WorldWideScience

Sample records for atom bombardment mass

  1. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  2. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  3. ANALYSES OF QUINOLONE ANTIMICROBIALS IN HUMAN PLASMA BY CAPILLARY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY/FAST ATOM BOMBARDMENT MASS SPECTROMETRY

    OpenAIRE

    Hattori, Hideki; Suzuki, Osamu; Seno, Hiroshi; Ishii, Akira; Yamada, Takamichi

    1993-01-01

    Capillary high-performance liquid chromatography (HPLC) was combined with frit fast atom bombardment (FAB)-mass spectrometry (MS) , and a detailed procedure has been established for on-line analysis of ten quinolone antimicrobials in human plasma by the HPLC/FAB-MS. A special column switching device for concentration enabled injection of as large as a 500 μl sample; and the capillary column (0.5 mm i. d.) enabled introduction of its entire effluent to the frit interface of FAB-MS. These condi...

  4. Rapid diagnosis of Zellweger syndrome and infantile Refsum's disease by fast atom bombardment-mass spectrometry of urine bile salts

    International Nuclear Information System (INIS)

    A method is described for the rapid determination of urinary bile salt profiles by fast atom bombardment-mass spectrometry (FAB-MS). Negative ion FAB spectra could be obtained from the equivalent of 10 μl of urine loaded onto the target probe with glycerol as matrix. In samples from infants and children with cholestasis the major peaks were produced by the taurine and glycine conjugates of di-, tri- and tetrahydroxycholanoic acids. In samples from patients with Zellweger syndrome and infantile Refsum's disease, a unique ion at m/z 572 indicated the presence of taurine-conjugated tetrahydroxycholestanoic acid(s). Capillary gas chromatography-mass spectrometry (GC-MS) of the bile acids liberated by alkaline hydrolysis indicated the presence of at least two nuclear-tetrahydroxylated cholestanoic acids, probably the 6α- and 1β-hydroxylated derivatives of 3α, 7α, 12α-trihydroxy-5β-cholestan-26-oic acid. (Auth.)

  5. Observations on the quantitation of the phosphate content of peptides by fast-atom bombardment mass spectrometry.

    Science.gov (United States)

    Poulter, L; Ang, S G; Williams, D H; Cohen, P

    1987-07-29

    Equimolar mixtures of the phosphorylated and dephosphorylated forms of several peptides have been subjected to fast-atom bombardment mass spectrometry (FABMS), to investigate whether the stoichiometry of phosphorylation can be determined from the relative molecular-ion abundances of the phospho and dephospho derivatives. It is concluded that quantitation can be achieved for peptides with large positive or negative hydrophobicity/hydrophilicity indices (delta F values) where addition of a phosphate group does not alter the distribution of the peptide within the matrix significantly. For peptides with small positive or negative delta F values, phosphopeptides tend to be partially suppressed by their dephosphorylated counterparts. Suppression can be partially or totally overcome by conversion of the peptide to a hydrophobic derivative, and by the selection of an appropriate matrix. Alternatively, addition of a very strong acid, perchloric acid, can even reverse the original suppression effect. This last effect is believed to be due to the increased ionic strength in the matrix, which forces a relatively hydrophilic analyte to the matrix surface; and the ability of such a phosphorylated analyte to form a more stable gas-phase cation. PMID:3038197

  6. Relative yields, mass distributions and energy spectra of cluster ions sputtered from niobium under keV atomic and polyatomic gold ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Belykh, S.F. E-mail: serbel@ariel.tashkent.su; Habets, B.; Rasulev, U.Kh.; Samartsev, A.V.; Stroev, L.V.; Veryovkin, I.V

    2000-04-01

    In the present work, the comparative studies of relative yields, mass distributions and kinetic energy spectra of secondary Nb{sub n}{sup +} ions (n=1-16) sputtered from niobium target by atomic and polyatomic Au{sub m}{sup -} projectiles (m=1-3) with the energy E{sub 0}=6-18 keV/atom have been carried out. The strong effect of anomalously high non-additivity of metal sputtering as positive large cluster ions under polyatomic ion bombardment was found. The comparison and discussion of the results obtained for Nb and for Ta are presented.

  7. Bis(monoacylglycero)phosphate from PC12 cells, a phospholipid that can comigrate with phosphatidic acid: molecular species analysis by fast atom bombardment mass spectrometry.

    Science.gov (United States)

    Holbrook, P G; Pannell, L K; Murata, Y; Daly, J W

    1992-05-01

    Phospholipids from pheochromocytoma (PC12) cells were purified by one-dimensional thin-layer chromatography (TLC). Material corresponding in RF to phosphatidic acid (PA) was analyzed by fast atom bombardment mass spectrometry (FAB). The molecular ions of the major constituents corresponded in mass to phosphatidylglycerols (PG), which, however, have a lower RF value. Analysis of the mass spectra demonstrated that this material consists of bis(monoacylglycero)phosphates (BMP, lysobisphosphatidic acid), a structural isomers of PG. Linked scans of individual molecular ions indicate that BMP from PC12 cells is esterified almost exclusively with monounsaturated (16:1 and 18:1) and polyunsaturated (20:4 and 22:6) fatty acids. One of the two major molecular species contains two monounsaturated (18:1/18:1), while the other contains both a monounsaturated (18:1) and a polyunsaturated (22:6) fatty acid ester. FAB in combination with TLC is ideally suited for analysis of molecular species of phospholipids. PMID:1596522

  8. Effect of a new matrix system for low-polar organic compounds in fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    A new matrix system m-NBA-DTDE (1:1) for FABMS of low-polar compounds, such as cholesterol and stearic acid methyl ester, was prepared. The system, i.e., a 1:1 mixture of m-NBA (m-nitrobenzyl alcohol) to DTDE (2,2-dithiodiethanol or 2-hydroxyethyl disulfide), contributed to measuring the positive ion FAB mass spectra of above compounds and morusin permethyl ether, and it brought an effective result on the ion current lifetime and the reproducibility of their spectra. The positive ion FAB mass spectra of these low-polar compounds were compared with the corresponding positive ion EI and CI mass spectra. (author)

  9. Sputtering from spherical Au clusters by energetic atom bombardment

    International Nuclear Information System (INIS)

    Using molecular-dynamics simulation, we study the effect of 100 keV Au atom bombardment of spherical Au clusters (radius R=40 A), containing 15,784 atoms. Results range from projectile transmission with only few atoms sputtered to more or less complete cluster disintegration. During disintegration, besides major fragments of the original cluster, monatomics and a large number of clusters with sizes up to 100 atoms, and even beyond, are created. Angular and energy spectra of sputtered atoms show features of both collisional sputtering and evaporation: particle emission is isotropic with an additional contribution of preferential emission along [1 1 0] directions. Energy spectra show the high-energy E-2 fall-off typical of linear-cascade sputtering plus an additional low-energy thermal component

  10. Cluster ions from keV-energy ion and atom bombardment of frozen gases

    Science.gov (United States)

    David, Donald E.; Magnera, Thomas F.; Tian, Rujiang; Stulik, Dusan; Michl, Josef

    1986-04-01

    A brief survey is given of the mass spectra obtained from frozen gases by bombardment with keV-energy ions and atoms. The internal chemical constitution of the observed secondary cluster ions, which bears no simple relation to the molecular structure of the solid, has been established by observations of collision-induced dissociation, laser-induced dissociation and metastable decay. It has been correlated with the chemical composition of the residual bombarded solid, deduced from spectroscopic observations. These results, as well as preliminary results on sputtering yields for impact of 1-4 keV rare gas ions on solid argon, are compatible with the previously proposed mechanistic model for the formation of the cluster ions based on the flow of supercritical gas from the elastic collision spike region.

  11. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Doležal, Karel; Tarkowski, Petr; Astot, C.; Holub, Jan; Fuksová, K.; Schmülling, T.; Sandberg, G.; Strnad, Miroslav

    2003-01-01

    Roč. 117, č. 4 (2003), s. 579-590. ISSN 0031-9317 R&D Projects: GA ČR GA522/01/0275 Grant ostatní: Volkswagen Stiftung(DE) I/76 865 Institutional research plan: CEZ:AV0Z5038910; CEZ:MSM 153100008 Keywords : 9--D-ribofuranosyl derivatives * Agrobacterium tumefaciens * bombardment-mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 1.767, year: 2003

  12. Anisotropic rearrangement of the substrate atoms during Ar bombardment on Pd(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Pil [Computational Science Center, Interdisciplinary Fusion Technology Division, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Byung-Hyun [Computational Science Center, Interdisciplinary Fusion Technology Division, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Haeri [Computational Science Center, Interdisciplinary Fusion Technology Division, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Center, Interdisciplinary Fusion Technology Division, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Chung, Yong-Chae [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Jikeun [Department of Ophthalmic Optics, Chodang University, Muan 534-701 (Korea, Republic of); Kim, Jae-Sung [Department of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2011-11-01

    Using a three-dimensional molecular dynamics (MD) simulation, we investigated the atomic scale rearrangement that occurs on a Pd(0 0 1) surface after energetic bombardment by Ar at room temperature. High energy Ar bombardment provoked the significant rearrangement of Pd atoms in a ballistic manner with a fourfold symmetric lateral distribution aligned along the <1 1 0> direction. The MD simulation of uniform Ar bombardment at normal incidence on a Pd surface reproduced the experimentally observed fourfold symmetric nano-scale surface structure. The present result supports that the ballistic rearrangement of the substrate atoms plays an important role in the ion induced surface structure evolution.

  13. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  14. Determination of atomic steps at argon ion bombarded Ge(100) surfaces

    International Nuclear Information System (INIS)

    The step atom density has been determined quantitatively on argon ion bombarded Ge(100) surfaces. The density has been derived from half width of LEED spots at characteristic energies. Ar+ bombardment produces random oriented step arrays with various terrace widths on Ge(100) surfaces with an edge atom density up to 40% which decreases on heat treatment. Only the non primitive lattice occurs on Ge(100) faces even after various heat treatments. The measuring and evaluation technique may be used for all kinds of surfaces on single crystals. (Auth.)

  15. Desorption of silver atoms from benzene-covered Ag(1 1 1) by energetic Ar+ bombardment

    International Nuclear Information System (INIS)

    Experiments have been conducted to gain insight into the processes of desorption of neutral species from surfaces covered with organic molecules due to bombardment with keV particles. The system is comprised of benzene molecules adsorbed onto Ag(1 1 1) and bombarded with 8 keV Ar+ ions. Molecular dynamics (MD) simulations of the same system have been performed. Results show that the presence of the benzene alters the yield, the kinetic energy distributions, and the angular distributions of the silver atoms. These changes of the desorption characteristics are the result of collisions between the Ag atoms and the benzene molecules adsorbed to the surface. As more benzene is adsorbed to the surface, the changes to the Ag atom desorption characteristics become more pronounced. The simulations reproduce the modifications to the Ag atom energy and angle distributions

  16. Numerical Investigation Of The Bombardment Of A Graphene Sheet By A Beam Of Carbon Atoms

    Directory of Open Access Journals (Sweden)

    O.V. Khomenko

    2009-01-01

    Full Text Available Classical molecular dynamics simulations of the bombardment of a graphene sheet by a beam of carbon atoms are carried out. Covalent bonds in the irradiated sample are described by the Brenner potential. The approximation of elastic balls interacting with graphene via the Lennard-Jones potential is used for particles in a beam. The influence of the energy and density of irradiating carbon atoms and of the presence of a thermostat on physical processes occurring during the collisions with the sample is investigated. Energy values of the particles in a beam, which are enough for the sample destruction, are defined.

  17. H-atom bombardment of CO2, HCOOH and CH3CHO containing ices

    CERN Document Server

    Bisschop, S E; Van Dishoeck, E F; Linnartz, H

    2007-01-01

    Context: Hydrogenation reactions are expected to be among the most important surface reactions on interstellar ices. However, solid state astrochemical laboratory data on reactions of H-atoms with common interstellar ice constituents are largely lacking. Aims: The goal of our laboratory work is to determine whether and how carbon dioxide (CO2), formic acid (HCOOH) and acetaldehyde (CH3CHO) react with H-atoms in the solid state at low temperatures and to derive reaction rates and production yields. Methods: Pure CO2, HCOOH and CH3CHO interstellar ice analogues are bombarded by H-atoms in an ultra-high vacuum experiment. The ices are monitored by reflection absorption infrared spectroscopy and the reaction products are detected in the gas phase through temperature programmed desorption to determine the destruction and formation yields as well as the corresponding reaction rates. Results: Within the sensitivity of our set-up we conclude that H-atom bombardment of pure CO2 and HCOOH ice does not result in detecta...

  18. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  19. Topographical characterization of Ar-bombarded Si(1 1 1) surfaces by atomic force microscopy

    CERN Document Server

    Niebieskikwiat, D G; Pregliasco, G R; Gayone, J E; Grizzi, O; Sanchez, E A

    2002-01-01

    We used atomic force microscopy to study the topographical changes induced on Si(1 1 1) surfaces by 10-22 keV Ar sup + bombardment. The irradiation was carried on normal to the surface with doses in the 1-60x10 sup 1 sup 6 ions/cm sup 2 range. We observed a first generation of blisters at a critical dose around 3x10 sup 1 sup 6 ions/cm sup 2 , which flakes off at 19x10 sup 1 sup 6 ions/cm sup 2 , and a second generation of smaller blisters between 35 and 45x10 sup 1 sup 6 ions/cm sup 2. Measurements of the mean surface height show that at low irradiation doses the surface inflates because of voids produced by Ar sup + implantation. For doses greater than 20x10 sup 1 sup 6 Ar sup + /cm sup 2 the height decreases linearly because of sputtering, with a slope corresponding to a sputtering yield of 1.4. Finally, we present electron spectra produced during grazing proton bombardment of samples whose topography has been modified by Ar irradiation.

  20. Fast atom bombardment and field desorption mass spectrometry

    International Nuclear Information System (INIS)

    Both FD and FAB have been developed to methods of high sensitivity to bioanalytical applications, which so far has been comparable in most cases, if estimated by the amount of material required in sample preparations for measurement. Unequivocal molecular weight determinations as the primary goal for an unknown compound from biological material are greatly facilitated by comparison of FD and FAB spectra, thus minimizing the risk of mis-information e.g. by molecular-cluster or other artifact ions which have been shown to occur by both techniques, and may be especially a problem in FAB spectra. The differences in the fragmentation behaviour as evident from some studies also suggest that the FAB method may be particularly suited for the analysis of compounds of extreme thermal lability, while FD may be the preferential method in cases where chemical lability and solubility present problems in the matrix preparation for FAB analysis. (orig./EF)

  1. A fast atom bombardment study of the lead isotope ratios in early nineteenth century Niagara Peninsula pottery glazes

    International Nuclear Information System (INIS)

    The application of fast atom bombardment (FAB) mass spectrometry to the determination of lead isotope ratios in nineteenth century pottery glazes from the Niagara Peninsula has been investigated with the aim of determining the source of the lead used in the glazes. Methods of sampling have been compared, including direct analysis of glass chips, analysis of powdered glaze scrapings, analysis of acid extracts of the former, and simple acid leaching of the surface of a piece of pottery. The latter method gave the best results. The FAB data, as obtained on an older mass spectrometer, can distinguish lead from igneous vs. sedimentary deposits, but is not adequate to determine specific mining locations. Although newer FAB instrumentation can narrow this range, the overlap of data from the Niagara Peninsula and England precludes a simple answer to the archeological question as to English vs. Canadian origin of the lead used in the Jordan pottery glazes. However, the data do suggest that the potter used a local source for the lead

  2. Atomic masses 1995. The 1995 atomic mass evaluation

    International Nuclear Information System (INIS)

    The 1995 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment or systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  3. Atomic masses 1993. The 1993 atomic mass evaluation

    International Nuclear Information System (INIS)

    The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  4. Yields and ionization probabilities of sputtered In {sub n} particles under atomic and polyatomic Au {sub m} {sup -} ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Samartsev, A.V. [Physics Department, University of Duisburg-Essen, 47048 Duisburg (Germany); Wucher, A. [Physics Department, University of Duisburg-Essen, 47048 Duisburg (Germany)]. E-mail: wucher@uni-essen.de

    2006-07-30

    The emission of neutral and charged atoms and clusters from a polycrystalline indium surface under bombardment with 5 and 10 keV Au, Au{sub 2}, Au{sub 3} and Au{sub 5} projectiles was investigated. Single photon laser postionization was utilized for the detection of sputtered neutral particles. Secondary ions were detected without the laser under otherwise exactly the same experimental conditions. The relative cluster yields were found to be enhanced under polyatomic projectile bombardment, more so the larger the number of atoms in the sputtered cluster. The ionization probability strongly increases with increasing cluster size, but is essentially independent of the projectile impact energy. At a fixed impact energy, the ionization probability of sputtered monomers was found to decrease with increasing number of constituent gold atoms per projectile, but there was no detectable effect for sputtered dimers and larger clusters.

  5. Atomic relocation in ion-bombarded ultra-thin films analyzed with sub-nm spatial resolution

    International Nuclear Information System (INIS)

    The displacement of atoms in a magnetic trilayer Fe (10 nm)/Cr (0.7 nm)/Fe (10 nm) system by 30 keV Ga+ ion irradiation was studied by 3D Atom Probe Tomography (APT). From APT, the positions of individual Cr and Fe atoms could be located with sub-nm spatial resolution, both before and after ion bombardment. In the pristine specimen the presence of the 0.7-nm Cr layer was identified and individual lattice planes with a distance of ∼0.15 nm were observed which would correspond to the monolayer spacing of the Fe lattice, in agreement with the growth process. Upon irradiation, the Cr layer broadens to ∼1.2 nm at a fluence of 3 × 1014 Ga+/cm2 and to ∼3.4 nm at 3 × 1015 Ga+/cm2. From this broadening the mean squared relocation distance of (Cr) atoms was derived, 〈r2〉 ∼0.4 nm2. Computer simulations indicate that, at a fluence of 3 × 1014 Ga+/cm2, each Cr atom in the intermediate layer is displaced on average once in the collision processes. The distribution of implanted Ga ions appears to exhibit discontinuities at the Fe/Cr interfaces which might be caused by a demixing of Ga at the Cr layer

  6. Ion and electron bombardment-related ion emission during the analysis of diamond using secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    In recent years, the ability to grow single crystal layers of both doped and pure diamonds has improved, and devices for applications in high power electronics and microelectronics are being developed, most of them based on boron doped diamond. In this work, convoluted angular and energy spectra (so-called secondary ion mass spectrometry energy spectra) have been measured for 11B+, 12C+, 16O+, CO+ and CO2+ ions ejected from a single crystal boron doped diamond layer under ultralow energy oxygen and electron beam bombardment. A low energy tail was observed in the 12C+, CO+, and CO2+ signals, corresponding to ions produced in the gas phase. Changing the bombardment conditions, we have identified interaction with the electron beam as the main ionization mechanism. In the case of 12C+ it appears that the gas phase ions are produced by electron stimulated desorption and postionization of surface species created by the oxygen beam. We have detected high signals for CO+ and CO2+ ionized in the gas phase, which supports a mechanism previously suggested to explain the anomalously fast diamond erosion under oxygen ion beam bombardment. We also observe that some species appearing in the mass spectrum are produced by electron stimulated desorption and this needs to be remembered when analyzing these on insulating diamond with charge compensation

  7. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota [Department of Physics, Toho University, Miyama, Funabashi, Chiba 274-8510 (Japan); Kato, Daiji; Murakami, Izumi [National Institute for Fusion Science, Toki, Gifu 509-5292, Japan and Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kenmotsu, Takahiro [Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394 (Japan); Furuya, Kenji [Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Motohashi, Kenji, E-mail: motohashi@toyo.jp [Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan and Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  8. Velocities of the excited atoms sputtered at the ion bombardment of lithium and aluminium

    International Nuclear Information System (INIS)

    The Dopler contours of spectral lines of atoms sputtered at a normal incodence of 4-10 keV K+ ion beams on the Li and Al targets are measured by means of Fabry-Perot interferometer. An explicit form of the dependence of the probability of the Al atoms excitation to the resonance level on the rate is found. It is established that the characteristic velocities of the excited atoms are close to a most probable velocities of one-charge secondary ions and are increased with growing excitation energy. The kinetic energy of primary ions does not practically affect the velocity distribution of the excited atoms. Said results are explained in terms of a break-away mechanism of io-photon emission. It is also shown that an increase of the yield of the excited atoms in the presence of oxygen on the target surface is not related with suppression of the processes of the non-radiation deexcitation

  9. Mass spectrometric identification of C60 fragmentation regimes under energetic Cs+ bombardment

    CERN Document Server

    Zeeshan, Sumaira; Ahmad, Shoaib

    2016-01-01

    Three C60 fragmentation regimes in fullerite bombarded by Cs+ are identified as a function of its energy. C2 is the major species sputtered at all energies. For E(Cs+) < 1 keV C2 emissions dominate. C2 and C1 have highest intensities between 1 and 3 keV with increasing contributions from C3 and C4. Intensities of all fragments maximize around 2 keV. Above 3 keV, fragments densities stabilize. The roles of and the contributions from direct recoils and collision cascades are determined. Maximum direct recoil energy delivered to the C60 fullerite cage is 210 eV at which only C2 emissions occur is identified and an explanation provided. The three fragmentation regimes under continued Cs+ bombardment eventually lead to complete destruction of the C60 cages transforming fullerite into amorphous carbon

  10. Sputtering of indium under polyatomic ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Samartsev, A.V.

    2004-10-01

    The main goal of the present study is the investigation of the sputtering of neutral particles from a metal surface under atomic and polyatomic ion bombardment using secondary neutral time-of-flight mass spectrometry (ToF SNMS). For postionization of neutral species, UV laser irradiation with wavelength 193 nm was utilized. For generation of polyatomic projectiles, a negatives sputter cesium ion source suitable for To F SNMS setup was developed and built. The ion source delivers negatively charged Au{sub m}{sup -} (m=1/5) and AuCs{sub 2} polyatomic ions produced from a gold sputter target bombarded by positive Cs{sup +} ions. Mass separation of primary projectiles in the ion source is performed by a built-in compact Wien filter allowing to separate heavy ions in the energy range of several keV. In the experiment, an indium surface was bombarded by Au{sub m}{sup -} (m=1/5) projectiles with total impact energy of 5 and 10 keV. The obtained mass distributions of sputtered indium species reveal that the partial yields of sputtered clusters increase under polyatomic ion bombardment. It is shown that the enhancement in total sputtering yield per constituent atom of the projectile ion is non-additively enhanced in the case of diatomic ion bombardment in comparison with monoatomic projectile ions impinging at the same velocity. The enhancement of partial yields observed for sputtered clusters is found to increase with increasing cluster size, reaching a factor fo several ten for the largest detected cluster. Apart from sputtering yields, kinetic energy distributions (KED) of sputtered neutral indium atoms ejected under mono- and polyatomic projectile ion bombardment were measured. (orig.)

  11. High-energy collision-induced dissociation of [M+Na]+ ions desorbed by fast atom bombardment of ceramides isolated from the starfish Distolasterias nipon.

    Science.gov (United States)

    Yoo, Ji Sun; Park, Taeseong; Bang, Geul; Lee, Chulhyun; Rho, Jung-Rae; Kim, Young Hwan

    2013-02-01

    Ten ceramides and four cerebrosides were extracted from the starfish Distolasterias nipon by solvent extraction, silica gel column chromatography and reversed-phase high-performance liquid chromatography. Structural identification was conducted using tandem mass spectrometry of monosodiated ions desorbed by fast atom bombardment. The complete structures of four cerebrosides were determined by a previously reported method. The high-energy collision-induced dissociation (CID) spectral characteristics of ceramides with various structures depend on the number and positions of double bonds on both the N-acyl and sphingoid chains, the presence of a hydroxyl group or a double bond at the C-4 position of the sphingoid chain and the presence of an α-hydroxy group on the N-acyl chain. The high-energy CID of the monosodiated ion, [M+Na](+), of each ceramide molecular species generated abundant ions, providing information on the composition of the fatty acyl chains and sphingoid long-chain bases. Each homologous ion series along the fatty acyl group and aliphatic chain of the sphingoid base was used for locating the double-bond positions of both chains and hydroxyl groups on the sphingoid base chain. The double-bond positions were also confirmed by the m/z values of abundant allylic even- and odd-electron ions, and the intensity ratio of the T ion peak relative to the O ion peak. This technique could determine the complete structures of ceramides and cerebrosides in an extract mixture and has great potential for determining other sphingolipids isolated from various biological sources. PMID:23378088

  12. The 1986-87 atomic mass predictions

    Science.gov (United States)

    Haustein, P. E.

    1987-12-01

    A project to perform a comprehensive update of the atomic mass predictions has recently been concluded and will be published shortly in Atomic Data and Nuclear Data Tables. The project evolved from an ongoing comparison between available mass predictions and reports of newly measured masses of isotopes throughout the mass surface. These comparisons have highlighted a variety of features in current mass models which are responsible for predictions that diverge from masses determined experimentally. The need for a comprehensive update of the atomic mass predictions was therefore apparent and the project was organized and began at the last mass conference (AMCO-VII). Project participants included: Pape and Anthony; Dussel, Caurier and Zuker; Möller and Nix; Möller, Myers, Swiatecki and Treiner; Comay, Kelson, and Zidon; Satpathy and Nayak; Tachibana, Uno, Yamada and Yamada; Spanier and Johansson; Jänecke and Masson; and Wapstra, Audi and Hoekstra. An overview of the new atomic mass predictions may be obtained by written request.

  13. Molecular dynamics simulation by atomic mass weighting

    OpenAIRE

    Mao, Boryeu; Friedman, Alan R.

    1990-01-01

    A molecular dynamics-based simulation method in which atomic masses are weighted is described. Results from this method showed that the capability for conformation search in molecular dynamics simulation of a short peptide (FMRF-amide) is significantly increased by mass weighting.

  14. Observables in neutrino mass spectroscopy using atoms

    International Nuclear Information System (INIS)

    The process of collective de-excitation of atoms in a metastable level into emission mode of a single photon plus a neutrino pair, called radiative emission of neutrino pair (RENP), is sensitive to the absolute neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majorana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing observables can be determined from the measurement of the corresponding continuous photon spectrum taking the example of a transition between specific levels of the Yb atom. The possibility of determining the nature of massive neutrinos and, if neutrinos are Majorana fermions, of obtaining information about the Majorana phases in the neutrino mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the sensitivity to the nature of massive neutrinos depends critically on the atomic level energy difference relevant in the RENP

  15. Recent advances in secondary ion mass spectrometry of solid acid catalysts : Large zeolite crystals under bombardment

    NARCIS (Netherlands)

    Hofmann, Jan P.; Rohnke, Marcus; Weckhuysen, Bert M.

    2014-01-01

    This Perspective aims to inform the heterogeneous catalysis and materials science community about the recent advances in Time-of-Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) to characterize catalytic solids by taking large model H-ZSM-5 zeolite crystals as a showcase system. SIMS-based techniqu

  16. The 2012 Atomic Mass Evaluation and the Mass Tables

    Energy Technology Data Exchange (ETDEWEB)

    Audi, G., E-mail: amdc.audi@gmail.com [CSNSM, CNRS/IN2P3, Université Paris-Sud, F-91405 Orsay Campus (France); Wang, M. [CSNSM-Orsay, Institute of Modern Physics, Lanzhou 730000 (China); MPI-K, D-69117 Heidelberg (Germany); Wapstra, A.H. [NIKHEF, 1009DB Amsterdam (Netherlands); Kondev, F.G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); MacCormick, M. [IPN, CNRS/IN2P3, Université Paris-Sud, F-91406 Orsay cedex (France); Xu, X. [IMP, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China)

    2014-06-15

    The new evaluation of the Atomic Masses, Ame2012, has just been released. It represents a major step in the history of the 60 year old Atomic Mass Evaluation based on the method developed by Wapstra. This new publication includes all material available to date. Some of the policies and procedures used in our evaluation are reported, together with an illustration of one specially difficult case, the energy available for the {sup 102}Pd double-electron capture. The observation of the mass surface reveals many important new features. We illustrate this statement by the double magicity of {sup 270}Hs at N = 162 and Z = 108.

  17. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  18. Precise atomic mass measurements by deflection mass spectrometry

    Science.gov (United States)

    Barber, R. C.; Sharma, K. S.

    2003-05-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  19. Atomic Mass and Nuclear Binding Energy for Fe-52 (Iron)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Fe-52 (Iron, atomic number Z = 26, mass number A = 52).

  20. Atomic Mass and Nuclear Binding Energy for Sr-71 (Strontium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sr-71 (Strontium, atomic number Z = 38, mass number A = 71).

  1. Ion bombardment effects in plasma-assisted etching of silicon

    International Nuclear Information System (INIS)

    Effects of low energy ion bombardment on silicon surfaces were investigated using ion beam techniques coupled with surface characterization methods. Those processes important to plasma-assisted etching of silicon such as crystalline damage formation, incorporation of energetic ions and adsorbed gas atoms, and sputtering were emphasized. The employed surface characterization techniques included Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and secondary ion mass spectroscopy. The amount of crystalline damage decreased with increasing ion mass and increased with increasing ion energy and dose. Damage produced by 1 keV argon and neon ions was confined to within 100 A of the surface. Hydrogen ion bombardment produced crystalline damage extending at least 400 A into the bulk, however. Exposure of the silicon surface to a flux of Cl2 molecules during 1 keV Ar+ bombardment at normal incidence lead to the incorporation of 1-2 monolayers of chlorine and a three-fold increase in the silicon removal rate. Crystalline damage, implanted carbon and fluorine atoms and deposition of a fluorocarbon overlayer were all detected after bombardment of silicon with a CHF3 ion beam

  2. Atomic Mass and Nuclear Binding Energy for Bh-318 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-318 (Bohrium, atomic number Z = 107, mass number A = 318).

  3. Atomic Mass and Nuclear Binding Energy for Bh-356 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-356 (Bohrium, atomic number Z = 107, mass number A = 356).

  4. Atomic Mass and Nuclear Binding Energy for Bh-322 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-322 (Bohrium, atomic number Z = 107, mass number A = 322).

  5. Atomic Mass and Nuclear Binding Energy for Bh-351 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-351 (Bohrium, atomic number Z = 107, mass number A = 351).

  6. Atomic Mass and Nuclear Binding Energy for Bh-310 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-310 (Bohrium, atomic number Z = 107, mass number A = 310).

  7. Atomic Mass and Nuclear Binding Energy for Bh-336 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-336 (Bohrium, atomic number Z = 107, mass number A = 336).

  8. Atomic Mass and Nuclear Binding Energy for Bh-299 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-299 (Bohrium, atomic number Z = 107, mass number A = 299).

  9. Atomic Mass and Nuclear Binding Energy for Bh-288 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-288 (Bohrium, atomic number Z = 107, mass number A = 288).

  10. Atomic Mass and Nuclear Binding Energy for Bh-359 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-359 (Bohrium, atomic number Z = 107, mass number A = 359).

  11. Atomic Mass and Nuclear Binding Energy for Bh-343 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-343 (Bohrium, atomic number Z = 107, mass number A = 343).

  12. Atomic Mass and Nuclear Binding Energy for Bh-304 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-304 (Bohrium, atomic number Z = 107, mass number A = 304).

  13. Atomic Mass and Nuclear Binding Energy for Bh-280 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-280 (Bohrium, atomic number Z = 107, mass number A = 280).

  14. Atomic Mass and Nuclear Binding Energy for Bh-349 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-349 (Bohrium, atomic number Z = 107, mass number A = 349).

  15. Atomic Mass and Nuclear Binding Energy for Bh-325 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-325 (Bohrium, atomic number Z = 107, mass number A = 325).

  16. Atomic Mass and Nuclear Binding Energy for Bh-332 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-332 (Bohrium, atomic number Z = 107, mass number A = 332).

  17. Atomic Mass and Nuclear Binding Energy for Bh-306 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-306 (Bohrium, atomic number Z = 107, mass number A = 306).

  18. Atomic Mass and Nuclear Binding Energy for Bh-324 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-324 (Bohrium, atomic number Z = 107, mass number A = 324).

  19. Atomic Mass and Nuclear Binding Energy for Bh-293 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-293 (Bohrium, atomic number Z = 107, mass number A = 293).

  20. Atomic Mass and Nuclear Binding Energy for Bh-327 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-327 (Bohrium, atomic number Z = 107, mass number A = 327).

  1. Atomic Mass and Nuclear Binding Energy for Bh-350 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-350 (Bohrium, atomic number Z = 107, mass number A = 350).

  2. Atomic Mass and Nuclear Binding Energy for Bh-308 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-308 (Bohrium, atomic number Z = 107, mass number A = 308).

  3. Atomic Mass and Nuclear Binding Energy for Bh-358 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-358 (Bohrium, atomic number Z = 107, mass number A = 358).

  4. Atomic Mass and Nuclear Binding Energy for Bh-321 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-321 (Bohrium, atomic number Z = 107, mass number A = 321).

  5. Atomic Mass and Nuclear Binding Energy for Bh-345 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-345 (Bohrium, atomic number Z = 107, mass number A = 345).

  6. Atomic Mass and Nuclear Binding Energy for Bh-286 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-286 (Bohrium, atomic number Z = 107, mass number A = 286).

  7. Atomic Mass and Nuclear Binding Energy for Bh-307 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-307 (Bohrium, atomic number Z = 107, mass number A = 307).

