WorldWideScience

Sample records for atmospheric-pressure plasma jet

  1. Atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  2. Large area atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  3. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  4. Characterization of DC argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Yan Jianhua; Ma Zengyi; Pan Xinchao; Cen Kefa; Bruno, C

    2006-01-01

    An original DC double anode plasma torch operating with argon at atmospheric pressure which provides a long time and highly stable plasma jet is analyzed through its electrical and optical signals. Effects of gas flow rate and current intensity on the arc dynamics behaviour are studied using standard diagnostic tools such as FFT and correlation function. An increasing current-voltage characteristic is reported for different argon flow rates. It is noted that the takeover mode is characteristic for argon plasma jet and arc fluctuations in our case are mainly induced by the undulation of torch power supply. Furthermore, the excitation temperatures and electron densities of the plasma jet inside and outside the arc chamber have been determined by means of optical emission spectroscopy (OES). The criteria for the existence of local thermodynamic equilibrium (LTE) in plasma is then discussed. The results show that argon plasma jet at atmospheric pressure under our experimental conditions is close to LTE. (authors)

  5. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Ni Guohua; Zhao Peng; Cheng Cheng; Song Ye; Meng Yuedong; Toyoda, Hirotaka

    2012-01-01

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and H β Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  6. Marangoni flows induced by atmospheric-pressure plasma jets

    International Nuclear Information System (INIS)

    Berendsen, C W J; Van Veldhuizen, E M; Kroesen, G M W; Darhuber, A A

    2015-01-01

    We studied the interaction of atmospheric-pressure plasma jets of Ar or air with liquid films of an aliphatic hydrocarbon on moving solid substrates. The hydrodynamic jet-liquid interaction induces a track of lower film thickness. The chemical plasma-surface interaction oxidizes the liquid, leading to a local increase of the surface tension and a self-organized redistribution of the liquid film. We developed a numerical model that qualitatively reproduces the formation, instability and coarsening of the flow patterns observed in the experiments. Monitoring the liquid flow has potential as an in-situ, spatially and temporally resolved, diagnostic tool for the plasma-liquid surface interaction. (paper)

  7. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    Science.gov (United States)

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O 2 ), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10 1 -10 6 CFU/cm 2 ). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10 4 CFU/cm 2 inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO 2 mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Planar Source of Atmospheric-Pressure Plasma Jet

    Science.gov (United States)

    Zhdanova, O. S.; Kuznetsov, V. S.; Panarin, V. A.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, V. F.

    2018-01-01

    In a single-barrier discharge with voltage sharpening and low gas consumption (up to 1 L/min), plane atmospheric pressure plasma jets with a width of up to 3 cm and length of up to 4 cm in air are formed in the slit geometry of the discharge zone. The energy, temperature, and spectral characteristics of the obtained jets have been measured. The radiation spectrum contains intense maxima corresponding to vibrational transitions of the second positive system of molecular nitrogen N2 ( C 3Π u → B 3Π g ) and comparatively weak transition lines of the first positive system of the N 2 + ion ( B 2Σ u + → X 2Σ g ). By an example of inactivation of the Staphylococcus aureus culture (strain ATCC 209), it is shown that plasma is a source of chemically active particles providing the inactivation of microorganisms.

  9. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  10. Development of atmospheric pressure plasma needle jet for sterilization applications

    Science.gov (United States)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Wibowo, Kusnanto Mukti; Bakar, Ahmad Shuhaimi Abu; Arshad, Mohd Khairuddin Md; Hashim, Uda; Nayan, Nafarizal

    2017-09-01

    Inactivation of bacteria or sterilization has been a major issue in the medical field, especially regarding of human safety, whereby, in a huge scenario fatality can be caused by hazardous bacteria. Often, E-coli as gram-negative bacteria are selected as a key indicator of proper sterilization process as E-coli is tough and dormant bacteria. The technology in sterilization has moved on from chemical, wet and irradiation sterilization to a high promising device such as atmospheric pressure plasma needle jet (APPNJ). It has been reported that atmospheric pressure plasma has provided bundle of advantages over earlier sterilization process. The APPNJ is developed in our lab using high frequency and high voltage neon transformer power supply connected to copper needle and copper sheet electrodes. The gas discharge is Ar gas flowing at 40 L/min through a quartz glass tube. The E-coli bacteria are self-cultured from waste water and then treated with APPNJ. The treatment processes are run into two difference gaps between the plasma orifice and sample with various treatment times. Only 40s is required by direct treatment to achieve 100% killing of E-coli. On the other hand, indirect treatment has inactivated 50% of the E-coli in 40s. In this study, direct and indirect effect of APPNJ to the E-coli can be observed which can be utilized into sterilization of bio-compatible material applications.

  11. Searching for order in atmospheric pressure plasma jets

    Science.gov (United States)

    Schäfer, Jan; Sigeneger, Florian; Šperka, Jiří; Rodenburg, Cornelia; Foest, Rüdiger

    2018-01-01

    The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of filaments in the active plasma volume and their inclination were measured along with the gas temperature under varying discharge conditions. The gas flow and heating were described theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by both methods qualitatively agree. The results demonstrate that the plasma filaments forming an inclination angle α with the axial gas velocity u z are forced to a transversal movement with the velocity {u}φ =\\tan (α )\\cdot {u}z, which is oriented in the inclination direction. Variations of {u}φ in the model reveal that the observed dynamics minimizes the energy loss due to convective heat transfer by the gas flow. The control of the self-organization regime motivates the application of the plasma jet for precise and reproducible material processing.

  12. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  13. Atmospheric Pressure Plasma Jet as an Accelerator of Tooth Bleaching

    Directory of Open Access Journals (Sweden)

    Vedran Šantak

    2014-01-01

    Full Text Available Objective: To study the effect of atmospheric pressure plasma (APP jet as a potential accelerator of the degradation of hydrogen peroxide in bleaching gels which could lead to better and faster bleaching. Material and Methods: 25 pastilles of hydroxylapatite were colored in green tea for 8 hours and were randomly divided into five groups (n = 5. The bleaching process was performed with 30% and 40% hydrogen peroxide (HP gel alone and in conjunction with helium APP jet. During the bleaching treatment, optical emission spectroscopy and non-contact surface temperature measurement using pyrometer were performed. Color of the pastilles was determined by a red– green–blue (RGB colorimeter. PH values of bleaching gels were measured before and after the plasma treatment on additional 10 pastilles using a pH meter with contact pH electrode. Results: The color measurements of pastilles before and after the treatment showed that treatment with APP jet improved the bleaching effect by 32% and 15% in the case of 30 % and 40% HP gel. Better results were obtained approximately six times faster than with a procedure suggested by the bleaching gel manufacturer. Optical emission spectroscopy proved that plasma has a chemically active role on the gel. After the APP treatment, pH values of bleaching gels dropped to about 50–75% of their initial value while the surface temperature increased by 8–10˚C above baseline. Conclusion: The use of plasma jet provides more effective bleaching results in a shorter period of time without a significant temperature increase which may cause damage of the surrounding tissue.

  14. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.

    Science.gov (United States)

    Shim, Jae Won; Bae, In-Ho; Park, Dae Sung; Lee, So-Youn; Jang, Eun-Jae; Lim, Kyung-Seob; Park, Jun-Kyu; Kim, Ju Han; Jeong, Myung Ho

    2018-03-01

    The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.

  15. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  16. Three electrode atmospheric pressure plasma jet in helium flow

    Science.gov (United States)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  17. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  18. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  19. Laser scattering on an atmospheric pressure plasma jet : disentangling Rayleigh, Raman and Thomson scattering

    NARCIS (Netherlands)

    Gessel, van A.F.H.; Carbone, E.A.D.; Bruggeman, P.J.; Mullen, van der J.J.A.M.

    2012-01-01

    Laser scattering provides a very direct method for measuring the local densities and temperatures inside a plasma. We present new experimental results of laser scattering on an argon atmospheric pressure microwave plasma jet operating in an air environment. The plasma is very small so a high spatial

  20. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    Science.gov (United States)

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  1. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets

    International Nuclear Information System (INIS)

    Lu, X; Laroussi, M; Puech, V

    2012-01-01

    Atmospheric-pressure non-equilibrium plasma jets (APNP-Js), which generate plasma in open space rather than in a confined discharge gap, have recently been a topic of great interest. In this paper, the development of APNP-Js will be reviewed. Firstly, the APNP-Js are grouped based on the type of gas used to ignite them and their characteristics are discussed in detail. Secondly, one of the most interesting phenomena of APNP-Js, the ‘plasma bullet’, is discussed and its behavior described. Thirdly, the very recent developments on the behavior of plasma jets when launched in a controlled environment and pressure are also introduced. This is followed by a discussion on the interaction between plasma jets. Finally, perspectives on APNP-J research are presented. (paper)

  2. Atmospheric Pressure Plasma Jet as a Dry Alternative to Inkjet Printing in Flexible Electronics

    Science.gov (United States)

    Gandhiraman, Ram Prasad; Lopez, Arlene; Koehne, Jessica; Meyyappan, M.

    2016-01-01

    We have developed an atmospheric pressure plasma jet printing system that works at room temperature to 50 deg C unlike conventional aerosol assisted techniques which require a high temperature sintering step to obtain desired thin films. Multiple jets can be configured to increase throughput or to deposit multiple materials, and the jet(s) can be moved across large areas using a x-y stage. The plasma jet has been used to deposit carbon nanotubes, graphene, silver nanowires, copper nanoparticles and other materials on substrates such as paper, cotton, plastic and thin metal foils.

  3. Silicon etching of difluoromethane atmospheric pressure plasma jet combined with its spectroscopic analysis

    Science.gov (United States)

    Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun

    2018-06-01

    A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.

  4. Decontamination of burn wounds using a cold atmospheric pressure plasma jet

    NARCIS (Netherlands)

    van Gils, Koen; Hofmann, S.; Boekema, B.K.H.L.; Bruggeman, P.J.

    2012-01-01

    Decontamination of burn wounds using a cold atmospheric pressure plasma jet C.A.J. van Gils, S. Hofmann, B. Boekema and P. Bruggeman Eindhoven University of Technology, Department of Applied Physics, group EPG, P.O. Box 513, 5600 MB Eindhoven In the treatment of burn wounds bacterial infections are

  5. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    Science.gov (United States)

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  6. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer

    Energy Technology Data Exchange (ETDEWEB)

    Babij, Michał; Kowalski, Zbigniew W., E-mail: zbigniew.w.kowalski@pwr.wroc.pl; Nitsch, Karol; Gotszalk, Teodor [Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Silberring, Jerzy [AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-05-15

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  7. Atmospheric pressure plasma jets: an overview of devices and new directions

    International Nuclear Information System (INIS)

    Winter, J; Brandenburg, R; Weltmann, K-D

    2015-01-01

    Atmospheric pressure plasma jets have a long history of more than 50 years. During this time their design and plasma generation mechanism has been developed and adapted to various fields of applications. This review aims at giving an overview of jet devices by starting with a brief history of their development. This is followed by an overview of commonly used terms and definitions as well as a survey of different classification schemes (e.g. geometry, excition frequency or specific energy input) described in literature. A selective update of new designs and novel research achievments on atmospheric pressure plasma jets published in 2012 or later shows the impressive variety and rapid development of the field. Finally, a brief outlook on the future trends and directions is given. (paper)

  8. On non-equilibrium atmospheric pressure plasma jets and plasma bullet

    Science.gov (United States)

    Lu, Xinpei

    2012-10-01

    Because of the enhanced plasma chemistry, atmospheric pressure nonequilibrium plasmas (APNPs) have been widely studied for several emerging applications such as biomedical applications. For the biomedical applications, plasma jet devices, which generate plasma in open space (surrounding air) rather than in confined discharge gaps only, have lots of advantages over the traditional dielectric barrier discharge (DBD) devices. For example, it can be used for root canal disinfection, which can't be realized by the traditional plasma device. On the other hand, currently, the working gases of most of the plasma jet devices are noble gases or the mixtures of the noble gases with small amount of O2, or air. If ambient air is used as the working gas, several serious difficulties are encountered in the plasma generation process. Amongst these are high gas temperatures and disrupting instabilities. In this presentation, firstly, a brief review of the different cold plasma jets developed to date is presented. Secondly, several different plasma jet devices developed in our lab are reported. The effects of various parameters on the plasma jets are discussed. Finally, one of the most interesting phenomena of APNP-Js, the plasma bullet is discussed and its behavior is described. References: [1] X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012); [2] Y. Xian, X. Lu, S. Wu, P. Chu, and Y. Pan, Appl. Phys. Lett. 100, 123702 (2012); [3] X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012).

  9. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  10. Glow plasma jet - experimental study of a transferred atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Guerra-Mutis, Marlon H; U, Carlos V Pelaez; H, Rafael Cabanzo

    2003-01-01

    In this paper we present the experimental study of a glow plasma jet (GPJ) obtained from a transferred atmospheric pressure glow discharge (APGD) operating at 60 Hz. The characterization of the emission spectra for both electrical discharges is presented and the electrical circuit features for APGD generation are discussed. The potentiality of GPJ as a source of active species for depletion of contaminants in liquid hydrocarbon fractions is also established

  11. Atmospheric pressure plasma jets : properties of plasma bullets and the dynamics of the interaction with dielectric surfaces

    NARCIS (Netherlands)

    Sobota, A.; Slikboer, E.; Guaitella, O.Y.N.

    2015-01-01

    Cold atmospheric pressure plasma jets, although mostly researched for applications in surface treatment, are rarely investigated in the presence of a surface. This paper presents the properties of plasma bullets formed in the capillary as well as the dynamics of the propagation of the plasma on

  12. Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells

    Science.gov (United States)

    Xu, G.; Liu, J.; Yao, C.; Chen, S.; Lin, F.; Li, P.; Shi, X.; Zhang, Guan-Jun

    2017-08-01

    Atmospheric pressure cold plasma jets have been recently shown as a highly promising tool in certain cancer therapies. In this paper, an atmospheric pressure plasma jet (APPJ) with a one inner floating and two outer electrode configuration using helium gas for medical applications is developed. Subjected to a range of applied voltages with a frequency of 19.8 kHz at a fixed rate of gas flow (i.e., 3 l/min), electrical and optical characteristics of the APPJ are investigated. Compared with the device only with two outer electrodes, higher discharge current, longer jet, and more active species in the plasma plume at the same applied voltage together with the lower gas breakdown voltage can be achieved through embedding a floating inner electrode. Employing the APPJ with a floating electrode, the effects of identical plasma treatment time durations on murine melanoma cancer and normal fibroblast cells cultured in vitro are evaluated. The results of cell viability, cell apoptosis, and DNA damage detection show that the plasma can inactivate melanoma cells in a time-dependent manner from 10 s to 60 s compared with the control group (p cells compared with their control group, the plasma with treatment time from 30 s to 60 s can induce significant changes (p cells at the same treatment time. The different basal reactive oxygen species level and antioxidant superoxide dismutase level of two kinds of cells may account for their different responses towards the identical plasma exposure.

  13. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    International Nuclear Information System (INIS)

    Begum, Asma; Laroussi, Mounir; Pervez, Mohammad Rasel

    2013-01-01

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10 11 cm -3 and it reaches to the maximum of 10 12 cm -3 .

  14. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Ptasinska, Sylwia [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Klas, Matej [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Liu, Yueying [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Sharon Stack, M. [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  15. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    International Nuclear Information System (INIS)

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-01-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  16. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  17. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    Science.gov (United States)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  18. Measurement of electric field distribution along the plasma column in Microwave jet discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Razzak, M. Abdur; Takamura, Shuichi; Tsujikawa, Takayuki; Shibata, Hideto; Hatakeyama, Yuto

    2009-01-01

    A new technique for the direct measurement of electric field distribution along the plasma column in microwave jet discharges is developed and employed. The technique is based on a servomotor-controlled reciprocating antenna moving along the nozzle axis and plasma column. The measurement technique is applied to a rectangular waveguide-based 2.45 GHz argon and helium plasma jets generated by using the modified TIAGO nozzle at atmospheric pressure with a microwave power of less than 500 W. The measurement has been done with and without igniting the plasma jet in order to investigate the standing wave propagation along the nozzle axis and plasma column. It is observed that the electric field decay occurs slowly in space with plasma ignition than that of without plasma, which indicates the surface electromagnetic wave propagation along the plasma column in order to sustain the plasma jet. This study enables one to design, determine and optimize the size and structure of launcher nozzle, which plays an important role for the stable and efficient microwave plasma generators. (author)

  19. Controlling the nitric and nitrous oxide production of an atmospheric pressure plasma jet

    Science.gov (United States)

    Douat, Claire; Hubner, Simon; Engeln, Richard; Benedikt, Jan

    2016-09-01

    Atmospheric pressure plasma jets are non-thermal plasmas and have the ability to create reactive species. These features make it a very attractive tool for biomedical applications. In this work, we studied NO and N2O production, which are two species having biomedical properties. NO plays a role in the vascularization and in ulcer treatment, while N2O is used as anesthetic and analgesic gas. In this study, the plasma source is similar to the COST Reference Microplasma Jet (µ-APPJ). Helium is used as feed gas with small admixtures of molecular nitrogen and oxygen of below 1%. The absolute densities of NO and N2O were measured in the effluent of an atmospheric pressure RF plasma jet by means of ex-situ quantum-cascade laser absorption spectroscopy via a multi-pass cell in Herriot configuration. We will show that the species' production is dependent on several parameters such as power, flow and oxygen and nitrogen admixture. The NO and N2O densities are strongly dependent on the N2-O2 ratio. Changing this ratio allows for choosing between a NO-rich or a N2O-rich regime.

  20. Effect of cold atmospheric pressure He-plasma jet on DNA change and mutation

    Science.gov (United States)

    Yaopromsiri, C.; Yu, L. D.; Sarapirom, S.; Thopan, P.; Boonyawan, D.

    2015-12-01

    Cold atmospheric pressure plasma jet (CAPPJ) effect on DNA change was studied for assessment of its safety. The experiment utilized a home-developed CAPPJ using 100% helium to directly treat naked DNA plasmid pGFP (plasmid green fluorescent protein). A traversal electric field was applied to separate the plasma components and both dry and wet sample conditions were adopted to investigate various factor roles in changing DNA. Plasma species were measured by using optical emission spectroscopy. DNA topological form change was analyzed by gel electrophoresis. The plasma jet treated DNA was transferred into bacterial Escherichia coli cells for observing mutation. The results show that the He-CAPPJ could break DNA strands due to actions from charge, radicals and neutrals and potentially cause genetic modification of living cells.

  1. Effect of cold atmospheric pressure He-plasma jet on DNA change and mutation

    Energy Technology Data Exchange (ETDEWEB)

    Yaopromsiri, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Thopan, P.; Boonyawan, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-12-15

    Cold atmospheric pressure plasma jet (CAPPJ) effect on DNA change was studied for assessment of its safety. The experiment utilized a home-developed CAPPJ using 100% helium to directly treat naked DNA plasmid pGFP (plasmid green fluorescent protein). A traversal electric field was applied to separate the plasma components and both dry and wet sample conditions were adopted to investigate various factor roles in changing DNA. Plasma species were measured by using optical emission spectroscopy. DNA topological form change was analyzed by gel electrophoresis. The plasma jet treated DNA was transferred into bacterial Escherichia coli cells for observing mutation. The results show that the He-CAPPJ could break DNA strands due to actions from charge, radicals and neutrals and potentially cause genetic modification of living cells.

  2. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  3. Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid

    International Nuclear Information System (INIS)

    Norberg, Seth A; Johnsen, Eric; Tian, Wei; Kushner, Mark J

    2014-01-01

    In the use of atmospheric pressure plasma jets in biological applications, the plasma-produced charged and neutral species in the plume of the jet often interact with a thin layer of liquid covering the tissue being treated. The plasma-produced reactivity must then penetrate through the liquid layer to reach the tissue. In this computational investigation, a plasma jet created by a single discharge pulse at three different voltages was directed onto a 200 µm water layer covering tissue followed by a 10 s afterglow. The magnitude of the voltage and its pulse length determined if the ionization wave producing the plasma plume reached the surface of the liquid. When the ionization wave touches the surface, significantly more charged species were created in the water layer with H 3 O + aq , O 3 − aq , and O 2 − aq being the dominant terminal species. More aqueous OH aq , H 2 O 2aq , and O 3aq were also formed when the plasma plume touches the surface. The single pulse examined here corresponds to a low repetition rate plasma jet where reactive species would be blown out of the volume between pulses and there is not recirculation of flow or turbulence. For these conditions, N x O y species do not accumulate in the volume. As a result, aqueous nitrites, nitrates, and peroxynitrite, and the HNO 3aq and HOONO aq , which trace their origin to solvated N x O y , have low densities. (paper)

  4. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices

    Directory of Open Access Journals (Sweden)

    Jian-Zhang Chen

    2015-01-01

    Full Text Available Atmospheric pressure plasma jet (APPJ technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.

  5. Experimentally obtained values of electric field of an atmospheric pressure plasma jet impinging on a dielectric surface

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Garcia-Caurel, E.

    2013-01-01

    We report on experimentally obtained values of the electric field magnitude on a dielectric surface induced by an impinging atmospheric pressure plasma jet. The plasma plume was striking the dielectric surface at an angle of 45¿, at 5mm from the surface measured at the axis of the jet. The results

  6. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Asma [Independent University, Bangladesh, School of Engineering and Computer Science, Bashundhara, Dhaka (Bangladesh); Laroussi, Mounir [Old Dominion University, Department of Electrical and Computer Engineering, Norfolk, Virginia (United States); Pervez, Mohammad Rasel [Master Mind College, Department of Physics, Dhanmondi, Dhaka (Bangladesh)

    2013-06-15

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10{sup 11} cm{sup -3} and it reaches to the maximum of 10{sup 12} cm{sup -3}.

  7. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    International Nuclear Information System (INIS)

    Kostov, Konstantin G; Prysiazhnyi, Vadym; Honda, Roberto Y; Machida, Munemasa

    2015-01-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment. (paper)

  8. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  9. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  10. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    Science.gov (United States)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  11. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  12. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    International Nuclear Information System (INIS)

    Kelly, Seán; Golda, Judith; Schulz-von der Gathen, Volker; Turner, Miles M

    2015-01-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration. (paper)

  13. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    Science.gov (United States)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  14. The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

    International Nuclear Information System (INIS)

    Sun Jie; Qiu Yiping

    2015-01-01

    Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O 2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O 2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O 2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O 2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of −COO than the comparable He/O 2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O 2 plasma treated ones with other conditions unchanged. (paper)

  15. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

    Science.gov (United States)

    Zhu, W.; Wang, R.

    2017-08-01

    An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

  16. Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array

    International Nuclear Information System (INIS)

    Ghasemi, M; Olszewski, P; Bradley, J W; Walsh, J L

    2013-01-01

    Plasma jet arrays are considered a viable means to enhance the scale of a downstream surface treatment beyond that possible using a single plasma jet. Of paramount importance in many processing applications is the uniformity of the plasma exposure on the substrate, which can be compromised when multiple plasma jets are arranged in close proximity due to their interaction. This contribution explores a dielectric barrier plasma jet array consisting of multiple individually ballasted jets. It is shown that capacitive ballasting is a promising technique to allow simultaneous operation of the plasma plumes without the losses associated with resistive ballasting. The interaction between adjacent plasma plumes and the background gas is investigated with Schlieren imaging; it is shown that the strong repulsive force between each plasma plume causes a divergence in propagation trajectory and a reduction in the laminar flow length with significant ramifications for any downstream surface treatment.

  17. Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye.

    Science.gov (United States)

    García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J

    2017-08-01

    The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

    Science.gov (United States)

    Škoro, Nikola; Puač, Nevena; Živković, Suzana; Krstić-Milošević, Dijana; Cvelbar, Uroš; Malović, Gordana; Petrović, Zoran Lj.

    2018-01-01

    Today's reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ's efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process.

  19. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2015-12-01

    Full Text Available In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  20. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L.; Mancinelli, B. R. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, (2600) Venado Tuerto, Santa Fe (Argentina) and Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales UBA Ciudad Universitaria Pab. I, (1428) Buenos Aires (Argentina)

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  1. Application of atmospheric-pressure argon plasma jet for bread mold decontamination

    Science.gov (United States)

    Thonglor, P.; Amnuaycheewa, P.

    2017-09-01

    Atmospheric-pressure argon plasma (APAP) is a promising non-thermal technology for microbial control and prevention minimally affecting quality of foods. Effect of APAP jet on the growth of bread molds, including two Aspergillus sp., Rhizopus stolonifer, and Penicillium roqueforti, isolated from white bread were investigated. The molds were isolated, verified, cultured to fully grown on potato dextrose agar (PDA), and subsequently treated with APAP jet using plasma generating power at 24 W for 5, 10, and 20 min, respectively. The inhibition of mold growth was investigated by comparing fungal dry weights and the effect on fungal cell structure was observed using compound light microscope. The results indicated that the 20-min treatment time is most effective in retarding the growth of the three bread molds. However, this level of generating power did not lead to destruction of the cellular structures for all the four fungi. Plasma generating power and treatment time are significant parameters determining the success of bread mold decontamination and further investigation on real bread matrix is needed.

  2. Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning.

    Science.gov (United States)

    Grande, Silvia; Van Guyse, Joachim; Nikiforov, Anton Y; Onyshchenko, Iuliia; Asadian, Mahtab; Morent, Rino; Hoogenboom, Richard; De Geyter, Nathalie

    2017-09-27

    An atmospheric pressure plasma jet (APPJ) specifically designed for liquid treatment has been used in this work to improve the electrospinnability of a 5 w/v % solution of poly-ε-caprolactone (PCL) in a mixture of chloroform and N,N-dimethylformamide. Untreated PCL solutions were found to result in nonuniform fibers containing a large number of beads, whereas plasma-treated solutions (exposure time of 2-5 min) enabled the generation of beadless, uniform nanofibers with an average diameter of 450 nm. This enhanced electrospinnability was found to be mainly due to the highly increased conductivity of the plasma-modified PCL solutions. Consequently, more stretching of the polymer jet occurred during electrospinning, leading to the generation of bead-free fibers. Plasma treatment also results in an increased viscosity and decreased pH values. To explain these observed changes, optical emission spectroscopy (OES) has been used to examine the excited species present in the APPJ in contact with the PCL solution. This study revealed that the peaks attributed to H, CH, CH 2 , and C 2 species could be responsible for the degradation of solvent molecules and/or PCL structures during the plasma treatment. Size exclusion chromatography and X-ray photoelectron spectroscopy results showed that the molecular weight and the chemical composition of PCL were not significantly affected by the APPJ treatment. Plasma exposure mainly results in the degradation of the solvent molecules instead of modifying the PCL macromolecules, preserving the original polymer as much as possible. A hypothesis for the observed macroscopic changes in viscosity and pH values could be the generation of new chemical species such as HCl and/or HNO 3 . These species are characterized by their high conductivity, low pH values, and strong polarity and could enhance the solvent quality for PCL, leading to the expansion of the polymer coil, which could in turn explain the observed enhanced viscosity after plasma

  3. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  4. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    International Nuclear Information System (INIS)

    Herrmann, H.W.; Henins, I.; Park, J.; Selwyn, G.S.

    1999-01-01

    The atmospheric pressure plasma jet (APPJ) [A. Schuetze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O 2 /H 2 O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O 2 * , He * ) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products. copyright 1999 American Institute of Physics

  5. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    Science.gov (United States)

    Herrmann, H. W.; Henins, I.; Park, J.; Selwyn, G. S.

    1999-05-01

    The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products.

