WorldWideScience

Sample records for atmospheric water vapour

  1. Absorption of solar radiation by atmospheric water vapour

    International Nuclear Information System (INIS)

    Solar spectra from 0.7 to 2.5 μm were studied under low resolution for different solar zenith angles. The band integrated absorbance for water vapour bands at 0.8, 0.9, 1.1, 1.4 and 1.9 μm were measured and compared with those obtained by Howard et al. and other workers. It was found that although the agreement was satisfactory at lower water-vapour contents, there was significant deviation at high water-vapour content. (author)

  2. Water Vapour Content of the Atmosphere in Relation to Surface Humidity

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1977-10-01

    Full Text Available The theoretical relationship between precipitate water vapour in the atmosphere & surface humidity has been investigated. By introducing the concept of a lapse parameter alpha, a method has been devised for estimation of precipitable water vapour. Results have been compared for six Indian Stations for which upper air data were available.

  3. Accuracy of the Water Vapour Content Measurements in the Atmosphere Using Optical Methods

    CERN Document Server

    Galkin, V D; Alekseeva, G A; Novikov, V V; Pakhomov, V P

    2010-01-01

    This paper describes the accuracy and the errors of water vapour content measurements in the atmosphere using optical methods, especially starphotometer. After the general explanations of the used expressions for the star-magnitude observations of the water vapour absorption in section 3 the absorption model for the water vapour band will be discussed. Sections 4 and 5 give an overview on the technique to determine the model parameters both from spectroscopic laboratory and radiosonde observation data. Finally, the sections 6 and 7 are dealing with the details of the errors; that means errors of observable magnitude, of instrumental extraterrestrial magnitude, of atmospheric extinction determination and of water vapour content determination by radiosonde humidity measurements. The main conclusion is: Because of the high precision of the results the optical methods for water vapour observation are suited to validate and calibrate alternative methods (GPS, LIDAR, MICROWAVE) which are making constant progress wo...

  4. The Research on Atmospheric Pressure Water Vapour Plasma Generation and Application for the Destruction of Wastes

    Directory of Open Access Journals (Sweden)

    Viktorija Grigaitiene

    2013-01-01

    Full Text Available In the Lithuanian Energy Institute an experimental atmospheric pressure Ar/water vapour plasma torch has been designed and tested. The power of plasma torch was estimated 40 ÷ 69 kW, the mean temperature of plasma jet at the exhaust nozzle was 2300÷2900K. The chemical compositionof water vapour plasma was established from the emission spectrum lines at 300 ÷ 800nm range. The main species observed in Ar/water vapour plasma were: Ar, OH, H, O, Cu. The experiments on water vapour steam reforming were performed. The results confirmed that water vapour plasma has the unique properties – high enthalpy and environmentally friendly conditions. It could be employed for environmental purposes such as destruction of wastes into simple molecules or conversion to synthetic gas.

  5. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models

    OpenAIRE

    Z. Li; Fielding, E.; Cross, P; R. Preusker

    2009-01-01

    A major source of error for repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is the phase delay in radio signal propagation through the atmosphere (especially the part due to tropospheric water vapour). Based on experience with the Global Positioning System (GPS)/Moderate Resolution Imaging Spectroradiometer (MODIS) integrated model and the Medium Resolution Imaging Spectrometer (MERIS) correction model, two new advanced InSAR water vapour correction models are demonstrated using ...

  6. Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapour isotopes

    Science.gov (United States)

    The isotopic fluxes of carbon dioxide (CO2) and water vapour (H2O) between the atmosphere and terrestrial plants provide powerful constraints on carbon sequestration on land 1-2, changes in vegetation cover 3 and the Earth’s Dole effect 4. Past studies, relying mainly on leaf-scale observations, hav...

  7. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations

    OpenAIRE

    Wagner, T.; Andreae, M. O.; S. Beirle; Dörner, S.; K. Mies; Shaiganfar, R.

    2013-01-01

    We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in the yellow and red spectral range. The retrieval is based on the so-called geometric approximation and does not depend on explicit a priori information for individual observations, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and...

  8. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations

    OpenAIRE

    Wagner, T.; Andreae, M. O.; S. Beirle; Dörner, S.; K. Mies; Shaiganfar, R.

    2012-01-01

    We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in the yellow and red spectral range. The retrieval is based on the so called geometric approximation and does not depend on a-priori information, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and clouds are simply corrected u...

  9. Generation and spectroscopic investigation of an atmospheric pressure water vapour plasma jet

    International Nuclear Information System (INIS)

    Water vapour plasma technologies could be used for the conversion of biomass to hydrogen rich synthetic gas and for the neutralization and utilization of hazardous wastes. Formation of water vapour plasma has been investigated using a linear direct current plasma torch with stair stepped anode. A new device with a unique structure, operating at atmospheric pressure has been designed and tested at Lithuanian Energy Institute, Plasma Processing Laboratory for the innovative and environmental friendly plasma treatment of organic materials. The main operating conditions of plasma torch and main parameters of water vapour plasma jet were investigated. The power of plasma torch was 25–45kW; arc current was 140–180 A, the arc voltage was 172–231 V, the efficiency was 0.5–0.78. The average temperature of water vapour plasma jet in exhaust nozzle was 2600–3500 K, and the plasma jet velocity was 200–310 m/s. Emission lines, registered by the optical emission spectrometer AOS4-1, are analysed to observe the chemical composition of water vapour plasma jet. The optical emission spectrum measurement shows that the water molecule in the plasma is decomposed into H, OH and O radicals. Hydrogen is very desirable in the formation of high caloric synthetic gas (CO+H2) during thermal plasma gasification of organic materials. The summarized results can help to calculate and design gasification systems of biomass, to establish optimal parameters for stable operation of plasma generator and regulate the process parameters. (author)

  10. Water Vapour Absorption in the Clear Atmosphere of an exo-Neptune

    CERN Document Server

    Fraine, Jonathan; Benneke, Björn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-01-01

    Transmission spectroscopy to date has detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain high mean molecular weights, opaque clouds, or scattering hazes in their atmospheres, obscuring our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of HAT-P-11b (~4 Earth radii) from the optical to the infrared. We detected water vapour absorption at 1.4 micrometre wavelength. The amplitude of the water absorption (approximately 250 parts-per- million) indicates that the planetary atmosphere is predominantly clear down to ~1 mbar, and sufficiently hydrogen-rich to exhibit a large scale height. The spectrum is indicative of a planetary atmosphere with an upper limit of ~700 times the abundance of...

  11. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  12. Development of a 22 GHz ground-based spectrometer for middle atmospheric water vapour monitoring

    Directory of Open Access Journals (Sweden)

    Pietro Paolo Bertagnolio

    2012-03-01

    Full Text Available The water Vapour Emission SPectrometer for Antarctica at 22 GHz (VESPA-22 has been designed for long-term middle atmospheric climate change monitoring and satellite data validation. It observes the water vapour spectral line at 22.235 GHz using the balanced beam-switching technique. The receiver antenna has been characterized, showing an HPBW of 3.5° and a sidelobe level 40 dB below the main lobe. The receiver front-end has a total gain of 105 dB and a LNA noise temperature of 125 K. A FFT spectrometer (bandwidth 1 GHz, resolution 63 kHz will be used as back-end, allowing the retrieval of H2O concentration profiles in the 20 to 80 km altitude range. The control I/O interface is based on reconfigurable hardware (USB-CPLD.

  13. Improved total atmospheric water vapour amount determination from near-infrared filter measurements with sun photometers

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2007-05-01

    Full Text Available In this work we explore the effect of the contribution of the solar spectrum to the recorded signal in wavelengths outside the typical 940-nm filter's bandwidth. We use gaussian-shaped filters as well as actual filter transmission curves to study the implications imposed by the non-zero out-of-band contribution to the coefficients used to derive precipitable water from the measured water vapour band transmittance. The moderate-resolution SMARTS radiative transfer code is used to predict the incident spectrum outside the filter bandpass for different atmospheres, solar geometries and aerosol optical depths. The high-resolution LBLRTM radiative transfer code is used to calculate the water vapour transmittance in the 940 nm band. The absolute level of the out-of-band transmittance has been chosen to range from 10−6 to 10−4, and typical response curves of commercially available silicon photodiodes are included into the calculations. It is shown that if the out-of-band transmittance effect is neglected, as is generally the case, then the derived columnar water vapour is systematically underestimated by a few percents. The actual error depends on the specific out-of-band transmittance, optical air mass of observation and water vapour amount. We apply published parameterized transmittance functions to determine the filter coefficients. We also introduce an improved, three-parameter, fitting function that can describe the theoretical data accurately, with significantly less residual effects than with the existing functions. Further investigations will use experimental data from field campaigns to validate these findings.

  14. The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations

    Science.gov (United States)

    Ning, T.; Wang, J.; Elgered, G.; Dick, G.; Wickert, J.; Bradke, M.; Sommer, M.; Querel, R.; Smale, D.

    2016-01-01

    Within the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) there is a need for an assessment of the uncertainty in the integrated water vapour (IWV) in the atmosphere estimated from ground-based global navigation satellite system (GNSS) observations. All relevant error sources in GNSS-derived IWV are therefore essential to be investigated. We present two approaches, a statistical and a theoretical analysis, for the assessment of the uncertainty of the IWV. The method is valuable for all applications of GNSS IWV data in atmospheric research and weather forecast. It will be implemented to the GNSS IWV data stream for GRUAN in order to assign a specific uncertainty to each data point. In addition, specific recommendations are made to GRUAN on hardware, software, and data processing practices to minimise the IWV uncertainty. By combining the uncertainties associated with the input variables in the estimations of the IWV, we calculated the IWV uncertainties for several GRUAN sites with different weather conditions. The results show a similar relative importance of all uncertainty contributions where the uncertainties in the zenith total delay (ZTD) dominate the error budget of the IWV, contributing over 75 % of the total IWV uncertainty. The impact of the uncertainty associated with the conversion factor between the IWV and the zenith wet delay (ZWD) is proportional to the amount of water vapour and increases slightly for moist weather conditions. The GRUAN GNSS IWV uncertainty data will provide a quantified confidence to be used for the validation of other measurement techniques.

  15. NRT Atmospheric Water Vapour Retrieval on the Area of Poland at IGG WUELS AC

    Science.gov (United States)

    Kaplon, Jan; Bosy, Jaroslaw; Sierny, Jan; Hadas, Tomasz; Rohm, Witold; Wilgan, Karina; Ryczywolski, Marcin; Oruba, Artur; Kroszczynski, Krzysztof

    2013-04-01

    Global Navigation Satellite Systems (GNSS) are designed for positioning, navigation and amongst other possible applications it can also be used to derive information about the state of the atmosphere. Continuous observations from GNSS receivers provide an excellent tool for studying the neutral atmosphere, currently in near real-time. The Near Real-Time (NRT) neutral atmosphere and water vapour distribution models are currently obtained with high resolution from Ground Base Augmentation Systems (GBAS), where reference stations are equipped with GNSS and meteorological sensors. The Poland territory is covered by dense network of GNSS stations in the frame of GBAS system called ASG-EUPOS (www.asgeupos.pl). This system was established in year 2008 by the Head Office of Geodesy and Cartography in the frame of the EUPOS project (www.eupos.org) for providing positioning services. The GNSS data are available from 130 reference stations located in Poland and neighbour countries. The ground meteorological observations in the area of Poland and neighbour countries are available from ASG-EUPOS stations included in EUREF Permanent Network (EPN) stations, airports meteorological stations (METAR messages stations), and stations managed by national Institute of Meteorology and Water Management (SYNOP messages stations). Institute of Geodesy and Geoinformatics (IGG) of Wroclaw University of Environmental and Life Sciences had created permanent NRT service of ZTD (Zenith Total Delay) estimation for the area of Poland from GPS observations called IGGHZG. The first part of the paper presents the methodology of NRT GNSS data processing for ASG-EUPOS stations for ZTD estimation and its comparison to the results coming from EPN ACs and Military University of Technology in Warsaw AC (MUT AC). Second part covers the procedure of IWV (atmospheric Integrated Water Vapour content) estimation at IGG from IGGHZG product and ZHD (Zenith Hydrostatic Delay) derived from Saastamoinen formula (1972

  16. Sampling system of atmospheric water vapour for analysis of the γ sub(D) relationship

    International Nuclear Information System (INIS)

    The development of a system to water vapour air, for natural isotopic composition analysis of hydrogen is presented. The system uses molecular sieve, type '4A', without cooling agent and permits the choice of a sampling time, variyng from a few minutes to many hours, through the control of the admission of vapour flux. The system has good performance in field conditions, with errors of the order of + -3,00/00 in the γ sub(D)(0/00) measurements

  17. Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS and radiosondes

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2011-05-01

    Full Text Available An accurate characterization of the vertical structure of the Arctic atmosphere is useful in climate change and attribution studies as well as for the climate modelling community to improve projections of future climate over this highly sensitive region. Here, we investigate one of the dominant features of the vertical structure of the Arctic atmosphere, i.e. water-vapour inversions, using eight years of Atmospheric Infrared Sounder data (2002–2010 and radiosounding profiles released from the two Arctic locations (North Slope of Alaska at Barrow and during SHEBA. We quantify the characteristics of clear-sky water vapour inversions in terms of their frequency of occurrence, strength and height covering the entire Arctic for the first time.