  8. Atomic Mass and Nuclear Binding Energy for Bh-303 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-303 (Bohrium, atomic number Z = 107, mass number A = 303).

  9. Atomic Mass and Nuclear Binding Energy for Bh-312 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-312 (Bohrium, atomic number Z = 107, mass number A = 312).

  10. Atomic Mass and Nuclear Binding Energy for Bh-294 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-294 (Bohrium, atomic number Z = 107, mass number A = 294).

  11. Atomic Mass and Nuclear Binding Energy for Bh-326 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-326 (Bohrium, atomic number Z = 107, mass number A = 326).

  12. Atomic Mass and Nuclear Binding Energy for Bh-273 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-273 (Bohrium, atomic number Z = 107, mass number A = 273).

  13. Atomic Mass and Nuclear Binding Energy for Bh-284 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-284 (Bohrium, atomic number Z = 107, mass number A = 284).

  14. Atomic Mass and Nuclear Binding Energy for Bh-315 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-315 (Bohrium, atomic number Z = 107, mass number A = 315).

  15. Atomic Mass and Nuclear Binding Energy for Bh-328 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-328 (Bohrium, atomic number Z = 107, mass number A = 328).

  16. Atomic Mass and Nuclear Binding Energy for Bh-311 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-311 (Bohrium, atomic number Z = 107, mass number A = 311).

  17. Atomic Mass and Nuclear Binding Energy for Bh-353 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-353 (Bohrium, atomic number Z = 107, mass number A = 353).

  18. Atomic Mass and Nuclear Binding Energy for Bh-348 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-348 (Bohrium, atomic number Z = 107, mass number A = 348).

  19. Atomic Mass and Nuclear Binding Energy for Bh-360 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-360 (Bohrium, atomic number Z = 107, mass number A = 360).

  20. Atomic Mass and Nuclear Binding Energy for Bh-347 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-347 (Bohrium, atomic number Z = 107, mass number A = 347).

  1. Atomic Mass and Nuclear Binding Energy for Bh-277 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-277 (Bohrium, atomic number Z = 107, mass number A = 277).

  2. Atomic Mass and Nuclear Binding Energy for Bh-309 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-309 (Bohrium, atomic number Z = 107, mass number A = 309).

  3. Atomic Mass and Nuclear Binding Energy for Bh-340 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-340 (Bohrium, atomic number Z = 107, mass number A = 340).

  4. Atomic Mass and Nuclear Binding Energy for Bh-285 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-285 (Bohrium, atomic number Z = 107, mass number A = 285).

  5. Atomic Mass and Nuclear Binding Energy for Bh-341 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-341 (Bohrium, atomic number Z = 107, mass number A = 341).

  6. Atomic Mass and Nuclear Binding Energy for Bh-283 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-283 (Bohrium, atomic number Z = 107, mass number A = 283).

  7. Atomic Mass and Nuclear Binding Energy for Bh-305 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-305 (Bohrium, atomic number Z = 107, mass number A = 305).

  8. Atomic Mass and Nuclear Binding Energy for Bh-331 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-331 (Bohrium, atomic number Z = 107, mass number A = 331).

  9. Atomic Mass and Nuclear Binding Energy for Bh-342 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-342 (Bohrium, atomic number Z = 107, mass number A = 342).

  10. Atomic Mass and Nuclear Binding Energy for Bh-300 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-300 (Bohrium, atomic number Z = 107, mass number A = 300).

  11. Atomic Mass and Nuclear Binding Energy for Bh-330 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-330 (Bohrium, atomic number Z = 107, mass number A = 330).

  12. Atomic Mass and Nuclear Binding Energy for Bh-296 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-296 (Bohrium, atomic number Z = 107, mass number A = 296).

  13. Atomic Mass and Nuclear Binding Energy for Bh-338 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-338 (Bohrium, atomic number Z = 107, mass number A = 338).

  14. Atomic Mass and Nuclear Binding Energy for Bh-270 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-270 (Bohrium, atomic number Z = 107, mass number A = 270).

  15. Atomic Mass and Nuclear Binding Energy for Bh-320 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-320 (Bohrium, atomic number Z = 107, mass number A = 320).

  16. Atomic Mass and Nuclear Binding Energy for Bh-346 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-346 (Bohrium, atomic number Z = 107, mass number A = 346).

  17. Atomic Mass and Nuclear Binding Energy for Bh-274 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-274 (Bohrium, atomic number Z = 107, mass number A = 274).

  18. Atomic Mass and Nuclear Binding Energy for Bh-357 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-357 (Bohrium, atomic number Z = 107, mass number A = 357).

  19. Atomic Mass and Nuclear Binding Energy for Bh-319 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-319 (Bohrium, atomic number Z = 107, mass number A = 319).

  20. Atomic Mass and Nuclear Binding Energy for Bh-337 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-337 (Bohrium, atomic number Z = 107, mass number A = 337).

  1. Atomic Mass and Nuclear Binding Energy for Bh-329 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-329 (Bohrium, atomic number Z = 107, mass number A = 329).

  2. Atomic Mass and Nuclear Binding Energy for Bh-276 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-276 (Bohrium, atomic number Z = 107, mass number A = 276).

  3. Atomic Mass and Nuclear Binding Energy for Bh-335 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-335 (Bohrium, atomic number Z = 107, mass number A = 335).

  4. Atomic Mass and Nuclear Binding Energy for Bh-314 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-314 (Bohrium, atomic number Z = 107, mass number A = 314).

  5. Atomic Mass and Nuclear Binding Energy for Bh-281 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-281 (Bohrium, atomic number Z = 107, mass number A = 281).

  6. Atomic Mass and Nuclear Binding Energy for Bh-282 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-282 (Bohrium, atomic number Z = 107, mass number A = 282).

  7. Atomic Mass and Nuclear Binding Energy for Bh-339 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-339 (Bohrium, atomic number Z = 107, mass number A = 339).

  8. Atomic Mass and Nuclear Binding Energy for Bh-275 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-275 (Bohrium, atomic number Z = 107, mass number A = 275).

  9. Atomic Mass and Nuclear Binding Energy for Bh-289 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-289 (Bohrium, atomic number Z = 107, mass number A = 289).

  10. Atomic Mass and Nuclear Binding Energy for Bh-316 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-316 (Bohrium, atomic number Z = 107, mass number A = 316).

  11. Atomic Mass and Nuclear Binding Energy for Bh-354 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-354 (Bohrium, atomic number Z = 107, mass number A = 354).

  12. Atomic Mass and Nuclear Binding Energy for Bh-355 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-355 (Bohrium, atomic number Z = 107, mass number A = 355).

  13. Atomic Mass and Nuclear Binding Energy for Bh-295 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-295 (Bohrium, atomic number Z = 107, mass number A = 295).

  14. Atomic Mass and Nuclear Binding Energy for Bh-272 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-272 (Bohrium, atomic number Z = 107, mass number A = 272).

  15. Atomic Mass and Nuclear Binding Energy for Bh-334 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-334 (Bohrium, atomic number Z = 107, mass number A = 334).

  16. Atomic Mass and Nuclear Binding Energy for Bh-279 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-279 (Bohrium, atomic number Z = 107, mass number A = 279).

  17. Atomic Mass and Nuclear Binding Energy for Bh-323 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-323 (Bohrium, atomic number Z = 107, mass number A = 323).

  18. Atomic Mass and Nuclear Binding Energy for Bh-352 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-352 (Bohrium, atomic number Z = 107, mass number A = 352).

  19. Atomic Mass and Nuclear Binding Energy for Bh-298 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-298 (Bohrium, atomic number Z = 107, mass number A = 298).

  20. Atomic Mass and Nuclear Binding Energy for Bh-317 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-317 (Bohrium, atomic number Z = 107, mass number A = 317).

  1. Atomic Mass and Nuclear Binding Energy for Bh-344 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-344 (Bohrium, atomic number Z = 107, mass number A = 344).

  2. Atomic Mass and Nuclear Binding Energy for Bh-302 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-302 (Bohrium, atomic number Z = 107, mass number A = 302).

  3. Atomic Mass and Nuclear Binding Energy for Bh-292 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-292 (Bohrium, atomic number Z = 107, mass number A = 292).

  4. Atomic Mass and Nuclear Binding Energy for Bh-287 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-287 (Bohrium, atomic number Z = 107, mass number A = 287).

  5. Atomic Mass and Nuclear Binding Energy for Bh-301 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-301 (Bohrium, atomic number Z = 107, mass number A = 301).

  6. Atomic Mass and Nuclear Binding Energy for Bh-291 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-291 (Bohrium, atomic number Z = 107, mass number A = 291).

  7. Atomic Mass and Nuclear Binding Energy for Bh-278 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-278 (Bohrium, atomic number Z = 107, mass number A = 278).

  8. Atomic Mass and Nuclear Binding Energy for Bh-290 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-290 (Bohrium, atomic number Z = 107, mass number A = 290).

  9. Atomic Mass and Nuclear Binding Energy for Bh-333 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-333 (Bohrium, atomic number Z = 107, mass number A = 333).

  10. Atomic Mass and Nuclear Binding Energy for Bh-268 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-268 (Bohrium, atomic number Z = 107, mass number A = 268).

  11. Atomic Mass and Nuclear Binding Energy for Bh-313 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-313 (Bohrium, atomic number Z = 107, mass number A = 313).

  12. Atomic Mass and Nuclear Binding Energy for Bh-271 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-271 (Bohrium, atomic number Z = 107, mass number A = 271).

  13. Atomic Mass and Nuclear Binding Energy for Bh-269 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-269 (Bohrium, atomic number Z = 107, mass number A = 269).

  14. Atomic Mass and Nuclear Binding Energy for Bh-297 (Bohrium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-297 (Bohrium, atomic number Z = 107, mass number A = 297).

  15. Cross sections for the production of high-mass muon pairs from 800 GeV proton bombardment of 2H

    International Nuclear Information System (INIS)

    Absolute cross sections as functions of kinematic variables are presented for the production of muon pairs from 800 GeV proton bombardment of 2H. Drell-Yan (continuum) dimuons were recorded in the mass regions 4.5≤Mμ+μ-≤9 GeV and Mμ+μ-≥11 GeV, with an x-Feynman range -0.1≤xF≤0.75. This range corresponds to smaller masses and larger values of xF than previous 800 GeV Drell-Yan data. Cross sections for the Υ(1S) resonance are also given versus the transverse momentum and xF

  16. An Atomic Force Microscopy Investigation of the Tracks Made by C+1-C+4 Bombardment on CR-39 Detectors

    Institute of Scientific and Technical Information of China (English)

    赵葵; 吴秀坤; 郭继宇; 隋丽; 梅俊平; 倪嵋楠; 包轶文

    2003-01-01

    Carbon micro-clusters are accelerated by an HI-13 tandem accelerator.The plastic nuclear track detectors CR-39are irradiated by C1-C4 beams from the HI-13 tandem accelerator and the tracks in CR-39 are studied using an atomic force microscope(AFM).The depths and diameters of C1-C4 tracks are measured for the first time in a nanometre scale.An enhancement of the energy loss is obtained for carbon clusters related to single carbon ions with the same velocity.The results show that the AFM observation is very useful in the quantitative analysis of clusters in the track detector CR-39.

  17. Kinetic energy distributions of neutral In and In{sub 2} sputtered by polyatomic ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Samartsev, A.V. [Department of Physics, University of Duisburg-Essen, 47048 Duisburg (Germany); Wucher, A. [Department of Physics, University of Duisburg-Essen, 47048 Duisburg (Germany)]. E-mail: wucher@uni-essen.de

    2006-07-30

    Kinetic energy distributions of neutral In monomers and In{sub 2} dimers sputtered from a polycrystalline indium surface under bombardment with 5 keV/atom Au{sub 1} {sup -} and Au{sub 2} {sup -} projectiles have been investigated by means of laser postionization time-of-flight mass spectrometry. Results show that 5 keV Au{sub 1} bombardment leads to results in full compliance with linear cascade sputtering theory. For polyatomic ion bombardment, we find a clear transition to a collisional spike dominated emission process. The spike contribution appears as a low-energy part in the sputtered flux which increases with increasing projectile nuclearity and energy. We show that, the velocity spectrum associated with the low-energy contribution is virtually identical for sputtered monomers and dimers. This finding has important implications with respect to the particle emission mechanism under polyatomic projectile bombardment.

  18. Mass cancer survey of atomic bomb survivors

    International Nuclear Information System (INIS)

    This is an outcome of mass screening for breast and uterine cancers performed in A-bomb survivors during the period from August 1988 through March 1990. Among 1,770 participants in mass screening for breast cancer, detailed examination was judged to be necessary in 6.1%. The rate of participation in the subsequent examination was 81.5%. Breast cancer was detected in 6 patients, which was all invasive ductal carcinoma. The estimated detection rate for breast cacer was 0.47%. There were 1,648 participants in mass screening for uterine cancer. The rate of detailed examination required was 2.0%, and the rate of participation was 66.7%. Uterine cancer was detected in 5 A-bomb survivors, one of whom had metastasis of rectal cancer. The estimated detection rate was 0.45%. (N.K.)

  19. Porous silica doping by ion bombardment

    International Nuclear Information System (INIS)

    A new approach to porous-silica doping is via ion bombardment and exposure of the damaged structure to a controlled atmosphere. As a case study, SiO2 samples, bombarded with Ar2+ in a CO2 ambient and suitably processed, underwent an infrared spectroscopic investigation. The resulting data could be interpreted by assuming the addition of CO2 to the SiO2 skeleton at the diradical silicon defects produced by the bombardment. This addition takes place first via the formation of a carboxylate group, which evolves after heat treatment to an ester-like center, and eventually to a carboxilic acid after exposure to water vapor. Ab initio molecular-dynamics simulations of the interaction between CO2 and a silicon diradical are consistent with the above picture and suggest also the existence of an intermediate, in which tetrahedral carbon is bonded to the two silicon atoms and to two oxygen atoms

  20. Ion bombardment of AlN films deposited in a reactive sputtring process with accurate control of the mass flow of the reactive gas

    International Nuclear Information System (INIS)

    Aluminum nitride (AlN) films can be used as tribological coatings in aggressive media to reduce wear and corrosion owing to its remarkable chemical stability and high decomposition temperature. In the present investigations AlN films were produced by r.f. sputtering under different conditions and then post bombarded by light ions to tailor the surface properties for low coefficient of friction and long wear life. AlN films deposited with varying sputtering conditions differ considerably in deposition rates, crystallinity, and stoichiometry. As-deposited and ion bombarded metal-rich AlN films exhibit a much lower coefficient of friction (less than 0.2) than stoichiometric AlN films (around 0.6). Metal-rich and stoichiometric AlN films exhibit an enormous improvement in wear life when bombarded with B+ ions or a mixture of B+ and C+ ions. The improvement factor due to ion bombardment is higher for metal-rich AlN films. Ionic bombardment of metal-rich AlN film results in improved crystallinity and increased grain size as a function of ion dose. (orig.)

  1. Development of a ReaxFF reactive force field for Si/Ge/H systems and application to atomic hydrogen bombardment of Si, Ge, and SiGe (100) surfaces

    Science.gov (United States)

    Psofogiannakis, George; van Duin, Adri C. T.

    2016-04-01

    A new reactive force field was developed for use in molecular dynamics simulations of chemical systems composed of silicon (Si), germanium (Ge), and hydrogen (H) with the ReaxFF code. The development incorporated Ge into the ReaxFF family of reactive potentials by fitting against a diverse training set of DFT data that pertain to Si/Ge/H bonding environments. The predictive capacity of the force field was manifested in molecular dynamics simulations of the H atom bombardment of the (100) surface of c-Si, c-Ge, and c-SiGe crystalline solid slabs in order to simulate the effects of the H-plasma semiconductor cleaning process in the near-surface region. Phenomena related to surface and subsurface H adsorption, H2 generation, and surface etching were described and compared in relation to material composition and the kinetic energy of the impinging atoms.

  2. 4th International Conference on Exotic Nuclei and Atomic Masses

    CERN Document Server

    Gross, Carl J; Rykaczewski, Krzysztof P; The European Physical Journal A : Volume 25, Supplement 1, 2005

    2005-01-01

    The International Conference on Exotic Nuclei and Atomic Masses (ENAM) has gained the status of the premier meeting for the physics of nuclei far from stability. The selected and refereed papers presenting the main results constitute valuable proceedings that offer everyone working in this field an authoritative and comprehensive source of reference.

  3. Secondary ion emission from insulin film bombarded with methane and noble gas cluster ion beams

    International Nuclear Information System (INIS)

    Recent advances in large cluster projectiles for secondary ion mass spectrometry (SIMS) allow the intact ions of some protein molecules to be detected without a matrix. However, detailed mechanisms of soft-sputtering and ionization of biomolecules remain unknown. Herein we investigate the secondary ion emission from insulin films under argon, krypton, and methane cluster ion bombardment. The intact insulin ion intensity significantly decreases for (CH4)1500+ ion bombardment compared with Ar1500+ ion bombardment at the same energy range of 3.3 eV/atom (or molecule), even though collisions with energetic methane clusters should generate numerous protons on the surface, which would enhance the ionization probability through proton attachment. In contrast, the intact ion intensity is almost the same for Ar2500+ and Kr2500+ cluster ion bombardment at the same energy range of 2 eV/atom. These observations suggest that detailed mechanisms for the ionization and sputtering by gas cluster ions should be investigated to enhance the intact ion intensity

  4. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  5. Moving to atomic tritium for neutrino mass measurements

    Science.gov (United States)

    Kazkaz, Kareem; Project8 Collaboration

    2016-03-01

    For direct measurements of the neutrino mass, the tritium-based experiments Mainz and Troitsk have provided the most sensitive measurements to date, with upper limits near 2200 meV. The KATRIN experiment, beginning its first science run in 2016, also uses tritium as its source and has an anticipated ultimate sensitivity of 200 meV. The largest single systematic effect limiting the mass sensitivity beyond KATRIN is the energy sharing between the emitted beta particle and the resulting T-3He molecule. It therefore behooves all future tritium-based experiments to use atomic, rather than molecular, tritium. In this presentation we will outline experimental considerations of atomic tritium: production, purification, inhibiting recombination, and cooling. We will discuss these considerations within the context of Project8, a tritium-based, cyclotron radiation emission spectroscopy neutrino mass measurement with an ultimate target sensitivity of 50 meV. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Atomic masses around 146Gd derived from decay properties

    International Nuclear Information System (INIS)

    Atomic masses in a region around 146Gd were derived from partial decay constants of individual β-transitions resulting from γ-spectroscopic investigations. The β-decay energies were obtained by comparing experimental values of relative Psub(K)-ratios and EC/β+ ratios with energy-dependent theoretical ratios. Decay-energy determinations for the nuclei sup(145,147)Eu, sup(147,149)Gd, sup(147g),sup(147m)Tb, sup(148g),sup(148m)Tb, sup(149m)Tb, 148Dy and sup(150m,152m)Ho are summarized. Based on this new mass information, systematic trends of the nucleon separation energies around 146Gd are discussed. In contrast to level structures of earlier studies, the mass data offer only weak evidence for a double magicity of 146Gd. (orig.)

  7. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  8. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    Science.gov (United States)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  9. New discovery: Quantization of atomic and nuclear rest mass differences

    International Nuclear Information System (INIS)

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize [1] phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: ΔΔ M = n1/n2 x 0.0076294 (in MeV/c2 ), ni=1,2,3,... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized open systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence on the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes grounded on the fundamental low of physics - conservation law of energy. The results of these research fields can provide new ecologically pure mobile sources of energy independent from oil, gas and coal, new substances, and technologies. For example, this discovery gives us a simple and cheep method for utilization of nuclear waste. References [1] F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0610002 2006

  10. On-Line Mass Separator of Superheavy Atoms

    CERN Document Server

    Oganessian, Yu T

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T_{1/2}\\ge 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/\\Delta M\\sim 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected alpha-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams.

  11. Effects of the Centre-of-Mass Motion on the Population Trapping of Ultracold Atoms

    Institute of Scientific and Technical Information of China (English)

    熊锦; 张智明

    2003-01-01

    We investigate the effects of the atomic centre-of-mass motion on atomic population trapping in a two-mode micromaser injected with ultracold A-type three-level atoms.We find that in the mazer regime(the case in which the atomic kinetic energy is much smaller than the atom-field interaction energy),the interplay between reflection and transmission of the ultracold atom leads to the destruction of the atomic population trapping.

  12. Ub-library of Atomic Masses and Nuclear Ground States Deformations (CENPL.AMD)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atomic mass is one of basic data of a nuclear. There are the atomic masses in all nuclear reaction model formulas and motion equations. For any reaction calculations atomic masses are basic data for getting binding energies or Q-values. In some applications, it is important also to have atomic masses even for exotic nuclei quite far from the valley of stability. In addition, nuclear ground state deformations and abundance values are also requisite in the nuclear data calculations. For this purpose, A data file on atomic masses and nuclear ground states deformations (AMD) were constructed, which

  13. Dynamic behavior of thermionic dispenser cathodes under ion bombardment

    Science.gov (United States)

    Cortenraad, R.; van der Gon, A. W. Denier; Brongersma, H. H.; Gärtner, G.; Raasch, D.; Manenschijn, A.

    2001-04-01

    We have investigated the surface coverage and electron emission of thermionic dispenser cathodes during 3 keV Ar+ ion bombardment, thereby simulating the bombardment of the cathodes by residual gases that takes place in cathode-ray tubes as used in television sets. During the ion bombardment at the operating temperature of 1030 °C, a dynamic equilibrium is established between the sputter removal and resupply mechanisms of the Ba and O atoms that form the dipole layer on the cathode substrate. We demonstrated that the performance of the cathodes under ion bombardment is governed by the O removal and resupply rates. It was found that the Ba resupply rate is almost an order of magnitude higher than the O resupply rate, but that the Ba can only be present on the surface bound to O atoms. Therefore, the Ba/O ratio is approximately equal to unity during the ion bombardment. Based on the investigations of the removal and resupply processes, we proposed a model that accurately describes the surface coverage and electron emission during the ion bombardment, including the dependence of the ion flux and cathode temperature.

  14. Atomic mass determinations for 183W and 199Hg and the mercury problem

    International Nuclear Information System (INIS)

    Recent modifications to the 'Manitoba II' high resolution mass spectrometer are described. Mass differences among the members of the triplet 199 Hg -183W 16O- 12C 235 Cl 5 have been measured. These self-consistent mass differences give masses for 183W and 199Hg, as well as the mass difference across the W to Hg region of the mass table. These masses and the mass difference provide important constraints for the least squares atomic mass evaluation

  15. Atomic Mass and NuclearBinding Energy for Uup-269(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-269 (Ununpentium, atomic number Z = 115, mass number A = 269).

  16. Atomic Mass and NuclearBinding Energy for Uup-335(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-335 (Ununpentium, atomic number Z = 115, mass number A = 335).

  17. Atomic Mass and NuclearBinding Energy for Uup-332(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-332 (Ununpentium, atomic number Z = 115, mass number A = 332).

  18. Atomic Mass and NuclearBinding Energy for Uup-326(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-326 (Ununpentium, atomic number Z = 115, mass number A = 326).

  19. Atomic Mass and NuclearBinding Energy for Uup-259(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-259 (Ununpentium, atomic number Z = 115, mass number A = 259).

  20. Atomic Mass and NuclearBinding Energy for Uup-300(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-300 (Ununpentium, atomic number Z = 115, mass number A = 300).

  1. Atomic Mass and NuclearBinding Energy for Uup-317(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-317 (Ununpentium, atomic number Z = 115, mass number A = 317).

  2. Atomic Mass and NuclearBinding Energy for Uup-304(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-304 (Ununpentium, atomic number Z = 115, mass number A = 304).

  3. Atomic Mass and NuclearBinding Energy for Uup-276(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-276 (Ununpentium, atomic number Z = 115, mass number A = 276).

  4. Atomic Mass and NuclearBinding Energy for Uup-271(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-271 (Ununpentium, atomic number Z = 115, mass number A = 271).

  5. Atomic Mass and NuclearBinding Energy for Uup-321(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-321 (Ununpentium, atomic number Z = 115, mass number A = 321).

  6. Atomic Mass and NuclearBinding Energy for Uup-294(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-294 (Ununpentium, atomic number Z = 115, mass number A = 294).

  7. Atomic Mass and NuclearBinding Energy for Uup-277(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-277 (Ununpentium, atomic number Z = 115, mass number A = 277).

  8. Atomic Mass and NuclearBinding Energy for Uup-310(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-310 (Ununpentium, atomic number Z = 115, mass number A = 310).

  9. Atomic Mass and NuclearBinding Energy for Uup-306(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-306 (Ununpentium, atomic number Z = 115, mass number A = 306).

  10. Atomic Mass and NuclearBinding Energy for Uup-323(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-323 (Ununpentium, atomic number Z = 115, mass number A = 323).

  11. Atomic Mass and NuclearBinding Energy for Uup-299(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-299 (Ununpentium, atomic number Z = 115, mass number A = 299).

  12. Atomic Mass and NuclearBinding Energy for Uup-286(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-286 (Ununpentium, atomic number Z = 115, mass number A = 286).

  13. Atomic Mass and NuclearBinding Energy for Uup-282(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-282 (Ununpentium, atomic number Z = 115, mass number A = 282).

  14. Atomic Mass and NuclearBinding Energy for Uup-338(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-338 (Ununpentium, atomic number Z = 115, mass number A = 338).

  15. Atomic Mass and NuclearBinding Energy for Uup-324(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-324 (Ununpentium, atomic number Z = 115, mass number A = 324).

  16. Atomic Mass and NuclearBinding Energy for Uup-322(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-322 (Ununpentium, atomic number Z = 115, mass number A = 322).

  17. Atomic Mass and NuclearBinding Energy for Uup-305(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-305 (Ununpentium, atomic number Z = 115, mass number A = 305).

  18. Atomic Mass and NuclearBinding Energy for Uup-336(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-336 (Ununpentium, atomic number Z = 115, mass number A = 336).

  19. Atomic Mass and NuclearBinding Energy for Uup-308(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-308 (Ununpentium, atomic number Z = 115, mass number A = 308).

  20. Atomic Mass and NuclearBinding Energy for Uup-291(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-291 (Ununpentium, atomic number Z = 115, mass number A = 291).

  1. Atomic Mass and NuclearBinding Energy for Uup-320(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-320 (Ununpentium, atomic number Z = 115, mass number A = 320).

  2. Atomic Mass and NuclearBinding Energy for Uup-261(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-261 (Ununpentium, atomic number Z = 115, mass number A = 261).

  3. Atomic Mass and NuclearBinding Energy for Uup-296(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-296 (Ununpentium, atomic number Z = 115, mass number A = 296).

  4. Atomic Mass and NuclearBinding Energy for Uup-272(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-272 (Ununpentium, atomic number Z = 115, mass number A = 272).

  5. Atomic Mass and NuclearBinding Energy for Uup-258(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-258 (Ununpentium, atomic number Z = 115, mass number A = 258).

  6. Atomic Mass and NuclearBinding Energy for Uup-273(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-273 (Ununpentium, atomic number Z = 115, mass number A = 273).

  7. Atomic Mass and NuclearBinding Energy for Uup-302(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-302 (Ununpentium, atomic number Z = 115, mass number A = 302).

  8. Atomic Mass and NuclearBinding Energy for Uup-289(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-289 (Ununpentium, atomic number Z = 115, mass number A = 289).

  9. Atomic Mass and NuclearBinding Energy for Uup-334(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-334 (Ununpentium, atomic number Z = 115, mass number A = 334).

  10. Atomic Mass and NuclearBinding Energy for Uup-316(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-316 (Ununpentium, atomic number Z = 115, mass number A = 316).

  11. Atomic Mass and NuclearBinding Energy for Uup-309(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-309 (Ununpentium, atomic number Z = 115, mass number A = 309).

  12. Atomic Mass and NuclearBinding Energy for Uup-262(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-262 (Ununpentium, atomic number Z = 115, mass number A = 262).

  13. Atomic Mass and NuclearBinding Energy for Uup-319(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-319 (Ununpentium, atomic number Z = 115, mass number A = 319).

  14. Atomic Mass and NuclearBinding Energy for Uup-314(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-314 (Ununpentium, atomic number Z = 115, mass number A = 314).

  15. Atomic Mass and NuclearBinding Energy for Uup-281(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-281 (Ununpentium, atomic number Z = 115, mass number A = 281).

  16. Atomic Mass and NuclearBinding Energy for Uup-267(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-267 (Ununpentium, atomic number Z = 115, mass number A = 267).

  17. Atomic Mass and NuclearBinding Energy for Uup-329(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-329 (Ununpentium, atomic number Z = 115, mass number A = 329).

  18. Atomic Mass and NuclearBinding Energy for Uup-264(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-264 (Ununpentium, atomic number Z = 115, mass number A = 264).

  19. Atomic Mass and NuclearBinding Energy for Uup-298(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-298 (Ununpentium, atomic number Z = 115, mass number A = 298).

  20. Atomic Mass and NuclearBinding Energy for Uup-339(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-339 (Ununpentium, atomic number Z = 115, mass number A = 339).

  1. Atomic Mass and NuclearBinding Energy for Uup-278(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-278 (Ununpentium, atomic number Z = 115, mass number A = 278).

  2. Atomic Mass and NuclearBinding Energy for Uup-312(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-312 (Ununpentium, atomic number Z = 115, mass number A = 312).

  3. Atomic Mass and NuclearBinding Energy for Uup-318(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-318 (Ununpentium, atomic number Z = 115, mass number A = 318).

  4. Atomic Mass and NuclearBinding Energy for Uup-270(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-270 (Ununpentium, atomic number Z = 115, mass number A = 270).

  5. Atomic Mass and NuclearBinding Energy for Uup-263(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-263 (Ununpentium, atomic number Z = 115, mass number A = 263).

  6. Atomic Mass and NuclearBinding Energy for Uup-313(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-313 (Ununpentium, atomic number Z = 115, mass number A = 313).

  7. Atomic Mass and NuclearBinding Energy for Uup-337(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-337 (Ununpentium, atomic number Z = 115, mass number A = 337).

  8. Atomic Mass and NuclearBinding Energy for Uup-287(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-287 (Ununpentium, atomic number Z = 115, mass number A = 287).

  9. Atomic Mass and NuclearBinding Energy for Uup-279(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-279 (Ununpentium, atomic number Z = 115, mass number A = 279).

  10. Atomic Mass and NuclearBinding Energy for Uup-275(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-275 (Ununpentium, atomic number Z = 115, mass number A = 275).

  11. Atomic Mass and NuclearBinding Energy for Uup-333(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-333 (Ununpentium, atomic number Z = 115, mass number A = 333).

  12. Atomic Mass and NuclearBinding Energy for Uup-280(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-280 (Ununpentium, atomic number Z = 115, mass number A = 280).

  13. Atomic Mass and NuclearBinding Energy for Uup-266(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-266 (Ununpentium, atomic number Z = 115, mass number A = 266).

  14. Atomic Mass and NuclearBinding Energy for Uup-330(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-330 (Ununpentium, atomic number Z = 115, mass number A = 330).

  15. Atomic Mass and NuclearBinding Energy for Uup-265(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-265 (Ununpentium, atomic number Z = 115, mass number A = 265).

  16. Atomic Mass and NuclearBinding Energy for Uup-283(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-283 (Ununpentium, atomic number Z = 115, mass number A = 283).

  17. Atomic Mass and NuclearBinding Energy for Uup-297(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-297 (Ununpentium, atomic number Z = 115, mass number A = 297).

  18. Atomic Mass and NuclearBinding Energy for Uup-268(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-268 (Ununpentium, atomic number Z = 115, mass number A = 268).

  19. Atomic Mass and NuclearBinding Energy for Uup-274(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-274 (Ununpentium, atomic number Z = 115, mass number A = 274).

  20. Atomic Mass and NuclearBinding Energy for Uup-260(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-260 (Ununpentium, atomic number Z = 115, mass number A = 260).

  1. Atomic Mass and NuclearBinding Energy for Uup-307(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-307 (Ununpentium, atomic number Z = 115, mass number A = 307).

  2. Atomic Mass and NuclearBinding Energy for Uup-293(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-293 (Ununpentium, atomic number Z = 115, mass number A = 293).

  3. Atomic Mass and NuclearBinding Energy for Uup-284(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-284 (Ununpentium, atomic number Z = 115, mass number A = 284).

  4. Atomic Mass and NuclearBinding Energy for Uup-292(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-292 (Ununpentium, atomic number Z = 115, mass number A = 292).

  5. Atomic Mass and NuclearBinding Energy for Uup-328(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-328 (Ununpentium, atomic number Z = 115, mass number A = 328).

  6. Atomic Mass and NuclearBinding Energy for Uup-331(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-331 (Ununpentium, atomic number Z = 115, mass number A = 331).

  7. Atomic Mass and NuclearBinding Energy for Uup-311(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-311 (Ununpentium, atomic number Z = 115, mass number A = 311).

  8. Atomic Mass and NuclearBinding Energy for Uup-285(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-285 (Ununpentium, atomic number Z = 115, mass number A = 285).

  9. Atomic Mass and NuclearBinding Energy for Uup-315(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-315 (Ununpentium, atomic number Z = 115, mass number A = 315).

  10. Atomic Mass and NuclearBinding Energy for Uup-288(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-288 (Ununpentium, atomic number Z = 115, mass number A = 288).