  6. Absolute production rate measurements of nitric oxide by an atmospheric pressure plasma jet (APPJ)

    International Nuclear Information System (INIS)

    Pipa, A V; Bindemann, T; Foest, R; Kindel, E; Roepcke, J; Weltmann, K-D

    2008-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been applied to measure the absolute production rate of NO molecules in the gas phase of an atmospheric pressure plasma jet (APPJ) operating at rf (13.56 MHz) in argon with small (up to 1%) admixtures of air. The resulting NO production rates were found to be in the range (0.1-80) x 10 -3 sccm or (0.05-35) x 10 18 molecules s -1 depending on the experimental conditions. Maximum rates were obtained at 0.2% air. For TDLAS measurements the APPJ was arranged inside an astigmatic multi-pass cell of Herriott type with 100 m absorption length. The insertion into a closed volume differs slightly from the normal, open operation with the jet propagating freely into air. Therefore, the measuring results are compared with optical emission of the open jet to verify equivalent experimental conditions. The dependence of the optical emission of NO (237 nm) on power and gas mixture has been measured. The similar shape of the dependence of absorption and emission signals gives evidence that the comparability of experimental conditions is sufficiently satisfied. It is concluded that the NO production rate of the APPJ in ambient air can be characterized using TDLAS and provides reliable results in spite of differing experimental conditions due to the set-up.

  7. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  8. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    International Nuclear Information System (INIS)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki

    2016-01-01

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10"1"7 m"−"3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  9. Surface pretreatment of plastics with an atmospheric pressure plasma jet - Influence of generator power and kinematics

    International Nuclear Information System (INIS)

    Moritzer, E.; Leister, C.

    2014-01-01

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes

  10. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    Science.gov (United States)

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  11. Removal of DLC film on polymeric materials by low temperature atmospheric-pressure plasma jet

    Science.gov (United States)

    Kobayashi, Daichi; Tanaka, Fumiyuki; Kasai, Yoshiyuki; Sahara, Junki; Asai, Tomohiko; Hiratsuka, Masanori; Takatsu, Mikio; Koguchi, Haruhisa

    2017-10-01

    Diamond-like carbon (DLC) thin film has various excellent functions. For example, high hardness, abrasion resistance, biocompatibility, etc. Because of these functionalities, DLC has been applied in various fields. Removal method of DLC has also been developed for purpose of microfabrication, recycling the substrate and so on. Oxygen plasma etching and shot-blast are most common method to remove DLC. However, the residual carbon, high cost, and damage onto the substrate are problems to be solved for further application. In order to solve these problems, removal method using low temperature atmospheric pressure plasma jet has been developed in this work. The removal effect of this method has been demonstrated for DLC on the SUS304 substrate. The principle of this method is considered that oxygen radical generated by plasma oxidize carbon constituting the DLC film and then the film is removed. In this study, in order to widen application range of this method and to understand the mechanism of film removal, plasma irradiation experiment has been attempted on DLC on the substrate with low heat resistance. The DLC was removed successfully without any significant thermal damage on the surface of polymeric material.

  12. Decontamination of Chemical/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)

    Science.gov (United States)

    Herrmann, Hans W.

    1998-11-01

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.

  13. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    International Nuclear Information System (INIS)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-01-01

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation

  14. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    Science.gov (United States)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  15. Hydrophilic film polymerized on the inner surface of PMMA tube by an atmospheric pressure plasma jet

    Science.gov (United States)

    Yin, Mengmeng; Huang, Jun; Yu, Jinsong; Chen, Guangliang; Qu, Shanqing

    2017-07-01

    Polymethyl methacrylate (PMMA) tube is widely used in biomedical and mechanical engineering fields. However, it is hampered for some special applications as the inner surface of PMMA tube exhibts a hydrophobic characteristic. The aim of this work is to explore the hydrophilic modification of the inner surface of the PMMA tubes using an atmospheric pressure plasma jet (APPJ) system that incorporates the acylic acid monomer (AA). Polar groups were grafted onto the inner surface of PMMA tube via the reactive radicals (•OH, •H, •O) generated in the Ar/O2/AA plasma, which were observed by the optical emission spectroscopy (OES). The deposition of the PAA thin layer on the PMMA surface was verified through the ATR-FTIR spectra, which clearly showed the strengthened stretching vibration of the carbonyl group (C=O) at 1700 cm-1. The XPS data show that the carbon ratios of C-OH/R and COOH/R groups increased from 9.50% and 0.07% to 13.49% and 17.07% respectively when a discharge power of 50 W was used in the APPJ system. As a result, the static water contat angle (WCA) of the modified inner surface of PMMA tube decreased from 100° to 48°. Furthermore, the biocompatibility of the APP modified PMMA tubes was illustrated by the study of the adhesion of the cultured MC3T3-E1 osteocyte cells, which exhibted a significantly enhanced adhesion density.

  16. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  17. The effect of target materials on the propagation of atmospheric-pressure plasma jets

    Science.gov (United States)

    Ji, Longfei; Yan, Wen; Xia, Yang; Liu, Dongping

    2018-05-01

    The current study is focused on the effect of target materials (quartz plate, copper sheet, and quartz plate with a grounded copper sheet on the back) on the propagation of atmospheric-pressure helium plasma jets. The dynamics of ionization waves (IWs) and the relative amount of reactive oxygen species (OH and O) in the IW front were compared by using spatial and temporal images and relative optical emission spectroscopy. Our measurements show that the targets can significantly affect the propagation and intensity of the IWs. In addition, strong OH emission lines were detected when the IWs impinged upon the damp surface. Numerical simulations have been carried out to explain the experimental observation. The propagation velocity of IWs predicted by the simulation was in good agreement with the experimental results. Simulation results suggest that the density and velocity of IWs mainly depend on the electric field between the high voltage electrode tip and the target. Analysis indicates that the targets could change the electric field distribution between the high voltage electrode and targets and thus affect the dynamics and the density of the IWs, the generation of reactive oxygen species, and the corresponding sterilization efficiency.

  18. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities

    Science.gov (United States)

    Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl

    2014-09-01

    Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.

  19. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    Science.gov (United States)

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  20. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    Science.gov (United States)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of

  1. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  2. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    Science.gov (United States)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  3. Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhengshi; Zhang, Guanjun [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang, Nan; Cao, Zexian, E-mail: zxcao@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-14

    Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10 cm wide active electrode and a frequency of applied voltage down to 0.5 Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

  4. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  5. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas; Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter

    2010-01-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log 10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  6. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  7. Characterization of diamond-like carbon thin film synthesized by RF atmospheric pressure plasma Ar/CH4 jet

    Science.gov (United States)

    Sohbatzadeh, Farshad; Safari, Reza; Etaati, G. Reza; Asadi, Eskandar; Mirzanejhad, Saeed; Hosseinnejad, Mohammad Taghi; Samadi, Omid; Bagheri, Hanieh

    2016-01-01

    The growth of diamond like carbon (DLC) on a Pyrex glass was investigated by a radio frequency (RF) atmospheric pressure plasma jet (APPJ). The plasma jet with capacitive configuration ran by a radio frequency power supply at 13.56 MHz. Alumina ceramic was used as dielectric barrier. Ar and CH4 were used in atmospheric pressure as carrier and precursor gases, respectively. Diamond like carbon thin films were deposited on Pyrex glass at substrate temperature and applied power of 130 °C and 250 Watts, respectively. Performing field emission scanning electron microscope (FE-SEM) and laser Raman spectroscopy analysis resulted in deposition rate and the ID/IG ratio of 21.31 nm/min and 0.47, respectively. The ID/IG ratio indicated that the coating possesses relative high sp3 content The optical emission spectroscopy (OES) diagnostic was applied to diagnose plasma jet species. Estimating electron temperature and density of the RF-APPJ resulted in 1.36 eV and 2.75 × 1014 cm-3 at the jet exit, respectively.

  8. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  9. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    Science.gov (United States)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  10. Electrochromic Ni–Fe oxide thin films synthesized by an atmospheric pressure plasma jet for flexible electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yun-Sen, E-mail: yslin@fcu.edu.tw; Chuang, Pei-Ying; Shie, Ping-Shiun

    2014-11-03

    Flexible-electrochromic organo-nickel-iron oxide (NiFe{sub x}O{sub y}C{sub z}) films deposited onto flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates using atmospheric-pressure plasma-enhanced chemical vapor deposition with an atmospheric pressure plasma jet under various flow rates of oxygen gases are investigated. Precursors [nickelocence, Ni(C{sub 5}H{sub 5}){sub 2}] and [ferrocence, Fe(C{sub 5}H{sub 5}){sub 2}] vapors are carried by argon gas, mixed by oxygen gas and injected into air plasma torch for a rapid synthesis of NiFe{sub x}O{sub y}C{sub z} films by a short duration of the substrate, 32 s, in the plasmas. Uniform light modulation on PET/ITO/NiFe{sub x}O{sub y}C{sub z} is produced while the moving PET/ITO substrate is exposed to plasma torch at room temperature (∼ 23 °C) and atmospheric pressure. Light modulation with up to a 43.2% transmittance variation at a wavelength of 708 nm even after 200 cycles of Li{sup +} intercalation and de-intercalation in a 1 M LiClO{sub 4}-propylene carbonate electrolyte is accomplished. - Highlights: • Rapid deposition of electrochromic organo-nickel–iron oxide (NiFe{sub x}O{sub y}C{sub z}) films • Enhanced electrochromic performance of NiFe{sub x}O{sub y}C{sub z} films by oxygen gas addition • Uniform light modulation on NiFe{sub x}O{sub y}C{sub z} films produced by air plasma jet • Porous surfaces allow reversible Li{sup +} intercalation and deintercalation.

  11. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn, E-mail: chongsin@faculty.nctu.edu.tw

    2017-02-01

    Graphical abstract: Atmospheric-pressure plasma enhances cell growth on two different pore sizes of honeycomb pattern on polylactide surface. - Highlights: • Different pore sizes of honeycomb pattern on PLA film are created. • The two-step plasma treatment provided the oxygen- and nitrogen-containing functional groups that had a major impact on cell cultivation. • The plasma treatment had a significant effect for cell proliferation. • The surface structures are the main influence on cell cultivation, while plasma treatment can indeed improve the growth environment. - Abstract: In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3–4 μm and 7–8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  12. Influence of He/O2 atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    International Nuclear Information System (INIS)

    Li Xuming; Lin Jun; Qiu Yiping

    2012-01-01

    The influence of He/O 2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO 3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO 3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  13. The driving frequency effects on the atmospheric pressure corona jet plasmas from low frequency to radio frequency

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Rhee, J. K.; Choe, W.; Moon, S. Y.

    2011-01-01

    Lately, the atmospheric pressure jet type corona plasma, which has been typically driven by dc to low frequency (LF: several tens of kHz), is often generated by using radio frequency of 13.56 MHz. Yet, the relationship between the plasma and its driving frequency has seldom been investigated. Hence, in this study, dependence of the atmospheric pressure corona plasma characteristics on the driving frequency was explored experimentally from LF to rf (5 kHz-13.56 MHz). The plasmas generated by the driving frequency under 2 MHz were cylindrical shape of several tens of millimeters long while the 13.56 MHz plasma is spherical and a few millimeters long. As the driving frequency was increased, the plasma length became shortened. At the lower driving frequencies (below 2 MHz), the plasmas existed as positive streamer and negative glow for each half period of the applied voltage, but the discharge was more continuous in time for the 13.56 MHz plasma. It was inferred from the measured I-V curves that the higher driving frequency induced higher discharge currents, and the gas temperature was increased as the driving frequency was increased.

  14. Atmospheric-Pressure Non-Thermal Plasma Jet for biomedical and industrial applications

    International Nuclear Information System (INIS)

    Asenjo, J; Mora, J; Vargas, A; Brenes, L; Montiel, R; Arrieta, J; Vargas, VI

    2015-01-01

    In this work we present the development and evaluation of a low-cost DBD Plasma- JET reactor using Argon as carrier gas, this device is capable of generating a cold plasma plume several centimeters in length making it suitable for use directly in contact with objects and delicate materials, including living tissue. (paper)

  15. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    Science.gov (United States)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  16. Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet

    NARCIS (Netherlands)

    Sretenović, G.B.; Guaitella, O.; Sobota, A.; Krstić, I.B.; Kovačević, V.V.; Obradović, B.M.; Kuraica, M.M.

    2017-01-01

    The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave

  17. Atmospheric-pressure plasma technology

    International Nuclear Information System (INIS)

    Kogelschatz, U

    2004-01-01

    Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona discharges used in electrostatic precipitators and in dielectric-barrier discharges used for generation of ozone, for pollution control and for surface treatment. More recent applications include UV excimer lamps, mercury-free fluorescent lamps and flat plasma displays

  18. Atmospheric pressure plasma jet utilizing Ar and Ar/H2O mixtures and its applications to bacteria inactivation

    International Nuclear Information System (INIS)

    Cheng Cheng; Shen Jie; Xiao De-Zhi; Xie Hong-Bing; Lan Yan; Fang Shi-Dong; Meng Yue-Dong; Chu Paul K

    2014-01-01

    An atmospheric pressure plasma jet generated with Ar with H 2 O vapor is characterized and applied to inactivation of Bacillus subtilis spores. The emission spectra obtained from Ar/H 2 O plasma shows a higher intensity of OH radicals compared to pure argon at a specified H 2 O concentration. The gas temperature is estimated by comparing the simulated spectra of the OH band with experimental spectra. The excitation electron temperature is determined from the Boltzmann's plots and Stark broadening of the hydrogen Balmer H β line is applied to measure the electron density. The gas temperature, excitation electron temperature, and electron density of the plasma jet decrease with the increase of water vapor concentration at a fixed input voltage. The bacteria inactivation rate increases with the increase of OH generation reaching a maximum reduction at 2.6% (v/v) water vapor. Our results also show that the OH radicals generated by the Ar/H 2 O plasma jet only makes a limited contribution to spore inactivation and the shape change of the spores before and after plasma irradiation is discussed. (physics of gases, plasmas, and electric discharges)

  19. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  20. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

  1. Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon  +2% O 2 . The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent. (paper)

  2. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil

    International Nuclear Information System (INIS)

    Begum, Asma; Laroussi, Mounir; Pervez, M. R.

    2013-01-01

    To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet's surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 10 11 cm −3 . If helium is used as a feeding gas, a minimum 1.48×10 −8 C charge is required per pulse in the gap discharge to generate a plasma jet

  3. Removal of naturally grown human biofilm with an atmospheric pressure plasma jet: An in-vitro study.

    Science.gov (United States)

    Jablonowski, Lukasz; Fricke, Katja; Matthes, Rutger; Holtfreter, Birte; Schlüter, Rabea; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Kocher, Thomas

    2017-05-01

    The removal of biofilm is a prerequisite for a successful treatment of biofilm-associated diseases. In this study, we compared the feasibility of an atmospheric pressure plasma device with a sonic powered brush to remove naturally grown supragingival biofilm from extracted teeth. Twenty-four periodontally hopeless teeth were extracted. Argon jet plasma with an oxygen admixture of 1 vol% and a sonically driven brush were used to remove biofilm with application times of 60 s, 180 s and 300 s. The treatment efficiency was assessed with light microscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The highest biofilm removal rate was observed after an application time of 180 s/300 s with the sonic brush (80.4%/86.2%), plasma (75.5%/89.0%). These observations were confirmed by SEM. According to XPS analysis, plasma treatment decreased the amount of carbon and nitrogen, indicative of an extensive removal of proteins. Plasma treatment of naturally grown biofilm resulted in an effective cleaning of the tooth surface and was comparable to mechanical treatment. Treatment time had a significant influence on plaque reduction. These results showed that plasma could be a useful adjuvant treatment modality in cases where biofilm removal or reduction plays a decisive role, such as periodontitis and peri-implantitis. Plasma-treated biofilm on an extracted tooth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extremely high-power-density atmospheric-pressure thermal plasma jet generated by the nitrogen-boosted effect

    Science.gov (United States)

    Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro

    2018-06-01

    In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.

  5. Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Juang, Jia-Yang; Chou, Tung-Sheng; Lin, Hsin-Tien; Chou, Yuan-Fang; Weng, Chih-Chiang

    2014-01-01

    Highlights: • We develop a cost-effective technique, atmosphere pressure plasma jet (APPJ), to deposit gallium-doped zinc oxide (GZO) films on large area glass substrates in atmosphere. • Scanning trajectory has a significant impact on the pattern of sheet resistance distribution. • The primary root cause of the nonuniformity is the annealing effect of the deposited films in air while the nozzle scans over the rest of the substrate. • Equivalent circuits models considering only the resistance increase due to air annealing cannot explain the unexpected rise of resistance in the center of the substrate for multiple-pass samples. • Measurements of residual stress, carrier concentration and Hall mobility reveal that the residual stress is another factor that results in nonuniform resistance distribution. - Abstract: Large area (117 mm × 185 mm) gallium-doped zinc oxide (GZO) films are prepared on glass substrates by atmospheric pressure plasma jet (APPJ) technique. The uniformity of material properties, in particular the electrical resistivity, of the deposited film is of great importance in reducing design complexity of the electron devices. We investigate the effects of scanning trajectory recipe (speed, pitch and number of passes) on structural and electrical properties of GZO thin films. We find that the trajectory has significant effects on the magnitude and uniformity of sheet resistance over the glass substrates. For single pass, the resistance appears higher at the starting part of spray, whereas, for cases of multiple passes, the highest resistance appears in the central part of the substrate. XRD, SEM, Hall measurement and residual stress are used to study the film properties and identify root causes of the nonuniform distribution of sheet resistance. We conclude that annealing time is the dominant root cause of the nonuniform resistance distribution, and other factors such as residual stress and structural characteristics may also have

  6. Investigation on the energy spectrums of electrons in atmospheric pressure argon plasma jets and their dependences on the applied voltage

    Science.gov (United States)

    Chen, Xinxian; Tan, Zhenyu; Liu, Yadi; Li, Xiaotong; Pan, Jie; Wang, Xiaolong

    2017-08-01

    This work presents a systematical investigation on the spatiotemporal evolution of the energy spectrum of electrons in atmospheric pressure argon plasma jets and its dependence on the applied voltage. The investigations are carried out by means of the numerical simulation based on a particle-in-cell Monte-Carlo collision model. The characteristics of the spatiotemporal evolution of the energy spectrum of electrons (ESE) in the discharge space have been presented, and especially the mechanisms of inducing these characteristics have also been revealed. The present work shows the following conclusions. In the evolution of ESE, there is a characteristic time under each applied voltage. Before the characteristic time, the peak value of ESE decreases, the peak position shifts toward high energy, and the distribution of ESE becomes wider and wider, but the reverse is true after the characteristic time. The formation of these characteristics can be mainly attributed to the transport of electrons toward a low electric field as well as a balance between the energy gained from the electric field including the effect of space charges and the energy loss due to inelastic collisions in the process of electron transport. The characteristic time decreases with the applied voltage. In addition, the average energy of electrons at the characteristic time can be increased by enhancing the applied voltage. The results presented in this work are of importance for regulating and controlling the energy of electrons in the plasma jets applied to plasma medicine.

  7. Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas

    Directory of Open Access Journals (Sweden)

    Jana Kredl

    2016-04-01

    Full Text Available Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper.

  8. Deposition of silica protected luminescent layers of Eu:GdVO_4 nanoparticles assisted by atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Moretti, Elisa; Pizzol, Giorgia; Fantin, Marina; Enrichi, Francesco; Scopece, Paolo; Nuñez, Nuria O.; Ocaña, Manuel; Benedetti, Alvise; Polizzi, Stefano

    2016-01-01

    Eu:GdVO_4 nanophosphors with an average size of 60 nm, synthesized by a facile solvothermal method, were deposited on monocrystalline silicon wafers by a spray-coating technique with artworks anti-counterfeiting applications in mind. Atmospheric pressure plasma jet (APPJ) was used to deposit a silica-based layer on top of the nanometric luminescent layer, in order to improve its adhesion to the substrate and to protect it from the environment. The nanophosphors were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Coating composition was investigated by Fourier transform infrared spectroscopy (FT-IR) and its morphology was characterized by scanning electron microscopy (FEG-SEM). The film thickness was evaluated by means of ellipsometry and adhesion was estimated by a peeling test. Luminescent properties of the nanophosphors deposited and fixed on silicon wafers were also measured. The whole layer resulted well-adhered to the silicon substrate, transparent and undetectable in the presence of visible light, but easily activated by UV light source. - Highlights: • Luminescent films were obtained by spray deposition of Eu:GdVO_4 nanophosphors. • Plasma jet deposition of SiO_2 fixed the nanophosphors on the substrate. • Optical properties of nanophosphors were preserved after deposition-fixing process. • Films well-adhered to the substrate, even after a scotch tape peeling test and a scratch test.

  9. Deposition of silica protected luminescent layers of Eu:GdVO{sub 4} nanoparticles assisted by atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Pizzol, Giorgia [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Fantin, Marina; Enrichi, Francesco; Scopece, Paolo [Nanofab-Veneto Nanotech, Via delle Industrie 5, 30175 Marghera, Venezia (Italy); Nuñez, Nuria O.; Ocaña, Manuel [Instituto de Ciencia de Materiales de Sevilla, CSIC-US, Americo Vespucio 49, 41092, Isla de la Cartuja, Sevilla (Spain); Benedetti, Alvise [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Polizzi, Stefano [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Centro di Microscopia Elettronica “Giovanni Stevanato”, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre, Venezia (Italy)

    2016-01-01

    Eu:GdVO{sub 4} nanophosphors with an average size of 60 nm, synthesized by a facile solvothermal method, were deposited on monocrystalline silicon wafers by a spray-coating technique with artworks anti-counterfeiting applications in mind. Atmospheric pressure plasma jet (APPJ) was used to deposit a silica-based layer on top of the nanometric luminescent layer, in order to improve its adhesion to the substrate and to protect it from the environment. The nanophosphors were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Coating composition was investigated by Fourier transform infrared spectroscopy (FT-IR) and its morphology was characterized by scanning electron microscopy (FEG-SEM). The film thickness was evaluated by means of ellipsometry and adhesion was estimated by a peeling test. Luminescent properties of the nanophosphors deposited and fixed on silicon wafers were also measured. The whole layer resulted well-adhered to the silicon substrate, transparent and undetectable in the presence of visible light, but easily activated by UV light source. - Highlights: • Luminescent films were obtained by spray deposition of Eu:GdVO{sub 4} nanophosphors. • Plasma jet deposition of SiO{sub 2} fixed the nanophosphors on the substrate. • Optical properties of nanophosphors were preserved after deposition-fixing process. • Films well-adhered to the substrate, even after a scotch tape peeling test and a scratch test.

  10. The influence of the geometry and electrical characteristics on the formation of the atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Sobota, A; Guaitella, O; Rousseau, A

    2014-01-01

    An extensive electrical study was performed on a coaxial geometry atmospheric pressure plasma jet source in helium, driven by 30 kHz sine voltage. Two modes of operation were observed, a highly reproducible low-power mode that features the emission of one plasma bullet per voltage period and an erratic high-power mode in which micro-discharges appear around the grounded electrode. The minimum of power transfer efficiency corresponds to the transition between the two modes. Effective capacitance was identified as a varying property influenced by the discharge and the dissipated power. The charge carried by plasma bullets was found to be a small fraction of charge produced in the source irrespective of input power and configuration of the grounded electrode. The biggest part of the produced charge stays localized in the plasma source and below the grounded electrode, in the range 1.2–3.3 nC for ground length of 3–8 mm. (paper)

  11. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    Science.gov (United States)

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs.

  12. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment

    International Nuclear Information System (INIS)

    Peng Shujing; Liu Xiulan; Sun Jie; Gao Zhiqiang; Yao Lan; Qiu Yiping

    2010-01-01

    This paper studies the influence of moisture absorption of cotton fabrics on the effectiveness of atmospheric pressure plasma jet (APPJ) on desizing of polyvinyl alcohol (PVA). Cotton fabrics with three different moisture regains (MR), namely 1.8%, 7.3%, and 28.4% corresponding to 10%, 65%, and 98% of relative humidity respectively, are treated for 16 s, 32 s, 48 s, and 64 s. X-ray photoelectron spectroscopy analysis indicates that the plasma treated PVA has higher oxygen concentration than the control. Mass loss results show that the fabric with the highest MR has the largest mass loss after 64 s plasma exposure. Solubility measurement reveals that the sample with the lowest MR has the highest desizing efficacy and the percent desizing ratio reaches 96% after 64 s exposure plus a 20 min hot wash, which is shown as clean as the unsized sample through scanning electron microscopy analysis. The yarn tensile strength test results show that APPJ has no negative effect on fabric tensile strength.

  13. Wettability and sizing property improvement of raw cotton yarns treated with He/O{sub 2} atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sun Shiyuan [Key Laboratory of Textile Science and Technology, Ministry of Education, China, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textiles and Clothing Engineering, Dezhou University, Shandong 253023 (China); Sun Jie; Yao Lan [Key Laboratory of Textile Science and Technology, Ministry of Education, China, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, China, College of Textiles, Donghua University, Shanghai 201620 (China)

    2011-01-01

    Raw cotton fiber is water repellent due to the existence of the water repellent cuticle layer. This study is designed to systematically investigate how He/O{sub 2} atmospheric pressure plasma jet (APPJ) treatments influence the wettability and the sizing property of cotton yarns. Water absorption time and adhesion of the sizing agent to the cotton roving are used to evaluate the improvement of wettability and sizing property of the yarn respectively. The water absorption time decreases with the increase of the treatment time and the oxygen flow rate, and the decrease of the jet to substrate distance (JTSD). An optimal water absorption time of 0.8 s is obtained with a treatment time of 20 s, JTSD of 1 mm and O{sub 2} flow rate of 0.2 L/min. Scanning electron microscopy (SEM) shows that the etching effect increases with the decrease of the JTSD and X-ray photoelectron spectroscopy (XPS) presents increased oxygen contents after the plasma treatments. An increase of O-C=O bonds while a decrease of C-OH/C-O-C bonds are observed when the JTSD is set at 2 mm. However, a remarkable increase of both C-OH/C-O-C and O-C=O bonds are achieved when the JTSD is 1 mm. The roving impregnation test results show a nearly doubled adhesion of sizing and a slightly improved breaking elongation, indicating that the plasma treatment does effectively enhance the bonding strength between the fiber and the sizing.

  14. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  15. Effects of trace of nitrogen on the helium atmospheric pressure plasma jet interacting with a dielectric substrate

    Science.gov (United States)

    Ning, Wenjun; Dai, Dong; Zhang, Yuhui; Han, Yongxia; Li, Licheng

    2018-03-01

    Experimental observations and simulation results regarding a pure He atmospheric pressure plasma jet (APPJ) and He  +  N2 APPJs interacting with a downstream dielectric substrate are presented in this paper. Experiments utilizing spatial-temporal imaging show that, in the case of the pure He APPJ, an annular plasma-substrate interaction pattern is formed. With the introduction of N2, the plasma is more uniformly distributed on the substrate surface, appearing a solid interaction pattern. The experimental measurements indicate 0.5% N2 mixture is the optimal condition to achieve the most intense discharge, while the plasma-substrate contact area is slightly reduced by 6.1% in comparison to that of the pure He APPJ. A 2D self-consistent fluid model is constructed to provide insights into the role of the addition of trace of N2 on the discharge dynamics. The discharge morphologies predicated by the model is in principle consistent with the experimental observations. The simulation reveals that the conversion from the annular plasma-substrate interaction pattern to the solid one is attributed to the synthetic effect of the addition of N2 and the presentence of the substrate acting as the cathode to enhance the local electric field. In the solid interaction pattern, the Penning ionization makes a significant contribution to the surface discharge, especially in the afterglow region. The dominant positive ions (N2+ and N4+ ) and the reactive oxygen and nitrogen species including O and N gain remarkable increment in the flux intensity to the central surface, which merits great application potential.