    We found that the frequency of occurrence of water-vapour inversions is highest during winter and lowest during summer. The inversion strength is, however, higher during summer. The observed peaks in the median inversion-layer heights are higher during the winter half of the year, at around 850 hPa over most of the Arctic Ocean, Siberia and the Canadian Archipelago, while being around 925 hPa during most of the summer half of the year over the Arctic Ocean. The radiosounding profiles agree with the frequency, location and strength of water-vapour inversions in the Pacific sector of the Arctic. In addition, the radiosoundings indicate that multiple inversions are the norm with relatively few cases without inversions. The amount of precipitable water within the water-vapour inversion structures is estimated and we find a distinct, two-mode contribution to the total column precipitable water. These results suggest that water-vapour inversions are a significant source to the column thermodynamics, especially during the colder winter and spring seasons. We argue that these inversions are a robust metric to test the reproducibility of thermodynamics within climate models. An accurate statistical

  18. Validation of near infrared satellite based algorithms to relative atmospheric water vapour content over land

    International Nuclear Information System (INIS)

    This paper presents the validation results of ENVISAT MERIS and TERRA MODIS retrieval algorithms for atmospheric Water Vapour Content (WVC) estimation in clear sky condition on land. The MERIS algorithms exploits the radiance ratio of the absorbing channel at 900 nm with the almost absorption-free reference at 890 nm, while the MODIS one is based on the ratio of measurements centred at near 0.905, 0.936, and 0.94 μm with atmospheric window reflectance at 0.865 and 1.24 μm. The first test was performed in the Mediterranean area using WVC provided from both ECMWF and AERONET. As a second step, the performances of the algorithms were tested exploiting WVC computed from radio sounding (RAOBs)in the North East Australia. The different comparisons with respect to reference WVC values showed an overestimation of WVC by MODIS (root mean square error percentage greater than 20%) and an acceptable performance of MERIS algorithms (root mean square error percentage around 10%)

  19. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations

    Science.gov (United States)

    Wagner, T.; Andreae, M. O.; Beirle, S.; Dörner, S.; Mies, K.; Shaiganfar, R.

    2013-01-01

    We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in the yellow and red spectral range. The retrieval is based on the so-called geometric approximation and does not depend on explicit a priori information for individual observations, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and clouds are simply corrected using the simultaneously measured absorptions of the oxygen dimer, O4. We applied our algorithm to MAX-DOAS observations made at the Max Planck Institute for Chemistry in Mainz, Germany, from March to August 2011, and compared the results to independent observations. Good agreement with Aerosol Robotic Network (AERONET) and European Centre for Medium-Range Weather Forecasting (ECMWF) H2O vertical column densities (VCDs) is found, while the agreement with satellite observations is less good, most probably caused by the shielding effect of clouds for the satellite observations. Good agreement is also found with near-surface in situ observations, and it was possible to derive average daily H2O scale heights (between 1.5 km and 3 km). MAX-DOAS measurements use cheap and simple instrumentation and can be run automatically. One important advantage of our algorithm is that the H2O VCD can be retrieved even under cloudy conditions (except clouds with very high optical thickness).

  20. Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation

    Directory of Open Access Journals (Sweden)

    J. R. Dim

    2011-01-01

    Full Text Available Atmospheric profiles (temperature, pressure, and humidity are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from satellite observations and those simulated by atmospheric models are compared. The models studied are the Nonhydrostatic ICosahedral Atmospheric Model (NICAM and the National Center for Environmental Protection/Department Of Energy (NCEP/DOE. The satellite observations are from the Terra/Moderate Resolution Imaging Spectroradiometer (Terra/MODIS satellite. The simulations performed are obtained through a forward radiative transfer calculation procedure. The resulting radiances are transformed into the upper tropospheric brightness temperature (UTBT and relative humidity (UTRH. The discrepancies between the simulated data and the observations are analyzed. These analyses show that both the NICAM and the NCEP/DOE simulated UTBT and UTRH have comparable distribution patterns. However the simulations’ differences with the observations are generally lower with the NCEP/DOE than with the NICAM. The NCEP/DOE model outputs very often overestimate the UTBT and therefore present a drier upper troposphere. The impact of the lower troposphere instability (dry convection on the upper tropospheric moisture and the consequences on the models’ results are evaluated through a thunderstorm and moisture predictor (the K-stability index. The results obtained show a positive relation between the instability and the root mean square error (RMSE: observation versus models. The study of the impact of convective clouds shows that the area covered by these clouds increases with the

  1. Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-03-01

    Full Text Available At the Izaña Observatory, water vapour amounts have been measured routinely by different techniques for many years. We intercompare the total precipitable water vapour (PWV amounts measured between 2005 and 2009 by a Fourier Transform Infrared (FTIR spectrometer, a Multifilter Rotating Shadow-band Radiometer (MFRSR, a Cimel sunphotometer, a Global Positioning System (GPS receiver, and daily radiosondes (Vaisala RS92. The long-term characteristics of our study allows a reliable and extensive empirical quality assessment of long-term validity, which is an important prerequisite when applying the data to climate research. We estimate a PWV precision of 1% for the FTIR, about 10% for the MFRSR, Cimel, and GPS (when excluding rather dry conditions, and significantly better than 15% for the RS92 (the detection of different airmasses avoids a better constrained estimation. We show that the MFRSR, Cimel and GPS data quality depends on the atmospheric conditions (humid or dry and that the restriction to clear-sky observations introduces a significant dry bias in the FTIR and Cimel data. In addition, we intercompare the water vapour profiles measured by the FTIR and the Vaisala RS92, which allows the conclusion that both experiments are able to detect lower to upper tropospheric water vapour mixing ratios with a precision of better than 15%.

  2. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2012-09-01

    Full Text Available We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS observations in the yellow and red spectral range. The retrieval is based on the so called geometric approximation and does not depend on a-priori information, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and clouds are simply corrected using the simultaneously measured absorptions of the oxygen dimer, O4. We applied our algorithm to MAX-DOAS observations made at the Max Planck Institute for Chemistry in Mainz, Germany, from March to August 2011 and compared the results to independent observations. Good agreement with Aerosol Robotic Network (AERONET and European Centre for Medium-Range Weather Forecasting (ECMWF H2O vertical column densities (VCDs is found, while the agreement with satellite observations is less good, most probably caused by the shielding effect of clouds for the satellite observations. Good agreement is also found with near-surface in-situ observations, and it was possible to derive average daily H2O layer heights (between 1.5 km and 3 km. MAX-DOAS measurements use cheap and simple instrumentation and can be run automatically. One important advantage of our algorithm is that the H2O VCD can be retrieved even under cloudy conditions (except clouds with very high optical thickness.

  3. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2013-01-01

    Full Text Available We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS observations in the yellow and red spectral range. The retrieval is based on the so-called geometric approximation and does not depend on explicit a priori information for individual observations, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and clouds are simply corrected using the simultaneously measured absorptions of the oxygen dimer, O4. We applied our algorithm to MAX-DOAS observations made at the Max Planck Institute for Chemistry in Mainz, Germany, from March to August 2011, and compared the results to independent observations. Good agreement with Aerosol Robotic Network (AERONET and European Centre for Medium-Range Weather Forecasting (ECMWF H2O vertical column densities (VCDs is found, while the agreement with satellite observations is less good, most probably caused by the shielding effect of clouds for the satellite observations. Good agreement is also found with near-surface in situ observations, and it was possible to derive average daily H2O scale heights (between 1.5 km and 3 km. MAX-DOAS measurements use cheap and simple instrumentation and can be run automatically. One important advantage of our algorithm is that the H2O VCD can be retrieved even under cloudy conditions (except clouds with very high optical thickness.

  4. Annealing of polycrystalline thin film silicon solar cells in water vapour at sub-atmospheric pressures

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Píč, Vlastimil; Benda, V.; Fejfar, Antonín

    2014-01-01

    Roč. 54, č. 5 (2014), s. 341-347. ISSN 1210-2709 R&D Projects: GA MŠk 7E10061 EU Projects: European Commission(XE) 240826 - PolySiMode Grant ostatní: AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : passivation * water vapour * thin film solar cell * polycrystalline silicon (poly-Si) * multicrys- talline silicon (m-Si) * Suns-VOC Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  5. Technical Note: Improved total atmospheric water vapour amount determination from near-infrared filter measurements with sun photometers

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2007-09-01

    Full Text Available In this work we explore the effect of the contribution of the solar spectrum to the recorded signal in wavelengths outside the typical 940-nm filter's bandwidth. We employ gaussian-shaped filters as well as actual filter transmission curves, mainly AERONET data, to study the implications imposed by the non-zero out-of-band contribution to the coefficients used to derive precipitable water from the measured water vapour band transmittance. Published parameterized transmittance functions are applied to the data to determine the filter coefficients. We also introduce an improved, three-parameter, fitting function that can describe the theoretical data accurately, with significantly less residual effects than with the existing functions. The moderate-resolution SMARTS radiative transfer code is used to predict the incident spectrum outside the filter bandpass for different atmospheres, solar geometries and aerosol optical depths. The high-resolution LBLRTM radiative transfer code is used to calculate the water vapour transmittance in the 940-nm band. The absolute level of the out-of-band transmittance has been chosen to range from 10−6 to 10−4, and typical response curves of commercially available silicon photodiodes are included into the calculations.

    It is shown that if the out-of-band transmittance effect is neglected, as is generally the case, then the derived columnar water vapour is mainly underestimated by a few percents. The actual error depends on the specific out-of-band transmittance, optical air mass of observation and water vapour amount. Further investigations will use experimental data from field campaigns to validate these findings.

  6. Variability of winter-time middle atmospheric water vapour over the Arctic as observed with a ground-based microwave radiometer

    Science.gov (United States)

    Tschanz, Brigitte; Kivi, Rigel; Rüfenacht, Rolf; Kämpfer, Niklaus

    2014-05-01

    Middle atmospheric water vapour has a long chemical lifetime and can therefore be used as a tracer for dynamics. The ground-based microwave radiometer MIAWARA-C is designed for the use on campaigns and measures profiles of water vapour in the upper stratosphere and mesosphere and thus provides valuable data for the investigation of atmospheric processes. It has been operational for five years and has successfully participated in measurement campaigns under various climatic conditions in Germany, Switzerland, California, Finland and on la Réunion. The temporal resolution of the obtained water vapour profiles approximately 2 hours depending on tropospheric conditions. During two campaigns from January to June 2010 and from July 2011 to April 2013 in Sodankylä, Finland, MIAWARA-C monitored time series of polar middle atmospheric water vapour for three winters with three Sudden Stratospheric Warmings (SSW) occurring in early 2010, 2012 and 2013. The obtained time series are used to study the effects of the three SSWs on middle-atmospheric water vapour. During an SSW, humid mid- to low-latitude air is transported towards the polar region resulting in a fast increase in water vapour. The descent of water vapour after the SSW allows the estimation of the descent rate over the polar region as the normal wintertime circulation reforms. Results from the three SSWs are compared. The ground-based water vapour data is combined with sonde data of the Finnish Meteorological Institute and ground-based microwave wind measurements for one winter in order to obtain a more complete picture of the dynamics in the polar winter atmosphere.