  11. Atomic Mass and NuclearBinding Energy for Uup-295(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-295 (Ununpentium, atomic number Z = 115, mass number A = 295).

  12. Atomic Mass and NuclearBinding Energy for Uup-301(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-301 (Ununpentium, atomic number Z = 115, mass number A = 301).

  13. Atomic Mass and NuclearBinding Energy for Uup-303(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-303 (Ununpentium, atomic number Z = 115, mass number A = 303).

  14. Atomic Mass and NuclearBinding Energy for Uup-290(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-290 (Ununpentium, atomic number Z = 115, mass number A = 290).

  15. Atomic Mass and NuclearBinding Energy for Uup-327(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-327 (Ununpentium, atomic number Z = 115, mass number A = 327).

  16. Atomic Mass and NuclearBinding Energy for Uup-325(Ununpentium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-325 (Ununpentium, atomic number Z = 115, mass number A = 325).

  17. Temperature-dependent surface modification of InSb(0 0 1) crystal by low-energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, S.R.; Sinha, O.P.; Krok, F.; Zembok, T. [Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Pedrys, R. [Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)], E-mail: ufpedrys@cyf-kr.edu.pl; Szymonski, M. [Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2009-08-15

    Structural and compositional modification of InSb(0 0 1) single crystal surfaces induced by oblique incidence 2-5 keV Ar and Xe ion irradiation have been investigated by means of scanning tunneling and atomic force microscopies, and time-of-flight mass spectroscopy of secondary ion emission. In general, ion-induced patterns (networks of nanowires, or ripples) are angle of incidence- and fluence-dependent. Temperature dependences (from 300 to 600 K) of the RMS roughness and of the ripple wavelength have been determined for the samples bombarded with various fluences. Secondary ion emission from an InSb(0 0 1) surface exposed to 4.5 keV Ar{sup +} ions has been investigated with a linear TOF spectrometer working in a static mode. Mass spectra of the sputtered In{sup +}, Sb{sup +} and In{sub 2}{sup +} secondary ions have been measured both for the non-bombarded (0 0 1) surface and for the surface previously exposed to a fluence of 10{sup 16} ions/cm{sup 2}. In{sup +} and In{sub 2}{sup +} intensities for the irradiated sample are much higher in comparison to the non-bombarded one, whereas Sb{sup +} ions show a reversed tendency. This behavior suggests a significant In-enrichment at the InSb(0 0 1) surface caused by the ion bombardment.

  18. Temperature-dependent surface modification of InSb(0 0 1) crystal by low-energy ion bombardment

    International Nuclear Information System (INIS)

    Structural and compositional modification of InSb(0 0 1) single crystal surfaces induced by oblique incidence 2-5 keV Ar and Xe ion irradiation have been investigated by means of scanning tunneling and atomic force microscopies, and time-of-flight mass spectroscopy of secondary ion emission. In general, ion-induced patterns (networks of nanowires, or ripples) are angle of incidence- and fluence-dependent. Temperature dependences (from 300 to 600 K) of the RMS roughness and of the ripple wavelength have been determined for the samples bombarded with various fluences. Secondary ion emission from an InSb(0 0 1) surface exposed to 4.5 keV Ar+ ions has been investigated with a linear TOF spectrometer working in a static mode. Mass spectra of the sputtered In+, Sb+ and In2+ secondary ions have been measured both for the non-bombarded (0 0 1) surface and for the surface previously exposed to a fluence of 1016 ions/cm2. In+ and In2+ intensities for the irradiated sample are much higher in comparison to the non-bombarded one, whereas Sb+ ions show a reversed tendency. This behavior suggests a significant In-enrichment at the InSb(0 0 1) surface caused by the ion bombardment.

  19. Comment on "Atomic mass compilation 2012" by B. Pfeiffer, K. Venkataramaniah, U. Czok, C. Scheidenberger

    CERN Document Server

    Audi, Georges; Block, Michael; Bollen, Georg; Herfurth, Frank; Goriely, Stéphane; Hardy, John C; Kondev, Filip G; Kluge, Juergen H; Lunney, David; Pearson, Mike J; Savard, Guy; Sharma, Kumar; Wang, Meng; Zhang, Yuhu

    2014-01-01

    This "Comment" submitted to ADNDT on December 13, 2013 concerns a publication entitled "Atomic Mass Compilation 2012", which is due to appear in the March 2014 issue of the journal Atomic Data and Nuclear Data Tables (available online on September 6, 2013). We would like to make it clear that this paper is not endorsed by the Atomic Mass Evaluation (AME) international collaboration. The AME provides carefully recommended evaluated data, published periodically. The "Atomic Mass Compilation 2012" is not to be associated with the latest publication, AME2012, nor with any of the previously published mass evaluations that were developed under the leadership of Prof. A.H. Wapstra. We found the data presented in "Atomic Mass Compilation 2012" to be misleading and the approach implemented to be lacking in rigour since it does not allow to unambiguously trace the original published mass values. Furthermore, the method used in "Atomic Mass Compilation 2012" is not valid and leads to erroneous and contradictory outputs,...

  20. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-05-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  1. Atomic scale mass delivery driven by bend kink in single walled carbon nanotube

    International Nuclear Information System (INIS)

    The possibility of atomic scale mass delivery by bend kink in single walled carbon nanotube was investigated with the aid of molecular dynamics simulation. By keeping the bending angle while moving the tube end, the encapsulated atomic scale mass such as atom, molecule and atom group were successfully delivered through the nanotube. The van der Waals interaction between the encapsulated mass and the tube wall provided the driving force for the delivery. There were no dramatic changes in the van der Waals interaction, and a smooth and steady delivery was achieved when constant loading rate was applied. The influence of temperature on the atom group delivery was also analyzed. It is found raising temperature is harmful to the smooth movement of the atom group. However, the delivery rate can be promoted under higher temperature when the atom group is situated before the kink during the delivery.

  2. Computer simulation of the topography evolution on ion bombarded surfaces

    International Nuclear Information System (INIS)

    The development of roughness on ion bombarded surfaces (facets, ripples) on single crystalline and amorphous homogeneous solids plays an important role for example in depth profiling techniques. To verify a faceting mechanism based not only on sputtering by directly impinging ions but also on the contribution of reflected ions and the redeposition of sputtered material a computer simulation has been carried out. The surface in this model is treated as a two-dimensional line segment profile. The model describes the topography evolution on ion bombarded surfaces including the growth mechanism of a facetted surface, using only the interplay of reflected and primary ions and redeposited atoms

  3. Computer simulation of the topography evolution on ion bombarded surfaces

    CERN Document Server

    Zier, M

    2003-01-01

    The development of roughness on ion bombarded surfaces (facets, ripples) on single crystalline and amorphous homogeneous solids plays an important role for example in depth profiling techniques. To verify a faceting mechanism based not only on sputtering by directly impinging ions but also on the contribution of reflected ions and the redeposition of sputtered material a computer simulation has been carried out. The surface in this model is treated as a two-dimensional line segment profile. The model describes the topography evolution on ion bombarded surfaces including the growth mechanism of a facetted surface, using only the interplay of reflected and primary ions and redeposited atoms.

  4. Atomic masses of fission product nuclei far from stability

    International Nuclear Information System (INIS)

    The techniques for measuring fission product masses far from stability are discussed and recent progress in experimental measurements is reviewed. A comparison of new mass values with predictions of 10 mass equations suggests that most theories predict far-from-stability fission product nuclei to be more bound than is found experimentally. A closer look at several isotopic chains is used to identify regions of structural change where mass equations encounter difficulty. 31 references

  5. Photon "mass" and atomic levels in a superstrong magnetic field

    OpenAIRE

    Vysotsky, M. I.

    2012-01-01

    The structure of atomic levels originating from the lowest Landau level in a superstrong magnetic field is analyzed. The influence of the screening of the Coulomb potential on the values of critical nuclear charge is studied.

  6. Surpassing the mass restriction of buffer gas cooling: Cooling of low mass ions by localized heavier atoms

    Science.gov (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S. A.

    2016-05-01

    Cooling of trapped ions has resulted in fascinating science including the realization of some of the most accurate atomic clocks. It has also found widespread application, for example, in mass spectrometry and cold chemistry. Among the different methods for cooling ions, cooling by elastic collisions with ultracold neutral atoms is arguably the most generic. However, in spite of its widespread application, there is confusion with regards the collisional heating/cooling of light ions by heavier neutral atoms. We address the question experimentally and demonstrate, for the first time, cooling of light ions by co-trapped heavy atoms. We show that trapped 39 K+ ions are cooled by localized ultracold neutral 85 Rb atoms. The atom-ion mass ratio (= 2.18) is well beyond any theoretical predictions so far. We further argue that cooling of ions by localized cold atoms is possible for any mass ratio. The result opens up the possibility of reaching the elusive s-wave collision regime in atom-ion collisions. S.D. is supported by DST-INSPIRE Faculty Fellowship, India.

  7. Universality of spectator fragmentation at relativistic bombarding energies

    CERN Document Server

    Schüttauf, A; Wörner, A; Begemann-Blaich, M L; Blaich, T; Bowman, D R; Charity, R J; Cosmo, A; Ferrero, A; Gelbke, C K; Gross, C; Hsi, W C; Hubele, J; Imme, G; Iori, I; Kreutz, P; Kunde, G J; Lindenstruth, V; Lisa, M A; Lynch, W G; Lynen, U; Mang, M; Möhlenkamp, T; Moroni, A; Müller, W F; Neumann, M; Ocker, B; Ogilvie, C A; Peaslee, G F; Pochodzalla, J; Raciti, G; Rubehn, T; Sann, H; Schwarz, C; Seidel, W; Serfling, V; Sobotka, L G; Stroth, J; Stuttgé, L; Tomasevic, S; Trautmann, W; Trzcinski, A; Tsang, M B; Tucholski, A; Verde, G; Williams, C W; Zude, E; Zwieglinski, B

    1996-01-01

    Multi-fragment decays of 129Xe, 197Au, and 238U projectiles in collisions with Be, C, Al, Cu, In, Au, and U targets at energies between E/A = 400 MeV and 1000 MeV have been studied with the ALADIN forward-spectrometer at SIS. By adding an array of 84 Si-CsI(Tl) telescopes the solid-angle coverage of the setup was extended to \\theta_lab = 16 degree. This permitted the complete detection of fragments from the projectile-spectator source. The dominant feature of the systematic set of data is the Z_bound universality that is obeyed by the fragment multiplicities and correlations. These observables are invariant with respect to the entrance channel if plotted as a function of Z_bound, where Z_bound is the sum of the atomic numbers Z_i of all projectile fragments with Z_i \\geq 2. No significant dependence on the bombarding energy nor on the target mass is observed. The dependence of the fragment multiplicity on the projectile mass follows a linear scaling law. The reasons for and the limits of the observed universa...

  8. Metamict zircon formed by heavy ion bombardment

    International Nuclear Information System (INIS)

    Zirconium silicate powder is converted into a range of metamict conditions, and finally to a non-crystalline condition by argon or krypton ion bombardment of energies of 1 to 3.5 MeV. The non-crystalline condition is induced by approximately 2 x 1015 ions per cm2. Further irradiation causes the non-crystalline particles to bloat into extended disc shapes. The glassy metamict state creeps under heavy ion irradiation. Under comparable conditions, silicates such as α-quartz bloat into a similar range of glassy shapes, whereas nitrides such as Si3N4 do not. The metamict state is essentially a glass-type random atomic structural arrangement. This formation of extended glassy shapes under ionic bombardment is an alternative method of formation of some of the glassy constituents of chondrules, tektites and lunar agglutinates by cosmic irradiation. The reported sintering under fast neutron irradiation may be explained by the joining of neighboring particles under glassy irradiation creep. (author)

  9. Enhanced intra- and interlayer mass transport on Pt(111) via 5-50 eV Pt atom impacts on two-dimensional Pt clusters

    International Nuclear Information System (INIS)

    Embedded-atom molecular dynamics simulations were used to investigate the effects of low-energy (5-50 eV) normally-incident self-ion irradiation of two-dimensional compact Pt3, Pt7, Pt19, and Pt37 clusters on Pt(111). We follow atomistic pathways leading to bombardment-induced intra- and interlayer mass transport. The results can be described in terms of three impact energy regimes. With E ≤ 20 eV, we observe an increase in 2D island dimensions and negligible residual point defect formation. As the impact energy is raised above 20 eV, we observe an increase in irradiation-induced lateral mass transport, a decrease in island size, and the activation of interlayer processes. For E ≥ 35 eV, this trend continues, but point defects, in the form of surface vacancies, are also formed. The results illustrate the richness of the dynamical interaction mechanisms occurring among incident energetic species, target clusters, and substrate atoms, leading to island preservation, reconfiguration, disruption and/or residual point defects formation. We discuss the significance of these results in terms of thin film growth

  10. Enhanced intra- and interlayer mass transport on Pt(111) via 5-50 eV Pt atom impacts on two-dimensional Pt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Adamovic, D. [Department of Physics and Measurement, IFM, Linkoeping University, SE - 581 83 Linkoeping (Sweden)]. E-mail: draad@ifm.liu.se; Chirita, V. [Department of Physics and Measurement, IFM, Linkoeping University, SE - 581 83 Linkoeping (Sweden); Muenger, E.P. [Department of Physics and Measurement, IFM, Linkoeping University, SE - 581 83 Linkoeping (Sweden); Hultman, L. [Department of Physics and Measurement, IFM, Linkoeping University, SE - 581 83 Linkoeping (Sweden); Greene, J.E. [Materials Science Department and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2006-12-05

    Embedded-atom molecular dynamics simulations were used to investigate the effects of low-energy (5-50 eV) normally-incident self-ion irradiation of two-dimensional compact Pt{sub 3}, Pt{sub 7}, Pt{sub 19}, and Pt{sub 37} clusters on Pt(111). We follow atomistic pathways leading to bombardment-induced intra- and interlayer mass transport. The results can be described in terms of three impact energy regimes. With E {<=} 20 eV, we observe an increase in 2D island dimensions and negligible residual point defect formation. As the impact energy is raised above 20 eV, we observe an increase in irradiation-induced lateral mass transport, a decrease in island size, and the activation of interlayer processes. For E {>=} 35 eV, this trend continues, but point defects, in the form of surface vacancies, are also formed. The results illustrate the richness of the dynamical interaction mechanisms occurring among incident energetic species, target clusters, and substrate atoms, leading to island preservation, reconfiguration, disruption and/or residual point defects formation. We discuss the significance of these results in terms of thin film growth.

  11. Ion induced atom motion effects studied using Monte Carlo computer simulation, loss of target mass, and secondary-electron imaging of the surface

    International Nuclear Information System (INIS)

    The investigation of some effects of the bombardment of material surfaces by keV ions has been carried out using a Monte Carlo computer simulation. This code models the target as an amorphous semi-infinite solid. Up to three elements may be used in the solid. The target's composition change during bombardment is simulated. Of the many phenomena taking place during the bombardment the simulation program will be used to study the dose dependence of the sputtering yield and ion-induced Auger electron emission. The study concludes that implanted Ar beam atoms do not alter the kinematics of the target by the amount necessary to cause the experimentally observed increase in the sputtering yield of Si. The computer study also suggests that for Ar bombardment of Al and Si the Auger electrons are predominantly from sputtered atoms. A novel technique for cleaning the surface of a liquid is described. This method has been used to obtain a highly clean surface on a liquid Ga drop. The surface flow generated by the ion bombardment is discussed. The circuit and structure of a quartz crystal third overtone resonator is presented. The resonator is designed for use in making dose dependent sputtering yield measurements. This apparatus can detect the removal of a fraction of a monolayer from a thin film that has been evaporated on its surface

  12. Dynamic Processes of Altered Layer Formation in Cu-Pt Alloys Under Ion Bombardment

    Science.gov (United States)

    Li, Chunfei; Asahata, Tatsuya; Shimizu, Ryuichi

    Three different experimental approaches have been developed to study the dynamic process of subsurface altered layer formation in a Cu-Pt alloy under Ar+ ion bombardment: (1) sputter neutral mass spectrometry by multiphoton ionization (MPI-SNMS) for the study of preferential sputtering caused by the collision cascade process in the very initial stage of sputtering; (2) ion scattering spectroscopy (ISS)-Auger electron spectroscopy (AES) sequential measurements for investigating radiation-enhanced Gibbsian segregation in the transient stage of sputtering; (3) an approach based on ISS monitoring by prompt switching of the ion bombardment with (He++Ar+) ions to that with He+ ions, for revealing the cooling effect in radiation-enhanced diffusion in the final steady state of sputtering. For this we have developed a specific coevaporating device for depositing Cu and Pt simultaneously on a substrate at constant deposition rate. The coevaporating device was attached to both of the specimen chambers of the Auger microprobe, JAMP-3, and of the MPI-SNMS apparatus. The results have clearly revealed: (i) ion bombardment causes a preferential sputtering of Cu atoms in the very initial stage of sputtering, (ii) followed by gradual formation of an altered layer as ion sputtering proceeds in the transient stage, and (iii) finally the alloy system approaches a steady state where the composition profile is controlled by cascade mixing, radiation-enhanced Gibbsian segregation and radiation-enhanced diffusion to satisfy the mass balance law. In the steady state the approach (3) has, first, revealed that the cooling effect does exist in radiation-enhanced diffusion.

  13. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  14. Nuclear shell energies and deformations in atomic mass formula

    International Nuclear Information System (INIS)

    Our group has for several years been studying a method of calculating nuclear shell energies and incorporating them into a mass formula. This method is characterized by the calculation of single-particle levels in an extended spherical Woods-Saxon potential, the extraction of crude shell energy, the refinement of crude shell energy due to residual interactions, and the incorporation into a mass formula. Here, we report the advance of this work focusing especially on nuclear deformations, and give some preliminary results and remarks. (author)

  15. Actinide production from xenon bombardments of curium-248

    International Nuclear Information System (INIS)

    Production cross sections for many actinide nuclides formed in the reaction of 129Xe and 132Xe with 248Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a 136Xe + 248Cm reaction at a similar energy. When compared to the reaction with 136Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, 129Xe, 132Xe, and 136Xe with 197Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions

  16. Characterizing the Early Impact Bombardment

    Science.gov (United States)

    Bogard, Donald D.

    2005-01-01

    The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.

  17. Photoassociative Cooling and Trapping of Center-of-Mass Motion of Atom-Pairs

    CERN Document Server

    Saha, Subrata; Deb, Bimalendu

    2015-01-01

    We show that it is possible to cool and trap the center-of-mass (COM) motion of atom-pairs by a lin$\\perp$lin Sisyphus-like method using counter-propagating photoassociation lasers. This method relies on the photoassociative coupling between an excited molecular bound state and a single-channel continuum of states of scattering between ground-state atoms. We demonstrate that one can generate molecular spin-dependent periodic potentials by this method for trapping the COM motion of pairs of ground-state atoms. We illustrate this with numerical calculations using fermionic $^{171}$Yb atoms as an example.

  18. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  19. Thermal effects of impact bombardments on Noachian Mars

    Science.gov (United States)

    Abramov, Oleg; Mojzsis, Stephen J.

    2016-05-01

    Noachian (prior to ca. 3700 Ma) terranes are the oldest and most heavily cratered landscapes on Mars, with crater densities comparable to the ancient highlands of the Moon and Mercury. Intense early cratering affected Mars by melting and fracturing its crust, draping large areas in impact ejecta, generating regional-scale hydrothermal systems, and increasing atmospheric pressure (and thereby, temperature) to periodically re-start an otherwise moribund hydrological cycle. Post primary-accretionary bombardment scenarios that shaped early Mars can be imagined in two ways: either as a simple exponential decay with an approximately 100 Myr half-life, or as a "sawtooth" timeline characterized by both faster-than-exponential decay from primary accretion and relatively lower total delivered mass. Indications are that a late bombardment spike was superposed on an otherwise broadly monotonic decline subsequent to primary accretion, of which two types are investigated: a classical "Late Heavy Bombardment" (LHB) peak of impactors centered at ca. 3900 Ma that lasted 100 Myr, and a protracted bombardment typified by a sudden increase in impactor flux at ca. 4100-4200 Ma with a correspondingly longer decay time (≤400 Myr). Numerical models for each of the four bombardment scenarios cited above show that the martian crust mostly escaped exogenic melting from bombardment. We find that depending on the chosen scenario, other physical effects of impacts were more important than melt generation. Model output shows that between 10 and 100% of the Noachian surface was covered by impact craters and blanketed in resultant (hot) ejecta. If early Mars was generally arid and cold, impact-induced heating punctuated this surface state by intermittently destabilizing the near-subsurface cryosphere to generate regional-scale hydrothermal systems. Rather than being deleterious to the proclivity of Noachian Mars to host an emergent biosphere, this intense early impact environment instead

  20. Ripple formation on silicon by medium energy ion bombardment.

    Science.gov (United States)

    Chini, Tapas Kumar; Datta, Debi Prasad; Bhattacharyya, Satya Ranjan

    2009-06-01

    The formation of a self-organized nanoscale ripple pattern after off-normally incident ion bombardment on the surface of amorphous materials, or on semiconductors like silicon that are easily amorphized by ion bombardment, has attracted much attention in recent years from the point of view of both theory and applications. As the energy of the impinging ions increases from low to medium, i.e. several hundred eV to a few tens of keV, the ratio of amplitude to wavelength of the generated ripple pattern becomes so large that inter-peak shadowing of the incident ion flux takes place. Morphologically, the sinusoidal surface profile starts to become distorted after prolonged ion bombardment under such conditions. Structural and compositional modifications of the ripple morphology generated under shadowing conditions include the formation of a thicker amorphous layer with high incorporation of argon atoms in the form of nanometer sized bubbles around the middle part of the front slope of the ripple facing the ion beam, as compared to the rear slope. The present paper reviews recent developments in the experimental study of morphological, structural and compositional aspects of ripple patterns generated on a silicon surface after medium keV (30-120 keV) argon bombardment mainly at an angle of ion incidence of 60°. PMID:21715743

  1. Ripple formation on silicon by medium energy ion bombardment

    International Nuclear Information System (INIS)

    The formation of a self-organized nanoscale ripple pattern after off-normally incident ion bombardment on the surface of amorphous materials, or on semiconductors like silicon that are easily amorphized by ion bombardment, has attracted much attention in recent years from the point of view of both theory and applications. As the energy of the impinging ions increases from low to medium, i.e. several hundred eV to a few tens of keV, the ratio of amplitude to wavelength of the generated ripple pattern becomes so large that inter-peak shadowing of the incident ion flux takes place. Morphologically, the sinusoidal surface profile starts to become distorted after prolonged ion bombardment under such conditions. Structural and compositional modifications of the ripple morphology generated under shadowing conditions include the formation of a thicker amorphous layer with high incorporation of argon atoms in the form of nanometer sized bubbles around the middle part of the front slope of the ripple facing the ion beam, as compared to the rear slope. The present paper reviews recent developments in the experimental study of morphological, structural and compositional aspects of ripple patterns generated on a silicon surface after medium keV (30-120 keV) argon bombardment mainly at an angle of ion incidence of 60 deg. (topical review)

  2. Changes in a surface of polycrystalline aluminum upon bombardment with argon ions

    Science.gov (United States)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Bliev, A. P.; Magkoev, T. T.; Krymshokalova, D. A.

    2014-10-01

    The interaction between argon ions and a natural oxide layer of polycrystalline aluminum is studied via Auger electron (AE) and electron energy loss (EEL) spectroscopy. It is found that bombardment with argon ions whose energy is lower than the Al2O3 sputtering threshold results in the accumulation of bombarding ions in interstitial surface voids, thus forming a supersaturated solid solution of target atoms and bombarding ions of argon and nitrogen entrapped by the ion beam from the residual gas of the working chamber of the spectrometer.

  3. BRAMA, a Broad Range Atomic Mass Analyzer for the ISL

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, J.M. [Lawrence Berkeley Lab., CA (United States)

    1994-05-01

    An alternative to conventional on-line isotope separators for use in radioactive beam facilities is described. It consists of an analyzer with a static magnetic field that is capable of separating a wide mixture of (radioactive) ions into mass bins ranging from 6 to 240 u. If incorporated into the ISL, BRAMA would make several low-energy radioactive beams available for experiments simultaneously, in addition to the beam that is being delivered to the post-accelerator. A preliminary ion-optical geometry is discussed.

  4. BRAMA, a Broad Range Atomic Mass Analyzer for the ISL

    International Nuclear Information System (INIS)

    An alternative to conventional on-line isotope separators for use in radioactive beam facilities is described. It consists of an analyzer with a static magnetic field that is capable of separating a wide mixture of (radioactive) ions into mass bins ranging from 6 to 240 u. If incorporated into the ISL, BRAMA would make several low-energy radioactive beams available for experiments simultaneously, in addition to the beam that is being delivered to the post-accelerator. A preliminary ion-optical geometry is discussed

  5. Kaon mass by critical absorption of kaonic atom x rays

    International Nuclear Information System (INIS)

    The energy of the kaonic 6h → 5g transition has been determined using the calculated μ/rho curve. Because the detectors used could not resolve the noncircular transitions, the predictions from a calculated cascade program were used. According to the cascade results for potassium, the number of noncircular x-rays was about 10% of all the transitions between n = 6 to n = 5. Based on the available information, the mass of the kaon was measured to be 493.576/sub -0.069//sup +0.044/ MeV

  6. Meta-atom cluster acoustic metamaterial with broadband negative effective mass density

    International Nuclear Information System (INIS)

    We design a resonant meta-atom cluster, via which a two-dimensional (2D) acoustic metamaterial (AM) with broadband negative effective mass density from 1560 Hz to 5580 Hz is fabricated. Experimental results confirm that there is only weak interaction among the meta-atoms in the cluster. And then the meta-atoms in the cluster independently resonate, resulting in the cluster becoming equivalent to a broadband resonance unit. Extracted effective refractive indices from reflection and transmission measurements of the 2D AM appear to be negative from 1500 Hz to 5480 Hz. The broadband negative refraction has also been demonstrated by our further experiments. We expect that this meta-atom cluster AM will significantly contribute to the design of broadband negative effective mass density AM

  7. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    OpenAIRE

    Stadnik, Y. V.; Flambaum, V. V.

    2016-01-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field $\\phi = \\phi_0 \\cos(m_\\phi t)$, can induce oscillating variations in the fundamental constants through their interactions with the Standard Model sector. We calculate the effects of such possible interactions, which may include the linear interaction of $\\phi$ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive new limits on ...

  8. Low energy Ar+ bombardment of GaN surfaces: A statistical study of ion reflection and sputtering

    International Nuclear Information System (INIS)

    Statistical molecular dynamics simulations are performed to analyze the sputtering of w-GaN (wurtzite) and z-GaN (zinc blende) surfaces under 100 eV Ar+ ion bombardment. Ion reflection and physical sputtering mechanisms are investigated as a function of the ion impact angle and the crystalline nature of samples. The probability of ion reflection is lower for the w-GaN phase and increases with the angle of incidence θi. As θi becomes more glancing, the reflected ions become more energetic and their angular distribution tends to narrow. The sputtering yields of w-GaN and z-GaN surfaces are maximum for θi=45 deg. For near-normal incidence, the probability of sputtering is smaller for the w-GaN phase, suggesting that the atomic arrangement in the pristine state modifies the characteristics of the momentum transfer occurring between the ion and the surface atoms during the collision cascade. Atomic nitrogen sputters preferentially and represents 87% to 100% of sputtered species due to its lower mass. These statistical results differ from the predictions of continuous ion bombardment simulations since the surfaces are not allowed to evolve self-consistently during the gathering of impact statistics.

  9. Characteristic Fragmentation of Polysiloxane Monolayer Films by Bombardment with Monatomic and Polyatomic Primary Ions in TOF-SIMS

    Science.gov (United States)

    Moon, Hye Kyoung; Wells, David D.; Gardella, Joseph A.

    2012-01-01

    This study reports the characteristic fragmentation patterns from two polysiloxane polymers that form ordered overlayer on silver substrates. Results are compared for the bombardment of various monatomic and polyatomic projectiles of Cs+, C{60/+} (10 keV), Bi{1/+}, and Bi{3/+} (25 keV) in the high mass range time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra. Results are reported from sub-monolayer (solution cast) coverages of poly(dimethylsiloxane)s with the number average molecular weights (Mn) of 2200 and 6140 Da, respectively, and Langmuir-Blodgett monolayers of poly(methylphenylsiloxane) with molecular weights (MW) from 600 and 1000 Da. For each film, Bi projectiles resulted in the emission of positive silver cluster ions from the substrate under the polymer overlayer and peaks corresponding to silver cluster ions with larger mass were observed by impact of polyatomic 25 keV Bi{3/+} projectiles. In addition, depending on the change of energy of Bi{3/+}, a different pattern of fragments was observed. With Cs+ and C{60/+} impact, however, the emission of silver cluster ions was not detected. In the case of C{60/+} impact for PDMS-6140, peaks corresponding to silver-cationized intact oligomers were not observed. In this paper, these results are explained by the possible bombardment mechanism for each projectile, based on its mass, energy, and split trajectories of the component atoms under the polyatomic impact.

  10. Ballistic thermal transport in monolayer transition-metal dichalcogenides: Role of atomic mass

    Science.gov (United States)

    Ma, Jinlong; Li, Wu; Luo, Xiaobing

    2016-02-01

    We investigate the ballistic thermal transport of monolayer transition-metal dichalcogenides (TMDs), which is crucial for the thermal management of their potential applications in nanoelectronics. We find the thermal conductance is mainly affected by the atomic masses of TMDs. As a consequence, the temperature dependences of thermal conductances of different TMDs cross: At low temperatures below ˜50 K, the thermal conductance increases with the atomic mass, while it exhibits the opposite trend at high temperatures. The crossing behavior of temperature dependent thermal conductance is characteristic of the atomic mass effect, and TMDs provide a model system demonstrating that the thermal conductance can be effectively manipulated via the atomic mass by selecting appropriate atom. In addition, we clarify that in any two dimensional system such as monolayer TMDs and graphene, due to quadratic dispersion of the out-of-plane modes, the thermal conductance and specific heat in the low temperature limit are proportional to T3/2 and T, respectively. Mainly because of much smaller group velocities of in-plane acoustic phonons, the high temperature thermal conductances of monolayer TMDs are much smaller than graphene. However, due to comparable group velocities of out-of-plane acoustic phonons, below 100 K thermal conductances of monolayer TMDs are rather comparable to graphene if taking the same layer thickness for comparison.

  11. The fluence effect of Ar++ bombardment in PPS

    International Nuclear Information System (INIS)

    The modifications induced by ion bombardment on the physical and chemical structures and on thermal, optical and electrical properties of poly(phenylene sulphide), PPS, were investigated. Thin PPS foils, 2, 6 and 125 μm thick were bombarded with Ar++ (700 keV) under initial vacuum of 10-6 torr. Changes in the chemical structure were monitored by infrared absorption spectroscopy (FTIR) and ultraviolet and visible spectroscopy (UV-VIS). Modifications in the relative atomic composition of the bombarded polymer samples were determined by elemental analysis (CHN) and Rutherford backscattering spectrometry (RBS). Processes resulting from ion implantation on the physical structure of PPS were followed by X-ray diffraction spectrometry (XRD), differential scanning calorimetry (DSC), solubility tests and electrical conductivity measurements. Thermal stability of these samples was established by thermogravimetric analysis (TGA). Ion bombardment induces electronic excitation and ionization of molecular species, which leads to crystallinity loss, chemical bonds disruptions and formation of free radicals. These reactive groups lead to the formation of cross-linking processes and absorption of atmospheric gases, like oxygen and nitrogen. Oxygen is combined with the polymer main chain, partaking in the cross-linking and in the formation of conjugated structures. Due to extensive bond conjugation the energy gap between valence and conduction bands diminishes. This process favors charge transport, leading to an increase of the macroscopic electrical conductivity. However, after bombardment, the oxygen absorption induces a continuous decrease of the conductivity, even after a period of six months. The samples irradiated with the highest fluences exhibit conductivities similar to those of semiconductors. A kinetic study of the thermal degradation of implanted samples indicates that the thermal stability, defined by the onset temperature and the activation energy of the process

  12. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    CERN Document Server

    Kato, T; Nakamura, T

    2002-01-01

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z sub p , mass number A sub p , energy per nucleon E sub p for projectile, and atomic number Z sub T , mass number A sub T for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emi...

  13. Significant enhancement of negative secondary ion yields by cluster ion bombardment combined with cesium flooding.

    Science.gov (United States)

    Philipp, Patrick; Angerer, Tina B; Sämfors, Sanna; Blenkinsopp, Paul; Fletcher, John S; Wirtz, Tom

    2015-10-01

    In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment. PMID:26378890

  14. Nanostructuring of Ta{sub 2}O{sub 5} surfaces by low energy Ar{sup +} bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Benito, Noelia; Palacio, Carlos, E-mail: carlos.palacio@uam.es

    2015-10-01

    Graphical abstract: - Highlights: • Ar{sup +} bombardment of Ta{sub 2}O{sub 5} surfaces leads to the formation of an altered layer where the composition is different from that of the bulk. • Ar{sup +} bombardment of Ta{sub 2}O{sub 5} surfaces leads to the formation of short-range hexagonal order nanostructures. • The height of the nanostructures is equal to the thickness of the altered layer produced during bombardment. • There is a close relationship between the nanostructuring of the surface and the altered layer formed during bombardment. - Abstract: The surface modifications undergoing on a Ta{sub 2}O{sub 5} surface bombarded with Ar{sup +} have been studied using surface analysis techniques (XPS, ARXPS and AFM). It has been observed that ion bombardment produces an altered layer composed of Ta suboxides as a consequence of the preferential sputtering of oxygen atoms. ARXPS measurements carried out on the bombarded surfaces can be explained using a model in which the altered layer consist of suboxide islands, with coverage 85% and thickness 2.88 nm. Moreover, AFM measurements show that ion bombardment leads to the formation of short-range hexagonal order nanostructures with characteristic parameters fully consistent with those found in ARXPS for the island model, therefore indicating the close relationship between the nanostructuring of the surface and the altered layer formed during bombardment.