  16. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    Science.gov (United States)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  17. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kim, Yong-Hee; Choi, Eun-Ha

    2014-01-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment. (paper)

  18. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-01-01

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs

  19. Atmospheric pressure microwave plasma system with ring waveguide

    International Nuclear Information System (INIS)

    Liu Liang; Zhang Guixin; Zhu Zhijie; Luo Chengmu

    2007-01-01

    Some scientists used waveguide as the cavity to produce a plasma jet, while large volume microwave plasma was relatively hard to get in atmospheric pressure. However, a few research institutes have already developed devices to generate large volume of atmospheric pressure microwave plasma, such as CYRANNUS and SLAN series, which can be widely applied. In this paper, present a microwave plasma system with ring waveguide to excite large volume of atmospheric pressure microwave plasma, plot curves on theoretical disruption electric field of some working gases, emulate the cavity through software, measure the power density to validate and show the appearance of microwave plasma. At present, large volume of argon and helium plasma have already been generated steadily by atmospheric pressure microwave plasma system. This research can build a theoretical basis of microwave plasma excitation under atmospheric pressure and will be useful in study of the device. (authors)

  20. Separation of VUV/UV photons and reactive particles in the effluent of a He/O{sub 2} atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, S; Benedikt, J [Coupled plasma-solid state systems, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany); Lackmann, J-W; Narberhaus, F; Bandow, J E [Mikrobiologie, Fakultaet fuer Biologie, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany); Denis, B [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany)

    2011-07-27

    Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult. Here we report on an effective separation of VUV/UV photons and heavy reactive species in the effluent of a microscale atmospheric pressure plasma jet ({mu}-APPJ). The separation is realized by an additional flow of helium gas under well-defined flow conditions, which deflects heavy particles in the effluent without affecting the VUV and UV photons. Both components of the effluent, the photons and the reactive species, can be used separately or in combination for sample treatment. The results of treatment of a model plasma polymer film and vegetative Bacillus subtilis and Escherichia coli cells are shown and discussed. A simple model of the He gas flow and reaction kinetics of oxygen atoms in the gas phase and at the surface is used to provide a better understanding of the processes in the plasma effluent. The new jet modification, called X-Jet for its appearance, will simplify the investigation of interaction mechanisms of atmospheric pressure plasmas with biological samples.

  1. Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Schäfer, J.; Fricke, K.; Mika, Filip; Pokorná, Zuzana; Zajíčková, L.; Foest, R.

    2017-01-01

    Roč. 630, MAY 30 (2017), s. 71-78 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : plasma jet * liquid assisted plasma enhanced chemical * vapour deposition * silicon oxide Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Coating and films Impact factor: 1.879, year: 2016

  2. Deposition of Poly(Ethylene Oxide)-Like Plasma Polymers on Inner Surfaces of Cavities by Means of Atmospheric-Pressure SDBD-Based Jet

    Czech Academy of Sciences Publication Activity Database

    Gordeev, Ivan; Šimek, Milan; Prukner, Václav; Artemenko, Anna; Kousal, J.; Nikitin, D.; Choukourov, A.; Biederman, H.

    2016-01-01

    Roč. 13, č. 8 (2016), s. 823-833 ISSN 1612-8850 R&D Projects: GA MŠk(CZ) LD13010 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Atmospheric Pressure Plasma jet * plasma polymerization * non-fouling properties * PEO-like coatings Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 2.846, year: 2016

  3. Multiplying probe for accurate power measurements on an RF driven atmospheric pressure plasma jet applied to the COST reference microplasma jet

    International Nuclear Information System (INIS)

    Beijer, P A C; Sobota, A; Van Veldhuizen, E M; Kroesen, G M W

    2016-01-01

    In this paper a new multiplying probe for measuring the power dissipated in a miniature capacitively coupled, RF driven, atmospheric pressure plasma jet (μAPPJ—COST Reference Microplasma Jet—COST RMJ) is presented. The approach aims for substantially higher accuracy than provided by traditionally applied methods using bi-directional power meters or commercially available voltage and current probes in conjunction with digitizing oscilloscopes. The probe is placed on a miniature PCB and designed to minimize losses, influence of unknown elements, crosstalk and variations in temperature. The probe is designed to measure powers of the order of magnitude of 0.1–10 W. It is estimated that it measures power with less than 2% deviation from the real value in the tested power range. The design was applied to measure power dissipated in COST-RMJ running in helium with a small addition of oxygen. (paper)

  4. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

    International Nuclear Information System (INIS)

    Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan

    2016-01-01

    The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N 2 , O 2 and H 2 O. Without gas purification, protonated water cluster ions of the form H + (H 2 O) n are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N 2 mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

  5. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan [Ruhr-Universitaet Bochum, Institute for Experimental Physics II, Bochum (Germany)

    2016-12-15

    The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N{sub 2}, O{sub 2} and H{sub 2}O. Without gas purification, protonated water cluster ions of the form H{sup +}(H{sub 2}O){sub n} are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N{sub 2} mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

  6. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    Science.gov (United States)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  7. Atmospheric pressure plasma vapour coatings

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Starostine, S.; Premkumar, P.A.; Creatore, M.; Vries, de H.W.; Kondruweit, S.; Szyszka, B.; Pütz, J.

    2010-01-01

    The dielectric barrier discharge (DBD) is recognized as a promising tool of thin films deposition on various substrates at atmospheric pressure. Emerging applications including encapsulation of flexible solar cells and flexible displays require large scale low costs production cif transparent

  8. Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge

    Science.gov (United States)

    Haixin, HU; Feng, HE; Ping, ZHU; Jiting, OUYANG

    2018-05-01

    A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length, ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.

  9. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    Science.gov (United States)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-10-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.

  10. Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing

    Science.gov (United States)

    Zhang, Chunming; Wang, Libing; Yu, Miao; Qu, Lijun; Men, Yajing; Zhang, Xiangwu

    2018-03-01

    Pigment inkjet printing has highlighted the advantages of cost-effective, short production cycle and environment-friendly. However, patterns directly printed with pigment inks usually have low color yields and blurry images which are caused by bleeding phenomenon. This work presents an atmospheric-pressure plasma method for improving the pigment-based ink-jet printing performance of silk fabrics. The effects of surface changes induced are discussed, with data derived from morphological study by atomic force microscopy (AFM), chemical analysis using X-ray photoelectron spectroscopy (XPS) and contact angle measurement. Ink-jet printing experiments were conducted to study the influence of measured changes on anti-bleeding property and color strength of treated and original samples. The ageing experiment indicates that the modified silk fabrics should be printed within 24 h after plasma processing for maximum color yields. This study explores an effective approach for the atmospheric-pressure plasma, which can provide its significant use in improving the surface properties and ink-jet printing performance of fabrics.

  11. Influence of He/O{sub 2} atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Li Xuming [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textile and Clothing, Shaoxing University, Shaoxing 312000 (China); Lin Jun [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Qiu Yiping, E-mail: ypqiu@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2012-01-15

    The influence of He/O{sub 2} atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO{sub 3} desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO{sub 3} desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  12. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications

    Science.gov (United States)

    Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter

    2018-06-01

    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.

  13. Grid-pattern formation of extracellular matrix on silicon by low-temperature atmospheric-pressure plasma jets for neural network biochip fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Ayumi, E-mail: ando@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Uno, Hidetaka; Urisu, Tsuneo [FIRST Research Center for Innovative Nanobiodevice, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603 (Japan); Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2013-07-01

    Grid patterns of extracellular matrices (ECMs) have been formed on silicon (Si) substrates with the use of low-temperature atmospheric-pressure plasma (APP) jets with metal stencil masks and neuron model cells have been successfully cultured on the patterned ECMs. Arrangement of living neuron cells on a microelectronics chip in a desired pattern is one of the major challenges for the fabrication of neuron-cell biochips. The APP-based technique presented in this study offers a cost-effective solution to this problem by providing a simple patterning method of ECMs, which act as biological interfaces between living cells and non-biological materials such as Si.

  14. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wattieaux, G., E-mail: gaetan.wattieaux@laplace.univ-tlse.fr; Yousfi, M.; Merbahi, N.

    2013-11-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10{sup 14} cm{sup −3}, the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the

  15. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Wattieaux, G.; Yousfi, M.; Merbahi, N.

    2013-01-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10 14 cm −3 , the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the case

  16. A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuechen; Jia, Pengying, E-mail: plasmalab@126.com [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Key Laboratory of Photo-Electronics Information Materials of Hebei Province, Baoding 071002 (China); Li, Jiyuan; Chu, Jingdi; Zhang, Panpan [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2016-06-15

    A linear-field plasma jet composed of line-to-plate electrodes is used to generate a large-scale brush-shaped plasma plume with flowing argon used as working gas. Through electrical measurement and fast photography, it is found that the plasma plume bridges the two electrodes for the discharge in the positive voltage half-cycle, which behaves like fast moving plasma bullets directed from the anode to the cathode. Compared with the positive discharge, the negative discharge only develops inside the nozzle and propagates much slower. Results also indicate that the gas temperature of the plume is close to room temperature, which is promising for biomedical application.

  17. Surface modification of epoxy resin using He/CF{sub 4} atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun, E-mail: gjzhang@xjtu.edu.cn

    2017-08-31

    Highlights: • Epoxy resin (EP) samples are treated by atmospheric pressures plasma jet (APPJ). • Flashover withstanding characteristics of epoxy resin samples are improved a lot after APPJ treatment. • Appropriate treatment conditions are important to modify EP samples by APPJ. • Both physical and chemical effects lead to the enhancement of flashover strength. - Abstract: For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF{sub 4}) mixtures are used as working gases with the concentration of CF{sub 4} ranging 0%-5%, and when CF{sub 4} is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.

  18. The research about the time-effect of the wettability on the wool surface treated by the Ar plasma jet in the atmospheric pressure

    International Nuclear Information System (INIS)

    Wu Yu; Wang Shouguo

    2009-01-01

    A facility which is called atmospheric pressure and normal temperature plasma jet was introduced in this paper. After the wool surface was treated by this kind of facility with Ar in different irradiating times, the time-effect of the fabric wettability has been weakened, and if the parameters of the irradiating time and the voltage of the facility are appropriate, the time-effect of wettability can be effectively inhibited. With the stable wettability, the fabric can be dressed without PVA (polyvinyl alcohol) which can cause lager pollution in the textile field, so the method without the time-effect of the textile wettability will be useful in the field of clean textile production. Undoubtedly, the stable wettability of textile surface was caused by the stable hydrophilic molecules on the textile surface. Thus, the reaction process and results on the textile surface treated by plasma needs to be studied to optimize the parameters of the irradiating time and the voltage of the plasma jet. So the initial experimental studies on the optimization of the parameters of the plasma jet were discussed in this paper, and the authors believe that the method without the time-effect also can be used in other fields of plasma application.

  19. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  20. Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system

    Science.gov (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Purnamaningsih, Retno Wigajatri; Poespawati, Nji Raden; Iwata, Futoshi; Nagatsu, Masaaki

    2016-07-01

    Ultrafine plasma jet is a promising technology with great potential for nano- or micro-scale surface modification. In this letter, we demonstrated the use of ultrafine atmospheric pressure plasma jet (APPJ) for patterning bio-immobilization on vertically aligned carbon nanotube (CNT) microarray platform without a physical mask. The biotin-avidin system was utilized to demonstrate localized biomolecule patterning on the biosensor devices. Using ±7.5 kV square-wave pulses, the optimum condition of plasma jet with He/NH3 gas mixture and 2.5 s treatment period has been obtained to functionalize CNTs. The functionalized CNTs were covalently linked to biotin, bovine serum albumin (BSA), and avidin-(fluorescein isothiocyanate) FITC, sequentially. BSA was necessary as a blocking agent to protect the untreated CNTs from avidin adsorption. The localized patterning results have been evaluated from avidin-FITC fluorescence signals analyzed using a fluorescence microscope. The patterning of biomolecules on the CNT microarray platform using ultrafine APPJ provides a means for potential application of microarray biosensors based on CNTs.

  1. Optical diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C O; Spence, T G; Kruger, C H; Zare, R N

    2003-01-01

    Atmospheric pressure air plasmas are often thought to be in local thermodynamic equilibrium owing to fast interspecies collisional exchange at high pressure. This assumption cannot be relied upon, particularly with respect to optical diagnostics. Velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. This paper reviews diagnostic techniques based on optical emission spectroscopy and cavity ring-down spectroscopy that we have found useful for making temperature and concentration measurements in atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium

  2. Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50 kHz/33 MHz dual-frequency atmospheric-pressure plasma jet

    Science.gov (United States)

    Li, Jiaojiao; Yuan, Qianghua; Chang, Xiaowei; Wang, Yong; Yin, Guiqin; Dong, Chenzhong

    2017-04-01

    The deposition of organosilicone thin films from hexamethyldisiloxane(HMDSO) by using a dual-frequency (50 kHz/33 MHz) atmospheric-pressure micro-plasma jet with an admixture of a small volume of HMDSO and Ar was investigated. The topography was measured by using scanning electron microscopy. The chemical bond and composition of these films were analyzed by Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy. The results indicated that the as-deposited film was constituted by silicon, carbon, and oxygen elements, and FTIR suggested the films are organosilicon with the organic component (-CH x ) and hydroxyl functional group(-OH) connected to the Si-O-Si backbone. Thin-film hardness was recorded by an MH-5-VM Digital Micro-Hardness Tester. Radio frequency power had a strong impact on film hardness and the hardness increased with increasing power.

  3. Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum

    Science.gov (United States)

    Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun

    2017-08-01

    For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.

  4. Atmospheric pressure plasma jets in Helium – the electric field and the charge delivered to a dielectric surface

    NARCIS (Netherlands)

    Sobota, A.; Slikboer, E.T.; Guaitella, O.Y.N.

    2015-01-01

    The family of non-thermal atmospheric pressure discharges has been the focus of intense research of a large number of research groups in the last fifteen years, as they are easy and cheap to assemble and run, and exhibit properties that can be used in surface treatment or biological applications. In

  5. Evaluation of the sensitivity of electro-acoustic measurements for process monitoring and control of an atmospheric pressure plasma jet system

    Energy Technology Data Exchange (ETDEWEB)

    Law, V J [Dublin City University, National Centre of Plasma Science and Technology, Collins Avenue, Glasnevin, Dublin 9, Dublin (Ireland); O' Neill, F T; Dowling, D P, E-mail: vic.law@dcu.ie [School Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4 (Ireland)

    2011-06-15

    The development of non-invasive process diagnostic techniques for the control of atmospheric plasmas is a critical issue for the wider adoption of this technology. This paper evaluates the use of a frequency-domain deconvolution of an electro-acoustic emission as a means to monitor and control the plasma formed using an atmospheric pressure plasma jet (APPJ) system. The air plasma system investigated was formed using a PlasmaTreat(TM) OpenAir applicator. Change was observed in the electro-acoustic signal with changes in substrate type (ceramic, steel, polymer). APPJ nozzle to substrate distance and substrate feature size were monitored. The decoding of the electro-acoustic emission yields three subdatasets that are described by three separate emission mechanisms. The three emissions are associated with the power supply fundamental drive frequency and its harmonics, the APPJ nozzle longitudinal mode acoustic emission and its odd overtones, and the acoustic surface reflection that is produced by the impedance mismatch between the discharge and the surface. Incorporating this knowledge into a LabVIEW program facilitated the continuous deconvolution of the electro-acoustic data. This enabled the use of specific frequency band test limits to control the APPJ treatment process which is sensitive to both plasma processing conditions and substrate type and features.

  6. Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet

    Science.gov (United States)

    Xu, H. M.; Yu, J. S.; Chen, G. L.; Qiu, X. P.; Hu, W.; Chen, W. X.; Bai, H. Y.

    2015-12-01

    In this paper, the successful deposition of acrylic acid polymer (PAA) nano-cones on the inner surface of a polyvinyl chloride (PVC) tube using an atmospheric pressure pulsed plasma jet (APPJ) with acrylic acid (AA) monomer is presented. Optical emission spectroscopy (OES) measurements indicated that various reactive radicals, such as rad OH and rad O, existed in the plasma jet. Moreover, the pulsed current proportionally increased with the increase in the applied voltage. The strengthened stretching vibration of the carbonyl group (Cdbnd O) at 1700 cm-1, shown in the ATR-FTIR spectra, clearly indicated that the PAA was deposited on the PVC surface. The maximum height of the PAA nano-cones deposited by this method ranged from 150 to 200 nm. FTIR and XPS results confirmed the enhanced exposure of the carboxyl groups on the modified PVC surface, which was considered highly beneficial for successfully immobilizing a high density of biomolecules. The XPS data showed that the carbon ratios of the Csbnd OH/R and COOH/R groups increased from 7.03% and 2.6% to 18.69% and 6.81%, respectively (more than doubled) when an Ar/O2 plasma with AA monomer was applied to treat the inner surface of the PVC tube. Moreover, the enhanced attachment density of MC3T3-E1 bone cells was observed on the PVC inner surface coated with PAA nano-cones.

  7. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe; Grigoras, Constantin

    2011-01-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  8. Research on atmospheric pressure plasma processing sewage

    Science.gov (United States)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  9. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    Science.gov (United States)

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  10. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    Science.gov (United States)

    Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kyoung-Nam

    2013-05-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials.

  11. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    International Nuclear Information System (INIS)

    Kwon, Jae-Sung; Kim, Kyoung-Nam; Kim, Yong Hee; Choi, Eun Ha

    2013-01-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials. (paper)

  12. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  13. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    Science.gov (United States)

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mass spectrometric diagnosis of an atmospheric pressure helium microplasma jet

    International Nuclear Information System (INIS)

    McKay, K; Oh, J-S; Walsh, J L; Bradley, J W

    2013-01-01

    Ambient molecular beam mass spectrometry (MBMS) has been used to study how different capillary widths (530 µm and 2.4 mm) and excitation waveforms (continuous wave kHz and pulsed dc) affect the ionic composition of atmospheric pressure plasma jets. It is shown from time-averaged ion intensities that reducing the width of the jet capillary results in a significant increase in the variety of both positive and negative ions detected within the discharge. We discuss this in terms of changes in flow velocity and the onset of turbulence within the plasma plume. Changing the mode of excitation had little effect on the ionic species detected from the microplasma jet; however, there was a notable shift in dominance towards higher mass ions when operated in a continuous wave kHz mode. The temporal evolution of the ions within the microplasma jet was observed for both excitation sources, operated at 5 and 15 kHz. Positive ions were created during periods correlated with the positive and negative peaks in discharge current, while negative ions were predominantly created at times when the discharge current peak was negative. This phenomenon was independent of the driving waveform. For pulsed dc excitation, considerably fewer positive ions were created in periods related to the negative current peaks, especially at higher frequencies. We propose a simple explanation for these processes based on ideas of streamer propagation and the influence of self-induced electric fields in the plasma plume. (paper)

  15. The effect of dielectric tube diameter on the propagation velocity of ionization waves in a He atmospheric-pressure micro-plasma jet

    International Nuclear Information System (INIS)

    Talviste, Rasmus; Jõgi, Indrek; Raud, Jüri; Paris, Peeter

    2016-01-01

    The focus of this study was to investigate the effect of the dielectric tube diameter on the velocity of the ionization wave in an atmospheric pressure plasma jet in He gas flow. Plasma was ignited in quartz tubes with inner diameter in the range of 80–500 μm by 6 kHz sinusoidal voltage applied to a cylindrical electrode surrounding the quartz tube and positioned 10 mm from the tube orifice. A grounded plane was placed 2–3 cm downstream from the powered electrode to measure the plasma current. The spatial development of ionization waves was monitored by registering the optical emission along the axis of the tube. The ionization wave velocity was deduced from the temporal shift of the onset of radiation at different axial positions. The velocity of ionization wave increased by almost an order of magnitude with the tube diameter decreasing from 500 to 80 μm and was for the 80 μm microtube 1.7 · 10 5 m s −1 during the positive half-cycle and 1.45 · 10 5 m s −1 during the negative half-cycle. (paper)

  16. Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Escherichia coli.

    Science.gov (United States)

    Yong, Hae In; Kim, Hyun-Joo; Park, Sanghoo; Choe, Wonho; Oh, Mi Wha; Jo, Cheorun

    2014-08-01

    Atmospheric pressure plasma (APP) is an emerging nonthermal microbial inactivation technique. In this study, agar and raw chicken breast were inoculated with Escherichia coli and treated with an APP jet based on cold arc plasma. The aim of this study was to investigate the optimum conditions for the plasma treatment of an APP jet in order to maximize the efficiency of E. coli inactivation. The combination of N2+O2 (10 standard cubic centimeters per minute) and a longer treatment time (10 min) resulted in the highest inactivation of E. coli on agar plates with an optimum treatment distance of 20 mm. The samples in dry and wet conditions showed similar reductions in E. coli count when one side of the samples was treated at a given treatment time. Treating both sides-2.5 min on each side-resulted in a higher growth inhibition of E. coli than treatment of a single side only for 5 min. However, there was no significant difference between one-side treated samples (10 min) and both-sides treated samples (5+5 min). When the concentration of E. coli in the chicken breast sample was 10(4) colony-forming units (CFU)/g, the reduction rate of the E. coli was the highest, followed by 10(5), 10(6), and 10(7) CFU/g; however, no difference was found between 10(3) and 10(4) CFU/g. In conclusion, various treatment conditions may affect the inactivation efficiency of E. coli. In the present study, the optimum condition was determined as the treatment distance of 20 mm and longer treatment time (10 min) with the addition of oxygen to the nitrogen gas flow. Furthermore, the cell concentration of sample was an important parameter for the efficacy of the inactivation process.

  17. A dc non-thermal atmospheric-pressure plasma microjet

    Science.gov (United States)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  18. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    Zhu Weidong; Lopez, Jose L

    2012-01-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  19. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant de...

  20. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  1. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  2. Simple microwave plasma source at atmospheric pressure

    International Nuclear Information System (INIS)

    Kim, Jeong H.; Hong, Yong C.; Kim, Hyoung S.; Uhm, Han S.

    2003-01-01

    We have developed a thermal plasma source operating without electrodes. One electrodeless torch is the microwave plasma-torch, which can produce plasmas in large quantities. We can generate plasma at an atmospheric pressure by marking use of the same magnetrons used as commercial microwave ovens. Most of the magnetrons are operated at the frequency of 2.45 GHz; the magnetron power microwave is about 1kW. Electromagnetic waves from the magnetrons propagate through a shorted waveguide. Plasma was generated under a resonant condition, by an auxiliary ignition system. The plasma is stabilized by vortex stabilization. Also, a high-power and high-efficiency microwave plasma-torch has been operated in air by combining two microwave plasma sources with 1kW, 2.45 GHz. They are arranged in series to generate a high-power plasma flame. The second torch adds all its power to the plasma flame of the first torch. Basically, electromagnetic waves in the waveguide were studied by a High Frequency Structure Simulator (HFSS) code and preliminary experiments were conducted

  3. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to develop an atmospheric plasma jet that is capable of depositing a wide variety of materials on flexible substrates such as paper, plastic, cotton and...

  4. FABRICATION OF CNTS BY TOLUENE DECOMPOSITION IN A NEW REACTOR BASED ON AN ATMOSPHERIC PRESSURE PLASMA JET COUPLED TO A CVD SYSTEM

    Directory of Open Access Journals (Sweden)

    FELIPE RAMÍREZ-HERNÁNDEZ

    2017-03-01

    Full Text Available Here, we present a method to produce carbon nanotubes (CNTs based on the coupling between two conventional techniques used for the preparation of nanostructures: an arc-jet as a source of plasma and a chemical vapour deposition (CVD system. We call this system as an “atmospheric pressure plasma (APP-enhanced CVD” (APPE-CVD. This reactor was used to grow CNTs on non-flat aluminosilicate substrates by the decomposition of toluene (carbon source in the presence of ferrocene (as a catalyst. Both, CNTs and by-products of carbon were collected at three different temperatures (780, 820 and 860 °C in different regions of the APPE-CVD system. These samples were analysed by thermogravimetric analysis (TGA and DTG, scanning electron microscopy (SEM and Raman spectroscopy in order to determine the effect of APP on the thermal stability of the as-grown CNTs. It was found that the amount of metal catalyst in the synthesised CNTs is reduced by applying APP, being 820 °C the optimal temperature to produce CNTs with a high yield and carbon purity (95 wt. %. In contrast, when the synthesis temperature was fixed at 780 °C or 860 °C, amorphous carbon or CNTs with different structural defects, respectively, was formed through APEE-CVD reactor. We recommended the use of non-flat aluminosilicate particles as supports to increase CNT yield and facilitate the removal of deposits from the substrate surface. The approach that we implemented (to synthesise CNTs by using the APPE-CVD reactor may be useful to produce these nanostructures on a gram-scale for use in basic studies. The approach may also be scaled up for mass production.

  5. Electrical and spectral characteristics of an atmospheric pressure argon plasma jet generated with tube-ring electrodes in surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Y. [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Department of Physics and Electrical Engineering, Weinan Teachers University, Weinan 71400 (China); Lu, N. [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Pan, J. [Department of Physics and Electrical Engineering, Weinan Teachers University, Weinan 71400 (China); Li, J., E-mail: lijie@dlut.edu.cn [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Wu, Y. [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China)

    2013-03-01

    An atmospheric-pressure argon plasma jet is generated with tube-ring electrodes in surface dielectric barrier discharge by a sinusoidal excitation voltage at 8 kHz. The electrical and spectral characteristics are estimated such as conduction and displacement current, electric-field, electron temperature, rotational temperature of N{sub 2} and OH, electronic excitation temperature, and oxygen atomic density. It is found that the electric-field magnitudes in the top area of the ground electrode are higher than that in the bottom area of the power electrode, and the electron temperature along radial direction is in the range of 9.6–10.4 eV and along axial direction in the range of 4.9–10 eV. The rotational temperature of N{sub 2} obtained by comparing the simulated spectrum with the measured spectrum at the C{sup 3}Π{sub u} → B{sup 3}Π{sub g}(Δv = − 2) band transition is in the range of 342–387 K, the electronic excitation temperature determined by Boltzmann's plot method is in the range of 3188–3295 K, and the oxygen atomic density estimated by the spectral intensity ratio of atomic oxygen line λ = 844.6 nm to argon line λ = 750.4 nm is in the order of magnitude of 10{sup 16} cm{sup −3}, respectively. - Highlights: ► The conduction and displacement current are calculated by equivalent circuit diagram. ► The 2D distribution of electric-field magnitude is calculated by ElecNet software. ► The electron temperature along axial direction is in the range of 4.9–10 eV. ► The oxygen atomic density is about a magnitude of 10{sup 16} cm{sup −3}.

  6. Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors

    Directory of Open Access Journals (Sweden)

    Aliyah R. Hsu

    2018-01-01

    Full Text Available A scanning atmospheric-pressure plasma jet (APPJ is essential for high-throughput large-area and roll-to-roll processes. In this study, we evaluate scan-mode APPJ for processing reduced graphene oxides (rGOs that are used as the electrodes of quasi-solid-state gel-electrolyte supercapacitors. rGO nanoflakes are mixed with ethyl cellulose (EC and terpineol to form pastes for screen-printing. After screen-printing the pastes on carbon cloth, a DC-pulse nitrogen APPJ is used to process the pastes in the scan mode. The maximal temperature attained is ~550 °C with a thermal influence duration of ~10 s per scan. The pastes are scanned by APPJ for 0, 1, 3 and 5 times. X-ray photoelectron spectroscopy (XPS indicates the reduction of C-O binding content as the number of scan increases, suggesting the oxidation/decomposition of EC. The areal capacitance increases and then decreases as the number of scan increases; the best achieved areal capacitance is 15.93 mF/cm2 with one APPJ scan, in comparison to 4.38 mF/cm2 without APPJ processing. The capacitance retention rate of the supercapacitor with the best performance is ~93% after a 1000-cycle cyclic voltammetry (CV test. The optimal number of APPJ scans should enable the proper removal of inactive EC and improved wettability while minimizing the damage caused to rGOs by nitrogen APPJ processing.

  7. Cold plasma brush generated at atmospheric pressure

    International Nuclear Information System (INIS)

    Duan Yixiang; Huang, C.; Yu, Q. S.

    2007-01-01

    A cold plasma brush is generated at atmospheric pressure with low power consumption in the level of several watts (as low as 4 W) up to tens of watts (up to 45 W). The plasma can be ignited and sustained in both continuous and pulsed modes with different plasma gases such as argon or helium, but argon was selected as a primary gas for use in this work. The brush-shaped plasma is formed and extended outside of the discharge chamber with typical dimension of 10-15 mm in width and less than 1.0 mm in thickness, which are adjustable by changing the discharge chamber design and operating conditions. The brush-shaped plasma provides some unique features and distinct nonequilibrium plasma characteristics. Temperature measurements using a thermocouple thermometer showed that the gas phase temperatures of the plasma brush are close to room temperature (as low as 42 deg. C) when running with a relatively high gas flow rate of about 3500 ml/min. For an argon plasma brush, the operating voltage from less than 500 V to about 2500 V was tested, with an argon gas flow rate varied from less than 1000 to 3500 ml/min. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical applications including battery-powered operation and use in large-scale applications. Several polymer film samples were tested for surface treatment with the newly developed device, and successful changes of the wettability property from hydrophobic to hydrophilic were achieved within a few seconds

  8. Electromagnetic Wave Attenuation in Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Zhang Shu; Hu Xiwei; Liu Minghai; Luo Fang; Feng Zelong

    2007-01-01

    When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter-the product of the line average electron density n-bar and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n-bar and d with various collision frequencies between electrons and neutrals is presented

  9. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    International Nuclear Information System (INIS)

    Hicks, Robert F.; Selwyn, Gary S.

