → Several metrics were tested against these simulated mass spectra to determine an optimal methodology for ranging mass peaks in atom probe tomography. Systematic automated ranging provides a significant reduction in the deviation between true and measured concentrations compared to manual ranging by multiple users on the same data. → Experimental datasets were subsequently investigated, and Fe has been shown to be distributed as a random solid solution within the matrix of 'as-received' recrystallised ZIRLO, a zirconium alloy.

  18. Ion bombardment and disorder in amorphous silicon

    International Nuclear Information System (INIS)

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-01-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects

  19. The birth of the atomic bomb

    International Nuclear Information System (INIS)

    Olivier, Louis

    2016-01-01

    In this article, the author proposes an overview of fifty years of researches and works which resulted in the fabrication and use of an atomic bomb. Thus, he evokes the discovery of radioactivity, experiments made by Rutherford, the discovery of nuclear fission induced uranium bombardment by slow neutrons, the discovery of a possibility of chain reaction with a very low critical mass, the first works on the development of a bomb in the USA and United-Kingdom, and finally the Manhattan project and the realisation of the first bombs, tests, and their use in Hiroshima and Nagasaki

  20. Three-dimensional molecular imaging using mass spectrometry and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wucher, Andreas [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany)], E-mail: andreas.wucher@uni-due.de; Cheng Juan; Zheng Leiliang; Willingham, David; Winograd, Nicholas [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-12-15

    We combine imaging ToF-SIMS depth profiling and wide area atomic force microscopy to analyze a test structure consisting of a 300 nm trehalose film deposited on a Si substrate and pre-structured by means of a focused 15-keV Ga{sup +} ion beam. Depth profiling is performed using a 40-keV C{sub 60}{sup +} cluster ion beam for erosion and mass spectral data acquisition. A generic protocol for depth axis calibration is described which takes into account both lateral and in-depth variations of the erosion rate. By extrapolation towards zero analyzed lateral area, an 'intrinsic' depth resolution of about 8 nm is found which appears to be characteristic of the cluster-surface interaction process.

  1. E parallel B energy-mass spectrograph for measurement of ions and neutral atoms

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1997-01-01

    Real-time measurement of plasma composition and energy is an important diagnostic in fusion experiments. The Thomson parabola spectrograph described here utilizes an electric field parallel to a magnetic field (E parallel B) and a two-dimensional imaging detector to uniquely identify the energy-per-charge and mass-per-charge distributions of plasma ions. An ultrathin foil can be inserted in front of the E parallel B filter to convert neutral atoms to ions, which are subsequently analyzed using the E parallel B filter. Since helium exiting an ultrathin foil does not form a negative ion and hydrogen isotopes do, this spectrograph allows unique identification of tritium ions and neutrals even in the presence of a large background of 3 He. copyright 1997 American Institute of Physics

  2. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    International Nuclear Information System (INIS)

    Bonnin, Anne; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage

  3. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Herczeg, G. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Carr, J. S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Bruderer, S., E-mail: pascucci@lpl.arizona.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  4. Continuum radiation emitted from transition metals under ion bombardment

    International Nuclear Information System (INIS)

    El Boujlaidi, A.; Kaddouri, A.; Ait El Fqih, M.; Hammoum, K.; Aouchiche, H.

    2012-01-01

    Optical emission of transition metals has been studied during 5 keV Kr + ions bombardment within and without oxygen atmosphere in the colliding chamber. The observed spectra consist of a series of discrete lines superimposed on a broad continuum. Generally, the emission intensity was influenced by the presence of oxygen giving rise to transient effects as well as to an increase in the line intensity. The behaviours of spectral lines were successfully explained in term of electron-transfer process between the excited sputtered atom and the solid surface. In this work, we have focused our study on the continuous radiation emitted during ion bombardment. The experimental results suggest that the continuum emission depends on the nature of metal and very probably related to its electronic structure. The collective deactivation of 3d-shell electrons appears to play a role in the emission of this radiation. The observed enhancement in the presence of oxygen is probably due to a significant contribution of the oxide molecules. (authors)

  5. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    Science.gov (United States)

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation

    Directory of Open Access Journals (Sweden)

    Arne Scherrer

    2017-08-01

    Full Text Available Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well. We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy particles are the oxygen atoms to which the proton is bounded. Inclusion of the light-particle inertia allows us to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate position-dependent mass corrections using density functional theory for a few polyatomic molecules at their equilibrium geometry. These data can

  7. Recent progress in atomic mass formulas and β-decay gross theory

    International Nuclear Information System (INIS)

    Yamada, Masami

    1988-01-01

    The first half of the report focuses on atomic mass formulas which have been developed by the author and his coworkers for accurate representation of the mass of various nuclides at their ground state. The one most frequently used by them is the Uno-Yamada Formula, which consists of two parts representing the gross behavior and the fluctuations due to each nuclide, or so called shell effect. The latter part is the sum of a proton shell term and a neutron shell term, and may be constant or linear depending on the form of the shell terms. Two new formulas have been derived by incorporating the effect of proton-neutron interaction into the above-mentioned constant-type formula. One of them is different from the constant-type Uno-Yamada Formula in that the shell effect part contains a proton-neutron interaction term. Modification is also made to take into account the coulombic energy. The second half of the report addresses the β-decay gross theory. A modified β-decay gross theory is presented, in which improvements are made to reflect the effect of the UV factor and to meet the sum rules related with the Fermi transition. The monoparticle intensity function is also improved by taking into account solutions of many-body problems related with the sum rules. (N.K.)

  8. Alterations of body mass index and body composition in atomic bomb survivors.

    Science.gov (United States)

    Tatsukawa, Y; Misumi, M; Yamada, M; Masunari, N; Oyama, H; Nakanishi, S; Fukunaga, M; Fujiwara, S

    2013-08-01

    Obesity, underweight, sarcopenia and excess accumulation of abdominal fat are associated with a risk of death and adverse health outcomes. Our aim was to determine whether body mass index (BMI) and body composition, assessed with dual-energy X-ray absorptiometry (DXA), are associated with radiation exposure among atomic bomb (A-bomb) survivors. This was a cross-sectional study conducted in the Adult Health Study of the Radiation Effects Research Foundation. We examined 2686 subjects (834 men and 1852 women), aged 48-89 years (0-40 years at A-bomb exposure), for BMI analysis. Among them, 550 men and 1179 women underwent DXA in 1994-1996 and were eligible for a body composition study. After being adjusted for age and other potential confounding factors, A-bomb radiation dose was associated significantly and negatively with BMI in both sexes (P=0.01 in men, P=0.03 in women) and appendicular lean mass (Pbomb radiation exposure. We will need to conduct further studies to evaluate whether these alterations affect health status.

  9. Experimental and theoretical studies of bombardment induced surface morphology changes

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Williams, J.S.

    1980-01-01

    In this review results of experimental and theoretical studies of solid surface morphology changes due to ion bombardment are discussed. An attempt is undertaken to classify the observed specific features of a structure, generated by ion bombardment [ru

  10. Mass Spectral Investigation on Toxins. I. Isolation, Purification, and Characterization of Hepatotoxins from Freshwater Blue-Green Algae (Cyanobacteria) by High-Performance Liquid Chromatography and Fast Atom Bombardment Mass Spectrometric Techniques.

    Science.gov (United States)

    1986-09-01

    analysis ’" methods in environmental samples. The hepatotoxins from laboratory cultures of M. aeruginosa Strain 7820,15 Anabena flos- aguae (A. 4flos...flos- aguae S-23-g-1l (8 lug) F1 The results from the amino acid analysis using the Llqui-Mat Analyzer are listed in Table 2. The elution times of the...Runnegar, M.T.C., and Huynh, V.L. Effec- tiveness of Activated Carbon in the Removal of Algal Toxin from Potable Water Supplies: A Pilot Plant

  11. The management-retrieval code of the sub-library of atomic mass and characteristic constants for nuclear ground state

    International Nuclear Information System (INIS)

    Su Zongdi; Ma Lizhen

    1994-01-01

    The management code of the sub-library of atomic mass and characteristic constants for nuclear ground state (MCC) is used for displaying the basic information on the MCC sub-library on the screen, and retrieving the required data. The MCC data file contains the data of 4800 nuclides ranging from Z 0, A = 1 to Z = 122, A = 318. The MCC sub-library has been set up at Chinese Nuclear Data Center (CNDC), and has been used to provide the atomic masses and characteristic constants of nuclear ground states for the nuclear model calculation, nuclear data evaluations and other fields

  12. Secondary neutral mass spectrometry depth profile analysis of silicides

    International Nuclear Information System (INIS)

    Beckmann, P.; Kopnarski, M.; Oechsner, H.

    1985-01-01

    The Direct Bombardment Mode (DBM) of Secondary Neutral Mass Spectrometry (SNMS) has been applied for depth profile analysis of two different multilayer systems containing metal silicides. Due to the extremely high depth resolution obtained with low energy SNMS structural details down to only a few atomic distances are detected. Stoichiometric information on internal oxides and implanted material is supplied by the high quantificability of SNMS. (Author)

  13. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. MD and BCA simulations of He and H bombardment of fuzz in bcc elements

    Science.gov (United States)

    Klaver, T. P. C.; Zhang, S.; Nordlund, K.

    2017-08-01

    We present results of MD simulations of low energy He ion bombardment of low density fuzz in bcc elements. He ions can penetrate several micrometers into sparse fuzz, which allows for a sufficient He flux through it to grow the fuzz further. He kinetic energy falls off exponentially with penetration depth. A BCA code was used to carry out the same ion bombardment on the same fuzz structures as in MD simulations, but with simpler, 10 million times faster calculations. Despite the poor theoretical basis of the BCA at low ion energies, and the use of somewhat different potentials in MD and BCA calculations, the ion penetration depths predicted by BCA are only ∼12% less than those predicted by MD. The MD-BCA differences are highly systematic and trends in the results of the two methods are very similar. We have carried out more than 200 BCA calculation runs of ion bombardment of fuzz, in which parameters in the ion bombardment process were varied. For most parameters, the results show that the ion bombardment process is quite generic. The ion species (He or H), ion mass, fuzz element (W, Ta, Mo, Fe) and fuzz element lattice parameter turned out to have a modest influence on ion penetration depths at most. An off-normal angle of incidence strongly reduces the ion penetration depth. Increasing the ion energy increases the ion penetration, but the rate by which ion energy drops off at high ion energies follows the same exponential pattern as at lower energies.

  15. Push-and-stick mechanism for charged and excited small cluster emission under ion bombardment

    International Nuclear Information System (INIS)

    Bitensky, I.S.; Parilis, E.S.; Wojciechowski, I.A.

    1992-01-01

    The mechanism for the formation, excitation and ionization of small clusters emitted under ion bombardment is discussed. It is shown that the increased degree of ionization for the transition metal dimers, trimers and tetramers can be explained by the existence of an additional effective channel for their formation, namely the associative ionization process. A simple estimate shows that the sticking together of a fast cascade atom and the pushed out surface atom is 30-40 times more effective for dimer formation, than the recombination of two fast atoms. This push-and-stick mechanism of cluster formation could also be effective for the formation of trimers and tetramers. (orig.)

  16. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  17. Magnetoresistance and ion bombardment induced magnetic patterning

    International Nuclear Information System (INIS)

    Hoeink, V.

    2008-01-01

    In this thesis the combination of the magnetic patterning of the unidirectional anisotropy and the tunnel magnetoresistance effect is investigated. In my diploma thesis, it has been shown that it is in principle possible to use the magnetic patterning by ion bombardment to magnetically structure the pinned layer in magnetic tunnel junctions (MTJs) with alumina barrier. Furthermore, it has been shown that the side effects which have been observed after this treatment can be at least reduced by an additional heating step. Starting from this point, the applicability of ion bombardment induced magnetic patterning (IBMP) in general and the combination of IBMP and MTJs in particular is investigated and new applications are developed. (orig.)

  18. Assessment of air mass ventilation potential in and around Bhabha Atomic Research Centre Trombay

    International Nuclear Information System (INIS)

    Jana, R.; Vinod Kumar, A.

    2016-01-01

    Aim of the present study is quantification of airborne pollutant dispersion potential in and around Bhabha Atomic Research Centre Trombay, a coastal belt of Arabian sea. Apart from synoptic atmospheric circulation, there is local land-sea interactive breezes diurnally in the area for which air mass ventilation potential is assessed here. For this purpose, a micro-meteorological station was established at Mandala hill top representing Trombay area to measure 3 dimensional wind components, i.e. Zonal: u, meridional: v and vertical: w, using ultrasonic anemometer. Hourly wind speed and wind direction are derived in this study for a period of 1 year, January-December 2013. Accuracy of wind components measurement is 0.1 m/s. This covers low wind condition too, i.e. wind speed below 1 m/s. Hourly statistics of year-long as well as seasonal period of wind field and associated parameters reveals the uniqueness of wind field phenomenon at the site being situated in west coast. Seasonal Wind Roses captures various frequencies of wind speed and wind direction for the respective periods

  19. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  20. Polymerization of solid C60 under C60 cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 95, - (2009), s. 867-873 ISSN 0947-8396 R&D Projects: GA AV ČR(CZ) KAN400480701; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : fulleren * cluster * bombardment * polymerization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.595, year: 2009 http://www.springerlink.com/content/0947-8396

  1. Ion-atom collisions for materials study

    International Nuclear Information System (INIS)

    Loaiza S, N.S.

    1976-01-01

    The diffusion process of silver in aluminium was studied in thin films as a function of temperature, the most important characteristics of dispersor atoms that technique permits us to study are the atomic mass and depth into the solid. This is possible because when a sample is bombarded with ions of a given energy, the ions are dispersed with different energies for different masses and depths, hence this technique is a useful instrument for research into the physical processes which ocurr in thin films up to depths of several microns, one of the results obtained after the bombardment of the target with protons having an energy of 650 KeV was that when the target reached a temperature of approximately 40 0 C, 80 0 C, 110 0 C and 160 0 C during 15 minutes and the spectra of heated and unheated targets were compared it was found that the aluminium peak, the valley, the silver peak and the peak over the silver peak change with the increase of temperature and tend to get mixed, that is to say that silver and the aluminium are diffusing themselves. The analysis is essentially qualitative with this technique we ca also measure the thickness of thin films, the silver thickness was measured (3320A). (author)

  2. Calculations on displacement damage and its related parameters for heavy ion bombardment in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1975-04-01

    The depth distribution of displacement damage expressed in displacements per atom (DPA) in reactor materials such as Mo, Nb, V, Fe and Ni bombarded by energetic nitrogen, argon and self ions with incident energy below 2 MeV was calculated following the theory developed by Lindhard and co-workers for the partition of energy as an energetic ion slowing down. In this calculation, energy loss due to electron excitation was taken into account for the atomic collision cascade after the primary knock-on process. Some parameters indispensable for the calculation such as energy loss rate, damage efficiency, projected range and its straggling were tabulated as a function of incident ion energy of 20 keV to 2 MeV. The damage and parameters were also calculated for 2 MeV nickel ions bombarding Fe targets. In this case, the DPA value is of 40--75% overestimated in a calculation disregarding electronic energy loss for primary knock-on atoms. The formula proposed in this report is significant for calculations on displacement damage produced by heavy ion bombardment as a simulation of high fluence fast neutron damage. (auth.)

  3. Calculations on displacement damage and its related parameters for heavy ion bombardment in reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Sone, K; Shiraishi, K

    1975-04-01

    The depth distribution of displacement damage expressed in displacements per atom (DPA) in reactor materials such as Mo, Nb, V, Fe and Ni bombarded by energetic nitrogen, argon and self ions with incident energy below 2 MeV was calculated following the theory developed by Lindhard and co-workers for the partition of energy as an energetic ion slowing down. In this calculation, energy loss due to electron excitation was taken into account for the atomic collision cascade after the primary knock-on process. Some parameters indispensable for the calculation such as energy loss rate, damage efficiency, projected range and its straggling were tabulated as a function of incident ion energy of 20 keV to 2 MeV. The damage and parameters were also calculated for 2 MeV nickel ions bombarding Fe targets. In this case, the DPA value is of 40--75% overestimated in a calculation disregarding electronic energy loss for primary knock-on atoms. The formula proposed in this report is significant for calculations on displacement damage produced by heavy ion bombardment as a simulation of high fluence fast neutron damage.

  4. Bombardment of gas molecules on single graphene layer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Ramki [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 660-701 (Korea, Republic of); Park, Jae Hyun [Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ha, Dong Sung [Future Propulsion Center, Agency for Defense Development, Daejeon 305-600 (Korea, Republic of)

    2014-12-09

    Graphite is widely used as a material for rocket-nozzle inserts due to its excellent thermo-physical properties as well as low density. During the operation of rockets, the surface of the graphite nozzle is subjected to very high heat fluxes and the undesirable erosion of the surface occurs due to the bombardment of gas molecules with high kinetic energy, which causes a significant reduction of nozzle performance. However, the understanding and quantification of such bombardment is not satisfactory due to its complexity: The bond breaking-forming happens simultaneously for the carbon atoms of graphene, some gas molecules penetrate through the surface, some of them are reflected from the surface, etc. In the present study, we perform extensive molecular dynamics (MD) simulations to examine the bombardment phenomena in high temperature environment (several thousand Kelvin). Advanced from the previous studies that have focused on the bombardment by light molecules (e.g., H{sub 2}), we will concentrate on the impact by realistic molecules (e.g., CO{sub 2} and H{sub 2}O). LAMMPS is employed for the MD simulations with NVE ensemble and AIREBO potential for graphene. The molecular understanding of the interaction between graphene and highly energetic gas molecules will enable us to design an efficient thermo-mechanical protection system.

  5. Performance evaluation of indigenous thermal ionization mass spectrometer for determination of 235U/238U atom ratios

    International Nuclear Information System (INIS)

    Alamelu, D.; Parab, A.R.; Sasi Bhushan, K.; Shah, Raju V.; Jagdish Kumar, S.; Rao, Radhika M.; Aggarwal, S.K.; Bhatia, R.K.; Yadav, V.K.; Sharma, Madhavi P.; Tulsyan, Puneet; Chavda, Pradip; Sriniwasan, P.

    2014-07-01

    A magnetic sector based Thermal Ionization Mass Spectrometer (TIMS) designed and developed at Technical Physics Division, B.A.R.C., was evaluated for its performance for the determination of 235 U/ 238 U atom ratios in uranium samples. This consisted of evaluating the precision and accuracy on the 235 U/ 238 U atom ratios in various isotopic reference materials as well as indigenously generated uranium samples. The results obtained by the indigenous TIMS were also compared with those obtained using a commercially available TIMS system. The internal and external precision were found to be around 0.1% for determining 235 U/ 238 U atom ratios close to those of natural uranium ( i.e. 0.00730). (author)

  6. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    Grizzi, Oscar.

    1986-01-01

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.) [es

  7. Beryllium dust generation resulting from plasma bombardment

    International Nuclear Information System (INIS)

    Doerner, R.; Mays, C.

    1997-01-01

    The beryllium dust resulting from erosion of beryllium samples subjected to plasma bombardment has been measured in PISCES-B. Loose surface dust was found to be uniformly distributed throughout the device and accounts for 3% of the eroded material. A size distribution measurement of the loose surface dust shows an increasing number of particles with decreasing diameter. Beryllium coatings on surfaces with a line of sight view of the target interaction region account for an additional 33% of the eroded beryllium material. Flaking of these surface layers is observed and is thought to play a significant role in dust generation inside the vacuum vessel. (orig.)

  8. Electron emission from Inconel under ion bombardment

    International Nuclear Information System (INIS)

    Alonso, E.V.; Baragiola, R.A.; Ferron, J.; Oliva-Florio, A.

    1979-01-01

    Electron yields from clean and oxidized Inconel 625 surfaces have been measured for H + ,H 2 + ,He + ,O + and Ar + ions at normal incidence in the energy range 1.5 to 40 keV. These measurements have been made under ultrahigh vacuum and the samples were freed of surface contaminants by bombarding with high doses of either 20 keV H 2 + or 30 keV Ar + ions. Differences in yields of oxidized versus clean surfaces are explained in terms of differences in the probability that electrons internally excited escape upon reaching the surface. (author)

  9. Investigation of stomach diseases in atomic bomb survivors, 6. Gastric mass survey in atomic bomb survivors (1982 - 1984)

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masafumi; Matsumoto, Yasuko; Mito, Kazuyo; Kumazawa, Toshihiko; Ito, Chikako

    1986-11-01

    This is a report of the results of gastric mass survey performed during a 3-year period from 1982 through 1984. Included in this survey were 16,781 A-bomb survivors. The subjects were divided into three groups: a group exposed at less than or equal to 2,000 m from ground zero (Group 1), a group exposed at > 2,000 m from ground zero (Group 2), and a group consisting of those who entered the city after the bombing or others (Group 3). Regarding the rate for necessity of detailed examinations, there was no difference among the groups. The incidence of abnormal findings was 6.1% in Group 1, 5.4% in Group 2, and 4.9% in Group 3, showing significant difference between Groups 1 and 3. Similarly, the incidence of respective disease was significantly higher in Group 1 than Group 3: gastritis was the most common (2.7% vs 2.0%), followed by gastric polyp (0.9% vs 0.5%) and gastric cancer (0.6% vs 0.2%). The age-adjusted incidence of gastric cancer and polyp was high, irrespective of sex, in Group 1. This was significant for gastric cancer in women and for gastric polyp in men. The incidence of gastric cancer in any age class was higher in Group 1 than Group 3. The incidence of gastric polyp tended to increase with aging in Group 1, being higher particularly for survivors over the age of 50 than those in Groups 2 and 3. (Namekawa, K.).

  10. Surface Morphologies of Ti and Ti-Al-V Bombarded by 1.0-MeV Au+ Ions

    Science.gov (United States)

    Garcia, M. A.; Rickards, J.; Cuerno, R.; Trejo-Luna, R.; Cañetas-Ortega, J.; de la Vega, L. R.; Rodríguez-Fernández, L.

    2017-12-01

    Ion implantation is known to enhance the mechanical properties of biomaterials such as, e.g., the wear resistance of orthopedic joints. Increasing the surface area of implants may likewise improve their integration with, e.g., bone tissue, which requires surface features with sizes in the micron range. Ion implantation of biocompatible metals has recently been demonstrated to induce surface ripples with wavelengths of a few microns. However, the physical mechanisms controlling the formation and characteristics of these patterns are yet to be understood. We bombard Ti and Ti-6Al-4V surfaces with 1.0-MeV Au+ ions. Analysis by scanning electron and atomic force microscopies shows the formation of surface ripples with typical dimensions in the micron range, with potential indeed for biomedical applications. Under the present specific experimental conditions, the ripple properties are seen to strongly depend on the fluence of the implanted ions while being weakly dependent on the target material. Moreover, by examining experiments performed for incidence angle values θ =8 ° , 23°, 49°, and 67°, we confirm the existence of a threshold incidence angle for (ripple) pattern formation. Surface indentation is also used to study surface features under additional values of θ , agreeing with our single-angle experiments. All properties of the surface structuring process are very similar to those found in the production of surface nanopatterns under low-energy ion bombardment of semiconductor targets, in which the stopping power is dominated by nuclear contributions, as in our experiments. We consider a continuum model that combines the effects of various physical processes as originally developed in that context, with parameters that we estimate under a binary-collision approximation. Notably, reasonable agreement with our experimental observations is achieved, even under our high-energy conditions. Accordingly, in our system, ripple formation is determined by mass

  11. Anomalous time-of-flight distributions observed for argon implanted in silicon and resputtered by Ar+-ion bombardment

    International Nuclear Information System (INIS)

    van Veen, G.N.A.; Sanders, F.H.M.; Dieleman, J.; van Veen, A.; Oostra, D.J.; de Vries, A.E.

    1986-01-01

    A Si substrate is bombarded by 3-keV Ar + ions. From time-of-flight spectra of resputtered Ar neutrals at various target temperatures, we conclude that Ar-bubble formation takes place in the amorphized-Si top layer. The bubbles form and open during etching. The average kinetic energy of the Ar atoms is in agreement with the calculated average potential energy of the Ar atoms inside the bubbles

  12. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. Examples of thin film property modification by ion bombardment during deposition, including effects which are primarily compositional as well as those which are primarily structural are presented. The examples demonstrate the usefulness of ion beam techniques in identifying and controlling the fundamental deposition parameters. 68 refs.; 15 figs.; 1 table

  13. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    Energy Technology Data Exchange (ETDEWEB)

    Bings, N.H., E-mail: bings@uni-mainz.de; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  14. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    International Nuclear Information System (INIS)

    Bings, N.H.; Orlandini von Niessen, J.O.; Schaper, J.N.

    2014-01-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  15. REFLOS, Fuel Loading and Cost from Burnup and Heavy Atomic Mass Flow Calculation in HWR

    International Nuclear Information System (INIS)

    Boettcher, W.; Schmidt, E.

    1969-01-01

    1 - Nature of physical problem solved: REFLOS is a programme for the evaluation of fuel-loading schemes in heavy water moderated reactors. The problems involved in this study are: a) Burn-up calculation for the reactor cell. b) Determination of reactivity behaviour, power distribution, attainable burn-up for both the running-in period and the equilibrium of a 3-dimensional heterogeneous reactor model; investigation of radial fuel movement schemes. c) Evaluation of mass flows of heavy atoms through the reactor and fuel cycle costs for the running-in, the equilibrium, and the shut down of a power reactor. If the subroutine for treating the reactor cell were replaced by a suitable routine, other reactors with weakly absorbing moderators could be analyzed. 2 - Method of solution: Nuclear constants and isotopic compositions of the different fuels in the reactor are calculated by the cell-burn-up programme and tabulated as functions of the burn-up rate (MWD/T). Starting from a known state of the reactor, the 3-dimensional heterogeneous reactor programme (applying an extension of the technique of Feinberg and Galanin) calculates reactivity and neutron flux distribution using one thermal and one or two fast neutron groups. After a given irradiation time, the new state of the reactor is determined, and new nuclear constants are assigned to the various defined locations in the reactor. Reloading of fuel may occur if the prescribed life of the reactor is reached or if the effective multiplication factor or the power form factor falls below a specified level. The scheme of reloading to be carried out is specified by a load vector, giving the number of channels to be discharged, the kind of movement from one to another channel and the type of fresh fuel to be charged for each single reloading event. After having determined the core states characterizing the equilibrium period, and having decided the fuel reloading scheme for the running-in period of the reactor life, the fuel

  16. Adhesion of silver films to ion-bombarded alumina

    International Nuclear Information System (INIS)

    Erck, R.A.; Fenske, G.R.

    1990-01-01

    This paper reports on silver films deposited on alumina substrates using ion bombardment. Adhesion strength was measured as a function of deposition conditions, sputter-cleaning time, and bombarding ion species, using a pull-type adhesion tester. Argon- and argon/oxygen-ion sputtering produced large increases in adhesion strength, with the greatest increases occurring for oxygen-ion bombardment. Adhesion strength increased monotonically as a function of ion sputtering time. At a given deposition rate, further enhancement of adhesion is seen with concurrent ion bombardment

  17. Efficient mass-selective three-photon ionization of zirconium atoms

    Science.gov (United States)

    Page, Ralph H.

    1994-01-01

    In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.

  18. Kinetics of interaction from low-energy-ion bombardment of surfaces

    International Nuclear Information System (INIS)

    Horton, C.C.