  15. The Atomic Mass Unit, the Avogadro Constant, and the Mole: A Way to Understanding

    Science.gov (United States)

    Baranski, Andrzej

    2012-01-01

    Numerous articles have been published that address problems encountered in teaching basic concepts of chemistry such as the atomic mass unit, Avogadro's number, and the mole. The origin of these problems is found in the concept definitions. If these definitions are adjusted for teaching purposes, understanding could be improved. In the present…

  16. A NEW GENERATION OF INSTRUMENTATION AND CAPABILITIES FOR ATOMIC MASS SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ Atomic mass spectrometry,embodied usually as inductively coupled plasma mass spectrometry (ICPMS) or glow-discharge mass spectrometry (GDMS),has become a widely accepted tool for trace and ultra-trace elemental analysis.ICPMS offers detection limits below 1 ppt in solution,a dynamic concentration levels,isotope-analysis and isotope-dilution capabilities,modest matrix interferences,understandable spectral interferences (isobaric overlaps),precision in range of 2—5%,and rapid measurements (typically 10 seconds per isotope).

  17. Atomic mass and characteristic constant of nuclear ground state (CENPL.MCC). Pt. 1

    International Nuclear Information System (INIS)

    Atomic mass and characteristic constants for nuclear ground states are basic data for nuclear physics, and necessary ones for basic researches, theoretical calculations, as well as many applied researches. The atomic mass of exotic nuclei quite far from the valley stability are also very important for astrophysics researches. The above-requirement is paid attention to in our setting up this file. The recent and as many as possible data (such as the half-lives of the new nuclides 202Pt, 208Hg and 185Hf and the mass excess of 199Ir, which were produced and distinguished by Chinese scientists) have been collected, and put into the computer-based data file in brief table format. (1 fig.)

  18. Studies on effective atomic numbers, electron densities and mass attenuation coefficients in Au alloys.

    Science.gov (United States)

    Han, I; Demir, L

    2010-01-01

    The total mass attenuation coefficients (mu/rho) for pure Au and Au99Be1, Au88Ge12, Au95Zn5 alloys were measured at 59.5 and 88.0 keV photon energies. The samples were irradiated with 241Am and 109Cd radioactive point source using transmission arrangement. The gamma- rays were counted by a Si(Li) detector with resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (sigmat and sigmae), effective atomic and electron densities (Zeff and Nel) were determined using the obtained mass attenuation coefficients for investigated Au alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule. PMID:20421703

  19. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials

    International Nuclear Information System (INIS)

    Highlights: • The gamma shielding properties of eight shielding materials have been investigated. • We calculated the total mass attenuation coefficients by using WinXCom program. • The values of effective atomic number and electron density are also calculated. • All parameters depend on chemical content and the incident photon energy. • The Field castable Heat Resistant is the most effective shielding material. - Abstract: In this paper, the interaction of gamma rays with some shielding materials has been studied. The total mass attenuation coefficient (μt) for eight shielding materials has been calculated by using WinXCOM program in the energy range from 1 keV to 100 GeV. Also, the effective atomic number (Zeff) and the effective electron density (Neff) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined

  20. Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    Science.gov (United States)

    Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A.

    2016-08-01

    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler-Bernoulli beam with von Kármán type geometric nonlinearity. Eringen's nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

  1. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  2. "Pseudo-invariant Eigen-operator" Method for Deriving Energy-Gap of an Atom-Cavity Jaynes-Cummings Hamiltonian with Atomic Centre-of-Mass Motion

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; TANG Xu-Bing

    2006-01-01

    Using the "Pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmetric generators and using supersymmetric transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.

  3. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  4. Bombardment-induced segregation and redistribution

    International Nuclear Information System (INIS)

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilbrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed. 74 refs., 7 figs., 1 tab

  5. Density effects in sputtering at normal and oblique ion bombardment

    International Nuclear Information System (INIS)

    The author's earlier work on computer simulation of density effects in sputtering is extended to higher energies and oblique incidence of bombarding ions. Sputtering of amorphous Ge with an artificially varied density by 0.05-100 keV Ar ions is considered in great detail and the influence of density on the yield, angular and energy distributions of sputtered atoms is analysed. It is shown that at normal incidence the sputtering yield increases with density as Np, where p=0.56, 0.43, 0.28 and 0.24 at E0=0.1, 1, 10 and 100 keV, respectively. At grazing incidence the sputtering yield is a decreasing function of N due to surface scattering of bombarding ions (the negative density effect). This finding lent impetus to a successful search for the density effects in sputtering of different elemental targets at grazing bombardment. Overall, the effects of density on the main sputtering characteristics turn out to be significant, which contrasts with the predictions of a number of analytical theories of sputtering

  6. The influences of plasma ion bombarded on crystallization, electrical and mechanical properties of Zn-In-Sn-O films

    International Nuclear Information System (INIS)

    The quality of co-sputtering derived Zn-In-Sn-O (ZITO) film was adjusted by different gas (oxygen and argon) induced plasma ions bombarding (PIB) treatment. The result showed that the film conductivity could be improved after plasma bombardment. The increment of oxygen vacancies and plasma bombard-induced thermal energy were main reasons. Notably, the efficiency of Ar plasma bombarded for improved conductivity not only was better but also had a smoother surface morphology. Due to Ar ions will not react with metal atoms to form oxide and possessed a higher momentum. In addition, the O-rich layer on the ultra-surface not only was removed but also enhanced film reliability by plasma bombarded that could enhance the performance of optoelectronic devices.

  7. Atoms

    International Nuclear Information System (INIS)

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  8. Effective atomic numbers and mass attenuation coefficients of some thermoluminescent dosimetric compounds for total photon interaction

    International Nuclear Information System (INIS)

    Effective atomic numbers for total gamma-ray interaction with some selected thermoluminescent dosimetric compounds such as barium acetate, barium sulfate, calcium carbonate, calcium sulfate, calcium sulfate dihydrate, cadmium sulfate (anhydrous), cadmium sulfate, strontium sulfate, and lithium fluoride have been calculated in the 1-keV to 20-MeV energy region. Experimental mass attenuation coefficients and effective atomic numbers for these compounds at selected photon energies of 26.3, 33.2, 59.54, and 661.6 keV have been obtained from good geometry transmission measurements and compared with theoretical values. The effect of absorption edge on effective atomic numbers and its variation with energy, and nonvalidity of the Bragg's mixture rule at incident photon energies closer to the absorption edges of constituent elements of compounds are discussed

  9. Measurement of atomic number and mass attenuation coefficient in magnesium ferrite

    Indian Academy of Sciences (India)

    R H Kadam; S T Alone; G K Bichile; K M Jadhav

    2007-05-01

    Pure magnesium ferrite sample was prepared by standard ceramic technique and characterized by X-ray diffraction method. XRD pattern revealed that the sample possess single-phase cubic spinel structure. The linear attenuation coefficient (), mass attenuation coefficient (/ρ), total atomic cross-section (tot), total electronic cross-section (ele) and the effective atomic number (eff) were calculated for pure magnesium ferrite (MgFe2O4). The values of -ray mass attenuation coefficient were obtained using a NaI energy selective scintillation counter with radioactive -ray sources having energy 0.36, 0.511, 0.662, 1.17 and 1.28 MeV. The experimentally obtained values of /ρ and eff agreed fairly well with those obtained theoretically.

  10. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    Energy Technology Data Exchange (ETDEWEB)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  11. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    International Nuclear Information System (INIS)

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  12. Kaonic mass by critical absorption of kaonic-atom x rays

    Energy Technology Data Exchange (ETDEWEB)

    Lum, G.K.; Wiegand, C.E.; Kessler, E.G. Jr.; Deslattes, R.D.; Jacobs, L.; Schwitz, W.; Seki, R.

    1981-06-01

    The energy of x rays from the transition 6h..-->..5g in kaonic atoms of potassium falls on the K absorption edge of erbium. Measurement of the kaonic-x-ray attenuation in a precisely calibrated set of Er foils yields the x-ray energy 57 458.8 +- 6.3 eV. The kaon mass is related to energy through the Klein-Gordon equation plus corrections for radiative effects, electron screening, and other effects. The negative-kaon mass was found to be 493.640 +- 0.054 MeV/c/sup 2/ in agreement with the currently accepted value 493.669 +- 0.018 MeV/c/sup 2/ which was determined from x rays emitted by high-Z atoms where the corrections were larger than for Z = 19.

  13. Surface morphology of PMMA surfaces bombarded with GCIB

    International Nuclear Information System (INIS)

    The surface morphology of polymethylmethacrylate (PMMA) samples bombarded with size-selected Ar cluster ion beam (1000-16000 atoms/cluster) was investigated. The incident cluster ion size was selected before irradiation by using the time-of-flight (TOF) method. The irradiation ion fluence was 2 x 1013 -1 x 1014 ions/cm2. The average surface roughness values measured by AFM after 25 nm etching with 20 keV Ar1000+ and Ar16000+ were 4.0±0.4 and 0.78±0.09 nm, respectively. Thus, large clusters would be suitable for low damage etching. (author)

  14. A mass conserving level set method for detailed numerical simulation of liquid atomization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kun; Shao, Changxiao [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China); Yang, Yue [State Key Laboratory of Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Fan, Jianren, E-mail: fanjr@zju.edu.cn [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2015-10-01

    An improved mass conserving level set method for detailed numerical simulations of liquid atomization is developed to address the issue of mass loss in the existing level set method. This method introduces a mass remedy procedure based on the local curvature at the interface, and in principle, can ensure the absolute mass conservation of the liquid phase in the computational domain. Three benchmark cases, including Zalesak's disk, a drop deforming in a vortex field, and the binary drop head-on collision, are simulated to validate the present method, and the excellent agreement with exact solutions or experimental results is achieved. It is shown that the present method is able to capture the complex interface with second-order accuracy and negligible additional computational cost. The present method is then applied to study more complex flows, such as a drop impacting on a liquid film and the swirling liquid sheet atomization, which again, demonstrates the advantages of mass conservation and the capability to represent the interface accurately.

  15. Mass scaling and non-adiabatic effects in photoassociation spectroscopy of ultracold strontium atoms

    OpenAIRE

    Borkowski, Mateusz; Morzyński, Piotr; Ciuryło, Roman; Julienne, Paul S.; Yan, Mi; DeSalvo, Brian J.; Killian, T. C.

    2014-01-01

    We report photoassociation spectroscopy of ultracold $^{86}$Sr atoms near the intercombination line and provide theoretical models to describe the obtained bound state energies. We show that using only the molecular states correlating with the $^1S_0$$+$$^3P_1$ asymptote is insufficient to provide a mass scaled theoretical model that would reproduce the bound state energies for all isotopes investigated to date: $^{84}$Sr, $^{86}$Sr and $^{88}$Sr. We attribute that to the recently discovered ...

  16. Ion bombardment investigations of impregnated cathodes

    Science.gov (United States)

    Zhang, Xiaobing; Gaertner, Georg

    2003-06-01

    Ion bombardment is one of the important factors limiting the performance of impregnated cathodes (=Ba dispenser cathodes) in high end television tubes or in colour monitor tubes. Hence, when designing a new gun with, e.g. higher electron beam current density, it is important also to model the influence of ion bombardment. Therefore, relations between basic parameters as a function of temperature need to be known quantitatively. In this paper, the emission slump of impregnated cathodes has been analyzed in a diode configuration in UHV with a differentially pumped Ar ion gun. The emission degeneration during and regeneration periods after ion bombardment have been investigated as function of cathode temperature, ion current and ion energy. One of the important results is, that the degeneration time coefficient is only weakly dependent on ion energy. The data matrix obtained can be used to improve the ion bombardment model applied in new electron gun design.

  17. Ion bombardment investigations of impregnated cathodes

    International Nuclear Information System (INIS)

    Ion bombardment is one of the important factors limiting the performance of impregnated cathodes (=Ba dispenser cathodes) in high end television tubes or in colour monitor tubes. Hence, when designing a new gun with, e.g. higher electron beam current density, it is important also to model the influence of ion bombardment. Therefore, relations between basic parameters as a function of temperature need to be known quantitatively. In this paper, the emission slump of impregnated cathodes has been analyzed in a diode configuration in UHV with a differentially pumped Ar ion gun. The emission degeneration during and regeneration periods after ion bombardment have been investigated as function of cathode temperature, ion current and ion energy. One of the important results is, that the degeneration time coefficient is only weakly dependent on ion energy. The data matrix obtained can be used to improve the ion bombardment model applied in new electron gun design

  18. Improved statistical determination of absolute neutrino masses via radiative emission of neutrino pairs from atoms

    Science.gov (United States)

    Zhang, Jue; Zhou, Shun

    2016-06-01

    The atomic transition from an excited state |e ⟩ to the ground state |g ⟩ by emitting a neutrino pair and a photon, i.e., |e ⟩→|g ⟩+|γ ⟩+|νi⟩+|ν¯j⟩ with i , j =1 , 2, 3, has been proposed by Yoshimura and his collaborators as an alternative way to determine the absolute scale m0 of neutrino masses. More recently, a statistical analysis of the fine structure of the photon spectrum from this atomic process has been performed [N. Song et al. Phys. Rev. D 93, 013020 (2016)] to quantitatively examine the experimental requirements for a realistic determination of absolute neutrino masses. In this paper, we show how to improve the statistical analysis and demonstrate that the previously required detection time can be reduced by one order of magnitude for the case of a 3 σ determination of m0˜0.01 eV with an accuracy better than 10%. Such an improvement is very encouraging for further investigations on measuring absolute neutrino masses through atomic processes.

  19. Ion-bombardment etching of nuclear materials

    International Nuclear Information System (INIS)

    Conventional chemical etching often presents difficulties in revealing the microstructure of some materials. Ion bombardment etching has helped in overcoming these difficulties in the metallographic preparation of nuclear ceramic materials. Metallographic examination has played a key role in supporting the nuclear fuel development and fabrication programme in the Radiometallurgy Division. A representative selection of photomicrographs obtained by ion-bombardment etching is presented in this report. (author). 2 refs., 1 tab., 20 figs

  20. Universal charge-mass relation: From black holes to atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.co [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2010-10-04

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q{<=}{mu}{sup 2/3}E{sub c}{sup -1/3}, where q and {mu} are the charge and mass of the physical system respectively, and E{sub c} is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z{<=}Z{sup *}={alpha}{sup -1/3}A{sup 2/3}, where {alpha}=e{sup 2}/h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  1. Determination of the effective atomic and mass numbers for mixture and compound materials in high energy photon interactions

    International Nuclear Information System (INIS)

    In consideration the radiological properties of materials and studying the scattering processes in atomic and nuclear physics, the effective atomic and mass numbers is widely employed. These numbers have been calculated for any mixed or composite materials in interaction with high energy photons (Linac in radiation therapy). A pair equation in terms of these numbers is obtained. The first equation has been derived from the conservation of mass energy law and the second by minimizing the binding energy from the semiempirical mass formula (Myers and Swiatecki formula) that gives a relation between atomic and mass numbers for stable nuclei approximately. By these equations one can obtain the effective atomic and mass numbers for any compound or mixed materials uniquely. These numbers are calculated for some materials and compared with the other studies. (author)

  2. Wall loss of atomic nitrogen determined by ionization threshold mass spectrometry

    International Nuclear Information System (INIS)

    In the afterglow of an inductively coupled N2 plasma, relative N atom densities are measured by ionization threshold mass spectrometry as a function of time in order to determine the wall loss time twN from the exponential decay curves. The procedure is performed with two mass spectrometers on different positions in the plasma chamber. twN is determined for various pressures, i.e., for 3.0, 5.0, 7.5, and 10 Pa. For this conditions also the internal plasma parameters electron density ne and electron temperature Te are determined with the Langmuir probe and the rotational temperature TrotN2 of N2 is determined with the optical emission spectroscopy. For TrotN2, a procedure is presented to evaluate the spectrum of the transition υ′=0→υ″=2 of the second positive system (C3Πu→B3Πg) of N2. With this method, a gas temperature of 610 K is determined. For both mass spectrometers, an increase of the wall loss times of atomic nitrogen with increasing pressure is observed. The wall loss time measured with the first mass spectrometer in the radial center of the cylindrical plasma vessel increases linearly from 0.31 ms for 3 Pa to 0.82 ms for 10 Pa. The wall loss time measured with the second mass spectrometer (further away from the discharge) is about 4 times higher. A model is applied to describe the measured twN. The main loss mechanism of atomic nitrogen for the considered pressure is diffusion to the wall. The surface loss probability βN of atomic nitrogen on stainless steel was derived from twN and is found to be 1 for the present conditions. The difference in wall loss times measured with the mass spectrometers on different positions in the plasma chamber is attributed to the different diffusion lengths

  3. Formation mechanism and yield of molecules ejected from ZnS, CdS, and FeS{sub 2} during ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Nikzad, S.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Gruen, D.M. [Argonne National Lab., IL (United States); Tombrello, T.A. [California Inst. of Technology, Pasadena, CA (United States). Div. of Physics, Mathematics, and Astronomy

    1994-03-01

    Neutral species ejected from single crystals of ZnS, CdS, and FeS{sub 2} during ion bombardment by 3 keV Ar{sup +} were detected by laser post-ionization followed by time-of-flight mass spectrometry. While metal atoms (Fe, Zn, Cd) and S{sub 2} were the dominant species observed, substantial amounts of S, FeS, Zn{sub 2}, ZnS, Cd{sub 2}, and CdS were also detected. The experimental results demonstrate that molecules represent a larger fraction of the sputtered yield than was previously believed from secondary ion mass spectrometry experiments. In addition, the data suggest that the molecules are not necessarily formed from adjacent atoms in the solid and that a modified form of the recombination model could provide a mechanism for their formation.

  4. Formation mechanism and yield of molecules ejected from ZnS, CdS, and FeS2 during ion bombardment

    International Nuclear Information System (INIS)

    Neutral species ejected from single crystals of ZnS, CdS, and FeS2 during ion bombardment by 3 keV Ar+ were detected by laser post-ionization followed by time-of-flight mass spectrometry. While metal atoms (Fe, Zn, Cd) and S2 were the dominant species observed, substantial amounts of S, FeS, Zn2, ZnS, Cd2, and CdS were also detected. The experimental results demonstrate that molecules represent a larger fraction of the sputtered yield than was previously believed from secondary ion mass spectrometry experiments. In addition, the data suggest that the molecules are not necessarily formed from adjacent atoms in the solid and that a modified form of the recombination model could provide a mechanism for their formation

  5. Effective mass of 4He atom in superfluid and normal phases

    International Nuclear Information System (INIS)

    The formula for the temperature dependence of the effective mass of a 4He atom in the superfluid and normal phases is obtained. This expression for the effective mass allows one to eliminate infra-red divergences, being applicable at all temperatures, except for a narrow fluctuation region 0.97<< approx T/Tc<=1. In the high and low temperature limits, as well as in the interactionless limit, the obtained expression reproduces the well known results. The temperature dependence of the heat capacity and the phase transition temperature Tc∼2.18 K are calculated, by using the formula obtained for the effective mass. In the framework of the approach proposed in this work, the small critical index η is determined in the random phase approximation. The obtained value corresponds to the well known result

  6. Correlated ion analysis and the interpretation of atom probe mass spectra

    International Nuclear Information System (INIS)

    Several techniques are presented for extracting information from atom probe mass spectra by investigating correlations within multiple-ion detector events. Analyses of this kind can provide insights into the origins of noise, the shape of mass peaks, or unexpected anomalies within the spectrum. Data can often be recovered from within the spectrum noise by considering the time-of-flight differences between ions within a multiple event. Correlated ion detection, particularly when associated with shifts in ion energies, may be used to probe the phenomenon of molecular ion dissociation, including the questions of data loss due to ion pile-up or the generation of neutrals in the dissociation process. -- Research Highlights: → Multiple-ion detection events may contain information not seen in the mass spectrum. → Analysis of multiple events can yield information on molecular ion dissociation. → Neutral species may be generated by dissociation subsequent to field evaporation.

  7. Study of the thermal stability of PPS films bombarded with B+ and Ar2+ ions

    International Nuclear Information System (INIS)

    The thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and solubility tests, can be advantageously used on the study of chemical effects on ion-bombarded polymeric materials. Ionic implantation affects both chemical and physical structures of these materials and at low fluences these changes are hard to detect. TGA allows a qualitative assessment of the degradation process through the analysis of residual mass thermograms and a quantitative evaluation of the bombarded samples activation parameters by means of dynamic kinetic measurements. For PPS (paraphenylene sulfide) samples irradiated with 1012 B+/cm2 fluence the activation energy (EA), calculated for low conversions (10-30%), is 290 kJ/mol, which is similar to the value of the pristine polymer. Higher fluences B+ led to lower EA showed a drop of 30% in relation to the pristine. Effects on PPS, poly(paraphenylene sulfide), bombarded with B+ and Ar2+ led to a gradually increasing loss of thermal stability and higher residual mass. Multimodal thermograms revealed increasing complexity of the resulting polymeric materials as fluences become higher. Ion stopping power played a key role on the thermal behavior of the modified polymer chains. The TGA results correlated well with the FTIR results, in which C-S and S-S bonds showed to be more susceptible to the ionic bombardment and thermal degradation process than the other bonds. Progressive crosslinking in the bombarded samples is followed by solubility tests and residual mass. ((orig.))

  8. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    Science.gov (United States)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-08-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field ϕ =ϕ0cos(mϕt ) , can induce oscillating variations in the fundamental constants through their interactions with the standard model sector. We calculate the effects of such possible interactions, which may include the linear interaction of ϕ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive limits on the linear interaction of ϕ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of ϕ with the Higgs boson, our derived limits improve on existing constraints by up to 2-3 orders of magnitude.

  9. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    CERN Document Server

    Stadnik, Y V

    2016-01-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field $\\phi = \\phi_0 \\cos(m_\\phi t)$, can induce oscillating variations in the fundamental constants through their interactions with the Standard Model sector. We calculate the effects of such possible interactions, which may include the linear interaction of $\\phi$ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive new limits on the linear interaction of $\\phi$ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of $\\phi$ with the Higgs boson, our derived limits improve on existing constraints by up to $2-3$ orders of magnitude.

  10. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium \\beta -decay

    CERN Document Server

    Lokhov, Alexey V

    2016-01-01

    Data analysis of the next generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with a better then 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  11. Study of the mass attenuation coefficients and effective atomic numbers in some gemstones

    International Nuclear Information System (INIS)

    The total mass attenuation coefficients for natural beryl, corundum, garnet, pearl, and tourmaline gemstones were measured at 81, 356.5, 661.6, 1173.2, and 1332.5 keV photon energies. The samples were irradiated with 133Ba, 137Cs and 60Co radioactive point sources using gamma ray transmission method. Total atomic and electronic cross-sections, effective atomic numbers and electron densities were determined experimentally and theoretically. The experimental values were compared with the calculated values for all samples. The calculations were extended for total photon interactions in a wide energy range (1 keV-100 GeV) using WinXCom program of the most commonly irradiated gemstones with different sources of ionized radiation. The values of these parameters have been found to vary with photon energy and chemical composition of the gemstones. All variations of these parameters against energy are shown graphically for total photon interactions. (author)

  12. Differences in sodium transport in SiO2 films caused by ion and neutral-particle bombardment

    International Nuclear Information System (INIS)

    The transport of impurity atoms from the surface to the SiO2/Si interface of SiO2 films on silicon subjected to ion and neutral-particle bombardment has been found to depend critically on the charge state of the incident projectile. SiO2 films on silicon, intentionally contaminated with 22Na, have been bombarded by low-energy neutral N02 and Ar0, by N+2 and Ar+ ions, and by these ions with concurrent thermal electron flooding of the insulator surface. Neutral-particle bombardment in the energy range 500--2000 eV causes no measurable sodium transport to the SiO2/Si interface. Ion bombardment at the same energy and dose causes migration of much of the sodium away from the SiO2 surface to the interface. Ion bombardment in the presence of simultaneous electron flooding is an intermediate case, causing two orders of magnitude less sodium transport than ions alone, but resulting in at least two orders of magnitude more sodium transport than neutral-particle bombardment. These results suggest that neutral-atom sputtering or neutral-atom beam methods may be preferred techniques for insulator profile analysis to avoid problems associated with impurity transport, and neutral beams may be preferable to ion beams for sputter etching

  13. Mass and orientation effects in dissociative collisions between rare gas atoms and alkali halide molecules

    International Nuclear Information System (INIS)

    The collision induced dissociation of alkali halide molecules to ion pairs upon impact with hyperthermal rare gas atoms has been investigated using the crossed molecular beam method. Relative total cross sections for the dissociation of CsI, CsBr, RbI, and KI to ion pairs upon collision with xenon and krypton have been measured over a relative collision energy range from threshold to 10 and 8 eV, respectively. In addition, complete angular and energy distributions of both dissociated ions from Xe+CsI, CsBr, and RbI collisions and from Kr+CsI and CsBr collisions have been obtained at several collision energies within the above energy range. Mass, collision orientation, and energy dependence effects observed throughout this work define two limiting case dissociation mechanisms for the Xe(Kr)+MX→Xe(Kr)+M++X- processes. The dominant dissociation configuration consists of the rare gas atom incident on the light atom end of the alkali halide molecule in a near collinear collision. The less preferred dissociation mechanism results when the rare gas atom is incident in a near collinear configuration on the heavy atom end of the alkali halide molecule. Experimental measurements of the percentage of energy transfer from the relative kinetic energy between Xe(Kr) and MX to the relative motion of M+--X- range as high as 95%; these percentage energy transfers correlate well with the predictions of an impulsive collision model. Three-dimensional classical trajectory calculations using realistic interaction potentials have been performed and they verify the dynamical interpretation suggested by the experiments

  14. Chloride isolation for accelerator mass spectrometry of 36Cl produced by atomic bomb neutrons

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry was performed at the Munich tandem laboratory to determine the ratio of 36Cl/Cl in silicate rock samples exposed to neutrons of the Hiroshima atomic bomb. Chloride was chemically separated from silicate rock for this purpose. Five grams of silicate rock was fused with 30 g of sodium hydroxide and dissolved in 900 ml of water. The chloride in the resulting solution was spectrophotometrically determined. Chloride was precipitated as silver chloride by addition of appropriate amounts of silver nitrate, and silver chloride was then collected on a membrane filter. The chloride in the rock samples was thus isolated quantitatively. (author)

  15. Effect of cumulative helium bombardments on the surface and structural properties of tungsten

    International Nuclear Information System (INIS)

    The surface and structural properties of tungsten after cumulative helium bombardments have been investigated using molecular dynamics simulations. Helium atoms at 80 eV were injected into tungsten (0 0 1), (1 1 0) and (1 1 1) surfaces. The retention and distribution of helium atoms, the formation and growth of helium clusters and the surface evolution of tungsten substrates are found to be influenced by surface orientations and temperatures

  16. Mass Attenuation Coefficients and Effective Atomic Numbers of Thermoluminescent Aluminum Oxide Based Glasses

    International Nuclear Information System (INIS)

    The photon mass attenuation coefficient of a newly prepared 15Al2O3-35P2O5- xCaO-(50-x)Na2CO3 glass system (symbolized as APCN), where x=5, 10, 15, 20, 25, 30, 35, 40 all in mol%, have been calculated at photon energies of 0.662 MeV (137Cs source) and 1.25 MeV (60Co source). In addition, the photon mass attenuation coefficient of 15Al2O3-35P2O5-25CaO-25Na2CO3 glass system (symbolized as APCN25-25), all in mol%, doped with different concentrations of SiO2 have been calculated. The WinXCOM software program on the basis of mixture rule was utilized in calculations. The total atomic (σt) and electronic (σe) cross sections, effective atomic number (Zeff) and electron density (Nel) were calculated. The results showed that the total mass attenuation coefficient showed an extremely dependence on incoherent scattering processes where it varies with Na2CO3 contents in the APCN composition while changing the concentrations of SiO2 in APCN25-25 glass showed slight changes in the values. Otherwise, the mass attenuation coefficient (µm) had higher values at 0.662 MeV than those of 1.25 MeV in both APCN and APCN25-25 glass systems. The values of Zeff showed a decrease with increasing Na2CO3 contents in the APCN composition. The should highly be considered in dealing with such prepared APCN glass system as a gamma ray detector, specially as thermoluminescence dosimeter.

  17. Ion bombardment and disorder in amorphous silicon

    International Nuclear Information System (INIS)

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects

  18. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds

    Indian Academy of Sciences (India)

    Shivalinge Gowda; S Krishnaveni; T Yashoda; T K Umesh; Ramakrishna Gowda

    2004-09-01

    Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO3, CaSO4, CaSO4·2H2O, SrSO4, CdSO4, BaSO4, C4H6BaO4 and 3CdSO4·8H2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy in elements of atomic number was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.

  19. Atomic force microscopy fishing and mass spectrometry identification of gp120 on immobilized aptamers

    Directory of Open Access Journals (Sweden)

    Ivanov YD

    2014-10-01

    Full Text Available Yuri D Ivanov,1 Natalia S Bukharina,1 Tatyana O Pleshakova,1 Pavel A Frantsuzov,1 Elena Yu Andreeva,1 Anna L Kaysheva,1,2 Victor G Zgoda,1 Alexander A Izotov,1 Tatyana I Pavlova,1 Vadim S Ziborov,1 Sergey P Radko,1 Sergei A Moshkovskii,1 Alexander I Archakov1 1Department of Personalized Medicine, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Moscow, Russia; 2PostgenTech Ltd., Moscow, Russia Abstract: Atomic force microscopy (AFM was applied to carry out direct and label-free detection of gp120 human immunodeficiency virus type 1 envelope glycoprotein as a target protein. This approach was based on the AFM fishing of gp120 from the analyte solution using anti-gp120 aptamers immobilized on the AFM chip to count gp120/aptamer complexes that were formed on the chip surface. The comparison of image contrasts of fished gp120 against the background of immobilized aptamers and anti-gp120 antibodies on the AFM images was conducted. It was shown that an image contrast of the protein/aptamer complexes was two-fold higher than the contrast of the protein/antibody complexes. Mass spectrometry identification provided an additional confirmation of the target protein presence on the AFM chips after biospecific fishing to avoid any artifacts. Keywords: gp120 HIV-1 envelope glycoprotein, aptamer, atomic force microscopy, mass spectrometry

  20. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    International Nuclear Information System (INIS)

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids. - Highlights: • We report the values of mass attenuation coefficients (μ/ρ). • The values of (Zeff) i.e. effective atomic number are calculated. • Measurement of effective electron density (Neff) of some amino acids. • Comparison of all μ/ρ values with XCOM programme

  1. Molecular dynamics simulations of cumulative helium bombardments on tungsten surfaces

    International Nuclear Information System (INIS)

    Molecular dynamics simulations were performed to study the cumulative bombardments of low-energy (60–200 eV) helium atoms on tungsten surfaces. The behaviour of helium and the response of tungsten surface were investigated. The helium incident energy and tungsten temperature play important roles on the formation and growth of helium clusters. The temperature can promote the coalescence of helium clusters and increase the size of the helium clusters. The rupture of the helium clusters has also been observed. During the formation of helium clusters, the interstitial tungsten atoms are produced and evolve into bundles of <1 1 1> crowdions, which would be constrained around the helium clusters for a long time. However, they will finally move onto the top surface along the <1 1 1> direction, which results in stacking the tungsten atoms on the surface. The complex combination effects of the helium clusters and the interstitial atoms result in the growth of the surfaces. Besides, several tungsten atoms were ejected from tungsten surfaces

  2. A SIMS study on positive and negative ions sputtered from graphite by mass-separated low energy Ne+, N2+ and N+ ions

    International Nuclear Information System (INIS)

    Temperature effect on positive and negative ion yields sputtered from graphite by low energy Ne+, N2+ and N+ ions was studied using a special mass-separated low energy ion beam system and secondary ion mass spectrometry (SIMS) measurements. The origin of dominant positive and negative ions was discussed according to the obtained temperature effect. It was found that C+ ion emission was enhanced by nitrogen ion bombardment compared with Ne+ bombardment and decreased to the same level as Ne+ bombardment at elevated temperature. The enhancement effect was attributed to adsorption or deposition of nitrogen to form weakly bound Cδ+-CNδ- species on the surface. No chemical enhancement effect was observed on C2- emission during nitrogen ion bombardment. The C2- yield increased with temperature during Ne+ and nitrogen ion bombardment and was assigned to originate from carbon network of graphite as a consequence of physical sputtering. During nitrogen ion bombardment, CN- ions dominated both the positive and negative ion emission. CN- ion yield during 800 eV N2+ and N+ bombardment decreased at elevated temperature, whereas during 100 eV N2+ bombardment, it increased with temperature. CN- yield as a function of kinetic energy of primary ions also exhibited difference from that of C+ and C2-. Three possible channels for CN- emission have been proposed. At higher primary energy (several hundred eV and above), physical sputtering can partly account for CN- emission. At lower primary energy (below 100 eV), it is attributed to chemical etching of surface carbon atoms by energetic nitrogen atoms and ion-induced desorption of CN species

  3. Prediction of mass excess, β-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and β-decay energies (β-decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV

  4. Genetic transformation of Alstroemeria using particle bombardment

    NARCIS (Netherlands)

    Lin, H.S.; Toorn, van der C.; Raemakers, C.J.J.M.; Visser, R.G.F.; Jeu, de M.J.; Jacobsen, E.