  7. The Estimation of Soil Evaporation and Crop Transpiration of a Maize Crop Using Stable Isotopic Composition of Atmospheric Water Vapour

    International Nuclear Information System (INIS)

    Evapotranspiration (ET) is a major component of water use in agriculture; it is the process by which water is lost directly by soil evaporation (E) and crop transpiration (T). Globally, the percentage of water utilized for crop yield through transpiration is less than 30 percent. The ability to quantify the evaporative and transpiration components will provide useful information about the dynamics of both processes and enhance understanding of how crops utilize water for plant growth so that management strategies can be developed to improve their use efficiency. However, the separation of soil evaporation (E) and crop transpiration (T) from evapotranspiration is complex due to the dynamic nature of these processes. As the isotopic signature of water vapour (δ8O and δ2H) from evaporation is distinct from transpiration and atmosphere, it is possible to partition soil E, crop T from ET using the Keeling Plot approach. This method was tested for a maize crop by the SWMCN Subprogramme in collaboration with the University of Natural Resources and Applied Life Sciences (BOKU) in September 2010 at the BOKU Experimental Station in Gross Enzersdorf (48 o 11' 56.17', 16 o 34' 25.44) near Vienna. By using the Picarro laser water isotope analyser from the SWMCN Laboratory, real-time water vapour isotope measurements were carried out at five heights (0.1, 1.0, 2.5, 3.5 and 5.0 m) above the maize crop (growth stage close to maturity). In addition, soil and plant (stem) samples were collected and soil and plant water extracted for isotopic signatures. The relationship between δ18O in the water vapour, soil water and plant solution is well correlated with δ2H, with a slope of 6.8. This is slightly lower than the value of 8 obtained for the World Meteoric Line (WML) possibly due to the effect of evaporation. Both soil and plant water had higher isotopic values compared to atmospheric water vapour due to fractionation processes during soil evaporation. The relative humidity (RH

  8. Comparison of atmospheric water vapour content with GNSS, Radiosonde, Microwave radiometer, and Lidar

    Science.gov (United States)

    Sohn, D.; Park, K.

    2012-12-01

    The increased amount of saturated water vapor due to the Earth's temperature rise frequently causes abnormal meteorological phenomena such as local severe rainfall in Korea. The National Institute of Meteorological Research of Korea Meteorological Administration (KMA) conducted observation experiments using a variety of water-vapor measuring equipments to improve the accuracy of weather forecasts and accurately measure the precipitable water vapor in the atmosphere. Equipments used were GNSS, water vapor radiometers (WVR), radiosonde, and LiDAR. For GNSS measurements we used two receivers that can collect not only GPS but also GLONASS signals: Trimble NetR5 and Septentrio PolaRx4. The two WVR makers are Raidometrics and RPG. For radiosonde observations, KMA launched Vaisala GPSondes every 6 hours during the experiment period. The LiDAR system was made locally by Hanbat University in Daejeon. Thus, we could obtain collocation experiment results from 6 different kinds of water vapor measurement and analyze the characteristics of each device.

  9. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure

    International Nuclear Information System (INIS)

    Energetic and scalable non-equilibrium plasma was formed in pure water vapour at atmospheric pressure between wire-to-strip electrodes on a dielectric surface with one of the electrodes extended forming a conductive plane on the back side of the dielectric surface. The energy deposition increased by an order of magnitude compared with the conventional pulsed corona discharges under the same conditions. The scalability was demonstrated by operating two electrode assemblies with a common conductive plane between two dielectric layers. The energy yields for hydrogen and hydrogen peroxide generation were measured as ∼1.2 g H2/kWh and ∼4 g H2O2/kWh. (fast track communication)

  10. Evaluation of a new Cr-free alloy as interconnect material for hydrogen production by high temperature water vapour electrolysis: Study in cathode atmosphere

    International Nuclear Information System (INIS)

    For economic and ecological reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 degrees C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a new Cr-free Fe-Ni-Co alloy were tested in cathode atmosphere (H2/H2O) at 800 degrees C. The alloy exhibits a poor oxidation resistance but an excellent ASR parameter, as a result of the formation of a highly-conductive Cr-free surface spinel layer. Moreover, the role of water vapour and hydrogen was discussed and a diffusion mechanism in cathode atmosphere could be suggested. (authors)

  11. Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 micron spectra

    CERN Document Server

    Ryde, N; Farzone, M; Richter, M J; Josselin, E; Harper, G M; Eriksson, K; Greathouse, T K

    2014-01-01

    The structures of the outer atmospheres of red giants are very complex. The notion of large optically thick molecular spheres around the stars (MOLspheres) has been invoked in order to explain e.g. spectro-interferometric observations. However, high-resolution spectra in the mid-IR do not easily fit into this picture. They rule out any large sphere of water vapour in LTE surrounding red giants. Our aim here is to investigate high-resolution, mid-infrared spectra for a range of red giants, from early-K to mid M. We have recorded 12 microns spectra of 10 well-studied bright red giants, with TEXES on the IRTF. We find that all giants in our study cooler than 4300 K, spanning a range of effective temperatures, show water absorption lines stronger than expected. The strengths of the lines vary smoothly with spectral type. We identify several spectral features in the wavelength region that undoubtedly are formed in the photosphere. From a study of water-line ratios of the stars, we find that the excitation temperat...

  12. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. PMID:27593468

  13. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.

    2012-05-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  14. Water Vapour Mixing Ratio Measurements in Potenza in the Frame of the International Network for the Detection of Atmospheric Composition Change - NDACC

    Science.gov (United States)

    De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio

    2016-06-01

    In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.

  15. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    Science.gov (United States)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  16. A water vapour monitor at Paranal Observatory

    Science.gov (United States)

    Kerber, Florian; Rose, Thomas; Chacón, Arlette; Cuevas, Omar; Czekala, Harald; Hanuschik, Reinhard; Momany, Yazan; Navarrete, Julio; Querel, Richard R.; Smette, Alain; van den Ancker, Mario E.; Cure, Michel; Naylor, David A.

    2012-09-01

    We present the performance characteristics of a water vapour monitor that has been permanently deployed at ESO's Paranal observatory as a part of the VISIR upgrade project. After a careful analysis of the requirements and an open call for tender, the Low Humidity and Temperature Profiling microwave radiometer (LHATPRO), manufactured by Radiometer Physics GmbH (RPG), has been selected. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.5 mm). The unit comprises the above humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared radiometer (~10 μm) for cloud detection. The instrument has been commissioned during a 2.5 week period in Oct/Nov 2011, by comparing its measurements of PWV and atmospheric profiles with the ones obtained by 22 radiosonde balloons. In parallel an IR radiometer (Univ. Lethbridge) has been operated, and various observations with ESO facility spectrographs have been taken. The RPG radiometer has been validated across the range 0.5 - 9 mm demonstrating an accuracy of better than 0.1 mm. The saturation limit of the radiometer is about 20 mm. Currently, the radiometer is being integrated into the Paranal infrastructure to serve as a high time-resolution monitor in support of VLT science operations. The water vapour radiometer's ability to provide high precision, high time resolution information on this important aspect of the atmosphere will be most useful for conducting IR observations with the VLT under optimal conditions.

  17. Is there a solar signal in lower stratospheric water vapour?

    Science.gov (United States)

    Schieferdecker, Tobias; Lossow, Stefan; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60 deg S and 60 deg N and 15 to 30 km, and covering the years 1992 to 2012, was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  18. Is there a solar signal in lower stratospheric water vapour?

    Science.gov (United States)

    Schieferdecker, T.; Lossow, S.; Stiller, G. P.; von Clarmann, T.

    2015-09-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  19. Is there a solar signal in lower stratospheric water vapour?

    OpenAIRE

    T. Schieferdecker; S. Lossow; G. P. Stiller; Clarmann, T.

    2015-01-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapou...

  20. Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta18O of water vapour in Pacific Northwest coniferous forests.

    Science.gov (United States)

    Lai, Chun-Ta; Ehleringer, James R; Bond, Barbara J; Paw U, Kyaw Tha

    2006-01-01

    Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (delta 18O) as high as 4% per hundred were observed for water vapour (delta (18)Ovp) above and within an old-growth coniferous forest in the Pacific Northwest region of the United States. Values of delta 18Ovp decreased in the morning, reached a minimum at midday, and recovered to early-morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2-d period by considering the 18O-isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do delta 18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of delta 18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O-isoflux in the morning of day 1, causing values of delta 18Ovp, to decrease. An isotopically enriched 18O-isoflux resulting from transpiration then offset this decreased delta 18Ovp later during the day. Contributions of 18O-isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H2(16)O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas-fir trees as approximately 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non-steady state model for predicting delta 18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of

  1. Water vapour permeability of clay bricks

    OpenAIRE

    Dondi, M.; Principi, P.; Raimondo, M.; Zanarini, G.

    2003-01-01

    The water vapour permeability of clay bricks has been experimentally measured in order to draw a representative outline of industrial products without pore-forming additives. The correlations between water vapour permeability and the main compositional and microstructural parameters of both bricks and clay bodies have been investigated. A statistical model was set up in order to predict with reasonable precision and reliability, the water vapour permeability on the basis of open porosity, bul...

  2. An investigation into the optimum thickness of titanium dioxide thin films synthesized by using atmospheric pressure chemical vapour deposition for use in photocatalytic water oxidation.

    Science.gov (United States)

    Hyett, Geoffrey; Darr, Jawwad A; Mills, Andrew; Parkin, Ivan P

    2010-09-10

    Twenty eight films of titanium dioxide of varying thickness were synthesised by using atmospheric pressure chemical vapour deposition (CVD) of titanium(IV) chloride and ethyl acetate onto glass and titanium substrates. Fixed reaction conditions at a substrate temperature of 660 °C were used for all depositions, with varying deposition times of 5-60 seconds used to control the thickness of the samples. A sacrificial electron acceptor system composed of alkaline sodium persulfate was used to determine the rate at which these films could photo-oxidise water in the presence of 365 nm light. The results of this work showed that the optimum thickness for CVD films on titanium substrates for the purposes of water oxidation was ≈200 nm, and that a platinum coating on the reverse of such samples leads to a five-fold increase in the observed rate of water oxidation. PMID:20645333

  3. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  4. Global trends and variability in integrated water vapour from ground-based GPS data and atmospheric models

    Science.gov (United States)

    Bock, Olivier; Parracho, Ana; Bastin, Sophie; Hourdin, Frededic; Mellul, Lidia

    2016-04-01

    A high-quality, consistent, global, long-term dataset of integrated water vapour (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) intercomparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and are analysed in coherence with precipitation and surface temperature data (from observations and ERA-Interim reanalysis). These data are also used to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are intercompared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.

  5. Could water vapour be the culprit in global warming?

    International Nuclear Information System (INIS)

    It is easy to understand why most people - and many governments - are quick to blame ''global warming'' for apparently extreme variations in weather and seasonal trends. ''Greenhouse gases'' have long received a bad press, and carbon dioxide is often singled out as the culprit in global warming. Yet a recent study led by Richard Learner of Imperial College in London supports the possibility that water vapour could be a major contributor to atmospheric heating (D Belmiloud et al. 2000 Geophysical Res. Lett. 27 3703). In the February issue of Physics World, Ahilleas Maurellis of the Space Research Organisation Netherlands (SRON), Utrecht, reveals the role water vapour plays in our atmosphere. (U.K.)

  6. Multi-scale analysis of the impact of increased spatial resolution of soil moisture and atmospheric water vapour on convective precipitation

    Science.gov (United States)

    Khodayar, S.; Schaedler, G.; Kalthoff, N.