    1988-01-01

    The kinetics of interaction from low energy oxygen ion bombardment of carbon and Teflon surfaces have been investigated. The surfaces were bombarded with 4.5 to 93 eV oxygen ions and emitted species were observed with a mass spectrometer. To obtain the kinetic information, the ion beam was square pulse modulated and reaction products were observed as a function of time. The kinetic information is contained in the response of the emitted species to the pulsed ion beam. Oxygen bombardment of carbon produced CO in three parallel branches with each following an adsorption-desorption process. The fast branch, with a rate constants of 12,000/sec, appeared to be sputter induced an was absent below about 19 eV. The medium and slow branches, with rate constants of 850/sec and 45/sec respectively, has little energy dependence and appeared to be due to chemical sputtering from two sites. The ratio of the fraction of the medium branch to that of the slow was constant at 1:3. The bombardment of Teflon produced CF in two parallel branches, with one following a series process and the other an adsorb-desorb process. The rate constant of the other branch were 22,000/sec and 7,000/sec and the rate constant of the other branch was 90/sec. The total signal fell monotonically with decreasing ion energy with the fraction for each branch holding constant at 71% for the series and 29% for the adsorb-desorb

  19. Low-energy oxygen bombardment of silicon by MD simulations making use of a reactive force field

    International Nuclear Information System (INIS)

    Philipp, P.; Briquet, L.; Wirtz, T.; Kieffer, J.

    2011-01-01

    In the field of Secondary Ion Mass Spectrometry (SIMS), ion-matter interactions have been largely investigated by numerical simulations. For MD simulations related to inorganic samples, mostly classical force fields assuming stable bonding structure have been used. In materials science, level-three force fields capable of simulating the breaking and formation of chemical bonds have recently been conceived. One such force field has been developed by John Kieffer . This potential includes directional covalent bonds, Coulomb and dipolar interaction terms, dispersion terms, etc. Important features of this force field for simulating systems that undergo significant structural reorganization are (i) the ability to account for the redistribution of electron density upon ionization, formation, or breaking of bonds, through a charge transfer term, and (ii) the fact that the angular constraints dynamically adjust when a change in the coordination number of an atom occurs. In this paper, the modification of the force field to allow for an exact description of the sputtering process, the influence of this modification on previous results obtained for phase transitions in glasses as well as properties of particles sputtered at 250-1000 eV from a mono-crystalline silicon sample will be presented. The simulation results agree qualitatively with predictions from experiments or models. Most atoms are sputtered from the first monolayer: for an impact energy of 250 eV up to 86% of the atoms are sputtered from the first monolayer and for 750 eV, this percentage drops to 61%, with 89% of the atoms being sputtered from the first two monolayers. For sputtering yields, 250 and 500 eV results agree with experimental data, but for 750 eV sub-channelling in the pristine sample becomes more important than in experiments where samples turn amorphous under ion bombardment.

  20. The investigation on the mass media reports on the JCO accident in the major atomic energy countries and Asian countries

    International Nuclear Information System (INIS)

    1999-12-01

    The JCO (Japan Conversion Organization) accident is the worst one in the history of the atomic energy developments in Japan. The many reports about the accident appeared in the 44 mass media in the world from Sep. 30 to Oct. 14, 1999. Chronological statistics of issued 522 articles are listed under particular criteria. Some of them were based on wrong knowledge and/or overestimations about the accident based on delivered articles by the news agency. Some of others gave critics over the total atomic energy industries of Japan, especially on safety managements and so-called similar Japan syndromes. This investigation gives emphasis on the articles based on wrong knowledge. We identified the countries and the newspaper publishers and the news agencies those gave wrong descriptions. Total 25 articles used the words [explosion] and [fire], which were delivered from the Kyodo News Service. Some of the Asian newspaper wrote that a large quantity of radioactivity, radioactive material and/or nuclear fuels was released. Some other news publishers said the accident was happened at fuel reprocessing facilities, when the waste fuel rods were under cutting. Critics delivered in the individual countries were summarized, i.e. USA, Canada, France, UK, German, Russia, Australia, China, Korea, Thailand, Vietnam, Indonesia, Taiwan and the news agencies. One of the key issues is the exact information release for the press corps on the early stage of the accidents. The second point is to recognize the different status on atomic energy in the individual countries, when Japan want to explain their domestic situations. Accidents of atomic energy gave many impacts on various aspects to other countries. Japan should understand the neighborhood by collecting world information on atomic energy and analyzing them. Summaries of 522 articles appeared in the mass media were attached in this investigation among the report of 180 pages. (Tanaka, Y.)

  1. Low energy Ar ion bombardment damage of Si, GaAs, and InP surfaces

    International Nuclear Information System (INIS)

    Williams, R.S.

    1982-01-01

    Argon bombardment damage to (100) surfaces of Si, GaAs, and InP for sputter ion-gun potentials of 1, 2, and 3 kilovolts was studied using Rutherford backscattering. Initial damage rates and saturation damage levels were determined. Bombardment damage sensitivity increased for the sequence Si, GaAs, and InP. Saturation damage levels for Si and GaAs correspond reasonably to LSS projected range plus standard deviation estimates; damage to InP exceeded this level significantly. For an ion-gun potential of 3 keV, the initial sputter yield of P from an InP surface exceeded the sputter yield of In by four atoms per incident Ar projectile. (author)

  2. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  3. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction

    Science.gov (United States)

    Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.

    2018-01-01

    We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.

  4. Quadrupole type mass spectrometric study of the abstraction reaction between hydrogen atoms and ethane.

    Science.gov (United States)

    Bayrakçeken, Fuat

    2008-02-01

    The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.

  5. The timeline of the lunar bombardment: Revisited

    Science.gov (United States)

    Morbidelli, A.; Nesvorny, D.; Laurenz, V.; Marchi, S.; Rubie, D. C.; Elkins-Tanton, L.; Wieczorek, M.; Jacobson, S.

    2018-05-01

    The timeline of the lunar bombardment in the first Gy of Solar System history remains unclear. Basin-forming impacts (e.g. Imbrium, Orientale), occurred 3.9-3.7 Gy ago, i.e. 600-800 My after the formation of the Moon itself. Many other basins formed before Imbrium, but their exact ages are not precisely known. There is an intense debate between two possible interpretations of the data: in the cataclysm scenario there was a surge in the impact rate approximately at the time of Imbrium formation, while in the accretion tail scenario the lunar bombardment declined since the era of planet formation and the latest basins formed in its tail-end. Here, we revisit the work of Morbidelli et al. (2012) that examined which scenario could be compatible with both the lunar crater record in the 3-4 Gy period and the abundance of highly siderophile elements (HSE) in the lunar mantle. We use updated numerical simulations of the fluxes of asteroids, comets and planetesimals leftover from the planet-formation process. Under the traditional assumption that the HSEs track the total amount of material accreted by the Moon since its formation, we conclude that only the cataclysm scenario can explain the data. The cataclysm should have started ∼ 3.95 Gy ago. However we also consider the possibility that HSEs are sequestered from the mantle of a planet during magma ocean crystallization, due to iron sulfide exsolution (O'Neil, 1991; Rubie et al., 2016). We show that this is likely true also for the Moon, if mantle overturn is taken into account. Based on the hypothesis that the lunar magma ocean crystallized about 100-150 My after Moon formation (Elkins-Tanton et al., 2011), and therefore that HSEs accumulated in the lunar mantle only after this timespan, we show that the bombardment in the 3-4 Gy period can be explained in the accretion tail scenario. This hypothesis would also explain why the Moon appears so depleted in HSEs relative to the Earth. We also extend our analysis of the

  6. Secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Naik, P.K.

    1975-01-01

    Secondary Ion Mass Spectrometry (SIMS) which is primarily a method for investigating the chemical composition of the uppermost atomic layer of solid surfaces is explained. In this method, the specimen is bombarded with a primary positive ion beam of small current density monolayer. Positive and negative ions sputtered from the specimen are mass analysed to give the surface chemical composition. The analytical system which consists of a primary ion source, a target manipulator and a mass spectrometer housed in an ultrahigh vacuum system is described. This method can also be used for profile measurements in thin films by using higher current densities of the primary ions. Fields of application such as surface reactions, semiconductors, thin films emission processes, chemistry, metallurgy are touched upon. Various aspects of this method such as the sputtering process, instrumentation, and applications are discussed. (K.B.)

  7. Experiments on secondary ion emission with multicharged keV ion bombardement

    International Nuclear Information System (INIS)

    Della Negra, S.; Depauw, J.; Joret, H.; Le Beyec, Y.; Schweikert, E.A.

    1987-01-01

    An electron cyclotron resonance ion source was used to study the influence of the incident charge state of keV ions on secondary ion emission. The experiments were run with 18 keV Arn+ (1 < n < 11) beams produced by a minimafios source. Various types of targets were bombarded by the ion beam and the sputtered ionized species were identified by time of flight mass spectrometry. The experimental arrangement is detailed and preliminary results are indicated

  8. Predicting scattering properties of ultracold atoms : Adiabatic accumulated phase method and mass scaling

    NARCIS (Netherlands)

    Verhaar, B.J.; Kempen, van E.G.M.; Kokkelmans, S.J.J.M.F.

    2009-01-01

    Ultracold atoms are increasingly used for high-precision experiments that can be utilized to extract accurate scattering properties. This results in a stronger need to improve on the accuracy of interatomic potentials, and in particular the usually rather inaccurate inner-range potentials. A

  9. Ion bombardment techniques - recent developments in SIMS

    International Nuclear Information System (INIS)

    Konarski, P.; Miśnik, M.

    2013-01-01

    We present a short review of cluster ion bombardment technique recently applied in SIMS. Many advantages of using cluster ion beams are specified over monoatomic ion species. Cluster ions open really new perspectives especially in organic based structures analysis. Nevertheless cluster ions are not the perfect solution and still new ideas of ion erosion in SIMS are needed. Another issue discussed is 'storing matter' technique applied for quantitative analysis in SIMS. Simple idea of sputter deposition of eroded material onto rotating substrate and then analysing the stored material allows to avoid strong matrix effects in SIMS. Presented are the results performed in Tele and Radio Research Institute, Warszawa, Poland. These are the first results of ‘storing matter’ technique performed in one analytical chamber of SIMS instrument. (authors)

  10. The terrestrial record of Late Heavy Bombardment

    Science.gov (United States)

    Lowe, Donald R.; Byerly, Gary R.

    2018-04-01

    Until recently, the known impact record of the early Solar System lay exclusively on the surfaces of the Moon, Mars, and other bodies where it has not been erased by later weathering, erosion, impact gardening, and/or tectonism. Study of the cratered surfaces of these bodies led to the concept of the Late Heavy Bombardment (LHB), an interval from about 4.1 to 3.8 billion years ago (Ga) during which the surfaces of the planets and moons in the inner Solar System were subject to unusually high rates of bombardment followed by a decline to present low impact rates by about 3.5 Ga. Over the past 30 years, however, it has become apparent that there is a terrestrial record of large impacts from at least 3.47 to 3.22 Ga and from 2.63 to 2.49 Ga. The present paper explores the earlier of these impact records, providing details about the nature of the 8 known ejecta layers that constitute the evidence for large terrestrial impacts during the earlier of these intervals, the inferred size of the impactors, and the potential effects of these impacts on crustal development and life. The existence of this record implies that LHB did not end abruptly at 3.8-3.7 Ga but rather that high impact rates, either continuous or as impact clusters, persisted until at least the close of the Archean at 2.5 Ga. It implies that the shift from external, impact-related controls on the long-term development of the surface system on the Earth to more internal, geodynamic controls may have occurred much later in geologic history than has been supposed previously.

  11. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  12. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    International Nuclear Information System (INIS)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-01-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased

  13. Non-constant relative atomic masses due to varying isotopic abundance of polynuclidic elements and their effect on the accuracy of analytical results

    International Nuclear Information System (INIS)

    Gerstenberger, H.

    1981-01-01

    Alterations of actual relative atomic masses occur in natural samples by natural isotope ratio shifts of polynuclidic elements. Therefore, using nuclear properties for gaining a measuring signal, isotopic shifts of certain elements may lead to significant measuring errors

  14. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  15. Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)

    2017-01-15

    An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range

  16. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    International Nuclear Information System (INIS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-01-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi_2O_3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ_m) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z_e_f_f) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  17. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point......-blast-wave descriptions of laser ablation plume expansion in gas....

  18. Rapidity distributions of Ca+Ca, Nb+Nb, Ne+Au and Au+Au at bombarding energies from 250 to 2100 MeV/nucleon

    International Nuclear Information System (INIS)

    Gutbrod, H.H.; Kolb, B.W.; Schmidt, H.R.; Kampert, K.H.; Poskanzer, A.M.; Ritter, H.G.

    1990-02-01

    We present experimental rapidity distributions dN ch /dy over a wide range of bombarding energies and projectile and target masses. Target and projectile spectators are observed for peripheral collisions but not for the most central collisions. This behavior is found for all systems and bombarding energies investigated. Although detector inefficiencies tend to distort the experimental distributions, they are on a tolerable level and do not remove sensitivity to theoretical descriptions. (orig.)

  19. Annealing of defects in indium antimonide after ion bombardment

    International Nuclear Information System (INIS)

    Bogatyrev, V.A.; Kachurin, G.A.

    1977-01-01

    Indium antimonide electric properties are investigated after ion bombardment of different mass (with energy of 60 and 300 keV) and isochrone annealing in the 20-450 deg C temperature range. It is shown that 100-150 deg C n- type stable layers are formed after proton irradiation at room temperature only. Indium antimonide exposure by average mass ions under the same conditions and also by helium ions of 300 keV energy brings to p-type layer formation with high hole concentration. Subsequent heating at the temperature over 150 deg C results in electron conductivity of irradiated layers. Electron volume density and mobility efficiency reaches 10 18 cm -3 and 10 4 cm 2 /Vs respectively. N-type formed layers are stable up to 350 deg C allowing its usage for n-p transition formation admitting thermal treatment. Analysis is given of defect behaviour peculiarities depending upon the irradiation and annealing conditions. Hole conductivity in irradiated indium antimonide is supposed to be stipulated by regions of disorder, while electron conductivity - by relatively simpler disorders

  20. MISTRAL: a new program for precise atomic mass determinations of nuclides far from stability

    International Nuclear Information System (INIS)

    Lunney, M.D.; Audi, G.; Borcea, C.; Dedieu, M.; Doubre, H.; Duma, M.; Jacotin, M.; Kepinski, J.F.; Le Scornet, G.; De Saint Simon, M.; Thibault, C.

    1996-01-01

    The MISTRAL project (Mass measurements at ISolde using a Transmission RAdiofrequency spectrometer on-Line) is scheduled to begin experiments towards the end of 1996. With high resolution (10 5 ), potentially high accuracy (5.10 -7 ) and excellent sensitivity (10 s -1 ), the MISTRAL spectrometer promises to provide needed mass measurements in regions of very-short lived nuclei. The spectrometer operation principles are described and a discussion concerning the interest in using highly charged ions is presented. (orig.)

  1. The crystalline-to-amorphous transition in ion-bombarded silicon

    International Nuclear Information System (INIS)

    Mueller, G.; Kalbitzer, S.

    1980-01-01

    Hydrogen-free, but defect-rich a-Si can be obtained by ion bombardment of c-Si. The formation of such material has been studied in detail using carrier-removal measurements in the characterization of the bombardment damage. In order to develop an overall view of the disordering process these data are discussed together with results obtained on similar films by Rutherford back-scattering, electron spin resonance, electron microscopy and optical measurements. It is concluded that amorphous material generally evolves from an intermediate crystalline phase supersaturated with point defects. The transition occurs locally at the sites of energetic ion impacts into critically predamaged crystalline material. As a consequence, an amorphous layer is built up from small clusters with dimensions typically of the order of 50 A. From the net expansion of the bombarded layers it is concluded that regions of lower atomic density are locally present, very likely a consequence of a structural mismatch between individual amorphous clusters. In this way a heterogeneous defect structure may build up in these films which determines their electronic properties. (author)

  2. Cluster induced chemistry at solid surfaces: Molecular dynamics simulations of keV C60 bombardment of Si

    International Nuclear Information System (INIS)

    Krantzman, K.D.; Kingsbury, D.B.; Garrison, Barbara J.

    2007-01-01

    Molecular dynamics simulations of the sputtering of Si by keV C 60 bombardment have been performed as a function of incident kinetic energy at two incident angles, normal incidence and 45 deg. Nearly all of the C atoms remain embedded in the surface after bombardment because the C atoms from the projectile form strong covalent bonds with the Si atoms in the target. At low incident kinetic energies, the sputtering yield of Si atoms is small and there is a net deposition of solid material from the projectile atoms. As the incident kinetic energy is increased, the yield of sputtered Si atoms increases. A transition occurs in which the yield of sputtered Si atoms exceeds the number of C atoms deposited, and there is a net erosion of the solid material. A significantly higher sputter yield is observed at an incident angle of 45 deg. than at normal incidence, and therefore, the energy value is lower for the transition from net deposition to net erosion. This phenomenon is discussed in terms of the depth distribution of deposited energy, which is found to be shallower at an incident angle of 45 deg

  3. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M; Williams, J S; Svensson, B G; Conway, M [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  4. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Williams, J.S.; Svensson, B.G.; Conway, M. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  5. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  6. Modification of Polymer Materials by Ion Bombardment: Case Studies

    International Nuclear Information System (INIS)

    Bielinski, D. M.; Jagielski, J.; Lipinski, P.; Pieczynska, D.; Ostaszewska, U.; Piatkowska, A.

    2009-01-01

    The paper discusses possibility of application of ion beam bombardment for modification of polymers. Changes to composition, structure and morphology of the surface layer produced by the treatment and their influence on engineering and functional properties of wide range of polymer materials are presented. Special attention has been devoted to modification of tribological properties. Ion bombardment results in significant reduction of friction, which can be explained by increase of hardness and wettability of polymer materials. Hard but thin enough skin does not result in cracking but improves their abrasion resistance. Contrary to conventional chemical treatment ion beam bombardment works even for polymers hardly susceptible to modification like silicone rubber or polyolefines.

  7. The Search for High Spin State Isomers in the Atomic Mass Region 178-192

    International Nuclear Information System (INIS)

    Ellahrah, M.S.; Arfa, N.S.

    2007-01-01

    Isomers for elements far a way from line of stability are a new field for research to produce artificial isomers that can store considerable amount of energy in small amount of mass without the dangerous hazards on life and environment. These isomers could have very short life time or very long one 10th and 100th of years. It will be possible to get the stored energy by stimulated emission . The purpose of this work to use a theorical model based on Bcs method to find out the possible isomers in the mass reg on 178-192 even -even isotopes so that experimentalists can concentrate their research on these predicted isomers.

  8. A theoretical approach to sputtering due to molecular ion bombardment, 1

    International Nuclear Information System (INIS)

    Karashima, Shosuke; Ootoshi, Tsukuru; Kamiyama, Masahide; Kim, Pil-Hyon; Namba, Susumu.

    1981-01-01

    A shock wave model is proposed to explain theoretically the non-linear effects in sputtering phenomena by molecular ion bombardments. In this theory the sputtering processes are separated into two parts; one is due to linear effects and another is due to non-linear effects. The treatment of the linear parts is based on the statistical model by Schwarz and Helms concerning a broad range of atomic collision cascades. The non-linear parts are treated by the model of shock wave due to overlapping cascades, and useful equations to calculate the sputtering yields and the dynamical quantities in the system are derived. (author)

  9. Secondary ion emission from metal surfaces bombarded by 0.5-10 keV protons and hydrogens

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yano, Syukuro

    1978-01-01

    Secondary ion emission coefficients by bombardment of 0.5 - 10 keV protons K 11 and atomic hydrogens K 01 on copper, stainless steel, molybdenum and evaporated gold surfaces have been measured in a moderate vacuum. Results are summarized as follows; 1) There is no significant difference between K 11 and K 01 . 2) Differences in K 11 and K 11 between different samples of the same material and between the sample before baking-out and the same sample after baking-out are of the order of several tens of percent. 3) The incident particle energy E sub(max) at which K 11 and K 01 have the maximum value lies in the keV region, and increases with the target mass. According to the fact that E sub(max) differs substantially from the energy at which the elastic stopping power has the maximum value, a characteristic length l is introduced and calculated to be of the order of hundreds of A; the factor exp (-x/l) represents the degree of contribution of collision at depth x to K 11 or K 01 . (author)

  10. Measurement of the charged pion mass using a low-density target of light atoms

    Directory of Open Access Journals (Sweden)

    Trassinelli M.

    2016-01-01

    Full Text Available We present a new evaluation of the negatively charged pion mass based on the simultaneous spectroscopy of pionic nitrogen and muonic oxygen transitions using a gaseous target composed by a N2/O2 mixture at 1.4 bar. We present the experimental set-up and the methods for deriving the pion mass value from the spatial separation from the 5g − 4f πN transition line and the 5g − 4f μO transition line used as reference. Moreover, we discuss the importance to use dilute targets in order to minimize the influence of additional spectral lines from the presence of remaining electrons during the radiative emission. The occurrence of possible satellite lines is investigated via hypothesis testing methods using the Bayes factor.

  11. Pion correlations as a function of atomic mass in heavy ion collisions

    International Nuclear Information System (INIS)

    Chacon, A.D.

    1989-01-01

    The method of two pion interferometry was used to obtain source-size and lifetime parameters for the pions produced in heavy ion collisions. The systems used were 1.70 · A GeV 56 Fe + Fe, 1.82 · A GeV 40 Ar + KCl and 1.54 · A GeV 93 Nb + Nb, allowing for a search for dependences on the atomic number. Two acceptances (centered, in the lab., at ∼ 0 degrees and 45 degrees) were used for each system, allowing a search for dependences on the viewing angle. The correlation functions were calculated by comparing the data samples to background (or reference) samples made using the method of event mixing, where pions from different events are combined to produce a data sample in which the Bose-Einstein correlation effect is absent. The effect of the correlation function on the background samples is calculated, and a method for weighting the events to remove the residual correlation effect is presented. The effect of the spectrometer design on the measured correlation functions is discussed, as are methods for correcting for these effects during the data analysis. 58 refs., 39 figs., 18 tabs

  12. Mechanism of conductivity type conversion in p-Hg1-xCdxTe crystals under low energy ion bombardment

    International Nuclear Information System (INIS)

    Bogoboyashchij, V.V.; Izhnin, I.I.

    2000-01-01

    Conditions giving rise to accelerated diffusion of Hg under bombardment of p-Hg 1-x Cd x Te by low-energy particles are analyzed and probable mechanisms of the phenomenon are suggested, permitting qualitative and quantitative agreement with experimental data. Analysis indicates that basic regularities of p-n-conversion during Hg 0.8 Cd 0.2 Te crystal bombardment by neutralized ions can be easily explained in the framework of traditional notions of mercury chemical diffusion in this material. The regularities stem from specific features of defect formation in Hg 0.8 Cd 0.2 Te, on the one hand, and from a high concentration of intrinsic electrons and holes, screening effectively the defective layer electric field, on the other hand. The high rate of conversion during ion bombardment compared with the rate of conversion during annealing in mercury vapors can be explained by the fact that a great number of nonequilibrium interstitial atoms of mercury, by far exceeding the value during thermal annealing, is crated near the surface of the crystal bombarded [ru

  13. The adsorption of helium atoms on coronene cations

    Energy Technology Data Exchange (ETDEWEB)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Lindinger, Albrecht [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  14. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    Science.gov (United States)

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  15. Measurement of mass attenuation coefficients of moderate-to-high atomic-number elements at low photon energies

    International Nuclear Information System (INIS)

    Tajuddin, A.A.; Chong, C.S.; Shukri, A.; Bradley, D.A.

    1995-01-01

    Mass attenuation coefficients for 12 selected moderate-to-high atomic-number elements have been obtained from good-geometry measurements made at five 241 Am photon energies of significant emission intensity. Particular interest focuses on measured values for photon energies close to absorption edges. Comparisons with renormalized cross-section predictions indicate agreement to within stated error limits for the majority of cases. Significant discrepancies (> 10%) are noted for Ta at 17.8 and 26.3 keV and W at 59.5 keV. Some support for a discrepancy between measurement and theory for W in the region of 60 keV is found in the reported measurements of others. (author)

  16. Mass attenuation coefficients, effective atomic and electron numbers of stainless steel and carbon steels with different energies

    International Nuclear Information System (INIS)

    Mohd Fakarudin Abdul Rahman; Mohd Iqbal Saripan; Nor Paiza Mohamad Hasan; Ismail Mustapha

    2011-01-01

    The total mass attenuation coefficients (μ/ ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Z eff ) and electron (N eff ) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Z eff and N eff were in good agreement. (author)

  17. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  18. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination

    International Nuclear Information System (INIS)

    Krata, A.; Bulska, E.

    2005-01-01

    The analytical performance of cold vapor atomic absorption spectrometry (CV AAS), graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS) for mercury determination have been investigated with the use of two reference materials SRM 2710 Montana I Soil and BCR-144R (sewage sludge from domestic origin). The digestion conditions and their influence on determination of mercury have been studied. Samples were decomposed by microwave digestion in closed vessels with the use of HCl alone or mixture of HCl+HNO 3 +HF. The digestion solutions were analyzed by CV AAS using NaBH 4 as a reducing agent, by GF AAS with Pd or mixture of Pd/Rh as modifiers and by ICP-MS with Rh as internal standard. In the case of CV AAS, results were not dependent on digestion conditions. In the case of GF AAS and ICP-MS, results depended significantly on digestion conditions; in both cases, the use of the mixture of acids as defined above suppressed the signal of mercury. Therefore, in those cases, the microwave digestion with HCl is recommended. Detection limits of 0.003, 0.01 and 0.2 μg g -1 were achieved by ICP-MS, CV AAS and GF AAS, respectively

  19. Clinical study of mass survey for lung cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Sasaki, Hideo; Ito, Chikako; Mitsuyama, Toyofumi; Kamitsuna, Akimitsu; Nishimoto, Yukio; Katsuta, Shizutomo.

    1988-01-01

    In mass screening for lung cancer, chest roentgenography was performed in A-bomb survivors over the age of 50 years. Out of 47,960 A-bomb survivors examined during seven years from 1979 through 1986, 58 were found to have lung cancer. The prevalence of lung cancer was 120.9/100,000, which was extremely higher than previously reported. A-bomb survivors, as well as persons exposed to environmental pollution and occupational hazards, are considered to belong to the high risk group for lung cancer. Asymptomatic lung cancer was of earlier stage than symptomatic lung cancer. It was also associated with higher surgical rate and faborable prognosis. Primary screening failed to detect lung cancer in 20 %, requiring double checking by pulmonary disease specialists. The role of health care workers is stressed in view of the necessity of detailed examination and surgery for lung cancer. (Namekawa, K.)

  20. Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements

    International Nuclear Information System (INIS)

    Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail

    2007-01-01

    We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we consider objects with an internal structure consisting of a single ground state and several excited states. The transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simultaneous measurements allow both an increase in the measurement or localization precision in a single direction and the performance of multidimensional measurements or localization. Further, we show that multiple measurements may relax the experimental requirements for each individual measurement

  1. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    Science.gov (United States)

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  2. Atomic physics constraints on the X boson

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István

    2018-04-01

    Recently, a peak in the light fermion pair spectrum at invariant q2≈(16.7MeV ) 2 has been observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈16.7 MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a "nuclear halo." Here we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers.

  3. Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7/sub -//sub x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The structure and composition of the superconducting oxide YBa 2 Cu 3 O/sub 7-//sub x/ have been examined in atomic detail by field ion microscopy and imaging atom-probe mass spectroscopy. The field ion samples were prepared from hot-pressed disks of the oxide powders. Atomic resolution images were obtained with either argon or hydrogen as the imaging gas. Individual layers of atoms were observed which could be field evaporated in a uniform, layer-by-layer manner. Imaging atom-probe analysis of the field ion tips indicated a metal composition which varied noticeably from sample to sample and an oxygen concentration which was consistently much too low

  4. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  5. Photon emission produced by Kr+ ions bombardment of Cr and Cr2O3 targets

    International Nuclear Information System (INIS)

    Boujlaidi, A. El; Hammoum, K.; Jadoual, L.; Jourdani, R.; Ait El Fqih, M.; Aouchiche, H.; Kaddouri, A.