    2000-01-01

    Transgenic plants were obtained after particle bombardment of embryogenic callus derived from stem segments of two tetraploid Alstroemeria genotypes with plasmids containing different selection/reporter genes. Firstly, a plasmid containing a firefly luciferase reporter gene driven by the maize ubiqu

  5. Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering

    International Nuclear Information System (INIS)

    Highlights: ► Mass attenuation coefficient of Inconel 738 superalloy was measured. ► Gamma-ray energies were changed by Compton scattering technique. ► Effective atomic number and electron density are also calculated. ► All parameters decrease with increased energy. ► The experimental values are in good agreement with theoretical ones. - Abstract: The mass attenuation coefficient of Inconel 738 superalloy has been measured at different gamma ray energies by using the Compton scattering technique. The theoretical values of mass attenuation coefficient of a glass sample were calculated using WinXCom program. The effective atomic number and electron density are also calculated. The results showed that the mass attenuation coefficients, effective atomic number and electron density increase with the decrease in gamma ray energies which is in good agreement with theoretical values (less than 2% error)

  6. Universal charge-mass relation: From black holes to atomic nuclei

    CERN Document Server

    Hod, Shahar

    2010-01-01

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form $q\\leq\\mu^{2/3}E^{-1/3}_c$, where $q$ and $\\mu$ are the charge and mass of the physical system respectively, and $E_c$ is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number $Z$ of protons in a nucleus of given mass number $A$: $Z\\leq Z^*={\\alpha}^{-1/3}A^{2/3}$, where $\\alpha=e^2/\\hbar$ is the ...

  7. Mass scaling and non-adiabatic effects in photoassociation spectroscopy of ultracold strontium atoms

    CERN Document Server

    Borkowski, Mateusz; Ciuryło, Roman; Julienne, Paul S; Yan, Mi; DeSalvo, Brian J; Killian, T C

    2014-01-01

    We report photoassociation spectroscopy of ultracold $^{86}$Sr atoms near the intercombination line and provide theoretical models to describe the obtained bound state energies. We show that using only the molecular states correlating with the $^1S_0$$+$$^3P_1$ asymptote is insufficient to provide a mass scaled theoretical model that would reproduce the bound state energies for all isotopes investigated to date: $^{84}$Sr, $^{86}$Sr and $^{88}$Sr. We attribute that to the recently discovered avoided crossing between the $^1S_0$$+$$^3P_1$ $0_u$ ($^3\\Pi^+_u$) and $^1S_0$$+$$^1D_2$ $0_u$ ($^1\\Sigma^+_u$) potential curves at short range and we build a mass scaled interaction model that quantitatively reproduces the available $0_u$ bound state energies for the three stable bosonic isotopes. We also provide a two-channel model that incorporates the rotational (Coriolis) mixing between the $0_u$ and $1_u$ curves which, while not mass scaled, is capable of quantitatively describing the vibrational splittings observed...

  8. Toward a Fieldable Atomic Mass Spectrometer for Safeguards Applications: Sample Preparation and Ionization

    Energy Technology Data Exchange (ETDEWEB)

    Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth; Jones, Sarah MH; Manard, Benjamin T.

    2014-10-31

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for the development of new methods to detect misuse at nuclear fuel cycle facilities such as reprocessing and enrichment plants. At enrichment plants, for example, the IAEA’s contemporary safeguards approaches are based on a combination of routine and random inspections that include collection of UF6 samples from in-process material and selected cylinders for subsequent analyses. These analyses include destructive analysis (DA) in a laboratory (typically by mass spectrometry [MS]) for isotopic characterization, and environmental sampling (ES) for subsequent laboratory elemental and isotopic analysis (also both typically by MS). One area of new method development includes moving this kind of isotope ratio analytical capability for DA and ES activities into the field. Some of the reasons for these developments include timeliness of results, avoidance of hazardous material shipments, and guidance for additional sample collecting. However, this capability does not already exist for several reasons, such as that most lab-based chemical and instrumental methods rely on laboratory infrastructure (highly trained staff, power, space, hazardous material handling, etc.) and require significant amounts of consumables (power, compressed gases, etc.). In addition, there are no currently available, fieldable instruments for atomic or isotope ratio analysis. To address these issues, Pacific Northwest National Laboratory (PNNL) and collaborator, Clemson University, are studying key areas that limit the fieldability of isotope ratio mass spectrometry for atomic ions: sample preparation and ionization, and reducing the physical size of a fieldable mass spectrometer. PNNL is seeking simple and robust techniques that could be effectively used by inspectors who may have no expertise in analytical MS. In this report, we present and describe the preliminary findings for three candidate

  9. The Effect of Heavy-Particle Bombardment on Wigner-Energy Storage in Graphite

    International Nuclear Information System (INIS)

    The late of Wigner energy storage can be accelerated, relative to neutron-bombarded graphite, if this base material is bombarded by suitable quantities of heavy particles. This has been shown by irradiation of porous graphite samples that were solution impregnated with uranium and boron. The particle size in these samples was so small that the heterogeneous mixture is homogeneously damaged. The uranium and boron reaction products have large differences in mass, initial charge and reaction energy, and they give rise to different rates of energy storage. The energy storage is nearly proportional to the total kinetic energy dissipated in the graphite. Interpretation of these data provides the basis for this report. (author)

  10. Atomic mass dependence of hadron production in semi-inclusive deep inelastic lepton-nucleus scattering

    Institute of Scientific and Technical Information of China (English)

    SONG Li-Hua; LIU Na; DUAN Chun-Gui

    2013-01-01

    Hadron production in lepton-nucleus deep inelastic scattering is studied in a quark energy loss model.The leading-order computations for hadron multiplicity ratios are presented and compared with the selected HERMES pions production data with the quark hadronization occurring outside the nucleus by means of the hadron formation time.It is found that the obtained energy loss per unit length is 0.440±0.013 GeV/fm for an outgoing quark by the global fit.It is confirmed that the atomic mass number dependence of hadron attenuation is theoretically and experimentally in good agreement with the A2/3 power law for quark hadronization occurring outside the nucleus.

  11. Crossed-second-order specific-mass isotope shift in the Nickel atom

    Science.gov (United States)

    Fonseca, A. L. A.; Bauche, J.

    1983-10-01

    The crossed-second-order corrections to the specific mass shifts of the lowest terms of the two lowest configurations of the Nickel atom are evaluated ab initio in the Multiconfigurational Hartree-Fock scheme. The excitations towards the nf( l=3) empty subshells play the major role. If the contributions obtained are added to the Hartree-Fock values, the discrepancy between experiment and theory for the 3 d 8 4 s 2-3 d 9 4 s (virtual) transition is only reduced by one third. As concerns the differences between the specific shifts of the five Russell-Saunders terms of 3 d 8 4 s 2, the crossed-second-order contributions are predicted to be practically as large as the Hartree-Fock values, which makes the total definitely measurable.

  12. Crossed-second-order specific-mass isotope shift in the nickel atom

    International Nuclear Information System (INIS)

    The crossed-second-order corrections to the specific mass shifts of the lowest terms of the two lowest configurations of the Nickel atom are evaluated ab initio in the Multiconfigurational Hartree-Fock scheme. The excitations towards the nf(l=3) empty subshells play the major role. If the contributions obtained are added to the Hartree-Fock values, the discrepancy between experiment and theory for the 3d8 4s2-3d9 4s (virtual) transition is only reduced by one third. As concerns the differences beteen the specific shifts of the five Russell-Saunders terms of 3d8 4d2, the crossed-second-order contributions are predicted to be practically as large as the Hartree-Fock values, which makes the total definitely measurable. (orig.)

  13. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Herczeg, G. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Carr, J. S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Bruderer, S., E-mail: pascucci@lpl.arizona.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  14. Test of the Pauli exclusion principle for nucleons and atomic electrons by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    The Pauli exclusion principle was tested by searching with accelerator mass spectrometry for non-Paulian atoms with three electrons in the K-shell and for non-Paulian nuclei with three protons or three neutrons in the nuclear 1 s1/2 shell. For non-Paulian atoms of 20Ne and 36Ar the following limits have been obtained: N(20Ne)/N(20Ne)-21 and N(36Ar)/N(36Ar)-17. For non-Paulian nuclei of 5Li and 5He with three protons or three neutrons, respectively, in the nuclear 1 s1/2 shell the following limits have been measured: N(5Li)/N(6Li)-17 for a range of proton separation energies of 5Li between 0 and 50 MeV and N(5He)/N(4He)-15 for neutron separation energies between 0 and 32 MeV. The result for 5Li is used to deduce a limit for the probability β2/2 of finding two colliding protons in the symmetric state with respect to exchange to be β2/2-32. (orig.)

  15. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    Science.gov (United States)

    Kore, Prashant S.; Pawar, Pravina P.

    2014-05-01

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

  16. Thermodynamic effects in nanocrystalline metals at ion bombardment

    International Nuclear Information System (INIS)

    Formation of a thermoelastic peak (TEP), i.e. the nanometer overheated region near the trajectory of low energy ion is investigated. It is shown that radius and density of thermal energy in TEP are determined by average projective range and the dynamic of the ion elastic loss as the result of phonon heat conductivity. The nanocrystalline nature of metal structure limits the range of phonons and influences on the formation of the thermal field in TEP. The dependences of radius, energy density and melt mass in TEP on ion energy and crystalline size are theoretically investigated on examples of Fe+ and Al+ peaks in nanocrystalline iron and aluminium, accordingly. The connection between melt mass and sputtering rate in TEP at bombardment of low-energy ions of nanocrystalline material is discussed.

  17. Wavelength Tunability of Ion-Bombardment-Induced Ripples on Sapphire

    International Nuclear Information System (INIS)

    A study of ripple formation on sapphire surfaces by 300-2000 eV Ar+ ion bombardment is presented. Surface characterization by in-situ synchrotron grazing incidence small angle x-ray scattering and ex-situ atomic force microscopy is performed in order to study the wavelength of ripples formed on sapphire (0001) surfaces. We find that the wavelength can be varied over a remarkably wide range -- nearly two orders of magnitude -- by changing the ion incidence angle. Within the linear theory regime, the ion induced viscous flow smoothing mechanism explains the general trends of the ripple wavelength at low temperature and incidence angles larger than 30o. In this model, relaxation is confined to a few nm thick damaged surface layer. The behavior at high temperature suggests relaxation by surface diffusion. However, strong smoothing is inferred from the observed ripple wavelength near normal incidence, which is not consistent with either surface diffusion or viscous flow relaxation

  18. Wavelength tunability of ion-bombardment-induced ripples on sapphire

    International Nuclear Information System (INIS)

    A study of ripple formation on sapphire surfaces by 300-2000 eV Ar+ ion bombardment is presented. Surface characterization by in-situ synchrotron grazing incidence small angle x-ray scattering and ex-situ atomic force microscopy is performed in order to study the wavelength of ripples formed on sapphire (0001) surfaces. We find that the wavelength can be varied over a remarkably wide range--nearly two orders of magnitude--by changing the ion incidence angle. Within the linear theory regime, the ion induced viscous flow smoothing mechanism explains the general trends of the ripple wavelength at low temperature and incidence angles larger than 30 deg. . In this model, relaxation is confined to a few nm thick damaged surface layer. The behavior at high temperature suggests relaxation by surface diffusion. However, strong smoothing is inferred from the observed ripple wavelength near normal incidence, which is not consistent with either surface diffusion or viscous flow relaxation

  19. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    Science.gov (United States)

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. PMID:25623487

  20. How Common are Extrasolar, Late Heavy Bombardments?

    CERN Document Server

    Booth, Mark; Morbidelli, Alessandro; Moro-Martín, Amaya; Levison, Harold F

    2009-01-01

    The habitability of planets is strongly affected by impacts from comets and asteroids. Indications from the ages of Moon rocks suggest that the inner Solar System experienced an increased rate of impacts roughly 3.8 Gya known as the Late Heavy Bombardment (LHB). Here we develop a model of how the Solar System would have appeared to a distant observer during its history based on the Nice model of Gomes et al. (2005). We compare our results with observed debris discs. We show that the Solar System would have been amongst the brightest of these systems before the LHB. Comparison with the statistics of debris disc evolution shows that such heavy bombardment events must be rare occurring around less than 12% of Sun-like stars.

  1. Magnetoresistance and ion bombardment induced magnetic patterning

    International Nuclear Information System (INIS)

    In this thesis the combination of the magnetic patterning of the unidirectional anisotropy and the tunnel magnetoresistance effect is investigated. In my diploma thesis, it has been shown that it is in principle possible to use the magnetic patterning by ion bombardment to magnetically structure the pinned layer in magnetic tunnel junctions (MTJs) with alumina barrier. Furthermore, it has been shown that the side effects which have been observed after this treatment can be at least reduced by an additional heating step. Starting from this point, the applicability of ion bombardment induced magnetic patterning (IBMP) in general and the combination of IBMP and MTJs in particular is investigated and new applications are developed. (orig.)

  2. Cathode Ion Bombardment in RF Photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V.

    2008-09-01

    In this paper, we use the method of rapid oscillating field to solve the equation of ion motion in an RF gun. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper proposes a simple mitigation recipe that can reduce the rate of ion bombardment.

  3. INVESTIGATIONS OF SUPERCONDUCTING AND NON-SUPERCONDUCTING YBa2 Cu3 O7-x BY FIELD ION MICROSCOPY, ATOM-PROBE MASS SPECTROSCOPY AND FIELD ELECTRON EMISSION

    OpenAIRE

    Kellogg, G.; Brenner, S

    1988-01-01

    The structure and composition of superconducting and non-superconducting samples of YBa2Cu3O7-x were examined by field ion microscopy, atom-probe mass spectroscopy and field-electron emission techniques. Field ion microscope images from both types of material exhibited ring structures associated with atomic or multiatomic layers and uniform, layer-by-layer field evaporation was possible. Atom-probe mass spectra contained signals corresponding to atomic and molecular oxygen, all three metals, ...

  4. Polymerization of solid C60 under C60 cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 95, - (2009), s. 867-873. ISSN 0947-8396 R&D Projects: GA AV ČR(CZ) KAN400480701; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : fulleren * cluster * bombardment * polymerization Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.595, year: 2009 http://www.springerlink.com/content/0947-8396

  5. Enhanced adhesion of Cu-W thin films by ion beam assisting bombardment implanting

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling-ping; WANG Ming-pu; WANG Rui; LI Zhou; ZHU Jia-jun; PENG Kun; LI De-yi; LI Shao-lu

    2008-01-01

    Cu-W thin film with high W content was deposited by dual-target DC-magnetron co-sputtering technology. Effects of the substrates surface treating technique on the adhesive strength of Cu-W thin films were studied. It is found that the technique of ion beam assisting bombardment implanting of W particles can remarkably improve the adhesive property of Cu-W thin films. Indentation and scratching test show that, the critical load is doubled over than the sample only sputter-cleaned by ion beam. The enhancing mechanism of ion beam assisting bombardment implanting of Cu-W thin films was analyzed. With the help of mid-energy Ar+ ion beam, W atoms can diffuse into the Fe-substrate surface layer; Fe atoms in the substrate surface layer and W atoms interlace with one another; and microcosmic mechanical meshing and diffusing combination on atom-scale among the Fe and W atoms through the film/substrate interface can be formed. The wettability and thermal expansion properties of the W atoms diffusion zone containing plentiful W atoms are close to those of pure W or W-based Cu-W film.

  6. Mass spectrometric determination of atomization energies of inorganic molecules and their correlation by empirical models of bonding

    International Nuclear Information System (INIS)

    The application of the Knudsen effusion method combined with mass spectrometry for the measurement of atomization energies of inorganic molecules is described. Recent results with emphasis on molecular metals, intermetallic molecules and metal carbides are presented. The use and limitations of various empirica models of bonding are illustrated by comparing experimental values with those calculated by the various models

  7. Bombardment of gas molecules on single graphene layer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Ramki [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam 660-701 (Korea, Republic of); Park, Jae Hyun [Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ha, Dong Sung [Future Propulsion Center, Agency for Defense Development, Daejeon 305-600 (Korea, Republic of)

    2014-12-09

    Graphite is widely used as a material for rocket-nozzle inserts due to its excellent thermo-physical properties as well as low density. During the operation of rockets, the surface of the graphite nozzle is subjected to very high heat fluxes and the undesirable erosion of the surface occurs due to the bombardment of gas molecules with high kinetic energy, which causes a significant reduction of nozzle performance. However, the understanding and quantification of such bombardment is not satisfactory due to its complexity: The bond breaking-forming happens simultaneously for the carbon atoms of graphene, some gas molecules penetrate through the surface, some of them are reflected from the surface, etc. In the present study, we perform extensive molecular dynamics (MD) simulations to examine the bombardment phenomena in high temperature environment (several thousand Kelvin). Advanced from the previous studies that have focused on the bombardment by light molecules (e.g., H{sub 2}), we will concentrate on the impact by realistic molecules (e.g., CO{sub 2} and H{sub 2}O). LAMMPS is employed for the MD simulations with NVE ensemble and AIREBO potential for graphene. The molecular understanding of the interaction between graphene and highly energetic gas molecules will enable us to design an efficient thermo-mechanical protection system.

  8. Calculations on displacement damage and its related parameters for heavy ion bombardment in reactor materials

    International Nuclear Information System (INIS)

    The depth distribution of displacement damage expressed in displacements per atom (DPA) in reactor materials such as Mo, Nb, V, Fe and Ni bombarded by energetic nitrogen, argon and self ions with incident energy below 2 MeV was calculated following the theory developed by Lindhard and co-workers for the partition of energy as an energetic ion slowing down. In this calculation, energy loss due to electron excitation was taken into account for the atomic collision cascade after the primary knock-on process. Some parameters indispensable for the calculation such as energy loss rate, damage efficiency, projected range and its straggling were tabulated as a function of incident ion energy of 20 keV to 2 MeV. The damage and parameters were also calculated for 2 MeV nickel ions bombarding Fe targets. In this case, the DPA value is of 40--75% overestimated in a calculation disregarding electronic energy loss for primary knock-on atoms. The formula proposed in this report is significant for calculations on displacement damage produced by heavy ion bombardment as a simulation of high fluence fast neutron damage. (auth.)

  9. Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers

    International Nuclear Information System (INIS)

    In this study, the total mass attenuation coefficients (mm) for some homo- and hetero-chain polymers, namely polyamide-6 (PA-6), poly-methyl methacrylate (PMMA), low-density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS) were measured at 59.5, 511, 661.6, 1173.2, 1274.5 and 1332.5 keV photon energies. The samples were separately irradiated with 241Am, 22Na, 137Cs and 60Co (638 kBq) radioactive gamma sources. The measurements were made by performing transmission experiments with a '2 x 2' NaI(Tl) scintillation detector having an energy resolution of 7 % at 662 keV gamma ray from the decay of 137Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μm values for the investigated samples. Furthermore, Zeff and Neff of each polymer were computed for total photon interaction cross-sections using theoretical data over a wide energy region from 1 keV to 10 MeV. The experimental values of the selected polymers were found to be in good agreement with the theoretical values. (authors)

  10. Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers.

    Science.gov (United States)

    Kucuk, Nil; Cakir, Merve; Isitman, Nihat Ali

    2013-01-01

    In this study, the total mass attenuation coefficients (μ(m)) for some homo- and hetero-chain polymers, namely polyamide-6 (PA-6), poly-methyl methacrylate (PMMA), low-density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS) were measured at 59.5, 511, 661.6, 1173.2, 1274.5 and 1332.5 keV photon energies. The samples were separately irradiated with (241)Am, (22)Na, (137)Cs and (60)Co (638 kBq) radioactive gamma sources. The measurements were made by performing transmission experiments with a 2″×2″ NaI(Tl) scintillation detector having an energy resolution of 7 % at 662 keV gamma ray from the decay of (137)Cs. The effective atomic numbers (Z(eff)) and the effective electron densities (N(eff)) were determined experimentally and theoretically using the obtained μ(m) values for the investigated samples. Furthermore, Z(eff) and N(eff) of each polymer were computed for total photon interaction cross-sections using theoretical data over a wide energy region from 1 keV to 10 MeV. The experimental values of the selected polymers were found to be in good agreement with the theoretical values. PMID:22645382

  11. EPR, FTIR, and FAB mass spectrometric investigation of reaction of H atoms with C 60 in a cyclohexane matrix

    Science.gov (United States)

    Howard, J. A.

    1993-03-01

    Hydrogen atoms have been reacted with C 60 in a cyclohexane matrix at 77 K in a rotating cryostat. Species HC 60, H 2 n + 1 C 60, and H 2 nC 60 have been identified by EPR, FTIR and FAB mass spectrometry. HC 60 has the magnetic parameters aH(1) = 92.9 ± 0.5 MHz and g = 2.00218 ± 0.00004. These values are compared to the deuterium and muonium analogs. Reasons for the isotope effect in the hydrogen and muon hyperfine interactions of HC 60 and MuC 60 are discussed. The narrow line widths of the EPR transitions of H 2 n + 1C 60 may be associated with globe-trotting hydrogen atoms. C 60 acts as a H atom sponge at high atom fluxes and H 2 nC 60s with n as large as 17 have been identified.

  12. Modification of rubber by ion bombardment

    International Nuclear Information System (INIS)

    The paper presents selected effects of surface modification of rubber vulcanizates upon irradiation with He+, O+ or Ar+ ions. Changes to chemical composition and physical structure of rubber macromolecules are discussed in terms of influence of the treatment on functional properties of the vulcanizates, like friction and wettability. Hydrogen release, responsible for further crosslinking and oxidation of surface layer can protect bulk of the materials from action of external chemical factors. Effectiveness of a protective layer being formed due to ion bombardment has been examined from the point of view of thermal and ozone aging, as well as fuel resistance of the rubber vulcanizates.

  13. Ion-atom collisions for materials study

    International Nuclear Information System (INIS)

    The diffusion process of silver in aluminium was studied in thin films as a function of temperature, the most important characteristics of dispersor atoms that technique permits us to study are the atomic mass and depth into the solid. This is possible because when a sample is bombarded with ions of a given energy, the ions are dispersed with different energies for different masses and depths, hence this technique is a useful instrument for research into the physical processes which ocurr in thin films up to depths of several microns, one of the results obtained after the bombardment of the target with protons having an energy of 650 KeV was that when the target reached a temperature of approximately 400C, 800C, 1100C and 1600C during 15 minutes and the spectra of heated and unheated targets were compared it was found that the aluminium peak, the valley, the silver peak and the peak over the silver peak change with the increase of temperature and tend to get mixed, that is to say that silver and the aluminium are diffusing themselves. The analysis is essentially qualitative with this technique we ca also measure the thickness of thin films, the silver thickness was measured (3320A). (author)

  14. The Direct-Zeff software for direct calculation of mass attenuation coefficient, effective atomic number and effective electron number

    International Nuclear Information System (INIS)

    Highlights: • Determination of effective atomic and effective electron number is very important. • The Direct-Zeff software calculates effective atomic and effective electron number. • The Direct-Zeff software calculates for total and partial photon interactions. • Calculations of The Direct-Zeff are in good agreement with experimental results. - Abstract: Determination of the mass attenuation coefficient, μ/ρ, the effective atomic number, Zeff, and the effective electron number, Neff, is very important in the fields of nuclear diagnostics, radiation protection, nuclear medicine and radiation dosimetry. In this work, the Direct-Zeff software was developed for the computation of the mass attenuation coefficient, the effective atomic number and the effective electron number per unit mass in the energy range 1 keV–100 GeV. The values of the Zeff, Neff and μ/ρ can be determined for total photon interaction with and without coherent interaction as well as partial photon interactions such as coherent scattering, incoherent scattering, photoelectric absorption and pair production by using the Direct-Zeff software. The accuracy of the Direct-Zeff software has been demonstrated by comparing the calculated data and the experimental values for the various materials. The Direct-Zeff software can be freely obtained by contacting with the authors

  15. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.)

  16. Ion bombardment of Io and Mercury

    International Nuclear Information System (INIS)

    The existence of an atmosphere at Io is presumed and used to generate nonthermal coronae by ion bombardment of the atmosphere exobase. Several different exobase heights, temperatures, and compositions are used to characterize the neutral and ion ejection processes associated with possible atmospheres. The net injection rates are compared with estimates of the rates required to populate the plasma torus. The supply rate to the torus can be satisfied with an exobase very close to the surface is an unattenuated incident ion flux is assumed. A high exobase is consistent with the estimated supply rates only is the incident plasma flux is significant attenuated or deflected. The results presented scale approximately with the magnitude of the incident ion flux and can be used as knowledge of both the plasma flow and atmospheric composition improve. The non-thermal corona model is compared with a thermal corona model and with recent observations of the variation in Na column density versus distance from Io. The effect of an E x B velocity drift on the magnitude of the incident ion flux and, subsequently, the plasma supply rates from Io's atmosphere and corona are investigated. Significant reduction of the supply rates is found by using reasonable values for the parameters describing Io's atmosphere and the plasma medium surrounding it. Finally, investigation of the ion and photon bombardment of Mercury is carried out, in analogy with the situation at Io, to determine possible supply and loss mechanisms for the Na recently observed in the atmosphere of Mercury

  17. Studies on surface chemical states of some metals and ceramics bombarded with energetic light-ions

    International Nuclear Information System (INIS)

    An electron spectroscopy was applied to the investigation of surface chemical state of some metals and ceramics bombarded with energetic light ions. Bombardments of keV-order hydrogen ions on Sc, Ti, V, Y, Zr and Nb induced the XPS core-line chemical shifts to higher binding-energies by 0.2 - 1.4 eV, the appearence of new photopeaks at 3.0 - 5.0 eV below the Fermi level. Although the peak energies are lower by 1 - 3 eV than those calculated for MeH2 (Me = metal) by molecular-orbital theory, the peaks are assigned to the metal-H bonds. The chemical shifts induced by bombarding hydrogen-ions were also observed in the X-ray-induced Auger electron spectra (XAES) For Y, Zr and Nb. The hydride layers produced by the ion-implantation are more stable at high temperature than those obtained by thermal synthesis, because of the surface damages which prevent thermal diffusion of hydrogen. In the case of hydrogen-ion bombarded SiC, carbon enriched layer was observed in the near surface region, while the surfaces of Si3N4 and SiO2 became silicon-rich after the bombardments. On the other hand, the bombardments of H2+, D2+ and He+-ions on TiC, TiN and TiO2 made their surfaces titanium-rich. At high fluences, the X/Ti (X = C, N, O) become constant. The energy dependences of the steady state values of the C/Ti ratios have maximum at 2 - 4 keV/atom of incident ion, while those of the N/Ti and O/Ti ratios decreased with the increase in the ion energies. Incident-energy dependences of the Ti+/X+ ratios determined by SIMS substantiate that the sputtering is responsible for the surface compositional change of the binary compounds. The surface of TiO2 was easily reduced to Ti2O3 by the H2+ and D2+, or to TiO by the He+ and Ar+-ion bombardments. The difference in the reduced species is correlated with the thermodynamical parameters of the corresponding reduction reactions. (J.P.N.)

  18. Comment on “Atomic mass compilation 2012” by B. Pfeiffer, K. Venkataramaniah, U. Czok, C. Scheidenberger

    Energy Technology Data Exchange (ETDEWEB)

    Audi, G., E-mail: amdc.audi@gmail.com [CSNSM, CNRS/IN2P3, Université Paris-Sud, Bât. 108, F-91405 Orsay Campus (France); Blaum, K. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Bollen, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Goriely, S. [Institut d’Astronomie et d’Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Hardy, J.C. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Herfurth, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Kondev, F.G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Kluge, H.-J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); University of Heidelberg, D-69120 Heidelberg (Germany); Lunney, D. [CSNSM, CNRS/IN2P3, Université Paris-Sud, Bât. 108, F-91405 Orsay Campus (France); Pearson, J.M. [Département de Physique, Université de Montréal, Montréal, Québec, H3C 3J7 (Canada); Savard, G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Sharma, K.S. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); and others

    2015-05-15

    In order to avoid errors and confusion that may arise from the recent publication of a paper entitled “Atomic Mass Compilation 2012”, we explain the important difference between a compilation and an evaluation; the former is a necessary but insufficient condition for the latter. The simple list of averaged mass values offered by the “Atomic Mass Compilation” uses none of the numerous links and correlations present in the large body of input data that are carefully maintained within the “Atomic Mass Evaluation”. As such, the mere compilation can only produce results of inferior accuracy. Illustrative examples are given.

  19. Performance evaluation of indigenous thermal ionization mass spectrometer for determination of 235U/238U atom ratios

    International Nuclear Information System (INIS)

    A magnetic sector based Thermal Ionization Mass Spectrometer (TIMS) designed and developed at Technical Physics Division, B.A.R.C., was evaluated for its performance for the determination of 235U/238U atom ratios in uranium samples. This consisted of evaluating the precision and accuracy on the 235U/238U atom ratios in various isotopic reference materials as well as indigenously generated uranium samples. The results obtained by the indigenous TIMS were also compared with those obtained using a commercially available TIMS system. The internal and external precision were found to be around 0.1% for determining 235U/238U atom ratios close to those of natural uranium ( i.e. 0.00730). (author)

  20. Direct determination of the atomic mass difference of Re187 and Os187 for neutrino physics and cosmochronology

    CERN Document Server

    Nesterenko, D A; Blaum, K; Block, M; Chenmarev, S; Doerr, A; Droese, C; Filianin, P E; Goncharov, M; Ramirez, E Minaya; Novikov, Yu N; Schweikhard, L; Simon, V V

    2016-01-01

    For the first time a direct determination of the atomic mass difference of 187Re and 187Os has been performed with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. The obtained value of 2492(30stat)(15sys) eV is in excellent agreement with the Q values determined indirectly with microcalorimetry and thus resolves a long-standing discrepancy with older proportional counter measurements. This is essential for the determination of the neutrino mass from the beta-decay of 187Re as planned in future microcalorimetric measurements. In addition, an accurate mass difference of 187Re and 187Os is also important for the assessment of 187Re for cosmochronology.

  1. Fabrication of nano ion–electron sources and nano-probes by local electron bombardment

    International Nuclear Information System (INIS)

    Highlights: • A new method for fabricating nanotips with an apex radius around 1 nm is introduced. • This clean process depends only on the physical electron bombardment mechanism. • This method can be applied to any metal or heavily doped semiconductor materials. • The produced single atom nanotips are ideal as sources of electron and ion beams. • These nanotips are advantageous for nano lithography and scanning probe microscopy. - Abstract: A new method for fabricating nano ion–electron sources and nano probes with an apex in the range of 1 nm is introduced. The method is based on bombarding a regular tip apex with electrons extracted and accelerated from a nearby source by the electric field. This can be achieved by placing a metal ring around a precursor metal tip at a level below the tip apex in a field ion microscope (FIM). The metal ring is then heated, by a grounded DC power source, to a temperature below the thermionic emission value. The electric field between the tip and the hot ring is high enough to cause electrons to be extracted from the metal ring, i.e. Schottky field emission, and then accelerated to the shank with energy sufficient to dislodge atoms from the shank. An atomic scale apex with a single atom end can be obtained by monitoring the evolution of the tip apex due to the movement of mobile atoms while adjusting the tip electric field and the temperature of the metal ring. As this method depends only on the electron bombardment mechanism, this makes it a clean process that can be applied to any metal or heavily doped semiconductor materials appropriate for generating a high electric field for FIM applications

  2. Molecular dynamics analysis of metal surface sputtering due to bombardment of high energy particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Kishore; Donbosco, Ferdin Sagai; Kumar, Rakesh [Department of Aerospace Engineering, Indian Institute of Technology Kanpur (India)

    2014-12-09

    Dependence of sputtering yield of Cu (100) and Ni (100) metal surface by bombardment of 200 Ar ions at various energies and angles of projections is investigated in this paper. The sputtering yield has been calculated by performing molecular dynamics simulation and the same is compared with experiments and theoretical predictions wherever possible. Additionally the kinetic energy, velocity and scattering angle distribution for sputtered and incident atoms are also observed. The results obtained from the present molecular dynamics simulations are found to be in good agreement with experimental data and theoretical estimates. It is observed that the sputtering yield increases as the energy of the bombarding ion increases. Furthermore as the incidence angle increases, the sputtering yield increases until a specific angle and then decreases as normal incidence is approached.