    2010-09-01

    The distribution of water vapour in the planetary boundary layer (PBL) and its development over time is one of the most important factors affecting precipitation processes. Despite the dense radiosonde network deployed during the Convective and Orographically-induced Precipitation Study (COPS), the high spatial variability of the water vapour field was not well resolved with respect to the detection of the initiation of convection. The first part of this investigation focuses on the impact of an increased resolution of the thermodynamics and dynamics of the PBL on the detection of the initiation of convection. The high spatial resolution was obtained using the synergy effect of data from the networks of radiosondes, automatic weather stations, synoptic stations, and especially Global Positioning Systems (GPSs). A method is introduced to combine GPS and radiosonde data to obtain a higher resolution representation of atmospheric water vapour. The gained spatial resolution successfully improved the representations of the areas where deep convection likelihood was high. Location and timing of the initiation of convection were critically influenced by the structure of the humidity field in the boundary-layer. The availability of moisture for precipitation is controlled by a number of processes including land surface processes, the latter are strongly influenced by spatially variable fields of soil moisture (SM) and land use. Therefore, an improved representation of both fields in regional model systems can be expected to produce better agreement between modelled and measured surface energy fluxes, boundary layer structure and precipitation. SM is currently one of the least assessed quantities with almost no data from operational monitoring networks available. However, during COPS an innovative measurement approach using a very high number of different SM sensors was introduced. The network consisted of newly developed low-cost SM sensors installed at 43 stations. Each

  7. Measurement of the Cotton Mouton effect of water vapour

    CERN Document Server

    Della Valle, F; Gastaldi, U; Messineo, G; Milotti, E; Pengo, R; Piemontese, L; Ruoso, G; Zavattini, G

    2013-01-01

    In this paper we report on a measurement of the Cotton Mouton effect of water vapour. Measurement performed at room temperature ($T=301$ K) with a wavelength of 1064 nm gave the value $\\Delta n_u = (6.67 \\pm 0.45) \\cdot 10^{-15}$ for the unit magnetic birefringence (1 T magnetic field and atmospheric pressure).

  8. Validation of SCIAMACHY AMC-DOAS water vapour columns

    Directory of Open Access Journals (Sweden)

    S. Noël

    2005-01-01

    Full Text Available A first validation of water vapour total column amounts derived from measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY in the visible spectral region has been performed. For this purpose, SCIAMACHY water vapour data have been determined for the year 2003 using an extended version of the Differential Optical Absorption Spectroscopy (DOAS method, called Air Mass Corrected (AMC-DOAS. The SCIAMACHY results are compared with corresponding water vapour measurements by the Special Sensor Microwave Imager (SSM/I and with model data from the European Centre for Medium-Range Weather Forecasts (ECMWF. In confirmation of previous results it could be shown that SCIAMACHY derived water vapour columns are typically slightly lower than both SSM/I and ECMWF data, especially over ocean areas. However, these deviations are much smaller than the observed scatter of the data which is caused by the different temporal and spatial sampling and resolution of the data sets. For example, the overall difference with ECMWF data is only -0.05 g/cm2 whereas the typical scatter is in the order of 0.5 g/cm2. Both values show almost no variation over the year. In addition, first monthly means of SCIAMACHY water vapour data have been computed. The quality of these monthly means is currently limited by the availability of calibrated SCIAMACHY spectra. Nevertheless, first comparisons with ECMWF data show that SCIAMACHY (and similar instruments are able to provide a new independent global water vapour data set.

  9. Validation of SCIAMACHY AMC-DOAS water vapour columns

    Directory of Open Access Journals (Sweden)

    S. Noël

    2005-04-01

    Full Text Available A first validation of water vapour total column amounts derived from measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY in the visible spectral region has been performed. For this purpose, SCIAMACHY water vapour data have been determined for the year 2003 using an extended version of the Differential Optical Absorption Spectroscopy (DOAS method, called Air Mass Corrected (AMC-DOAS. The SCIAMACHY results are compared with corresponding water vapour measurements by the Special Sensor Microwave Imager (SSM/I and with model data from the European Centre for Medium-Range Weather Forecasts (ECMWF.

    In confirmation of previous results it could be shown that SCIAMACHY derived water vapour columns are typically slightly lower than both SSM/I and ECMWF data, especially over ocean areas. However, these deviations are much smaller than the observed scatter of the data which is caused by the different temporal and spatial sampling and resolution of the data sets. For example, the overall difference with ECMWF data is only −0.05 g/cm2 whereas the typical scatter is in the order of 0.5 g/cm2. Both values show almost no variation over the year.

    In addition, first monthly means of SCIAMACHY water vapour data have been computed. The quality of these monthly means is currently limited by the availability of calibrated SCIAMACHY spectra. Nevertheless, first comparisons with ECMWF data show that SCIAMACHY (and similar instruments are able to provide a new independent global water vapour data set.

  10. Impact of major volcanic eruptions on stratospheric water vapour

    Science.gov (United States)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  11. A new portable generator to dynamically produce SI-traceable reference gas mixtures for VOCs and water vapour at atmospheric concentration

    Science.gov (United States)

    Guillevic, Myriam; Pascale, Céline; Ackermann, Andreas; Leuenberger, Daiana; Niederhauser, Bernhard

    2016-04-01

    In the framework of the KEY-VOCs and AtmoChem-ECV projects, we are currently developing new facilities to dynamically generate reference gas mixtures for a variety of reactive compounds, at concentrations measured in the atmosphere and in a SI-traceable way (i.e. the amount of substance fraction in mole per mole is traceable to SI-units). Here we present the realisation of such standards for water vapour in the range 1-10 μmol/mol and for volatile organic compounds (VOCs) such as limonene, alpha-pinene, MVK, MEK, in the nmol/mol range. The matrix gas can be nitrogen or synthetic air. Further development in gas purification techniques could make possible to use purified atmospheric air as carrier gas. The method is based on permeation and dynamic dilution: one permeator containing a pure substance (either water, limonene, MVK, MEK or α-pinene) is kept into a permeation chamber with a constant gas flow. The mass loss is precisely calibrated using a magnetic suspension balance. The carrier gas is purified beforehand from the compounds of interest to the required level, using commercially available purification cartridges. This primary mixture is then diluted to reach the required amount of substance fraction. All flows are piloted by mass flow controllers which makes the production process flexible and easily adaptable to generate the required concentration. All parts in contact with the gas mixture are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. Two setups are currently developed: one already built and fixed in our laboratory in Bern as well as a portable generator that is still under construction and that could be used anywhere in the field. The permeation chamber of the portable generator has multiple individual cells allowing the generation of mixtures up to 5 different components if needed. Moreover the presented technique can be adapted and applied to a large variety of molecules (e.g., NO2, BTEX, CFCs

  12. Air mass patterns and temporal variation of the isotopic composition of atmospheric water vapour and precipitation over central Turkey and groundwater recharge

    International Nuclear Information System (INIS)

    Water vapour and event precipitation have been collected within the program of coordinated research project about isotopic composition of precipitation in the Mediterranean basin in relation to air circulation patterns and climate at Ankara since January 2001. The purpose of this study is the determination of the interaction between climate conditions, chemical composition and isotopic composition (oxygen 18 and deuterium) of precipitation and water vapor in Turkey. For this purpose we have been collecting samples at Ankara station to understand the variation of daily/event and seasonal isotopic values of precipitation and water vapor. The study focuses on the systematic collection of basic data on isotope content of precipitation and water vapor in Ankara, Turkey to determine temporal variations of environmental isotopes in precipitation and consequently to provide basic isotopic data for the use of environmental isotopes in hydrological investigations within the scope of water resources inventory, planning and development

  13. Preconditions to ground based GPS water vapour tomography

    Directory of Open Access Journals (Sweden)

    M. Bender

    2007-08-01

    Full Text Available The GPS water vapour tomography is a new technique which provides spatially resolved water vapour distributions in the atmosphere under all weather conditions. This work investigates the information contained in a given set of GPS signals as a precondition to an optimal tomographic reconstruction. The spatial distribution of the geometric intersection points between different ray paths is used to estimate the information density. Different distributions of intersection points obtained from hypothetical GPS networks with varying densities of GPS stations are compared with respect to the horizontal and vertical resolution of a subsequent tomographic reconstruction. As a result some minimum requirements for continuously operating extensive GPS networks for meteorological applications are given.

  14. The Water Vapour Radiometer at Effelsberg

    Science.gov (United States)

    Roy, A. L.; Teuber, U.; Keller, R.

    We have installed a scanning 18 GHz to 26 GHz water vapour radiometer on the focus cabin of the Effelsberg 100 m telescope for tropospheric phase, delay and opacity correction during high-frequency VLBI observations. It is based on the design by Tahmoush & Rogers (2000) but with noise injection for calibration, weather-proof housing, and temperature stabilization. The radiometer is delivering data into an archive since July 2003, from which they are available for download. The data will be delivered automatically to PIs of EVN experiments in a calibration table attached by the EVN calibration pipeline. This paper describes the radiometer and its performance.

  15. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  16. The water vapour flux above Switzerland and its role in the August 2005 extreme precipitation and flooding

    Energy Technology Data Exchange (ETDEWEB)

    N' Dri Koffi, Ernest; Maetzler, Christian [Bern Univ. (Switzerland). Inst. of Applied Physics; Graham, Edward [Bern Univ. (Switzerland). Inst. of Applied Physics; University of the Highlands and Islands, Stornoway, Scotland (United Kingdom). Lews Castle College

    2013-10-15

    The water budget approach is applied to an atmospheric box above Switzerland (hereafter referred to as the 'Swiss box') to quantify the atmospheric water vapour flux using ECMWF ERA-Interim reanalyses. The results confirm that the water vapour flux through the Swiss box is highly temporally variable, ranging from 1 to 5 x 10{sup 7} kg/s during settled anticyclonic weather, but increasing in size by a factor of ten or more during high speed currents of water vapour. Overall, Switzerland and the Swiss box 'import' more water vapour than it 'exports', but the amount gained remains only a small fraction (1% to 5%) of the total available water vapour passing by. High inward water vapour fluxes are not necessarily linked to high precipitation episodes. The water vapour flux during the August 2005 floods, which caused severe damage in central Switzerland, is examined and an assessment is made of the computed water vapour fluxes compared to high spatio-temporal rain gauge and radar observations. About 25% of the incoming water vapour flux was stored in Switzerland. The computed water vapour fluxes from ECMWF data compare well with the mean rain gauge observations and the combined rain-gauge radar precipitation products. (orig.)

  17. The water vapour flux above Switzerland and its role in the August 2005 extreme precipitation and flooding

    Directory of Open Access Journals (Sweden)

    Ernest N'dri Koffi

    2013-07-01

    Full Text Available The water budget approach is applied to an atmospheric box above Switzerland (hereafter referred to as the “Swiss box” to quantify the atmospheric water vapour flux using ECMWF ERA-Interim reanalyses. The results confirm that the water vapour flux through the Swiss box is highly temporally variable, ranging from 1 to 5 · 107 kg/s during settled anticyclonic weather, but increasing in size by a factor of ten or more during high speed currents of water vapour. Overall, Switzerland and the Swiss box “import” more water vapour than it “exports”, but the amount gained remains only a small fraction (1% to 5% of the total available water vapour passing by. High inward water vapour fluxes are not necessarily linked to high precipitation episodes. The water vapour flux during the August 2005 floods, which caused severe damage in central Switzerland, is examined and an assessment is made of the computed water vapour fluxes compared to high spatio-temporal rain gauge and radar observations. About 25% of the incoming water vapour flux was stored in Switzerland. The computed water vapour fluxes from ECMWF data compare well with the mean rain gauge observations and the combined rain-gauge radar precipitation products.

  18. Monitoring present day changes in water vapour and the radiative energy balance using satellite data, reanalyses and models

    OpenAIRE

    Allan, Richard Philip

    2007-01-01

    A combination of satellite data, reanalysis products and climate models are combined to monitor changes in water vapour, clear-sky radiative cooling of the atmosphere and precipitation over the period 1979-2006. Climate models are able to simulate observed increases in column integrated water vapour (CWV) with surface temperature (Ts) over the ocean. Changes in the observing system lead to spurious variability in water vapour and clear-sky longwave radiation in reanalysis products. Neverthele...