    2001-01-01

    Project was to develop a low-cost, environmentally benign technology for the decontamination and decommissioning of transuranic waste. With the invention of the atmospheric-pressure plasma jet the goal was achieved. This device selectively etches heavy metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. Studies on tantalum, a surrogate material for plutonium, have shown that etch rate of 6.0 microns per minute can be achieved under mild conditions. Over the past three years, we have made numerous improvements in the design of the plasma jet. It may now be operated for hundreds of hours and not undergo any degradation in performance. Furthermore, small compact units have been developed, which are easily deployed in the field

  10. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Hicks; Gary S. Selwyn

    2001-01-09

    Project was to develop a low-cost, environmentally benign technology for the decontamination and decommissioning of transuranic waste. With the invention of the atmospheric-pressure plasma jet the goal was achieved. This device selectively etches heavy metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. Studies on tantalum, a surrogate material for plutonium, have shown that etch rate of 6.0 microns per minute can be achieved under mild conditions. Over the past three years, we have made numerous improvements in the design of the plasma jet. It may now be operated for hundreds of hours and not undergo any degradation in performance. Furthermore, small compact units have been developed, which are easily deployed in the field.

  11. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun; Pei, Xuekai; Ghasemi, Maede; Lu, Xinpei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-06-15

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma to propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.

  12. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianhui; Yang, Si-ze [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Dongping [Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Sun, Yue [School of Physics, Changchun University of Science and Technology, Changchun 130022 (China)

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  13. On OH production in water containing atmospheric pressure plasmas

    NARCIS (Netherlands)

    Bruggeman, P.J.; Schram, D.C.

    2010-01-01

    In this paper radical production in atmospheric pressure water containing plasmas is discussed. As OH is often an important radical in these discharges the paper focuses on OH production. Besides nanosecond pulsed coronas and diffusive glow discharges, several other atmospheric pressure plasmas

  14. Destruction of Bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma

    International Nuclear Information System (INIS)

    Panikov, N.S.; Paduraru, S.; Crowe, R.; Ricatto, P.J.; Christodoulatos, C.; Becker, K.

    2002-01-01

    The results of experiments aimed at the investigation of the destruction of spore-forming bacteria, which are believed to be among the most resistant microorganisms, using a novel atmospheric-pressure dielectric capillary electrode discharge plasma are reported. Various well-characterized cultures of Bacillus subtilis were prepared, subjected to atmospheric-pressure plasma jets emanating from a plasma shower reactor operated either in He or in air (N 2 /O 2 mixture) at various power levels and exposure times, and analyzed after plasma treatment. Reductions in colony-forming units ranged from 10 4 (He plasma) to 10 8 (air plasma) for plasma exposure times of less than 10 minutes. (author)

  15. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  16. Origin of fluctuations in atmospheric pressure arc plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.; Das, A.K.

    2004-01-01

    Fluctuations in arc plasma devices are extremely important for any technological application in thermal plasma. The origin of such fluctuations remains unexplained. This paper presents a theory for observed fluctuations in atmospheric pressure arc plasma devices. A qualitative explanation for observed behavior on atmospheric pressure arc plasma fluctuations, reported in the literature, can be obtained from the theory. The potential of the theory is demonstrated through comparison of theoretical predictions with reported experimental observations

  17. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Kingma, H.; Van de Berg, R. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre, Minderbroedersberg 4-6, 6211 LK Maastricht (Netherlands)

    2016-04-15

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  18. Interaction of EM Waves with Atmospheric Pressure Plasmas

    National Research Council Canada - National Science Library

    Laroussi, Mounir

    2000-01-01

    .... The focus of the main activities is the generation of large volume, non-thermal, atmospheric pressure plasmas, their diagnostics, and their interactions with EM waves and with the cells of microorganism...

  19. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  20. Structural bifurcation of microwave helium jet discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kitoh, Masakazu; Soga, Tadasuke

    2008-01-01

    Structural bifurcation of microwave-sustained jet discharge at atmospheric gas pressure was found to produce a stable helium plasma jet, which may open the possibility of a new type of high-flux test plasma beam for plasma-wall interactions in fusion devices. The fundamental discharge properties are presented including hysteresis characteristics, imaging of discharge emissive structure, and stable ignition parameter area. (author)

  1. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  2. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  3. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved...

  4. Atmospheric pressure H20 plasma treatment of polyester cord threads

    International Nuclear Information System (INIS)

    Simor, M.; Krump, H.; Hudec, I.; Rahel, J.; Brablec, A.; Cernak, M.

    2004-01-01

    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H 2 0 plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H 2 0 plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength (Authors)

  5. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA

    International Nuclear Information System (INIS)

    Yan Xu; He Guangyuan; Shi Mengjun; Gao Xuan; Li Yin; Ma Fengyun; Yu Men; Wang Changdong; Wang Yuesheng; Yang Guangxiao; Zou Fei; Lu Xinpei; Xiong Qing; Xiong Zilan

    2009-01-01

    The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

  6. Non-equilibrium atmospheric pressure microplasma jet: An approach to endoscopic therapies

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Xiao; Wei, Yu; Wei Chen, Long; Dong Meng, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaboration: Plasma Medicine Team

    2013-08-15

    Atmospheric pressure microplasma jet generated in a long hollow core optical fiber is studied to verify the potential feasibility of endoscopic therapies. Thermal damage and electric shock to the human body were suppressed by two technical methods, i.e., the high-voltage resistant flexible tube wrapped on the optical fiber and a power resistor of 100 kΩ connected between the power supply and the copper foil electrode. Optical emission spectra analysis indicated that many kinds of active radicals like excited atomic O and OH, were generated in the microplasma jet. In addition, the applications of the microplasma jet on sterilization and lung cancer cell apoptosis were presented. After 5 min of exposures to the microplasma jet, the cell viability and the bacillus subtilis replication decreased to about 3% and zero, respectively. More investigations are needed to improve the plasma-aided endoscopic therapies.

  7. MicroScale - Atmospheric Pressure Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Mohan [Case Western Reserve University

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  8. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    International Nuclear Information System (INIS)

    Hicks, Robert F.; Herrmann, Hans W.

    2003-01-01

    The objective of this work is to demonstrate a practical, atmospheric pressure plasma tool for the surface decontamination of radioactive waste. Decontamination of radioactive materials that have accumulated on the surfaces of equipment and structures is a challenging and costly undertaking for the US Department of Energy. Our technology shows great potential for accelerating this clean up effort

  9. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...

  10. Basic principles and applications of atmospheric-pressure discharge plasmas

    International Nuclear Information System (INIS)

    Becker, K.H.

    2002-01-01

    The principles that govern the generation and maintenance of atmospheric - pressure discharge plasmas are summarized. The properties and operating parameters of various types such as dielectric barrier discharge plasmas (DBDs), corona discharge plasmas (CDs), microhollow cathode discharge plasmas (MHCDs) , and dielectric capillary electrode discharge plasmas (CDEDs) are introduced. All of them are self sustained, non equilibrium gas discharges that can be operated at atmospheric pressure. CDs and DBDDs represent very similar types of discharges, while DBDs are characterized by insulating layers on one or both electrodes, CDs depend on inhomogeneous electric fields at least in some parts of the electrode configuration to restrict the primary ionization processes to a small fraction of the inter - electrode region. Their application to novel light sources in the ultraviolet (UV) and vacuum ultraviolet (VUV) spectral region is described. (nevyjel)

  11. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  12. Fundamental Studies of Transient, Atmospheric-Pressure, Small-Scale Plasmas

    Science.gov (United States)

    2017-01-23

    C. Jiang, R. Heller, J. Lane, and K. H. Schoenbach, " Ozone -free nitric oxide production using an atmospheric pressure surface discharge – a way to...Electrostatic modeling and energy-dependent studies showed that the direct and indirect electron-induced processes in the pulsed plasma jet are responsible for...Coupled sliding discharges : a scalable nonthermal plasma system utilizing positive and negative streamers on DISTRIBUTION A: Distribution

  13. A Study on Decontamination Process Using Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Jeon, Sang Hwan; Jin, Dong Sik; Park, Dong Min

    2010-05-01

    Radioactive decontamination process using atmospheric pressure plasma which can be operated parallel with low vacuum cold plasma processing is studied. Two types of cold plasma torches were designed and manufactured. One of them is the cylindrical type applicable to the treatment of three-dimensional surfaces. The other is the rectangular type for the treatment of flat and large surface areas. Ar palsam was unstable but using He as a carrier gas, discharge condition was improved. Besides filtering module using pre, medium, charcoal, and HEPA filter was designed and manufactured. More intensive study for developing filtering system will be followed. Atmospheric pressure plasma decontamination process can be used to the equipment and facility wall decontamination

  14. Study of a dual frequency atmospheric pressure corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Moon, S. Y.; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Radio frequency mixing of 2 and 13.56 MHz was investigated by performing experimental measurements on the atmospheric pressure corona plasma. As a result of the dual frequency, length, current density, and electron excitation temperature of the plasma were increased, while the gas temperature was maintained at roughly the same level when compared to the respective single frequency plasmas. Moreover, observation of time-resolved images revealed that the dual frequency plasma has a discharge mode of 2 MHz positive streamer, 2 MHz negative glow, and 13.56 MHz continuous glow.

  15. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O 2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  16. Use of Atmospheric Pressure Cold Plasma for Meat Industry

    OpenAIRE

    Lee, Juri; Lee, Cheol Woo; Yong, Hae In; Lee, Hyun Jung; Jo, Cheorun; Jung, Samooel

    2017-01-01

    Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces th...

  17. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  18. Sterilization and decontamination of surfaces using atmospheric pressure plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Garate, E.; Gornostaeva, O.; Alexeff, I.; Kang, W.L.

    1999-07-01

    The goal of the program is to demonstrate that an atmospheric pressure plasma discharge can rapidly and effectively sterilize or decontaminate surfaces that are contaminated with model biological and chemical warfare agents. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC. AC or pulsed discharges. the work done to date has focused on the sterilization of aluminum, polished steel and tantalum foil metal coupons, about 2 cm on a side and 2 mm thick, which have been inoculated with up to 10{sup 6} spores per coupon of Bacillus subtilis var niger or Bascillus stearothermorphilus. Results indicate that 5 minute exposures to the atmospheric pressure plasma discharge can reduce the viable spore count by 4 orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are stimulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  19. Separated Type Atmospheric Pressure Plasma Microjets Array for Maskless Microscale Etching

    Directory of Open Access Journals (Sweden)

    Yichuan Dai

    2017-06-01

    Full Text Available Maskless etching approaches such as microdischarges and atmospheric pressure plasma jets (APPJs have been studied recently. Nonetheless, a simple, long lifetime, and efficient maskless etching method is still a challenge. In this work, a separated type maskless etching system based on atmospheric pressure He/O2 plasma jet and microfabricated Micro Electro Mechanical Systems (MEMS nozzle have been developed with advantages of simple-structure, flexibility, and parallel processing capacity. The plasma was generated in the glass tube, forming the micron level plasma jet between the nozzle and the surface of polymer. The plasma microjet was capable of removing photoresist without masks since it contains oxygen reactive species verified by spectra measurement. The experimental results illustrated that different features of microholes etched by plasma microjet could be achieved by controlling the distance between the nozzle and the substrate, additive oxygen ratio, and etch time, the result of which is consistent with the analysis result of plasma spectra. In addition, a parallel etching process was also realized by plasma microjets array.

  20. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  1. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Salarieh Setareh; Dorranian Davoud

    2013-01-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O 2 , He, and He/O 2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O 2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment

  2. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  3. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study.

    Science.gov (United States)

    Edengeiser, Eugen; Lackmann, Jan-Wilm; Bründermann, Erik; Schneider, Simon; Benedikt, Jan; Bandow, Julia E; Havenith, Martina

    2015-11-01

    Cold atmospheric-pressure plasmas have become of increasing importance in sterilization processes especially with the growing prevalence of multi-resistant bacteria. Albeit the potential for technological application is obvious, much less is known about the molecular mechanisms underlying bacterial inactivation. X-jet technology separates plasma-generated reactive particles and photons, thus allowing the investigation of their individual and joint effects on DNA. Raman spectroscopy shows that particles and photons cause different modifications in DNA single and double strands. The treatment with the combination of particles and photons does not only result in cumulative, but in synergistic effects. Profilometry confirms that etching is a minor contributor to the observed DNA damage in vitro. Schematics of DNA oligomer treatment with cold atmospheric-pressure plasma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficacy of Atmospheric Pressure Plasma as an Antibacterial Agent Against Enterococcus Faecalis in Vitro

    International Nuclear Information System (INIS)

    Cao Yingguang; Yang Ping; Lu Xinpei; Xiong Zilan; Ye Tao; Xiong Qing; Sun Ziyong

    2011-01-01

    Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma plume against E. faecalis in vitro. A non-thermal atmospheric pressure plasma jet device which could generate a cold plasma plume carrying a peak current of 300 mA was used. The antibacterial efficacy of this device against E. faecalis and its biofilm under different conditions was detected. The antibacterial efficacy of the plasma against E. faecalis and Staphylococcus aureus (S. aureus) was also evaluated. After plasma treatment, the average diameter of inhibition zone on S. aureus and E. faecalis was 2.62±0.26 cm and 1.06±0.30 cm, respectively (P < 0.05). The diameter was increased with prolongation of the treatment duration. The diameters of inhibition zone of the sealed Petri dishes were larger than those of the uncovered Petri dishes. There was significant difference in colony-forming units between plasma group and control group on E. faecalis biofilm (P < 0.01). The transmission electron microscopy revealed that the ultrastructural changes cytoderm of E. faecalis were observed after treatment for 2 min. It is concluded that the non-thermal atmospheric pressure plasma could serve as an effective adjunct to standard endodontic microbial treatment.

  5. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chi-wai Kan

    2018-01-01

    Full Text Available 100% grey cotton knitted fabric contains impurities and yellowness and needs to be prepared for processing to make it suitable for coloration and finishing. Therefore, conventionally 100% grey cotton knitted fabric undergoes a process of scouring and bleaching, which involves the use of large amounts of water and chemicals, in order to remove impurities and yellowness. Due to increased environmental awareness, pursuing a reduction of water and chemicals is a current trend in textile processing. In this study, we explore the possibility of using atmospheric pressure plasma as a dry process to treat 100% grey cotton knitted fabric (single jersey and interlock before processing. Experimental results reveal that atmospheric pressure plasma treatment can effectively remove impurities from 100% grey cotton knitted fabrics and significantly improve its water absorption property. On the other hand, if 100% grey cotton knitted fabrics are pretreated with plasma and then undergo a normal scouring process, the treatment time is reduced. In addition, the surface morphological and chemical changes in plasma-treated fabrics were studied and compared with the conventionally treated fabrics using scanning electron microscope (SEM, Fourier-transform infrared spectroscopy-attenuated total reflection (FTIR-ATR and X-ray photoelectron spectroscopy (XPS. The decrease in carbon content, as shown in XPS, reveal the removal of surface impurities. The oxygen-to-carbon (O/C ratios of the plasma treated knitted fabrics reveal enhanced hydrophilicity.

  6. Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization

    Science.gov (United States)

    Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.

    1998-11-01

    We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  7. Atmospheric-pressure plasma decontamination/sterilization chamber

    Science.gov (United States)

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  8. Polythiophene films obtained by polymerization under atmospheric pressure plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Teslaru, T.; Topala, I., E-mail: ionut.topala@uaic.ro; Dobromir, M.; Pohoata, V.; Curecheriu, L.; Dumitrascu, N.

    2016-02-01

    The present work describes the experimental arrangement used to initiate polymerization reactions of thiophene monomer based on a dielectric barrier discharge with plane – parallel geometry, working at atmospheric pressure in argon, in turn to obtain conductive polymeric films for different applications. The resulting plasma polymerized polythiophene (pPTh) film was characterized by FT-IR, UV–Vis, XPS spectroscopy, AFM and contact angle measurements. Characterization of pPTh films showed a higher hydrophobic character and roughness, as compared with films obtained by chemical methods, and the thickness is depending on polymerization duration. Also it can conclude that our samples represent oxidised state of pPTh. As a possible application, it analysed in situ the iodine absorption phenomenon in the pPTh matrix and its time evolution by UV–Vis spectroscopy. The presence of iodine 3d{sub 5/2} and 3d{sub 3/2} peaks in the pPTh sample after absorption was identified by XPS spectroscopy. The hydrophobic pPTh film is transformed in a super hydrophilic film after absorption of iodine vapors. - Highlights: • We obtained polythiophene films (pPTh) by atmospheric pressure plasma technique. • The pPTh films showed a hydrophobic character and conducting properties. • The pPTh films were used as sensor for iodine vapors in biological environment.

  9. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  11. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  12. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  13. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    Science.gov (United States)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  14. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  15. Use of Atmospheric Pressure Cold Plasma for Meat Industry.

    Science.gov (United States)

    Lee, Juri; Lee, Cheol Woo; Yong, Hae In; Lee, Hyun Jung; Jo, Cheorun; Jung, Samooel

    2017-01-01

    Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.

  16. Atmospheric pressure plasma-assisted femtosecond laser engraving of aluminium

    Science.gov (United States)

    Gerhard, Christoph; Gimpel, Thomas; Tasche, Daniel; Koch née Hoffmeister, Jennifer; Brückner, Stephan; Flachenecker, Günter; Wieneke, Stephan; Schade, Wolfgang; Viöl, Wolfgang

    2018-05-01

    In this contribution, we report on the impact of direct dielectric barrier discharge argon plasma at atmospheric pressure on femtosecond laser engraving of aluminium. It is shown that the assisting plasma strongly affects the surface geometry and formation of spikes of both laser-engraved single lines and patterns of adjacent lines with an appropriate overlap. Further, it was observed that the overall ablation depth is significantly increased in case of large-scale patterning whereas no notable differences in ablation depth are found for single lines. Several possible mechanisms and underlying effects of this behaviour are suggested. The increase in ablation depth is supposed to be due to a plasma-induced removal of debris particles from the cutting point via charging and oxidation as supported by EDX analysis of the re-solidified debris. Furthermore, the impact of a higher degree of surface wrinkling as well as direct interactions of plasma species with the aluminium surface on the ablation process are discussed.

  17. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  18. Parametric Study of Effects of Atmospheric Pressure Plasma Treatment on the Wettability of Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2018-02-01

    Full Text Available In textiles processing, wettability of fabric plays a very important role in enhancing processes such as dyeing and printing. Although well-prepared cotton fabric has very good wettability, further enhancement of its wettability can effectively improve the subsequent dyeing and printing processes. Plasma treatment, especially atmospheric pressure plasma treatment (APPT, a continuous process, is now drawing attention of the industry. In this study, we investigated the effect of APPT under four operational parameters: (1 discharge power; (2 flow rate of oxygen; (3 jet travelling speed; and (4 jet-to-substrate distance on wettability (in terms of wickability and wetting area of cotton fabric. Experimental results revealed that the four parameters interact with each other in affecting the wettability of the cotton fabric. The results are discussed comprehensively.

  19. Localized etching of polymer films using an atmospheric pressure air microplasma jet

    International Nuclear Information System (INIS)

    Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng

    2015-01-01

    A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min −1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ. (paper)

  20. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique.

    Science.gov (United States)

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik

    2016-01-11

    This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight ( M w ), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.

  1. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2016-01-01

    Full Text Available This work presents a study on the preparation of plasma-polymerized aniline (pPANI nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, gas chromatography-mass spectrometry (GC-MS, and gel permeation chromatography (GPC techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight (Mw, about 533 kDa with 1.9 polydispersity index (PDI. This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.

  2. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration

    Directory of Open Access Journals (Sweden)

    Natalie R. Danna

    2015-01-01

    Full Text Available This study assessed the osseointegrative effects of atmospheric pressure plasma (APP surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti and calcium phosphate (CaP. Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total was placed in one radius of each of the seven male beagles for three weeks, and one implant from each group was placed in the contralateral radius for six weeks. After sacrifice, bone-to-implant contact (BIC and bone area fraction occupancy (BAFO were assessed. X-ray photoelectron spectroscopy showed decreased surface levels of carbon and increased Ti and oxygen, and calcium and oxygen, posttreatment for Ti and CaP surfaces, respectively. There was a significant (P<0.001 increase in BIC for APP-treated textured Ti surfaces at six weeks but not at three weeks or for CaP surfaces. There were no significant (P=0.57 differences for BAFO between treated and untreated surfaces for either material at either time point. This suggests that air-based APP surface treatment may improve osseointegration of textured Ti surfaces but not CaP surfaces. Studies optimizing APP parameters and applications are warranted.

  3. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  4. Water plasma generation under atmospheric pressure for HFC destruction

    International Nuclear Information System (INIS)

    Watanabe, Takayuki; Tsuru, Taira

    2008-01-01

    The purpose of this paper is to investigate the decomposition process of hydrofluoroethylene (HFC-134a) by water plasmas. The water plasma was generated by DC arc discharge with a cathode of hafnium embedded into a copper rod and a nozzle-type copper anode. The advantage of the water plasma torch is the generation of 100%-water plasma by DC discharge. The distinctive steam generation leads to the portable light-weight plasma generation system that does not require the gas supply unit, as well as the high energy efficiency owing to the nonnecessity of the additional water-cooling. HFC-134a was injected into the water plasma jet to decompose it in the reaction tube. Neutralization vessel was combined to the reaction tube to absorb F 2 and HF generated from the HFC-134a decomposition. The decomposition was performed with changing the feed rate of HFC-134a up to 185 mmol/min. The decomposition efficiency of 99.9% can be obtained up to 0.43 mmol/kJ of the ratio of HFC-134a feed rate to the arc power, hence the maximum feed rate was estimated to be 160 g/h at 1 kW of the arc power

  5. Atmospheric pressure plasma cleaning of contamination surfaces. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Hicks, R.; Selwyn, G.S.

    1997-01-01

    'Goals of the project are to (1) identify the key physics and chemistry underlying the use of high pressure plasmas for etching removal of actinides and actinide surrogates; and (2) identify key surface reactions and plasma physics necessary for optimization of the atmospheric pressure plasma jet. Technical description of the work decommissioning of transuranic waste (TRU) into low-level radioactive waste (LLW) represents the largest cleanup cost associated with the nuclear weapons complex. This work is directed towards developing a low-cost plasma technology capable of converting TRU into LLW, based upon highly selective plasma etching of plutonium and other actinides from contaminated surfaces. In this way, only the actinide material is removed, leaving the surface less contaminated. The plasma etches actinide material by producing a volatile halide compound, which may be efficiently trapped using filters. To achieve practical, low-cost operation of a plasma capable of etching actinide materials, the authors have developed a y-mode, resonant-cavity, atmospheric pressure plasma jet (APPJ). In contrast to conventional, low pressure plasmas, the APPJ produces a purely-chemical effluent free of ions, and so achieves very high selectivity and produces negligible damage to the surface. Since the jet operates outside a chamber, many nuclear wastes may be treated including machinery, duct-work, concrete and other building materials. In some cases, it may be necessary to first remove paint from contaminated surfaces using a plasma selective for that surface, then to switch to the actinide etching chemistry for removal of actinide contamination. The goal of this work is to develop the underlying science required for maturation of this technology and to establish early version engineering prototypes. Accomplishments to Date The authors have made significant progress in this program. The work conducted jointly at Los Alamos and at UCLA. This has been facilitated by exchange

  6. Atmospheric pressure plasma cleaning of contamination surfaces. 1997 mid-year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Selwyn, G.S. [Los Alamos National Lab., NM (US); Hicks, R. [Univ. of California, Los Angeles, CA (US)

    1997-06-01

    'Goals of the project are to (1) identify the key physics and chemistry underlying the use of high pressure plasmas for etching removal of actinides and actinide surrogates; and (2) identify key surface reactions and plasma physics necessary for optimization of the atmospheric pressure plasma jet. Technical description of the work decommissioning of transuranic waste (TRU) into low-level radioactive waste (LLW) represents the largest cleanup cost associated with the nuclear weapons complex. This work is directed towards developing a low-cost plasma technology capable of converting TRU into LLW, based upon highly selective plasma etching of plutonium and other actinides from contaminated surfaces. In this way, only the actinide material is removed, leaving the surface less contaminated. The plasma etches actinide material by producing a volatile halide compound, which may be efficiently trapped using filters. To achieve practical, low-cost operation of a plasma capable of etching actinide materials, the authors have developed a y-mode, resonant-cavity, atmospheric pressure plasma jet (APPJ). In contrast to conventional, low pressure plasmas, the APPJ produces a purely-chemical effluent free of ions, and so achieves very high selectivity and produces negligible damage to the surface. Since the jet operates outside a chamber, many nuclear wastes may be treated including machinery, duct-work, concrete and other building materials. In some cases, it may be necessary to first remove paint from contaminated surfaces using a plasma selective for that surface, then to switch to the actinide etching chemistry for removal of actinide contamination. The goal of this work is to develop the underlying science required for maturation of this technology and to establish early version engineering prototypes. Accomplishments to Date The authors have made significant progress in this program. The work conducted jointly at Los Alamos and at UCLA. This has been facilitated by

  7. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...

  8. Thermal structure of atmospheric pressure non-equilibrium plasmas

    International Nuclear Information System (INIS)

    Nozaki, Tomohiro; Unno, Yasuko; Okazaki, Ken

    2002-01-01

    The thermal structure of a methane-fed dielectric barrier discharge (DBD) and a atmospheric pressure glow-discharge (APG) has been extensively investigated in terms of time-averaged gas temperature profile between two parallel-plate electrodes separated by 1.0 mm. Emission spectroscopy of the rotational band of CH ((0, 0) A 2 Δ→X 2 Π:431 nm) was performed for this purpose. In order to minimize average temperature increase in the reaction field, DBD and APG were activated by 10 kHz with 2% duty cycle pulsed voltage (2 μs pulse width/100 μs interval). In DBD, temperature increase of a single microdischarge, on a time average, reached 200 K. It suddenly decreased below 100 K associated with the dark space formation near the dielectric barrier. Also, gas temperature in the surface discharge was fairly low because emission in these regions was limited within the initial stages of propagation (∼5 ns), whereas energy deposition would continue until microdischarge extinction; these facts implied that rotational temperature seemed to be far below the actual gas temperature in these regions. In APG, gas temperature was uniformly increased by positive column formation. In addition, a remarkable temperature increase due to negative glow formation was obtained only near the metallic electrode. For practical interest, we also investigated the net temperature increase with high frequency operations (AC-80 kHz), which depends not only on plasma properties, but also various engineering factors such as flow field, external cooling conditions, and total input power. In DBD, gas temperature in the middle of gas gap was significantly increased with increasing input power because of poor cooling conditions. In APG, in contrast, gas temperature near the electrodes was significantly increased associated with negative glow formation

  9. Discharge physics and chemistry of a novel atmospheric pressure plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Henins, I.; Hermann, J.W.; Selwyn, G.S.; Jeong, J.Y.; Hickis, R.

    1999-07-01

    The atmospheric pressure plasma jet (APPJ) is a unique plasma source operating at atmospheric pressure. The APPJ operates with RF power and produces a stable non-thermal discharge in capacitively-coupled configuration. The discharge is spatially and temporally homogeneous and provides a unique gas phase chemistry that is well suited for various applications including etching, film deposition, surface treatment and decontamination of chemical and biological warfare (CBW) agents. A theoretical model shows electron densities of 0.2--2 x 10{sup 11} cm{sup {minus}3} for a helium discharge at a power level of 3--30 W cm{sup {minus}3}. The APPJ also produces a large flux, equivalent of up to 10,000 monolayer s{sup {minus}1}, of chemically-active, atomic and metastable molecular species which can impinge surfaces several cm downstream of the confined source. In addition, the efforts are in progress to measure the electron density using microwave diagnostics and to benchmark the gas phase chemical model by using LIF and titration.