    2015-01-01

    The sputter induced photon spectroscopy technique was used to study the luminescence spectra of the species sputtered from chromium powder and its oxide Cr 2 O 3 , during 5 keV Kr + ions bombardment in vacuum better than 10 −7 torr. The optical spectra recorded between 350 and 470 nm exhibit discrete lines which are attributed to neutral excited atoms of chromium (Cr I lines). The experiments are also performed under 10 −5 torr ultra pure oxygen partial pressure. The results demonstrate that the measured intensities of the emitted photons are always higher in the presence of oxygen and even higher than those obtained for Cr 2 O 3 target. In the presence of oxygen vapor we assume that an oxide film is formed on the chromium surface which is responsible of the increase of photon emission. This variation in the intensities is correctly explained in the model of electron transfer processes between the excited sputtered atom and the bombarded surface. This model suggests that the structure formed on the Cr surface in the case of oxygenated chromium is closer to that of Cr 2 O 3 oxide

  6. Time-of-flight mass spectrometry with desorption-ionization multiprobes (UV photons and KeV and MeV particles). Cluster atoms are used as projectiles

    International Nuclear Information System (INIS)

    Brunelle, A.

    1990-09-01

    A new time-of-flight mass spectrometer, Super-Depil, is used to study secondary ion emission from solid surfaces bombarded by various kinds of primary particles. Three different desorption probes were set up on this machine: a 252 californium source, providing by spontaneous fission about 1 MeV/u energy heavy ions, a 5 to 30 keV energy pulsed caesium ion gun and a pulsed nitrogen laser, which wavelength is 337 mm. A two stages electrostatic mirror was added to the spectrometer. The time spread due to the initial kinetic energy of secondary ions leaving the surface was minimized. The mass resolution is greater than 5000. The analysis of glycosidic terpenes showed the complementarity of the three probes. The study of such metastable ions, with the electrostatic mirror, showed that some fragment ions may conserve the memory of the stereochemistry of the neutral lost. Clusters ions were used as projectiles in the energy range 5-60 keV. A strong non linear enhancement was observed in the secondary ion yield from various targets [fr

  7. Mass the quest to understand matter from Greek atoms to quantum fields

    CERN Document Server

    Baggott, Jim

    2017-01-01

    Everything around us is made of 'stuff', from planets, to books, to our own bodies. Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosophers of ancient Greece once speculated, nearly two and a half thousand years ago, matter comes in 'lumps', and science has relentlessly peeled away successive layers of matter to reveal its ultimate constituents. Surely, we can't keep doing this indefinitely. We imagine that we should eventually run up against some kind of ultimately fundamental, indivisible type of stuff, the building blocks from which everything in the Universe is made. The English physicist Paul Dirac called this 'the dream of philosophers'. But science has discovered that the foundations of our Universe are not as solid or as certain and dependable as we might have once imagined. They are instead built from ghosts and phantoms, of a peculiar quantum kind....

  8. 8. International conference on atomic masses and fundamental constants (AMCO-8)

    International Nuclear Information System (INIS)

    Armbruster, P.; Barber, R.C.; Cohen, E.R.

    1990-01-01

    The current recommended values of the fundamental physical constants are base on an adjustment carried out in 1986. Physics, however, has not stood still. New measurements have been reported for the Rydberg constant and the gas constant. Improved calculations and measurements of the electron magnetic moment anomaly, a e have provided an improved value for the fine structure constant α = μ 0 ce 2 /2h. The decision to establish uniform international representation of the volts and ohms in terms of the Josephson effect and the quantized Hall resistance, respectively, stimulated new measurements of 2e/h and e/h 2 . These new data have significantly changed the error-space of the adjustment of the physical constants. In the 1986 adjustments, the one-standard deviation uncertainty in α was 0.045 ppm; the university of Washington measurements of a e and the final results of Kinoshita's 20-year program of numerical evaluation of the eight order QED diagrams yield a new value with an uncertainty of 0.0069 ppm. Combined with the Rydberg constant and the proton-electron mass ratio this means that N Λ h = M p α 2 c/(2(m p /m e )R ∞ ) is defined with an uncertainty of 0.025 ppm

  9. The Atomic Mass Dependence of Massive Muon Pair Production in 225 GeV/c $\\pi$ - Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Morris L. [Chicago U.

    1984-03-01

    The production of massive muon pairs in 225 GeV/c $\\pi^-$-nucleus interactions has been studied for four nuclear targets. The dependence of the integrated cross section on atomic mass A was measured by comparing the relative cross sections for the targets. If one assumes that the cross section is proportional to $A^{\\alpha}$, a value of a= 1.00±0.06 for muon pair masses between 4.0 GeV/$c^2$ and 8.5 GeV/$c^2$ was obtained. The Drell-Yan model predicts an additional dependence of the cross section on the proton fraction Z/A. If one parametizes the integrated cross I section as a(Z/A)$A^{\\alpha}$ where $\\sigma$(Z/A) is a function of the proton fraction that includes the effects of the Drell-Yan model, Fermi Motion, and secondary pion production, a value of $\\alpha$ = 0.97±0.06 was obtained. The dependence of the muon pair transverse momentum distribution on nuclear size was also investigated. The second moment of the distribution <$P^2_T$> was found to be consistent with being independent of nuclear size. If the dependence of <$P^2_T$> on nuclear size is parametized as <$P^2_T$> = a + b $A^{1/3}$ the coefficient b was found to be less than 0.015 $GeV^2$/$c^2$ with 90% confidence.

  10. Quasiparticles of widely tuneable inertial mass: The dispersion relation of atomic Josephson vortices and related solitary waves

    Directory of Open Access Journals (Sweden)

    Sophie S. Shamailov, Joachim Brand

    2018-03-01

    Full Text Available Superconducting Josephson vortices have direct analogues in ultracold-atom physics as solitary-wave excitations of two-component superfluid Bose gases with linear coupling. Here we numerically extend the zero-velocity Josephson vortex solutions of the coupled Gross-Pitaevskii equations to non-zero velocities, thus obtaining the full dispersion relation. The inertial mass of the Josephson vortex obtained from the dispersion relation depends on the strength of linear coupling and has a simple pole divergence at a critical value where it changes sign while assuming large absolute values. Additional low-velocity quasiparticles with negative inertial mass emerge at finite momentum that are reminiscent of a dark soliton in one component with counter-flow in the other. In the limit of small linear coupling we compare the Josephson vortex solutions to sine-Gordon solitons and show that the correspondence between them is asymptotic, but significant differences appear at finite values of the coupling constant. Finally, for unequal and non-zero self- and cross-component nonlinearities, we find a new solitary-wave excitation branch. In its presence, both dark solitons and Josephson vortices are dynamically stable while the new excitations are unstable.

  11. Mass spectrometric methods for studying nutrient mineral and trace element absorption and metabolism in humans using stable isotopes: a review

    International Nuclear Information System (INIS)

    Crews, H.M.; Eagles, J.; Mellon, F.A.; Luten, J.B.; McGaw, B.A.

    1994-01-01

    Mass spectrometric methods for determining stable isotopes of nutrient minerals and trace elements in human metabolic studies are described and discussed. The advantages and disadvantages of the techniques of electron ionization, fast atom bombardment, thermal ionization, and inductively coupled plasma and gas chromatography mass spectrometry are evaluated with reference to their accuracy, precision, sensitivity, and convenience, and the demands of human nutrition research. Examples of specific applications are described and the significance of current developments in mass spectrometry are discussed with reference to present and probable future research needs. (Author)

  12. Alteration of the magnitude of the proton magnetic moment in nuclear magnetons in connection with the changes in the atomic mass values

    Energy Technology Data Exchange (ETDEWEB)

    Mamyrin, B.A.; Aruev, N.N.; Alekseenko, S.A.

    1983-06-01

    In connection with the revision of the table values of the atomic masses and the forthcoming coordination of the values of the fundamental physical constants, the result of measurement of the proton magnetic moment in nuclear Magnetons obtained in 1971 is re-examined by taking into account recent data. With the atomic masses recognized in 1982 the proton magnetic moment expressed in nuclear magnetons without a correction for diamagnetic screening of the proton in a water molecule is found to be ..mu..sub(p)'/..mu..sub(n)=2.7927729+-0.0000012 (4.3x10/sup -5/%).

  13. Atomic Mass Dependence of $\\Xi^{-}$ Baryon and $\\bar \\Xi^+$ Baryon Production in Central 250-GeV/c $\\pi^-$ - Nucleon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dagenhart, William David [Tufts U.

    2000-02-01

    We present the first measurement of the atomic mass dependence of central $\\Xi^-$ and $\\overline{\\Xi}^+$ production. It is measured using a sample of 22,459 $\\Xi^-$'s and $\\overline{\\Xi}^+$'s produced in collisions between a 250 GeV/c $\\pi^-$ beam and targets of beryllium, aluminum, copper, and tungsten. The relative cross sections are fit to the two parameter function $\\sigma_0 A^{\\alpha}$, where A is the atomic mass. We measure $\\alpha$ = 0:924 $\\pm$ 0:020 $\\pm$ 0:025, for Feynman-x in the range $\\pm$ 0:09 < $x_F$ < 0:15.

  14. Energy dependence of angular distributions of sputtered particles by ion-beam bombardment at normal incidence

    International Nuclear Information System (INIS)

    Matsuda, Yoshinobu; Ueda, Yasutoshi; Uchino, Kiichiro; Muraoka, Katsunori; Maeda, Mitsuo; Akazaki, Masanori; Yamamura, Yasunori.

    1986-01-01

    The angular distributions of sputtered Fe-atoms were measured using the laser fluorescence technique during Ar-ion bombardment for energies of 0.6, 1, 2 and 3 keV at normal incidence. The measured cosine distribution at 0.6 keV progressively deviated to an over-cosine distribution at higher energies, and at 3 keV the angular distribution was an overcosine distribution of about 20 %. The experimental results agree qualitatively with calculations by a recent computer simulation code, ACAT. The results are explained by the competition between surface scattering and the effects of primary knock-on atoms, which tend to make the angular distributions over-cosine and under-cosine, respectively. (author)

  15. Angular dependence of secondary ion emission from silicon bombarded with inert gas ions

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1984-01-01

    The emission of positive and negative, atomic and molecular secondary ions sputtered from silicon has been studied under ultrahigh vacuum conditions. The sample was bombarded with 2-12 keV Ar + and Xe + ions at angles of incidence between 0 0 and 60 0 to the surface normal. The angular dependence of the secondary ion intensity as well as the energy spectra of Si + and Si - were found to differ significantly. The effect is attributed mostly do differences in the rate of neutralization. The stability of molecular ions appears to be independent of the charge state. Supporting evidence is provided for the idea that multiply charged secondary ions are due to Auger de-excitation of sputtered atoms in vacuum. (orig.)

  16. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, M. [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland); Verkhoturov, S.V.; Verkhoturov, D.S.; Schweikert, E.A. [Department of Chemistry, Texas A& M University, College Station, TX 77840 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland)

    2017-02-15

    Highlights: • Substrate thickness has a prominent effect on the molecular ejection mechanism. • Collisions with projectile atoms leads to molecular ejection at thin substrates. • Interactions with deforming graphene sheet ejects molecules from thicker substrates. • Probability of fragmentation process decreases with the graphene substrate thickness. - Abstract: Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C{sub 60} projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  17. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  18. Absolute analysis of uranium isotopic concentrations with a gas ion source mass spectrometer; Analyses absolues des concentrations isotopiques de l'uranium par spectrometre de masse equipe d'une source a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chaussy, L.; Boyer, R. [Commissariat a l' Energie Atomique, Pierrelatte (France)

    1969-07-01

    Mass spectrometer with electronic bombardment ions source for routine uranium isotopic analysis are used like relative measurements apparatus. We show that such mass spectrometers can be used for absolute measurements with a very high sensitivity and precision which are ten times better than theses of thermo-ionic ions source mass spectrometer. We examine the causes of systematic errors and we give experimental data. In particular natural uranium sample used as reference give: U{sub 5} = 0.7202 {+-} 0.0005 atoms per cent; U{sub 4} = 0.00552 {+-} 0.0003 atoms per cent. The use of this method is justified for standards control. (authors) [French] Les spectrometres de masse a source par bombardement electronique pour l'analyse de l'uranium sous forme d'hexafluorure, sont utilises en routine comme des appareils de mesure relative. On montre que l'on peut utiliser de tels appareils pour effectuer des mesures absolues avec une excellente sensibilite et reproductibilite, dix fois superieure a celle des spectrometres a source thermoionique. On examine en detail les causes d'erreurs systematiques et on donne des resultats experimentaux. En particulier, l'analyse d'un echantillon d'uranium naturel donne: U{sub 5} = 0.7202 {+-} 0.0005 atomes pour cent; U{sub 4} = 0.00552 {+-} 0.0003 atomes pour cent. La technique de mesure est utile pour le controle d'etalons isotopiques. (auteurs)

  19. Destruction of C60 films by boron ion bombardment

    International Nuclear Information System (INIS)

    Ren Zhongmin; Du Yuancheng; Ying Zhifeng; Xiong Xiaxing; Li Fuming

    1995-01-01

    C 60 films are bombarded by 100 keV boron ion beams at doses ranging from 3x10 14 to 1x10 16 /cm 2 . The bombarded films are analyzed using Fourier transform infrared spectroscopy (FTIR), Raman spectra and X-ray diffraction (XRD) measurements. Most C 60 soccer-balls in the implanted region in the films are found to be broken at a dose over 1x10 15 /cm 2 , while at a dose less than 6x10 14 /cm 2 a few C 60 molecules remain undestroyed and maintain some crystal structure. The results of the analyses suggest a complete disintegration of a C 60 molecule under B + bombardment. ((orig.))

  20. Catalytic oxidation of silicon by cesium ion bombardment

    International Nuclear Information System (INIS)

    Souzis, A.E.; Huang, H.; Carr, W.E.; Seidl, M.

    1991-01-01

    Results for room-temperature oxidation of silicon using cesium ion bombardment and low oxygen exposure are presented. Bombardment with cesium ions is shown to allow oxidation at O 2 pressures orders of magnitude smaller than with noble gas ion bombardment. Oxide layers of up to 30 A in thickness are grown with beam energies ranging from 20--2000 eV, O 2 pressures from 10 -9 to 10 -6 Torr, and total O 2 exposures of 10 0 to 10 4 L. Results are shown to be consistent with models indicating that initial oxidation of silicon is via dissociative chemisorption of O 2 , and that the low work function of the cesium- and oxygen-coated silicon plays the primary role in promoting the oxidation process

  1. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Ewinger, H.P.

    1993-05-01

    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C 2 , CH 2 , C 2 H, and C 3 , as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR) [de

  2. Adhesion of evaporated titanium films to ion-bombarded polyethylene

    International Nuclear Information System (INIS)

    Bodoe, P.; Sundgren, J.

    1986-01-01

    Ti films were deposited onto high-density polyethylene (HDPE) samples by electron-beam evaporation. Prior to film deposition the samples were in situ pretreated by Ar ion bombardment using a sputter ion gun. The adhesion of the films, determined as the pull strength required for film failure, was measured as a function of ion dose. HDPE substrates processed at two different temperatures were examined. The adhesion of the Ti films to HDPE samples processed at roughly-equal150 0 C increased with the ion dose to a steady-state value corresponding to the cohesive strength of the HDPE substrate. The adhesion to the samples processed at roughly-equal200 0 C increased to a maximum and then decreased for further ion bombardment to a level of the same order as that for films deposited onto as-prepared samples. The effects of the ion bombardment upon the HDPE surface chemistry were examined by means of x-ray photoelectron spectroscopy (XPS). The ion bombardment resulted in dehydrogenation and cross linking of the surface region and for prolonged ion bombardment, a graphitelike surface was obtained. The film/substrate interface as well as the initial Ti film growth were examined by XPS analysis. A chemical interaction which resulted in Ti--C bonds was observed at the interface. The Ti film growth followed a pronounced three-dimensional growth mode on as-prepared surfaces whereas the ion bombardment resulted in a change toward a more two-dimensional growth mode. The difference in adhesion behavior for the two types of HDPE substrates was found to be due to a difference in the amounts of low molecular weight products present within the substrates

  3. Combination of atomic force microscopy and mass spectrometry for the detection of target protein in the serum samples of children with autism spectrum disorders

    Science.gov (United States)

    Kaysheva, A. L.; Pleshakova, T. O.; Kopylov, A. T.; Shumov, I. D.; Iourov, I. Y.; Vorsanova, S. G.; Yurov, Y. B.; Ziborov, V. S.; Archakov, A. I.; Ivanov, Y. D.

    2017-10-01

    Possibility of detection of target proteins associated with development of autistic disorders in children with use of combined atomic force microscopy and mass spectrometry (AFM/MS) method is demonstrated. The proposed method is based on the combination of affine enrichment of proteins from biological samples and visualization of these proteins by AFM and MS analysis with quantitative detection of target proteins.

  4. Ion bombardment induced ripple topography on amorphous solids

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Paton, F.; Williams, J.S.

    1977-01-01

    Earlier studies of the ion bombardment induced ripple morphology on the surfaces of amorphous solids when compared with geomorphological effects are shown to possess many similar features. The present study, with 40 keV Ar + ion bombarded Si suggests that analogies are incomplete, however, and that greater similarities with the process of macroscopic sandblasting (corrosion) exist. It is shown that the genesis of wave like structures on Si is from isolated features, which have the appearance of ripple trains, which are faceted. It is suggested that these features result from particle flux enhancement processes near surface dimples generated by stress induced surface lifting. (author)

  5. Anomalous heat evolution of deuteron implanted Al on electron bombardment

    International Nuclear Information System (INIS)

    Kamada, K.; Kinoshita, H.; Takahashi, H.

    1994-05-01

    Anomalous heat evolution was observed in deuteron implanted Al foils on 175 keV electron bombardment. Local regions with linear dimension of several 100nm showed simultaneous transformation from single crystalline to polycrystalline structure instantaneously on the electron bombardment, indicating the temperature rise up to more than melting point of Al from room temperature. The amount of energy evolved was more than 180 MeV for each transformed region. The transformation was never observed in proton implanted Al foils. The heat evolution was considered due to a nuclear reaction in D 2 molecular collections. (author)

  6. High-energy particle emission from galena and pyrite bombarded with Cs and O ions

    International Nuclear Information System (INIS)

    Karpuzov, D.S.; McIntyre, N.S.

    2002-01-01

    The ejection of energetic particles during steady-state ion surface bombardment has been investigated by means of a dynamic computer simulation as well as in a secondary ion mass spectrometry (SIMS)/low-energy ion scattering from surfaces (LEIS) experiment. The emphasis of this comparative study is on the mass dependence of high-energy tails in sputtering and backscattering for the bombardment of galena (PbS) and pyrite (FeS 2 ) with keV energy ion beam of cesium and oxygen. In the experiment, kinetic energy distributions of sputtered secondary ions (S + , Fe + , Pb + , S - ), as well as backscattered or re-sputtered primary ions (Cs + , O + , O - ), have been measured on a modified Cameca IMS-3f magnetic sector mass spectrometer for keV cesium (Cs + ) and oxygen (O 2 + , O - ) bombardment of galena and pyrite. Ejection of high-energy particles, with emission energies of up to ∼40% or up to ∼60% of the bombarding energy for sputtering of the lighter component (S ± ) with cesium or oxygen, respectively, and of up to ∼40% (Cs + ) and ∼80% (O ± ) for backscattering, has been observed for PbS. The computer simulations were based on the well-known MARLOWE code. In order to model the change of the stoichiometry of the binary compounds, dynamic modification of the target composition in the near-surface region was introduced. Cs incorporation was included, and a relative enrichment of the metallic component (Pb, Fe) in the top few layers due to preferential sputtering of sulfur was allowed. The computer simulations provide information on the formation of altered layer under sputter equilibrium as well as on the energy and angular emission distributions of sputtered and backscattered particles in steady-state conditions. Multiple scattering of Cs projectiles and dynamic re-sputtering of cesium that was previously incorporated in the altered near-surface region can be distinguished in the simulation, and matched with the experimental observations. In addition

  7. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    International Nuclear Information System (INIS)

    Cernusca, S.; Winter, H.P.; Aumayr, F.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials

  8. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    CERN Document Server

    Cernusca, S; Aumayr, F; Diez-Muino, R; Juaristi, J I

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  9. Comparison of Se and Te clusters produced by ion bombardment

    Directory of Open Access Journals (Sweden)

    Trzyna Małgorzata

    2017-01-01

    Full Text Available Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS. It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to ~ 1300 m/z. Local maxima or minima (magic numbers are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  10. Comparison of Se and Te clusters produced by ion bombardment

    Science.gov (United States)

    Trzyna, Małgorzata

    2017-01-01

    Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS). It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to 1300 m/z. Local maxima or minima (magic numbers) are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  11. The Transport of Close-In Fallout Plutonium in the Northwest Pacific Ocean: Tracing the Water Mass Movement Using {sup 240}Pu/{sup 239}Pu Atom Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Han [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Hong, Gi-Hoon; Suk, Moon-Sik [Korea Ocean Research and Development Institute, Seoul (Korea, Republic of); Gastaud, J. [International Atomic Energy Agency, Marine Environment Laboratory (Monaco); La Rosa, J. [National Institute of Standards and Technology, Ionizing Radiation Division, Gaithersburg, Maryland (United States); Kim, Chul-Soo [Environmental Laboratories, International Atomic Energy Agency, Seibersdorf (Austria); Wyse, E. [New Brunswick Laboratory Argonne, IL (United States); Povinec, P. P. [Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia)

    2013-07-15

    {sup 240}Pu/{sup 239}Pu atom ratios in seawater and surface sediment collected from the northwest (NW) Pacific Ocean from 1992 to 1997 were determined using ICP-sector field mass spectrometry (ICP-MS). In whole water columns, the atom ratios of {sup 240}Pu/{sup 239}Pu were higher than the global fallout ratio (0.18). It is noted that the atom ratios of {sup 240}Pu/2{sup 39}Pu in the seawater increase with depth. Such elevated {sup 240}Pu/{sup 239}Pu atom ratios indicate that the close-in fallout plutonium isotopes originating from the Pacific Proving Grounds (PPGs) due to the U.S. tests are prevailing in the seawater in the NW Pacific Ocean. However, the {sup 240}Pu/{sup 239}Pu atom ratios in the surface sediment from the NW Pacific Ocean varied with the sampling locations. As a consequence, this study will provide the information that the water mass along with the current plays a key role in driving the distribution of Pu and in transporting Pu from the PPGs to the far eastern marginal sea in the NW Pacific Ocean. (author)

  12. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue.

    Science.gov (United States)

    Becker, D; Brettschneider, R; Lörz, H

    1994-02-01

    A reproducible transformation system for hexaploid wheat was developed based on particle bombardment of scutellar tissue of immature embryos. Particle bombardment was carried out using a PDS 1000/He gun. Plant material was bombarded with the plasmid pDB1 containing the beta-glucuronidase gene (uidA) under the control of the actin-1 promoter of rice, and the selectable marker gene bar (phosphinothricin acetyltransferase) under the control of the CaMV 35S promoter. Selection was carried out using the herbicide Basta (Glufosinate-ammonium). From a total number of 1050 bombarded immature embryos, in seven independent transformation experiments, 59 plants could be regenerated. Putative transformants were screened for enzyme activity by the histochemical GUS assay using cut leaf material and by spraying the whole plants with an aqueous solution of the herbicide Basta. Twelve regenerants survived Basta spraying and showed GUS-activity. Southern-blot analysis indicated the presence of introduced foreign genes in the genomic DNA of the transformants and both marker genes were present in all plants analysed. To date, four plants have been grown to maturity and set seed. Histochemically stained pollen grains showed a 1:1 segregation of the uidA gene in all plants tested. A 3:1 segregation of the introduced genes was demonstrated by enzyme activity tests and Southern blot analysis of R1 plants.

  13. Target bombardment by ion beams generated in the Focus experiment

    International Nuclear Information System (INIS)

    Bernard, Alain; Coudeville, Alain; Garconnet, J.-P.; Jolas, A.; Mascureau, J. de; Nazet, Christian.

    1976-01-01

    In a Mather-Focus experiment, it was shown that 80% of the neutron emitted were generated through bombardment. The apparatus was operated with various targets at a distance of 13mm from the anode. In the low pressure regime, a deuteron beam of high energy was produced. Its emission duration was measured using a CD 2 target [fr

  14. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Judelson, Howard S.

    2003-01-01

    Germinated asexual sporangia, zoospores, and mycelia of Phytophthora infestans were transformed to G418-resistance by microprojectile bombardment. After optimization, an average of 14 transformants/shot were obtained, using 10(6) germinated sporangia and gold particles coated with 1 microg...

  15. Ion bombardment effect on surface state of metal

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.

    1990-01-01

    The effect of slow argon ion bombardment on the surface microstructure of polycrystalline copper as well as the effect of surface state on sputtering of D-16 polycrystalline alloy are experimentally studied. Reduction of copper surface roughness is observed. It is shown that the D-16 alloy sputtering coefficient is sensitive to the surface state within the limits of the destructed surface layer

  16. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    A treatment is given of the problem of surface diffusion processes occurring during surface topography development, whenever a surface is simultaneously seeded with impurities and ion bombarded. The development of controllable topography and the importance of surface diffusion parameters, which can be obtained during these studies, are also analyzed. 101 refs.; 7 figs.; 2 tabs

  17. On the reasons for bombarding uranium with slow neutrons

    International Nuclear Information System (INIS)

    Xu Diyu

    1997-01-01

    Form the concepts of slow neutrons, the binding energy and the excitation energy of complex nuclei, and the activation energy in nuclear fission, the four reasons for bombarding uranium with slow neutrons are summed up. Not only the reasons for uranium fission are brought in light, but also the micromechanism is dealt with

  18. Dating Howardite Melt Clasts: Evidence for an Extended Vestan Bombardment?

    Science.gov (United States)

    Cartwright, J. A.; Hodges, K. V.; Wadhwa, M.; Mittlefehldt, D. W.

    2016-01-01

    Howardites are polymict breccias that, together with eucrites and diogenites (HED), likely originate from the vestan surface (regolith/ megaregolith), and display a heterogeneous distribution of eucritic and diogenitic material. Melt clasts are also present alongside other regolithic features within howardites, and are noteworthy for their compositional variability and appearance. Melt clasts formed by impact events provide a snapshot of the timings and conditions of surface gardening and bombardment on the vestan surface. By dating such clasts, we aim to better constrain the timings of impact events on Vesta, and to establish whether the impact flux in the asteroid belt was similar to that on the Moon. As the Moon is used as the basis for characterising impact models of the inner solar system, it is necessary to verify that apparent wide-scale events are seen in other planetary bodies. In particular, the observed clustering of Apollo melt clast ages between 3.8-4.0 Ga has led to two hypotheses: 1) The Moon was subjected to a sudden event - 'Lunar Cataclysm' or period of 'Late Heavy Bombardment' (LHB), 2) The age cluster represents the end of an epoch of declining bombardment or 'Heavy Bombardment. No consensus has emerged regarding one or other hypothesis. We are testing these hypotheses by seeking evidence for such events in materials other than those derived from the Moon.