  3. Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111)

    International Nuclear Information System (INIS)

    Ripple patterns forming on Pt(111) due to 5 keV Ar+ grazing-incidence ion bombardment were investigated by scanning tunneling microscopy in a broad temperature range from 100 to 720 K and for ion fluences up to 3x1020 ions/m2. A detailed morphological analysis together with molecular dynamics simulations of single ion impacts allow us to develop atomic scale models for the formation of these patterns. The large difference in step edge versus terrace damage is shown to be crucial for ripple formation under grazing incidence. The importance of distinct diffusion processes--step adatom generation at kinks and adatom lattice gas formation--for temperature dependent transitions in the surface morphology is highlighted. Surprisingly, ion bombardment effects like thermal spike induced adatom production and planar subsurface channeling are important for pattern ordering

  4. Angular and energy dependence of ion bombardment of Mo/Si multilayers

    DEFF Research Database (Denmark)

    Voorma, H.J.; Louis, E.; Bijkerk, F.;

    1997-01-01

    The process of ion bombardment is investigated for the fabrication of Mo/Si multilayer x-ray mirrors using e-beam evaporation. The ion treatment is applied immediately after deposition of each of the Si layers to smoothen the layers by removing an additional thickness of the Si layer. In this study....... The multilayer structures are analyzed further with small-angle reflectivity measurements using both specular reflectivity and diffuse x-ray scattering. The optimal smoothening parameters are obtained by determining the effect of ion bombardment on the interface roughness of the Si layer. The optimal...... roughness is determined by ion induced viscous flow, an effect which increases with ion energy as well as angle of incidence. In order to determine the effect of intermixing of the Si and Mo atoms, the penetration depth of the Kr+ ions is calculated as a function of ion energy and angle of incidence...

  5. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for CoCuAg alloy thin film

    Science.gov (United States)

    Apaydın, G.; Cengiz, E.; Tıraşoğlu, E.; Aylıkcı, V.; Bakkaloğlu, Ö. F.

    2009-05-01

    The mass attenuation coefficients for the elements Co, Cu and Ag and a thin film of CoCuAg alloy were measured in the energy range 4.029-38.729 keV. Effective atomic numbers and electron densities were calculated by using these coefficients. The energies were obtained by using secondary targets that were irradiated with gamma-ray photons of 241Am. The x-rays were counted by using a Canberra Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The results were compared with theoretical calculated values and fairly good agreement was found between them within an average experimental error. The mass attenuation coefficients, effective atomic numbers and electron densities were plotted versus photon energy.

  6. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for CoCuAg alloy thin film

    International Nuclear Information System (INIS)

    The mass attenuation coefficients for the elements Co, Cu and Ag and a thin film of CoCuAg alloy were measured in the energy range 4.029-38.729 keV. Effective atomic numbers and electron densities were calculated by using these coefficients. The energies were obtained by using secondary targets that were irradiated with gamma-ray photons of 241Am. The x-rays were counted by using a Canberra Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The results were compared with theoretical calculated values and fairly good agreement was found between them within an average experimental error. The mass attenuation coefficients, effective atomic numbers and electron densities were plotted versus photon energy.

  7. Underground atom gradiometer array for mass distribution monitoring and advanced geodesy

    Science.gov (United States)

    Canuel, B.

    2015-12-01

    After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the

  8. Evolution of clusters in energetic heavy ion bombarded amorphous graphite

    CERN Document Server

    Akhtar, M N; Ahmad, Shoaib

    2016-01-01

    Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents.

  9. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    International Nuclear Information System (INIS)

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  10. Bombarding insulating foils with highly energetic ions

    Science.gov (United States)

    Lanzanò, G.; de Filippo, E.; Hagmann, S.; Rothard, H.; Volant, C.

    Insulating (MYLAR), semi-insulating (MYLAR-Au) and conducting foils have been bombarded by very energetic 64 MeV u-1 78Kr32+ ions. The velocity spectra of fast electrons emitted in the backward and forward directions have been measured and analyzed as a function of the elapsed time in the run. A shift of binary encounter and convoy electrons emitted in the forward direction toward lower velocities has been observed with insulating targets. No such shift occurs with metallic targets. The surface potential evolves with time (i.e. ion fluence) both at forward and backward emission angle. It is shown that strong bulk charging of insulating targets leads to a positive potential as high as 9 kV before charge breakdown.

  11. Ion bombardment in silane VHF deposition plasmas

    International Nuclear Information System (INIS)

    The measurement of mass resolved ion energy distributions at the grounded substrate in an RF glow discharge allows to determine the ion flux and the ion energy flux towards the surface of a growing hydrogenated amorphous silicon (a-Si:H) layer. This provides the means to study the influence of ions on the structural properties of a-Si:H. Here the authors focus on the α-γprime transition as occurs in silane-hydrogen plasmas at an RF frequency of 50 MHz and a substrate temperature of 250 C. The structural properties of the layers appear to depend on the kinetic energy of the arriving ions. This is supported by measurements of ion fluxes under other deposition conditions and by characterization of the corresponding layers. The influence of ions on the growth is discussed in terms of their flux, and the amount of delivered kinetic and potential energy to the growing film. The measurements suggest that a threshold energy of about 5 eV per deposited atom is needed for the construction of a dense amorphous silicon network

  12. Efficient mass-selective three-photon ionization of zirconium atoms

    International Nuclear Information System (INIS)

    In an AVLIS process, 91Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength λ1, selectively raising 91Zr atoms to an odd-parity E1 energy level in the range of 16000-19000 cm-1, are irradiated by a laser beam having a wavelength λ2 to raise the atoms from an E1 level to an even-parity E2 energy level in the range of 35000-37000 cm-1, and are irradiated by a laser beam having a wavelength λ3 to cause a resonant transition of atoms from an E2 level to an autoionizing level above 53506 cm-1. λ3 wavelengths of 5607, 6511 or 5756 A will excite a zirconium atom from an E2 energy state of 36344 cm-1 to an autoionizing level; a λ3 wavelength of 5666 A will cause an autoionizing transition from an E2 level of 36068 cm-1; and a λ3 wavelength of 5662 A will cause an ionizing resonance of an atom at an E2 level of 35904 cm-1. (author)

  13. Efficient mass-selective three-photon ionization of zirconium atoms

    Science.gov (United States)

    Page, Ralph H.

    1994-01-01

    In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.

  14. A note on black-hole physics, cosmic censorship, and the charge-mass relation of atomic nuclei

    Science.gov (United States)

    Hod, Shahar

    2016-02-01

    Arguing from the cosmic censorship principle, one of the fundamental cornerstones of black-hole physics, we have recently suggested the existence of a universal upper bound relating the maximal electric charge of a weakly self-gravitating system to its total mass: Z(A)≤slant {Z}*(A)\\equiv {α }-1/3{A}2/3, where Z is the number of protons in the system, A is the total baryon (mass) number, and α ={e}2/{{\\hslash }}c is the dimensionless fine-structure constant. In order to test the validity of this suggested bound, we here explore the Z(A) functional relation of atomic nuclei as deduced from the Weizsäcker semi-empirical mass formula. It is shown that all atomic nuclei, including the meta-stable maximally charged ones, conform to the suggested charge-mass upper bound. Our results support the validity of the cosmic censorship conjecture in black-hole physics.

  15. The investigation on the mass media reports on the JCO accident in the major atomic energy countries and Asian countries

    International Nuclear Information System (INIS)

    The JCO (Japan Conversion Organization) accident is the worst one in the history of the atomic energy developments in Japan. The many reports about the accident appeared in the 44 mass media in the world from Sep. 30 to Oct. 14, 1999. Chronological statistics of issued 522 articles are listed under particular criteria. Some of them were based on wrong knowledge and/or overestimations about the accident based on delivered articles by the news agency. Some of others gave critics over the total atomic energy industries of Japan, especially on safety managements and so-called similar Japan syndromes. This investigation gives emphasis on the articles based on wrong knowledge. We identified the countries and the newspaper publishers and the news agencies those gave wrong descriptions. Total 25 articles used the words [explosion] and [fire], which were delivered from the Kyodo News Service. Some of the Asian newspaper wrote that a large quantity of radioactivity, radioactive material and/or nuclear fuels was released. Some other news publishers said the accident was happened at fuel reprocessing facilities, when the waste fuel rods were under cutting. Critics delivered in the individual countries were summarized, i.e. USA, Canada, France, UK, German, Russia, Australia, China, Korea, Thailand, Vietnam, Indonesia, Taiwan and the news agencies. One of the key issues is the exact information release for the press corps on the early stage of the accidents. The second point is to recognize the different status on atomic energy in the individual countries, when Japan want to explain their domestic situations. Accidents of atomic energy gave many impacts on various aspects to other countries. Japan should understand the neighborhood by collecting world information on atomic energy and analyzing them. Summaries of 522 articles appeared in the mass media were attached in this investigation among the report of 180 pages. (Tanaka, Y.)

  16. Simulations of C60 bombardment of Si, SiC, diamond and graphite

    International Nuclear Information System (INIS)

    Molecular dynamics simulations of the 20-keV C60 bombardment at normal incidence of Si, SiC, diamond and graphite targets were performed. The unique feature of these targets is that strong covalent bonds can be formed between carbon atoms from the C60 projectile and atoms in the solid material. The mesoscale energy deposition footprint (MEDF) model is used to gain physical insight into how the sputtering yields depend on the substrate characteristics. A large proportion of the carbon atoms from the C60 projectile are implanted into the lattice structure of the target. The sputtering yield from SiC is ∼twice that from either diamond or Si and this can be explained by both the region of the energized cylindrical tract created by the impact and the number density. On graphite, the yield of sputtered atoms is negligible because the open lattice allows the cluster to deposit its energy deep within the solid. The simulations suggest that build up of carbon with a graphite-like structure would reduce any sputtering from a solid with C60+ bombardment.

  17. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds

    International Nuclear Information System (INIS)

    The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. - Highlights: • The effective atomic numbers and electron densities determined for some samarium compounds from total mass attenuation coefficients near the K edge. • The measurements performed using secondary excitation geometry and a Si(Li) detector. • The experimental results compared with the theoretical calculation

  18. A low energy ion beam system for thermal evolution measurements of damage in ion bombarded single crystals

    International Nuclear Information System (INIS)

    The use of thermal evolution mass spectrometry in conjunction with the helium probe represents a powerful method of studying the gas-defect interaction processes associated with ion bombardment of single crystal targets. The energy and fluence dependence of the damage build-up processes together with the annealing characteristics of the damage are of considerable importance in view of the widespread use of low energy ion beam and plasma cleaning techniques. The apparatus described comprises a low energy ion gun based on an electron bombardment source and Wien filter and a target chamber incorporating a multiple target holder assembly. The design considerations and operating characteristics of the overall system are described and the often used ion bombardment cleaning procedures discussed with reference to experimental thermal evolution measurements of low energy argon and helium trapping. (author)

  19. COMPARISON OF SECONDARY ION MASS SPECTROMETRY (SIMS) WITH ELECTRON MICROPROBE ANALYSIS (EPMA) AND OTHER THIN FILM ANALYTICAL METHODS

    OpenAIRE

    Werner, H.; Von Rosenstiel, A.

    1984-01-01

    Different modes of SIMS for thin film analysis and the principle of SIMS will be discussed; this will be followed by a discussion of some features related to instrumentation: types of ion sources and their characteristics ; ion microprobe versus ion microscope ; special modes of SIMS : sputter neutral mass spectrometry (SNMS) and fast atom bombardment. (FAB). The discussion of analytical features will include : element range, quantitative analysis, depth profiling, two-dimensional and three-d...

  20. Surface composition of SiC after ion bombardment, annealing, and exposure to oxygen

    International Nuclear Information System (INIS)

    The surface composition and structure of SiC (hexagonal crystallites) are studied under Ar-ion bombardment, high-temperature cycling and adsorption of oxygen. Such treatments are necessary for surface cleaning and they also simulate environments in potential applications of SiC elements. Oxygen adsorption on surfaces which result after various cycles of Ar-ion bombardment and heating, i.e., with varying surface compositions, is studied to reveal details of the initial steps of oxidation. The experimental techniques were AES, XPS, and BAES (bremsstrahlung-induced AES). Bombardment with 3-keV Ar ions results in a nearly stoichiometric (1:1) surface. The implanted Ar accumulates strongly in the subsurface region during annealing at 9000C. Annealing at higher temperatures (12000C) releases the Ar but also leads to decomposition of the surface, with the loss of Si. Oxygen adsorbs on the surface, in a reaction which mainly involves silicon atoms, and with an oxygen coverage related to the initial silicon surface concentration. At room temperature, the adsorption reaction contains two stages as for oxygen on clean silicon surfaces

  1. Improved Statistical Determination of Absolute Neutrino Masses via Radiative Emission of Neutrino Pairs from Atoms

    CERN Document Server

    Zhang, Jue

    2016-01-01

    The atomic transition from an excited state $|{\\rm e}\\rangle$ to the ground state $|{\\rm g}\\rangle$ by emitting a neutrino pair and a photon, i.e., $|{\\rm e}\\rangle \\to |{\\rm g}\\rangle + |\\gamma\\rangle + |\

  2. Selected K and L X-Ray mass attenuation coefficients for low atomic number materials

    International Nuclear Information System (INIS)

    X-ray attenuation coefficients for low atomic mumbers elements were obtained for characteristic K and L X-ray of a number of selected elements using the fitting of a third degree polynomial to the values tabulated by Storm and Israel

  3. Production of intense beams of mass-selected water cluster ions and theoretical study of atom-water interactions

    CERN Document Server

    Wang, Z P; Reinhard, P -G; Suraud, E; Bruny, G; Montano, C; Feil, S; Eden, S; Abdoul-Carime, H; Farizon, B; Farizon, M; Ouaskit, S; Maerk, T D

    2009-01-01

    The influences of water molecules surrounding biological molecules during irradiation with heavy particles (atoms,ions) are currently a major subject in radiation science on a molecular level. In order to elucidate the underlying complex reaction mechanisms we have initiated a joint experimental and theoretical investigation with the aim to make direct comparisons between experimental and theoretical results. As a first step, studies of collisions of a water molecule with a neutral projectile (C atom) at high velocities (> 0.1 a.u.), and with a charged projectile (proton) at low velocities (< 0.1 a.u.) have been studied within the microscopic framework. In particular, time-dependent density functional theory (TDDFT) was applied to the valence electrons and coupled non-adiabatically to Molecular dynamics (MD) for ionic cores. Complementary experimental developments have been carried out to study projectile interactions with accelerated (< 10 keV) and mass-selected cluster ions. The first size distributio...

  4. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds.

    Science.gov (United States)

    Akman, F; Durak, R; Turhan, M F; Kaçal, M R

    2015-07-01

    The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. PMID:25880612

  5. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium β-decay

    Science.gov (United States)

    Lokhov, Alexey V.; Titov, Nikita A.

    2016-07-01

    Data analysis of the next-generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with better than 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well-known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  6. Modification of Polymer Materials by Ion Bombardment: Case Studies

    International Nuclear Information System (INIS)

    The paper discusses possibility of application of ion beam bombardment for modification of polymers. Changes to composition, structure and morphology of the surface layer produced by the treatment and their influence on engineering and functional properties of wide range of polymer materials are presented. Special attention has been devoted to modification of tribological properties. Ion bombardment results in significant reduction of friction, which can be explained by increase of hardness and wettability of polymer materials. Hard but thin enough skin does not result in cracking but improves their abrasion resistance. Contrary to conventional chemical treatment ion beam bombardment works even for polymers hardly susceptible to modification like silicone rubber or polyolefines.

  7. Modification of Polymer Materials by Ion Bombardment: Case Studies

    Science.gov (United States)

    Bielinski, D. M.; Jagielski, J.; Lipinski, P.; Pieczynska, D.; Ostaszewska, U.; Piatkowska, A.

    2009-03-01

    The paper discusses possibility of application of ion beam bombardment for modification of polymers. Changes to composition, structure and morphology of the surface layer produced by the treatment and their influence on engineering and functional properties of wide range of polymer materials are presented. Special attention has been devoted to modification of tribological properties. Ion bombardment results in significant reduction of friction, which can be explained by increase of hardness and wettability of polymer materials. Hard but thin enough skin does not result in cracking but improves their abrasion resistance. Contrary to conventional chemical treatment ion beam bombardment works even for polymers hardly susceptible to modification like silicone rubber or polyolefines.

  8. Isolation of a human myocardial cytosolic phospholipase A2 isoform. Fast atom bombardment mass spectroscopic and reverse-phase high pressure liquid chromatography identification of choline and ethanolamine glycerophospholipid substrates.

    OpenAIRE

    Hazen, S. L.; Hall, C. R.; Ford, D. A.; Gross, R W

    1993-01-01

    Recent studies have demonstrated the existence of a novel family of calcium-independent plasmalogen-selective phospholipases A2 in canine myocardium that have been implicated as enzymic mediators of ischemic membrane damage. We now report that human myocardium contains two functionally distinct isoforms of cytosolic calcium-independent phospholipase A2. The major cytosolic phospholipase A2 isoform preferentially hydrolyzes plasmalogen substrate, possesses a pH optimum of 7.0, and is chromatog...

  9. Non-constant relative atomic masses due to varying isotopic abundance of polynuclidic elements and their effect on the accuracy of analytical results

    International Nuclear Information System (INIS)

    Alterations of actual relative atomic masses occur in natural samples by natural isotope ratio shifts of polynuclidic elements. Therefore, using nuclear properties for gaining a measuring signal, isotopic shifts of certain elements may lead to significant measuring errors

  10. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Despite their excellent analytical chemical capacities, Electrothermal Atomic Absorption Spectrometry (ETAAS) and Inductively Coupled Plasma Mass Spectrometry (ICPMS), nevertheless, often require suitable pretreatment of the sample material in order to obtain the necessary sensitivity and...

  11. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC system

  12. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  13. Atomic Mineral Characteristics of Indonesian Osteoporosis by High-Resolution Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Zairin Noor; Sutiman Bambang Sumitro; Mohammad Hidayat; Agus Hadian Rahim; Akhmad Sabarudin; Tomonari Umemura

    2012-01-01

    Clinical research indicates that negative calcium balance is associated with low bone mass, rapid bone loss, and high fracture rates. However, some studies revealed that not only calcium is involved in bone strengthening as risk factor of fracture osteoporosis. Thus, in this report, the difference of metallic and nonmetallic elements in osteoporosis and normal bones was studied by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The influence of these elements on bone...

  14. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point......-blast-wave descriptions of laser ablation plume expansion in gas....

  15. Comet impacts and chemical evolution on the bombarded earth

    Science.gov (United States)

    Oberbeck, Verne R.; Aggarwal, Hans

    1992-01-01

    Amino acids yields for previously published shock tube experiments are used with minimum Cretaceous-Tertiary (K/T) impactor mass and comet composition to predict AIB amino acid K/T boundary sediment column density. The inferred initial concentration of all amino acids in the K/T sea and in similar primordial seas just after 10 km comet impacts would have been at least 10 exp -7 M. However, sinks for amino acids must also be considered in calculating amino acid concentrations after comet impacts and in assessing the contribution of comets to the origin of life. The changing concentration of cometary amino acids due to ultraviolet light is compared with the equilibrium concentration of amino acids produced in the sea from corona discharge in the atmosphere, deposition in water, and degradation by ultraviolet light. Comets could have been more important than endogenous agents for initial evolution of amino acids. Sites favorable for chemical evolution of amino acids are examined, and it is concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of earth before 3.8 billion years ago.

  16. Materials characterization using ion bombardment and multiphoton resonance ionization

    International Nuclear Information System (INIS)

    The combination of energetic ion bombardment with multiphoton resonance ionization (MPRI) spectroscopy has proven to be an important advancement in surface science. The goal of this project is continuing the development of MPRI of desorbed neutrals as a surface analytical tool. The method for accomplishing this is a detailed examination of the factors which govern a measurement and the implementation of the optimum experimental approach. Initially, a review of the progress in laser post-ionization of desorbed neutral particles is presented. This is followed by a description of the newly redesigned instrument, emphasizing detailed characterization of the high current ion source and the reflecting time-of-flight mass spectrometer. Using the new apparatus, the quantitative aspects of the measurement are examined and the fractions of desorbed ions and neutrals are determined using several matrices. The In concentration in a set of silicon wafers is measured, yielding a detection limit of 9 parts-per-trillion. Finally, the prospects for employing this experiment for measuring the half-life of the rare double beta decay of 136Xe to 136Ba are assessed

  17. Sublinear effect in light emission from cesium iodide bombarded by keV polyatomic projectiles

    Science.gov (United States)

    Baudin, K.; Parilis, E. S.; Blankenship, J. F.; Van Stipdonk, M. J.; Schweikert, E. A.

    1998-02-01

    Our experiments examined light emission from a CsI target bombarded with polyatomic projectiles [H n+, (NaF) nNa +, with n=1,2; Na +, Cs 2I +, Cs +] at 5-30 keV impact energies. The light emission increases with primary ion velocity as ( V - Vth) α, where Vth is a velocity threshold. The number of photons emitted under one cluster impact increases with the number of atoms in the projectile, displaying a sublinear effect, similar to that reported elsewhere for electron emission. The model of sweeping out electrons has been applied to explain and calculate the observed effect.

  18. Surface nanorelief modification of constructional materials at low energy ion bombardment

    International Nuclear Information System (INIS)

    Process of thermal smoothing at bombardment of metal surfaces by low energy heavy ions is investigated. It is shown, that smoothing can occur in nonlocal thermoelastic peak of ion under action of forces of surface tension at spreading the melted material on the surface. The model of thermal smoothing alternative to model of ion polishing due to ion sputtering of target atoms is developed. Criteria of applicability of model for any combination ''ion-target'', and analytical expressions for basic parameters of process of smoothing (size of smoothing area created by single ion, time of smoothing) are received

  19. Ions Bombardment in Thin Films and Surface Processing

    Institute of Scientific and Technical Information of China (English)

    许沭华; 任兆杏

    2003-01-01

    Ions bombardment is very important in thin films and surface processing. The ionenergy and ion flux are two important parameters in ion bombardment. The ion current densitymainly dependent on the plasma density gives the number of energetic ions bombarding thesubstrate. The self-bias voltage in plasma sheath accelerates plasma ions towards the substrate.RF discharge can increase plasma density and RF bias can also provide the insulator substrate witha plasma sheath. In order to choose and control ion energy, ion density, the angle of incidence,and ion species, ion beam sources are used. New types of electrodeless ion sources (RF, MW,ECR-MW) have been introduced in detail. In the last, the effects of ion bombardment on thinfilms and surface processing are presented.

  20. Surface composition change of TiC and SiC under hydrogen ion bombardment

    International Nuclear Information System (INIS)

    Surface composition changes of TiC and SiC single crystals under hydrogen ion bombardment have been investigated. The depletion of carbon atoms in the surface region was observed in both compounds. The depletion was enhanced as the primary ion energy decreased, though in SiC the energy dependence was less prominent. In TiC the dependence of depletion on the ion energy can be explained by the change of the sputtering mechanisms with the ion energy. In addition chemical effects seem to contribute to the depletion, which become prominent in the lowest energy region. In SiC a region enriched with carbon atoms was observed beneath the surface, probably resulting from recoil implantation of carbon atoms. (orig.)

  1. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    International Nuclear Information System (INIS)

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data. - Highlights: • Compute the values of mass attenuation coefficients (μ/ρ) of some carbohydrates. • The values of (μen/ρ) i.e. mass energy-absorption coefficient are calculated. • Effective atomic energy-absorption cross sections (σa,en). • Comparison of all (μ/ρ), (μen/ρ), (σa,en) values with XCOM program. • The measured data for carbohydrates are useful in radiation dosimetry and other fields

  2. Marker Gene Delivery to Mature Wheat Embryos Via Particle Bombardment

    OpenAIRE

    Öktem, Hüseyin Avni; EYİDOGAN, Füsun (İnci); ERTUĞRUL, Fahriye; Yücel, Meral

    1999-01-01

    The possibility of transferring genes to mature wheat embryos ( Triticum aestivumL. and T. durum Desf.) via accelerated and DNA-coated tungsten particles was investigated. Mature embryos isolated from bread (cv. Atay) and durum (cv. Çakmak) wheat were utilised as targets for bombardment. DNA in the form of circular plasmid (pBSGUSINT) was precipitated on tungsten particles (ca. 2 mm diameter) using the calcium nitrate method. Mature embryos were bombarded by a microprocessor-controlled partic...

  3. Asteroid 4 Vesta: Dynamical and collisional evolution during the Late Heavy Bombardment

    Science.gov (United States)

    Pirani, S.; Turrini, D.

    2016-06-01

    Asteroid 4 Vesta is the only currently identified asteroid for which we possess samples in the form of meteorites. These meteorites revealed us that Vesta is a differentiated body and that its differentiation produced a relatively thin basaltic crust that survived intact over its entire collisional history. The survival of the vestan basaltic crust has long been identified as a pivotal constraint in the study of the evolution of the asteroid belt and the Solar System but, while we possess a reasonably good picture of the effects of the last 4 Ga on such a crust, little is known about the effects of earlier events like the Late Heavy Bombardment. In this work we address this gap in our knowledge by simulating the Late Heavy Bombardment on Vesta in the different dynamical scenarios proposed for the migration of the giant planets in the broad framework of the Nice Model. The results of the simulations allowed us to assess the collisional history of the asteroid during the Late Heavy Bombardment in terms of produced crater population, surface saturation, mass loss and mass gain of Vesta and number of energetic or catastrophic impacts. Our results reveal that planet-planet scattering is a dynamically favorable migration mechanism for the survival of Vesta and its crust. The number of impacts of asteroids larger than about 1 km in diameter estimated as due to the LHB is 31 ± 5, i.e. about 5 times larger than the number of impacts that would have occurred in an unperturbed main belt in the same time interval. The contribution of a possible extended belt to the collisional evolution of Vesta during the LHB is quite limited and can be quantified in 2 ± 1 impacts of asteroids with diameter greater than or equal to 1 km. The chance of energetic and catastrophic impacts is less than 10% and is compatible with the absence of giant craters dated back to 4 Ga ago and with the survival of the asteroid during the Late Heavy Bombardment. The mass loss caused by the bombardment

  4. On the mass of atoms in molecules: Beyond the Born-Oppenheimer approximation

    CERN Document Server

    Scherrer, Arne; Sebastiani, Daniel; Gross, E K U; Vuilleumier, Rodolphe

    2016-01-01

    Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires to include the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue still is not solved in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an a...

  5. Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

    CERN Document Server

    Trassinelli, M; Borchert, G; Dax, A; Egger, J P; Gotta, D; Hennebach, M; Indelicato, P; Liu, Y -W; Manil, B; Nelms, N; Simons, L M; Wells, A

    2016-01-01

    The $5g-4f$ transitions in pionic nitrogen and muonic oxygen were measured simultaneously by using a gaseous nitrogen-oxygen mixture at 1.4\\,bar. Due to the precise knowledge of the muon mass the muonic line provides the energy calibration for the pionic transition. A value of (139.57077\\,$\\pm$\\,0.00018)\\,MeV/c$^{2}$ ($\\pm$\\,1.3ppm) is derived for the mass of the negatively charged pion, which is 4.2ppm larger than the present world average.

  6. Atomic mass identification of CF-252 fission fragments using an NE-102 thin film detector

    International Nuclear Information System (INIS)

    The measurement of atomic number of low energy Cf-252 fission products using a three element thin film scintillation detector in conjunction with a residual energy solid state detector is described. Critical comparison of the separate spectra yielded by the three thin film elements is used to show both quantitative and qualitative consistency. Through the use of simple data handling techniques, increased resolution between peaks is easily obtained; the resultant spectrum for the distribution of both heavy and light fragments of Cf-252 is presented. The anticipated application of thin film scintillation techniques for event-by-event illucidation of decay schemes will also be discussed

  7. Structural modification of TiAlN coatings by preliminary Ti Ion bombardment of a steel substrate

    Science.gov (United States)

    Shugurov, A. R.; Akulinkin, A. A.; Panin, A. V.; Perevalova, O. B.; Sergeev, V. P.

    2016-03-01

    The TiAlN coatings deposited onto steel 12Cr18Ni9Ti substrates before and after preliminary treatment by Ti ion beams are studied by X-ray diffraction, transmission electron microscopy, atomic force microscopy, and nanoindentation. The modification of the surface layer of a substrate is shown to change the structure and the preferred orientation of the coatings. The mechanical properties of the TiAlN coatings are found to depend substantially on the ion bombardment time.

  8. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Bencs, László; Laczai, Nikoletta; Ajtony, Zsolt

    2015-07-01

    A combination of former convective-diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass - m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min- 1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology.

  9. Mechanism of conductivity type conversion in p-Hg1-xCdxTe crystals under low energy ion bombardment

    International Nuclear Information System (INIS)

    Conditions giving rise to accelerated diffusion of Hg under bombardment of p-Hg1-xCdxTe by low-energy particles are analyzed and probable mechanisms of the phenomenon are suggested, permitting qualitative and quantitative agreement with experimental data. Analysis indicates that basic regularities of p-n-conversion during Hg0.8Cd0.2Te crystal bombardment by neutralized ions can be easily explained in the framework of traditional notions of mercury chemical diffusion in this material. The regularities stem from specific features of defect formation in Hg0.8Cd0.2Te, on the one hand, and from a high concentration of intrinsic electrons and holes, screening effectively the defective layer electric field, on the other hand. The high rate of conversion during ion bombardment compared with the rate of conversion during annealing in mercury vapors can be explained by the fact that a great number of nonequilibrium interstitial atoms of mercury, by far exceeding the value during thermal annealing, is crated near the surface of the crystal bombarded

  10. Mass Predictions of Atomic Nuclei in the Infinite Nuclear Matter Model

    CERN Document Server

    Nayak, R C

    2012-01-01

    We present here the mass excesses, binding energies, one- and two- neutron, one and two- proton and \\alpha-particle separation energies of 6727 nuclei in the ranges 4 \\leq Z \\leq 120 and 8 \\leq A \\leq 303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the \\eta-differential equations of the INM model. The local energy \\eta's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact \\eta-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation...

  11. Ion bombardment of Ni(110) studied with inverse photoemission spectroscopy and low-energy electron diffraction

    Science.gov (United States)

    Young, Benjamin; Warner, James; Heskett, David

    2016-02-01

    Inverse photoemission spectroscopy (IPES) performed on clean Ni(110) reveals an unoccupied electronic surface state with energy ~ 2.5 eV above the Fermi level for emission near the Ȳ point of the Surface Brillouin Zone. Ion bombardment of the sample creates defects that reduce the intensity of the peak in IPES spectra. Sharp, intense diffraction spots in low-energy electron diffraction (LEED) patterns taken of the clean surface become dimmer after bombardment. Results of these measurements are compared to Monte Carlo simulations of the sputtering process to ascertain the approximate size of clean patches on the sample necessary to sustain the IPES and LEED features. At 170 K, the IPES surface state peak appears closely associated with the population of surface atomic sites contained in clean circular patches of about 50 atoms. The LEED patterns persist to greater degrees of sputtering and are associated with smaller clean patches. Both measurements performed at 300 K indicate significant self-annealing of the sputtering damage.

  12. The Sun is a plasma diffuser that sorts atoms by mass

    OpenAIRE

    Manuel, O.; Kamat, S. A.; Mozina, M.

    2006-01-01

    The Sun is a magnetic plasma diffuser that selectively moves light elements like H and He and the lighter isotopes of each element to its surface. The Sun formed on the collapsed core of a supernova. It consists mostly of iron, oxygen, nickel, silicon and sulfur made near the SN core, like the rocky planets and ordinary meteorites. H ions, generated by emission and decay of neutrons at the core, are accelerated upward by deep magnetic fields, thus acting as a carrier gas that maintains mass s...