  10. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    Wen Ying; Li Ranxing; Cai Fang; Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan; Qiu Yiping

    2010-01-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  11. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  12. Selection of suitable diagnostic techniques for an RF atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kong, M.G.; Deng, X.T.

    2001-01-01

    As an early report of our study, this paper summaries the RF atmospheric pressure plasma system we intend to characterize and a number of diagnostic techniques presently under assessment for our plasma rig. By discussing the advantages and disadvantages of these diagnostic techniques at this meeting, we hope to gain feedback and comments to improve our choice of appropriate diagnostic techniques as well as our subsequent application of these techniques to nonthermal RF atmospheric pressure plasmas

  13. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  14. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    International Nuclear Information System (INIS)

    Tajima, Satomi; Tsuchiya, Shouichi; Matsumori, Masashi; Nakatsuka, Shigeki; Ichiki, Takanori

    2011-01-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu 2 O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu 2 O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  15. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satomi; Tsuchiya, Shouichi [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Matsumori, Masashi; Nakatsuka, Shigeki [Panasonic Factory Solutions Co., Ltd., 2-7 Matsuba-cho, Kadoma-city, Osaka, 571-8502 (Japan); Ichiki, Takanori, E-mail: ichiki@sogo.t.u-tokyo.ac.jp [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Institute of Engineering Innovation, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2011-08-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu{sub 2}O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu{sub 2}O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  16. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang; Hu, Longhua; Yoon, Sung Hwan; Lu, Shouxiang; Delichatsios, Michael; Chung, Suk-Ho

    2015-01-01

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow

  17. Double streamer phenomena in atmospheric pressure low frequency corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Time-resolved images of an atmospheric pressure corona discharge, generated at 50 kHz in a single pin electrode source, show unique positive and negative corona discharge features: a streamer for the positive period and a glow for the negative period. However, unlike in previous reports of dc pulse and low frequency corona discharges, multistreamers were observed at the initial time stage of the positive corona. A possible physical mechanism for the multistreamers is suggested.

  18. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  19. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  20. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  1. An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation.

    Science.gov (United States)

    Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor

    2016-11-03

    Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry.

  2. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  3. Electric and spectroscopic properties of argon-hydrogen RF microplasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Souza-Correa, J A; Oliveira, C; Amorim, J [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol-CTBE, Caixa Postal 6170, 13083-970, Campinas, Sao Paulo (Brazil); Gomes, M P, E-mail: jorge.correa@bioetanol.org.b, E-mail: carlos.filho@bioetanol.org.b, E-mail: gomesmp@ita.b, E-mail: jayr.amorim@bioetanol.org.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica-ITA, Praca Marechal Eduardo Gomes 50, 12.228-900, Sao Jose dos Campos, Sao Paulo (Brazil)

    2010-10-06

    Microplasma jets of argon-hydrogen (Ar-H{sub 2}) gas mixture were generated by 144.0 MHz radio-frequency (RF) waves at powers of 5 W, 10 W, 20 W and 50 W. The experimental setup employed creates stable microplasmas at atmospheric pressure from 5.0 mm up to 20.0 mm visual glow lengths. We have determined the rms voltages, the rms electric currents and the power absorptions of these microplasma jets. By making use of optical spectroscopy, the emission spectra of Ar-H{sub 2} microplasma jets were recorded in the range 3060-8200 A, in order to estimate the axial distribution profiles of electron density, rotational temperature, excitation temperature and hydrogen atomic temperature.

  4. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  5. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  6. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    2016-01-01

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plume charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.

  7. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2016-06-15

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plume charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.

  8. Atmospheric-pressure-plasma-enhanced fabrication of nonfouling nanocoatings for 316 stainless steel biomaterial interfaces

    Science.gov (United States)

    Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun

    2018-03-01

    Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.

  9. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  10. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  11. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  12. State of the art in medical applications using non-thermal atmospheric pressure plasma

    Science.gov (United States)

    Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru

    2017-12-01

    Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.

  13. Blow-out of nonpremixed turbulent jet flames at sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang; Hu, Longhua; Chung, Suk-Ho

    2016-01-01

    Blow-out limits of nonpremixed turbulent jet flames in quiescent air at sub-atmospheric pressures (50–100 kPa) were studied experimentally using propane fuel with nozzle diameters ranging 0.8–4 mm. Results showed that the fuel jet velocity at blow-out limit increased with increasing ambient pressure and nozzle diameter. A Damköhler (Da) number based model was adopted, defined as the ratio of characteristic mixing time and characteristic reaction time, to include the effect of pressure considering the variations in laminar burning velocity and thermal diffusivity with pressure. The critical lift-off height at blow-out, representing a characteristic length scale for mixing, had a linear relationship with the theoretically predicted stoichiometric location along the jet axis, which had a weak dependence on ambient pressure. The characteristic mixing time (critical lift-off height divided by jet velocity) adjusted to the characteristic reaction time such that the critical Damköhler at blow-out conditions maintained a constant value when varying the ambient pressure.

  14. Blow-out of nonpremixed turbulent jet flames at sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2016-12-09

    Blow-out limits of nonpremixed turbulent jet flames in quiescent air at sub-atmospheric pressures (50–100 kPa) were studied experimentally using propane fuel with nozzle diameters ranging 0.8–4 mm. Results showed that the fuel jet velocity at blow-out limit increased with increasing ambient pressure and nozzle diameter. A Damköhler (Da) number based model was adopted, defined as the ratio of characteristic mixing time and characteristic reaction time, to include the effect of pressure considering the variations in laminar burning velocity and thermal diffusivity with pressure. The critical lift-off height at blow-out, representing a characteristic length scale for mixing, had a linear relationship with the theoretically predicted stoichiometric location along the jet axis, which had a weak dependence on ambient pressure. The characteristic mixing time (critical lift-off height divided by jet velocity) adjusted to the characteristic reaction time such that the critical Damköhler at blow-out conditions maintained a constant value when varying the ambient pressure.

  15. Cold atmospheric pressure plasma treatment of ready-to-eat meat

    DEFF Research Database (Denmark)

    Röd, Sara Katrine Solhøj; Hansen, Flemming; Leipold, Frank

    Sliced ready-to-eat (RTE) meat products are susceptible to growth of the foodborne pathogenic bacterium, Listeria monocytogenes. Cold atmospheric pressure plasma (CAPP) may be applicable for surface decontamination in sealed bags thus avoiding recontamination. Plasmas (Fig. 1), created in neutral...

  16. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  17. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    NARCIS (Netherlands)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels - Adamowicz, E.

    2006-01-01

    Fractional no. d. measurements for a radiofrequency plasma needle operating at atm. pressure were obtained using a mol. beam mass spectrometer (MBMS) system designed for diagnostics of atm. plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes

  18. Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2011-01-01

    A glass-fibre-reinforced polyester (GFRP) plate was treated with dielectric barrier discharge (DBD) at atmospheric pressure in air for adhesion improvement. The effects of ultrasonic irradiation using a high-power gas-jet generator during the treatment were investigated. The optical emission...... damage of the GFRP plates. The polar component of the surface energy of the polyester plate was 21 mJ/m2 before the treatment, increased markedly to 52 mJ/m2 after 2-s plasma treatment without ultrasonic irradiation, and further increased slightly after longer treatments. In addition, the polar component...

  19. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Wenji; Sun, Jing; Liu, Xin; Xu, Sihao; Xia, Guangqing; Yang, Dezheng

    2016-01-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously. (paper)

  20. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    International Nuclear Information System (INIS)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 μl took around 250 s to get absorbed in the treated sample compared to 0 . Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  1. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  2. Generation of high-power-density atmospheric pressure plasma with liquid electrodes

    International Nuclear Information System (INIS)

    Dong Lifang; Mao Zhiguo; Yin Zengqian; Ran Junxia

    2004-01-01

    We present a method for generating atmospheric pressure plasma using a dielectric barrier discharge reactor with two liquid electrodes. Four distinct kinds of discharge, including stochastic filaments, regular square pattern, glow-like discharge, and Turing stripe pattern, are observed in argon with a flow rate of 9 slm. The electrical and optical characteristics of the device are investigated. Results show that high-power-density atmospheric pressure plasma with high duty ratio in space and time can be obtained. The influence of wall charges on discharge power and duty ratio has been discussed

  3. Effect of Atmospheric Pressure Plasma and Subsequent Enzymatic Treatment on Flax Fabrics

    International Nuclear Information System (INIS)

    Zhong Shaofeng; Yang Bin; Ou Qiongrong

    2015-01-01

    The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge (APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics. The changes of surface morphology and structure, physico-mechanical properties, hydrophilicity, bending properties, whiteness, and dyeing properties of the treated substrate were investigated. The results indicated that atmospheric pressure dielectric barrier discharge plasma pre-treatment and subsequent cellulase enzyme treatment could diminish the hairiness of flax fabrics, endowing the flax fabrics with good bending properties, water uptake and fiber accessibility while keeping their good mechanical properties compared with those treated with cellulase enzyme alone. (paper)

  4. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-01-01

    Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.

  5. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  6. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, M., E-mail: ishaqmusarat@gmail.com [Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Bazaka, K. [Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Ostrikov, K. [Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia)

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  7. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon....

  8. Generation of uniform atmospheric pressure argon glow plasma by ...

    Indian Academy of Sciences (India)

    The electron temperature and electron density of the plasma are determined ... Dielectric barrier discharge (DBD) and APGD are the subjects of research for the last ... The gap between the electrodes can be varied from 0.5 mm to 2 mm and Ar ...

  9. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    Science.gov (United States)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  10. Cytoprotective effects of atmospheric-pressure plasmas against hypoxia-induced neuronal injuries

    Science.gov (United States)

    Yan, Xu; Meng, Zhaozhong; Ouyang, Jiting; Qiao, Yajun; Li, Jiaxin; Jia, Mei; Yuan, Fang; (Ken Ostrikov, Kostya

    2018-02-01

    Atmospheric pressure plasma jet (APPJ) has recently been the focus of cytoprotective research due to the physiological roles of ROS and RNS. In the current study, we investigated the effect of APPJ treatment on the hypoxia (1% oxygen) induced cell injuries. SH-SY5Y cells were treated by APPJ for different duration and incubated in normoxic condition (20% oxygen) for 5 h followed by 24 h hypoxia treatment. Cell viability was evaluated by lactate dehydrogenase (LDH) release and further monitored using the electric cell-substrate impedance sensing (ECIS) system after APPJ treatment. Results showed that APPJ could reduce cell injuries after 24 h hypoxia, which was consistent with the ECIS results. Furthermore, extracellular NO and H2O2 production was significantly increased with the APPJ treatment. It was also interesting to find that APPJ treatment reduced SH-SY5Y cells proliferation in the hypoxic microenvironment during the first 20 h of hypoxia. Although more work was still need to clarify whether the cell viability maintenance was related to the cell proliferation during hypoxia, our results provide the first evidence of real-time cell viability changes after APPJ treatment under both normoxic and hypoxic conditions, which could provide evidence for the neuroprotective applications of APPJ.

  11. Characterization of a dielectric barrier plasma gun discharging at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Guangqiu; Ge Yuanjing; Zhang Yuefei; Chen Guangliang

    2004-01-01

    The authors develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, authors find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies. (author)

  12. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  13. An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation

    OpenAIRE

    Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor

    2016-01-01

    Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to pla...

  14. The conceptual design of high temporal resolution HCN interferometry for atmospheric pressure air plasmas

    Science.gov (United States)

    Zhang, J. B.; Liu, H. Q.; Jie, Y. X.; Wei, X. C.; Hu, L. Q.

    2018-01-01

    A heterodyne interferometer operating at the frequency f = 890 GHz has been designed for measuring the electron density of atmospheric pressure air plasmas, it's density range is from 1015 to 3×1019 m-3 and the pressure range is from 1 Pa to 20 kPa. The system is configured as a Mach\

  15. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  16. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  17. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Schäfer, J; Foest, R; Reuter, S; Kewitz, T; Šperka, J; Weltmann, K-D

    2012-10-01

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  18. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Kewitz, T. [Institute of Experimental and Applied Physics, University Kiel, 24098 Kiel (Germany); Sperka, J. [Department of Physical Electronics, Masaryk University, 61137 Brno (Czech Republic)

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  19. Collaborative Research: Atmospheric Pressure Plasma-Biomaterial Surface Interactions - Bridging Understanding of APP Sources to Rational Modification of Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. of California, Berkeley, CA (United States)

    2017-11-24

    The overriding objective of this work is to bridge the gap between understanding of atmospheric pressure plasma (APP) sources and predictive chemical modifications of biomolecules. A key aspect of this problem is to understand what oxidizing species are created in water adjacent to APP jets that would ultimately affect aqueous biomolecules. We report the production of highly oxidative species in solutions exposed to a self-pulsed corona discharge in air. We examine how the properties of the target solution (pH, conductivity) and the discharge power affect the discharge stability and the production of H2O2. Indigo carmine, a common organic dye, is used as an indicator of oxidative strength and in particular, hydroxyl radical (OH•) production. The observed rate of indigo oxidation in contact with the discharge far exceeds that predicted from reactions based on concentrations of species measured in the bulk solution. The generation of H2O2 and the oxidation of indigo carmine indicate a high concentration of highly oxidizing species such as OH• at the plasma-liquid interface. These results indicate that reactions at the air plasma-liquid interface play a dominant role in species oxidation during direct non-equilibrium atmospheric pressure plasma (NE-APP) treatment.

  20. Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Bhatnagar, Nitu; Sangeeta, Jha; Bhowmik, Shantanu; Gupta, Govind; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric p ressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Atomic Force Microscopy (AFM). The experimental results show that the PEEK surface treated by atmospheric pressure plasma lead to an increase in the polar component of the surface energy, resulting in improving the adhesion characteristics of the PEEK/Epoxy adhesive system. Also, the roughness of the treated surfaces is largely increased as confirmed by AFM observation. These results can be explained by the fact that the atmospheric pressure plasma treatment of PEEK surface yields several oxygen functionalities on hydrophobic surface, which play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the PEEK/Epoxy adhesive system. (authors)

  1. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K, E-mail: ashwini@smita-iitd.co, E-mail: manjeet.jassal@smita-iitd.co [Smart and Innovative Textile Materials Group (SMITA), Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India)

    2010-02-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 {mu}l took around 250 s to get absorbed in the treated sample compared to < 1 s in the untreated samples. The plasma modified samples showed water contact angle of around 134{sup 0}. Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  2. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  3. Experimental investigation of gas heating and dissociation in a microwave plasma torch at atmospheric pressure

    International Nuclear Information System (INIS)

    Su, Liu; Kumar, Rajneesh; Ogungbesan, Babajide; Sassi, Mohamed

    2014-01-01

    Highlights: • Atmospheric-pressure microwave plasma torch. • Gas heating and dissociation. • Parametric studies of plasma operating conditions. • Local thermal equilibrium plasma. - Abstract: Experimental investigations are made to understand gas heating and dissociation in a microwave (MW) plasma torch at atmospheric pressure. The MW induced plasma torch operates at 2.45 GHz frequency and up to 2 kW power. Three different gas mixtures are injected in the form of axial flow and swirl flow in a quartz tube plasma torch to experimentally investigate the MW plasma to gas energy transfer. Air–argon, air–air and air–nitrogen plasmas are formed and their operational ranges are determined in terms of gas flow rates and MW power. Visual observations, optical emission spectroscopy and K-type thermocouple measurements are used to characterize the plasma. The study reveals that the plasma structure is highly dependent on the carrier gas type, gas flow rate, and MW power. However, the plasma gas temperature is shown not to vary much with these parameters. Further spectral and analytical analysis show that the plasma is in thermal equilibrium and presents very good energy coupling between the microwave power and gas heating and dissociation. The MW plasma torch outlet temperature is also measured and found to be suitable for many thermal heating and chemical dissociation applications

  4. Maskless Surface Modification of Polyurethane Films by an Atmospheric Pressure He/O2 Plasma Microjet for Gelatin Immobilization

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2018-04-01

    Full Text Available A localized maskless modification method of polyurethane (PU films through an atmospheric pressure He/O2 plasma microjet (APPμJ was proposed. The APPμJ system combines an atmospheric pressure plasma jet (APPJ with a microfabricated silicon micronozzle with dimension of 30 μm, which has advantages of simple structure and low cost. The possibility of APPμJ in functionalizing PU films with hydroxyl (–OH groups and covalent grafting of gelatin for improving its biocompatibility was demonstrated. The morphologies and chemical compositions of the modified surface were analyzed by scanning electronic microscopy (SEM, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS. The fluorescent images show the modified surface can be divided into four areas with different fluorescence intensity from the center to the outside domain. The distribution of the rings could be controlled by plasma process parameters, such as the treatment time and the flow rate of O2. When the treatment time is 4 to 5 min with the oxygen percentage of 0.6%, the PU film can be effectively local functionalized with the diameter of 170 μm. In addition, the modification mechanism of PU films by the APPμJ is investigated. The localized polymer modified by APPμJ has potential applications in the field of tissue engineering.

  5. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  6. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ishikawa, Kenji; Hori, Masaru

    2014-01-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens. (author)

  7. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  8. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  9. Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus "Classic" Decontamination.

    Science.gov (United States)

    Hojnik, Nataša; Cvelbar, Uroš; Tavčar-Kalcher, Gabrijela; Walsh, James L; Križaj, Igor

    2017-04-28

    Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods.

  10. Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD.

    Science.gov (United States)

    Hoffmann, Lukas; Theirich, Detlef; Pack, Sven; Kocak, Firat; Schlamm, Daniel; Hasselmann, Tim; Fahl, Henry; Räupke, André; Gargouri, Hassan; Riedl, Thomas

    2017-02-01

    In this work, we report on aluminum oxide (Al 2 O 3 ) gas permeation barriers prepared by spatial ALD (SALD) at atmospheric pressure. We compare the growth characteristics and layer properties using trimethylaluminum (TMA) in combination with an Ar/O 2 remote atmospheric pressure plasma for different substrate velocities and different temperatures. The resulting Al 2 O 3 films show ultralow water vapor transmission rates (WVTR) on the order of 10 -6 gm -2 d -1 . In notable contrast, plasma based layers already show good barrier properties at low deposition temperatures (75 °C), while water based processes require a growth temperature above 100 °C to achieve equally low WVTRs. The activation energy for the water permeation mechanism was determined to be 62 kJ/mol.

  11. Study of geometrical and operational parameters controlling the low frequency microjet atmospheric pressure plasma characteristics

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Rhee, J. K.; Moon, S. Y.; Choe, W.

    2006-01-01

    Controllability of small size atmospheric pressure plasma generated at low frequency in a pin to dielectric plane electrode configuration was studied. It was shown that the plasma characteristics could be controlled by geometrical and operational parameters of the experiment. Under most circumstances, continuous glow discharges were observed, but both the corona and/or the dielectric barrier discharge characteristics were observed depending on the position of the pin electrode. The plasma size and the rotational temperature were also varied by the parameters. The rotational temperature was between 300 and 490 K, being low enough to treat thermally sensitive materials

  12. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet.

    Science.gov (United States)

    Yoshiki, Hiroyuki

    2007-04-01

    Atmospheric-pressure microplasma jets (APmicroPJs) of Ar and ArO(2) gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APmicroPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 microm) of a copper winding wire of 90 microm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APmicroPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of ArO(2) APmicroPJ irradiation with an O(2) concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO.

  13. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet

    International Nuclear Information System (INIS)

    Yoshiki, Hiroyuki

    2007-01-01

    Atmospheric-pressure microplasma jets (APμPJs) of Ar and Ar/O 2 gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APμPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 μm) of a copper winding wire of 90 μm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APμPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of Ar/O 2 APμPJ irradiation with an O 2 concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO

  14. Modeling and Data Needs of Atmospheric Pressure Gas Plasma and Biomaterial Interaction

    International Nuclear Information System (INIS)

    Sakiyama, Yukinori; Graves, David B.

    2009-01-01

    Non-thermal atmospheric pressure plasmas have received considerable attention recently. One promising application of non-thermal plasma devices appears to be biomaterial and biomedical treatment. Various biological and medical effects of non-thermal plasmas have been observed by a variety of investigators, including bacteria sterilization, cell apoptosis, and blood coagulation, among others. The mechanisms of the plasma-biomaterial interaction are however only poorly understood. A central scientific challenge is therefore how to answer the question: 'What plasma-generated agents are responsible for the observed biological effects?' Our modeling efforts are motivated by this question. In this paper, we review our modeling results of the plasma needle discharge. Then, we address data needs for further modeling and understanding of plasma-biomaterial interaction

  15. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  16. Sheath and bulk expansion induced by RF bias in atmospheric pressure microwave plasma

    Science.gov (United States)

    Lee, Jimo; Nam, Woojin; Lee, Jae Koo; Yun, Gunsu

    2017-10-01

    A large axial volume expansion of microwave-driven plasma at atmospheric pressure is achieved by applying a low power radio frequency (RF) bias at an axial location well isolated from the original plasma bulk. The evolution of the plasma plume visualized by high speed ICCD imaging suggest that the free electrons drifting toward the bias electrode cause the prodigious expansion of the sheath, creating a stable plasma stream channel between the microwave and the RF electrodes. For argon plasma in ambient air, enhanced emissions of OH and N2 spectral lines are measured in the extended plume region, supporting the acceleration of electrons and subsequent generation of radical species. The coupling of RF bias with microwave provides an efficient way of enlarging the plasma volume and enhancing the production of radicals. Work supported by the National Research Foundation of Korea under BK21+ program and Grant No. 2015R1D1A1A01061556 (Ministry of Education).

  17. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    Science.gov (United States)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  18. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kan, C.W., E-mail: tccwk@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Kwong, C.H. [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Ng, S.P. [Hong Kong Community College, The Hong Kong Polytechnic University (Hong Kong)

    2015-08-15

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  19. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  20. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  1. Impact of aerosol particles on the structure of an atmospheric pressure microwave plasma afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chunku [Ceramic and Composite Materials Centre, 209 Farris Engineering Centre, University of New Mexico, Albuquerque, NM (United States); Phillips, Jonathan [Los Alamos National Laboratory, MS C930, Los Alamos, NM (United States)

    2002-05-21

    Several novel ceramic processing technologies (e.g. oxide ceramic melting and spheroidization) using an atmospheric pressure microwave plasma torch were recently developed in our lab. Understanding the processes and optimization requires complete characterization of the plasma as a function of operating condition. As a first step, a non-intrusive spectroscopic method was employed to map rotational (gas), electron and excitation temperatures and electron densities of the afterglow region of microwave generated atmospheric plasmas with and without alumina particle aerosol. Two-dimensional spatially resolved mapping of rotational (gas), excitation and electron temperatures and electron densities as a function of operating conditions during material processing were developed. It was shown that the passage of an aerosol dramatically changes the structure of the afterglow. Also the non-equilibrium nature of microwave generated atmospheric argon plasma was confirmed, suggesting that only multi-temperature models are capable of modelling this region of the plasma. (author)

  2. Sterilization and Decontamination of Surfaces Contaminated With Biological and Chemical Warfare Agents Using Atmospheric Pressure Plasma Discharges

    National Research Council Canada - National Science Library

    Garate, Eusebio

    1999-01-01

    ... based on the application of an atmospheric pressure plasma. We used both a DC corona and dielectric barrier discharge for the sterilization tests which were conducted on a variety of substrates including metals and chemically resistant fabrics...

  3. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma.

    Science.gov (United States)

    Hasse, S; Duong Tran, T; Hahn, O; Kindler, S; Metelmann, H-R; von Woedtke, T; Masur, K

    2016-03-01

    Over the past few decades, new cold plasma sources have been developed that have the great advantage of operating at atmospheric pressure and at temperatures tolerable by biological material. New applications for these have emerged, especially in the field of dermatology. Recently it was demonstrated that cold atmospheric-pressure plasma positively influences healing of chronic wounds. The potential of cold plasma lies in its capacity to reduce bacterial load in the wound while at the same time stimulating skin cells and therefore promoting wound closure. In recent years, there have been great advances in the understanding of the molecular mechanisms triggered by cold plasma involving signalling pathways and gene regulation in cell culture. To investigate cold plasma-induced effects in ex vivo treated human skin biopsies. Human skin tissue was exposed to cold plasma for different lengths of time, and analysed by immunofluorescence with respect to DNA damage, apoptosis, proliferation and differentiation markers. After cold plasma treatment, the epidermal integrity and keratin expression pattern remained unchanged. As expected, the results revealed an increase in apoptotic cells after 3 and 5 min of treatment. Strikingly, an induction of proliferating basal keratinocytes was detected after cold plasma exposure for 1 and 3 min. As these are the cells that regenerate the epidermis, this could indeed be beneficial for wound closure. We investigated the effect of cold plasma on human skin by detecting molecules for growth and apoptosis, and found that both processes are dependent on treatment time. Therefore, this approach offers promising results for further applications of cold plasma in clinical dermatology. © 2015 British Association of Dermatologists.

  4. Dynamic behaviour of dc double anode plasma torch at atmospheric pressure

    International Nuclear Information System (INIS)

    Tu, X; Cheron, B G; Yan, J H; Cen, K F

    2007-01-01

    An original dc double anode plasma torch which provides a long-time and highly stable atmospheric plasma jet has been devised for the purpose of hazardous waste treatment. The arc fluctuations and dynamic behaviour of the argon and argon-nitrogen plasma jets under different operating conditions have been investigated by means of classical tools, such as the statistic method, fast Fourier transform (FFT) and correlation analysis. In our experiments, the takeover mode is identified as the fluctuation characteristic of the argon plasma jet while the restrike mode is typical in the argon-nitrogen plasma dynamic behaviour. In the case of pure argon, the FFT and correlation calculation results of electrical signals exhibit the only characteristic frequency of 150 Hz, which originates from the torch power and is independent of any change in the operating conditions. It indicates that the nature of fluctuations in an argon plasma jet is mainly induced by the undulation of the tri-phase rectified power supply. In contrast, besides the same low frequency bulk fluctuation, the dynamic behaviour of the argon-nitrogen plasma jet at high frequency (4.1 kHz) is ascribed to the rapid motion of both arc roots on the anode surface. In addition, it is found that each arc root attachment is rather diffused than located at a fixed position on the anode wall in the argon plasma jet, while constricted arc roots occur when nitrogen is added into argon as the plasma working gas

  5. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  6. Slit shaped microwave induced atmospheric pressure plasma based on a parallel plate transmission line resonator

    Science.gov (United States)

    Kang, S. K.; Seo, Y. S.; Lee, H. Wk; Aman-ur-Rehman; Kim, G. C.; Lee, J. K.

    2011-11-01

    A new type of microwave-excited atmospheric pressure plasma source, based on the principle of parallel plate transmission line resonator, is developed for the treatment of large areas in biomedical applications such as skin treatment and wound healing. A stable plasma of 20 mm width is sustained by a small microwave power source operated at a frequency of 700 MHz and a gas flow rate of 0.9 slm. Plasma impedance and plasma density of this plasma source are estimated by fitting the calculated reflection coefficient to the measured one. The estimated plasma impedance shows a decreasing trend while estimated plasma density shows an increasing trend with the increase in the input power. Plasma uniformity is confirmed by temperature and optical emission distribution measurements. Plasma temperature is sustained at less than 40 °C and abundant amounts of reactive species, which are important agents for bacteria inactivation, are detected over the entire plasma region. Large area treatment ability of this newly developed device is verified through bacteria inactivation experiment using E. coli. Sterilization experiment shows a large bacterial killing mark of 25 mm for a plasma treatment time of 10 s.

  7. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.

    2010-01-01

    , is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...... of the whole cutting tool. A log 5 reduction of L. innocua is obtained after 340 s of plasma operation. The temperature of the knife after treatment was found to be below 30 °C. The design of the setup allows a decontamination during slicing operation....