  19. Neutron yields from bombardment of α-particles

    International Nuclear Information System (INIS)

    Nakasima, Ryuzo

    1982-09-01

    The thick target neutron yields from bombardment of <10 MeV α-particles are calculated based on the reaction cross sections. The results for the elements of Z < 15 are compared with existing calculated or measured neutron yield data. For the elements of 16 < Z < 50, elemental or isotopic neutron yields are calculated if the cross section data are available. (author)

  20. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  1. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  2. Morality of Weapons of Mass Destruction: A Case Study of the Atomic Bombings of Hiroshima and Nagasaki

    Science.gov (United States)

    2010-04-01

    34 Paul C. Szasz , “The International Law Concerning Weapons of Mass...downloaded 18 October 2009. Szasz , Paul C., “The International Law Concerning Weapons of Mass Destruction.” In Ethics and Weapons of Mass Destruction

  3. Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment

    Science.gov (United States)

    Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.

    2017-12-01

    All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid

  4. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    Science.gov (United States)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  5. Topography development on selected inert gas and self-ion bombarded Si

    International Nuclear Information System (INIS)

    Vishnyakov, V.; Carter, G.; Goddard, D.T.; Nobes, M.J.

    1995-01-01

    An AFM and SEM study of the topography induced by 20 keV Si + , Ar + and Xe + ion bombardment of Si at 45 o incidence angles and for ion fluences between 10 17 and 10 20 cm -2 has been undertaken at room temperature. All species generate an atomic scale random roughness, the magnitude of which does not increase extensively with ion fluence, suggesting the operation of a local relaxation process. This nanometre scale roughness forms, for Ar and Xe, a background for coarser micrometre scale structures such as pits, chevrons and waves. Apart from isolated etch pits Si + irradiation generates no repetitive micrometre scale structures. Xe + irradiation produces well developed transverse waves while Ar + irradiation results in isolated chevron-like etch pit trains and ripple patches. This latter pattern evolves, with increasing ion fluence, to a corrugated facet structure. The reasons for the different behaviours are still not fully clarified. (author)

  6. Leading relativistic corrections for atomic P states calculated with a finite-nuclear-mass approach and all-electron explicitly correlated Gaussian functions

    Science.gov (United States)

    Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik

    2018-01-01

    In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.

  7. Absorption of hydrogen in vanadium, enhanced by ion bombardment; Ionenbeschussunterstuetzte Absorption des Wasserstoffs in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    Prior to hydrogen implantation into vanadium, the vanadium specimen usually is exposed to an activation process and is then heated at 1 atm hydrogen to temperatures between 500 and 600 C, subsequently cooled down in several steps. Within this temperature range, hydrogen solubility increases with declining temperature. A decisive factor determining hydrogen absorption is the fact that at temperatures above 250 C, oxygen desorbs from the material surface and thus no longer inhibits hydrogen absorption. Therefore a different approach was chosen for the experiments reported: Hydrogen absorption under UHV conditions at room temperature. After the usual activation process, the vanadium surface was cleaned by 5 keV Ar{sup +} ion bombardment. Thus oxygen absorption at the specimen surface (and new reactions with oxygen from the remaining gas) could be avoided, or removed. By means of thermal desorption mass spectrometry (TDMS), hydrogen absorption as a function of argon ion dose was analysed. TDMS measurements performed for specimens treated by ion bombardment prior to H{sup 2} exposure showed two H{sup 2} desorption peaks, in contrast to the profiles measured with specimens not exposed to ion bombardment. It is assumed that the ion bombardment disturbs the crystal structure so that further sites for hydrogen absorption are produced. (orig./CB) [Deutsch] Bei der Beladung von Vandium mit Wasserstoff wird ueblicherweise die Probe nach einer Aktivierungsprozedur bei 1 atm Wasserstoff auf Temperaturen im Bereich von 500 bis 600 C hochgeheizt und danach schrittweise abgekuehlt. In diesem Temperaturbereich nimmt die Wasserstoffloeslichkeit mit abnehmender Temperatur zu. Entscheidend fuer die Beladung ist aber auch die Tatsache, dass bei Temperaturen groesser 250 C Sauerstoff von der Oberflaeche desorbiert und dadurch die Absorption von Wasserstoff nicht mehr blockieren kann. Im Rahmen der hier beschriebenen Untersuchungen sollte die Wasserstoffbeladung unter UHV-Bedingungen bei

  8. A model for the build-up of disordered material in ion bombarded Si

    International Nuclear Information System (INIS)

    Nelson, R.S.

    1977-01-01

    A new model based on experimental observation is developed for the build-up of disordered material in ion bombarded silicon. The model assumes that disordered zones are created in a background of migrating point defects, these zones then act as neutral sinks for such defects which interact with the zones and cause recrystallization. A simple steady state rate theory is developed to describe the build-up of disordered material with ion dose as a function of temperature. In general the theory predicts two distinct behaviour patterns depending on the temperature and the ion mass, namely a linear build-up with dose to complete disorder for heavy bombarding ions and a build-up to saturation at a relatively low level for light ions such as protons. However, in some special circumstances a transition region is predicted where the build-up of disorder approximately follows a (dose)sup(1/2) relationship before reverting to a linear behaviour at high dose. (author)

  9. Ion bombardment simulation: a review related to fusion radiation damage

    International Nuclear Information System (INIS)

    Brimhall, J.L.

    1975-01-01

    Prime emphasis is given to reviewing the ion bombardment data on the refractory metals molybdenum, niobium and vanadium which have been proposed for use in advanced fusion devices. The temperature and dose dependence of the void parameters are correlated among these metals. The effect of helium and hydrogen gas on the void parameters is also included. The similarities and differences of the response of these materials to high dose, high temperature radiation damage are evaluated. Comparisons are made with results obtained from stainless steel and nickel base alloys. The ion bombardment data is then compared and correlated, as far as possible, with existing neutron data on the refractory metals. The theoretically calculated damage state produced by neutrons and ions is also briefly discussed and compared to experimental data wherever possible. The advantages and limitations of ion simulation in relation to fusion radiation damage are finally summarized

  10. Development of pits and cones on ion bombarded copper

    International Nuclear Information System (INIS)

    Tanovic, L.A.; Carter, G.; Nobes, M.J.; Whitton, I.L.; Williams, J.S.

    1980-01-01

    The formation of pits and cones on Ar ion bombarded copper has been studied. Carefully polished surfaces of large grained 99.999% pure copper crystals have been bombarded at normal incidence with 40 keV argon ions. The cone formation has been investigated for annealed and non-annealed crystals at room temperature and at 30 K and in the case of monocrystal and polycrystal samples. Although in the most other studies the presence of impurities is as a necessary condition for generation of cones and pits the obtained experimental results show that under certain conditions these features are formed on clean surfaces. It is shown that the dominant parameter in the production of cones on copper is the crystal orientation [ru

  11. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  12. Contribution to the study of point defects formed in nickel by electron bombardment; Contribution a l'etude des defauts ponctuels crees par bombardement electronique dans le nickel

    Energy Technology Data Exchange (ETDEWEB)

    Oddou, J L [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1968-12-01

    After a short account of the experimental techniques employed in our studies, the experimental results obtained on pure nickel samples are exposed. The apparition of the successive annihilation stages of point defects created by electron bombardment is established by isochronal heat treatments: the annihilation kinetics and the corresponding activation energies are determined. The effect of the incident particle doses is also studied. The experimental results are then compared with R.A. Johnson's theoretical calculations of the stability and the migration of point defects in nickel, and taking into account the results obtained by Peretto in magnetic after effect measurements. This leads us to a model in good agreement with calculations and experiment for the first stages. In a second chapter the behaviour of nickel doped by certain impurities is studied. First, the results concerning the rate of increase of resistivity (function of sample purity) is investigated. Two possible explanations of the observed phenomenon are proposed: either a deviation with respect to Mathiessen's law, or an increase of the number of defects formed in the presence of impurity atoms. Finally, a study of the resistivity recovery of the doped samples permits us to suggest an order of magnitude for the binding energy interstitial/impurity atom in the nickel matrix. (author) [French] Apres avoir brievement rappele les techniques experimentales que nous avons utilisees pour cette etude, nous exposons les resultats experimentaux obtenus sur des echantillons de nickel pur. Les stades successifs d'annihilation des defauts ponctuels crees par bombardement electronique sont mis en evidence par traitements thermiques isochrones; les cinetiques de disparition, et les energies d'activation correspondantes sont determinees. Nous etudions egalement l'effet de la dose des particules incidentes. Les resultats experimentaux sont ensuite compares avec les calculs theoriques de R.A JOHNSON sur la stabilite

  13. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  14. Comparison of secondary ion emission induced in silicon oxide by MeV and KeV ion bombardment

    International Nuclear Information System (INIS)

    Allali, H.; Nsouli, B.; Thomas, J.P.; Szymczak, W.; Wittmaack, K.

    1993-09-01

    The surface and near-surface composition of SiO 2 layers, has been investigated by negative secondary ion emission mass spectrometry (SIMS) using MeV and KeV ion bombardment in combination with time-of-flight (TOF) mass analysis. The spectra recorded in the mass range 0-100 u are dominated by surface impurities, notably hydrocarbons and silicon polyanions incorporating H and OH entities. The characteristic (fragmentation) patterns are quite different for light and high-velocity ion impact. In high-velocity TOF-SIMS analysis of P-doped layers, prepared by chemical vapour deposition (CVD), the mass lines at 63 and 79 u are very prominent and appear to correlate with the phosphorus concentration (PO 2 and PO 3 , respectively). It is shown, however, that for unambiguous P analysis one has to use dynamic SIMS or high mass resolution. (author) 11 refs., 5 figs

  15. Self-organised nano-structuring of thin oxide-films under swift heavy ion bombardment

    International Nuclear Information System (INIS)

    Bolse, Wolfgang

    2006-01-01

    Surface instabilities and the resulting self-organisation processes play an important role in nano-technology since they allow for large-array nano-structuring. We have recently found that the occurrence of such instabilities in thin film systems can be triggered by energetic ion bombardment and the subsequent self-assembly of the surface can be nicely controlled by fine-tuning of the irradiation conditions. The role of the ion in such processes is of double nature: If the instability is latently present already in the virgin sample, but self-assembly cannot take place because of kinetic barriers, the ion impact may just supply the necessary atomic mobility. On the other hand, the surface may become instable due to the ion beam induced material modifications and further irradiation then results in its reorganisation. In the present paper, we will review recently observed nano-scale self-organisation processes in thin oxide-films induced by the irradiation with swift heavy ions (SHI) at some MeV/amu energies. The first example is about SHI induced dewetting, which is driven by capillary forces already present in the as-deposited samples. The achieved dewetting pattern show an amazing similarity to those observed for liquid polymer films on Si, although in the present case the samples were kept at 80 K and hence have never reached their melting point. The second example is about self-organised lamellae formation driven by planar stresses, which are induced by SHI bombardment under grazing incidence and result in a surface instability and anisotropic plastic deformation (hammering effect). Taking advantage of these effects and modifying the irradiation procedure, we were able to generate more complex structures like NiO-'nano-towers' of 2 μm height and 200 nm in diameter

  16. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...

  17. Actinide production in 136Xe bombardments of 249Cf

    International Nuclear Information System (INIS)

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from 136 Xe bombardments of 249 Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136 Xe + 249 Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136 Xe + 248 Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  18. Facies of ion bombarded surfaces of brittle materials

    International Nuclear Information System (INIS)

    Primak, W.

    1975-12-01

    Materials were bombarded by protons, deuterons, and helium ions. The materials investigated were quartz; glasses; carbides and borides (SiC, B 4 C, TiB 2 ); oxides and nitrides (magnorite, sapphire, spinel, Al 2 O 3 , Si 3 N 4 , ZrO 2 , BaTiO 3 ); and miscellaneous (graphite, LiNbO 3 , copper). Oberservations were of growth, reflectivity, blistering, surface ablation, and swelling. Calculations were made of the effects of a layer, of its gradual transformation, and of the introduction of a gas. It is concluded that: Radiation blistering is not a primary process. Observations of blister formation and exfoliation cannot be used to calculate the surface ablation rate. The primary process is the development of a microporous layer which causes swelling. Visible blisters are caused by fracturing by transverse stresses in this layer and may occur during the bombardment, or in some cases, much later, in storage. There is no evidence of extreme gas pressures in the blisters. When blisters develop, they may be stable under continued bombardment for a dose many times that at which they formed. The swelling is a better index of the effects than is the blistering, and must be associated in most cases with permeability to the gas. Behavior with protons and deuterons is similar, with helium different. All but quartz, vitreous silica, and Pyrex are impervious to hydrogen and deuterium; only dense barium crown glass, carbides, borides, oxides, and nitrides are impervious to helium. Quartz shows swelling caused by conversion to a vitreous product of much lower density but no porosity, while for the others, most of the swelling and surface growth is caused by porosity. Surface ablation by the blistering process may be reduced by initial porosity or by initial or subsequent surface fissuring. However, for impervious materials, surface damage by the introduction of porosity would continue

  19. Contribution to the study of point defects formed in nickel by electron bombardment

    International Nuclear Information System (INIS)

    Oddou, J.L.

    1968-12-01

    After a short account of the experimental techniques employed in our studies, the experimental results obtained on pure nickel samples are exposed. The apparition of the successive annihilation stages of point defects created by electron bombardment is established by isochronal heat treatments: the annihilation kinetics and the corresponding activation energies are determined. The effect of the incident particle doses is also studied. The experimental results are then compared with R.A. Johnson's theoretical calculations of the stability and the migration of point defects in nickel, and taking into account the results obtained by Peretto in magnetic after effect measurements. This leads us to a model in good agreement with calculations and experiment for the first stages. In a second chapter the behaviour of nickel doped by certain impurities is studied. First, the results concerning the rate of increase of resistivity (function of sample purity) is investigated. Two possible explanations of the observed phenomenon are proposed: either a deviation with respect to Mathiessen's law, or an increase of the number of defects formed in the presence of impurity atoms. Finally, a study of the resistivity recovery of the doped samples permits us to suggest an order of magnitude for the binding energy interstitial/impurity atom in the nickel matrix. (author) [fr

  20. Influence of both ion bombardment and chemical treatment processes on the electrical conductivity of PVC/poly aniline composites

    International Nuclear Information System (INIS)

    Gad, E.A.M.; Ashour, A.H.; Abdel-Hamid, H.M.; Sayed, W.M.

    1999-01-01

    In this article the changes in the electrical conductivity of PVC/poly aniline composites, as temperature consecutively increases, have been measured. The measurement were taken with correspondence to a control series of the composites under two processes:A. Composite samples bombarded with Ar + ions with fluence 2.44 x 10 13 beam ions /cm 2 ., sec 4 of 4 ke V beam energy where argon atoms can induce defects in the surface layer take place. Composite samples treated chemically with concentrated H 2 SO 4 as dopant which reacts with nitrogen atom in aniline. The measurements were also, done with the composites as the ratio of poly(aniline) stepped upward

  1. High resistivity in InP by helium bombardment

    International Nuclear Information System (INIS)

    Focht, M.W.; Macrander, A.T.; Schwartz, B.; Feldman, L.C.

    1984-01-01

    Helium implants over a fluence range from 10 11 to 10 16 ions/cm 2 , reproducibly form high resistivity regions in both p- and n-type InP. Average resistivities of greater than 10 9 Ω cm for p-type InP and of 10 3 Ω cm for n-type InP are reported. Results are presented of a Monte Carlo simulation of helium bombardment into the compound target InP that yields the mean projected range and the range straggling

  2. Characterization of national food agency shrimp and plaice reference materials for trace elements and arsenic species by atomic and mass spectrometric techniques

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pedersen, Gitte Alsing; McLaren, J. W.

    1997-01-01

    , drying, milling and sieving to collect the fraction of particles less than 150 mu m in sizer In this fraction the trace elements were homogeneously distributed using a 400 mg sample intake for analysis, The total track element concentrations were determined by graphite furnace and cold vapour atomic...... mass spectrometry (MS/MS) for qualitative verification, Based on a rigorous statistical analysis of the analytical data using the DANREF software, it was decided to assign certified values for mercury, cadmium and arsenic in the NFA Shrimp, and mercury, selenium and arsenic in the NFA Plaice...

  3. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  4. Direct evidence for a thermal effect of Ar+ ion bombardment in a conventional sputtering mode

    International Nuclear Information System (INIS)

    Okuyama, F.; Fujimoto, Y.

    1986-01-01

    Evidence is presented that the Ar + ion bombardment for sputtering in Auger electron spectroscopy can heat the target up to 2000 0 C if the target has poor heat conduction. Polycrystalline microneedles of Cr exhibited spherical tips after being exposed to 3 keV Ar + ions, proving that the needle tips were melted by impacting Ar + ions. Microneedles of Mo ion bombarded under the same condition were bent plastically, which perhaps reflects the thermal annealing of the needles during ion bombardment

  5. Mass Spectra Analyses of Amides and Amide Dimers of Steviol, Isosteviol, and Steviolbioside

    Directory of Open Access Journals (Sweden)

    Lin-Wen Lee

    2012-01-01

    Full Text Available The mass spectra of a series of stevioside analogues including the amide and dimer compounds of steviol, isosteviol, and steviolbioside were examined. Positive ion mass spectral fragmentation of new steviol, isosteviol, and steviolbioside amides and the amide dimers are reported and discussed. The techniques included their synthesis procedures, fast-atom bombardment (FAB, and LC/MS/MS mass spectra. Intense [M+H]+ and [M+Na]+ ion peaks were observed on the FAB and ESI spectra. LC/MS/MS also yielded ES+ and ES− ion peaks that fairly agreed with the results of the FAB and ESI studies. Mass spectral analysis of compounds 4p-q, 5a-g, 6, and 7 revealed the different cleavage pathway patterns that can help in identifying the structures of steviolbioside and its amide derivatives.

  6. Redeposition of sputtered material in a glow-discharge lamp measured by means of an ion microprobe mass analyser

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Bueger, P.A.

    1978-01-01

    The redeposition of sputtered material on the target in a Grimm-type glow-discharge lamp was studied by means of an ion microprobe mass analyser (IMMA) using 16 O 2 + ions as bombarding species. The target was an aluminium disc with a cylindrical copper insertion, one mm in diameter. The lamp was operated at currents of 50 mA and 100 mA and a voltage of 1200 V. It is estimated that 17% of the copper atoms sputtered are redeposited and may be resputtered. (orig.) [de

  7. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  8. The new generations of power components will depend on neutron and/or electron bombardment techniques

    International Nuclear Information System (INIS)

    Lilen, H.

    1976-01-01

    Neutron and electron bombardment techniques for materials doping, newly introduced in the fabrication of power semiconductor components: diodes, transistors, thyristors, and triacs are briefly outlined. A neutron bombardment of high purity silicon results in a short-lived 31 Si isotope (from 30 Si) decaying into 31 P. The phosphorus with its five peripheral electrons induces a negative doping (N), and the neutron technique gives a homogeneous doping. Furthermore, silicon bombardment with 1 to 2MeV electrons induces micro-ruptures in the lattice, that act as recombination traps reducing carrier lifetimes. Consequently, gold diffusion techniques can be replaced by electron bombardment with a gain in controlling carrier lifetimes [fr

  9. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  10. Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene-norbornene copolymer (TOPAS)

    International Nuclear Information System (INIS)

    Siljegovic, M.; Kacarevic-Popovic, Z.M.; Krkljes, A.N.; Stojanovic, Z.; Jovanovic, Z.M.

    2011-01-01

    Ion bombardment is a suitable tool to modify the optical properties of polymers. In the present study the effect of ion bombardment on the optical absorption of ethylene-norbornene copolymer (TOPAS) was studied using ultraviolet-visible (UV-Vis) and Raman spectroscopy. Polymer samples were bombarded with 60 keV C 4+ and N 4+ ion beams to various fluences ranging from 1.0 x 10 13 to 1.0 x 10 16 cm -2 . The indirect and direct band gaps have been determined. The values of direct band gaps have been found to be greater than the corresponding values of the indirect band gaps. Activation energy has been investigated as the function of ion fluences. The number of carbon atoms per conjugated length is determined according to modified Tauc's equation. The correlation between the optical band gap, activation energy for optical transition and the number of carbon atoms per conjugated length as well as chemical structure changes induced by ion beams irradiation have been discussed in the case of ethylene-norbornene copolymer.

  11. Model to estimate fractal dimension for ion-bombarded materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu, A., E-mail: hu77@purdue.edu; Hassanein, A.

    2014-03-15

    Comprehensive fractal Monte Carlo model ITMC-F (Hu and Hassanein, 2012 [1]) is developed based on the Monte Carlo ion bombardment simulation code, i.e., Ion Transport in Materials and Compounds (ITMC) code (Hassanein, 1985 [2]). The ITMC-F studies the impact of surface roughness on the angular dependence of sputtering yield. Instead of assuming material surfaces to be flat or composed of exact self-similar fractals in simulation, we developed a new method to describe the surface shapes. Random fractal surfaces which are generated by midpoint displacement algorithm and support vector machine algorithm are combined with ITMC. With this new fractal version of ITMC-F, we successfully simulated the angular dependence of sputtering yield for various ion-target combinations, with the input surface roughness exponent directly depicted from experimental data (Hu and Hassanein, 2012 [1]). The ITMC-F code showed good agreement with the experimental data. In advanced, we compare other experimental sputtering yield with the results from ITMC-F to estimate the surface roughness exponent for ion-bombarded material in this research.

  12. Chemical changes in titanate surfaces induced by Ar+ ion bombardment

    International Nuclear Information System (INIS)

    Gonzalez-Elipe, A.R.; Fernandez, A.; Espinos, J.P.; Munuera, G.; Sanz, J.M.

    1992-01-01

    The reduction effects and compositional changes induced by 3.5 keV Ar + bombardment of several titanates (i.e. SrTiO 3 , Al 2 TiO 5 and NiTiO 3 ) have been quantitatively investigated by XPS. In all the samples studied here the original Ti 4+ species were reduced to lower oxidation states (i.e. Ti 3+ and Ti 2+ ), although to a lesser extent than in pure TiO 2 . On the contrary, whereas Sr 2+ and Al 3+ seem to remain unaffected by Ar + bombardment, in agreement with the behaviour of the respective oxides (i.e. SrO and Al 2 O 3 ), Ni 2+ appears more easily reducible to Ni o in NiTiO 3 than in NiO. In addition, other specific differences were observed between the titanates, which reveal the existence of interesting chemical effects related to the presence of the different counter-ions in the titanates. In the case of Al 2 TiO 5 , its Ar + -induced decomposition to form TiO 2 + Al 2 O 3 could be followed by XPS. (Author)

  13. Flaking and blistering on He and Ne bombardments

    International Nuclear Information System (INIS)

    Kamada, K.; Naramoto, H.

    1979-01-01

    Large scale exfoliation formed by 300 keV He + bombardment of niobium without any preceding blistering is investigated, in comparison with the blistering due to 450 and 850 keV Ne + bombardments. In-situ observations of the erosion processes were performed in a scanning electron microscope connected to the Van de Graaff. Critical doses of 7.2 x 10 17 He + /cm 2 , 2.4 x 10 17 Ne + /cm 2 and 4.0 x 10 17 Ne + /cm 2 were obtained for the 300 keV He flaking, 450 keV Ne blistering and 850 keV Ne blistering, respectively. The He flaking was presumed to be due to brittle fashion peeling-off of the surface layer by the bending moment driven by the internal gas pressure. The blistering, on the other hand, was presumed to be the result of the ductile fashion spreading of the lenticular bubble in the sub-surface layer. The necessary pressure for the peeling-off of the cover was calculated, and was speculated to be able to work as the driving force for the flaking from its unexpectedly low values. Fractographies under the exfoliations were discussed for both flaking and blistering. (author)

  14. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  15. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter

    2008-01-01

    have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H....../(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution....

  16. An ion accelerator facility for the preparation of nuclear bombardement targets

    International Nuclear Information System (INIS)

    Grime, G.W.; Takacs, J.

    1981-01-01

    As a result of the demand for increasingly complex nuclear bombardment targets in this laboratory, work has started on the construction of a medium-energy accelerator facility capable of preparing targets both by ion implantation and by heavy-ion sputtering. Basic consideration was given in the design to flexibility and simplicity. The ion source chosen was the Harwell sputter ion gun which is capable of producing ions of practically any element at currents up to several hundred μA. This was modified to suit our specific requirement. The acceleration system was constructed to operate at a maximum of 100 kV, and the beam is focussed by a three-cylinder electrostatic lens. The ions are analysed by 50 0 magnet which is capable of a mass dispersion of 7 mm in the target chamber between adjacent mass numbers at mass 100. A slit feedback system is used to stabilise the energy against short-term fluctuations. The system is fitted with two target chambers; one after the magnet and one after the electrostatic lens. The latter is used for applications such as sputtering. Two dimensional scanning is available in both target chambers for ensuring uniformity of implantation over areas larger than the spot size. Using this apparatus, implanted targets of 3 He and 20 Ne have been prepared. In addition high quality films of refractory metals have been sputtered using Ar or Xe beams. (orig.)

  17. Standards, intercomparisons and performance evaluations for low-level and environmental radionuclide mass spectrometry and atom counting

    International Nuclear Information System (INIS)

    Inn, K.G.W.; McCurdy, D.; Bell III, T.; Loesch, R.; Barss, N.M.; Morton, J.S.; Povinec, P.; Burns, K.; Henry, R.

    2001-01-01

    Because of the demand for higher sensitivity radionuclide measurements, atom counting technology will become an increasingly used modality in geo-and bio-studies, and process control operations. It is anticipated that requests, intercomparisons and performance evaluations services will surge in near future. In anticipation of such requests, the state-of-the-art needed to be assessed for proactive planning purposes. The results of a workshop focused on these issues indicated that there are several ongoing standards, intercomparisons and performance evaluations thrusts which are expected to expand in the future. Furthermore, new projects were planned and the Council on Ionizing Radiation Measurements and Standards (Public and Environmental Radiation Protection subcommittee) ws proposed as an information coordinator. (author)

  18. Isotopes and atomic weights

    International Nuclear Information System (INIS)

    Zhang Qinglian

    1990-01-01

    A review of the chemical and mass spectrometric methods of determining the atomic weights of elements is presented. A, special discussion is devoted to the calibration of the mass spectrometer with highly enriched isotopes. It is illustrated by the recent work on europium. How to choose the candidate element for new atomic weight determination forms the last section of the article

  19. Direct atomic spectrometric analysis by slurry atomisation: Pt. 7. Analysis of coal using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ebdon, Les; Foulkes, M E; Parry, H G.M.; Tye, C T

    1988-09-01

    The application of slurry atomisation - inductively coupled plasma mass spectrometry (ICP-MS) to major, minor and trace element determination in coals has been investigated. Eight certified reference material (CRM) coals have been ground by the bottle and bead method and analysed using both rapid scan semi-quantitative analysis, employing a single rhodium internal standard, and full quantitative analysis using simple aqueous standards for calibration. The semi-quantitative mode, which determines the concentration using the mass-response curve for 68 elements against the single internal standard, produced values which were within a factor of two of the certified reference value, in most instances. The full quantitative determination gave excellent agreement with the certified reference material coals for a large number of elemental constituents. The results from the determination of 16 elements of interest are discussed including the effects of polyatomic interferents and isotope sensitivity.

  20. Preliminary description of a dedicated commercial ultra-sensitive mass spectrometer for direct atom counting of 14C

    International Nuclear Information System (INIS)

    Purser, K.H.; Schneider, R.J.; Post, R.; Dobbs, J.McG.