  13. Mass spectrometric methods for studying nutrient mineral and trace element absorption and metabolism in humans using stable isotopes: a review

    International Nuclear Information System (INIS)

    Mass spectrometric methods for determining stable isotopes of nutrient minerals and trace elements in human metabolic studies are described and discussed. The advantages and disadvantages of the techniques of electron ionization, fast atom bombardment, thermal ionization, and inductively coupled plasma and gas chromatography mass spectrometry are evaluated with reference to their accuracy, precision, sensitivity, and convenience, and the demands of human nutrition research. Examples of specific applications are described and the significance of current developments in mass spectrometry are discussed with reference to present and probable future research needs. (Author)

  14. Pion correlations as a function of atomic mass in heavy ion collisions

    International Nuclear Information System (INIS)

    The method of two pion interferometry was used to obtain source-size and lifetime parameters for the pions produced in heavy ion collisions. The systems used were 1.70 · A GeV 56Fe + Fe, 1.82 · A GeV 40Ar + KCl and 1.54 · A GeV 93Nb + Nb, allowing for a search for dependences on the atomic number. Two acceptances (centered, in the lab., at ∼ 0 degrees and 45 degrees) were used for each system, allowing a search for dependences on the viewing angle. The correlation functions were calculated by comparing the data samples to background (or reference) samples made using the method of event mixing, where pions from different events are combined to produce a data sample in which the Bose-Einstein correlation effect is absent. The effect of the correlation function on the background samples is calculated, and a method for weighting the events to remove the residual correlation effect is presented. The effect of the spectrometer design on the measured correlation functions is discussed, as are methods for correcting for these effects during the data analysis. 58 refs., 39 figs., 18 tabs

  15. Blister formation of tungsten due to ion bombardment

    International Nuclear Information System (INIS)

    Blisters formed at tungsten surfaces due to deuterium ion bombardment have been studied systematically in the energy range 100 eV to 1 keV. The bombardment with 1 keV D+ at room temperature (RT) shows that the blister size increases and the number decreases with the deuterium fluence from 1x1019 to 1x1021 D+/cm2. No blisters are found at elevated temperatures between 600 and 800 deg. C. For bombardment with an energy as low as 100 eV, blisters are observed at the high fluence of 1x1021 D+/cm2. The blister size increases and the number decreases with the bombardment energy. Combined with scanning electron microscopy (SEM) ion beam depth profiling measurements have been used to investigate the effect of blister formation on the trapping behavior of deuterium in tungsten. Double implantations, where 4 keV He+ and 100 eV D+, respectively, were injected in W prior to the bombardment of 1 keV D+ show a pronounced increase of deuterium retention and blister disappearance. Possible mechanisms are proposed to describe the observed phenomena

  16. Time-of-flight mass spectrometry with desorption-ionization multiprobes (UV photons and KeV and MeV particles). Cluster atoms are used as projectiles

    International Nuclear Information System (INIS)

    A new time-of-flight mass spectrometer, Super-Depil, is used to study secondary ion emission from solid surfaces bombarded by various kinds of primary particles. Three different desorption probes were set up on this machine: a 252 californium source, providing by spontaneous fission about 1 MeV/u energy heavy ions, a 5 to 30 keV energy pulsed caesium ion gun and a pulsed nitrogen laser, which wavelength is 337 mm. A two stages electrostatic mirror was added to the spectrometer. The time spread due to the initial kinetic energy of secondary ions leaving the surface was minimized. The mass resolution is greater than 5000. The analysis of glycosidic terpenes showed the complementarity of the three probes. The study of such metastable ions, with the electrostatic mirror, showed that some fragment ions may conserve the memory of the stereochemistry of the neutral lost. Clusters ions were used as projectiles in the energy range 5-60 keV. A strong non linear enhancement was observed in the secondary ion yield from various targets

  17. Self-interstitials generated by low energy heavy ion bombardment of metals

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van; Kolk, G.J. van der; Filius, H.A.; Westerduin, K.T.; Caspers, L.M. (Technische Hogeschool Delft (Netherlands))

    1984-03-01

    Thermal helium desorption spectrometry (THDS) has been used to study the ion bombardment conditions for creating stable self-interstitial atoms (SIA) below the surface of monocrystalline Mo, W and Ni. The SIA are observed by the release of helium atoms when SIA recombine with HeV defects. Threshold energies for SIA generation are found to be 80 eV for Ar -> Mo(110), 50 eV for Xe -> W(100) and 25 eV for Ar -> Ni(110). The measured SIA capture rate coefficient for deep HeV defects (mean depth > 20 nm) is of the order of 10/sup -15/ cm/sup 2/ per ion. Results of MARLOWE calculations are used to analyse the contribution of different replacement collision sequences to the SIA generating process.

  18. Hypernuclei formation probability as a function of the atomic mass number A

    Science.gov (United States)

    Bonomi, G.; Finuda Collaboration

    2012-09-01

    The creation of a hypernucleus [2], that is a nucleus in which a nucleon is replaced by an hyperon, requires the injection of strangeness into the nucleus. This is possible in different ways [3], mainly using π+ or K- beams on nuclear targets; recently, also electron beams have been used. The FINUDA experiment at the DAΦNE Φ factory of the INFN "Laboratori Nazionali di Frascati" produced Λ-hypernuclei by stopping, in thin nuclear targets (0.1-0.2 g/cm2), the negative kaons originating from the Φ decay through the strangeness-exchange reaction Kstop-+AZ→A/ΛZ+π-, where AZ indicates the target nucleus and A/ΛZ the Λ hypernucleus in which a Λ particle replaced a neutron. FINUDA, an unconventional and innovative apparatus, allowed the positioning of 8 different target modules around the interaction region. In this way different targets could be studied contemporaneously, with the same apparatus and with the same analysis technique, allowing for a direct comparison between different nuclei. In particular FINUDA could study the production of Λ-hypernuclei on 7Li, 9Be, 12C, 13C and 16O targets. Both the Λ binding energy and the hypernuclei production probabilities have been measured [1]. The new measurements on 7/ΛLi, 9/ΛBe, 13/ΛC and 16/ΛO, along with previous measurements on 12/ΛC, allowed for a meaningful study of the formation of p-shell hypernuclei from the two-body capture of K- at rest, giving for the first time the possibility of disentangling the effects due to atomic wave-function of the captured K- from those due to the pion optical nuclear potential and from those due to the specific hypernuclear states [4].

  19. Surface chemical changes of TiC, TiN and TiO2 by light-ion bombardments

    International Nuclear Information System (INIS)

    Surface chemical chances of TiC, TiN and TiO2 due to ion bombardment with H2+, D2+ and He+ ions in the energy range of 0.5 keV to 10 keV have been studied by electron spectroscopy. In almost all cases, depletion of the light constituents was observed. No evidence for formation of titanium hydride or the metallic state is obtained for bombarded TiC and TiN surfaces. Preferential loss of oxygen from TiO2 results in formation of Ti2O3 by the H2+ and D2+ bombardments, and of a mixture of Ti2O3 and TiO by the He+ bombardment. In the cases of TiC and TiN, a similar dependence on the incident ion energy was observed for the changes between the X/Ti (X=C,N) surface compositional ratio at steady state and the Ti+/X+ signal ratio of secondary-ion mass spectra. The compositional change is discussed in relation to sputtering properties of the constituents. (orig.)

  20. Simulation of Carbon Nanotube Welding through Ar bombardment

    CERN Document Server

    Kucukkal, Mustafa U

    2014-01-01

    Single-walled carbon nanotubes show promise as nanoscale transistors, for nanocomputing applications. This use will require appropriate methods for creating electrical connections between distinct nanotubes, analogous to welding of metallic wires at larger length scales, but methods for performing nanoscale chemical welding are not yet sufficiently understood. This study examined the effect of Ar bombardment on the junction of two crossed single-walled carbon nanotubes, to understand the value and limitations of this method for generating connections between nanotubes. A geometric criterion was used to assess the quality of the junctions formed, with the goal of identifying the most productive conditions for experimental ion bombardment. In particular, the effects of nanotube chirality, Ar impact kinetic energy, impact particle flux and fluence, and annealing temperature were considered. The most productive bombardment conditions, leading to the most crosslinking of the tubes with the smallest loss of graphit...

  1. Precise atomic masses of 147Eu, 147Gd, and 151Tb derived from their decay properties

    International Nuclear Information System (INIS)

    The β-decay energies of 147Eu, 147Gd, and 151Tb were determined by using γ-spectroscopical methods. The comparison of experimental with calculated K-capture probabilities yielded the Qsub(EC) values 1.690(sub(-16)+21) MeV and 2.206(sub(-16)+18) MeV for 147Eu and 147Gd, respectively. By measuring the ratio of positron decay to electron capture for two branches in 147Eu decay, the decay energies Qsub(EC)=1.702(13) MeV and Qsub(EC)=1.709(18) MeV were derived. Also from EC/β+ ratios the values Qsub(EC)=2.225(75) MeV for 147Gd, and Qsub(EC)=2.566(12) MeV for 151Tb were obtained. Earlier discrepancies in the mass adjustment of these isotopes were removed. In course of the present studies γ-decay properties of 147Eu and 147Gd were reinvestigated. (orig.)

  2. 8. International conference on atomic masses and fundamental constants (AMCO-8)

    International Nuclear Information System (INIS)

    The current recommended values of the fundamental physical constants are base on an adjustment carried out in 1986. Physics, however, has not stood still. New measurements have been reported for the Rydberg constant and the gas constant. Improved calculations and measurements of the electron magnetic moment anomaly, ae have provided an improved value for the fine structure constant α = μ0ce2/2h. The decision to establish uniform international representation of the volts and ohms in terms of the Josephson effect and the quantized Hall resistance, respectively, stimulated new measurements of 2e/h and e/h2. These new data have significantly changed the error-space of the adjustment of the physical constants. In the 1986 adjustments, the one-standard deviation uncertainty in α was 0.045 ppm; the university of Washington measurements of ae and the final results of Kinoshita's 20-year program of numerical evaluation of the eight order QED diagrams yield a new value with an uncertainty of 0.0069 ppm. Combined with the Rydberg constant and the proton-electron mass ratio this means that NΛh = Mpα2c/(2(mp/me)R∞) is defined with an uncertainty of 0.025 ppm

  3. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m0) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m0 values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm3 min−1) of the internal sheath gas during atomization. The theoretical and experimental ratios of m0(mini-flow)-to-m0(stop-flow) were closely similar for each study analyte. Likewise, the calculated m0 data gave a fairly good agreement with the corresponding experimental m0 values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m0) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m0 of 18 analytes were calculated for stopped & mini furnace gas flows. • Experimental

  4. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  5. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials used in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Almeida J, A. T. [FUNDACENTRO, Centro Regional de Minas Gerais, Brazilian Institute for Safety and Health at Work, Belo Horizonte, 30180-100 Minas Gerais (Brazil); Nogueira, M. S. [Center of Development of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Santos, M. A. P., E-mail: mnogue@cdtn.br [Regional Center for Nuclear Science / CNEN, 50.740-540 Recife, Pernambuco (Brazil)

    2015-10-15

    Full text: In this paper, the interaction of X-rays with some shielding materials has been studied for materials containing different amounts of barite and aggregates. The total mass attenuation coefficient (μ{sub t}) for three shielding materials has been calculated by using WinXCOM program in the energy range from RQR qualities (RQR-4, RQR-6, RQR-9, and RQR-10). They were: cream barite (density 2.99 g/cm{sup 3} collected in the State of Sao Paulo), purple barite (density 2.95 g/cm{sup 3} collected in the State of Bahia) and white barite (density 3.10 g/cm{sup 3} collected in the State of Paraiba). The chemical analysis was carried out by an X-ray fluorescence spectrometer model EDX-720, through dispersive energy. The six elements of the higher concentration found in the sample and analyzed by Spectrophotometry of Energy Dispersive X-ray for the samples were Ba(60.9% - white barite), Ca(17,92% - cream barite), Ce(3,60% - white barite), Fe(17,16% - purple barite), S(12,11% - white barite) and Si(29,61% - purple barite). Also, the effective atomic number (Z{sub eff}) and the effective electron density (N{sub eff}) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined. (Author)

  6. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials used in radiation protection

    International Nuclear Information System (INIS)

    Full text: In this paper, the interaction of X-rays with some shielding materials has been studied for materials containing different amounts of barite and aggregates. The total mass attenuation coefficient (μt) for three shielding materials has been calculated by using WinXCOM program in the energy range from RQR qualities (RQR-4, RQR-6, RQR-9, and RQR-10). They were: cream barite (density 2.99 g/cm3 collected in the State of Sao Paulo), purple barite (density 2.95 g/cm3 collected in the State of Bahia) and white barite (density 3.10 g/cm3 collected in the State of Paraiba). The chemical analysis was carried out by an X-ray fluorescence spectrometer model EDX-720, through dispersive energy. The six elements of the higher concentration found in the sample and analyzed by Spectrophotometry of Energy Dispersive X-ray for the samples were Ba(60.9% - white barite), Ca(17,92% - cream barite), Ce(3,60% - white barite), Fe(17,16% - purple barite), S(12,11% - white barite) and Si(29,61% - purple barite). Also, the effective atomic number (Zeff) and the effective electron density (Neff) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined. (Author)

  7. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    Science.gov (United States)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  8. Modification of optical properties of copper surfaces by ion bombardment

    International Nuclear Information System (INIS)

    Influence of ion bombardment by N2+, N2+ and D+ ions on optical properties of copper films evaporated on single crystal silicon wafer and samples of balk Cu was studied. Microrelief of surface of the copper samples was studied by optical microscopy. It was found that principal incidence angle and optical conductivity of Cu subsurface layer decrease after nitrogen ion bombardment. Additional irradiation by N2+ ions does not improve corrosion stability of Cu films. It was obtained that interaction of D+ ions with subsurface layer of Cu increases the roughness of surface and essentially changes the spectra of optical conductivity

  9. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    Science.gov (United States)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  10. New data from the 243Am + 48Ca reaction give cross-bombardment verification of elements 113, 115 and 117

    International Nuclear Information System (INIS)

    The reaction 243Am + 48Ca has been reinvestigated to provide new evidence for the discovery of elements 113, 115. Twenty eight new 288115 decay chains were detected in this reaction to increase from three to 31 the number of 288115 atoms observed. In addition, four new decay chains were observed for the first time and assigned to the decay of 289115. These new 289115 events have the same properties for their decay chains as those observed for 289115 populated in the alpha decay of 293117 produced in the 249Bk + 48Ca reaction to provide cross-bombardment evidence. These new high statistics data sets and the cross-bombardment agreement provide definitive evidence for the discoveries of the new elements with Z = 113, 115, 117.

  11. ESCA and REELS characterization of electrically conductive polyimide obtained by ion bombardment in the keV range

    International Nuclear Information System (INIS)

    Polyimide films were bombarded with Ar+ at 150 keV at various doses from 5 x 1012 to 2 x 1017 ions cm-2. Ion bombardment was found to produce a drastic decrease of the electrical resistivity of the polyimide from about 1016 to 3 x 10-3 Ω cm, the effect being dependent on the ion dose. The chemical structure of the conductive films obtained was characterized by means of ESCA and REELS techniques. The modification of the original polymer seems to proceed at low ion doses (up to 5 x 1014 ions cm-2) by means of the progressive elimination of the carbonyl groups and the related destruction of the imidic rings, while at high doses (from 5 x 1015) ions cm-2) the carbonization of the polyimide occurs with the production of an amorphous carbon still containing significant amount of residual N and O atoms. (author)

  12. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C2, CH2, C2H, and C3, as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR)

  13. 同位素丰度绝对测量及相对原子质量测定中的不确定度评估%Uncertainty Analysis of Absolute Measurement of Isotopic Abundances and Relative Atomic Mass

    Institute of Scientific and Technical Information of China (English)

    周涛; 王同兴

    2005-01-01

    The sources of uncertainty of relative atomic mass include measurement errors and isotopic fractionation of terrestrial samples. Measurement errors are composed of measurements of atomic masses and isotopic abundances, the later includes uncertainty of correction factor K and isotopic ratios of natural samples. Through differential of seven factors to gain their propagation factors, the uncertainty of correction factors K can be calculated. With the same differential calculation, the uncertainty of relative atomic mass can be obtained.

  14. Neutron yields from bombardment of α-particles

    International Nuclear Information System (INIS)

    The thick target neutron yields from bombardment of <10 MeV α-particles are calculated based on the reaction cross sections. The results for the elements of Z < 15 are compared with existing calculated or measured neutron yield data. For the elements of 16 < Z < 50, elemental or isotopic neutron yields are calculated if the cross section data are available. (author)

  15. JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT

    Energy Technology Data Exchange (ETDEWEB)

    Turrini, D.; Coradini, A.; Magni, G., E-mail: diego.turrini@ifsi-roma.inaf.it [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, 00133, Rome (Italy)

    2012-05-01

    The asteroid belt is an open window on the history of the solar system, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions (SFDs). In this work, we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of the primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depends on the SFD of the primordial planetesimals. If the asteroid belt was dominated by planetesimals less than 100 km in diameter, the primordial bombardment would have caused the erosion of bodies smaller than 200 km in diameter. If the asteroid belt was instead dominated by larger planetesimals, the bombardment would have resulted in the destruction of bodies as big as 500 km.

  16. On the reasons for bombarding uranium with slow neutrons

    International Nuclear Information System (INIS)

    Form the concepts of slow neutrons, the binding energy and the excitation energy of complex nuclei, and the activation energy in nuclear fission, the four reasons for bombarding uranium with slow neutrons are summed up. Not only the reasons for uranium fission are brought in light, but also the micromechanism is dealt with

  17. The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV

    OpenAIRE

    Burcu Akça; Erzeneoğlu, Salih Z.

    2014-01-01

    The mass attenuation coefficients for compounds of biomedically important some elements (Na, Mg, Al, Ca, and Fe) have been measured by using an extremely narrow collimated-beam transmission method in the energy 59.5 keV. Total electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities have been obtained by using these results. Gamma-rays of 241Am passed through compounds have been detected by a high-resolution Si(Li) detector and by using energy dispers...

  18. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm−3 and 0.011 × 1012 cm−3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm−3 and 0.97 × 1012 cm−3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges

  19. Damage to ZnS films due to nitrogen ion bombardment

    International Nuclear Information System (INIS)

    The effect of nitrogen ion bombardment on vacuum-deposited ZnS films was investigated by structural and optical techniques. Films, deposited on freshly cleaved mica, have a wurtzite-type hexagonal lattice. The film thickness is reduced by the sputtering of the surface layers by the bombarding ions. Under severe ion bombardment, thermal spikes may possibly lead to melting and recrystallization. (author)

  20. Damage to ZnS films due to nitrogen ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Mady, Kh.A.; Moustafa, Z.S.; Selim, M.S.; Gabr, A.A.

    1988-07-01

    The effect of nitrogen ion bombardment on vacuum-deposited ZnS films was investigated by structural and optical techniques. Films, deposited on freshly cleaved mica, have a wurtzite-type hexagonal lattice. The film thickness is reduced by the sputtering of the surface layers by the bombarding ions. Under severe ion bombardment, thermal spikes may possibly lead to melting and recrystallization.

  1. Atomic nitrogen: a parameter study of a micro-scale atmospheric pressure plasma jet by means of molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    Absolute atomic nitrogen densities (N) in the effluent of a micro-scale atmospheric pressure plasma jet (µ-APPJ) operated in He with small admixtures of molecular nitrogen (N2) are measured by means of molecular beam mass spectrometry. Focusing on changes of the external plasma parameters, the dependency of the atomic nitrogen density on the admixture of molecular nitrogen to the plasma, the variation of applied electrode voltage and the variation of distance between the jet nozzle and the sampling orifice of the mass spectrometer are analysed. When varying the N2 admixture, a maximum density of atomic nitrogen of approximately 1.5  ×  1014 cm−3 (∼6 ppm) is reached at about 0.25% N2 admixture. Moreover, the N density increases approximately linearly with the applied voltage. Both results are comparable to atomic oxygen (O) behaviour of the µ-APPJ operated at equal plasma conditions except for admixing molecular O2 instead of nitrogen (Ellerweg et al 2010 New J. Phys. 12 013021). The N density decreases continuously with increasing distance, but the decrease is slower than in the case of O atoms in He/O2 plasma. N atoms with a density of 2.0  ×  1013 cm−3 (∼0.8 ppm) are still detected at 40 mm distance from the jet nozzle in controlled He/N2 atmosphere. The simple fluid simulation of N diffusion does not reproduce the measured densities of N. Nevertheless, a simulation taking into account atomic nitrogen reactions with gas impurities are able to reproduce the measured data, indicating that these reactions are an important loss mechanism of N atoms. The presented results are relevant for the future investigation of interactions of reactive nitrogen species with biological substrates. (paper)

  2. Determination of the direct double-β -decay Q value of 96Zr and atomic masses of Zr 90 -92 ,94 ,96 and Mo 92 ,94 -98 ,100

    Science.gov (United States)

    Gulyuz, K.; Ariche, J.; Bollen, G.; Bustabad, S.; Eibach, M.; Izzo, C.; Novario, S. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2015-05-01

    Experimental searches for neutrinoless double-β decay offer one of the best opportunities to look for physics beyond the standard model. Detecting this decay would confirm the Majorana nature of the neutrino, and a measurement of its half-life can be used to determine the absolute neutrino mass scale. Important to both tasks is an accurate knowledge of the Q value of the double-β decay. The LEBIT Penning trap mass spectrometer was used for the first direct experimental determination of the 96Zr double-β decay Q value: Qβ β=3355.85 (15 ) keV. This value is nearly 7 keV larger than the 2012 Atomic Mass Evaluation [M. Wang et al., Chin. Phys. C 36, 1603 (2012), 10.1088/1674-1137/36/12/003] value and one order of magnitude more precise. The 3-σ shift is primarily due to a more accurate measurement of the 96Zr atomic mass: m (96Zr ) =95.908 277 35 (17 ) u. Using the new Q value, the 2 ν β β -decay matrix element, | M2 ν| , is calculated. Improved determinations of the atomic masses of all other zirconium (Zr 90 -92 ,94 ,96 ) and molybdenum (92 ,94 -98 ,100Mo ) isotopes using both 12C8 and 87Rb as references are also reported.

  3. Primary recoil spectra and subcascade effects in ion bombardment experiments

    International Nuclear Information System (INIS)

    The motivation of this work is to compare atomic damage configurations associated with neutron and fast-ion damage. The question we set out to answer was: Which choice of ion mass and kinetic energy provides the best simulation of fast neutron damage. The answer which emerges is that the primary damage state, i.e. the statistical distribution of free defects, and subcascade regions before annealing, is remarkably independent of the ion species and its PKA spectrum. This conclusion is sufficiently surprising to warrant careful examination, and is presented together with a variety of qualifications. (author)

  4. Absorption of hydrogen in vanadium, enhanced by ion bombardment; Ionenbeschussunterstuetzte Absorption des Wasserstoffs in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    Prior to hydrogen implantation into vanadium, the vanadium specimen usually is exposed to an activation process and is then heated at 1 atm hydrogen to temperatures between 500 and 600 C, subsequently cooled down in several steps. Within this temperature range, hydrogen solubility increases with declining temperature. A decisive factor determining hydrogen absorption is the fact that at temperatures above 250 C, oxygen desorbs from the material surface and thus no longer inhibits hydrogen absorption. Therefore a different approach was chosen for the experiments reported: Hydrogen absorption under UHV conditions at room temperature. After the usual activation process, the vanadium surface was cleaned by 5 keV Ar{sup +} ion bombardment. Thus oxygen absorption at the specimen surface (and new reactions with oxygen from the remaining gas) could be avoided, or removed. By means of thermal desorption mass spectrometry (TDMS), hydrogen absorption as a function of argon ion dose was analysed. TDMS measurements performed for specimens treated by ion bombardment prior to H{sup 2} exposure showed two H{sup 2} desorption peaks, in contrast to the profiles measured with specimens not exposed to ion bombardment. It is assumed that the ion bombardment disturbs the crystal structure so that further sites for hydrogen absorption are produced. (orig./CB) [Deutsch] Bei der Beladung von Vandium mit Wasserstoff wird ueblicherweise die Probe nach einer Aktivierungsprozedur bei 1 atm Wasserstoff auf Temperaturen im Bereich von 500 bis 600 C hochgeheizt und danach schrittweise abgekuehlt. In diesem Temperaturbereich nimmt die Wasserstoffloeslichkeit mit abnehmender Temperatur zu. Entscheidend fuer die Beladung ist aber auch die Tatsache, dass bei Temperaturen groesser 250 C Sauerstoff von der Oberflaeche desorbiert und dadurch die Absorption von Wasserstoff nicht mehr blockieren kann. Im Rahmen der hier beschriebenen Untersuchungen sollte die Wasserstoffbeladung unter UHV-Bedingungen bei

  5. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry. Progress report, January 1, 1990--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Montaser, A.

    1992-09-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  6. Detection of hepatitis C virus core protein in serum by atomic force microscopy combined with mass spectrometry

    Directory of Open Access Journals (Sweden)

    Ivanov YD

    2015-02-01

    Full Text Available Yuri D Ivanov,1 Anna L Kaysheva,1,2 Pavel A Frantsuzov,1 Tatyana O Pleshakova,1 Nikolay V Krohin,1 Alexander A Izotov,1 Ivan D Shumov,1 Vasiliy F Uchaikin,1 Vladimir A Konev,1 Vadim S Ziborov,1 Alexander I Archakov11Institute of Biomedical Chemistry, 2PostgenTech Ltd, Moscow, RussiaAbstract: A method for detection and identification of core antigen of hepatitis C virus (HCVcoreAg-containing particles in the serum was proposed, with due account taken of the interactions of proteotypic peptides with Na+, K+, and Cl- ions. The method is based on a combination of reversible biospecific atomic force microscopy (AFM-fishing and mass spectrometry (MS. AFM-fishing enables concentration, detection, and counting of protein complexes captured on the AFM chip surface, with their subsequent MS identification. Biospecific AFM-fishing of HCVcoreAg-containing particles from serum samples was carried out using AFM chips with immobilized antibodies against HCVcoreAg (HCVcoreAgim. Formation of complexes between anti-HCVcoreAgim and HCVcoreAg-containing particles on the AFM chip surface during the fishing process was demonstrated. These complexes were registered and counted by AFM. Further MS analysis allowed reliable identification of HCVcoreAg within the complexes formed on the AFM chip surface. It was shown that MS data processing, with account taken of the interactions between HCVcoreAg peptides and Na+, K+ cations, and Cl- anions, allows an increase in the number of peptides identified.Keywords: hepatitis C virus, molecular detector, biospecific fishing

  7. Mass and Auger electron spectroscopy studies of the interactions of atomic and molecular chlorine on a plasma reactor wall

    International Nuclear Information System (INIS)

    We have investigated the interactions of Cl and Cl2 with an anodized Al surface in an inductively coupled chlorine plasma. The cylindrical substrate is rapidly rotated within a differentially pumped wall and is exposed to the plasma 35% of the time through a conical skimmer. On the opposite side of the substrate, a second skimmer and differential pumping allows the surface and desorbing products to be analyzed by Auger electron spectroscopy (AES), line-of-sight mass spectrometry (MS), and through pressure rise measurements. In a 600 W Cl2 plasma at 5 mTorr, the surface becomes covered with a layer with the overall stoichiometry of about Al2Si2O10Cl3, with Si being the result of the slow erosion of the quartz discharge tube. The surface layer composition (specifically Cl coverage) does not change as a function of the delay time (1 ms-10 min) between plasma exposure and AES characterization. In contrast to AES measurements, the MS signals from Cl2 desorption, resulting from recombination of Cl atoms, decrease by about a factor of 10 over the 1-38 ms probed by varying the substrate rotation frequency. Substantial adsorption and desorption of Cl2 are also observed with the plasma off. Cl recombination coefficients (γCl) derived from an analysis of the time-dependent MS signals range from 0.01 to 0.1 and increase with increasing Cl-to-Cl2 number density ratio, suggesting a competition for adsorption sites between Cl2 and Cl

  8. Towards practical uses of ion bombardment in ceramics

    International Nuclear Information System (INIS)

    Recent work at the Royal Melbourne Institute of Technology and in laboratories elsewhere, is reviewed to show that ion bombardment techniques of surface modification of ceramics are getting close to practical/industrial uses. Some properties altered are hardness, compressive stress, fracture toughness, flexural strength, friction, wear, adhesion of metallic films onto ceramics and sinterability of powders. A promising area of application - solid lubricant films is discussed in detail. 9 refs., 8 figs

  9. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  10. Multilayer, high resolution, ion-bombardment-tolerant electron resist system

    International Nuclear Information System (INIS)

    A multilayer, high resolution electron resist system, which withstands ion bombardment, has been developed. This system consists of four layers which are, from top to bottom: AZ1350B, a thin metal interlayer, PMMA, and a copolymer of PMMA. The bottom two layers define the actual pattern dimensions. Two independent developers have been chosen for these two layers in order to obtain controllably undercut resist profiles ideal for liftoff applications, while maintaining high resolution in the upper PMMA layer. The top two layers of the four-level system serve to provide a protective metal coating which prevents crosslinking of the underlying polymer layer. This allows processing involving ion bombardment, such as ion milling or reactive ion etching. Without this protective metal layer, difficulty is often encountered in liftoff processing after ion bombardment, due to the presence of a thin crosslinked polymer layer which resists solvent penetration. This resist system has been used in conjunction with reactive ion beam oxidation to fabricate high quality, small area, niobium--lead alloy tunnel junctions in an edge geometry. Using a standard Cambridge EBMF-2 microfabricator, junctions with linewidths as small as 0.25 μm have been produced. With the edge geometry, this corresponds to junction areas smaller than 4 x 10-10 cm2

  11. Electron bombardment of certain thin films during deposition

    International Nuclear Information System (INIS)

    The performance of multilayer thin film optical filters was studied. In 1947, R.M. Rice established the technique of bombarding the substrate with electrons of several kilovolts as the films were being deposited. This process improved the durability of zinc sulfide films dramatically. An electron source filament was installed inside the coating chamber and electrically isolated the substrate holder, which was connected to a positive high voltage supply. An accelerating loop placed just above the filament enchanced its efficiency. The source was calibrated by measuring the current through the substrate holder. Single layer films of five different materials were deposited, each at its own set of electron bombardment parameters. The microstructure was analyzed. Antimony trioxide films showed a shift in lattice orientation, but this did not affect columnar structure or macroscopic quantities. Potassium hexafluorozirconate films showed elimination of both crystal structure and columnar growth, resulting in slightly reduced durability and some absorption. Silicon monoxide films suffered no change in structure or properties. Zinc sulfide films demonstrated the change in crystal structure, which was quantified and shown to improve moisture resistance. Optical properties were unaffected. Magnesium fluoride films showed a slight increase in crystallinity with only subtle changes in durability and optical properties. Generally, electron bombardment reduced or rearranged crystal structure

  12. Genetic transformation of Pinus taeda by particle bombardment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A protocol is presented for genetically engineering loblolly pine (Pinus taeda L.) using particle bombardment. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Plasmid pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) cryIAc coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (Nos) terminator sequences, and the selectable marker gene, neomycin phosphotransferase II (nptII) controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected by kanamycin resistance conferred by the introduced NPTII gene. Shoot regeneration was induced from the kanamycin-resistant callus, and transgenic plantlets were then produced. The presence of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern blot analysis, and insect feeding assays. The recovered transgenic plants were acclimatized and then established in soil.

  13. Defect formation in graphene during low-energy ion bombardment

    Science.gov (United States)

    Ahlberg, P.; Johansson, F. O. L.; Zhang, Z.-B.; Jansson, U.; Zhang, S.-L.; Lindblad, A.; Nyberg, T.

    2016-04-01

    This letter reports on a systematic investigation of sputter induced damage in graphene caused by low energy Ar+ ion bombardment. The integral numbers of ions per area (dose) as well as their energies are varied in the range of a few eV's up to 200 eV. The defects in the graphene are correlated to the dose/energy and different mechanisms for the defect formation are presented. The energetic bombardment associated with the conventional sputter deposition process is typically in the investigated energy range. However, during sputter deposition on graphene, the energetic particle bombardment potentially disrupts the crystallinity and consequently deteriorates its properties. One purpose with the present study is therefore to demonstrate the limits and possibilities with sputter deposition of thin films on graphene and to identify energy levels necessary to obtain defect free graphene during the sputter deposition process. Another purpose is to disclose the fundamental mechanisms responsible for defect formation in graphene for the studied energy range.

  14. Defect formation in graphene during low-energy ion bombardment

    Directory of Open Access Journals (Sweden)

    P. Ahlberg

    2016-04-01

    Full Text Available This letter reports on a systematic investigation of sputter induced damage in graphene caused by low energy Ar+ ion bombardment. The integral numbers of ions per area (dose as well as their energies are varied in the range of a few eV’s up to 200 eV. The defects in the graphene are correlated to the dose/energy and different mechanisms for the defect formation are presented. The energetic bombardment associated with the conventional sputter deposition process is typically in the investigated energy range. However, during sputter deposition on graphene, the energetic particle bombardment potentially disrupts the crystallinity and consequently deteriorates its properties. One purpose with the present study is therefore to demonstrate the limits and possibilities with sputter deposition of thin films on graphene and to identify energy levels necessary to obtain defect free graphene during the sputter deposition process. Another purpose is to disclose the fundamental mechanisms responsible for defect formation in graphene for the studied energy range.

  15. The emission process of secondary ions from solids bombarded with large gas cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Satoshi [Quantum Science and Engineering Centre, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)], E-mail: ninomiya@nucleng.kyoto-u.ac.jp; Ichiki, Kazuya [Department of Nuclear Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); Seki, Toshio [Department of Nuclear Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Aoki, Takaaki [Electronic Science and Engineering, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Matsuo, Jiro [Quantum Science and Engineering Centre, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan)

    2009-08-15

    We investigated the effects of size and energy of large incident Ar cluster ions on the secondary ion emission of Si. The secondary ions were measured using a double deflection method and a time-of-flight (TOF) technique. The size of the incident Ar cluster ions was between a few hundreds and several tens of thousands of atoms, and the energy up to 60 keV. Under the incidence of keV energy atomic Ar ions, mainly atomic Si ions were detected, whereas Si cluster ions were rarely observed. On the other hand, under the incidence of large Ar cluster ions, the dominant secondary ions were Si{sub n}{sup +} (2 {<=} n {<=} 11). It has become clear that the yield ratio of secondary Si cluster ions was determined by the velocity of the incident cluster ions, and this strong dependence of the yield ratio on incident velocity should be related to the mechanisms of secondary ion emission under large Ar cluster ion bombardment.

  16. The emission process of secondary ions from solids bombarded with large gas cluster ions

    International Nuclear Information System (INIS)

    We investigated the effects of size and energy of large incident Ar cluster ions on the secondary ion emission of Si. The secondary ions were measured using a double deflection method and a time-of-flight (TOF) technique. The size of the incident Ar cluster ions was between a few hundreds and several tens of thousands of atoms, and the energy up to 60 keV. Under the incidence of keV energy atomic Ar ions, mainly atomic Si ions were detected, whereas Si cluster ions were rarely observed. On the other hand, under the incidence of large Ar cluster ions, the dominant secondary ions were Sin+ (2 ≤ n ≤ 11). It has become clear that the yield ratio of secondary Si cluster ions was determined by the velocity of the incident cluster ions, and this strong dependence of the yield ratio on incident velocity should be related to the mechanisms of secondary ion emission under large Ar cluster ion bombardment.