  8. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Schultz-Jensen, Nadja; Kusano, Yukihiro

    2011-01-01

    . The ambient atmosphere was air at atmospheric pressure. A plasma is generated inside the bag forming ozone from the oxygen. The maximum ozone concentration in the bag was found to be 140 ppm. A log 6 reduction of L. innocua is obtained after 15 min of exposure time. The temperature of the slides after...... for the experiments. Glass slides were inoculated with L. innocua. The slides were placed inside a low density polyethylene (LDPE) bag. The bag was filled with a gas mixture of 97.5 Vol% Ar and 2.5 Vol% O2 and subsequently sealed. The bag was placed between the electrodes of a dielectric barrier discharge...

  9. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Science.gov (United States)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  10. Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Van Vrekhem, S., E-mail: stijn.vanvrekhem@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Cools, P. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Declercq, H. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); Van Tongel, A. [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185 13K12, 9000 Ghent (Belgium); Vercruysse, C.; Cornelissen, M. [Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium)

    2015-12-01

    Biopolymers are often subjected to surface modification in order to improve their surface characteristics. The goal of this study is to show the use of plasma technology to enhance the adhesion of ultra-high molecular weight polyethylene (UHMWPE) shoulder prostheses. Two different plasma techniques (low pressure plasma activation and atmospheric pressure plasma polymerization) are performed on UHMWPE to increase the adhesion between (1) the polymer and polymethylmethacrylate (PMMA) bone cement and (2) the polymer and osteoblast cells. Both techniques are performed using a dielectric barrier discharge (DBD). A previous paper showed that low pressure plasma activation of UHMWPE results in the incorporation of oxygen-containing functional groups, which leads to an increased surface wettability. Atmospheric pressure plasma polymerization of methylmethacrylate (MMA) on UHMWPE results in a PMMA-like coating, which could be deposited with a high degree of control of chemical composition and layer thickness. The thin film also proved to be relatively stable upon incubation in a phosphate buffer solution (PBS). This paper discusses the next stage of the study, which includes testing the adhesion of the plasma-activated and plasma-polymerized samples to bone cement through pull-out tests and testing the cell adhesion and proliferation on the samples. In order to perform the pull-out tests, all samples were cut to standard dimensions and fixed in bone cement in a reproducible way with a sample holder specially designed for this purpose. The cell adhesion and proliferation were tested by means of an MTS assay and live/dead staining after culturing MC3T3 osteoblast cells on UHMWPE samples. The results show that both plasma activation and plasma polymerization significantly improve the adhesion to bone cement and enhance cell adhesion and proliferation. In conclusion, it can be stated that the use of plasma technology can lead to an implant with improved quality and a subsequent

  11. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  12. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy

    International Nuclear Information System (INIS)

    Kartaschew, Konstantin; Mischo, Meike; Bründermann, Erik; Havenith, Martina; Baldus, Sabrina; Awakowicz, Peter

    2016-01-01

    Cold atmospheric-pressure plasma show promising antimicrobial effects, however the detailed biochemical mechanism of the bacterial inactivation is still unknown. We investigated, for the first time, plasma-treated Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria with Raman and infrared microspectroscopy. A dielectric barrier discharge was used as a plasma source. We were able to detect several plasma-induced chemical modifications, which suggest a pronounced oxidative effect on the cell envelope, cellular proteins and nucleotides as well as a generation of organic nitrates in the treated bacteria. Vibrational microspectroscopy is used as a comprehensive and a powerful tool for the analysis of plasma interactions with whole organisms such as bacteria. Analysis of reaction kinetics of chemical modifications allow a time-dependent insight into the plasma-mediated impact. Investigating possible synergistic effects between the plasma-produced components, our observations strongly indicate that the detected plasma-mediated chemical alterations can be mainly explained by the particle effect of the generated reactive species. By changing the polarity of the applied voltage pulse, and hence the propagation mechanisms of streamers, no significant effect on the spectral results could be detected. This method allows the analysis of the individual impact of each plasma constituent for particular chemical modifications. Our approach shows great potential to contribute to a better understanding of plasma-cell interactions. (paper)

  13. New system for vacuum deposition of refractory materials using an atmospheric-pressure inductively coupled plasma

    International Nuclear Information System (INIS)

    Merkle, B.D.; Kniseley, R.N.; Schmidt, F.A.

    1987-01-01

    We have successfully developed a technique utilizing an atmospheric-pressure inductively coupled plasma combined with a low-pressure deposition chamber for deposition of thin films. The equipment and method of operation are discussed. Refractory powders (Nb and Y 2 O 3 ) were injected into the plasma and deposited as Nb and substoichiometric yttrium oxide, YO/sub 1.49/, onto Fe and Cu substrates. The substoichiometric yttrium oxide deposit adhered well to the Fe and Cu substrates, while the Nb deposit adhered well to the Fe only. The Nb deposit on the Cu substrate flaked and peeled probably because of stresses induced from the thermal expansion mismatch between the Nb and Cu. Further studies will be undertaken to better understand the processes occurring in this type of plasma-coating system in order to optimize the instrumental parameters for particular coating applications

  14. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review

    Directory of Open Access Journals (Sweden)

    Krishna Priya Arjunan

    2015-01-01

    Full Text Available Atmospheric Pressure Plasma (APP is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS/reactive nitrogen species (RNS with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  15. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Y.; Andersen, Tom L.; Soerensen, B.F.; Toftegaard, H.L.; Teodoru, S. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark); Hansen, Charles M. [Hoersholm (Denmark)

    2013-09-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar functional groups at the surface, and subsequently improved adhesion to the epoxy and fracture resistance of epoxy composites. Hansen solubility parameters (HSP), quantitatively describing physical interactions among molecules, were measured for the UHMWPE fibre surfaces. The result identifies two distinct types of surfaces in both the plasma treated and the untreated fibres. One type is typical of polyethylene polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. (Author)

  16. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  17. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review

    Science.gov (United States)

    Arjunan, Krishna Priya; Sharma, Virender K.; Ptasinska, Sylwia

    2015-01-01

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes. PMID:25642755

  18. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review.

    Science.gov (United States)

    Arjunan, Krishna Priya; Sharma, Virender K; Ptasinska, Sylwia

    2015-01-29

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  19. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    Science.gov (United States)

    Kan, C. W.; Kwong, C. H.; Ng, S. P.

    2015-08-01

    Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  20. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  1. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  2. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  3. A model for plasma modification of polypropylene using atmospheric pressure discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas are commonly used to improve the wetting and adhesion properties of polymers. In spite of their use, the mechanisms for achieving these properties are unclear. In this regard, we report on a computational investigation of the gas phase and surface kinetics during humid-air corona treatment of polypropylene (PP) and the resulting modification of its surface properties while varying energy deposition, relative humidity (RH), web speed, and gas temperature. Using results from a global plasma chemistry model validated against experiments, we found that increasing energy deposition increased the densities of alcohol, carbonyl, acid, and peroxy radicals on the PP surface. In doing so, significant amounts of gas phase O sub 3 and N sub x O sub y are produced. Increasing the RH increased the production of peroxy and acid groups, while decreasing those of alcohol and carbonyl groups. Production of O sub 3 decreased while that of HNO sub 3 increased. Increasing the temperature decreased the...

  4. Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD Plasma Treatment of Polypropylene Films

    Directory of Open Access Journals (Sweden)

    Lukas JW Seidelmann

    2017-03-01

    Full Text Available Atmospheric pressure plasma treatment of the surface of a polypropylene film can significantly increase its surface energy and, thereby improve the printability of the film. A laboratory-scale dielectric barrier discharge (DBD system has therefore been developed, which simulates the electrode configuration and reel-to-reel web transport mechanism used in a typical industrial-scale system. By treating the polypropylene in a nitrogen discharge, we have shown that the water contact angle could be reduced by as much as 40° compared to the untreated film, corresponding to an increase in surface energy of 14 mNm−1. Ink pull-off tests showed that the DBD plasma treatment resulted in excellent adhesion of solvent-based inks to the polypropylene film.

  5. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  6. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective

  7. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Johnson, Kyle W.; Guruvenket, Srinivasan; Sailer, Robert A.; Ahrenkiel, S. Phillip; Schulz, Douglas L.

    2013-01-01

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H 2 O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF 2 . • Carbonaceous contamination from the precursor was minimal

  8. Thomson scattering measurements in atmospheric plasma jets

    International Nuclear Information System (INIS)

    Gregori, G.; Schein, J.; Schwendinger, P.; Kortshagen, U.; Heberlein, J.; Pfender, E.

    1999-01-01

    Electron temperature and electron density in a dc plasma jet at atmospheric pressure have been obtained using Thomson laser scattering. Measurements performed at various scattering angles have revealed effects that are not accounted for by the standard scattering theory. Differences between the predicted and experimental results suggest that higher order corrections to the theory may be required, and that corrections to the form of the spectral density function may play an important role. copyright 1999 The American Physical Society

  9. Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-04-01

    Full Text Available The surface treatment of fabrics in an atmospheric environment may pave the way for commercially viable plasma modifications of fibrous matters. In this paper, we demonstrate a durably superhydrophobic cotton cellulose fabric prepared in a single-step graft polymerization of hexamethyldisiloxane (HMDSO by N2 and O2 atmospheric pressure plasma. We systematically investigated effects on contact angle (CA and surface morphology of the cotton fabric under three operational parameters: precursor value; ionization gas flow rate; and plasma cycle time. Surface morphology, element composition, chemical structure and hydrophobic properties of the treated fabric were characterized by scanning electron microscope (SEM, EDS, FTIR and CA on the fabrics. The results indicated that a layer of thin film and nano-particles were evenly deposited on the cotton fibers, and graft polymerization occurred between cellulose and HMDSO. The fabric treated by O2 plasma exhibited a higher CA of 162° than that treated by N2 plasma which was about 149°. Furthermore, the CA of treated fabrics decreased only 0°~10° after storing at the ambient conditions for four months, and treated fabrics could also endure the standard textile laundering procedure in AATCC 61-2006 with minimum change. Therefore, this single-step plasma treatment method is shown to be a novel and environment-friendly way to make durable and superhydrophobic cotton fabrics.

  10. Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process.

    Science.gov (United States)

    Olszewski, P; Li, J F; Liu, D X; Walsh, J L

    2014-08-30

    The impact of pulse-modulated generation of atmospheric pressure plasma on the efficiency of organic dye degradation has been investigated. Aqueous samples of methyl orange were exposed to low temperature air plasma and the degradation efficiency was determined by absorbance spectroscopy. The plasma was driven at a constant frequency of 35kHz with a duty cycle of 25%, 50%, 75% and 100%. Relative concentrations of dissolved nitrogen oxides, pH, conductivity and the time evolution of gas phase ozone were measured to identify key parameters responsible for the changes observed in degradation efficiency. The results indicate that pulse modulation significantly improved dye degradation efficiency, with a plasma pulsed at 25% duty showing a two-fold enhancement. Additionally, pulse modulation led to a reduction in the amount of nitrate contamination added to the solution by the plasma. The results clearly demonstrate that optimization of the electrical excitation of the plasma can enhance both degradation efficiency and the final water quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure.

    Science.gov (United States)

    Rubio, S J; Quintero, M C; Rodero, A

    2011-02-15

    In this study, the destruction rate of a volatile waste destruction system based on a microwave plasma torch operating at atmospheric pressure was investigated. Atmospheric air was used to maintain the plasma and was introduced by a compressor, which resulted in lower operating costs compared to other gases such as argon and helium. To isolate the output gases and control the plasma discharge atmosphere, the plasma was coupled to a reactor. The effect of the gas flow rate, microwave power and initial concentration of compound on the destruction efficiency of the system was evaluated. In this study, trichloroethylene and carbon tetrachloride were used as representative volatile organic compounds to determine the destruction rate of the system. Based on the experimental results, at an applied microwave power less than 1000 W, the proposed system can reduce input concentrations in the ppmv range to output concentrations at the ppbv level. High air flow rates and initial concentrations produced energy efficiency values greater than 1000 g/kW h. The output gases and species present in the plasma were analysed by gas chromatography and optical emission spectroscopy, respectively, and negligible amounts of halogenated compounds resulting from the cleavage of C(2)HCl(3) and CCl(4) were observed. The gaseous byproducts of decomposition consisted mainly of CO(2), NO and N(2)O, as well as trace amounts of Cl(2) and solid CuCl. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Application of microwave air plasma in the destruction of trichloroethylene and carbon tetrachloride at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, S.J., E-mail: f62rugas@uco.es [Departamento de Fisica, Campus de Rabanales, Edificio Einstein, Planta Baja, Universidad de Cordoba (Spain); Quintero, M.C.; Rodero, A. [Departamento de Fisica, Campus de Rabanales, Edificio Einstein, Planta Baja, Universidad de Cordoba (Spain)

    2011-02-15

    In this study, the destruction rate of a volatile waste destruction system based on a microwave plasma torch operating at atmospheric pressure was investigated. Atmospheric air was used to maintain the plasma and was introduced by a compressor, which resulted in lower operating costs compared to other gases such as argon and helium. To isolate the output gases and control the plasma discharge atmosphere, the plasma was coupled to a reactor. The effect of the gas flow rate, microwave power and initial concentration of compound on the destruction efficiency of the system was evaluated. In this study, trichloroethylene and carbon tetrachloride were used as representative volatile organic compounds to determine the destruction rate of the system. Based on the experimental results, at an applied microwave power less than 1000 W, the proposed system can reduce input concentrations in the ppmv range to output concentrations at the ppbv level. High air flow rates and initial concentrations produced energy efficiency values greater than 1000 g/kW h. The output gases and species present in the plasma were analysed by gas chromatography and optical emission spectroscopy, respectively, and negligible amounts of halogenated compounds resulting from the cleavage of C{sub 2}HCl{sub 3} and CCl{sub 4} were observed. The gaseous byproducts of decomposition consisted mainly of CO{sub 2}, NO and N{sub 2}O, as well as trace amounts of Cl{sub 2} and solid CuCl.

  13. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  14. The use of atmospheric pressure plasma as a curing process for canned ground ham.

    Science.gov (United States)

    Lee, Juri; Jo, Kyung; Lim, Yubong; Jeon, Hee Joon; Choe, Jun Ho; Jo, Cheorun; Jung, Samooel

    2018-02-01

    This study investigated the potential use of atmospheric pressure plasma (APP) treatment as a curing process for canned ground ham. APP treatment for 60min while mixing increased the nitrite content in the meat batters from 0.64 to 60.50mgkg -1 while the pH and the total content of aerobic bacteria in the meat batters were unchanged. The canned ground hams cured by the APP treatment for 30min displayed no difference in their physicochemical qualities, such as nitrosyl hemochrome, color, residual nitrite, texture, lipid oxidation, and protein oxidation, compared with those of canned ground hams cured with sodium nitrite or celery powder at 42mgkg -1 of nitrite. The canned ground hams cured by the APP treatment received a higher score in taste and overall acceptability than those cured with sodium nitrite. Canned ground ham can be cured by the APP treatment without nitrite additives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of near atmospheric pressure nitrogen plasma treatment on Pt/ZnO interface

    International Nuclear Information System (INIS)

    Nagata, Takahiro; Haemori, Masamitsu; Chikyow, Toyohiro; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Uehara, Tsuyoshi

    2012-01-01

    The effect of near atmospheric pressure nitrogen plasma (NAP) treatment of platinum (Pt)/zinc oxide (ZnO) interface was investigated. NAP can nitride the ZnO surface at even room temperature. Hard x-ray photoelectron spectroscopy revealed that NAP treatment reduced the surface electron accumulation at the ZnO surface and inhibited the Zn diffusion into the Pt electrode, which are critical issues affecting the Schottky barrier height and the ideality factor of the Pt/ZnO structure. After NAP treatment, the Pt Schottky contact indicated an improvement of electrical properties. NAP treatment is effective for the surface passivation and the Schottky contact formation of ZnO.

  16. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  17. Thomson, Raman and Rayleigh scattering on atmospheric plasma jets

    NARCIS (Netherlands)

    Gessel, van A.F.H.

    2010-01-01

    Non-equilibrium atmospheric pressure plasma jets are the subject of growing interest, due to their applicability in many fields, including material processing, surface treatment and medical applications. However the plasma operates in contact with air, thus species like oxygen and nitrogen diffuse

  18. Fabrication of Al doped ZnO films using atmospheric pressure cold plasma

    International Nuclear Information System (INIS)

    Suzaki, Yoshifumi; Miyagawa, Hayato; Yamaguchi, Kenzo; Kim, Yoon-Kee

    2012-01-01

    Under atmospheric pressure, homogeneous non-equilibrium cold plasma was generated stably by high voltage pulsed power (1 kV, 20 kHz, 38 W) excitation of a mixture of He and O 2 gases produced by a dielectric barrier discharge setup. By feeding Bis (2 methoxy‐6-methyl‐3, 5-heptanedione) Zn (Zn-MOPD, C 18 H 3 O 6 Zn) and Tris (2-methoxy‐6‐methy l‐3, 5-heptanedione) Al (Al-MOPD, C 27 H 45 O 9 Al) into this plasma with He carrier gas, transparent flat Al-doped ZnO (ZnO:Al) films about 120–240 nm thick were prepared on glass substrates directly under the slit made into the cathode. Deposition rates of the films were about 20–40 nm/min. The concentration of Al was measured by inductively coupled plasma atomic emission spectroscopy. The composition ratio of Al to Zn was 7.8 mol% when the carrier He gas flow rate of Al-MOPD was 30 cm 3 . The average transmittance of all films was more than 85% in the wavelength range from 400 to 800 nm. When the composition ratio of Al/Zn was between 1.1 and 7.8 mol%, the optical band gap of the film increased from 3.28 to 3.40 eV. The resistivity of ZnO:Al film was 2.96 Ω cm at 1.3 mol% of Al/Zn. In addition, the microstructure of the films was studied by X-ray diffraction measurement and field emission scanning electron microscope observation. It was revealed that doped Al is substituted onto the Zn site of the ZnO crystalline structure in ZnO:Al films. - Highlights: ► An atmospheric pressure cold plasma generator generated stable glow discharge. ► We fabricated Al doped ZnO films on glass substrates using cold plasma. ► Al concentration measured by inductively coupled plasma atomic emission spectroscopy. ► The transmission spectrum and the resistivity of the films were measured. ► The microstructure of the films was studied.

  19. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Lu Fugong; Xu Yong; Zhang Jing; Yang Xuefeng

    2006-01-01

    Formaldehyde (HCHO) is a typical air pollutant capable of causing serious health disorders in human beings. This work reports plasma-catalytic oxidation of formaldehyde in gas streams via dielectric barrier discharges over Ag/CeO 2 pellets at atmospheric pressure and 70 0 C. With a feed gas mixture of 276 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼99% of formaldehyde can be effectively destructed with an 86% oxidative conversion into CO 2 at GHSV of 16500 h -1 and input discharge energy density of 108 J l -1 . At the same experimental conditions, the conversion percentages of HCHO to CO 2 from pure plasma-induced oxidation (discharges over fused silica pellets) and from pure catalytic oxidation over Ag/CeO 2 (without discharges) are 6% and 33% only. The above results and the CO plasma-catalytic oxidation experiments imply that the plasma-generated short-lived gas phase radicals, such as O and HO 2 , play important roles in the catalytic redox circles of Ag/CeO 2 to oxidize HCHO and CO to CO 2

  20. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    Science.gov (United States)

    Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E.; Marcus, R. Kenneth

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (Trot), excitation temperature (Texc), electron number density (ne), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N2 and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ~ 1000 K and ~ 2700 K respectively. Electron number density was calculated to be on the order of ~ 3 × 1015 cm- 3 utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source (laser ablation sample introduction.

  1. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Manard, Benjamin T. [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sarkar, Arnab [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Marcus, R. Kenneth [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States)

    2014-04-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (T{sub rot}), excitation temperature (T{sub exc}), electron number density (n{sub e}), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N{sub 2} and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ∼ 1000 K and ∼ 2700 K respectively. Electron number density was calculated to be on the order of ∼ 3 × 10{sup 15} cm{sup −3} utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source (< 1 mm{sup 3} volume), the LS-APGD is shown to be quite robust with plasma characteristics and temperatures being unaffected upon introduction of metal species, whether by liquid or laser ablation sample introduction. - Highlights: • Liquid sampling-atmospheric pressure glow discharge (LS-APGD) • LS-APGD as a secondary

  2. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    International Nuclear Information System (INIS)

    Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E.; Marcus, R. Kenneth

    2014-01-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (T rot ), excitation temperature (T exc ), electron number density (n e ), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N 2 and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ∼ 1000 K and ∼ 2700 K respectively. Electron number density was calculated to be on the order of ∼ 3 × 10 15 cm −3 utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source ( 3 volume), the LS-APGD is shown to be quite robust with plasma characteristics and temperatures being unaffected upon introduction of metal species, whether by liquid or laser ablation sample introduction. - Highlights: • Liquid sampling-atmospheric pressure glow discharge (LS-APGD) • LS-APGD as a secondary excitation source for laser-ablated (LA

  3. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  4. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2013-01-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed

  5. Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate

    International Nuclear Information System (INIS)

    Miotk, R; Hrycak, B; Jasinski, M; Mizeraczyk, J

    2012-01-01

    In this paper results of optical emission spectroscopic (OES) study of atmospheric pressure microwave 915 MHz argon plasma are presented. The plasma was generated in microwave plasma source (MPS) cavity-resonant type. The aim of research was determination of electron excitation temperature T exc gas temperature Tg and electron number density n e . All experimental tests were performed with a gas flow rate of 100 and 200 l/min and absorbed microwave power PA from 0.25 to 0.9 kW. The emission spectra at the range of 300 – 600 nm were recorded. Boltzmann plot method for argon 5p – 4s and 5d – 4p transition lines allowed to determine T exc at level of 7000 K. Gas temperature was determined by comparing the measured and simulated spectra using LIFBASE program and by analyzing intensities of two groups of unresolved rotational lines of the OH band. Gas temperature ranged 600 – 800 K. The electron number density was determined using the method based on the Stark broadening of hydrogen H β line. The measured n e rang ed 2 × 10 15 − 3.5×10 15 cm −3 , depending on the absorbed microwave power. The described MPS works very stable with various working gases at high flow rates, that makes it an attractive tool for different gas processing.

  6. Decomposition of water-insoluble organic waste by water plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Choi, S; Watanabe, T

    2012-01-01

    The water plasma was generated in atmospheric pressure with the emulsion state of 1-decanol which is a source of soil and ground water pollution. In order to investigate effects of operating conditions on the decomposition of 1-decanol, generated gas and liquid from the water plasma treatment were analysed in different arc current and 1-decanol concentration. The 1-decanol was completely decomposed generating hydrogen, carbon monoxide, carbon dioxide, methane, treated liquid and solid carbon in all experimental conditions. The feeding rate of 1- decanol emulsion was increased with increasing the arc current in virtue of enhanced input power. The generation rate of gas and the ratio of carbon dioxide to carbon monoxide were increased in the high arc current, while the generation rate of solid carbon was decreased due to enhanced oxygen radicals in the high input power. Generation rates of gas and solid carbon were increased at the same time with increasing the concentration of 1-decanol, because carbon radicals were increased without enhancement of oxygen radicals in a constant power level. In addition, the ratio of carbon dioxide to carbon monoxide was increased along with the concentration of 1-decanol due to enhanced carbon radicals in the water plasma flame.

  7. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    Science.gov (United States)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  8. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  9. Production of hydrogen via methane reforming using atmospheric pressure microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, Mariusz; Dors, Miroslaw [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Mizeraczyk, Jerzy [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia (Poland)

    2008-06-15

    In this paper, results of hydrogen production via methane reforming in the atmospheric pressure microwave plasma are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to convert methane into hydrogen. Important advantages of the presented waveguide-based nozzleless cylinder-type MPS are: stable operation in various gases (including air) at high flow rates, no need for a cooling system, and impedance matching. The plasma generation was stabilized by an additional swirled nitrogen flow (50 or 100 l min{sup -1}). The methane flow rate was up to 175 l min{sup -1}. The absorbed microwave power could be changed from 3000 to 5000 W. The hydrogen production rate and the corresponding energy efficiency in the presented methane reforming by the waveguide-based nozzleless cylinder-type MPS were up to 255 g[H{sub 2}] h{sup -1} and 85 g[H{sub 2}] kWh{sup -1}, respectively. These parameters are better than those typical of the conventional methods of hydrogen production (steam reforming of methane and water electrolysis). (author)

  10. A radio-frequency nonequilibrium atmospheric pressure plasma operating with argon and oxygen

    International Nuclear Information System (INIS)

    Moravej, M.; Yang, X.; Hicks, R.F.; Penelon, J.; Babayan, S.E.

    2006-01-01

    A capacitively coupled, atmospheric pressure plasma has been developed that produces a high concentration of reactive species at a gas temperature below 300 deg. C. The concentration of ground-state oxygen atoms produced by the discharge was measured by NO titration, and found to equal 1.2 vol %, or 1.2±0.4x10 17 cm -3 , using 6.0 vol % O 2 in argon at 150 W/cm 3 . The ozone concentration determined at the same conditions was 4.3±0.5x10 14 cm -3 . A model of the gas phase reactions was developed and yielded O atom and O 3 concentrations in agreement with experiment. This plasma source etched Kapton registered at 5.0 μm/s at 280 deg. C and an electrode-to-sample spacing of 1.5 cm. This fast etch rate is attributed to the high O atom flux generated by the plasma source

  11. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure.

    Directory of Open Access Journals (Sweden)

    Marlène Dezest

    Full Text Available Cold atmospheric pressure plasmas (CAPPs are known to have bactericidal effects but the mechanism of their interaction with microorganisms remains poorly understood. In this study the bacteria Escherichia coli were used as a model and were exposed to CAPPs. Different gas compositions, helium with or without adjunctions of nitrogen or oxygen, were used. Our results indicated that CAPP induced bacterial death at decontamination levels depend on the duration, post-treatment storage and the gas mixture composition used for the treatment. The plasma containing O2 in the feeding gas was the most aggressive and showed faster bactericidal effects. Structural modifications of treated bacteria were observed, especially significant was membrane leakage and morphological changes. Oxidative stress caused by plasma treatment led to significant damage of E. coli. Biochemical analyses of bacterial macromolecules indicated massive intracellular protein oxidation. However, reactive oxygen and nitrogen species (RONS are not the only actors involved in E. coli's death, electrical field and charged particles could play a significant role especially for He-O2 CAPP.

  12. Atmospheric pressure cold plasma treatment of cellulose based fillers for wood plastic composites

    Science.gov (United States)

    Lekobou, William; Englund, Karl; Pedrow, Patrick; Scudiero, Louis

    2011-10-01

    The main challenge of wood plastic composites (WPC) resides in the low interfacial adhesion due to incompatibility between the cellulose based filler that has a polar surface and most common matrixes, polyolefins which are non-polar. Plasma treatment is a promising technique for surface modification and its implementation into the processing of WPC would provide this industry with a versatile and nearly environmentally benign manufacturing tool. Our investigation aims at designing a cold atmospheric pressure plasma reactor for coating fillers with a hydrophobic material prior to compounding with the matrix. Deposition was achieved with our reactor that includes an array of high voltage needles, a grounded metal mesh, Ar as carrier gas and C2H2 as the precursor molecule. Parameters studied have included gas feed rates and applied voltage; FTIR, ESCA, AFM and SEM imaging were used for film diagnostics. We will also report on deposition rate and its dependence on radial and axial position as well as the effects of plasma-polymerized acetylene on the surface free energy of cellulose based substrates.

  13. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  14. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    KAUST Repository

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used

  15. Protective effect of atmospheric pressure plasma on oxidative stress-induced neuronal injuries: an in vitro study

    International Nuclear Information System (INIS)

    Yan, Xu; Jia, Mei; Li, Jiaxin; Yuan, Fang; Qiao, Yajun; Ouyang, Jiting

    2017-01-01

    Atmospheric pressure plasma jet (APPJ) can produce biological active species for biomedical applications. This work proves direct evidence of the protective effects of APPJ against oxidative stress. SH-SY5Y cells, a commonly used cell model for the study of neurotoxicity and neuroprotection, were treated with APPJ for different durations. Then, cells were exposed to 200 µ M H 2 O 2 for 24 h and cell viability was measured using a CCK-8 kit. Changes in cell apoptosis were further confirmed by calcein-AM fluorescence imaging and flow cytometry. Extracellular NO production was detected using the Griess method. The results showed that APPJ protected SH-SY5Y from H 2 O 2 -induced apoptosis in a time-dependent manner. Moreover, extracellular NO production was significantly increased with the APPJ treatment. The results show in vitro that APPJ treatment could protect SH-SY5Y cells from oxidative stress by reducing cell apoptosis, which might be related to the reactive nitrogen species induced by the APPJ treatment. Our results indicate that the APPJ may have therapeutic potential as a novel ‘NO donor drug’ in neuroprotection and in the treatment of neurodegenerative diseases. (paper)

  16. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.