    1981-01-01

    A description is presented of a commercial, tandem-accelerator centered secondary ion double mass spectrometer dedicated to 14 C/ 13 C/ 12 C ratio measurements. Some design philosophy of the instrument is presented and the performance is described. A scanning cesium ion source with primary beam diameters between 100 to 200 micrometers is used to produce C - beam intensities of 10 to 20μA with the intensities remaining constant to better than 0.1% per minute after the source stabilizes. For recent carbon, these currents correspond to 14 C count rates from the ion source of 60 to 120 particles per second. Resolution of the first mass defining system, M/ΔM, is greater than 120 with the capability of rapid mass switching between isotopes. The measured isotopic ratios at the ion source for carbon are constant to better than 0.25%. The virtues of the 3MV parallel-fed Cockroft-Walton accelerator supply are presented. At the operating voltage of 2.5MV, the stability is better than 1:4000 with a terminal ripple 13 C 3+ and 12 C 3+ ions which originate from mass-14 molecular ions are measured to be 3.6mm away from the beam axis and so can be completely eliminated by the slits. Isotopic ratios have been measured beyond these slits, and it is shown that these ratios are constant to better than half a percent using recent samples. The final strong focusing magnet has a rejection ratio for unwanted carbon ions greater than 10 7

  1. Evidence Supporting an Early as Well as Late Heavy Bombardment on the Moon

    Science.gov (United States)

    Frey, Herbert

    2015-01-01

    Evidence supporting an intense early bombardment on the Moon in addition to the traditional Late Heavy Bombardment at approx. 4 BY ago include the distribution of N(50) Crater Retention Ages (CRAs) for candidate basins, a variety of absolute age scenarios for both a "young" and an "old" Nectaris age, and the decreasing contrasts in both topographic relief and Bouguer gravity with increasing CRA.

  2. Ion bombardment effects on surface states in selected oxide systems: rutile and alkaline earth titanates

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1978-01-01

    In this paper, the nature of the surface states of n-type TiO 2 and SrTiO 3 is discussed and the role of ion bombardment in modifying the properties of these states is elucidated. Insofar as possible, the interrelationships between oxide nonstoichiometry, surface states, ion bombardment effects and photoelectrolysis are explored

  3. A Unique Photon Bombardment System for Space Applications

    Science.gov (United States)

    Klein, E. J.

    1993-01-01

    The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.

  4. Methane formation during deuteron bombardment of carbon in the energy range of 100 to 1500 eV

    International Nuclear Information System (INIS)

    Sone, K.

    1982-01-01

    Methane (CD 4 ) formation rates during deuteron bombardment of carbon (Papyex) have been measured in the energy range of 100 to 1500 eV. The temperature dependence of the methane formation rate is well explained by the model proposed by Erents et al. in the temperature range of 600 to 1150 K. The model, however, does not explain the dependence of the methane formation rate on the flux of incident deuterons at a certain temperature near Tsub(m) at which the formation rate has a maximum value. An alternative model is proposed in which the methane formation rate is assumed to be proportional to the product of the following three parameters: the surface concentration of deuterium atoms, the chemical reaction rate for the formation of methane, and the rate of production of vacancies on the surface by the deuteron bombardment. This model predicts an energy dependence of methane formation which has a maximum around 900 eV even at different deuteron fluxes, when the calculated result by Weissman and Sigmund is used for the surface deposited energy responsible for the production of vacancies. (author)

  5. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3.

    Science.gov (United States)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus

    2015-02-03

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  6. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  7. M-subshell ionization of U by light-ion bombardment

    International Nuclear Information System (INIS)

    Jesus, A.P.; Ribeiro, J.P.

    1988-01-01

    M X-rays of U were produced by proton, deuteron and alpha-particle bombardment in the energy range of 0.20-1.00 MeV/u. N 6.7 →M 5 ((M subα)),N 6 →M 4 (M β ), N 5 →M 3 (M γ ), N 4 →M 2 and N 2 →M 1 line yields were obtained from a least-squares fit to the spectra and used to convert M X-ray production into M-subshell ionization cross sections. The uncertainty induced by the atomic parameters (X-ray fluorescence yields, Coster-Kronig and radiative transition rates) used in the conversion is discussed. The subshell ionization cross sections are then compared to PWBA values corrected for Coulomb deflection and energy loss according to Brandt and Lapicki, to the semiclassical theoretical values of Kocbach and to relativistic PWBA results, corrected for Coulomb and binding effects, of Chen et al. Intrashell transitions induced by the projectile and multiple ionization are suggested as causes of disagreement between theory and experiment, especially for alpha-particles. It is concluded that theory must go beyond the simple picture of the first-order pertubation approximation to explain M-subshell results and the care must be taken in the choice of wave functions. (author) [pt

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  9. The observation of quasi-molecular ions from a tiger snake venom component (Msub(r) 13309) using 252Cf-plasma desorption mass spectrometry

    International Nuclear Information System (INIS)

    Kamensky, I.; Haakansson, P.; Kjellberg, J.; Sundqvist, B.; Fohlman, J.; Peterson, P.A.

    1983-01-01

    A method involving fast heavy-ion bombardment of a solid sample called 252 Cf-plasma desorption mass spectrometry has been used to study a non-enzymatic, non-toxic phospholipase homolog from Australian tiger snake (Notechis scutatus) venom. The protein consists of 119 amino acids in a single polypeptide chain cross-linked by 7 disulfide bridges. The isotopically averaged molecular mass as determined by protein sequence analysis is 13309 atomic mass units (amu). The mass distributions were studied by means of time-of-flight measurements. Quasi-molecular ions associated to the molecule and its dimer were observed. The mass of the quasi-molecular ion corresponding to the molecule was determined to be 13285 +- 25 amu. (Auth.)

  10. Trace isotope analysis using resonance ionization mass spectrometry based on isotope selection with doppler shift of laser ablated atoms

    International Nuclear Information System (INIS)

    Higuchi, Yuki; Watanabe, Kenichi; Kawarabayashi, Jun; Iguchi, Tetsuo

    2005-01-01

    We have proposed a novel isotope selective Resonance Ionization Mass Spectroscopy (RIMS) concept, which can avoid the Doppler broadening on solid sample direct measurement based on laser ablation technique. We have succeeded in experimentally demonstrating the principle of our RIMS concept. Through comparison between the simulated and experimental results, we have validated the simulation model. It would be concluded from these results that we could achieve the isotope selectivity defined as the ratio of 41 Ca to 40 Ca sensitivity to be 4.5x10 10 by adopting the multi-step excitation scheme in the present method. As future works, we will try to experimentally perform the multi-step excitation scheme and improve the detection efficiency by modifying the ion extraction configuration. (author)

  11. Examination of Organic Vapor Adsorption onto Alkali Metal and Halide Atomic Ions by using Ion Mobility Mass Spectrometry.

    Science.gov (United States)

    Maiβer, Anne; Hogan, Christopher J

    2017-11-03

    We utilize ion mobility mass spectrometry with an atmospheric pressure differential mobility analyzer coupled to a time-of-flight mass spectrometer (DMA-MS) to examine the formation of ion-vapor molecule complexes with seed ions of K + , Rb + , Cs + , Br - , and I - exposed to n-butanol and n-nonane vapor under subsaturated conditions. Ion-vapor molecule complex formation is indicated by a shift in the apparent mobility of each ion. Measurement results are compared to predicted mobility shifts based upon the Kelvin-Thomson equation, which is commonly used in predicting rates of ion-induced nucleation. We find that n-butanol at saturation ratios as low as 0.03 readily binds to all seed ions, leading to mobility shifts in excess of 35 %. Conversely, the binding of n-nonane is not detectable for any ion for saturation ratios in the 0-0.27 range. An inverse correlation between the ionic radius of the initial seed and the extent of n-butanol uptake is observed, such that at elevated n-butanol concentrations, the smallest ion (K + ) has the smallest apparent mobility and the largest (I - ) has the largest apparent mobility. Though the differences in behavior of the two vapor molecules types examined and the observed effect of ionic seed radius are not accounted for by the Kelvin-Thomson equation, its predictions are in good agreement with measured mobility shifts for Rb + , Cs + , and Br - in the presence of n-butanol (typically within 10 % of measurements). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Treatment of PVC using an alternative low energy ion bombardment procedure

    Science.gov (United States)

    Rangel, Elidiane C.; dos Santos, Nazir M.; Bortoleto, José Roberto R.; Durrant, Steven F.; Schreiner, Wido H.; Honda, Roberto Y.; Rangel, Rita de Cássia C.; Cruz, Nilson C.

    2011-12-01

    In many applications, polymers have progressively substituted traditional materials such as ceramics, glasses, and metals. Nevertheless, the use of polymeric materials is still limited by their surface properties. Frequently, selective modifications are necessary to suit the surface to a given application. Amongst the most common treatments, plasma immersion ion implantation (PIII) has attracted the attention of many researchers owing to its versatility and practicality. This method, however, requires a power supply to provide high voltage (tens of kV) negative pulses, with a controlled duty cycle, width and frequency. Owing to this, the implementation of PIII on the industrial scale can become economically inviable. In this work, an alternative plasma treatment that enables low energy ion bombardment without the need of a high voltage pulse generator is presented. To evaluate the efficiency of the treatment of polymers, polyvinylchloride, PVC, specimens were exposed to 5 Pa argon plasmas for 3600 s, at excitation powers, P, of between 10 and 125 W. Through contact angle and atomic force microscopy data, the influence of P on the wettability, surface free energy and roughness of the samples was studied. Surface chemical composition was measured by X-ray photoelectron spectroscopy, XPS. To evaluate the effect of aging under atmospheric conditions, contact angle and XPS measurements were performed one and 1334 days after the treatment. The plasma potential and ion density around the driven electrode were determined from Langmuir probe measurements while the self-bias potential was derived with the aid of an oscilloscope. From these data it was possible to estimate the mean energy of ions bombarding the PVC surface. Chlorine, carbon and oxygen contamination were detected on the surface of the as-received PVC. Upon exposure to the plasma, the proportion of chlorine was observed to decrease while that of oxygen increased. Consequently, the wettability and surface energy

  13. Treatment of PVC using an alternative low energy ion bombardment procedure

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Santos, Nazir M. dos; Bortoleto, José Roberto R.; Durrant, Steven F.; Schreiner, Wido H.; Honda, Roberto Y.; Cássia C Rangel, Rita de; Cruz, Nilson C.

    2011-01-01

    In many applications, polymers have progressively substituted traditional materials such as ceramics, glasses, and metals. Nevertheless, the use of polymeric materials is still limited by their surface properties. Frequently, selective modifications are necessary to suit the surface to a given application. Amongst the most common treatments, plasma immersion ion implantation (PIII) has attracted the attention of many researchers owing to its versatility and practicality. This method, however, requires a power supply to provide high voltage (tens of kV) negative pulses, with a controlled duty cycle, width and frequency. Owing to this, the implementation of PIII on the industrial scale can become economically inviable. In this work, an alternative plasma treatment that enables low energy ion bombardment without the need of a high voltage pulse generator is presented. To evaluate the efficiency of the treatment of polymers, polyvinylchloride, PVC, specimens were exposed to 5 Pa argon plasmas for 3600 s, at excitation powers, P, of between 10 and 125 W. Through contact angle and atomic force microscopy data, the influence of P on the wettability, surface free energy and roughness of the samples was studied. Surface chemical composition was measured by X-ray photoelectron spectroscopy, XPS. To evaluate the effect of aging under atmospheric conditions, contact angle and XPS measurements were performed one and 1334 days after the treatment. The plasma potential and ion density around the driven electrode were determined from Langmuir probe measurements while the self-bias potential was derived with the aid of an oscilloscope. From these data it was possible to estimate the mean energy of ions bombarding the PVC surface. Chlorine, carbon and oxygen contamination were detected on the surface of the as-received PVC. Upon exposure to the plasma, the proportion of chlorine was observed to decrease while that of oxygen increased. Consequently, the wettability and surface energy

  14. Nano-scale pattern formation on the surface of HgCdTe produced by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.B.; Gudymenko, A.I.; Kladko, V.P.; Korchevyi, A.A.; Savkina, R.K.; Sizov, F.F.; Udovitska, R.S. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kiev (Ukraine)

    2015-08-15

    Presented in this work are the results concerning formation of nano-scale patterns on the surface of a ternary compound Hg{sub 1-x}Cd{sub x}Te (x ∝ 0.223). Modification of this ternary chalcogenide semiconductor compound was performed using the method of oblique-incidence ion bombardment with silver ions, which was followed by low-temperature treatment. The energy and dose of implanted ions were 140 keV and 4.8 x 10{sup 13} cm{sup -2}, respectively. Atomic force microscopy methods were used for the surface topography characterization. The structural properties of MCT-based structure was analyzed using double and triple crystal X-ray diffraction to monitor the disorder and strain of the implanted region as a function of processing conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment

    Science.gov (United States)

    Grodzicki, M.; Mazur, P.; Ciszewski, A.

    2018-05-01

    The p-GaN(0 0 0 1) crystal with a relatively low acceptor concentration of 5 × 1016 cm-3 is used in these studies, which are carried out in situ under ultrahigh vacuum (UHV) by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). The p-GaN(0 0 0 1)-(1 × 1) surface is achieved by thermal cleaning. N+-ion bombardment by a 200 eV ion beam changes the surface stoichiometry, enriches it with nitrogen, and disorders it. Such modified surface layer inverts its semiconducting character from p- into n-type. The electron affinity for the already cleaned p-GaN surface and that just after bombardment shows a shift from 2.2 eV to 3.2 eV, as well as an increase of band bending at the vacuum/surface interface from 1.4 eV to 2.5 eV. Proper post-bombardment heating of the sample restores the initial atomic order of the modified layer, leaving its n-type semiconducting character unchanged. The results of the measurements are discussed based on two types of surface states concepts.

  16. Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection.

    Directory of Open Access Journals (Sweden)

    Inja Radman

    Full Text Available We report a simple, cost-effective, scalable and efficient method for creating transgenic Caenorhabditis elegans that requires minimal hands-on time. The method combines biolistic bombardment with selection for transgenics that bear a hygromycin B resistance gene on agar plates supplemented with hygromycin B, taking advantage of our observation that hygromycin B is sufficient to kill wild-type C. elegans at very low concentrations. Crucially, the method provides substantial improvements in the success of bombardments for isolating transmitting strains, the isolation of multiple independent strains, and the isolation of integrated strains: 100% of bombardments in a large data set yielded transgenics; 10 or more independent strains were isolated from 84% of bombardments, and up to 28 independent strains were isolated from a single bombardment; 82% of bombardments yielded stably transmitting integrated lines with most yielding multiple integrated lines. We anticipate that the selection will be widely adopted for C. elegans transgenesis via bombardment, and that hygromycin B resistance will be adopted as a marker in other approaches for manipulating, introducing or deleting DNA in C. elegans.

  17. Topography of InP surface bombarded by O2+ ion beam

    International Nuclear Information System (INIS)

    Sun Zhaoqi

    1997-01-01

    The topography of InP surface bombarded by O 2 + ion beam was investigated. Rippled topographies were observed for bombarded samples, and the data show that the ripple formation starts from a sputtering depth of about 0.4 μm. The wavelength and the disorder of the ripples both increase as the sputtering depth increases. The wavelength of the ripples appears to be sputtering depth dependent rather than sputtering rate dependent. It is confirmed that the ion-beam-induced surface rippling can be effectively suppressed by sample rotation during bombardment

  18. Effect of the ion bombardment on the apparent barrier height in GaAs Schottky junctions

    International Nuclear Information System (INIS)

    Horvath, Zs. J.

    1994-01-01

    The bombardment of the semiconductor with different particles often results in the change of the doping concentration at the semiconductor surface. In this paper the effects of this near-interface concentration change on the apparent and real Schottky barrier heights are discussed. Experimental results obtained in GaAs Schottky junctions prepared on ion-bombarded semiconductor surfaces are analysed, and it is shown that their electrical characteristics are strongly influenced by the near-interface concentration change due to the ion bombardment. (author). 36 refs., 2 figs

  19. Preliminary report into the effects of nitrogen ion bombardment treatment on mustard seeds

    International Nuclear Information System (INIS)

    Smith, C.W.; Al-Hashmi, S.A.R.; Ahmed, N.A.G.; Pollard, M.

    1988-01-01

    Mustard seeds have been subjected to nitrogen ion bombardment. A range of conditions was found within which there was an enhancement in the growth of seedlings from the ion bombardment treated seeds relative to those grown from control seeds. Scanning electron microscopy was used to examine seeds after treatment. It appeared that there had been an etching of the seed coating by the ion bombardment. This view was supported by experiments which showed that the rate of capillary water uptake by the treated seeds had been enhanced. (author)

  20. Origin of Si(LMM) Auger Electron Emission from Silicon and Si-Alloys by keV Ar+ Ion Bombardment

    Science.gov (United States)

    Iwami, Motohiro; Kim, Su Chol; Kataoka, Yoshihide; Imura, Takeshi; Hiraki, Akio; Fujimoto, Fuminori

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar+ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  1. Origin of Si(LMM) Auger electron emission from silicon and Si-alloys by keV Ar/sup +/ ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, M; Kim, S; Kataoka, Y; Imura, T; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1980-09-01

    Si(LMM) Auger electrons emitted from specimens of pure silicon and several Si-alloys (Ni-Si, Pd-Si and Cu-Si) under keV Ar/sup +/ ion bombardment, were examined. In the Auger spectra from all specimens studied there were four peaks at energies of 92, 86, 76 and 66 eV. The Auger signal intensity varied considerably with both the incident angle and the energy of the primary ion beam. It is proposed that the Auger electrons are emitted from silicon atoms (or ions) just beneath the specimen surface but free from the bulk network.

  2. Laser spectroscopy of collisionally prepared target species: atomic caesium

    International Nuclear Information System (INIS)

    Moreau, J.-P.; Tremblay, Julien; Knystautas, E.J.; Laperriere, S.C.; Larzilliere, Michel

    1989-01-01

    Fast ion beam bombardment was used to collisionally prepare a target gas in excited states, to which conventional laser spectroscopy was then applied. The versatility of this method is demonstrated with atomic targets of caesium, for a state of Cs + that is 16 eV above the ground state, as well as for a short-lived state (38 ns) of the neutral atom. The local temperature in the caesium oven is also obtained. (Author)

  3. Modelling and simulation of surface morphology driven by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Yewande, E.O.

    2006-05-02

    Non-equilibrium surfaces, at nanometer length scales, externally driven via bombardment with energetic particles are known to exhibit well ordered patterns with a variety of applications in nano-technology. These patterns emerge at time scales on the order of minutes. Continuum theory has been quite successful in giving a general picture of the processes that interplay to give the observed patterns, as well as how such competition might determine the properties of the nanostructures. However, continuum theoretical descriptions are ideal only in the asymptotic limit. The only other theoretical alternative, which happens to be more suitable for the characteristic length-and time-scales of pattern formation, is Monte Carlo simulation. In this thesis, surface morphology is studied using discrete solid-on-solid Monte Carlo models of sputtering and surface diffusion. The simulations are performed in the context of the continuum theories and experiments. In agreement with the experiments, the ripples coarsen with time and the ripple velocity exhibits a power-law behaviour with the ripple wavelength, in addition, the exponent was found to depend on the simulation temperature, which suggests future experimental studies of flux dependence. Moreover, a detailed exploration of possible topographies, for different sputtering conditions, corresponding to different materials, was performed. And different surface topographies e.g. holes, ripples, and dots, were found at oblique incidence, without sample rotation. With sample rotation no new topography was found, its only role being to destroy any inherent anisotropy in the system. (orig.)

  4. The formation of giant planets and its effects on protoplanetary disks: the case of Jupiter and the Jovian Early Bombardment

    Science.gov (United States)

    Turrini, D.; ISSI Team "Vesta, the key to the origins of the Solar System"; EChO "Planetary Formation" Working Group

    The formation of giant planets is accompanied by a short but intense primordial bombardment \\citep{safronov69,weidenschilling75,weidenschilling01,turrini11}: the prototype for this class of events is the Jovian Early Bombardment (JEB) caused by the formation of Jupiter in the Solar System \\citep{turrini11,turrini12}. The JEB affected the collisional evolution of the minor bodies in the inner Solar System by inflicting mass loss to planetesimals \\citep{turrini12,turrini14a,turrini14b} due to cratering erosion and, at the same time, delivering water and volatile materials to the asteroid belt \\citep{turrini14b}. The JEB also resulted in a significant number of collisions between Jupiter and planetesimals formed over a wide orbital range, delivering volatile and refractory materials to the giant planet and its circumplanetary disk \\citep{turrini14c}. In this talk I'll discuss how the study of the effects of the JEB on Vesta can be used to constrain the early evolution of the Solar System \\citep{turrini14a,turrini14b} and how these constraints can, in turn, provide insight on the composition of Jupiter and of its satellites. Finally, I'll discuss the implications of the JEB model for extrasolar planets \\citep{turrini14c}.

  5. Mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S.; Goncalves Z, E.

    2015-10-01

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z eff of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z eff using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  6. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br.

    Science.gov (United States)

    Sun, Guangyi; Sommar, Jonas; Feng, Xinbin; Lin, Che-Jen; Ge, Maofa; Wang, Weigang; Yin, Runsheng; Fu, Xuewu; Shang, Lihai

    2016-09-06

    This study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.5) × 10(-11) and (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1), respectively. Results show that heavier isotopes are preferentially enriched in the remaining Hg(0) during Cl(•) initiated oxidation, whereas being enriched in the product during oxidation by Br(•). The fractionation factors for (202)Hg/(198)Hg during the Cl(•) and Br(•) initiated oxidations are α(202/198) = 0.99941 ± 0.00006 (2σ) and 1.00074 ± 0.00014 (2σ), respectively. A Δ(199)Hg/Δ(201)Hg ratio of 1.64 ± 0.30 (2σ) during oxidation of Hg(0) by Br atoms suggests that Hg-MIF is introduced by the nuclear volume effect (NVE). In contrast, the Hg(0) + Cl(•) reaction produces a Δ(199)Hg/Δ(201)Hg-slope of 1.89 ± 0.18 (2σ), which in addition to a high degree of odd-mass-number isotope MIF suggests impacts from MIF effects other than NVE. This reaction also exhibits significant MIF of (200)Hg (Δ(200)Hg, up to -0.17‰ in the reactant) and is the first physicochemical process identified to trigger (200)Hg anomalies that are frequently detected in atmospheric samples.

  7. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    International Nuclear Information System (INIS)

    Kowalewska, Zofia; Ruszczynska, Anna; Bulska, Ewa

    2005-01-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system (ii) mineralization in a closed microwave system (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g -1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g -1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g -1 in crude oil, -1 in gasoline, -1 in atmospheric oil, -1 in heavy vacuum oil and 140-300 ng g -1 in distillation residue

  8. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    Science.gov (United States)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, oil, oil and 140-300 ng g - 1 in distillation residue.

  9. Into the atom and beyond

    CERN Document Server

    1989-01-01

    Magnifying an atom to football pitch size. The dense nucleus, carrying almost all the atomic mass, is much smaller than the ball. The players (the electrons) would see something about the size of a marble!

  10. Depth profiling using C60+ SIMS-Deposition and topography development during bombardment of silicon

    International Nuclear Information System (INIS)

    Gillen, Greg; Batteas, James; Michaels, Chris A.; Chi, Peter; Small, John; Windsor, Eric; Fahey, Albert; Verkouteren, Jennifer; Kim, K.J.

    2006-01-01

    A C 60 + primary ion source has been coupled to an ion microscope secondary ion mass spectrometry (SIMS) instrument to examine sputtering of silicon with an emphasis on possible application of C 60 + depth profiling for high depth resolution SIMS analysis of silicon semiconductor materials. Unexpectedly, C 60 + SIMS depth profiling of silicon was found to be complicated by the deposition of an amorphous carbon layer which buries the silicon substrate. Sputtering of the silicon was observed only at the highest accessible beam energies (14.5 keV impact) or by using oxygen backfilling. C 60 + SIMS depth profiling of As delta-doped test samples at 14.5 keV demonstrated a substantial (factor of 5) degradation in depth resolution compared to Cs + SIMS depth profiling. This degradation is thought to result from the formation of an unusual platelet-like grain structure on the SIMS crater bottoms. Other unusual topographical features were also observed on silicon substrates after high primary ion dose C 60 + bombardment

  11. The interpretation of ellipsometric measurements of ion bombardment of noble gases on semiconductor surfaces

    NARCIS (Netherlands)

    Holtslag, A.H.M.; Slager, U.C.; van Silfhout, Arend

    1985-01-01

    Low energy noble gas ion bombardment and thermal desorption studies were carried out on Si(111) and analysed, in situ, using spectroscopic ellipsometry. The amorphous layer thickness and implanted noble gas fraction were calculated.

  12. Electron induced atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Quarles, C.A.

    1974-01-01

    The current status of cross section measurements for atomic inner-shell ionization by electron bombardment is reviewed. Inner shell ionization studies using electrons as projectiles compliment the similar studies being done with heavy particles, and in addition can provide tests of the theory in those cases when relativistic effects and exchange effects are expected to be important. Both total cross sections and recently measured differential cross sections will be discussed and compared with existing theories where possible. Prospects for further experimental and theoretical work in this area of atomic physics using small electron accelerators will also be discussed

  13. Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors

    International Nuclear Information System (INIS)

    Qiang, Ji; Corlett, John; Staples, John

    2009-01-01

    In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H 2 ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns

  14. The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures

    International Nuclear Information System (INIS)

    Subramaniam, S.C.; Rezazadeh, A.A.

    2006-01-01

    The effects of Fe-ion bombardment at 77 K (cold) and room temperature (RT) into single layer InGaAs, InP and multilayer InP/InGaAs HBT structures have been investigated. Annealing characteristics and RF dissipation loss measurements of Fe-ion bombarded samples at 77 K indicated good electrical isolation in n-, p-type InGaAs materials and InP/InGaAs HBT structures. Thermally stable (up to 250 deg. C) high sheet resistance (R sh ) of ∼5 x 10 6 Ω/sq has been achieved on these samples while higher R sh of ∼10 7 Ω/sq was obtained for the n-InP materials bombarded with similar conditions. Dissipation losses of 1.7 dB/cm at 10 GHz and 2.8 dB/cm at 40 GHz have been measured for the cold Fe-ion bombarded InP-based HBT structures. This result is similar to those obtained for an un-bombarded S.I. InP substrate, indicating good electrical isolation. We have also determined electron trapping levels by thermal annealing for the cold and RT Fe-ion bombarded samples. It is shown that the high resistivity achieved in the cold implanted InGaAs layer is most likely due to the creation of mid-bandgap defect levels (E C - 0.33) eV, which are created only in the cold Fe-ion bombardment. The DC isolation and RF dissipation loss analysis have been used to identify a suitable bombardment scheme for the fabrication of planar InP/InGaAs HBTs

  15. Logarithmic contributions in the particle-mass ratio to the fine shift of S energy levels of hydrogen-like atoms in the fifth order in the fine-structure constant

    International Nuclear Information System (INIS)

    Boikova, N.A.; Kleshchevskaya, S.V.; Tyukhtyaev, Yu.N.; Faustov, R.N.

    2004-01-01

    A high-precision investigation of a logarithmic contribution in the particle-mass ratio to the fine shift of the S energy levels of hydrogen-like atoms from the exchange of a Coulomb photon is performed. It is shown that diagrams describing the exchange of one transverse photon and two Coulomb photons do not make such contributions

  16. Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA

    International Nuclear Information System (INIS)

    Norarat, R.; Semsang, N.; Anuntalabhochai, S.; Yu, L.D.

    2009-01-01

    Ion beam bombardment of biological organisms has been recently applied to mutation breeding of both agricultural and horticultural plants. In order to explore relevant mechanisms, this study employed low-energy ion beams to bombard naked plasmid DNA. The study aimed at simulation of the final stage of the process of the ion beam bombardment of real cells to check whether and how very low-energy and low-fluence of ions can induce mutation. Argon and nitrogen ions at 5 keV and 2.5 keV respectively bombarded naked plasmid DNA pGFP to very low-fluences, an order of 10 13 ions/cm 2 . Subsequently, DNA states were analyzed using electrophoresis. Results provided evidences that the very low-energy and low-fluence ion bombardment indeed altered the DNA structure from supercoil to short linear fragments through multiple double strand breaks and thus induced mutation, which was confirmed by transfer of the bombarded DNA into bacteria Escherichia coli and subsequent expression of the marker gene.