  17. The dependence of scattering length on van derWaals interaction and reduced mass of the system in two-atomic collision at cold energies

    Indian Academy of Sciences (India)

    RAY HASI

    2016-07-01

    The static exchange model (SEM) and the modified static exchange model (MSEM) recently introduced by Ray in {\\it Pramana – J. Phys.} 83, 907 (2014) are used to study the elastic collision between two hydrogen-like atoms when both are in ground states by considering the system as a four-body Coulomb system in the centre of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron exchange. The MSEM added init, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g., the van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass $(\\mu)$ dependence on the scattering length is observed. Again, applying the MSEM code on H(1s)–H(1s) elastic scattering and varying the minimum values of interatomic distance $R_0$, the dependence of scattering length on the effective interatomic potential consistent with the existing physics is observed. Both these basic findings in low and cold energy atomic collision physics are quite useful and are being reported for the first time.

  18. The dependence of scattering length on van der Waals interaction and reduced mass of the system in two-atomic collision at cold energies

    Science.gov (United States)

    RAY, HASI

    2016-06-01

    The static-exchange model (SEM) and the modified static-exchange model (MSEM) recently introduced by Ray [1] is applied to study the elastic collision between two hydrogen-like atoms when both are in ground states considering the system as a four-body Coulomb problem in the center of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron-exchange. The MSEM added in it, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g. the Van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass dependence on scattering length is observed. Again applying the MSEM code on H(1s)-H(1s) elastic scattering and varying the minimum values of interatomic distance, the dependence of scattering length on the effective interatomic potential consistent with the existing physics are observed. Both these basic findings in low and cold energy atomic collision physics are quite useful and are being reported for the first time.

  19. Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments

    CERN Document Server

    Flambaum, V V; Thomas, A W; Young, R D

    2004-01-01

    We perform calculations of the dependence of nuclear magnetic moments on quark masses and obtain limits on the variation of $(m_q/\\Lambda_{QCD})$ from recent measurements of hydrogen hyperfine (21 cm) and molecular rotational transitions in quasar absorption systems, atomic clock experiments with hyperfine transitions in H, Rb, Cs, Yb$^+$, Hg$^+$ and optical transition in Hg$^+$. Experiments with Cd$^+$, deuterium/hydrogen, molecular SF$_6$ and Zeeman transitions in $^3$He/Xe are also discussed.

  20. Quantitation of motexafin lutetium in human plasma by liquid chromatography-tandem mass spectrometry and inductively coupled plasma-atomic emission spectroscopy

    OpenAIRE

    Miles, Dale; Mody, Tarak D.; Hatcher, Lori I.; Fiene, John; Stiles, Mark; Patrick P. Lin; Lee, J.W.

    2003-01-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) methods were developed and validated for the evaluation of motexafin lutetium (MLu, lutetium texaphyrin, PCI-0123) pharmacokinetics in human plasma. The LC-MS/MS method was specific for MLu, whereas the ICP-AES method measured total elemental lutetium. Both methods were fast, simple, precise, and accurate. For the LC-MS/MS method, a closely related analogue (PCI-0353...

  1. Carbon monoxide production in low energy oxygen ion bombardment of pyrolytic graphite and Kapton surfaces

    Science.gov (United States)

    Horton, C. C.; Eck, T. G.; Hoffman, R. W.

    1986-01-01

    The results of an investigtion of the interaction of low energy oxygen ions with pyrolytic graphite and Kapton surface are reported. CO molecules emitted from the surface as a result of the ion bombardment were detected by a mass spectrometer. Because the ion-induced signals were small compared to that arising from the CO background pressure in the vacuum system, the ion beam was modulated and the modulated component of the CO signal measured with a lock-in amplifier. The quantum yield (CO molecules emitted per incident oxygen ion) for graphite rose from 1.9 at 4.5 eV ion energy to 6.6 at 465 eV. Comparable yields were obtained for Kapton. The large size of the yields suggests contributions to the reaction process from the background O2 molecules in the vacuum system.

  2. The Mass Attenuation Coefficients, Electronic, Atomic, and Molecular Cross Sections, Effective Atomic Numbers, and Electron Densities for Compounds of Some Biomedically Important Elements at 59.5 keV

    Directory of Open Access Journals (Sweden)

    Burcu Akça

    2014-01-01

    Full Text Available The mass attenuation coefficients for compounds of biomedically important some elements (Na, Mg, Al, Ca, and Fe have been measured by using an extremely narrow collimated-beam transmission method in the energy 59.5 keV. Total electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities have been obtained by using these results. Gamma-rays of 241Am passed through compounds have been detected by a high-resolution Si(Li detector and by using energy dispersive X-ray fluorescence spectrometer (EDXRF. Obtained results have been compared with theoretically calculated values of WinXCom and FFAST. The relative difference between the experimental and theoretical values are −9.4% to +11.9% with WinXCom and −11.8% to +11.7% FFAST. Results have been presented and discussed in this paper.

  3. Bombardment induced electronic processes at insulator surfaces: The role of electron-capture collisions

    International Nuclear Information System (INIS)

    Discrete features observed in the energy distribution of electrons emitted from ion-bombarded sodium halide surfaces can be attributed to a new type of collisional deexcitation mechanism. This mechanism involves collisions of sodium in bombardment-excited states with other lattice ions so that, in contract to a metal, the deexcitation process is not simply a consequence of the inner-shell lifetime of the excited sodium ion. Rather, the deexcitation process involves a sequence of collisions within the solid during which the collisionally excited Na+ ion captures an electron to form a neutral excited Na0 atoms; it is the autoionization of these inner-shell excited states of Na0 that are responsible for the observed transition. The authors have found that for such localized electron-transfer processes, the Na0 that are responsible for the observed transitions. They have found that for such localized electron-transfer processes, the Na0 deexcitation transitions can only be associated with a specific lattice collision in which a Na+ captures an electron from a negative halogen lattice ion. These Na0 transitions, therefore, are a direct monitor of the electron transfer event itself. A model is proposed to account for the formation of such autoionizing Na0 states in which excitation processes and localized collisional electron-transfer mechanisms are taken into account. In this model, the electron transfer process is described by a Landau-Zener-Stueckelberg resonant level-crossing mechanism. This type of localized electron-transfer process makes possible new channels for electronic deexcitation and chemical activity. The authors believe that such processes are critical for understanding inelastic ion-surface collisions in solids

  4. Actinide production in 136Xe bombardments of 249Cf

    International Nuclear Information System (INIS)

    The production cross sections for the actinide products from 136Xe bombardments of 249Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these 136Xe + 249Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the 136Xe + 248Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs

  5. Data file and management-retrieval code system of sub-library of atomic masses and characteristics constants of nuclear ground state (CENPL·MCC-1)

    International Nuclear Information System (INIS)

    The library of atomic masses and characteristic constants for nuclear ground states, a sub-library of Chinese Evaluated Nuclear Parameter Library (CENPL), consists of two parts: the data file and management-retrieval code system. The former stores the nuclear basic data, such as the mass excesses, abundances and half-lives, spines and parities of the nuclear ground states. The latter is developed to retrieve the data stored in the data file. It can also derive the separation energies of some particles and particle groups and β-decay energies; nuclear reaction energies and the corresponding threshold energies for some neutron reaction channels including the third reaction process could also be obtained as combinations of different mass excesses. The function, feature and operation instruction of the code system are described briefly

  6. Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1983-01-01

    Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.

  7. The ballistic performance of the bombard Mons Meg

    OpenAIRE

    Ian Lewtas; Rachael McAlister; Adam Wallis; Clive Woodley; Ian Cullis

    2016-01-01

    The bombard Mons Meg, located in Edinburgh Castle, with a diameter of 19 inches (48 cm), was one of the largest calibre cannons ever built. Constructed in 1449 and presented to King James II of Scotland in 1454, Mons Meg was used in both military and ceremonial roles in Scotland until its barrel burst in 1680. This paper examines the history, internal, external and terminal ballistics of the cannon and its shot. The likely muzzle velocity was estimated by varying the propellant type and the c...

  8. Exploring the Early Bombardment of the Inner Solar System

    Science.gov (United States)

    Bottke, W.

    2014-04-01

    The early bombardment history of the Inner Solar System is recorded in a number of interesting places (e.g., the surprisingly high abundance of highly siderophile abundances found in the Earth, Moon, and Mars, the observed impact basins found on Mercury, the Moon and Mars, various properties of main belt asteroids and meteorites, etc.). To date, two dominant scenarios have been used to explain these constraints: (i) most impacts came from the tail end of a monotonically-decreasing impactor population created by planet formation processes, and (ii) most impacts were produced by a terminal cataclysm that caused a spike in the impactor flux starting ~4 Gy ago. Interestingly, using numerical studies linked to the available constraints, we find that both scenarios are needed to explain observations. For (i), we will show that leftover planetesimals from the terrestrial planet region were long-lived enough to hit various worlds long after the end of core formation. The record left behind can be used in interesting ways to probe the nature of terrestrial planet formation. For (ii), we will explore new applications of the so-called Nice model, which provides a plausible dynamical mechanism capable of creating a spike of comets/asteroid impactors. Our results suggest that many "late heavy bombardment" impactors came from an unexpected source, and that they possibly continued to hit Earth, Venus, and Mars well after basin formation terminated on the Moon. Interestingly, the history of the Hadean Earth (ca. 4.0-4.5 billion years ago) may be closely linked to this bombardment. With few known rocks older than ~3.8 Ga, the main constraints from this era come from ancient submillimeter zircon grains. Using our bombardment model, we will argue that the surface of the Hadean Earth was widely reprocessed by impacts through mixing and heating of its uppermost layers. This model not only may explains the Pb-Pb age distribution of ancient zircons but also the absence of most early

  9. Residual activity induced by ion bombardment on insulating samples

    International Nuclear Information System (INIS)

    In this work we investigate some properties of the residual activity induced by protons impinging on quartz, mylar and other insulating materials. In particular, we discuss the time constant related to the decay of the emitted radiation after the primary ion beam is turned off. This radiation includes a continuum of bremsstrahlung and, in some cases, characteristic X-rays induced in the process as well. In general, the results indicate the presence of two time constants in the decaying process. Moreover, it appears that the residual activity has a strong dependence on the material specifications and on the conditions of the surface under bombardment. A simple mechanism for this process is suggested

  10. A mass spectrometric system for analyzing thermal desorption spectra of ion-implanted argon and cesium in tungsten. Ph.D. Thesis

    Science.gov (United States)

    Wood, G. M., Jr.

    1974-01-01

    A mass spectrometric system for determining the characteristics of materials used in instrumental development and aerospace applications was developed. The desorption spectra of cesium that was ion-implanted into polycrystalline tungsten and the effects on the spectra of bombardment of the tungsten by low energy (70 eV) electrons were investigated. Work function changes were measured by the retarding potential diode method. Flash desorption characteristics were observed and gas-reaction mechanisms of the surface of heated metal filaments were studied. Desorption spectra were measured by linearly increasing the sample temperature at a selected rate, the temperature cycling being generated from a ramp-driven dc power supply, with the mass spectrometer tuned to a mass number of interest. Results of the study indicate an anomolous desorption mechanism following an electron bombardment of the sample surface. The enhanced spectra are a function of the post-bombardment time and energy and are suggestive of an increased concentration of cesium atoms, up to 10 or more angstroms below the surface.

  11. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    International Nuclear Information System (INIS)

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 1016 ions cm−2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds

  12. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  13. The dependence of scattering length on van der Waals interaction and on the reduced-mass of the system in two-atomic collision at cold energies

    CERN Document Server

    Ray, Hasi

    2015-01-01

    The static-exchange model (SEM) and the modified static-exchange model (MSEM) recently introduced by Ray [1] is applied to study the elastic collision between two hydrogen-like atoms when both are in ground states considering the system as a four-body Coulomb problem in the center of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron-exchange. The MSEM added in it, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g. the Van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass dependence on scattering length is observed. Again applying the MSEM code on H(1s)-H(1s) elastic scattering and varying the minimum values of interatomic distance, the dependence of scattering length on the effective interatomic potential consistent with the existing physics are observed. Both these basic findings in low and co...

  14. Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122-1.330 MeV

    Science.gov (United States)

    Pawar, Pravina P.; Bichile, Govind K.

    2013-11-01

    The total mass attenuation coefficients of some amino acids, such as Glycine (C2H5NO2), DL-Alanine (C3H7NO2), Proline (C5H9NO2), L-Leucine (C6H13NO2 ), L-Arginine (C6H14N4O2) and L-Arginine Monohydrochloride (C6H15ClN4O2), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma rays were detected using NaI (Tl) scintillation detection system with a resolution of 10.2% at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff) and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) tend to be almost constant as a function of gamma-ray energy. The results show that, the experimental values of mass attenuation coefficients, effective atomic numbers and effective electron densities are in good agreement with the theoretical values with less than 1% error.

  15. Study of a hydrogen-bombardment process for molecular cross-linking within thin films

    International Nuclear Information System (INIS)

    A low-energy hydrogen bombardment method, without using any chemical additives, has been designed for fine tuning both physical and chemical properties of molecular thin films through selectively cleaving C-H bonds and keeping other bonds intact. In the hydrogen bombardment process, carbon radicals are generated during collisions between C-H bonds and hydrogen molecules carrying ∼10 eV kinetic energy. These carbon radicals induce cross-linking of neighboring molecular chains. In this work, we focus on the effect of hydrogen bombardment on dotriacontane (C32H66) thin films as growing on native SiO2 surfaces. After the hydrogen bombardment, XPS results indirectly explain that cross-linking has occurred among C32H66 molecules, where the major chemical elements have been preserved even though the bombarded thin film is washed by organic solution such as hexane. AFM results show the height of the perpendicular phase in the thin film decreases due to the bombardment. Intriguingly, Young's modulus of the bombarded thin films can be increased up to ∼6.5 GPa, about five times of elasticity of the virgin films. The surface roughness of the thin films can be kept as smooth as the virgin film surface after thorough bombardment. Therefore, the hydrogen bombardment method shows a great potential in the modification of morphological, mechanical, and tribological properties of organic thin films for a broad range of applications, especially in an aggressive environment.

  16. Noble-gas ion bombardment on clean silicon surfaces

    International Nuclear Information System (INIS)

    Under UHV conditions clean c-Si(111) surfaces have been bombarded at room temperature by noble gases (He,Ne,Ar,Kr). Using spectroscopic ellipsometry, the implantation processes were continuously recorded. A low-dose behavior (amorphization) and a high-dose behavior (dilution) are observed. After termination of the bombardment, a self-anneal behavior appears and some experiments are discussed in order to explain the observed phenomena. After applying a monotonous temperature increase up to 1100 K, the noble gas desorbs and the surface layer returns to the original state, as can be seen from a closed trajectory in the (δpsi,δΔ) plane. The low-dose behavior is analyzed in the scope of a simple ellipsometric first-order approximation, and the results obtained are compared with theory. The dilution arising during the high-dose behavior can be explained ellipsometrically by means of microscopic surface roughness, and some complementary measurements are reported to verify this explanation

  17. Ion bombardment induced nanostructures as templates for nanomagnet arrays

    International Nuclear Information System (INIS)

    Full text: Self-organized semiconductor surfaces are attractive candidates to be used as large area templates for the growth of magnetic nanostructures. Low energy Ar+ ion bombardment of GaSb surfaces leads to a hexagonal arrangement of hemispherical dots. These dots have an average diameter of 40 nm with heights up to 25 nm. Therefore, they are well suited as templates for shadow deposition with thin films. The shadow deposition technique allows to cover selected surface features only. Here, we use Pt/Co/Pt trilayers. Magnetic force microscopy measurements (MFM) reveal out-of-plane magnetized areas, which correspond to the covered tops of the GaSb dots. This results in a hexagonal array of individual, uncoupled nanomagnets. Magneto optical Kerr effect measurements support the MFM results of a tilted easy axis of magnetization. The magnetically saturated sample shows distinct magnetic patterns and an increase of the average lateral size of magnetized areas compared to the non saturated one. Correlation functions and the analysis of the 2D fourier transformation (2D FFT) have been applied to characterize the nanomagnets regarding size and magnetic information. With this technique a storage density of about 0.2 Tbit/square inch can be reached. The ion bombarded semiconductor surfaces are proper templates for the fabrication of high density uncoupled nanomagnet arrays by shadow deposition. (author)

  18. Model to estimate fractal dimension for ion-bombarded materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu, A., E-mail: hu77@purdue.edu; Hassanein, A.

    2014-03-15

    Comprehensive fractal Monte Carlo model ITMC-F (Hu and Hassanein, 2012 [1]) is developed based on the Monte Carlo ion bombardment simulation code, i.e., Ion Transport in Materials and Compounds (ITMC) code (Hassanein, 1985 [2]). The ITMC-F studies the impact of surface roughness on the angular dependence of sputtering yield. Instead of assuming material surfaces to be flat or composed of exact self-similar fractals in simulation, we developed a new method to describe the surface shapes. Random fractal surfaces which are generated by midpoint displacement algorithm and support vector machine algorithm are combined with ITMC. With this new fractal version of ITMC-F, we successfully simulated the angular dependence of sputtering yield for various ion-target combinations, with the input surface roughness exponent directly depicted from experimental data (Hu and Hassanein, 2012 [1]). The ITMC-F code showed good agreement with the experimental data. In advanced, we compare other experimental sputtering yield with the results from ITMC-F to estimate the surface roughness exponent for ion-bombarded material in this research.

  19. Ion bombardment-induced surface roughness of solids

    International Nuclear Information System (INIS)

    Surface roughness is considered here as a set of protuberances and depressions existing on a target surface. An important parameter which gives quantitative information about this geometrical property of the surface is the mean arithmetical deviation of the surface profile from a so-called mean line, i.e. a line that divides a surface contour in such a conventionally determined segment l, the sum of the second power deviations yi (i=1,2,...,n) of the contour from this line is a minimum. The parameter in question (often called the mean roughness, R, or simply the roughness, R) is defined as the mean value of the distances (y1, y2,...,yn) of points of a surface profile from the mean line measured over a range of the above-mentioned elementary segment l. In calculating r for surfaces that are modified by ion-beam irradiation, it must be taken into account that changes in the distances yi induced by ion-beam bombardment depend on many factors (related to the bombardment conditions and target material properties) and that almost all special features of ion-beam sputtering (the most popular ion-beam technique for surface roughness modification) depend directly or indirectly on the ion-beam incidence angle θ, where θ is measured form the surface normal. It can be shown that the changes in the heights (δy) of certain surface profiles induced by ion sputtering also depend on θ. (Author)

  20. Studies on the formation of atomic and molecular ions of uranium and thorium in Inductively Coupled Plasma Mass Spectrometry (ICPMS)

    International Nuclear Information System (INIS)

    The formation of molecular and atomic ions of U and Th as a function of the plasma conditions such as nebulizer gas flow and plasma power has been studied. The experiments performed and the results of these experiments are briefly described in this paper

  1. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    with an aqueous solution of 6 mmol L-1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass...... spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 sigma) achieved by the HPLC-FAAS system was 1 mg L-1 of selenium (100 mu L injections) for each of the four...

  2. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are...

  3. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are...

  4. Klaus Blaum, of GSI Darmstadt and project leader of the ISOLTRAP experiment at CERN, will receive the 2004 Gustav-Hertz-Prize for his outstanding work on the mass determination of unstable atomic nuclei

    CERN Multimedia

    2004-01-01

    Klaus Blaum, of GSI Darmstadt and project leader of the ISOLTRAP experiment at CERN, will receive the 2004 Gustav-Hertz-Prize for his outstanding work on the mass determination of unstable atomic nuclei

  5. Hybrid molecular ions emitted from CO-NH3 ice bombarded by fission fragments

    Science.gov (United States)

    Martinez, R.; Ponciano, C. R.; Farenzena, L. S.; Iza, P.; Homem, M. G. Pe; Naves de Brito, A.; da Silveira, E. F.; Wien, K.

    2007-05-01

    CO-NH3 ice at 25 K is bombarded by 65 MeV fission fragments and the emitted secondary ions are analyzed by time-of-flight mass spectrometry. The yields of the specific ion species (those formed only from CO or from NH3 molecules) and of the hybrid ion species (formed from both CO and NH3 molecules) are determined as a function of the ice temperature. The time-temperature dependence of desorption yields has been used for secondary ion identification because its behavior characterizes the ion's origin around the sublimation temperature of CO ice (~30 K). The mass spectrum of positive ions measured before CO sublimation is decomposed into three spectra corresponding to CO specific ions, NH3 specific ions and hybrid molecular ions, respectively. The observed spectrum after CO sublimation is very similar to that of a pure NH3 specific spectrum. The total yield of all positive hybrid molecular ions over 600 u mass range is found to be about 2 ions/impact: 20% of this is attributed to N and NH3 containing ions and 80% are ions having the CnOmHl+ structure. The ions Cnindicates the formation of hydrogen cyanide.

  6. Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation

    OpenAIRE

    Mohammad W. Marashdeh; Ibrahim F. Al-Hamarneh; Eid M. Abdel Munem; A.A. Tajuddin; Alawiah Ariffin; Saleh Al-Omari

    2015-01-01

    Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10–60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The M...

  7. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography- inductively coupled plasma-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    OpenAIRE

    Currier, J. M.; Saunders, R J; Ding, L.; Bodnar, W.; Cable, P.; Matoušek, T. (Tomáš); Creed, J. T.; Stýblo, M.

    2013-01-01

    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAsIII and DMAsIII in biological samples. While HG-CT-AAS has con...

  8. Amorphous zone evolution in Si during ion bombardment

    International Nuclear Information System (INIS)

    Heavy ion induced damage in crystalline Si has been extensively studied for the last several decades. It has been experimentally ascertained that if the damage level in the collision (sub)cascade volume exceeds some threshold value, an amorphous zone in a crystalline matrix can be created. Such amorphous zones (a-zones) have been directly observed by transmission electron microscopy (TEM) for the low dose heavy ion bombardment of Si at relatively low temperatures (at room temperature and below). Such a-zones in a surrounding crystalline matrix are also expected to be formed during ion bombardment at elevated temperatures (T∼ 200-550 deg C), but their direct post-implantation observation is difficult because of dynamic annealing of displacement damage during implantation. Dynamic annealing can occur via both direct thermal and ion beam assisted processes. These processes are rather effective since the annealing temperatures for a-zones have been shown to be much lower than those required for crystallisation at a planar amorphous-crystalline (a/c) interface for thermal and ion beam induced crystallisation. This reduction of the annealing temperature has been successfully explained on the basis of the additional driving force available for crystallisation from the derivative of the surface free-energy density of a curved phase boundary. Although a lot of work has been undertaken to understand the formation and stabilisation of a-zones in Si, very little effort has been made to study their thermal and, especially, ion / electron beam induced evolution. In this report a-zone evolution in Si is considered based on a point defect diffusion model for ion beam induced Crystallisation and amorphization in Si modified to take into account purely thermal annealing and the additional interfacial driving force for crystallisation. In addition, the previously unconsidered problem of determination of the a-zone size distribution under different implant conditions is addressed

  9. Characterization of national food agency shrimp and plaice reference materials for trace elements and arsenic species by atomic and mass spectrometric techniques

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pedersen, Gitte Alsing; McLaren, J. W.

    1997-01-01

    absorption spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope dilution ICP-MS. The contents of arsenobetaine and the tetramethylarsonium ion were determined by cation exchange high performance liquid chromatography (HPLC) coupled with ICP-MS, or coupled with ion-spray (IS) tandem......, drying, milling and sieving to collect the fraction of particles less than 150 mu m in sizer In this fraction the trace elements were homogeneously distributed using a 400 mg sample intake for analysis, The total track element concentrations were determined by graphite furnace and cold vapour atomic...... mass spectrometry (MS/MS) for qualitative verification, Based on a rigorous statistical analysis of the analytical data using the DANREF software, it was decided to assign certified values for mercury, cadmium and arsenic in the NFA Shrimp, and mercury, selenium and arsenic in the NFA Plaice...

  10. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  11. Ion-trap electrode preparation with Ne$^+$ bombardment

    CERN Document Server

    McKay, K S; Colombe, Y; Jördens, R; Wilson, A C; Slichter, D H; Allcock, D T C; Leibfried, D; Wineland, D J; Pappas, D P

    2014-01-01

    We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electrode surfaces and interelectrode gaps of microfabricated traps. This procedure helps to minimize redeposition in the gaps between electrodes that can cause electrical shorts. We report heating rates in a stylus-type ion trap prepared in this way that are lower by one order of magnitude compared to a similar untreated stylus-type trap using the same experimental setup.

  12. Blistering and flaking of amorphous alloys bombarded with He ions

    International Nuclear Information System (INIS)

    The blistering and flaking behavior of many kinds of amorphous alloys under helium ion bombardment at room temperature was investigated. Helium ions with energies of 40 keV and 60 keV was implanted within the fluence range (1.0-4.0) x 1018 ions/cm2. The surface topography of samples after irradiation was observed by using a scanning electron microscope. The diameter of blister and the thickness of exfoliated blister lids were measured. The results showed that many kinds of surface topography characteristics appeared for different fluences, energies and amorphous alloys, such as flaking, blistering, exfoliation, blister rupture, second generation blistering and porous structure. The dependence of surface damage modes and the critical fluence for the onset of blistering and flaking on the sort of materials and ion energy was discussed

  13. Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system

    Science.gov (United States)

    Issa, Shams A. M.

    2016-03-01

    Gamma-rays attenuation coefficient, half-value layer, mean free path, effective atomic number and electron density have been measured in glass system of xPbO-(50-x) BaO-50B2O3 (where 5≤x≤45 mol%) for gamma ray photon energies of 0.356, 0.662, 1.173 and 1.33 MeV. The emitted gamma ray was detected by 3×3 in. NaI(Tl) scintillation gamma ray spectrometers. The results were found in good agreement with the theoretical values which calculated from WinXcom.

  14. The irradiation creep of nickel and AISI 321 stainless steel during 4 MeV proton bombardment

    International Nuclear Information System (INIS)

    An apparatus has been developed to study the creep of thin metal specimens under tensile stress during bombardment by 4 MeV protons from the Harwell Van de Graaff Accelerator. The specimen is held in a helium atmosphere and the proton beam reaches it through a thin metal window at the end of the accelerator beam line. The proton beam passes through the thin (25 μm) specimen, losing approximately 1.5MeV in the process (most of which contributes to heating the specimen) and creating almost uniform radiation damage at the rate of (1-10)x10-7 displacements per atom per second (dpa s-1). The specimen temperature is monitored by infra-red pyrometry and controlled to +-0.20C by additional DC heating via the infra-red pyrometer output to compensate for ion beam fluctuations. The irradiation creep strain of the specimen is continuously measured with a sensitivity of 5x10-6 by a linear variable differential transformer. Irradiation times up to about 100h with reasonable beam stability are possible. Results are presented of the irradiation creep behavior of pure Ni and both solution treated and cold-worked AISI 321 stainless steel bombarded in the temperature range 400-6000C under tensile stresses in the range 20-250 MPa

  15. Asteroid 4 Vesta: dynamical and collisional evolution during the Late Heavy Bombardment

    CERN Document Server

    Pirani, S

    2016-01-01

    Vesta is the only currently identified asteroid for which we possess samples, which revealed us that the asteroid is differentiated and possesses a relatively thin basaltic crust that survived to the evolution of the asteroid belt and the Solar System. However, little is know about the effects of past events like the Late Heavy Bombardment on this crust. We address this gap in our knowledge by simulating the LHB in the different dynamical scenarios proposed for the migration of the giant planets in the broad framework of the Nice Model. The results of simulations generate information about produced crater population, surface saturation, mass loss and mass gain of Vesta and number of energetic or catastrophic impacts during LHB. Our results reveal that planet-planet scattering is a dynamically favourable migration mechanism for the survival of Vesta and its crust. The number of impacts on Vesta estimated as due to the LHB is $31\\pm5$, i.e. about 5 times larger than the number of impacts that would have occurre...

  16. Dynamical simulation of tritium depth profile due to 130 keV D+ ion bombardment on a TiT target

    International Nuclear Information System (INIS)

    The depth profiles of tritium atoms in a TiT target at liquid nitrogen temperature induced by 130 keV deuterium ion bombardment have been studied, using the hybrid Monte Carlo simulation code ACAT-DIFFUSE. The present ACAT-DIFFUSE code can estimate the slowing down process of incident ions and the thermal process of moderated atoms. It is found that the experimental depth profile is explained by the Doyle's local mixing model and the target expansion brought out by the accumulated deuterium atoms or recoil tritium atoms which cannot enter the interstitial sites. Another interesting feature is that the range of the implanted deuterium ion becomes shorter as the ion fluence increases. (author)

  17. Characterization of CdZnTe after argon ion beam bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Bensalah, H., E-mail: hakima.bensalah@uam.es [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hortelano, V. [GdS-Optronlab Group, Departamento Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Plaza, J.L. [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O. [GdS-Optronlab Group, Departamento Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Crocco, J.; Zheng, Q.; Carcelen, V.; Dieguez, E. [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer After argon irradiation using low fluence, the defects on surface were removed. Black-Right-Pointing-Pointer The PL intensity increases after irradiation. This increase should be related to the improved quality of the CdZnTe surfaces. Black-Right-Pointing-Pointer Irradiation process lead to an elimination of Te precipitates from the surfaces of the CdZnTe samples. - Abstract: The objective of this work is to analyze the effects of argon ion irradiation process on the structure and distribution of Te inclusions in Cd{sub 1-x}Zn{sub x}Te crystals. The samples were treated with different ion fluences ranging from 2 to 8 Multiplication-Sign 10{sup 17} cm{sup -2}. The state of the samples before and after irradiation were studied by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cathodoluminescence, Photoluminescence, and micro-Raman spectroscopy. The effect of the irradiation on the surface of the samples was clearly observed by SEM or AFM. Even for small fluences a removal of polishing scratches on the sample surfaces was observed. Likely correlated to this effect, an important enhancement in the luminescence intensity of the irradiated samples was observed. An aggregation effect of the Te inclusions seems to occur due to the Ar bombardment, which are also eliminated from the surfaces for the highest ion fluences used.

  18. Wavelength Tunability of Ion-bombardment Induced Surface Ripples on Sapphire

    Science.gov (United States)

    Zhou, Hua; Zhou, Lan; Wang, Yi-Ping; Headrick, Randall L.; Ozcan, Ahmet S.; Wang, Yi-Yi; Ozaydin, Gozde; Ludwig, Karl F., Jr.; Siddons, David P.

    2006-03-01

    Energetic particle bombardment on surfaces is known to produce well ordered 2-D (ripples or wires) and 1-D (dots) structures at submicron/nanoscale by a self-organization process. Recently, significant experimental and theoretical effort has been expended to develop methods to produce self-organized nanostructures on diverse substrates from semiconductors to metals. These studies have shown potential in tailoring surface morphology in order to exploit novel physical properties, and contributed much to reveal the mechanisms of the instability-driven self-organization process. In this work, a study of ripple formation on sapphire surfaces by ion sputtering is presented. Surface characterization by in-situ synchrotron grazing incidence small angle x-ray scattering (GISAXS) and ex-situ atomic force microscopy (AFM) for the wavelength, shape and amplitude of sapphire ripples is performed. The wavelength can be varied over two orders of magnitude by changing the ion incidence angle. The linear Bradley-Harper (B-H) theory with ion induced viscous flow (IVF) relaxation fits the general trends of the data. However, anomalous smoothing not predicted by current models is observed near normal incidence.

  19. On the validity of the electron transfer model in photon emission from ion bombarded vanadium surfaces

    International Nuclear Information System (INIS)

    The spectral structure of the radiation (250-500 nm) emitted during sputtering of clean and oxygen-covered polycrystalline vanadium and V2O5 by 5 keV Kr+ ions is presented. The optical spectra obtained by bombarding the vanadium target consist of series of sharp lines, which are attributed to neutral and ionic excited V. The same lines are observed in the spectra of V2O5 and vanadium when oxygen is present. The absolute intensities of VI and VII lines are measured under similar conditions for all spectra. The difference in photon yield from the clean and oxide vanadium targets is discussed in terms of the electron-transfer processes between the excited sputtered and electronic levels of the two types of surfaces. We have examined the existing models of ionisation, excitation, neutralisation and de-excitation of atomic particles in the vicinity of solid surfaces. Continuum radiation was also observed and interpreted as a result of the emission of excited molecules of the metal-oxide. (authors)

  20. The observation of quasi-molecular ions from a tiger snake venom component (Msub(r) 13309) using 252Cf-plasma desorption mass spectrometry

    International Nuclear Information System (INIS)

    A method involving fast heavy-ion bombardment of a solid sample called 252Cf-plasma desorption mass spectrometry has been used to study a non-enzymatic, non-toxic phospholipase homolog from Australian tiger snake (Notechis scutatus) venom. The protein consists of 119 amino acids in a single polypeptide chain cross-linked by 7 disulfide bridges. The isotopically averaged molecular mass as determined by protein sequence analysis is 13309 atomic mass units (amu). The mass distributions were studied by means of time-of-flight measurements. Quasi-molecular ions associated to the molecule and its dimer were observed. The mass of the quasi-molecular ion corresponding to the molecule was determined to be 13285 +- 25 amu. (Auth.)