  19. Air and Soil Water Vapour Density Variations in Akungba Akoko

    Directory of Open Access Journals (Sweden)

    Afolabi O.M

    2015-10-01

    Full Text Available – A temperature and humidity measuring equipment constructed with Silicon lab Si7015 integrated circuit sensor was used to monitor temperature and humidity, compute water saturation and vapour densities for air and soil and to interpret three days variations in Akungba Akoko. The sensors were inserted 5 cm into the soil and 2m away in the troposphere. Two hour records of both parameters were taken from 9 am to 5 pm for 3 days. Air and soil water saturation and vapour density data were computed from the 2 measured parameters by using the ITU-2003 formula. Interpretations of resulting curves showed that increase in vapour density in soil is more than that of air during rainfall and this increase with temperature. The average soil water saturation data and vapour density are also higher in soil. It is suggested that the soil water vapour density and water saturation interpretation should be done for areas with landslides and pollution tendencies

  20. GPS tomographic experiment on water vapour dynamics in the troposphere over Lisbon

    Science.gov (United States)

    Benevides, Pedro; Catalao, Joao; Miranda, Pedro

    2015-04-01

    Quantification of the water vapour variability on the atmosphere remains a difficult task, affecting the weather prediction. Coarse water vapour resolution measurements in space and time affect the numerical weather prediction solution models causing artifacts in the prediction of severe weather phenomena. The GNSS atmospheric processing has been developed in the past years providing integrated water vapour estimates comparable with the meteorological sensor measurements, with studies registering 1 to 2 kg/m2 bias, but lack a vertical determination of the atmospheric processes. The GNSS tomography in the troposphere is one of the most promising techniques for sensing the three-dimensional water vapour state of the atmosphere. The determination of the integrated water vapour profile by means of the widely accepted GNSS meteorology techniques, allows the reconstruction of several slant path delay rays in the satellite line of view, providing an opportunity to sense the troposphere at tree-dimensions plus time. The tomographic system can estimate an image solution of the water vapour but impositions have to be introduced to the system of equations inversion because of the non-optimal GNSS observation geometry. Application of this technique on atmospheric processes like large convective precipitation or mesoscale water vapour circulation have been able to describe its local dynamic vertical variation. A 3D tomographic experiment was developed over an area of 60x60 km2 around Lisbon (Portugal). The GNSS network available composed by 9 receivers was used for an experiment of densification of the permanent network using 8 temporarily installed GPS receivers (totalling 17 stations). This study was performed during several weeks in July 2013, where a radiosonde campaign was also held in order to validate the tomographic inversion solution. 2D integrated water vapour maps directly obtained from the GNSS processing were also evaluated and local coastal breeze circulation

  1. Effect of Water Vapour to Temperature Inside Sonoluminescing Bubble

    Institute of Scientific and Technical Information of China (English)

    安宇; 谢崇国; 应崇福

    2003-01-01

    Using the model based on the homo-pressure approximation, we explain why the maximum temperature is sensitive to the ambient temperature in the single bubble sonoluminescence. The numerical simulation shows that the maximum temperature inside a sonoluminescing bubble depends on how much water vapour evaporates or coagulates at the bubble wall during the bubble shrinking to its minimum size. While the amount of water vapour inside the bubble at the initial and the final state of the compression depends on the saturated water vapour pressure which is sensitive to the ambient temperature. The lower the saturated vapour pressure is, the higher the maximum temperature is. This may lead to more general conclusion that those liquids with lower saturated vapour pressure are more favourable for the single bubble sonoluminescence. We also compare those bubbles with different noble gases, the result shows that the maximum temperatures in the different gas bubbles are almost the same for those with the same ambient temperature.

  2. [CO2-gas exchange of mosses following water vapour uptake].

    Science.gov (United States)

    Lange, O L

    1969-03-01

    The CO2-gas exchange of dry mosses which were exposed to air of high water vapour content has been followed. Some moss species behave as do lichens and aerophilic green algae: they are able to take up enough water vapour to make a rather high photosynthetic activity possible. Other species lack this ability. They need liquid water for reactivation of photosynthesis, as do poikilohydric ferns and phanerogams. In this respect too the mosses are located between the real thallophytes and the cormophytes. From this point of view they are useful objects for studying the relationships between water vapour reactivation, morphological organisation and ecological capability. PMID:24504355

  3. A solar signal in lower stratospheric water vapour?

    OpenAIRE

    T. Schieferdecker; S. Lossow; Stiller, G. P.; von Clarmann, T.

    2015-01-01

    A merged time series of stratospheric water vapour built from HALOE and MIPAS data between 60° S and 60° N and 15 to 30 km and covering the years 1992 to 2012 was analyzed by multivariate linear regression including an 11 year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second compon...

  4. All-sky homogeneity of precipitable water vapour over Paranal

    CERN Document Server

    Querel, Richard R

    2014-01-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 {\\mu}m) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5{\\deg} el...

  5. The millennium water vapour drop in chemistry-climate model simulations

    Science.gov (United States)

    Brinkop, Sabine; Dameris, Martin; Jöckel, Patrick; Garny, Hella; Lossow, Stefan; Stiller, Gabriele

    2016-07-01

    This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop") and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM) EMAC (ECHAM/MESSy Atmospheric Chemistry Model). The model simulations differ with respect to the prescribed sea surface temperatures (SSTs) and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer-Dobson circulation (BDC). We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST) changes due to a coincidence with a preceding strong El Niño-Southern Oscillation event (1997/1998) followed by a strong La Niña event (1999/2000) and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO) in 2000. Correct (observed) SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution) is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics. Our free

  6. Air mass patterns and temporal variation of the isotopic composition of atmospheric water vapour and precipitation over Central Turkey and groundwater recharge

    International Nuclear Information System (INIS)

    Full text: Water vapour and event precipitation have been collected within the program of coordinated research project about isotopic composition of precipitation in the Mediterranean basin in relation to air circulation patterns and climate at Ankara since January 2001. The purpose of this study is the determination of the interaction between climate conditions, chemical composition and isotopic composition (δ18O, δ2H) of precipitation and water vapor in Turkey. For this purpose we have been collecting samples at Ankara station to understand the variation of daily/event and seasonal isotopic values of precipitation and water vapor. The study focuses on the systematic collection of basic data on isotope content of precipitation and water vapor in Ankara, Turkey to determine temporal variations of environmental isotopes in precipitation and consequently to provide basic isotopic data for the use of environmental isotopes in hydrological investigations within the scope of water resources inventory, planning and development. Sampling of rain water and water vapor have been carried out in Ankara Turkey, from January 2001 to December 2001, by means of a pluviometer, water vapor sampling system respectively. The relation between the isotopic composition of precipitation and synoptic parameters is examined. The rain samples can be separated into three group based on 'deuterium excess' for year 2001 and long term observation of Ankara, Antalya and Adana stations of Turkey. The majority of the samples have a 'deuterium excess' between 10 and 22 per mille and other has values less than 10 per mille and greater than 22. The rains with a 'deuterium excess' of more than 22 per mille, between 10 and 22 and less than 10 are associated with air masses which comes from East Mediterranean (SW), North Atlantic (N, NW) and Central Atlantic (W, SW) respectively. Although it is not possible to derive the isotopic composition of the water vapor from isotopic composition of

  7. Contributions of Organic Vapours to Atmospheric Nanoparticle Growth

    Science.gov (United States)

    Wang, L.; Xu, W.; Khalizov, A. F.; Zhang, R.

    2010-12-01

    Atmospheric aerosol particles alter radiative balance of the earth-atmosphere system, impact the regional and global climate, and pose negative effects on human health. Aerosol nucleation events have been frequently observed under various tropospheric conditions and account for a major fraction of the total aerosol population. Although a number of studies suggest that organics are involved in both new particle formation and their subsequent growth, the fundamental chemical processes responsible for organic vapours’ contribution remain poorly understood. This work will focus on laboratory studies on the role of various organic vapours in sulphuric acid nanoparticles growth. Sulfuric acid nanoparticles of 4-20 nm diameter size are generated from homogeneous binary nucleation of H2SO4 and H2O vapors in a laminar flow reactor. The growth factor of H2SO4 nanoparticles exposed to organics including methyglyoxal, ethanol, 1-butanol, 1-heptanol, 1-decanol, and cis-pinonic acid is measured using a nano-tandem differential mobility analyzer (nano-TDMA). Also studied is the potential synergistic effect in the presence of two or more organic vapours to which sulphuric acid nanoparticles are exposed. The chemical compositions of H2SO4 particles exposed to the organics are analyzed by a thermal desorption-ion drift-chemical ionization mass spectrometer (TD-ID-CIMS), and the spectroscopic evolution of functional groups in H2SO4 particles of ~40 nm diameter size, deposited on ZnSe crystal and subsequently exposed to organics, is studied using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR). The combined techniques are used to elucidate the key factors in controlling atmospheric nanoparticle growth.

  8. Retrieval of global water vapour columns from GOME-2 and first applications in polar regions

    Directory of Open Access Journals (Sweden)

    S. Noël

    2007-12-01

    Full Text Available Global total water vapour columns have been derived from measurements of the Global Ozone Monitoring Experiment 2 (GOME-2 on MetOp. For this purpose, the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS method has been adapted, which has already been applied successfully to GOME (on ERS-2 and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY, on ENVISAT data. Comparisons between the derived GOME-2 and SCIAMACHY water vapour columns show a good overall agreement. This gives confidence that the time series of water vapour columns from GOME-type instruments which started in 1995 can be continued by the MetOp instrumentation until at least 2020. The enhanced temporal and spatial resolution of GOME-2 enables the analysis of short-term variations particularly in the polar regions. This is especially important since atmospheric data sources in the polar regions are generally sparse. As an exemplary application, daily water vapour concentrations over the polar research station Ny Ålesund (78°55'19" N/11°56'33" E are investigated. At this latitude GOME-2 gives about six data points during daylight hours at varying local times. The results of this study show that it is possible to derive information about the diurnal variability of water vapour in polar regions from GOME-2 measurements.

  9. Carbon dioxide and water vapour characteristics on the west coast of Arabian Sea during Indian summer monsoon

    Indian Academy of Sciences (India)

    T Dharmaraj; M N Patil; R T Waghmare; P Ernest Raj

    2012-08-01

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the coast of Arabian Sea, Goa (15°21′N, 73° 51′E) in India. These observations were collected, in association with the surface layer turbulent parameters for the Arabian Sea Monsoon Experiment (ARMEX). In the summer monsoon period, concentration of CO2 was in the range of 550–790 mg m−3 whereas the water vapour was in the range of 17.5–24.5 g m−3. The Fast Fourier Transform (FFT) analysis has been performed on these observations to investigate the spectral behaviour of CO2 and water vapour. The relation between CO2 and water vapour on various atmospheric scales has been proposed. CO2 and water vapour observations confirmed the existence of periodicities of large (11, 8 days), meso (5 days) and micrometeorological (20 min) scales.

  10. Carbon dioxide and water vapour characteristics on the west coast of Arabian Sea during Indian summer monsoon

    Science.gov (United States)

    Dharmaraj, T.; Patil, M. N.; Waghmare, R. T.; Ernest Raj, P.

    2012-08-01

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the coast of Arabian Sea, Goa (15°21'N, 73°51'E) in India. These observations were collected, in association with the surface layer turbulent parameters for the Arabian Sea Monsoon Experiment (ARMEX). In the summer monsoon period, concentration of CO2 was in the range of 550-790 mg m - 3 whereas the water vapour was in the range of 17.5-24.5 g m - 3. The Fast Fourier Transform (FFT) analysis has been performed on these observations to investigate the spectral behaviour of CO2 and water vapour. The relation between CO2 and water vapour on various atmospheric scales has been proposed. CO2 and water vapour observations confirmed the existence of periodicities of large (11, 8 days), meso (5 days) and micrometeorological (20 min) scales.

  11. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    OpenAIRE

    Schneider, M.; S. Barthlott; F. Hase; González, Y.; Yoshimura, K; O. E. García; E. Sepúlveda; Gomez-Pelaez, A.; Gisi, M.; R. Kohlhepp; S. Dohe; Blumenstock, T.; Wiegele, A.; E. Christner; Strong, K.