  17. Influence of the ion bombardment of O{sub 2} plasmas on low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick, E-mail: verdonck@imec.be [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Samara, Vladimir [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Goodyear, Alec [Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferchichi, Abdelkarim; Van Besien, Els; Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Braithwaite, Nicholas [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2011-10-31

    In this study, special tests were devised in order to investigate the influence of ion bombardment on the damage induced in low-k dielectrics by oxygen plasmas. By placing a sample that suffered a lot of ion bombardment and one which suffered little ion bombardment simultaneously in the same plasma, it was possible to verify that ion bombardment in fact helped to protect the low-k film against oxygen plasma induced damage. Exhaustive analyses (ellipsometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, porosimetry, capacitance-voltage (C-V) measurements, water contact angle analysis) show that ion bombardment induced the formation of a denser top layer in the film, which then hampered further penetration of active oxygen species deeper into the bulk. This was further confirmed by other tests combining capacitively and inductively coupled plasmas. Therefore, it was possible to conclude that, at least for these plasmas, ion bombardment may help to reduce plasma induced damage to low-k materials.

  18. Back bombardment for dispenser and lanthanum hexaboride cathodes

    Directory of Open Access Journals (Sweden)

    Mahmoud Bakr

    2011-06-01

    Full Text Available The back bombardment (BB effect limits wide usage of thermionic rf guns. The BB effect induces not only ramping-up of a cathode’s temperature and beam current, but also degradation of cavity voltage and beam energy during a macropulse. This paper presents a comparison of the BB effect for the case of dispenser tungsten-base (DC and lanthanum hexaboride (LaB_{6} thermionic rf gun cathodes. For each, particle simulation codes are used to simulate the BB effect and electron beam dynamics in a thermionic rf gun cathode. A semiempirical equation is also used to investigate the stopping range and deposited heat power of BB electrons in the cathode material. A numerical simulation method is used to calculate the change of the cathode temperature and current density during a single macropulse. This is done by solving two differential equations for the rf gun cavity equivalent circuit and one-dimensional thermal diffusion equation. High electron emission and small beam size are required for generation of a high-brightness electron beam, and so in this work the emission properties of the cathode are taken into account. Simulations of the BB effect show that, for a pulse of 6  μs duration, the DC cathode experiences a large change in the temperature compared with LaB_{6}, and a change in current density 6 times higher. Validation of the simulation results is performed using experimental data for beam current beyond the gun exit. The experimental data is well reproduced using the simulation method.

  19. Mercury speciation in thawed out and refrozen fish samples by gas chromatography coupled to inductively coupled plasma mass spectrometry and atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krystek, Petra; Ritsema, Rob [National Institute for Public Health and the Environment (RIVM), Laboratory for Analytical Chemistry, Bilthoven (Netherlands)

    2005-01-01

    Different sub-sampling procedures were applied for the determination of mercury species (as total mercury Hg, methylmercury MeHg{sup +} and inorganic mercury Hg{sup 2+}) in frozen fish meat. Analyses were carried out by two different techniques. After the sample material was pre-treated by microwave digestion, atomic fluorescence spectroscopy (AFS) was used for the determination of total Hg. Speciation analysis was performed according to the following procedure: dissolution of sample material in tetramethylammonium hydroxide (TMAH), derivatisation with sodium tetraethylborate (NaBEt{sub 4}), extraction into isooctane and measurement with gas chromatography inductively coupled plasma mass spectrometry (GC-ICPMS) for the identification and quantification of methylmercury (MeHg{sup +}) and inorganic mercury (Hg{sup 2+}). The concentration range of total Hg measured in the shark fillets is between 0.9 and 3.6 {mu}g g{sup -1} thawed out shark fillet. Speciation analysis leads to {>=}94% Hg present as MeHg{sup +}. Homogeneity, storage conditions and stability of analytical species and sample materials have great influence on analytical results. Sub-sampling of half-frozen/partly thawed out fish and analysis lead to significantly different concentrations, which are on average a factor of two lower. (orig.)

  20. Radiation effects in zinc oxide: zinc under bombardment with KeV ions

    International Nuclear Information System (INIS)

    Hastings, J.W.L.

    1967-01-01

    The energy loss, light output, depth of deterioration and the deterioration constant have been determined as a function of energy for various atomic projectiles impinging upon samples of a powdered Zn:Zn phosphor at energies below 105 KeV. The energy loss was observed as a reduction in the light output when projectiles traversed thin regions of previously damaged phosphor. The energy losses for heavier projectiles ( 14 N, 40 Ar, 84 Kr), relative to hydrogen, were found to be lower than those predicted for an amorphous stopping medium. The light output for a given projectile was found to be approximately proportional to the amount of energy lost in electronic collisions. When a phosphor is subjected to prolonged bombardment by heavy ions the deterioration depth is fairly well defined and its value was determined by a measurement of the energy loss of a hydrogen beam in traversing the damaged region. The depths are very large, are proportional to the projectile velocity and seem to be determined to a significant degree by electronic stopping. The deterioration constant, C, is a measure of the ability of a projectile to deteriorate a phosphor and its value is proportional to the number of defects introduced in unit distance along the trajectory of the projectile. The constant was determined from measurements of the efficiencies η, and η o , of partly damaged and undamaged phosphor, respectively, using the observed relationship, C (η/η o - 1) n -1 where n is the irradiation dose. The relative magnitudes of the C values for 14 N, 40 Ar were found to be in agreement with measured nuclear energy loss cross sections for these projectiles. (author)

  1. Cluster-surface collisions: Characteristics of Xe55- and C20 - Si[111] surface bombardment

    International Nuclear Information System (INIS)

    Cheng, H.

    1999-01-01

    Molecular dynamics (MD) simulations are performed to study the cluster-surface collision processes. Two types of clusters, Xe 55 and C 20 are used as case studies of materials with very different properties. In studies of Xe 55 - Si[111] surface bombardment, two initial velocities, 5.0 and 10.0 km/s (normal to the surface) are chosen to investigate the dynamical consequences of the initial energy or velocity in the cluster-surface impact. A transition in the speed of kinetic energy propagation, from subsonic velocities to supersonic velocities, is observed. Energy transfer, from cluster translational motion to the substrate, occurs at an extremely fast rate that increases as the incident velocity increases. Local melting and amorphous layer formation in the surfaces are found via energetic analysis of individual silicon atoms. For C 20 , the initial velocity ranges from 10 to 100 km/s. The clusters are damaged immediately upon impact. Similar to Xe 55 , increase in the potential energy is larger than the increase in internal kinetic energy. However, the patterns of energy distribution are different for the two types of clusters. The energy transfer from the carbon clusters to Si(111) surface is found to be slower than that found in the Xe clusters. Fragmentation of the carbon cluster occurs when the initial velocity is greater than 30 km/s. At 10 km/s, the clusters show recrystallization at later times. The average penetration depth displays a nonlinear dependence on the initial velocity. Disturbance in the surface caused by C 20 is discussed and compared to the damage caused by Xe 55 . Energetics, structures, and dynamics of these systems are fully analyzed and characterized. copyright 1999 American Institute of Physics

  2. Wobbling The Galactic Disk with Bombardment of Satellite Galaxies

    Science.gov (United States)

    D'Onghia, Elena

    We propose to assess the effect of impacts of large visible satellite galaxies on a disk, as well as the relevance of the continuing bombardment of the Galactic disk by dark matter clumps as predicted by the current cosmological framework that can wobble the disk, heating it and eventually exciting ragged spiral structures. In particular, we make detailed predictions for observable features such as spiral arms, rings and their associated stars in galactic disks and relate them to the physical processes that drive their formation and evolution in our Milky Way galaxy and nearby spirals. To do this, we will combine analytic methods and numerical simulations that allow us to calculate observables, which we will compare to present and forthcoming observations. Our methodology utilizes a combination of state of the art hydrodynamic simulations of galaxy evolution and multi- wavelength radiative transfer simulations. Our primary goals are: (1) To identify the physical processes that are responsible for spiral structure formation observed in our Milky Way and nearby disk galaxies, from the flocculent to grand- designed spiral galaxies and to provide observable signatures to be compared with data on nearby galaxies combining maps of 24 micron emission (Spitzer) and cold gas, CO (Heracles) and HI (THINGS). (2) To explore different morphologies of spiral galaxies: from the multi-armed galaxies to the Milky Way sized galaxies with few arms. (3) For a Milky Way disk we will assess the effect of impacts of substructures passing through the disk to origin the asymmetry in the number density of stars recently discovered from SDSS and SEGUE data and confirmed from RAVE data. We will also investigate the disk heating in the vertical plane due to the formation of vertical oscillations that are produced by the impact and migration of stars in the disk as consequence of the heating as compared to the classical stellar migration mechanism. (4) We will measure the spiral pattern speed

  3. Si(LMM) Auger electron emission from Si alloys by keV Ar/sup +/ ion bombardment, new effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A; Kim, S; Imura, T; Iwami, M [Osaka Univ., Suita (Japan). Faculty of Engineering

    1979-09-01

    Si(LMM) Auger spectra excited by keV ion bombardment were studied in Si alloyed with several elements (Au, Cu, Pd, Ni, C, and H). The spectra differed completely from those of pure Si. The main characteristics are (1) the spectra are composed of two well-separated peaks (88 and 92 eV) called the atomic-like peak (88 eV) and the bulk-like peak (92 eV); and (2) the atomic-like peak is enhanced with respect to the bulk-like peak, and this enhancement becomes more obvious as the concentration of partner elements of the alloys are increased. The possible application of the present phenomena is proposed as a technique for detecting the homogeneity of Si alloy films in the three-dimensional sense - as an example, the three-dimensional distribution of hydrogen in hydrogenated amorphous silicon (a-Si-H).

  4. Influence of a Thiolate Chemical Layer on GaAs (100 Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometry Methods

    Directory of Open Access Journals (Sweden)

    Alex Bienaime

    2013-10-01

    Full Text Available Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molecules with different chain lengths; possessing hydroxyl (MUDO; for 11-mercapto-1-undecanol (HS(CH211OH or carboxyl (MHDA; for mercaptohexadecanoic acid (HS(CH215CO2H end groups; to reconstitute a dense and homogeneous albumin (Rat Serum Albumin; RSA protein layer on the GaAs (100 surface. The protein monolayer formation and the covalent binding existing between RSA proteins and carboxyl end groups were characterized by atomic force microscopy (AFM analysis. Characterization in terms of topography; protein layer thickness and stability lead us to propose the 10% MHDA/MUDO interface as the optimal chemical layer to efficiently graft proteins. This analysis was coupled with in situ MALDI-TOF mass spectrometry measurements; which proved the presence of a dense and uniform grafted protein layer on the 10% MHDA/MUDO interface. We show in this study that a critical number of carboxylic docking sites (10% is required to obtain homogeneous and dense protein coverage on GaAs. Such a protein bio-interface is of fundamental importance to ensure a highly specific and sensitive biosensor.

  5. Effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Xi Luan [Surface Science Western, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Zheng Zhi; Lam, N.-S. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China); Grizzi, Oscar [Centro Atomico Bariloche, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Lau, W.-M. [Surface Science Western, University of Western Ontario, London, Ontario N6A 5B7 (Canada)], E-mail: llau22@uwo.ca

    2007-10-31

    The effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer (SAM) on Au(1 1 1) are studied with scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS). The STM and XPS results show that proton bombardment with proton energy as low as 2 eV can induce cross-linking of the adsorbed alkanethiols and transform the original ordered SAM lattice to an array of nanoclusters of the cross-linked alkanethiols. For a bombardment at 3 eV with a fluence of 3x10{sup 15} cm{sup -2}, the typical cluster size is about 5 nm. In addition, the cluster size distribution is narrow, with no cluster larger than 8 nm. The cluster growth can be promoted by increasing the fluence at a fixed bombardment energy or increasing the energy at a fixed fluence. This indicates that surface diffusion of alkanethiols and cluster growth can be harnessed by the control of the bombardment energy and fluence.

  6. Effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer on Au(1 1 1)

    International Nuclear Information System (INIS)

    Xi Luan; Zheng Zhi; Lam, N.-S.; Grizzi, Oscar; Lau, W.-M.

    2007-01-01

    The effects of hyperthermal proton bombardment on alkanethiol self-assembled monolayer (SAM) on Au(1 1 1) are studied with scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS). The STM and XPS results show that proton bombardment with proton energy as low as 2 eV can induce cross-linking of the adsorbed alkanethiols and transform the original ordered SAM lattice to an array of nanoclusters of the cross-linked alkanethiols. For a bombardment at 3 eV with a fluence of 3x10 15 cm -2 , the typical cluster size is about 5 nm. In addition, the cluster size distribution is narrow, with no cluster larger than 8 nm. The cluster growth can be promoted by increasing the fluence at a fixed bombardment energy or increasing the energy at a fixed fluence. This indicates that surface diffusion of alkanethiols and cluster growth can be harnessed by the control of the bombardment energy and fluence

  7. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Kaoru; Yoshida, Hiroyuki [Industrial Research Inst. of Ishikawa (Japan); Watanabe, Hiroshi [Gakushuin Univ., Tokyo (Japan); Iwaki, Masaya; Guzman, L [RIKEN, Saitama (Japan)

    1992-04-15

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C{sub 6}H{sub 6} gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10{sup 16} ions cm{sup -2}. The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.).

  8. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    International Nuclear Information System (INIS)

    Awazu, Kaoru; Yoshida, Hiroyuki; Watanabe, Hiroshi; Iwaki, Masaya; Guzman, L.

    1992-01-01

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C 6 H 6 gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10 16 ions cm -2 . The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.)

  9. Hydrogen pumping and release by graphite under high flux plasma bombardment

    International Nuclear Information System (INIS)

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; Labombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux ∼ 1 x 10 18 ions s -1 cm -2 to a fluence of the order of 10 21 ions/cm 2 and at temperatures around 800 degree C. The plasma bombarding energy was varied between 100 and 200 eV. The gettering speed of the activated graphite surface is estimated to be as large as 25 liters s -1 cm -2 at total pressures between 10 -6 and 10 -7 torr. The gettering capacity estimated is 0.025 torr-liter/cm 2 at room temperature. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10 18 H/cm 2 at temperatures below 100 degree C and at a plasma bombarding energy of 300 eV

  10. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  11. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  12. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  13. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    Science.gov (United States)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; hide

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  14. The influence of ion energy, target temperature, dose rate and crystal order on the shape of bombardment induced pyramids on copper crystals

    International Nuclear Information System (INIS)

    Tanovic, L.; Whitton, J.L.; Kofod, S.

    1978-01-01

    Following recent studies of energetic ion bombardment of copper, which established the conditions necessary for the production of cones/pyramids, investigations have been extended to include the effects of change in ion energy, target temperature and dose rate. In addition, the authors have attempted a detailed analysis of the influence of sample crystal orientation on the final form of pyramids and have investigated the stability of the pyramids as a function of the total dose. These experiments, as in earlier work, have been done using very pure copper, mass-analyzed ion beams and free of any metal contamination from, for example, defining apertures. (Auth.)

  15. Silicon nanodot formation and self-ordering under bombardment with heavy Bi3 ions

    International Nuclear Information System (INIS)

    Boettger, Roman; Heinig, Karl-Heinz; Bischoff, Lothar; Liedke, Bartosz; Huebner, Rene; Pilz, Wolfgang

    2013-01-01

    Si nanodots of high density and hexagonal short-range order are observed upon normal-incidence bombardment of hot, crystalline Si with Bi 3 + ions having a kinetic energy of a few tens of keV. The heights of nanodots are comparable to their widths of ∝20 nm. The implanted Bi accumulates in tiny Bi nanocrystals in a thin Si top layer which is amorphous due to implantation damage. Light and heavy ions up to Xe cause smoothing of surfaces, but Bi 3 + ions considered here have a much higher mass. Atomistic simulations prove that each Bi 3 + impact deposits an extremely high energy density resulting in a several nanometer large melt pool, which resolidifies within a few hundreds of picoseconds. Experiments confirm that dot patterns form only if the deposited energy density exceeds the threshold for melting. Comparing monatomic and polyatomic Bi ion irradiation, Bi-Si phase separation and preferential ion erosion are ruled out as driving forces of pattern formation. A model based on capillary forces in the melt pool explains the pattern formation consistently. High-density Si nanodots are formed by polyatomic Bi ion irradiation of hot Si surfaces. Each impact causes local transient melt pools smaller than the dots. Hexagonally ordered patterns evolve by self-organization driven by repeated ion-induced melting of tiny volumes. Homogeneously distributed Bi nanocrystals are found in the a-Si film. These nanocrystals are related to particularities of the Si-Bi phase diagram. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Process to produce excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment

  17. The surface topography of Inconel, stainless steel and copper after argon ion bombardment

    International Nuclear Information System (INIS)

    Vogelbruch, K.; Vietzke, E.

    1983-01-01

    Energetic particle bombardment of metals is known to change the surface topography. To simulate the behaviour of the first wall of a fusion device under real plasma conditions, we have investigated the surface topography of rotating targets after 30 keV argon ion bombardment at 70deg incident angle by electron scanning micrographs. Under these conditions Inconel 600, 601, 625, stainless steel, and copper showed no cones, pyramids or cliffs, but only etching figures and at higher ion doses relatively flat hills. Thus, it can be concluded, that the influence of energetic particles on the first wall of a fusion reactor is smaller than expected from the results of such sputtering experiments, which have dealt with the formation of surface structures under ion bombardment at constant incident direction. (author)

  18. Alteration of the UV-visible reflectance spectra of H2O ice by ion bombardment

    Science.gov (United States)

    Sack, N. J.; Boring, J. W.; Johnson, R. E.; Baragiola, R. A.; Shi, M.

    1991-01-01

    Satellite in the Jovian and Saturnian system exhibit differences in reflectivity between their 'leading' and 'trailing' surfaces which can affect the local vapor pressure. Since these differences are thought to be due to differences in the flux of bombarding magnetospheric ions, the influence of ion impact on the UV-visible reflectance of water ice surfaces (20-90 K) by keV ion bombardment was studied. An observed decrease in reflectance in the UV is attributed to rearrangement processes that affect the physical microstructure and surface 'roughness'. The ratio in reflectance of bombarded to freshly deposited films is compared to the ratio of the reflectance of the leading and trailing hemispheres for Europa and Ganymede.

  19. InN: Fermi level stabilization by low-energy ion bombardment

    International Nuclear Information System (INIS)

    Piper, L.F.J.; Veal, T.D.; McConville, C.F.; Lu, H.; Schaff, W.J.

    2006-01-01

    The near-surface electronic properties of InN have been investigated with high-resolution electron-energy loss spectroscopy. Low-energy (∝400 eV) nitrogen ion bombardment followed by low temperature annealing (<300 C) was found to dramatically increase the n-type conductivity of InN, close to the surface. This is explained in terms of the formation of amphoteric defects from the ion bombardment and annealing combined with the band structure of InN. Low-energy ion bombardment and annealing is shown to result in a damage-induced, donor-like defect-profile instead of the expected electron accumulation for InN. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Matrix digestion of soil and sediment samples for extraction of lead, cadmium and antimony and their direct determination by inductively coupled plasma-mass spectrometry and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Fisher, A.S.; Henon, D.N.; Hill, S.J.

    2004-01-01

    An environmentally friendly and simple method has been developed for complete digestion of lead, cadmium and antimony from soil samples using a magnesium nitrate assisted dry ashing procedure. Statistical data for a series of experiments with standard reference materials are presented, and precision values are found to be comparable for inductively coupled plasma-mass spectrometry and for inductively coupled plasma-atomic emission spectrometry. From a single digest solution all analytes are quantified without involving any preconcentration routes. Inter-method comparison of inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) shows that the probability of the results being different is less than 99 %. (author)

  1. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  2. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells

  3. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  4. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  5. Ion bombardment effects on the fatigue life of stainless steel under simulated fusion first wall conditions

    International Nuclear Information System (INIS)

    Kohse, G.; Harling, O.K.

    1983-01-01

    Pressurized tube specimens have been exposed to simultaneous multi-energy surface ion bombardment, fast neutron irradiation and stress and temperature cycling, in a simulation of a possible fusion reactor first wall environment. After ion bombardments equivalent to months-years of reactor operation and up to 30,000 cycles, no detrimental effects on post-irradiation fatigue life were found. The ion damage is found to enhance surface cracking, but this effect is limited to the several micron surface layer in which the ions are implanted

  6. Effects of low and high energy ion bombardment on ETFE polymer

    Science.gov (United States)

    Minamisawa, R. A.; De Almeida, A.; Abidzina, V.; Parada, M. A.; Muntele, I.; Ila, D.

    2007-04-01

    The polymer ethylenetetrafluoroethylene (ETFE) is used as anti-adherent coatings for food packages and radiation dosimeters. In this work, we compare the damage induced in ETFE bombarded with 100 keV Si ions with that induced by 1 MeV proton bombardment. The damage depends on the type, energy and intensity of the irradiation. Irradiated films were analyzed with optical absorption photospectrometry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy to determine the chemical nature of the structural changes caused by ion irradiation. Computer simulations were performed to evaluate the radiation damage.

  7. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  8. Ion bombardment induced surface topography modification of clean and contaminated single crystal Cu and Si

    International Nuclear Information System (INIS)

    Lewis, G.W.; Kiriakides, G.; Carter, G.; Nobes, M.J.

    1982-01-01

    Among the several factors which lead to depth resolution deterioration during sputter profiling, surface morphological modification resulting from local differences of sputtering rate can be important. This paper reports the results of direct scanning, electron microscopic studies obtained quasi-dynamically during increasing fluence ion bombardment of the evolution of etch pit structures on Si and Cu, and how such elaboration may be suppressed. It also reports on the elaboration of contaminant-induced cone generation for different ion species bombardment. The influence of such etch pit and cone generation on achievable depth resolution is assessed. (author)

  9. The influence of ion bombardment on emission properties of carbon materials

    International Nuclear Information System (INIS)

    Chepusov, Alexander; Komarskiy, Alexander; Kuznetsov, Vadim

    2014-01-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  10. The influence of ion bombardment on emission properties of carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Chepusov, Alexander, E-mail: chepusov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Komarskiy, Alexander, E-mail: aakomarskiy@gmail.com [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Kuznetsov, Vadim, E-mail: kuznetsov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation)

    2014-07-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  11. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multi-dimensional Boolean valued functions in three dimensional lattice space. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. The third topic is the formation of ripple structures on ion bombarded semiconductor surfaces treated in the first topic as the prepatterned substrate of the metallic deposition. This intriguing phenomenon has been known since the 1960's and various theoretical approaches have been explored. These previous models are discussed and a new non-linear model is formulated, based on the local atomic flow and associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important and it is shown that in this case, certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results including some analytic solutions of the nonlinear equation of motions are in very good agreement with experimental observation.

  12. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multi-dimensional Boolean valued functions in three dimensional lattice space. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. The third topic is the formation of ripple structures on ion bombarded semiconductor surfaces treated in the first topic as the prepatterned substrate of the metallic deposition. This intriguing phenomenon has been known since the 1960's and various theoretical approaches have been explored. These previous models are discussed and a new non-linear model is formulated, based on the local atomic flow and associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important and it is shown that in this case, certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results including some analytic solutions of the nonlinear equation of motions are in very good agreement with experimental observation.

  13. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  14. Synergetic effects during sputter-assisted depth profiling: growth-dominated topography development on InP and a model of the atomic mechanism

    International Nuclear Information System (INIS)

    Gries, W.H.; Miethe, K.

    1987-01-01

    Growth-dominated extreme topography development on ion-bombarded wafers of InP is reported and is explained in terms of the micro region model presented in summary form. This model postulates the existence of an ion-bombardment-produced ensemble of crystallites and non-crystalline aggregations of atoms (composed of the substrate material, of dopant and of oxygen from the native oxide layer) where the majority of InP micro regions is so small (nanometer dimensions) that most interstitials created in collision events between bombarding ions and atoms of the micro region can reach an interfacial boundary rather than recombine with a vacancy from the same or another collision event. These atoms are then transported via interfacial boundaries and over the surface to screw dislocations where crystal stubs proceed to grow until the damage rate by ion bombardment overtakes the growth rate. Ion-bombardment-induced compressive stresses favour diffusion towards the surface. Temperature transients within micro regions assist both interfacial diffusion and damage repair. The topography is a result of competition between growth and sputtering. Different growth rates cause different topographies. The development of an extreme topography can be suppressed by oxygen flooding of the sputtered surface, by simultaneous electron beam scanning, as well as by Cs + ion bombardment. (Author)

  15. Joint General Atomic-TAERF fusion program

    Energy Technology Data Exchange (ETDEWEB)

    Kerst, D W [John Jay Hopkins Laboratory for Pure and Applied Science, General Atomic Division of General Dynamics Corporation, San Diego, CA (United States)

    1958-07-01

    The experimental work has consisted of several parts: the study of charge exchange in hydrogen ionic and atomic collisions, the study of some linear pinch discharge systems with high stabilizing axial magnetic fields, developments on a small scale for a large toroidal geometry, and experiments with various diagnostic methods, including electrical, optical, and shock-tube methods. The experiments on atomic collisions have consisted of measurements of cross sections for the ionization, the excitation of Lyman-alpha radiation, and elastic scattering for the case of electron bombardment. In addition, charge-exchange cross sections between deuterons and deuterium atoms have been measured. The calculations of Dalgarno and Yadav, using a perturbed stationary-state approximation are close to the experimental results which show a very large cross section for charge exchange.

  16. Surface characterization of polymethylmetacrylate bombarded by charged water droplets

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo; Takaishi, Riou; Asakawa, Daiki; Sakai, Yuji; Iijima, Yoshitoki

    2009-01-01

    The electrospray droplet impact (EDI), in which the charged electrospray water droplets are introduced in vacuum, accelerated, and allowed to impact the sample, is applied to polymethylmetacrylate (PMMA). The secondary ions generated were measured by an orthogonal time-of-flight mass spectrometer. In EDI mass spectra for PMMA, fragment ions originating from PMMA could not be detected. This is due to the fact that the proton affinities of fragments formed from PMMA are smaller than those from acetic acid contained in the charged droplet. The x-ray photoelectron spectroscopy spectra of PMMA irradiated by water droplets did not change with prolonged cluster irradiation, i.e., EDI is capable of shallow surface etching for PMMA with a little damage of the sample underneath the surface.

  17. Response of fuzzy tungsten surfaces to pulsed plasma bombardment

    International Nuclear Information System (INIS)

    Nishijima, D.; Doerner, R.P.; Iwamoto, D.; Kikuchi, Y.; Miyamoto, M.; Nagata, M.; Sakuma, I.; Shoda, K.; Ueda, Y.

    2013-01-01

    Damage of fuzzy tungsten surfaces due to a transient plasma load is characterized in terms of mass loss, surface morphology, and optical properties. A single D pulsed (∼0.1–0.2 ms) plasma shot with surface absorbed energy density of ∼1.1 MJ m −2 leads to a mass loss of ∼80 μg, which cannot be explained by physical sputtering. Thus, macroscopic erosion processes such as droplets and dust release as well as arcing are thought to be responsible for the mass loss. In fact, scanning electron microscopy observations reveal the melting of the tips of fuzz and arc tracks. The optical reflectivity of the damaged (melted) surface is measured to be higher than that of an undamaged fuzzy surface (below ∼0.01%). Spectroscopic ellipsometry shows that the refractive index, n, and extinction coefficient, k, increase from n ≈ 1 and k ≈ 0 for an undamaged fuzzy surface with an increase in the degree of damage of fuzz

  18. Influence of ion bombardment on growth and properties of PLD created DLC films

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Písařík, Petr; Kocourek, Tomáš; Zemek, Josef; Lukeš, J.