    2016-10-21

    The opportunity for ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields (E/N ≈ 100 Td) by a DC potential applied across the domain, resulting in non-thermal behavior of the plasma formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame\\'s preheat zone. In the configuration considered, the effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.

  17. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  18. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  19. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  20. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation.

    Science.gov (United States)

    Wang, Tiecheng; Ren, Jingyu; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2016-12-15

    Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh -1 , and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO 4 3- and NO 3 - . The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO 4 3- and NO 3 - , CO 2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. How to increase the hydrophobicity of PTFE surfaces using an r.f. atmospheric-pressure plasma torch

    NARCIS (Netherlands)

    Carbone, E.A.D.; Boucher, N.; Sferrazza, M.; Reniers, F.

    2010-01-01

    An experimental investigation of the surface modification of polytetrafluoroethylene (PTFE) by an Ar and Ar/O2 plasma created with an atmospheric-pressure radio frequency (r.f.) torch is presented here. The surfaces were analyzed by atomic force microscopy (AFM), XPS and water contact angle (WCA) to

  2. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    Science.gov (United States)

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  4. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack

    2014-01-01

    Atmospheric pressure plasma treatment is useful for adhesion improvement, because cleaning, roughening and addition of polar functional groups can be expected at the surfaces. Its possible applications in the wind energy industry include plasma treatment of fibres and fibre-reinforced polymer...... composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test....... The plasma treatment improved fracture toughness, indicating that adhesion between the fibres and the epoxy was enhanced by the treatment. In addition, glass-fibre-reinforced polyester plates are treated using a gliding arc and an ultrasound enhanced dielectric barrier discharge, improving the wettability...

  5. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    Science.gov (United States)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  6. Improved penetration of wild ginseng extracts into the skin using low-temperature atmospheric pressure plasma

    Science.gov (United States)

    Nam, Seoul Hee; Hae Choi, Jeong; Song, Yeon Suk; Lee, Hae-June; Hong, Jin-Woo; Kim, Gyoo Cheon

    2018-04-01

    Wild ginseng (WG) is a well-known traditional medicinal plant that grows in natural environments in deep mountains. WG has been thought to exert potent physiological and medicinal effects, and, recently, its use in skin care has attracted much interest. This study investigated the efficient penetration of WG extracts into the skin by means of low-temperature atmospheric pressure plasma (LTAPP), and its effects on the skin at the cellular and tissue levels. NIH3T3 mouse embryonic fibroblasts and HRM-2 hairless mice were used to confirm the improved absorption of WG extracts into the skin using LTAPP. The gene expression levels in NIH3T3 cells and morphological changes in skin tissues after WG treatment were monitored using both in vitro and in vivo experiments. Although WG extracts did not show any significant effects on proliferative activity and cytotoxicity, at a concentration of 1:800, it significantly increased the expression of fibronectin and vascular endothelial growth factor. In the in vivo study, the combinational treatment of LTAPP and WG markedly induced the expression of fibronectin and integrin α6, and it thickened. Our results showed that LTAPP treatment safely and effectively accelerated the penetration of the WG extracts into the skin, thereby increasing the effects of WG on the skin.

  7. CO2 Reforming of CH4 by Atmospheric Pressure Abnormal Glow Plasma

    International Nuclear Information System (INIS)

    Chen Qi; Dai Wei; Tao Xumei; Yu Hui; Dai Xiaoyan; Yin Yongxiang

    2006-01-01

    A novel plasma atmospheric pressure abnormal glow discharge was used to investigate synthesis gas production from reforming methane and carbon dioxide. Special attentions were paid to the discharge characteristics and CH 4 , CO 2 conversion, H 2 , CO selectivity, and ratio of H 2 /CO varied with the changing of discharging power, the total flux, and the ratio of CH 4 /CO 2 . Experiments were performed in wider operation variables, the discharging power of 240 to 600 W, the CH 4 /CO 2 of 0.2 to 1.0 and the total flux of 140 to 500 mL/min. The experiments showed that the conversion of CH 4 and CO 2 was up to 91.9% and 83.2%, the selectivity of CO and H 2 was also up to 80% and 90% and H 2 /CO mole ratio was 0.2 to 1.2, respectively. A brief analysis for discharge characteristics and the experimental results were given

  8. Atmospheric-Pressure Cold Plasma Induces Transcriptional Changes in Ex Vivo Human Corneas.

    Directory of Open Access Journals (Sweden)

    Umberto Rosani

    Full Text Available Atmospheric pressure cold plasma (APCP might be considered a novel tool for tissue disinfection in medicine since the active chemical species produced by low plasma doses, generated by ionizing helium gas in air, induces reactive oxygen species (ROS that kill microorganisms without substantially affecting human cells.In this study, we evaluated morphological and functional changes in human corneas exposed for 2 minutes (min to APCP and tested if the antioxidant n-acetyl l-cysteine (NAC was able to inhibit or prevent damage and cell death.Immunohistochemistry and western blotting analyses of corneal tissues collected at 6 hours (h post-APCP treatment demonstrated no morphological tissue changes, but a transient increased expression of OGG1 glycosylase that returned to control levels in 24 h. Transcriptome sequencing and quantitative real time PCR performed on different corneas revealed in the treated corneas many differentially expressed genes: namely, 256 and 304 genes showing expression changes greater than ± 2 folds in the absence and presence of NAC, respectively. At 6 h post-treatment, the most over-expressed gene categories suggested an active or enhanced cell functioning, with only a minority of genes specifically concerning oxidative DNA damage and repair showing slight over-expression values (<2 folds. Moreover, time-related expression analysis of eight genes up-regulated in the APCP-treated corneas overall demonstrated the return to control expression levels after 24 h.These findings of transient oxidative stress accompanied by wide-range transcriptome adjustments support the further development of APCP as an ocular disinfectant.

  9. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    Science.gov (United States)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  10. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  11. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  12. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform......A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  13. Atmospheric Pressure Plasma Polymerization Synthesis and Characterization of Polyaniline Films Doped with and without Iodine

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2017-11-01

    Full Text Available Although polymerized aniline (polyaniline, PANI with and without iodine (I2 doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP deposition. Therefore, this study characterized pure and I2-doped PANI films synthesized using an advanced APP polymerization system. The I2 doping was conducted ex-situ and using an I2 chamber method following the APP deposition. The pure and I2-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM, atomic force microscope (AFM, X-ray Diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and time of flight secondary ion mass spectrometry (ToF-SIMS studies. When increasing the I2 doping time, the plane and cross-sectional SEM images showed a decrease in the width and thickness of the PANI nanofibers, while the AFM results showed an increase in the roughness and grain size of the PANI films. Moreover, the FT-IR, XPS, and ToF-SIMS results showed an increase in the content of oxygen-containing functional groups and C=C double bonds, yet decrease in the C–N and C–H bonds when increasing the I2 doping time due to the reduction of hydrogen in the PANI films via the I2. To check the suitability of the conductive layer for polymer display applications, the resistance variations of the PANI films grown on the interdigitated electrode substrates were also examined according to the I2 doping time.

  14. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  15. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Science.gov (United States)

    Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-07-01

    In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  16. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality

    DEFF Research Database (Denmark)

    Rød, Sara Katrine; Hansen, Flemming; Leipold, Frank

    2012-01-01

    The application of cold atmospheric pressure plasma for decontamination of a sliced ready-to-eat (RTE) meat product (bresaola) inoculated with Listeria innocua was investigated. Inoculated samples were treated at 15.5, 31, and 62 W for 2–60 s inside sealed linear-low-density-polyethylene bags...... the sensory threshold level. Surface colour changes included loss of redness of ∼40% and 70% after 1 and 14 days of storage, respectively, regardless of plasma treatment. The results indicate that plasma may be applicable in surface decontamination of pre-packed RTE food products. However, oxidation may...

  17. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    Science.gov (United States)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  18. Atmospheric pressure plasma treatment of glass fibre composite for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, H.; Stenum, Bjarne

    2007-01-01

    Glass-fibre-reinforced polyester composite plates were treated with an atmospheric pressure dielectric barrier discharge. Synthetic air was used as the treatment gas. The water contact angle dropped markedly from 84 to 22° after a 2-s treatment, and decreased to 0° when the composite plates were...

  19. Fluoropolymer coated alanine films treated by atmospheric pressure plasmas − In comparison with gamma irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Bardenshtein, Alexander; Morgen, Per

    2018-01-01

    Fluoropolymer coated alanine films are treated by a dielectric barrier discharge and a gliding arc at atmospheric pressure as well as with gamma irradiation. The film surfaces and the underlying bulk materials are characterized before and after each treatment. The fluorine content decreases...

  20. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  1. 50-Hz plasma treatment of glass fibre reinforced polyester at atmospheric pressure enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2011-01-01

    Glass fibre reinforced polyester (GFRP) plates are treated using a 50-Hz dielectric barrier discharge at peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of around...

  2. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    Science.gov (United States)

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  3. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits.

    Science.gov (United States)

    Ouf, Salama A; Basher, Abdulrahman H; Mohamed, Abdel-Aleam H

    2015-12-01

    Aspergillus niger has been reported as a potentially dangerous pathogen of date-palm fruits in Saudi Arabia due to the production of fumonisin B2 (FB2 ) and ochratoxin A (OTA). In a trial to disinfect this product, a double atmospheric pressure argon cold plasma (DAPACP) jet system was set up and evaluated against spore germination and mycotoxin production of the pathogen. The plasma jets were characterised photographically, electrically and spectroscopically. DAPACP jet length increases with the increase of argon flow rate, with optimum rate at 3.5 L min(-1) . The viability of A. niger spores, inoculated onto sterilised date palm fruit discs, progressively decreases with extension of the exposure time of DAPACP due to the more quantitative amount of OH and O radicals interacting with the examined samples. There was a progressive reduction of the amount of FB2 and OTA detected in date palm discs on extension of the exposure time of the plasma-treated inoculums at flow rate of 3.5 L min(-1) . FB2 was not detected in the discs inoculated with 6-min plasma-treated A. niger, while OTA was completely absent when the fungus was treated for 7.5 min. DAPACP showed promising results in dry fruit decontamination and in inhibition of mycotoxin release by A. niger contaminating the fruits. The progress in the commercial application of cold plasma needs further investigation concerning the ideal width of the plasma output to enable it to cover wider surfaces of the sample and consequently inducing greater plasma performance. © 2014 Society of Chemical Industry.

  4. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    Science.gov (United States)

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  5. Non-equilbrium behavior of low-pressure plasma jets

    International Nuclear Information System (INIS)

    Chang, C.H.; Pfender, E.

    1989-01-01

    After establishing the basic equations, some sample calculations are presented to examine the thermodynamic state of the plasma from atmospheric to low pressures (80 mbar). These results indicate the validity of local thermodynamic equilibrium (LTE) at atmospheric pressure as well as strong deviations from LTE at lower pressures especially in terms of chemical equilibrium. Departures from kinetic equilibrium are not as severe as those from chemical equilibrium along the centerline of the jet. However, there are some departures from transitional equilibrium in the fringes of the jet. It is demonstrated that conventional methods based on the LTE assumption are not appropriate for describing low-pressure plasma jets

  6. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  7. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Barni, R; Biganzoli, I; Dell'Orto, E; Riccardi, C

    2014-01-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  8. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    OpenAIRE

    Heesoo Jung; Jin Ah Seo; Seungki Choi

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design?wearable APP (WAPP)?that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully e...

  9. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  10. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Penghui; Li, Limin [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Wenhao [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Jin, Weihong [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Liu, Xiangmei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics and Traumatology, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • Fluoropolymer is deposited on NiTi alloy via atmospheric-pressure plasma polymerization. • The corrosion resistance of NiTi alloy in SBF and DMEM is evidently improved. • The adsorption ratio of albumin to fibrinogen is increased on the coated surface. • The reduced platelet adhesion number indicates better in vitro hemocompatibility. - Abstract: To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  11. Influence of excited state spatial distributions on plasma diagnostics: Atmospheric pressure laser-induced He-H2 plasma

    Science.gov (United States)

    Monfared, Shabnam K.; Hüwel, Lutz

    2012-10-01

    Atmospheric pressure plasmas in helium-hydrogen mixtures with H2 molar concentrations ranging from 0.13% to 19.7% were investigated at times from 1 to 25 μs after formation by a Q-switched Nd:YAG laser. Spatially integrated electron density values are obtained using time resolved optical emission spectroscopic techniques. Depending on mixture concentration and delay time, electron densities vary from almost 1017 cm-3 to about 1014 cm-3. Helium based results agree reasonably well with each other, as do values extracted from the Hα and Hβ emission lines. However, in particular for delays up to about 7 μs and in mixtures with less than 1% hydrogen, large discrepancies are observed between results obtained from the two species. Differences decrease with increasing hydrogen partial pressure and/or increasing delay time. In mixtures with molecular hydrogen fraction of 7% or more, all methods yield electron densities that are in good agreement. These findings seemingly contradict the well-established idea that addition of small amounts of hydrogen for diagnostic purposes does not perturb the plasma. Using Abel inversion analysis of the experimental data and a semi-empirical numerical model, we demonstrate that the major part of the detected discrepancies can be traced to differences in the spatial distributions of excited helium and hydrogen neutrals. The model yields spatially resolved emission intensities and electron density profiles that are in qualitative agreement with experiment. For the test case of a 1% H2 mixture at 5 μs delay, our model suggests that high electron temperatures cause an elevated degree of ionization and thus a reduction of excited hydrogen concentration relative to that of helium near the plasma center. As a result, spatially integrated analysis of hydrogen emission lines leads to oversampling of the plasma perimeter and thus to lower electron density values compared to those obtained from helium lines.

  12. Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale

    Science.gov (United States)

    Medvecká, Veronika; Kováčik, Dušan; Zahoranová, Anna; Černák, Mirko

    2018-01-01

    Atmospheric pressure plasma assisted calcination by the preparation of TiO2 submicron fibers as a low-temperature alternative to the conventional thermal annealing was studied. A special type of dielectric barrier discharge was used for plasma treatment of hybrid titanium butoxide/polyvinylpyrrolidone (Ti(Bu)/PVP) fibers prepared by forcespinning to decompose and oxidize the base polymer and precursor. The obtained fibers were characterized by changes in chemical bonds on the surface using Fourier Transform Infrared Spectroscopy (FTIR), chemical composition by using Energy-Dispersive X-Ray Spectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS). The morphology of fibers was investigated by Scanning Electron Microscopy (SEM). A significant decrease of organic components was reached by short plasma exposure times less than 1 h. The obtained fibers exhibit a high surface porosity without degradation of the fibrous structure. The results obtained indicate that atmospheric pressure plasma assisted calcination can be a viable low-temperature, energy- and time-saving alternative or pre-treatment method for the conventional high-temperature thermal calcination.

  13. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Lee, Mi Hee; Park, Bong Joo; Jin, Soo Chang; Kim, Dohyun; Kim, Jungsung; Park, Jong-Chul; Han, Inho; Hyun, Soon O; Chung, Kie-Hyung

    2009-01-01

    Microbial biofilms are a functional matrix of microbial cells, enveloped in polysaccharides, enzymes and virulence factors secreted by them that can develop on indwelling medical devices and biomaterials. Plasma sterilization has been widely studied in recent years for biological applications. In this study, we evaluated the possibility of removal and anti-recovery of biofilms by microwave-induced argon plasma at atmospheric pressure. We observed that all bacterial biofilms formatted by Gram-negative and Gram-positive bacteria are removed in less than 20 s, and the growth inhibitions of planktonic bacteria within biofilms are also confirmed by plasma exposure for 5 s. These results suggest that our plasma system can be applied to medical and biological fields where the removal of biofilms and their debris is required.

  14. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    Science.gov (United States)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  15. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  16. Control of multidrug-resistant planktonic Acinetobacter baumannii: biocidal efficacy study by atmospheric-pressure air plasma

    Science.gov (United States)

    Zhe, RUAN; Yajun, GUO; Jing, GAO; Chunjun, YANG; Yan, LAN; Jie, SHEN; Zimu, XU; Cheng, CHENG; Xinghao, LIU; Shumei, ZHANG; Wenhui, DU; Paul, K. CHU

    2018-04-01

    In this research, an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid. The efficacy of the air plasma on bacterial deactivation and the cytobiological variations after the plasma treatment are investigated. According to colony forming units, nearly all the bacteria (6-log) are inactivated after 10 min of air plasma treatment. However, 7% of the bacteria enter a viable but non-culturable state detected by the resazurin based assay during the same period of plasma exposure. Meanwhile, 86% of the bacteria lose their membrane integrity in the light of SYTO 9/PI staining assay. The morphological changes in the cells are examined by scanning electron microscopy and bacteria with morphological changes are rare after plasma exposure in the liquid. The concentrations of the long-living RS, such as H2O2, {{{{NO}}}3}-, and O3, in liquid induced by plasma treatment are measured, and they increase with plasma treatment time. The changes of the intracellular ROS may be related to cell death, which may be attributed to oxidative stress and other damage effects induced by RS plasma generated in liquid. The rapid and effective bacteria inactivation may stem from the RS in the liquid generated by plasma and air plasmas may become a valuable therapy in the treatment of infected wounds.

  17. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  18. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    Science.gov (United States)

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  19. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  20. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet.

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-07-01

    A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances.

  1. Spectroscopic measurement of the electric field in a helium plasma jet

    NARCIS (Netherlands)

    Hofmans, M.; Sobota, A.

    2017-01-01

    The electric field in a plasma jet is measured spectroscopically utilizing the Stark-effect. A cold atmospheric pressure helium plasma jet is used, which operates at a μs-pulsed applied voltage of 6 kV, a frequency of 5 kHz and with a helium flow of 1.5 slm. Due to the electric field in the jet, the

  2. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    Science.gov (United States)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  3. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    Science.gov (United States)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  4. Synthesis of Carbon Nanotubes in Thermal Plasma Reactor at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Lukasz Szymanski

    2017-02-01

    Full Text Available In this paper, a novel approach to the synthesis of the carbon nanotubes (CNTs in reactors operating at atmospheric pressure is presented. Based on the literature and our own research results, the most effective methods of CNT synthesis are investigated. Then, careful selection of reagents for the synthesis process is shown. Thanks to the performed calculations, an optimum composition of gases and the temperature for successful CNT synthesis in the CVD (chemical vapor deposition process can be chosen. The results, having practical significance, may lead to an improvement of nanomaterials synthesis technology. The study can be used to produce CNTs for electrical and electronic equipment (i.e., supercapacitors or cooling radiators. There is also a possibility of using them in medicine for cancer diagnostics and therapy.

  5. Parameters of the constricted plasma discharge produced by radio-frequency for atmospheric pressures

    International Nuclear Information System (INIS)

    Zambrano R, G.

    1987-01-01

    The main electrophysical characteristics of high-frequency discharge between two electrodes for pressures of the order of atmospheric pressure were investigated. The vibrational and kinetic temperatures of the discharge, and the possibilities for creating the conditions which using these type of discharge an instability between vibrational and kinetic temperatures can be obtained. For determining main characteristics of this type of discharge, argon gas, nitrogen gas and air, when oxygen and nitrogen are predominated, were used. The obtained electrical discharge parameters were: the high frequency voltage between electrocathodes, the current, the phase displacement between current and voltage, and the discharge power. The kinetic temperature distribution in the discharge region, and the vibrational temperature of the nitrogen molecules in discharge channel were also obtained. (M.C.K.) [pt

  6. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    Science.gov (United States)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  7. Deposition of SiOx on Metal Surface with a DBD Plasma Gun at Atmospheric Pressure for Corrosion Prevention

    International Nuclear Information System (INIS)

    Han Erli; Chen Qiang; Zhang Yuefei; Chen Fei; Ge Yuanjing

    2007-01-01

    In this study, SiO x films were deposited by a dielectric barrier discharge (DBD) plasma gun at an atmospheric pressure. The relationship of the film structures with plasma powers was investigated by Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). It was shown that an uniform and cross-linking structure film was formed by the DBD gun. As an application, the SiO x films were deposited on a carbon steel surface for the anti-corrosion purpose. The experiment was carried out in a 0.1 M NaCl solution. It was found that a very good anti-corrosive property was obtained, i.e., the corrosion rate was decreased c.a. 15 times in 5% NaCl solution compared to the non-SiO x coated steel, as detected by the potentiodynamic polarization measurement

  8. Convective model of a microwave discharge in a gas at atmospheric pressure in the form of a spatially localized plasma

    International Nuclear Information System (INIS)

    Skovoroda, A.A.

    1997-01-01

    Experiments and a theoretical model consistent with them are presented which show that a stationary microwave discharge in a gas at atmospheric pressure under the action of free convection due to the action of the buoyant force on the heated air can be spatially localized, taking a spheroidal shape. Vortex motion inside the spheroid gives this localized plasma formation some of the properties of a material body which are manifested in a distinct material isolation from the surrounding space, in the formation of a narrow thermal boundary layer and flow separation, and in the formation of secondary vortices in the wake region. The characteristic radius of the stationary localized plasma is governed mainly by the wavelength of the microwave radiation a∼0.137λ. Energy balance is established to a significant degree by convective cooling of the microwave-heated structure

  9. Characterization of an Atmospheric-Pressure Argon Plasma Generated by 915 MHz Microwaves Using Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Robert Miotk

    2017-01-01

    Full Text Available The paper presents the investigations of an atmospheric-pressure argon plasma generated at 915 MHz microwaves using the optical emission spectroscopy (OES. The 915 MHz microwave plasma was inducted and sustained in a waveguide-supplied coaxial-line-based nozzleless microwave plasma source. The aim of presented investigations was to estimate parameters of the generated plasma, that is, excitation temperature of electrons Texc, temperature of plasma gas Tg, and concentration of electrons ne. Assuming that excited levels of argon atoms are in local thermodynamic equilibrium, Boltzmann method allowed in determining the Texc temperature in the range of 8100–11000 K. The temperature of plasma gas Tg was estimated by comparing the simulated spectra of the OH radical to the measured one in LIFBASE program. The obtained Tg temperature ranged in 1200–2800 K. Using a method based on Stark broadening of the Hβ line, the concentration of electrons ne was determined in the range from 1.4 × 1015 to 1.7 × 1015 cm−3, depending on the power absorbed by the microwave plasma.

  10. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Gan, L.; Yang, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, R. [School Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xian, Y.; Lu, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  11. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Science.gov (United States)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  12. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  13. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium

    International Nuclear Information System (INIS)

    Ma, R N; Zhang, Q; Tian, Y; Su, B; Zhang, J; Fang, J; Feng, H Q; Liang, Y D

    2013-01-01

    A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca 2+ ) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca 2+ concentration, cell mitochondrial membrane potential (Δψ m ) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca 2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of Δψ m and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy. (paper)

  14. Modification of glassy carbon surfaces by atmospheric pressure cold plasma torch

    DEFF Research Database (Denmark)

    Mortensen, Henrik Junge; Kusano, Yukihiro; Leipold, Frank

    2006-01-01

    The effect of plasma treatment on glassy carbon (GC) surfaces was studied with adhesion improvement in mind. A newly constructed remote plasma source was used to treat GC plates. Pure He and a dilute NH3/He mixture were used as feed gases. Optical emission spectroscopy was performed for plasma to...

  15. Bacteria killing effect of pulsed plasmas in oxygen+air at atmospheric pressure

    International Nuclear Information System (INIS)

    Akan, T.

    2005-01-01

    Bacteria Killing Method. The high voltage pulsed plasma is a non-equilibrium plasma and generates UV photons, ozone and active oxygen. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria. One of the probes charged with bacteria, was kept as a control probes (not exposed to the pulsed plasma), the rest of the probes were exposed to the pulsed plasma and afterwards compared with above mentioned control probe (reference sample). During treatment the bacteria were exposed to the active atoms, molecules, charged particles and photons generated by the pulsed plasma. The temperature of the support of samples with bacteria exposed to plasma increased during the treatment with only 1-2 degrees. Full killing time of Staphylococcus species as low as 3 minutes have been obtained quite easily

  16. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions.

    Science.gov (United States)

    Kim, Binna; Yun, Hyejeong; Jung, Samooel; Jung, Yeonkook; Jung, Heesoo; Choe, Wonho; Jo, Cheorun

    2011-02-01

    Atmospheric pressure plasma (APP) is an emerging non-thermal pasteurization method for the enhancement of food safety. In this study, the effect of APP on the inactivation of pathogens inoculated onto bacon was observed. Sliced bacon was inoculated with Listeria monocytogenes (KCTC 3596), Escherichia coli (KCTC 1682), and Salmonella Typhimurium (KCTC 1925). The samples were treated with APP at 75, 100, and 125 W of input power for 60 and 90 s. Two gases, helium (10 lpm) or a mixture of helium and oxygen, (10 lpm and 10 sccm, respectively) were used for the plasma generation. Plasma with helium could only reduce the number of inoculated pathogens by about 1-2 Log cycles. On the other hand, the helium/oxygen gas mixture was able to achieve microbial reduction of about 2-3 Log cycles. The number of total aerobic bacteria showed 1.89 and 4.58 decimal reductions after plasma treatment with helium and the helium/oxygen mixture, respectively. Microscopic observation of the bacon after plasma treatment did not find any significant changes, except that the L∗-value of the bacon surface was increased. These results clearly indicate that APP treatment is effective for the inactivation of the three pathogens used in this study, although further investigation is needed for elucidating quality changes after treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Structure of pulsed plasma jets

    International Nuclear Information System (INIS)

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

  18. A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma

    Science.gov (United States)

    Zhang, Yuchen; Li, Yu; Li, Yinglong; Yu, Shuang; Li, Haiyan; Zhang, Jue

    2017-08-01

    Although the pacemaker (PM) is a key cardiac implantable electrical device for life-threatening arrhythmias treatment, the related infection is a challenge. Thus, the aim of this study is to validate cold plasma as a potential technology for the disinfection of infected pacemakers. Fifty donated PMs were cleaned and sterilized before use and then infected with Staphylococcus aureus ( S. aureus). Then, each experimental group was treated with cold plasma treatment for 1 min, 3 min, 5 min and 7 min, while the control group was immersed with sterilized water. Effectiveness of disinfection was evaluated by using CFU counting method and confocal laser scanning microscopy (CLSM). The physicochemical properties of water treated with cold plasma at different time were evaluated, including water temperature change and oxidation reduction potential (ORP). The major reactive species generated by the cold plasma equipment during cold plasma were analyzed with optical emission spectroscopy (OES). No live bacteria were detected with CFU counting method after 7 min of cold plasma treatment, which matches with the CLSM results. The ORP value of water and H2O2 concentration changed significantly after treating with cold plasma. Furthermore, reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially NO, O (777 nm) and O (844 nm) were probably key inactivation agents in cold plasma treatment. These results indicate that cold plasma could be an effective technology for the disinfection of implantable devices.

  19. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    Science.gov (United States)

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  20. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial.

    Science.gov (United States)

    Chuangsuwanich, Apirag; Assadamongkol, Tananchai; Boonyawan, Dheerawan

    2016-12-01

    Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.

  1. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage.