    2012-01-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sens...

  12. The CM SAF ATOVS tropospheric water vapour and temperature data record: overview of methodology and evaluation

    OpenAIRE

    N. Courcoux; Schröder, M.

    2015-01-01

    Recently, the reprocessed Advanced Television Infrared Observation Satellite (TIROS)-N Operational Vertical Sounder (ATOVS) tropospheric water vapour and temperature data record has been released by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF). ATOVS observations from the National Oceanic and Atmospheric Agency (NOAA)-15 through NOAA-19 ...

  13. On the retrieval of water vapour profiles from a single GPS station

    International Nuclear Information System (INIS)

    In this paper it is presented an inversion method to retrieve atmospheric water vapour profiles from GPS signals received by a single station. The method uses a formula relating the refraction index to the delay time that includes the curvature effect of the signal path

  14. Water vapour variability in the high-latitude upper troposphere - Part 2: Impact of volcanic eruptions

    Science.gov (United States)

    Sioris, Christopher E.; Zou, Jason; McElroy, C. Thomas; Boone, Chris D.; Sheese, Patrick E.; Bernath, Peter F.

    2016-02-01

    The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12) % increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of ˜ 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade.

  15. Water vapour total columns from SCIAMACHY spectra in the 2.36 μm window

    OpenAIRE

    Schrijver, H.; Gloudemans, A. M. S.; Frankenberg, C.; Aben, I.

    2009-01-01

    The potential of the shortwave infrared channel of the atmospheric spectrometer SCIAMACHY on Envisat to provide accurate measurements of total atmospheric water vapour columns is explored. It is shown that good quality results can be obtained for cloud free scenes above the continents using the Iterative Maximum Likelihood Method. In addition to the standard cloud filter employed in this method, further cloud screening is obtained by comparing simultaneously retrieved methane columns with val...

  16. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    OpenAIRE

    G. Mengistu Tsidu; Blumenstock, T.; Hase, F.

    2015-01-01

    Water vapour is one of the most important green house gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a green house gas but also because of its role in amplifying other feedbacks in general circulation models. In recent decades, monitoring of water vapour on regular and continuous basis is becoming possible as a result of increase in the number of deployed Global Positioning Satell...

  17. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  18. Air and Soil Water Vapour Density Variations in Akungba Akoko

    OpenAIRE

    Afolabi O.M.

    2015-01-01

    – A temperature and humidity measuring equipment constructed with Silicon lab Si7015 integrated circuit sensor was used to monitor temperature and humidity, compute water saturation and vapour densities for air and soil and to interpret three days variations in Akungba Akoko. The sensors were inserted 5 cm into the soil and 2m away in the troposphere. Two hour records of both parameters were taken from 9 am to 5 pm for 3 days. Air and soil water saturation and vapour density data were compute...

  19. The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations

    Science.gov (United States)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca

    2015-04-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space

  20. All-sky homogeneity of precipitable water vapour over Paranal

    Science.gov (United States)

    Querel, Richard R.; Kerber, Florian

    2014-08-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ~2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (~10 μm) for cloud detection. We present, for the first time, a statistical analysis of the homogeneity of all-sky PWV using 21 months of periodic (every 6 hours) all-sky scans from the radiometer. These data provide unique insight into the spatial and temporal variation of atmospheric conditions relevant for astronomical observations, particularly in the infrared. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.32 mm (peak to valley) or 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 10-15% (peak to valley) and 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared that can only be conducted during periods of very good atmospheric transmission and hence low PWV. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be

  1. Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco;

    2015-01-01

    The objective of the work is validation of HITEMP-2010 at atmospheric pressures and temperatures reaching 1770K. To this end, spectral transmissivities at 1cm-1 resolution and excellent signal-to-noise-ratio have been measured for 22 CO2/H2O/N2 mixtures. In this paper we consider the 450cm-1-7600cm...

  2. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  3. The Investigation of Isotopic Composition of Precipitation and water vapour by Using Air Mass Trajectories and Meteorological Parameters

    International Nuclear Information System (INIS)

    In last century there are so many studies were carried out about stable isotopes of precipitation. The Researchers, study in this field directed to examine origin and transport of water vapour. To investigate the conditions of precipitation formation parallel with climatic changes, stable isotopes using as a powerful tool. So that a project coordinated by IAEA. In this presentation we will give some parts of this project which was carried out in Turkey. First results were obtained for 2001 year. The one of the first result which was obtained in this project is the relation between air temperature and isotopic composition of precipitation collected in Ankara Antalya and Adana station. Second was the observation of temporal variation of stable isotope composition in precipitation and water vapour in relation with water vapour transport. δD and δ18O content of atmospheric water vapour examined for January - December 2001 time interval. 27 precipitation event had been examined, starting from endengered place and following to trajectories until to reach Turkey, by using ground level and 500mbar synoptic charts. The observed δD and δ18O variations of water vapour is related with the endengered place (Atlantic Ocean, Mediterranean Sea, etc.) of water vapour. The isotopic composition of local precipitation forms by regional meteorological factors. In this study δD and δ18O relation of event, daily precipitation and water vapour were defined

  4. Water vapour variability in the high-latitude upper troposphere - Part 2: Impact of volcanic emissions

    Science.gov (United States)

    Sioris, C. E.; Zou, J.; McElroy, C. T.; Boone, C. D.; Sheese, P. E.; Bernath, P. F.

    2015-09-01

    The impact of volcanic eruptions on water vapour in the region of the high latitude tropopause is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The three eruptions with the greatest impact on the high latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive eruption in the past 24 years and resulted in an observed (50 ± 12) % increase in water vapour in the southern high-latitude upper troposphere in July 2011 that persisted into September 2011. A pair of Northern Hemisphere volcanoes, namely Eyjafjallajökull and Nabro, erupted in 2010 and 2011 respectively, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of ~ 3 months following each eruption. Both had a volcanic explosivity index of 4. Nabro led to a statistically significant increase of ~ 1 ppm in lower stratospheric (13.5-15.5 km) water vapour at northern high-latitudes (60-90° N) in September 2011, when the brunt of its plume arrived in the Arctic. These findings imply that steam emitted into the high-latitude, upper troposphere during volcanic eruptions must be taken into account to properly determine the magnitude of the trend in water vapour over the last decade.

  5. Upper tropospheric water vapour variability at high latitudes - Part 1: Influence of the annular modes

    Science.gov (United States)

    Sioris, Christopher E.; Zou, Jason; Plummer, David A.; Boone, Chris D.; McElroy, C. Thomas; Sheese, Patrick E.; Moeini, Omid; Bernath, Peter F.

    2016-03-01

    Seasonal and monthly zonal medians of water vapour in the upper troposphere and lower stratosphere (UTLS) are calculated for both Atmospheric Chemistry Experiment (ACE) instruments for the northern and southern high-latitude regions (60-90° N and 60-90° S). Chosen for the purpose of observing high-latitude processes, the ACE orbit provides sampling of both regions in 8 of 12 months of the year, with coverage in all seasons. The ACE water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS) are currently the only satellite instruments that can probe from the lower stratosphere down to the mid-troposphere to study the vertical profile of the response of UTLS water vapour to the annular modes. The Arctic oscillation (AO), also known as the northern annular mode (NAM), explains 64 % (r = -0.80) of the monthly variability in water vapour at northern high latitudes observed by ACE-MAESTRO between 5 and 7 km using only winter months (January to March, 2004-2013). Using a seasonal time step and all seasons, 45 % of the variability is explained by the AO at 6.5 ± 0.5 km, similar to the 46 % value obtained for southern high latitudes at 7.5 ± 0.5 km explained by the Antarctic oscillation or southern annular mode (SAM). A large negative AO event in March 2013 produced the largest relative water vapour anomaly at 5.5 km (+70 %) over the ACE record. A similarly large event in the 2010 boreal winter, which was the largest negative AO event in the record (1950-2015), led to > 50 % increases in water vapour observed by MAESTRO and ACE-FTS at 7.5 km.

  6. Breakdown and dc discharge in low-pressure water vapour

    Science.gov (United States)

    Sivoš, J.; Škoro, N.; Marić, D.; Malović, G.; Petrović, Z. Lj

    2015-10-01

    In this paper we report studies of basic properties of breakdown, low-current Townsend discharge and high-current discharge regimes in water vapour. Paschen curves and the corresponding distributions of emission intensities at low current were recorded in the range of pd (pressure x electrode gap) from 0.1 to 10 Torrcm covering the region of Paschen minimum. From the experimental profiles we obtained effective ionization coefficient of water vapour for the E/N range 650 Td-7 kTd and fitted the results by using the extended Townsend analytical formula. Using the obtained ionization coefficient, we calculated the effective yield of secondary electrons from the copper cathode. Results of the measurements of Volt-Ampere characteristics in water vapour were presented together with the images of the axial structure of the discharge in a wide range of discharge currents for two pd values. Recorded profiles showed development of the spatial structure of the discharge in different operating regimes. We were able to identify conditions where processes induced by heavy particles, probably fast hydrogen atoms, are dominant in inducing emission from the discharge. Finally, standard scaling laws were tested for low current and glow discharges in water vapour.

  7. Identification and statistical analysis of global water vapour trends based on satellite data

    OpenAIRE

    Mieruch, Sebastian

    2009-01-01

    Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME) flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS) approach has been used. The combination of the data from both instruments provides...

  8. Thermostimulated exoemission (TSEE) from cryodeposits of water vapour under various vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sujak, B.; Golek, F. (Wroclaw Univ. (Poland). Inst. of Experimental Physics)

    1983-01-01

    It is shown that water vapour cryodeposited on clean metal surfaces can exhibit TSEE and that this is strongly dependent on impurities, such as silicone oil vapour, which may arise from vacuum equipment used.

  9. ADSORPTION OF WATER AND BENZENE VAPOUR IN MESOPOROUS MATERIALS

    OpenAIRE

    Paulina Taba

    2008-01-01

    Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification). MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16) or MCM-41 (C12) respectively and a mixture of cethyltrimethylammoniu...

  10. Phase correction of VLBI with water vapour radiometry

    OpenAIRE

    Roy, A L; Rottmann, H.; Teuber, U.; Keller, R

    2007-01-01

    We demonstrate phase correction of 3 mm VLBI observations using the scanning 18 GHz to 26 GHz water vapour radiometer at Effelsberg and we demonstrate an absolute accuracy of 15 mm in zenith path delay by comparing with GPS and radiosondes. This accuracy should provide significant improvement in astrometric phase referencing observations. It is not good enough for geodetic VLBI to replace the tropospheric delay estimation but could be used to remove short-term path-length fluctuations and so ...

  11. Monitoring water vapour penetration using a contactless technique

    OpenAIRE

    Pélisset, S.; Théron, R.; Barnéoud-Raéis, M.; Perret-Aebi, L.-E.; Benkhaira, M.; Ballif, C.

    2009-01-01

    Some layers of thin film photovoltaic modules maybe critically sensitive to moisture. In this study we present a new tool for monitoring the effect of moisture using a particular Transparent Conductive Oxide (TCO) as a sensor. The moisture content of the encapsulant was determined by Fourier Transform Infra Red (FTIR) spectroscopic measurements. The TCO resistivity was measured using an inductive method. The different spectroscopic results show that the diffusion of water vapour in the encaps...

  12. Electron and proton elastic scattering in water vapour

    International Nuclear Information System (INIS)

    In the present work, we report theoretical differential and integrated cross sections of the elastic scattering process for sub-thermalization electrons (Einc ≅ 10 meV–10 keV) and 1 keV–1 MeV protons in water vapour. The calculations are performed within the quantum mechanical framework for electrons whereas classical calculations are provided for protons. The results obtained in this free-parameter theoretical treatment are compared to available data and quantitative differences are reported.

  13. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing

    OpenAIRE

    Blackman, C. S.; Piccirillo, C.; Binions, R.; Parkin, I. P.

    2009-01-01

    Atmospheric pressure chemical vapour deposition of VCl4, WCl6 and water at 550 degrees C lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 degrees C to - 23 degrees C. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spect...