    2013-01-01

    Roč. 110, č. 4 (2013), s. 943-947 ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional research plan: CEZ:AV0Z10100522 Keywords : DLC * ion bombardment * sp3 /sp2 * thin films * PLD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.694, year: 2013

  19. High Energy Ion Bombardment Simulation Facility at the University of Pittsburgh

    International Nuclear Information System (INIS)

    McGruer, J.N.; Choyke, W.J.; Doyle, N.J.; Spitznagel, J.A.

    1975-01-01

    The High Energy Ion Bombardment Simulation (HEIBS) Facility located at the University of Pittsburgh is now operational. The E-22 tandem accelerator of the Nuclear Physics Laboratory, fitted with a UNIS source, provides the heavy high energy ions. An auxiliary Van de Graaff accelerator is used for the simultaneous production of He ions. Special features of the simulation laboratory are reported

  20. Probabilities of symmetric and asymmetric fission in the proton bombardment of Th{sup 232}

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, B J [Atomic Energy Research Establishment, Chemistry Div., Harwell (United Kingdom); Brown, F; Butler, J P

    1957-08-01

    The ratio of symmetric to asymmetric fission in the proton bombardment of Th{sup 232} does not rise steadily with increasing proton energy; a periodic decrease in superposed upon the over-all increase. This is attributed to the changing pattern of various fission reactions, (p,f), (p,nf), etc. (author)

  1. Materials surface modification by plasma bombardment under simultaneous erosion and redeposition conditions

    International Nuclear Information System (INIS)

    Hirooka, Y.; Goebel, D.M.; Conn, R.W.

    1986-07-01

    The first in-depth investigation of surface modification of materials by continuous, high-flux argon plasma bombardment under simultaneous erosion and redeposition conditions have been carried out for copper and 304 stainless steel using the PISCES facility. The plasma bombardment conditions are: incident ion flux range from 10 17 to 10 19 ions sec -1 cm -2 , total ion fluence is controlled between 10 19 and 10 22 ions cm -2 , electron temperature range from 5 to 15 eV, and plasma density range from 10 11 to 10 13 cm -3 . The incident ion energy is 100 eV. The sample temperature is between 300 and 700K. Under redeposition dominated conditions, the material erosion rate due to the plasma bombardment is significantly smaller (by a factor up to 10) than that can be expected from the classical ion beam sputtering yield data. It is found that surface morphologies of redeposited materials strongly depend on the plasma bombardment condition. The effect of impurities on surface morphology is elucidated in detail. First-order modelings are implemented to interpret the reduced erosion rate and the surface evolution. Also, fusion related surface properties of redeposited materials such as hydrogen reemission and plasma driven permeation have been characterized

  2. Stable transformation via particle bombardment in two different soybean regeneration systems.

    Science.gov (United States)

    Sato, S; Newell, C; Kolacz, K; Tredo, L; Finer, J; Hinchee, M

    1993-05-01

    The Biolistics(®) particle delivery system for the transformation of soybean (Glycine max L. Merr.) was evaluated in two different regeneration systems. The first system was multiple shoot proliferation from shoot tips obtained from immature zygotic embryos of the cultivar Williams 82, and the second was somatic embryogenesis from a long term proliferative suspension culture of the cultivar Fayette. Bombardment of shoot tips with tungsten particles, coated with precipitated DNA containing the gene for β-glucuronidase (GUS), produced GUS-positive sectors in 30% of the regenerated shoots. However, none of the regenerants which developed into plants continued to produce GUS positive tissue. Bombardment of embryogenic suspension cultures produced GUS positive globular somatic embryos which proliferated into GUS positive somatic embryos and plants. An average of 4 independent transgenic lines were generated per bombarded flask of an embryogenic suspension. Particle bombardment delivered particles into the first two cell layers of either shoot tips or somatic embryos. Histological analysis indicated that shoot organogenesis appeared to involve more than the first two superficial cell layers of a shoot tip, while somatic embryo proliferation occurred from the first cell layer of existing somatic embryos. The different transformation results obtained with these two systems appeared to be directly related to differences in the cell types which were responsible for regeneration and their accessibility to particle penetration.

  3. Effects of low-energy ion beam bombardment on metal oxides

    International Nuclear Information System (INIS)

    Sullivan, J.L.; Saied, S.O.; Choudhury, T.

    1993-01-01

    This paper describes a study of Ar ion bombardment damage in metal oxides. In the energy range 1 to 5 keV, preferential oxygen removal and reduction of the oxides was found to depend on ion current density, but to be independent of beam energy. (author)

  4. Proposals for the heating mechanism of an electron-bombarded body

    International Nuclear Information System (INIS)

    Geller, R.; Yerouchalmi, F.

    1967-01-01

    When a thermally isolated target in vacuum is bombarded by an electron beam the target becomes red. In this paper we try a heuristic explanation indicating how the kinetic power of the beam may be transformed into radiation power controlled by Stefan law. (authors) [fr

  5. Ion bombardment damage in a modified Fe-9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Farrell, K.; Lee, E.H.

    1984-01-01

    A normalized-and-tempered Fe-9Cr-1Mo steel, with small Nb and V additions, was bombarded with 4-MeV iron ions to 100 dpa at 400, 450, 500, 550, and 600 0 C. Major damage feature was dislocation tangles which coarsened with increasing bombardment temperature. Sparse cavities were heterogeneously distributed at 500 and 550 0 C. Incorporation of helium and deuterium simultaneously in the bombardments at rates of 10 and 45 appM/dpa, respectively, introduced very high concentrations of small cavities at all temperatures, many of them on grain boundaries. These cavities were shown to be promoted by helium. A small fraction of the matrix cavities exhibited bias-driven growth at 500 and 550 0 C, with swelling 0 C higher than the peak swelling temperature found in neutron irradiations, which is compatible with the higher damage rate used in the ion bombardments. High concentrations of subgrain boundaries and dislocations resulting from the heat treatment, and unbalanced cavity and dislocation sink strengths in the damage structures contribute to the swelling resistance. Such resistance may not be permanent. High densities of bubbles on grain boundaries indicate a need for helium embrittlement tests

  6. Modeling the reduction of gross lithium erosion observed under high-flux deuterium bombardment

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; Nichols, J. H.; Stotler, D. P.; De Temmerman, G.; van den Berg, M. A.; van der Meiden, H. J.; Morgan, T. W.

    2015-01-01

    Abstract Both thin (<1 μm) and thick (∼500 μm) lithium films under high-flux deuterium and neon plasma bombardment were studied in the linear plasma device Magnum-PSI at ion fluxes >1024 m−2 s−1 and surface temperatures <700 °C.

  7. Erosion of lithium coatings on TZM molybdenum and graphite during high-flux plasma bombardment

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2014-01-01

    Abstract The rate at which Li films will erode under plasma bombardment in the NSTX-U divertor is currently unknown. It is important to characterize this erosion rate so that the coatings can be replenished before they are completely depleted. An empirical formula for the Li erosion rate as a

  8. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  9. Bombardment-induced compositional change with alloys, oxides, and oxysalts. 1

    International Nuclear Information System (INIS)

    Kelly, R.

    1989-01-01

    A review of the role of surface binding energies in bombardment-induced compositional change with alloys, oxides and oxysalts is presented. The concepts of preferential sputtering and compositional change may or may not coincide; their differences are clarified. 77 refs.; 12 figs.; 4 tabs

  10. Particle bombardment and the genetic enhancement of crops: myths and realities

    NARCIS (Netherlands)

    Altpeter, F.; Baisakh, N.; Beachy, R.; Bock, R.; Capell, T.; Christou, P.; Daniell, H.; Datta, K.; Datta, S.; Dix, P.J.; Fauquet, C.; Huang, N.; Kohli, A.; Mooibroek, H.; Nicholson, L.; Nguyen, T.T.; Nugent, G.; Raemakers, C.J.J.M.; Romano, A.; Somers, D.A.; Stoger, E.; Taylor, N.; Visser, R.G.F.

    2005-01-01

    DNA transfer by particle bombardment makes use of physical processes to achieve the transformation of crop plants. There is no dependence on bacteria, so the limitations inherent in organisms such as Agrobacterium tumefaciens do not apply. The absence of biological constraints, at least until DNA

  11. Measures to alleviate the back bombardment effect of thermionic rf electron gun

    International Nuclear Information System (INIS)

    Huang, Y.; Xie, J.

    1991-01-01

    Thermionic rf electron gun finds application as a high brightness electron source for rf linacs. However, cathode heating from back-bombardment effect causes a ramp in the macro-pulse beam current and limit the usable pulse width. Three methods: ring cathode, magnetic deflection and laser assisted heating are studied in theory and in experiment. The results of these studies are reported

  12. Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability

    Science.gov (United States)

    Grimm, R. E.; Marchi, S.

    2018-03-01

    Intense bombardment is considered characteristic of the Hadean and early Archean eons, yet some detrital zircons indicate that near-surface water was present and thus at least intervals of clement conditions may have existed. We investigate the habitability of the top few kilometers of the subsurface by updating a prior approach to thermal evolution of the crust due to impact heating, using a revised bombardment history, a more accurate thermal model, and treatment of melt sheets from large projectiles (>100 km diameter). We find that subsurface habitable volume grows nearly continuously throughout the Hadean and early Archean (4.5-3.5 Ga) because impact heat is dissipated rapidly compared to the total duration and waning strength of the bombardment. Global sterilization was only achieved using an order of magnitude more projectiles in 1/10 the time. Melt sheets from large projectiles can completely resurface the Earth several times prior to ∼4.2 Ga but at most once since then. Even in the Hadean, melt sheets have little effect on habitability because cooling times are short compared to resurfacing intervals, allowing subsurface biospheres to be locally re-established by groundwater infiltration between major impacts. Therefore the subsurface is always habitable somewhere, and production of global steam or silicate-vapor atmospheres are the only remaining avenues to early surface sterilization by bombardment.

  13. Effect of Ar bombardment on the electrical and optical properties of ...

    Indian Academy of Sciences (India)

    The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1 × 10 15 cm − 2 . Electrical properties of LDPE films were measured and the effect of ion ...

  14. On the modeling of irradiation-induced homogeneous precipitation in proton-bombarded Ni-Si solid solutions

    Science.gov (United States)

    Lam, Nghi Q.; Janghorban, K.; Ardell, A. J.

    1981-10-01

    Irradiation-induced solute redistribution leading to precipitation of coherent γ' particles in undersaturated Ni-based solid solutions containing 6 and 8 at.% Si during 400-keV proton bombardment was modeled, based on the concept of solute segregation in concentrated alloys under spatially-dependent defect production conditions. The combined effects of (i) an extremely large difference between the defect production rates in the peak-damage and mid-range regions during irradiation and (ii) a preferential coupling between the interstitial and solute fluxes generate a net transient flux of Si atoms into the mid-range region, which is much larger than the solute flux out of this location. As a result, the Si concentration exceeds the solubility limit and homogeneous precipitation of the γ' phase occurs in this particular region of the irradiated samples. The spatial, compositional and temperature dependences of irradiation-induced homogeneous precipitation derived from the present theoretical calculations are in good qualitative agreement with experimental observations

  15. Potential energy effects and diffusion in the relaxed components of the reaction 197Au + 40Ar at 288 and 340 MeV bombarding energies

    International Nuclear Information System (INIS)

    Moretto, L.G.; Galin, J.; Babinet, R.; Fraenkel, Z.; Schmitt, R.; Jared, R.; Thompson, S.G.

    1976-01-01

    The fragments emitted in the reaction between 197 Au and 40 Ar at 288 and 340 MeV bombarding energies have been studied. The fragments have been identified in atomic number up to Z = 32 by means of an E-ΔE telescope. The kinetic energy distributions, the cross sections and the angular distributions have been measured for each Z. The kinetic energy distributions show the typical quasielastic and relaxed components; the Z-distributions show a smooth increase in the cross section with increasing Z, interrupted at relatively forward angles by a fairly sharp peak close to Z = 18. The angular distributions are forward peaked in excess of 1/sin theta for atomic numbers as large as Z approximately 30, as far as twelve atomic number units above the projectile; this is at variance with other reactions like Ag+ 20 Ne, where the angular distributions become 1/sin(theta) four or five atomic number units above the projectile. This is interpreted in terms of an enhanced diffusion towards symmetry, possibly promoted by the potential energy in the intermediate complex corresponding to two fragments in contact. (Auth.)

  16. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination...... spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 sigma) achieved by the HPLC-FAAS system was 1 mg L-1 of selenium (100 mu L injections) for each of the four...

  17. Hydrogen pumping and release by graphite under high flux plasma bombardment

    International Nuclear Information System (INIS)

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux ≅ 1 x 10 18 ions s -1 cm -2 to a fluence of the order of 10 21 ions/cm 2 and at temperatures around 800 0 C. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10 18 H/cm 2 at temperatures below 100 0 C and at a plasma bombarding energy of 300 eV. The graphite temperature was varied between 15 and 480 0 C. Due to the plasma particle pumping capability, hydrogen recycling from the activated graphite surface is significantly reduced, relative to that from a pre-saturated surface. A pre-saturated surface was also observed to reproducibly pump a hydrogen plasma to a concentration of 9.5 x 10 17 H/cm 2 . The hydrogen retention capacity of graphite is found to decrease with increasing temperature. A transient pumping mechanism associated with the sponge-like surface morphology is conjectured to explain the large hydrogen retention capacity. Hydrogen release behavior under helium and argon plasma bombardment was also investigated, and the result indicated the possibility of some in-pore retrapping effect. 43 refs., 11 figs

  18. Atomic rearrangements in ordered fcc alloys during neutron irradiation

    International Nuclear Information System (INIS)

    Kirk, M.A.; Blewitt, T.H.

    1978-01-01

    Three sets of experiments performed at Argonne National Laboratory over the past few years are described. These experiments deal with atomic rearrangements in the ordered alloys Ni 3 Mn and Cu 3 Au during fast and thermal neutron bombardment. The unique magnetic properties of ordered Ni 3 Mn are utilized to investigate radiation damage production mechanisms at low temperature (5 K) where defect migration is not possible and only disordering is observed. In the case of thermal neutron bombardment, the average recoil energy is about 450 eV and significant disordering due to [110] replacement collision sequences is observed. For fast neutron bombardment where typical recoil energies are 20 keV, significant random disordering is observed but no evidence for sizable replacement sequences is found. The bombardment of ordered Cu 3 Au by fast and thermal neutrons at higher temperature (approx. 150 0 C) is studied by electrical resistance techniques. Both ordering and disordering are observed and related to the number of migrating vacancies escaping from the high energy collision cascade

  19. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  20. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  1. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  2. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  3. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  4. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  5. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  6. 16. International Conference on Atomic Collisions in Solids. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Paul, H; Bauer, P; Semrad, D [ed.; Johannes Kepler Univ., Linz (Austria). Inst. fuer Experimentalphysik

    1996-12-31

    In this conference book of abstracts the following topics are treated: The interaction of atomic, molecular or ion beams with surfaces of solid metals and crystals, scattering and collisions, ion bombardment, ion channeling, energy losses and charge exchange, thin films, secondary emission, the Auger effect, sputtering of particles and atomic and molecular clusters. Thereby not only experimental results are presented but also computerized simulation methods are applied. (Suda).

  7. 16. International Conference on Atomic Collisions in Solids. Book of abstracts

    International Nuclear Information System (INIS)

    Paul, H.; Bauer, P.; Semrad, D.

    1995-01-01

    In this conference book of abstracts the following topics are treated: The interaction of atomic, molecular or ion beams with surfaces of solid metals and crystals, scattering and collisions, ion bombardment, ion channeling, energy losses and charge exchange, thin films, secondary emission, the Auger effect, sputtering of particles and atomic and molecular clusters. Thereby not only experimental results are presented but also computerized simulation methods are applied. (Suda)

  8. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  9. Atomization process for metal powder

    International Nuclear Information System (INIS)

    Lagutkin, Stanislav; Achelis, Lydia; Sheikhaliev, Sheikhali; Uhlenwinkel, Volker; Srivastava, Vikas

    2004-01-01

    A new atomization process has been developed, which combines pressure and gas atomization. The melt leaves the pressure nozzle as a hollow thin film cone. After the pre-filming step, the melt is atomized by a gas stream delivered by a ring nozzle. The objectives of this investigation are to achieve a narrow size distribution and low specific gas consumption compared to conventional gas atomization techniques. Both lead to a higher efficiency and low costs. Tin and some alloys have been atomized successfully with this technique. The mass median diameters from different experiments are between 20 and 100 μm. Sieving analysis of the tin powder shows close particle size distributions

  10. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  11. Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding

    Science.gov (United States)

    Beainy, Georges; Cerba, Tiphaine; Bassani, Franck; Martin, Mickaël; Baron, Thierry; Barnes, Jean-Paul

    2018-05-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a well-adapted analytical method for the chemical characterization of concentration profiles in layered or multilayered materials. However, under ion beam bombardment, initially smooth material surface becomes morphologically unstable. This leads to abnormal secondary ion yields and depth profile distortions. In this contribution, we explore the surface topography and roughening evolution induced by O2+ ion bombardment on GaSb/InAs multilayers. We demonstrate the formation of nanodots and ripples patterning according to the ion beam energy. Since the latter are undesirable for ToF-SIMS analysis, we managed to totally stop their growth by using simultaneously sample rotation and oxygen flooding. This unprecedented coupling between these two latter mechanisms leads to a significant enhancement in depth profiles resolution.

  12. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deves, Guillaume [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)]. E-mail: deves@cenbg.in2p3.fr; Cohen-Bouhacina, Touria [Centre de Physique Moleculaire Optique et Hertzienne, Universite de Bordeaux 1, 351, cours de la Liberation, F33405 Talence cedex (France); Ortega, Richard [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)

    2004-10-08

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm)

  13. Erosion of Be and deposition of C and O due to bombardment with C{sup +} and CO{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, W.; Goldstrass, P.; Linsmeier, Ch. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1998-01-01

    The bombardment of Be with 3 and 5 keV C{sup +} and CO{sup +} at normal incidence is investigated experimentally and by computer simulation with the program TRIDYN. The deposited amount of C and O is determined experimentally and found in good agreement with calculated data for C bombardment. Chemical erosion dominates at higher fluences for CO{sup +} bombardment. Calculations are then used to determine the sputter yield of Be at steady state conditions as a function of the plasma edge electron temperature for two C impurity concentrations in the incident D flux, typical for fusion plasmas. The fluence to reach steady state conditions is also investigated. (author)

  14. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  15. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    Energy Technology Data Exchange (ETDEWEB)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-05-06

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  16. Friction and wear measurements of sputtered MoS/sub x/ films amorphized by ion bombardment

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Chevallier, J.; Soerensen, G.; Straede, C.A.

    1988-01-01

    The present study presents an experimental evidence for amorphization of rf sputtered MoS/sub x/ films by ion bombardment. Even at low doses (3 x 10 15 ions/cm 2 ) of 400 keV argon ions a complete amorphization was confirmed by x-ray diffraction analysis and transmission electron microscopy. As a result of the ion bombardment the film density increased 100% to almost the bulk value for MoS 2 . The friction coefficient for ion beam amorphized MoS/sub x/ was measured to be 0.04 in agreement with the values reported for crystalline films but disagreeing considerably with the friction coefficient of 0.4 previously reported for amorphous films

  17. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  18. Composition and structure of ion-bombardment-induced growth cones on InP

    International Nuclear Information System (INIS)

    Malherbe, J.B.; Lakner, H.; Gries, W.H.

    1991-01-01

    The previously reported effect of low-energy (several keV) ion bombardment on the surface topography of InP was investigated by scanning transmission electron microscopy. Convergent beam electron diffraction patterns of the surface growth 'cones' induced by argon ion bombardment of (100) InP between 7 and 10 keV proved the cones to consist of crystalline InP (and not metallic indium, as has sometimes been claimed). The investigation showed that the irradiated surface region is not rendered completely amorphous but that it recrystallizes from the crystalline/amorphous interface in a columnar growth pattern, often terminating in growth cones protruding above the surface. Weak beam investigations revealed that the overwhelming majority of the cones have the orientation of the substrate. These phenomena were observed at all dose densities from 7 x 10 15 to 2 x 10 17 cm -2 . (author)

  19. Study on the growth of aligned carbon nanotubes controlled by ion bombardment

    International Nuclear Information System (INIS)

    Wang Biben; Zhang Bing; Zheng Kun; Hao Wei; Wang Wanlu; Liao Kejun

    2004-01-01

    Aligned carbon nanotubes were prepared by plasma-enhanced hot filament chemical vapor deposition using CH 4 , H 2 and NH 3 as reaction gases. It was investigated how different negative bias affects the growth of aligned carbon nanotubes. The results indicate that the average diameter of the aligned carbon nanotubes is reduced and the average length of the aligned carbon nanotubes is increased with increasing negative bias. Because of the occurrence of glow discharge, a cathode sheath forms near the substrate surface, and a number of ions are produced in it, and a very strong electrical field builds up near the substrate surface. Under the effect of the field, the strong bombardment of ions on the substrate surface will influence the growth of aligned carbon nanotubes. Combined with related theories, authors have analyzed and discussed the ion bombardment effects on the growth of the aligned carbon nanotudes

  20. The effect of incidence angle on ion bombardment induced surface topography development on single crystal copper

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.; Lewis, G.W.; Whitton, J.L.

    1982-01-01

    The fluence dependence of development of microscopic surface features, particularly etch pits, during 9 keV Ar + ion bombardment of (11,3,1) oriented Cu single crystals has been studied employing quasi-dynamic irradiation and observation techniques in a scanning electron microscope-accelerator system. 9 keV ions are observed not to produce crystallographic pyramids under all irradiation conditions for this surface, a very different result from our earlier studies with higher energy ions. The bombardment does elaborate etch pits however, the habits and growth kinetics of which depend upon both polar and azimuthal angles of ion incidence to the surface. The results are explained in terms of differential erosion of crystal planes modified by the presence of pre-existing and irradiation induces extended defects. (orig.)

  1. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  2. Peculiarities of phase transformations in molybdenum-silicon system under ion bombardment

    International Nuclear Information System (INIS)

    Gurskij, L.I.; Zelenin, V.A.; Bobchenok, Yu.L.

    1984-01-01

    The problems of effect of ion bombardment and thermal treatment on the mechanisms of formation of transition layers and structural transformations in the molybdenum-silicon system, where the interface is subjected to ion bombardment through a film of molybdenum, are considered. The method of electron diffraction analysis has been applied to establish that at the molybdenum-silicon interface a transitional region appears during irradiation which has a semiamorphous structure at the doses up to 8x10 14 ion/cm 2 , while at higher doses it transforms into polycrystalline intermediate layer which consists of MoB and the compound close in composition to MoSisub(0.65). Due to thermal treatment for 60873 K a large-grain phase (Mo 3 Si+MoSi 2 ) appears in the transition layer below which a large-grain silicon layer is placed

  3. Investigation of the surface morphology of ion-bombarded biocompatible materials with a SEM and profilograph

    International Nuclear Information System (INIS)

    Kowalski, Z.W.

    1984-01-01

    The surface morphology (topography and roughness) is a very important factor which affects the response of biological tissue to an implant material. The effect of an incident ion beam on surface morphology of various biocompatible materials was studied. All materials were bombarded by Ar + ions at an applied voltage of 7 kV at various incident angles from 0 to 1.4 rad (0 to 80 deg) and at a beam current up to 0.1 mA. The surface topographies of ion-bombarded samples were examined with a Japan Electron Optics Laboratory, model JSM-35, scanning electron microscope. The roughness of the surface was calculated from the shape of a surface profile, which was recorded by a profilograph, the ME 10 (supplied by VEB Carl Zeiss, Jena). (author)

  4. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  5. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  6. Effects of incident cluster size, substrate temperature, and incident energy on bombardment of Ni clusters onto Cu (0 0 1) surface studied using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung

    2012-01-01

    The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.

  7. HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment

    Science.gov (United States)

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. Jay

    2018-04-01

    Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical by-products, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth and use models developed from existing studies to predict the corresponding ejecta properties. Using multiphase flow methods and finite-rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use Direct Simulation Monte Carlo to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1-D atmospheric turbulent diffusion to find the time accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization that is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least one impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, Late Heavy Bombardment impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.

  8. Phenomenology of the plastic flow of amorphous solids induced by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Klaumuenzer, S.; Benyagoub, A.

    1991-01-01

    Amorphous solids exhibit at temperatures far below the glass transition plastic flow when bombarded with fast heavy ions (kinetic energy ∼1 MeV/u). The dimensions perpendicular to the ion beam grow whereas the sample dimension parallel to the ion beam shrinks. The strain tensor describing phenomenologically these dimensional changes is derived from symmetry considerations and compared with experiment. Particular attention is devoted to angular changes, which have not been discussed in this context so far

  9. Production of the Ne Auger electrons by Ne/sup +/ bombardment of Mg and Al surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, J; Pepper, S V [National Aeronautics and Space Administration, Cleveland, Ohio (USA). Lewis Research Center

    1976-07-01

    The authors have bombarded Mg and Al surfaces with Ne/sup +/ ions and in this letter present evidence for the production of an inner shell vacancy in the Ne by the asymmetric Ne-Mg and Ne-Al collision. In addition, autoionization states of neutral Ne have been observed. These states are to be distinguished from the more usual case in Auger electron spectroscopy of de-excitation of an ion with a core vacancy.

  10. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  11. Effects of uranium bombardment by 20-40 KeV argon ions, Annex 2

    International Nuclear Information System (INIS)

    Nenadovic, T.; Jurela, Z.

    1966-01-01

    This paper shows the results of argon ions interaction with the polycrystal natural uranium. Thin foil of uranium about 200 μ was bombarded by 20-40 KeV argon ions. Coefficients of cathode scattering δ and secondary electrons emission γ were measured, during the process A + →U. The foil was then studied by transmission method and method of single step replica using an electron microscope [sr

  12. Foil analysis of 1.5-GeV proton bombardment of a mercury target

    CERN Document Server

    Charlton, L A; Glasgow, D C; Gabriel, T A

    1999-01-01

    The number of reactant nuclei in a series of foils surrounding a container of mercury that has been bombarded by 1.5-GeV protons is calculated and compared with experimental measurements. This procedure is done to aid in the validation of the mercury cross sections used in the design studies of the Spallation Neutron Source (SNS). It is found that the calculations match the measurements to within the uncertainties inherent in the analysis.

  13. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    Abstract. Unlike the previous theoretical results based on standard quantum mechanics that established the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly elliptical.

  14. Spatial variation in void volume during charged particle bombardment: the effects of injected interstitials

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.; Yoo, M.H.

    1979-01-01

    Experimental observations of the void volume at several depths along the range of 4 MeV Ni ions in 316 stainless steel are reported. The specimens were first preconditioned by neutron irradiation at temperatures of 450 and 584 0 C to fluences of approximately 8 x 10 26 n/m -2 . The void volume after ion bombardment to 60 dpa at the peak damage depth is significantly lower at the peak damage depth than in the region between that and the free surface. The ratio of the step height to void volume at the depth of peak energy deposition between regions masked from and exposed to the beam is strongly dependent on bombardment temperature. The reduction of void volume near the peak damage depth is larger for the 584 0 C than for the 450 0 C preconditioned material. These observations are consistent with recent theoretical results which account for the injection of the bombarding ions as self-interstitials. The theory necessary to understand the effect is developed

  15. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    Science.gov (United States)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  16. Deuterium pumping and erosion behavior of selected graphite materials under high flux plasma bombardment in PISCES

    International Nuclear Information System (INIS)

    Hirooka, Y.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.