    Science.gov (United States)

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; In Yong, Hae; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-10-01

    We investigated the possible use of atmospheric pressure plasma-treated water (PTW) as a nitrite source in curing process. Emulsion-type sausages were manufactured with PTW, celery powder containing nitrite, and synthetic sodium nitrite at a concentration of nitrite ion 70mgkg(-1). In terms of sausage quality, there were no noticeable effects of PTW on the total aerobic bacterial counts, color, and peroxide values of sausages compared with those of celery powder and sodium nitrite throughout 28days of storage at 4°C. Sausage with added PTW had lower concentrations of residual nitrite compared to those of added celery powder and sodium nitrite during the storage period (Pnitrite-treated sausages were not different, whereas the sausage with added celery powder received the lowest scores in taste and acceptability. From the results, it is concluded that PTW can be used as a nitrite source equivalent to a natural curing agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Schoenbach, Karl H

    2012-01-01

    Energetic and scalable non-equilibrium plasma was formed in pure water vapour at atmospheric pressure between wire-to-strip electrodes on a dielectric surface with one of the electrodes extended forming a conductive plane on the back side of the dielectric surface. The energy deposition increased by an order of magnitude compared with the conventional pulsed corona discharges under the same conditions. The scalability was demonstrated by operating two electrode assemblies with a common conductive plane between two dielectric layers. The energy yields for hydrogen and hydrogen peroxide generation were measured as ∼1.2 g H 2 /kWh and ∼4 g H 2 O 2 /kWh. (fast track communication)

  3. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  4. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  5. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    International Nuclear Information System (INIS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Ikehara, Yuzuru; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O 2 /He or N 2 /He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation. (paper)

  6. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    Science.gov (United States)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  7. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    Science.gov (United States)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  8. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    International Nuclear Information System (INIS)

    Miura, Taichi; Hirano, Kazumi; Ogura, Chika; Ikeguchi, Masamichi; Seki, Atsushi; Nishihara, Shoko; Ando, Ayumi; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2014-01-01

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H 2 O 2 ), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells. (paper)

  9. Evaluation of Penicillium digitatum sterilization using non-equilibrium atmospheric pressure plasma by terahertz time-domain spectroscopy

    Science.gov (United States)

    Hiraoka, Takehiro; Ebizuka, Noboru; Takeda, Keigo; Ohta, Takayuki; Kondo, Hiroki; Ishikawa, Kenji; Kawase, Kodo; Ito, Masafumi; Sekine, Makoto; Hori, Masaru

    2011-10-01

    Recently, the plasma sterilization has attracted much attention as a new sterilization technique that takes the place of spraying agricultural chemicals. The conventional methods for sterilization evaluation, was demanded to culture the samples for several days after plasma treatment. Then, we focused on Terahertz time-domain spectroscopy (THz-TDS). At the THz region, vibrational modes of biological molecules and fingerprint spectra of biologically-relevant molecules were also observed. In this study, our purpose was measurement of the fingerprint spectrum of the Penicillium digitatum (PD) spore and establishment of sterilization method by THz-TDS. The sample was 40mg/ml PD spore suspensions which dropped on cover glass. The atmospheric pressure plasma generated under the conditions which Ar gas flow was 3slm, and alternating voltage of 6kV was applied. The samples were exposed the plasma from 10mm distance for 10 minutes. We could obtain the fingerprint spectrum of the PD spore from 0.5 to 0.9THz. This result indicated the possibility of in-situ evaluation for PD sterilization using THz-TDS.

  10. Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments

    Directory of Open Access Journals (Sweden)

    A. Aguilar-Rios

    2014-07-01

    Full Text Available In order to improve the bonding between henequen fibers (Agave fourcroydes and High Density Polyethylene (HDPE, they were treated in an ethylene-dielectric barrier discharge (DBD plasma operating at atmospheric pressure. A 23 factorial experimental design was used to study the effects of the plasma operational parameters, namely, frequency, flow rate and exposure time, over the fiber tensile mechanical properties and its adhesion to HDPE. The fiber-matrix Interfacial Shear Strength (IFSS was evaluated by means of the single fiber pull-out test. The fiber surface chemical changes were assessed by photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR and the changes in surface morphology with scanning electron microscopy (SEM. The results indicate that individual operational parameters in the DBD plasma treatment have different effects on the tensile properties of the henequen fibers and on its bonding to HDPE. The SEM results show that the plasma treatment increased the roughness of the fiber surface. The FTIR result seems to indicate the presence of a hydrocarbon-like polymer film, bearing some vinyl groups deposited onto the fibers. These suggests that the improvement in the henequen-HDPE bonding could be the result of the enhancement of the mechanical interlocking, due the increment in roughness, and the possible reaction of the vinyl groups on the film deposited onto the fiber with the HDPE.

  11. Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Rhee, J. K.; Gweon, B.; Moon, S. Y.; Choe, W.

    2007-01-01

    Microsize jet-type plasmas were generated in a single pin electrode structure source for two separate input frequencies of 50 kHz and 13.56 MHz in the ambient air. The copper pin electrode radius was 360 μm, and it was placed in a Pyrex tube with a radius of 3 mm for helium gas supply. Due to the input frequency difference, the generated plasmas showed distinct discharge characteristics for their plasma physical appearances, electrical properties, gas temperatures, and optical properties. Strengths and weaknesses of both plasmas were discussed for further applications

  12. Desizing of Starch Containing Cotton Fabrics Using Near Atmospheric Pressure, Cold DC Plasma Treatment

    Science.gov (United States)

    Prasath, A.; Sivaram, S. S.; Vijay Anand, V. D.; Dhandapani, Saravanan

    2013-03-01

    An attempt has been made to desize the starch containing grey cotton fabrics using the DC plasma with oxygen as the gaseous medium. Process conditions of the plasma reactor were optimized in terms of distance between the plates (3.2 cm), applied voltage (600 V) and applied pressure (0.01 bar) to obtain maximum desizing efficiency. No discolouration was observed in the hot water extracts of the desized sample in presence of iodine though relatively higher solvent extractable impurities (4.53 %) were observed in the plasma desized samples compared to acid desized samples (3.38 %). Also, significant weight loss, improvements in plasma desized samples were observed than that of grey fabrics in terms of drop absorbency.

  13. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Gordeev, I.; Choukourov, A.; Šimek, Milan; Prukner, Václav; Biederman, H.

    2012-01-01

    Roč. 9, č. 8 (2012), s. 782-791 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : fibrinogen * non-fouling properties * PEO * plasma polymerization * surface dielectric barrier discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012

  14. Propagation characteristics of atmospheric-pressure He+O{sub 2} plasmas inside a simulated endoscope channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Chen, Z. Y.; Wang, X. H., E-mail: xhw@mail.xjtu.edu.cn; Li, D.; Yang, A. J.; Liu, D. X.; Rong, M. Z. [State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, H. L. [Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Kong, M. G. [State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi' an Jiaotong University, Xi' an 710049 (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2015-11-28

    Cold atmospheric-pressure plasmas have potential to be used for endoscope sterilization. In this study, a long quartz tube was used as the simulated endoscope channel, and an array of electrodes was warped one by one along the tube. Plasmas were generated in the inner channel of the tube, and their propagation characteristics in He+O{sub 2} feedstock gases were studied as a function of the oxygen concentration. It is found that each of the plasmas originates at the edge of an instantaneous cathode, and then it propagates bidirectionally. Interestingly, a plasma head with bright spots is formed in the hollow instantaneous cathode and moves towards its center part, and a plasma tail expands through the electrode gap and then forms a swallow tail in the instantaneous anode. The plasmas are in good axisymmetry when [O{sub 2}] ≤ 0.3%, but not for [O{sub 2}] ≥ 1%, and even behave in a stochastic manner when [O{sub 2}] = 3%. The antibacterial agents are charged species and reactive oxygen species, so their wall fluxes represent the “plasma dosage” for the sterilization. Such fluxes mainly act on the inner wall in the hollow electrode rather than that in the electrode gap, and they get to the maximum efficiency when the oxygen concentration is around 0.3%. It is estimated that one can reduce the electrode gap and enlarge the electrode width to achieve more homogenous and efficient antibacterial effect, which have benefits for sterilization applications.

  15. In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models

    Directory of Open Access Journals (Sweden)

    Gorynia, Susanne

    2013-04-01

    Full Text Available [english] Dental plaque critically affects the etiology of caries, periodontitis and periimplantitis. The mechanical removal of plaque can only be performed partially due to limited accessibility. Therefore, plaque still represents one of the major therapeutic challenges. Even though antiseptic mouth rinses reduce the extent of biofilm temporarily, plaque removal remains incomplete and continuous usage can even result in side effects. Here we tested argon plasma produced by kinpen09 as one option to inactivate microorganisms and to eliminate plaque. biofilms cultivated in either the European Biofilm Reactor (EUREBI or in 24 well plates were treated with argon plasma. In both test systems a homogeneous, good analyzable and stable biofilm was produced on the surface of titan plates within 72 h (>6,9 log CFU/ml. Despite the significantly more powerful biofilm production in EUREBI, the difference of 0.4 log CFU/ml between EUREBI and the 24 well plates was practically not relevant. For that reason both test models were equally qualified for the analysis of efficacy of cold atmospheric pressure plasma. We demonstrate a significant reduction of the biofilm compared to the control in both test models. After plasma application of 180 s the biofilm produced in EUREBI or in 24 well plates was decreased by 0.6 log CFU/ml or 0.5 log CFU/ml, respectively. In comparison to recently published studies analyzing the efficacy of kinpen09, produces a hardly removable biofilm. Future investigations using reduced distances between plasma source and biofilm, various compositions of plasma and alternative plasma sources will contribute to further optimization of the efficacy against biofilms.

  16. Stages of polymer transformation during remote plasma oxidation (RPO) at atmospheric pressure

    Science.gov (United States)

    Luan, P.; Oehrlein, G. S.

    2018-04-01

    The interaction of cold temperature plasma sources with materials can be separated into two types: ‘direct’ and ‘remote’ treatments. Compared to the ‘direct’ treatment which involves energetic charged species along with short-lived, strongly oxidative neutral species, ‘remote’ treatment by the long-lived weakly oxidative species is less invasive and better for producing uniformly treated surfaces. In this paper, we examine the prototypical case of remote plasma oxidation (RPO) of polymer materials by employing a surface micro-discharge (in a N2/O2 mixture environment) treatment on polystyrene. Using material characterization techniques including real-time ellipsometry, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, the time evolution of polymer film thickness, refractive index, surface, and bulk chemical composition were evaluated. These measurements revealed three consecutive stages of polymer transformation, i.e. surface adsorption and oxidation, bulk film permeation and thickness expansion followed by the material removal as a result of RPO. By correlating the observed film thickness changes with simultaneously obtained chemical information, we found that the three stages were due to the three effects of weakly oxidative species on polymers: (1) surface oxidation and nitrate (R-ONO2) chemisorption, (2) bulk oxidation, and (3) etching. Our results demonstrate that surface adsorption and oxidation, bulk oxidation, and etching can all happen during one continuous plasma treatment. We show that surface nitrate is only adsorbed on the top few nanometers of the polymer surface. The polymer film expansion also provided evidence for the diffusion and reaction of long-lived plasma species in the polymer bulk. Besides, we found that the remote plasma etched surface was relatively rich in O-C=O (ester or carboxylic acid). These findings clarify the roles of long-lived weakly oxidative plasma species on polymers and advance

  17. Surface Modification of Polypropylene Microporous Membrane by Atmospheric-Pressure Plasma Immobilization of N,N-dimethylamino Ethyl Methacrylate

    International Nuclear Information System (INIS)

    Zhong Shaofeng

    2010-01-01

    Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,N-dimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.

  18. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Czech Academy of Sciences Publication Activity Database

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, Václav; Doležalová, Eva; Šimek, Milan; Biederman, H.

    2017-01-01

    Roč. 50, č. 13 (2017), č. článku 135201. ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD13010 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 Keywords : dielectric barrier discharges (DBD) * bio-decontamination * etching * polymers * biomolecules * spores * surface treatment Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6463/aa5c21/meta

  19. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats

    Science.gov (United States)

    Fathollah, Sara; Mirpour, Shahriar; Mansouri, Parvin; Dehpour, Ahmad Reza; Ghoranneviss, Mahmood; Rahimi, Nastaran; Safaie Naraghi, Zahra; Chalangari, Reza; Chalangari, Katalin Martits

    2016-02-01

    It is estimated that 15 percent of individuals with diabetes mellitus suffer from diabetic ulcers worldwide. The aim of this study is to present a non-thermal atmospheric plasma treatment as a novel therapy for diabetic wounds. The plasma consists of ionized helium gas that is produced by a high-voltage (8 kV) and high-frequency (6 kHz) power supply. Diabetes was induced in rats via an intravascular injection of streptozotocin. The plasma was then introduced to artificial xerograph wounds in the rats for 10 minutes. Immunohistochemistry assays was performed to determine the level of transforming growth factor (TGF-β1) cytokine. The results showed a low healing rate in the diabetic wounds compared with the wound-healing rate in non-diabetic animals (P diabetic rats (P treatment compared with untreated diabetic wounds (P treatment also resulted in the release of TGF-β1 cytokine from cells in the tissue medium. The findings of this study demonstrate the effect of plasma treatment for wound healing in diabetic rats.

  20. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.; Han, Jie; Belhi, Memdouh; Arias, Paul G.; Bisetti, Fabrizio; Im, Hong G.; Chen, Jyh Yuan

    2016-01-01

    neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported

  1. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    Science.gov (United States)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated

  2. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    Science.gov (United States)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  3. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    International Nuclear Information System (INIS)

    Elabid, Amel E.A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-01-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  4. Physicochemical properties and enhanced cellullar responses of biocompatible polymeric scaffolds treated with atmospheric pressure plasma using O2 gas

    International Nuclear Information System (INIS)

    Lee, Hyun-Uk; Park, So-Young; Kang, Yoon-Hee; Jeong, Se-Young; Choi, Sae-Hae; Jahng, Yoon-Young; Chung, Gook-Hyun; Kim, Moon-Bum; Cho, Chae-Ryong

    2011-01-01

    Biocompatible polymeric scaffolds were fabricated by mixing 5 wt.% poly(ε-caprolactone) (P) with 4 wt.% gelatin (G) and 1.6 wt.% Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (D). These PGD scaffolds were also treated with atmospheric pressure (AP) plasma using O 2 reactive gas (to create O-PGD scaffolds). The physicochemical and mechanical properties of the PGD scaffolds were characterized by in vitro biodegradability tests, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, and tensile strength measurements. The wettability and hydrophilic properties of the scaffold surface were improved remarkably by adding G and D to P, and by subsequent oxygen-assisted AP plasma treatment. An MTT assay, a cell attachment efficiency assay, scanning electron microscopy, and confocal microscopy revealed that Chinese Hamster Ovary (CHO)-K1 cells exhibited higher cell attachment and viability on the PGD and O-PGD scaffolds than on the P and PG scaffolds. Furthermore, the long-term viability of the CHO cells on the PGD and O-PGD scaffolds without exchanging the cell culture media was significantly improved compared to their viability on the P and PG scaffolds. Overall, the PGD and O-PGD scaffolds are expected to be useful as cell growth supporting biomaterials in tissue engineering.

  5. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  6. Cold Atmospheric-Pressure Plasmas Applied to Active Packaging of Fruits and Vegetables

    Science.gov (United States)

    Pedrow, Patrick; Fernandez, Sulmer; Pitts, Marvin

    2008-10-01

    Active packaging of fruits and vegetables uses films that absorb molecules from or contribute molecules to the produce. Applying uniform film to specific parts of a plant will enhance safe and economic adoption of expensive biofilms and biochemicals which would damage the plant or surrounding environment if misapplied. The pilot application will be to apply wax film to apples, replacing hot wax which is expensive and lowers the textural quality of the apple. The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (Argon + monomer) is sufficiently high to yield electron avalanches. The ``corona onset criterion'' is used to design the cold plasma reactor. The apple will be placed in a treatment chamber downstream from the activation zone. Key physical properties of the film will be measured. The deposition rate will be optimized in terms of economics and fruit surface quality for the purpose of determining if the technique is competitive in food processing plants.

  7. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  8. Final Report DE-FG02-00ER54583: 'Physics of Atmospheric Pressure Glow Discharges' and 'Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas'

    International Nuclear Information System (INIS)

    Kortshagen, Uwe; Heberlein, Joachim; Girshick, Steven L.

    2009-01-01

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  9. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    Science.gov (United States)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  10. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    Science.gov (United States)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  11. Novel Plasma Reactor with Rotary Helix Electrode Used in Coupling of CH4 at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Wang Dawang; Ma Tengcai

    2006-01-01

    At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C 2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C 2 yield per pass was 69.85% and C 2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate

  12. Non-thermal plasma at atmospheric pressure for ozone generation and volatile organic compounds decomposition

    International Nuclear Information System (INIS)

    Pekarek, S.; Khun, J.

    2006-01-01

    The non-thermal plasma technologies based on electrical discharges play an important role in ecological applications. The classical corona discharge is however relatively low power discharge. With the aim to extend its current-voltage range we studied hollow needle-to-plate DC corona discharge enhanced by the flow of a gas through the needle electrode. With this type of the discharge we performed an extensive study of ozone generation and volatile organic compounds decomposition. We found that supply of air through the needle substantially increases current-voltage range of the discharge in comparison with classical pin-to-plate corona discharge. Consequently the ozone generation as well as toluene decomposition efficiency was increased (Authors)

  13. Degradation of Acid Orange 7 in an Atmospheric-Pressure Plasma-Solution System (Gliding Discharge)

    International Nuclear Information System (INIS)

    NI Mingjiang; YANG Huan; CHEN Tong; ZHANG Hao; WU Angjian; DU Changming; LI Xiaodong

    2015-01-01

    In this work, a plasma-solution system was applied to the degradation of Acid Orange 7 (AO7). The effects of initial concentration and type of feed gases (air, oxygen, nitrogen or argon) were studied. As the initial concentration increased from 100 mg/L to 160 mg/L, the discolouration rate of AO7 decreased from 99.3% to 95.9%, whereas the COD removal rate decreased from 37.9% to 22.6%. Air provided the best discolouration and COD removal rates (99.3% and 37.9%, respectively). In the presence of a zero-valent iron (ZVI) catalyst, the AO7 COD removal rate increased to 76.4%. The degradation products were analysed by a GC-MS, revealing that the degradation of the dye molecule was initiated through the cleavage of the -N=N- bond before finally being converted to organic acids. (paper)

  14. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    Science.gov (United States)

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  15. Enhancement of the light-scattering ability of Ga-doped ZnO thin films using SiO{sub x} nano-films prepared by atmospheric pressure plasma deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kow-Ming [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, ROC (China); Ho, Po-Ching, E-mail: raymondsam.ee98g@nctu.edu.tw [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, ROC (China); Ariyarit, Atthaporn [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, ROC (China); Yang, Kuo-Hui; Hsu, Jui-Mei; Wu, Chin-Jyi; Chang, Chia-Chiang [Industrial Technology Research Institute, Mechanical and Systems Research Laboratories, Hsinchu 31040, Taiwan, ROC (China)

    2013-12-02

    To enhance the light-trapping qualities of silicon thin-film solar cells, the use of transparent conductive oxide with high haze and high conductivity is essential. This study investigated an eco-friendly technique that used bilayer Ga-doped zinc oxide/SiO{sub x} films prepared with an atmospheric pressure plasma jet to achieve high haze and low resistivity. A minimum resistivity of 6.00 × 10{sup −4} Ω·cm was achieved at 8 at.% gallium doping. Examination of X-ray diffraction spectra showed that increased film thickness led to increased carrier concentration in GZO bilayers. The optimal bilayer GZO film achieved considerably higher haze values in the visible and NIR regions, compared with Asahi U-type fluorine doped tin oxide. - Highlights: • Ga-doped ZnO (GZO) and SiO{sub x} deposited by atmospheric pressure plasma jet (APPJ) • Deposition uses a water-based precursor and low substrate temperature (< 150 °C). • SiO{sub x} buffer layers deposited by APPJ can control haze value of Ga-doped ZnO films. • GZO/SiO{sub x} achieved the resistivity of 6.00 × 10{sup −4} Ω·cm and haze of 21.5% at 550 nm.

  16. Electric field and temperature in a target induced by a plasma jet imaged using Mueller polarimetry

    NARCIS (Netherlands)

    Slikboer, E.T.; Sobota, A.; Guaitella, O.; Garcia-Caurel, E.

    2018-01-01

    Mueller polarimetry is used to investigate the behavior of an electro optic target (BSO crystal) under exposure of guided ionization waves produced by an atmospheric pressure plasma jet. For the first time, this optical technique is time resolved to obtain the complete Mueller matrix of the sample

  17. Physical and chemical interactions at the interface between atmospheric pressure plasmas and aqueous solutions

    Science.gov (United States)

    Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven

    2014-10-01

    Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.

  18. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  19. Increase in nitrite content and functionality of ethanolic extracts of Perilla frutescens following treatment with atmospheric pressure plasma.

    Science.gov (United States)

    Jung, Samooel; Lee, Chul Woo; Lee, Juri; Yong, Hae In; Yum, Su Jin; Jeong, Hee Gon; Jo, Cheorun

    2017-12-15

    This study investigated the effect of atmospheric pressure plasma (APP) treatment on nitrite content and functionality of plant extracts. Ethanolic extracts of Perilla frutescens (EEP) were prepared and treated with APP for 60min. Nitrite content increased from 0 to 45.8mg/l in EEP after APP treatment for 60min. Antimicrobial activity of EEP against Clostridium perfringens and Salmonella Typhimurium was increased by APP with no influence on antioxidative activity (p<0.05). Lyophilized EEP (LEEP) treated with APP for 60min contained 3.74mg/g nitrite. The control (LEEP without APP) contained no nitrite. The minimum inhibitory concentration (MIC) of LEEP for C. perfringens was 200µg/ml. The control did not inhibit C. perfringens growth between 25 and 1000µg/ml. MICs of LEEP and the control against S. Typhimurium were 25 and 50µg/ml, respectively. New nitrite sources with increased antimicrobial activity can be produced from natural plants by APP treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma.

    Science.gov (United States)

    Jeong, Won-Seok; Kwon, Jae-Sung; Lee, Jung-Hwan; Uhm, Soo-Hyuk; Ha Choi, Eun; Kim, Kwang-Mahn

    2017-07-26

    Here, we investigated the antibacterial effects of chemical changes induced by nonthermal atmospheric pressure plasma (NTAPP) on smooth and rough Ti. The morphologies of smooth and rough surfaces of Ti were examined using scanning electron microscopy (SEM). Both Ti specimens were then treated for 10 min by NTAPP with nitrogen gas. The surface roughness, chemistry, and wettability were examined by optical profilometry, x-ray photoelectron spectroscopy, and water contact angle analysis, respectively. Bacterial attachment was measured by determining the number of colony forming units and by SEM analysis. The rough Ti showed irregular micropits, whereas smooth Ti had a relatively regular pattern on the surface. There were no differences in morphology between samples before and after NTAPP treatment. NTAPP treatment resulted in changes from hydrophobic to hydrophilic properties on rough and smooth Ti; rough Ti showed relatively higher hydrophilicity. Before NTAPP treatment, Streptococcus sanguinis (S. sanguinis) showed greater attachment on rough Ti, and after NTAPP treatment, there was a significant reduction in bacterial attachment. Moreover, the bacterial attachment rate was significantly lower on rough Ti, and the structure of S. sanguinis colonies were significantly changed on NTAPP-treated Ti. NTAPP treatment inhibited bacterial attachment surrounding titanium implants, regardless of surface topography. Therefore, NTAPP treatment on Ti is a next-generation tool for antibacterial applications in the orthopaedic and dental fields.

  1. Reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma

    Science.gov (United States)

    Zhao, Yuefeng; Wang, Chao; Li, Li; Wang, Lijuan; Pan, Jie

    2018-03-01

    In this work, a two-dimensional fluid model is built up to numerically investigate the reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma. The calculation results indicate that the electron collisions with CH4 are the key pathways to produce the neutral particles CH2 and CH as well as the charged particles e and CH3+. CH3, H2, H, C2H2, and C2H4 primarily result from the reactions between the neutral particles and CH4. The charge transfer reactions are the significant pathways to produce CH4+, C2H2+, and C2H4+. As to the neutral species CH and H and the charged species CH3+, the reactions between themselves and CH4 contribute to substantial losses of these particles. The ways responsible for losing CH3, H2, C2H2, and C2H4 are CH3 + H → CH4, H2 + CH → CH2 + H, CH4+ + C2H2 → C2H2+ + CH4, and CH4+ + C2H4 → C2H4+ + CH4, respectively. Both electrons and C2H4+ are consumed by the dissociative electron-ion recombination reactions. The essential reaction pathways of losing CH4+ and C2H2+ are the charge transfer reactions.

  2. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    International Nuclear Information System (INIS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, KyoungHui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H + (H 2 O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m 3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed

  3. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    Science.gov (United States)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  4. Fabrication of a Transparent Anti-stain Thin Film Using an Atmospheric Pressure Cold Plasma Deposition System

    Directory of Open Access Journals (Sweden)

    Suzaki Y.

    2013-08-01

    Full Text Available Recently, outdoor-constructed solar panels have a problem such as power generation efficiency is reduced by the face plate dirt. On the other hand, electronic touch panels have a problem such as deterioration of visibility of the screen by finger grease stain. To solve these problems, we need to fabricate the anti-stain surfaces which have superhydrophobic and oil-repellent abilities without spoiling the transparency of the transparent substrate. In this study, we fabricated lotus leaves like surface on a glass substrate. Firstly, SiO2 particles of ca. 100 nm diameter were arranged on the glass substrates. Secondly, to obtain the fractal-like structure (ultra-micro-rough structure on the surface, ZnO thin film having a columnar structure was fabricated on the SiO2 particles by using an atmospheric pressure cold plasma deposition system. By using these processes, the ZnO columns formed radiantly on the spherical surface of the SiO2 particles. Furthermore, without spoiling the ultra-micro-rough structure, a transparent anti-stain monolayer with low surface energy was prepared by using a chemical adsorption technique onto the surface. Average value of the water droplet contact angles of the samples fabricated was 151.8 deg. Field emission scanning electron microscope (FE-SEM observation reviled that this sample has a raspberry structure in which columnar structure has grown radially on the SiO2 particles.

  5. Carbon-based micro-ball and micro-crystal deposition using filamentary pulsed atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2014-01-01

    Thin plasma filaments are produced by the propagation of ionization waves from a spiked driven electrode in a quartz tube in an argon/methane gas mixture (2400 sccm/2 sccm) at atmospheric pressure. The position of the touch point of filaments on the substrate surface is controlled in our experiment by applying various suitable substrate configurations and geometries of the grounded electrode. The gas conditions at the touch point are varied from argon to ambient air. Based on microphotography and discharge current waveforms, the duration of the filament touching the substrate is estimated to be about one microsecond. Carbon-based materials are deposited during this time at the touch points on the substrate surface. Micro-balls are produced if the filament touch points are saved from ambient air by the argon flow. Under an air admixture, micro-crystals are formed. The dimension of both materials is approximately one micrometre (0.5–2 µm) and corresponds to about 10 10 –10 12 carbon atoms. Neither the diffusion of neutral species nor drift of ions can be reason for the formation of such a big micro-material during this short period of filament–substrate interaction. It is possible that charged carbon-based materials are formed in the plasma channel and transported to the surface of the substrate. The mechanism of this transport and characterization of micro-materials, which are formed under different gas conditions in our experiment, will be studied in the future. (paper)

  6. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    Science.gov (United States)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  7. Supersonic induction plasma jet modeling

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Boulos, M.I.

    2001-01-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders

  8. Electrostatic Properties of PE and PTFE Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    Science.gov (United States)

    Trigwell, Steve; Boucher, Derrick; Calle, Carlos

    2006-01-01

    The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.

  9. Decomposition of poly(amide-imide) film using atmospheric pressure non-equilibrium plasma generated in a stream of H2O/Ar mixed gases

    International Nuclear Information System (INIS)

    Ueshima, M.; Aoki, Y.; Suzuki, K.; Kuwasima, S.; Sugiyama, K.

    2010-01-01

    Atmospheric pressure non-equilibrium Ar-H 2 O plasma was irradiated to exfoliate a thin film of a heat-resistant polymer, poly(amide-imide) coating on enamel copper wire. The plasma was produced by applying microwave power inducted with Ar-H 2 , Ar-O 2 , Ar-H 2 O or Ar-H 2 -O 2 mixed gases. The poly(amide-imide) thin film was exfoliate by those plasma irradiations. The magnitude of exfoliatio