  14. Study and mitigation of calibration error sources in a water vapour Raman lidar

    Science.gov (United States)

    David, Leslie; Bock, Olivier; Bosser, Pierre; Thom, Christian; Pelon, Jacques

    2014-05-01

    The monitoring of water vapour throughout the atmosphere is important for many scientific applications (weather forecasting, climate research, calibration of GNSS altimetry measurements). Measuring water vapour remains a technical challenge because of its high variability in space and time. The major issues are achieving long-term stability (e.g., for climate trends monitoring) and high accuracy (e.g. for calibration/validation applications). LAREG and LOEMI at Institut National de l'Information Géographique et Forestière (IGN) have developed a mobile scanning water vapour Raman lidar in collaboration with LATMOS at CNRS. This system aims at providing high accuracy water vapour measurements throughout the troposphere for calibrating GNSS wet delay signals and thus improving vertical positioning. Current developments aim at improving the calibration method and long term stability of the system to allow the Raman lidar to be used as a reference instrument. The IGN-LATMOS lidar was deployed in the DEMEVAP (Development of Methodologies for Water Vapour Measurement) campaign that took place in 2011 at the Observatoire de Haute Provence. The goals of DEMEVAP were to inter-compare different water vapour sounding techniques (lidars, operational and research radiosondes, GPS,…) and to study various calibration methods for the Raman lidar. A significant decrease of the signals and of the calibration constants of the IGN-LATMOS Raman lidar has been noticed all along the campaign. This led us to study the likely sources of uncertainty and drifts in each part of the instrument: emission, reception and detection. We inventoried several error sources as well as instability sources. The impact of the temperature dependence of the Raman lines on the filter transmission or the fluorescence in the fibre, are examples of the error sources. We investigated each error source and each instability source (uncontrolled laser beam jitter, temporal fluctuations of the photomultiplier

  15. A new test method for measuring the water vapour permeability of fabrics

    Science.gov (United States)

    Huang, Jianhua; Qian, Xiaoming

    2007-09-01

    The water vapour permeability of textile fabrics is a critical determinant of wearer comfort. Existing test methods are either time consuming or require large amounts of material. A new test apparatus was developed for characterizing the water vapour permeability of fabrics. An aluminium cylinder covered with waterproof and vapour permeable PTFE laminate is used for generating water vapour source on one side of the sample. A dry nitrogen sweep gas stream is used to carry water vapour away. The calculation of the rate of water vapour transmission across the fabric is based on the measurement of the relative humidity of the outgoing nitrogen stream. This new measuring apparatus offers a short test time and calls for a small sample size. The comparison measurements show that the test results correlated well with those obtained from ISO 11092 and ASTM E96. Therefore, this test method provides a new technique to accurately and precisely characterize the water vapour transport properties of fabrics.

  16. The CM SAF ATOVS tropospheric water vapour and temperature data record: overview of methodology and evaluation

    Science.gov (United States)

    Courcoux, N.; Schröder, M.

    2015-02-01

    Recently, the reprocessed Advanced Television Infrared Observation Satellite (TIROS)-N Operational Vertical Sounder (ATOVS) tropospheric water vapour and temperature data record has been released by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF). ATOVS observations from the National Oceanic and Atmospheric Agency (NOAA)-15 through NOAA-19 and EUMETSAT's Meteorological operational (Metop-A) satellites have been consistently reprocessed to generate 13 years (1999-2011) of global water vapour and temperature daily and monthly means with a spatial resolution of 90 km × 90 km. After pre-processing, an optimal estimation scheme has been applied to the observations to simultaneously infer temperature and water vapour profiles. In a post-processing step an objective interpolation method (Kriging) has been applied to allow for gap filling. The product suite includes total precipitable water vapour (TPW), layer integrated water vapour (LPW) and layer mean temperature for five tropospheric layers, as well as specific humidity and temperature at six tropospheric levels and is referenced under doi:10.5676/EUM_SAF_CM/WVT_ATOVS/V001. To our knowledge this is the first time that the ATOVS record (1998-now) has been consistently reprocessed (1999-2011) to retrieve water vapour and temperature products. TPW and LPW products were compared to corresponding products from the Global Climate Observing System (GCOS) Upper-Air Network (GUAN) radiosonde observations and from the Atmospheric InfraRed Sounder (AIRS) version 5 satellite data record. The TPW shows a good agreement with the GUAN radiosonde data: average bias and root mean square error (RMSE) are -0.2 and 3.3 kg m-2, respectively. The maximum absolute (relative) bias and RMSE values decrease (increase) strongly with height. While the RMSE relative to AIRS is generally smaller, the TPW bias relative to AIRS is larger with

  17. Pan-derived isotopic composition of atmospheric vapour in a Mediterranean wetland (Rhône River Delta, France).

    Science.gov (United States)

    Vallet-Coulomb, Christine; Cartapanis, Olivier; Radakovitch, Olivier; Sonzogni, Corinne; Pichaud, Marc

    2010-03-01

    A continuous record of atmospheric vapour isotopic composition (delta(A)) can be derived from the isotope mass balance of a water body submitted to natural evaporation. In this paper, we present preliminary results of the application of this method to a drying evaporation pan, located in a Mediterranean wetland, during a two-month summer period. Results seem consistent with few atmospheric vapour data based on the assumption of isotopic equilibrium with precipitation, but we observed a shift between pan-derived delta(A) and the composition of vapour samples collected by cold trapping. These results suggest that further investigations are necessary to evaluate the effect of diurnal variations of atmospheric conditions on the applicability of the pan-evaporation method, and on the representative of grab atmospheric samples. We also propose a sensitivity analysis for evaluating the impact of the different measured components on delta(A) calculation, and show an improvement in the method efficiency as the pan is drying. PMID:20099185

  18. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate

    International Nuclear Information System (INIS)

    The efficiency of linear sodium decanoate, CH3(CH2)8COONa (noted NaC10), as corrosion inhibitor of lead was determined by electrochemical techniques in two corrosive mediums: ASTM D1384 standard water and acetic acid-enriched solutions. Best results were obtained with 0.05 mol l-1 of NaC10 solution. In these conditions, the inhibition efficiency can be estimated of 99.9%. The corrosion inhibition effect was confirmed by cyclic atmospheric tests in a climatic chamber in two different conditions: water saturated vapour, and acid acetic enriched vapour simulating the atmosphere in the wooden displays in museums. Surface analyses by SEM and X-ray diffraction indicate that the metal protection is due to the formation of a protective layer mainly composed of lead decanoate Pb(C10)2 (metallic soap). This inhibition treatment was applied on objects of metallic cultural heritage: gallo-roman sarcophagus in lead. Electrochemical methods confirm the efficiency of treatment on archaeological materials. In conclusion, this inhibitor treatment seems to be very promising against the atmospheric corrosion and the corrosion by organic acid vapour in museums

  19. A feasibility study for the retrieval of the total column precipitable water vapour from satellite observations in the blue spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2013-10-01

    Full Text Available We present a new algorithm for satellite retrievals of the atmospheric water vapour column in the blue spectral range. The water vapour absorption cross section in the blue spectral range is much weaker than in the red spectral range. Thus the detection limit and the uncertainty of individual observations are systematically larger than for retrievals at longer wavelengths. Nevertheless, water vapour retrievals in the blue spectral range have also several advantages: since the surface albedo in the blue spectral range is similar over land and ocean, water vapour retrievals are more consistent than for longer wavelengths. Compared to retrievals at longer wavelengths, the sensitivity for atmospheric layers close to the surface is higher due to the (typically 2 to 3 times higher ocean albedo in the blue. Water vapour retrievals in the blue spectral range are also possible for satellite sensors, which do not measure at longer wavelengths of the visible spectral range like the Ozone Monitoring Instrument (OMI. We investigated details of the water vapour retrieval in the blue spectral range based on radiative transfer simulations and observations from the Global Ozone Monitoring Experiment 2 (GOME-2 and OMI. It is demonstrated that it is possible to retrieve the atmospheric water vapour column density in the blue spectral range over most parts of the globe. The findings of our study are of importance also for future satellite missions (e.g. Sentinel 4 and 5.

  20. Isotopes in the Arctic atmospheric water cycle

    OpenAIRE

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen-Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-01-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-boar...

  1. A microwave satellite water vapour column retrieval for polar winter conditions

    Science.gov (United States)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.; Cadeddu, Maria

    2016-05-01

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m-2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m-2 and a systematic bias of 0.08 kg m-2. These results are compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.

  2. Comparison of independent integrated water vapour estimates from GPS and sun photometer measurements and a meteorological model

    Science.gov (United States)

    Pugnaghi, S.; Boccolari, M.; Fazlagić, S.; Pacione, R.; Santangelo, R.; Vedel, H.; Vespe, F.

    Measurements using the Global Positioning System (GPS) are affected by the so-called tropospheric delay. Of this, the so-called wet delay is related mainly to the amount of water vapour along the path of the GPS signal through the troposphere. Precise knowledge of the abundance of water vapour, in space and time, is important for meteorology, both in forecasting and now-casting as well as in climate studies. Both because water vapour is the predecessor of precipitation, which is a forecast product, and because a very significant fraction of the energy released to the atmosphere comes from latent heat via water vapour. Despite the high variability of water vapour compared to other meteorological fields, like pressure and wind, water vapour observations are scarce; wherefore additional measurements of water vapour are expected to benefit meteorology. Water vapour is crucial for the development of the small scale, but sometimes very severe,precipitation events which are often seen at mid latitudes, and which are very hard to predict. In this work a comparison between radiometric (sun photometer) and GPS integrated water vapour (IWV) is presented. A sun photometer has been installed at the ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiente) base of Lampedusa Island. The sun photometer is quite close (less then 4 km) to an ASI (Agenzia Spaziale Italiana) GPS permanent receiver. In Venezia an ASI GPS permanent receiver is collocated with another sun photometer. Both sun photometers are installed as part of the AERONET (AErosol and RObotic NETwork) program. A long record of sun photometric measurements, GPS data, and meteorological data is available for the Venezia site. A shorter record (summer period of the year 2000) is available for the station at Lampedusa. The comparison among the three different methods for water vapour delay estimation is presented. We find that the GPS and sun photometric data are better correlated (S.D. about 10 mm for the wet delay

  3. Phase correction of VLBI with water vapour radiometry

    CERN Document Server

    Roy, A L; Teuber, U; Keller, R

    2007-01-01

    We demonstrate phase correction of 3 mm VLBI observations using the scanning 18 GHz to 26 GHz water vapour radiometer at Effelsberg and we demonstrate an absolute accuracy of 15 mm in zenith path delay by comparing with GPS and radiosondes. This accuracy should provide significant improvement in astrometric phase referencing observations. It is not good enough for geodetic VLBI to replace the tropospheric delay estimation but could be used to remove short-term path-length fluctuations and so improve the geodetic observables. We discuss lessons learned and opportunities for further improvement.

  4. Phase correction of VLBI with water vapour radiometry

    Science.gov (United States)

    Roy, Alan; Rottmann, H.; Teuber, U.; Keller, R.

    We demonstrate phase correction of 3-mm VLBI observations using the scanning 18-GHz to 26GHz water vapour radiometer (WVR) at Effelsberg and we demonstrate an absolute accuracy of 15-mm in zenith path delay by comparing with GPS and radiosondes. This accuracy should provide significant improvement in astrometric phase-referencing observations. It is not good enough for geodetic VLBI to replace the tropospheric delay estimation but could be used to remove short-term path-length fluctuations and so improve the geodetic observables. We discuss lessons learned and opportunities for further improvement.