    1988-06-01

    Deuterium plasma recycling and chemical erosion behavior of selected graphite materials have been investigated using the PISCES-A facility. These materials include: Pyro-graphite; 2D-graphite weave; 4D-graphite weave; and POCO-graphite. Deuterium plasma bombardment conditions are: fluxes around 7 /times/ 10 17 ions s/sup /minus/1/cm/sup /minus/2/; exposure time in the range from 10 to 100 s; bombarding energy of 300 eV; and graphite temperatures between 20 and 120/degree/C. To reduce deuterium plasma recycling, several approaches have been investigated. Erosion due to high-fluence helium plasma conditioning significantly increases the surface porosity of POCO-graphite and 4D-graphite weave whereas little change for 2D-graphite weave and Pyro-graphite. The increased pore openings and refreshed in-pore surface sites are found to reduce the deuterium plasma recycling and chemical erosion rates at transient stages. The steady state recycling rates for these graphite materials can be also correlated to the surface porosity. Surface topographical modification by machined-grooves noticeably reduces the steady state deuterium recycling rate and the impurity emission from the surface. These surface topography effects are attributed to co-deposition of remitted deuterium, chemically sputtered hydrocarbon and physically sputtered carbon under deuterium plasma bombardment. The co-deposited film is found to have a characteristic surface morphology with dendritic microstructures. 18 ref., 4 figs., 1 tab

  17. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    International Nuclear Information System (INIS)

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  18. Structural and magnetic properties of ion-beam bombarded Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.W.; Guo, J.Y.; Lin, S.R.; Ouyang, H. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402 (China); Tsai, C.J. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300 (China); Van Lierop, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Phuoc, N.N.; Suzuki, T. [Information Storage Materials Laboratory, Toyota Technological Institute, Nagoya 468-8511 (Japan)

    2007-12-15

    A series of [Pt(2 nm)/Co(2 nm)]{sub 10}/Pt(30 nm) multilayers were deposited by using an ion-beam technique. X-ray diffraction and transmission electron microscopy results have shown that as-deposited samples consist of h.c.p. Co and f.c.c. Pt phases. Disordered CoPt{sub 3} phases were developed with increasing End-Hall voltage (V{sub EH}) that induces greater ion-beam bombardment energy during deposition. This indicates that intermixing of Co and Pt increases with ion-beam bombardment. The coercivities (ranging from 100 Oe to 300 Oe) of Co/Pt multilayers decreased with increasing V{sub EH}. After annealing, the formation of CoPt{sub 3} was observed in these ion-beam bombarded samples, resulting in lower coercivities (H{sub c}{proportional_to} 50 Oe). The depressed transition temperature of CoPt{sub 3} for films deposited with the largest V{sub EH} was attributed to distorted CoPt{sub 3} structures that appeared with annealing. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  20. Influence of helium-ion bombardment on the surface properties of pure and ammonia-adsorbed water thin films

    International Nuclear Information System (INIS)

    Kondo, M.; Shibata, T.; Kawanowa, H.; Gotoh, Y.; Souda, R.

    2005-01-01

    The influence of the ion bombardment on the surface properties of water-ice films has been investigated. The films are irradiated with 1.5 keV He + ions and analyzed sequentially on the basis of time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In order to minimize any temperature-induced effects, the measurements were made at 15 K. The damage of the films, as estimated from the H/D exchange between NH 3 and the D 2 O ice and the intermixing of NH 3 with the H 2 18 O ice, is recognized at the fluence above 2 x 10 14 ions/cm 2 . The sputtering yield of the D 2 O ice is determined as 0.9 ± 0.2 molecules per incoming He + ion. The temperature-programmed TOF-SIMS analysis of the water-ice films has been completed within the fluence of 5.8 x 10 12 ions/cm 2 , so that no appreciable damage of the film should be induced during the measurement

  1. Galvanomagnetic properties of atomic-disordered Sr2RuO4 single crystals

    International Nuclear Information System (INIS)

    Kar'kin, A.E.; Naumov, S.V.; Goshchitskij, V.N.; Balbashov, A.M.

    2005-01-01

    The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr 2 RuO 4 single crystals has been experimentally studied in a broad range of temperatures (1.7-380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρ a ) and that along the c axis (ρ c ), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (H || a and H || c), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρ a (T) and ρ c (T) curves obtained for the initial and radiation-disordered samples can be described in the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses and predominantly electron-electron scattering, the second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures [ru

  2. Doping monolayer graphene with single atom substitutions

    KAUST Repository

    Wang, Hongtao

    2012-01-11

    Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope. © 2011 American Chemical Society.

  3. A new atomic model

    International Nuclear Information System (INIS)

    Petrescu, Florian Ion

    2012-01-01

    The movement of an electron around the atomic nucleus has today a great importance in many engineering fields. Electronics, aeronautics, micro and nanotechnology, electrical engineering, optics, lasers, nuclear power, computing, equipment and automation, telecommunications, genetic engineering, bioengineering, special processing, modern welding, robotics, energy and electromagnetic wave field is today only a few of the many applications of electronic engineering. This book presents, shortly, a new and original relation (20 and 20') who determines the radius with that, the electron is running around the nucleus of an atom. One utilizes, two times the Lorenz relation, the Niels Bohr generalized equation, and a mass relation, which was deduced from the kinematics energy relation written in two modes: classical and Coulombian. Equalizing the mass relation with Lorenz relation one obtains a form which is a relation between the squared electron speed (v 2 ) and the radius (r). The second relation between v 2 and r was obtained by equalizing the mass of Bohr equation and the mass of Lorenz relation. For a Bohr energetically level (n=a constant value), one determines now two energetically below levels, which form an electronic layer. The author realizes by this a new atomic model, or a new quantum theory, which explains the existence of electron-clouds without spin.Writing the kinematics energy relation in two modes, classical and Coulombian one determines a relation, from which explicitely the mass of the electron is determined.

  4. A new atomic model

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, Florian Ion

    2012-07-01

    The movement of an electron around the atomic nucleus has today a great importance in many engineering fields. Electronics, aeronautics, micro and nanotechnology, electrical engineering, optics, lasers, nuclear power, computing, equipment and automation, telecommunications, genetic engineering, bioengineering, special processing, modern welding, robotics, energy and electromagnetic wave field is today only a few of the many applications of electronic engineering. This book presents, shortly, a new and original relation (20 and 20') who determines the radius with that, the electron is running around the nucleus of an atom. One utilizes, two times the Lorenz relation, the Niels Bohr generalized equation, and a mass relation, which was deduced from the kinematics energy relation written in two modes: classical and Coulombian. Equalizing the mass relation with Lorenz relation one obtains a form which is a relation between the squared electron speed (v{sup 2}) and the radius (r). The second relation between v{sup 2} and r was obtained by equalizing the mass of Bohr equation and the mass of Lorenz relation. For a Bohr energetically level (n=a constant value), one determines now two energetically below levels, which form an electronic layer. The author realizes by this a new atomic model, or a new quantum theory, which explains the existence of electron-clouds without spin.Writing the kinematics energy relation in two modes, classical and Coulombian one determines a relation, from which explicitely the mass of the electron is determined.

  5. THE ATOMIC WEIGHT OF ANTIMONY

    Institute of Scientific and Technical Information of China (English)

    张青莲; 钱秋宇; 赵墨田

    1989-01-01

    With enriched antimony isotopes of 99.224 atom% 121Sb and 99.528 atom% 123Sb, twotracer solutions were prepared, whose antimony content was ascertained by the isotopicdilution analysis utilizing an accurately assayed laboratory standard. Mass spectrometricmeasurements were made on a Finnigan MAT- 261 instrument to find the ratio of masses121 and 123. Five synthetic mixtures formed from the tracers served to determine thecorrection factor of mass discrimination. The isotopic abundances thus found for the anti-mony in the mineral stibnite together with the known nuclidic masses yield an accurateatomic weight of antimony as 121 .7575± 0 .0009.

  6. The properties of atomic nuclei at the boundary of proton instability, discussed at the example of very neutron deficient isotopes in the mass range 100-150

    International Nuclear Information System (INIS)

    Roeckl, E.

    1981-10-01

    In this paper it shall be tried to strike the balance after the first years of experimenting at the on-line mass separator of the GSI Darmstadt and to present the main results of the study of very neutron deficient isotopes in the mass range 90-150 as well as the resulting questions for further experiments. First some foundations concerning the properties of neutron deficient nuclei and the measuring method are explained. The results and their interpretation are discussed using examples for the alpha decay, the beta decay, the mass-energy-area, and the proton-drip line. Finally the obtained results are summarized, and an outlook to further studies of nuclear properties far from beta stability is given. (orig.) [de

  7. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  8. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  9. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  10. Rapid determination of {sup 135}Cs and precise {sup 135}Cs/{sup 137}Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guosheng [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049 (China); Tazoe, Hirofumi [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan); Yamada, Masatoshi, E-mail: myamada@hirosaki-u.ac.jp [Department of Radiation Chemistry, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 (Japan)

    2016-02-18

    For source identification, measurement of {sup 135}Cs/{sup 137}Cs atomic ratio not only provides information apart from the detection of {sup 134}Cs and {sup 137}Cs, but it can also overcome the application limit that measurement of the {sup 134}Cs/{sup 137}Cs ratio has due to the short half-life of {sup 134}Cs (2.06 y). With the recent advancement of ICP-MS, it is necessary to improve the corresponding separation method for rapid and precise {sup 135}Cs/{sup 137}Cs atomic ratio analysis. A novel separation and purification technique was developed for the new generation of triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS). The simple chemical separation, incorporating ammonium molybdophosphate selective adsorption of Cs and subsequent single cation-exchange chromatography, removes the majority of isobaric and polyatomic interference elements. Subsequently, the ICP-MS/MS removes residual interference elements and eliminates the peak tailing effect of stable {sup 133}Cs, at m/z 134, 135, and 137. The developed analytical method was successfully applied to measure {sup 135}Cs/{sup 137}Cs atomic ratios and {sup 135}Cs activities in environmental samples (soil and sediment) for radiocesium source identification. - Highlights: • A simple {sup 135}Cs/{sup 137}Cs analytical method was developed. • The separation procedure was based on AMP adsorption and one column chromatography. • {sup 135}Cs/{sup 137}Cs was measured by ICP-MS/MS. • Decontamination factors for Ba, Mo, Sb, and Sn were improved. • {sup 135}Cs/{sup 137}Cs atomic ratios of 0.341–0.351 were found in Japanese soil samples.

  11. Internal reflection of interstitial atoms from close-packed tungsten faces

    International Nuclear Information System (INIS)

    Dranova, Zh.I.; Mikhajlovskij, I.M.

    1981-01-01

    Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru

  12. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD.

    Science.gov (United States)

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-24

    In order to confirm the key role of Ar + ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar + ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar + ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar + ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar + ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar + ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar + ion state. As for vertically oriented few-layer graphene (VFG), Ar + ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar + ion bombardment, and these special NCMs are promising in many fields.

  13. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD

    Science.gov (United States)

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-01

    In order to confirm the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar+ ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar+ ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar+ ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar+ ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar+ ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar+ ion state. As for vertically oriented few-layer graphene (VFG), Ar+ ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar+ ion bombardment, and these special NCMs are promising in many fields.

  14. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  15. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    Science.gov (United States)

    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass ...

  16. L-subshell ionization studies in Au and Bi for 19F and 28Si large-ion bombardment

    International Nuclear Information System (INIS)

    Padhi, H.C.; Dhal, B.B.; Nanal, V.; Prasad, K.G.; Tandon, P.N.; Trautmann, D.

    1996-01-01

    L x-ray production and subshell ionization cross sections of Au and Bi have been measured for the bombardment of 19 F and 28 Si ions in the energy range 30 endash 57 MeV and 36 endash 84 MeV, respectively. Comparison of the Lα x-ray production cross sections of Au with the earlier data by Malhi and Gray [Phys. Rev. A 44, 7199 (1991)] shows reasonable agreement for 19 F impact and their data are consistently higher for 28 Si at all energies. The measured Lα line energy shows a shift towards higher energy, which appears to be proportional to the square of the projectile atomic number at all impact energies. This shift suggests the presence of multiple ionization in the L and M shells with a simultaneous production of four M holes in Au at the impact energy of 3 MeVu -1 of 28 Si. The L-subshell ionization cross sections obtained from the measured x-ray production cross sections have been compared with the semiclassical approximation and perturbed stationary state theory with energy loss, Coulomb deflection, and relativistic correction for the electron motion calculations, which show large deviations for the L 1 subshell. The L 2 - and L 3 -subshell ionization cross sections are underestimated by both the theories by a factor of 1.2 endash 4.0 for 28 Si impact whereas for the 19 F case there is reasonable agreement for the L 3 cross section but the L 2 cross section is underestimated by 20 endash 30%. copyright 1996 The American Physical Society

  17. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  18. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    NARCIS (Netherlands)

    Dolgov, A.; Lopaev, D.; Lee, Christopher James; Zoethout, E.; Medvedev, Viacheslav; Yakushev, O.; Bijkerk, Frederik

    2015-01-01

    Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that

  19. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  20. Measurement of beta decay energies of short-lived neutron rich atomic nuclei in the mass range 101 ≤ A ≤ 106 and A=109

    International Nuclear Information System (INIS)

    Weikard, H.

    1986-01-01

    At the mass separator LOHENGRIN of the Laue-Langevin institute in Grenoble for 18 nuclei (Zr, Nb, Mo, Tc, Ru, and Rh nuclides) with masses 101 ≤ A ≤ 106 and A=109 Q β values were determined from measurement of beta decay energies. From the study of the isomerism in 102 Nb resulted that the energetic distance of the two isomers is certainly smaller than 200 keV, that it is probably even smaller than 100 keV. The decay scheme for 102 Nb could be extended by one level which is depopulated by two gamma lines. For the decay of the 109 Ru the approach of a decay scheme is given: Five new levels are proposed. The diagrams of the two-particle separation energies which could be extended in this thesis confirm the continuation of the deformation in the considered region. A deformed subshell at N=62 however cannot yet be clearly detected. (orig./HSI) [de

  1. Spitzer Evidence for a Late Heavy Bombardment and the Formation of Urelites in {eta}Corvi at Approximately 1 Gyr

    Science.gov (United States)

    Lisse, C. M.; Wyatt, M. C.; Chen, C. H.; Morlok, A.; Watson, D. M.; Manj, P.; Sheehan, P.; Currie, T. M.; Thebault, P.; Sitko, M. L.

    2011-01-01

    We have analyzed Spitzer and NASA/IRTF 2 - 35 micrometer spectra of the warm, 350 K circumstellar dust around the nearby MS star eta Corvi (F2V, 1.4 plus or minus 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at 3 AU from the central star, in the system's Terrestrial Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high temperature carbonaceous phases. At least 9 x 10(exp 18) kg of 0.1 - 100 micrometer warm dust is present in a collisional equilibrium distribution with dn/da a(exp -3.5), the equivalent of a 130 km radius KBO of 1.0 grams per cubic centimeter density and similar to recent estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large amount of early primitive material in the first Myrs of the system's lifetime and preserved it in deep freeze at approximately 150 AU. At approximately 1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 kilometers per second with a rocky planetary body of mass less than or equal to M(sub Earth at approximately 3 AU, delivering large amounts of water (greater than 0.1 % of M(sub Earth's Oceans)) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  2. SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN {eta} CORVI At {approx}1 Gyr

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morlok, A. [Department of Earth and Planetary Sciences, The Open University, Milton-Keynes (United Kingdom); Watson, D. M.; Manoj, P.; Sheehan, P. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Currie, T. M. [NASA-GSFC, Code 667, Greenbelt, MD 20771 (United States); Thebault, P. [Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Sitko, M. L., E-mail: carey.lisse@jhuapl.edu, E-mail: wyatt@ast.cam.ac.uk, E-mail: cchen@stsci.edu, E-mail: a.morlok@open.ac.uk, E-mail: dmw@pas.rochester.edu, E-mail: manoj@pas.rochester.edu, E-mail: psheeha2@mail.rochester.edu, E-mail: thayne.m.currie@nasa.gov, E-mail: philippe.thebault@obspm.fr, E-mail: sitko@spacescience.org [Space Science Institute, 475 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2012-03-10

    We have analyzed Spitzer and NASA/IRTF 2-35 {mu}m spectra of the warm, {approx}350 K circumstellar dust around the nearby MS star {eta} Corvi (F2V, 1.4 {+-} 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at {approx}3 AU from the central star, in the system's terrestrial habitability zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high-temperature carbonaceous phases. At least 9 Multiplication-Sign 10{sup 18} kg of 0.1-100 {mu}m warm dust is present in a collisional equilibrium distribution with dn/da {approx} a{sup -3.5}, the equivalent of a 130 km radius Kuiper Belt object (KBO) of 1.0 g cm{sup 3} density and similar to recent estimates of the mass delivered to the Earth at 0.6-0.8 Gyr during the late-heavy bombardment. We conclude that the parent body was a Kuiper Belt body or bodies which captured a large amount of early primitive material in the first megayears of the system's lifetime and preserved it in deep freeze at {approx}150 AU. At {approx}1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km s{sup -1} with a rocky planetary body of mass {<=}M{sub Earth} at {approx}3 AU, delivering large amounts of water (>0.1% of M{sub Earth'sOceans}) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  3. SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN η CORVI At ∼1 Gyr

    International Nuclear Information System (INIS)

    Lisse, C. M.; Wyatt, M. C.; Chen, C. H.; Morlok, A.; Watson, D. M.; Manoj, P.; Sheehan, P.; Currie, T. M.; Thebault, P.; Sitko, M. L.

    2012-01-01

    We have analyzed Spitzer and NASA/IRTF 2-35 μm spectra of the warm, ∼350 K circumstellar dust around the nearby MS star η Corvi (F2V, 1.4 ± 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at ∼3 AU from the central star, in the system's terrestrial habitability zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high-temperature carbonaceous phases. At least 9 × 10 18 kg of 0.1-100 μm warm dust is present in a collisional equilibrium distribution with dn/da ∼ a –3.5 , the equivalent of a 130 km radius Kuiper Belt object (KBO) of 1.0 g cm 3 density and similar to recent estimates of the mass delivered to the Earth at 0.6-0.8 Gyr during the late-heavy bombardment. We conclude that the parent body was a Kuiper Belt body or bodies which captured a large amount of early primitive material in the first megayears of the system's lifetime and preserved it in deep freeze at ∼150 AU. At ∼1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km s –1 with a rocky planetary body of mass ≤M Earth at ∼3 AU, delivering large amounts of water (>0.1% of M Earth'sOceans ) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  4. A comparative study of carbocyanine dyes measured with TOF-SIMS and other mass spectrometric techniques

    International Nuclear Information System (INIS)

    Adriaensen, L.; Vangaever, F.; Gijbels, R.

    2004-01-01

    A series of cationic, zwitterionic and anionic carbocyanine dyes have been measured with TOF-SIMS under Ga + bombardment. In contrast to the cationic dyes, which give very intense molecular ion and characteristic fragment signals in the positive mode, the anionic dyes produce only a few fragment signals of low intensity. Even in the negative mode no molecular ions of the anionic dyes are seen in the recorded spectra. Actually, none of the studied molecules produces negative SIMS spectra containing molecular information. A comparative study was made between TOF-SIMS and other mass spectrometric techniques, namely, fast atom bombardment (FAB), electro spray ionization (ESI) and matrix assisted laser desorption ionization (MALDI). The measurements show that MALDI, ESI as well as FAB all give rise to spectra containing molecular ion signals, either in the positive, in the negative or in both modes. Unlike with TOF-SIMS, this observation also applies to the anionic dyes. Characteristic fragments of the dyes are present in all the recorded spectra. However, TOF-SIMS appears to induce more fragment ions in comparison with the other techniques. ESI, for instance, produces hardly any molecular fragments. Finally, the kind of fragment ions recorded depends upon the technique used, though some signals are produced by various techniques. For these carbocyanine dyes there is no clear correlation between the mass spectra obtained with TOF-SIMS and spectra obtained with the other techniques. This points to different desorption/ionization mechanisms, and makes it difficult, in practice, to make predictions on the feasibility of TOF-SIMS, starting from results of the other MS techniques

  5. Atomization Performance Predictions of Gas-Centered Swirl-Coaxial Injectors

    National Research Council Canada - National Science Library

    Lightfoot, Malissa D; Danczyk, Stephen A; Talley, Douglas G

    2007-01-01

    .... The theory relates the mass of film lost via atomization to the mass of liquid introduced into the atomizer to predict atomization efficiency and offers some estimations of primary droplet diameter...

  6. Considerations about projectile and target X-rays induced during heavy ion bombardment

    Science.gov (United States)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  7. Pionic atom as a probe of origin of the Hadron Mass. Quantitative evaluation of the chiral condensate in a nuclear medium

    International Nuclear Information System (INIS)

    Suzuki, Ken; Itahashi, Kenta; Hirenzaki, Satoru

    2005-01-01

    Spontaneous breaking of chiral symmetry is believed to be the mechanism which endows nucleus their large masses. The order parameter of the symmetry breaking is the chiral condensate, whose magnitude is predicted to decrease linearly as the nuclear density is increased. The reduction of quark condensate was quantitatively studied from recent precise measurement of deeply bound pionic 1s states on three tin (Sn) isotopes. We made use of the Gell-Mann-Oakes-Renner relation which connects the magnitude of quark-codensate to a pion decay constant, and then used the Tomozawa-Weinberg relation which relates the pion decay constant to an isovector strength of the pion-nucleus potential. The potential strength was determined by fitting the measured pionic 1s-state binding energies. The result shows that the quark-condensate strength is reduced by about 35% at normal nuclear density, compared with the ''vacuum'' value obtained from pionic hydrogen X-ray measurements. This is the first quantitative deduction of the quark condensate modification at finite nuclear density, and is an important step towards understanding the origin of hadron masses. (author)

  8. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  9. Search for superheavy elements in the bombardment of 248Cm with 48Ca

    International Nuclear Information System (INIS)

    Hulet, E.K.; Lougheed, R.W.; Wild, J.F.; Landrum, J.H.; Stevenson, P.C.; Ghiorso, A.; Nitschke, J.M.; Otto, R.J.; Morrissey, D.J.; Baisden, P.A.; Gavin, B.F.; Lee, D.; Silva, R.J.; Fowler, M.M.; Seaborg, G.T.

    1977-01-01

    We have searched for superheavy elements 110 to 116 with half-lives between 10 4 and 10 8 s in fractions chemically separated after each of a series of bombardments of 248 Cm made with 267-MeV 48 Ca ions. After 6 months of α and spontaneous-fission counting, our results provide no persuasive evidence for the presence of super-heavy elements. The most plausible explanation for not finding the superheavy elements is that they have either short half-lives or very small formation cross sections

  10. Optical radiation emitted by a silver surface bombarded by low-energy electrons

    International Nuclear Information System (INIS)

    Miserey, F.; Lebon, P.; Septier, A.; Trehin, F.; Beaugrand, C.

    1975-01-01

    Thick silver targets are obtained on flat glass discs by evaporation in a UHV cell (p -10 torr) and their optical coefficients measured by ellipsometry. A field-emission electron gun bombards a limited region of the target, corresponding to the entry pupil of a light spectrometer. Radiation emitted in the domain 250-600nm is analyzed for both normal and parallel polarizations. Spectral distributions of photons are obtained by using a very sensitive counting device including a multi channel analyzer. First experimental results concerning optical radiation generated by 6keV electrons are reported and compared to Transition Radiation and Bremsstrahlung theoretical spectra [fr

  11. Elastic scattering, inelastic scattering, and transfer reactions induced by 12C bombardment of 12C

    International Nuclear Information System (INIS)

    Stokstad, R.G.; Wieland, R.M.; Fulmer, C.B.; Hensley, D.C.; Raman, S.; Snell, A.H.; Stelson, P.H.

    1977-06-01

    Graphs and tables of differential cross sections are presented for the elastic scattering of 12 C by 12 C, the single excitation (Q = -4.43 MeV) and the mutual excitation (Q = -8.86 MeV) for 14 bombarding energies in the range 70.7 less than or equal to E/sub lab/ less than or equal to 126.7 MeV. Differential cross sections for one- and two-nucleon transfer are presented for E/sub lab/ = 93.8 MeV

  12. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    Science.gov (United States)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  13. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    International Nuclear Information System (INIS)

    Tuleta, M.; Gabla, L.; Szkarlat, A.

    2005-01-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  14. Comments on Auger electron production by Ne/sup +/ bombardment of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S V; Ferrante, J [National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center

    1979-09-01

    In this letter, the authors first report rather conclusive experimental evidence showing that the Ne Auger signal is due to asymmetric Ne-metal collisions and not symmetric Ne-Ne collisions. Next it is shown that the Ne Auger signal is in fact observable by Ne/sup +/ bombardment of Si and with signal strength comparable to that of the Si Auger signal for 3 keV incident ion energy. Finally, they comment on some trends in the relative amplitudes of the 21.9 and 25.1 eV Ne Auger signals as a function of incident ion energy and target species.

  15. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Tuleta, M.; Gabla, L. [Jagiellonian Univ., Institute of Physics, Cracow (Poland); Szkarlat, A. [Clinical Children' s Hospital of the Jagiellonian Univ., Medical College, Lab. of Microbiology, Cracow (Poland)

    2005-04-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  16. The search for molecular effects in range corrections: boron determination by proton bombardment

    International Nuclear Information System (INIS)

    Olivier, C.; Peisach, M.

    1985-01-01

    Three different nuclear reactions viz. 10 B(p,αγ) 7 Be, 10 B(p,p,'γ) 10 B, and 11 B(p,p'γ) 11 B were used to analyse 21 pure boron compounds and mixtures of known composition by prompt gamma-ray spectrometry under proton bombardment. Elemental stopping powers were calculated from tables and used to compute the stopping power of the target matrices by Bragg's Law. Apparent discrepancies in the measured yield could point to deviations from Bragg's Law and hence to molecular effects. The maximum value for any molecular effect was found to be < 8,3%

  17. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation

    Science.gov (United States)

    Shamim, M. M.; Scheuer, J. T.; Fetherston, R. P.; Conrad, J. R.

    1991-11-01

    An experimental procedure has been developed to measure electron emission due to energetic ion bombardment during plasma source ion implantation. Spherical targets of copper, stainless steel, graphite, titanium alloy, and aluminum alloy were biased negatively to 20, 30, and 40 kV in argon and nitrogen plasmas. A Langmuir probe was used to detect the propagating sheath edge and a Rogowski transformer was used to measure the current to the target. The measurements of electron emission coefficients compare well with those measured under similar conditions.

  18. Study of ion-bombardment-induced surface topography of silver by stereophotogrammetric method

    International Nuclear Information System (INIS)

    Fayazov, I.M.; Sokolov, V.N.

    1992-01-01

    The ion-bombardment-induced surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The samples were irradiated with 30keV argon ions at fairly high fluences (> 10 17 ions/cm 2 ). The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture is discussed. To analyse the irradiated surfaces covered with cones, the SEM-stereotechnique is proposed. The measurements of the sample section perpendicular to the incidence plane are also carried out. (author)

  19. Angular and energy dependence of ion bombardment of Mo/Si multilayers

    DEFF Research Database (Denmark)

    Voorma, H.J.; Louis, E.; Bijkerk, F.

    1997-01-01

    The process of ion bombardment is investigated for the fabrication of Mo/Si multilayer x-ray mirrors using e-beam evaporation. The ion treatment is applied immediately after deposition of each of the Si layers to smoothen the layers by removing an additional thickness of the Si layer. In this stu......, the angular dependence of the etch yield, obtained from the in situ reflectivity measurements, is investigated in order o determine the optimal ion beam parameters for the production of multilayer mirrors on curved substrates....

  20. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press