  5. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  6. Strategies for 4-D Regional Modeling of Water Vapour Using GPS

    Institute of Scientific and Technical Information of China (English)

    S. H. Skone; S.M. Shrestha

    2003-01-01

    Global Positioning System (GPS) signals experience ranging errors due to propagation through the neutral atmosphere. These range delays consist of a hydrostatic component, dependent on air pressure and temperature, and a wet delay dependent on water vapour pressure and temperature.Range delays arising from the hydrostatic component can be computed with accuracies of a few millimeters using existing models, provided that surface barometric or meteorological data are available. By using a regional network of GPS reference stations, it is possible to recover estimates of the Slant Wet Delay to all satellites in view. Observations of the Slant Wet Delay (SWD) can be used to model the vertical and horizontal structure of water vapour over a local area. These techniques are based on a tomographic approach using the SWD as input observables, where 4-D models of the wet refractivity may be derived. This method allows improved resolution of water vapour estimates for precise positioning applications and assimilation into Numerical Weather Predictions (NWP). In this paper we present strategies for real-time modeling of wet refractivity, with simulations and preliminary results of data processing for a regional GPS network in Southern California.

  7. Quality assessment of Izaña's upper-air water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2009-07-01

    Full Text Available At the Izaña Atmospheric Research Centre water vapour amounts are measured routinely by different techniques since many years. We intercompare the total precipitable water vapour amounts measured between 2005 and 2009 by a Fourier Transform Infrared (FTIR spectrometer, a Multifilter rotating shadow-band radiometer (MFRSR, a Cimel sunphotometer, a Global Positioning System (GPS receiver, and daily radiosondes (Vaisala RS92. In addition we intercompare the water vapor profiles measured by the FTIR and the radiosondes. The long-term intercomparison assures that our study well represents the large water vapour variabilities that occur in the troposphere and allows a reliable empirical quality assessment for the different water vapour dataset. We examine how the data quality of the different techniques depends on atmospheric conditions and estimate the dry bias of the techniques which are restricted to clear sky observations.

  8. Comparison of Hygrometers for Monitoring of Water Vapour in Natural Gas

    OpenAIRE

    Løkken, Torbjørn Vegard

    2015-01-01

    To be able to maintain a safe, regular and economic production and transportation of natural gas, it is crucial to be able to accurately quantify the water vapour concentration in the gas. Underestimation of the water vapour concentration will increase the risk of corrosion and gas hydrate formation. In this work various measuring techniques for monitoring of water vapour in gases, relevant for the natural gas industry, were compared. Through laboratory experiments parameters such as accu...

  9. Warm water vapour in the sooty outflow from a luminous carbon star

    OpenAIRE

    Decin, L.; Agúndez, Marcelino; Barlow, Michael J.; Daniel, F; Cernicharo, José; Lombaert, J. R.; Beck, E; Royer, P.; Vandenbussche, B.; Wesson, R.; Polehampton, E.T.; Blommaert, J. A. D. L.; De Meester, W.; Exter, K.; Feuchtgruber, H.

    2010-01-01

    In 2001, the discovery of circumstellar water vapour around the ageing carbon star IRC+10216 was announced. This detection challenged the current understanding of chemistry in old stars, since water vapour was predicted to be absent in carbon-rich stars. Several explanations for the occurrence of water vapour were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envel...

  10. Quantification of uncertainties of water vapour column retrievals using future instruments

    Directory of Open Access Journals (Sweden)

    H. Diedrich

    2012-09-01

    Full Text Available This study presents a quantification of uncertainties of water vapour retrievals based on near infrared measurements of upcoming instruments. The concepts of three scheduled spectrometer were taken into account: OLCI (Ocean and Land Color Instrument on Sentinel-3, METimage on MetOp (Meteorological Operational Satellite and FCI (Flexible Combined Imager on MTG (Meteosat Third Generation. Optimal estimation theory was used to estimate the error of an hypothetical total water vapour column retrieval for 27 different atmospheric cases. The errors range from 100% in very dry cases to 2% in humid cases with a very high surface albedo. Generally the absolute uncertainties increase with higher water vapour column content due to H2O-saturation and decrease with a brighter surface albedo. Uncertainties increase with higher aerosol optical thickness, apart from very dark cases. Overall the METimage channel setting enables the most accurate retrievals. The retrieval using the MTG-FCI buildup has the highest uncertainties apart from very bright cases.

    A retrieval using two absorption channels increases the accuracy, in some cases by one order of magnitude, in comparison to a retrieval using just one absorption channel. On the other hand, a retrieval using three absorption channels has no significant advantage over a two-absorption channel retrieval.

    Furthermore, the optimal position of the absorption channels was determined using the concept of the "information content". For a single channel retrieval a channel at 900 or 915 nm has the highest mean information contents over all cases. The second absorption channel is ideally weakly correlated with the first one, thus positioned at 935 nm, in a region with stronger water vapour absorption.

  11. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012)

    Science.gov (United States)

    Weigel, K.; Rozanov, A.; Azam, F.; Bramstedt, K.; Damadeo, R.; Eichmann, K.-U.; Gebhardt, C.; Hurst, D.; Kraemer, M.; Lossow, S.; Read, W.; Spelten, N.; Stiller, G. P.; Walker, K. A.; Weber, M.; Bovensmann, H.; Burrows, J. P.

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  12. Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure

    OpenAIRE

    Croonen, Y.; Verspui, G.

    1993-01-01

    Laser induced Chemical Vapour Deposition of a wide variety of materials has been studied extensively at reduced pressures. However, for this technique to be economically and industrially applicable, processes at atmospheric pressure are preferred. A model study was made on the substrate-coating system molybdenum-titaniumnitride focussing on the feasibility to deposit TiN films locally at atmospheric pressure. The results of this study turned out to be very promising. A Nd-YAG laser beam ([MAT...

  13. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    OpenAIRE

    G. Mengistu Tsidu; Blumenstock, T.; Hase, F.

    2015-01-01

    Water vapour is one of the most important greenhouse gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a greenhouse gas but also because of its role in amplifying other feedbacks such as clouds and albedo. In recent decades, monitoring of water vapour on a regular and continuous basis has become possible as a result of the steady increase in the number of deployed global positioning satellite (GPS) ground-based receiv...

  14. Effect of water vapour on growth and adherence of chromia scales on pure chromium

    OpenAIRE

    Michalik, Marek

    2007-01-01

    The oxidation behaviour of chromium was studied in the temperature range 950 to 1050oC. A number of atmospheres such as Ar-O2, Ar-H2-H2O, and more complex N2-O2-H2O and N2-H2-H2O were used, to allow the effects of oxygen and water vapour partial pressures to be determined. It was shown that the oxide scale formed in Ar-O2 environments was dependent on the oxygen partial pressure. Decreasing the pO2 in such gas mixtures lowered the oxidation rate and improved scale adherence. Different behavio...

  15. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption.

    Science.gov (United States)

    Gardiner, T D; Coleman, M; Browning, H; Tallis, L; Ptashnik, I V; Shine, K P

    2012-06-13

    Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the 'Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance' (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm(-1) with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum. PMID:22547234

  16. Estimation of Water Vapour Attenuation And Rain Attenuation

    Directory of Open Access Journals (Sweden)

    K.Kalyana Srinivas

    2015-04-01

    Full Text Available Attenuation due to and water vapour and rain can severely degrade the radio wave propagation at centimeter or millimeter wavelengths. It restricts the path length of radio communication systems and limits the use of higher frequencies for line-of-sight microwave links and satellite communications. The attenuation will pose a greater problem to communication as the frequency of occurrence of heavy rain increases.In a tropical region, like Malaysia, where excessive rainfall is a common phenomenon throughout the year, the knowledge of the rain attenuation at the frequency of operation is extremely required for the design of a reliable terrestrial and earth space communication link at a particular location.

  17. Water Vapour Potential Vorticity and Its Applications in Tropical Cyclones

    International Nuclear Information System (INIS)

    A new tracer is presented to diagnose tropical cyclones (TCs) and their correspondent rainfall. It is defined as water vapour potential vorticity (WPV) by replacing potential temperature with specific humidity in the potential vorticity (PV). The WPV is compared with PV and moist potential vorticity (MPV) in diagnosing three tropical cyclone cases occurred in North-West Pacific during 10 July to 21 July 2005 (Haitang), 30 July to 9 August 2005 (Matsa) and 25 September to 3 October 2005 (Longwang) separately. The results show that in tracing the track of TCs, WPV is not nicer than PV but better than MPV. While diagnosing TCs' onshore rainfall, WPV is better than MPV in all the three cases. Moreover, the advection of WPV is a good indication of TC rainfall after its landing

  18. The evaporation pan technique revisited: Old theory and a new application for time-weighted synoptic tracing of the isotopic composition of atmospheric vapour

    International Nuclear Information System (INIS)

    Reliable and consistent characterization of the stable isotope composition of atmospheric water vapour and its temporal variability are important prerequisites to the wider application of isotope mass balance methods in atmospheric and water balance studies. A new approach is proposed which utilizes standard class-A evaporation pans, which have sufficient volume to buffer short-term transient variations in atmospheric conditions, justifying the assumption of constant kinetic isotopic fractionation effects in concert with precisely measured temperature and relative humidity to derive vapour isotopic composition. The results of the studies suggest that isotopic sampling of existing, conventionally operated class-A evaporation pans could offer a straightforward and cost-effective solution to the problem of documenting the shifting isotopic distribution in atmospheric moisture

  19. Condensation of water vapour on moss-dominated biological soil crust, NW China

    Indian Academy of Sciences (India)

    Xin-Ping Wang; Yan-Xia Pan; Rui Hu; Ya-Feng Zhang; Hao Zhang

    2014-03-01

    Characteristics of water vapour condensation, including the onset, duration, and amount of water vapour condensation on moss-dominated biological soil crust (BSC) and dune sand were studied under simulated conditions with varying air temperature and relative humidity. The simulations were performed in a plant growth chamber using an electronic balance recording the weight of condensation. There was a positive linear correlation between the water vapour condensation and relative humidity while the mean temperature was negatively linearly related to amounts of water vapour condensation for both soil surfaces. The amount of water vapour condensation on BSC and dune sand can be described by the difference between air temperature and dew point with an exponential function, indicating that when the difference of air temperature and dew point exceeds a value of 35.3°C, there will be zero water vapour condensed on BSC. In contrast, when the difference of air temperature and dew point exceeds a value of 20.4°C, the water vapour condensation will be zero for dune sand. In general, when the air is fully saturated with water and the dew point is equal to the current air temperature, the water vapour condensed on BSC attained its maximum value of 0.398 mm, whereas it was 0.058 mm for dune sand. In comparison, water vapour condensed on BSC was at a relatively high temperature and low relative humidity, while we did not detect water vapour condensation on the dune sand under the similar conditions. Physical and chemical analyses of the samples pointed to a greater porosity, high content of fine particles, and high salinity for BSC compared to the dune sand. These results highlight that soil physicochemical properties are the likely factors influencing the mechanism of water vapour condensation under specific meteorological conditions, as onset was earlier and the duration was longer for water vapour condensation on BSC in comparison with that of dune sand. This contributed to

  20. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region.

    Science.gov (United States)

    Green, Paul D; Newman, Stuart M; Beeby, Ralph J; Murray, Jonathan E; Pickering, Juliet C; Harries, John E

    2012-06-13

    We present a new derivation of the foreign-broadened water vapour continuum in the far-infrared (far-IR) pure rotation band between 24 μm and 120 μm (85-420 cm(-1)) from field data collected in flight campaigns of the Continuum Absorption by Visible and IR radiation and Atmospheric Relevance (CAVIAR) project with Imperial College's Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) far-IR spectro-radiometer instrument onboard the Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft; and compare this new derivation with those recently published in the literature in this spectral band. This new dataset validates the current Mlawer-Tobin-Clough-Kneizys-Davies (MT-CKD) 2.5 model parametrization above 300 cm(-1), but indicates the need to strengthen the parametrization below 300 cm(-1), by up to 50 per cent at 100 cm(-1). Data recorded at a number of flight altitudes have allowed measurements within a wide range of column water vapour environments, greatly increasing the sensitivity of this analysis to the continuum strength. PMID:22547236

  1. Influence of hydrogen and water vapour on the kinetics of chromium oxide growth at high temperature

    International Nuclear Information System (INIS)

    In support of the selection of structural materials for heat exchangers in helium-cooled high temperature reactors, the oxidation behaviour of the Ni-base chromia-former alloy 230 was investigated at 850 A degrees C in diluted helium atmosphere with a low water vapour content. In such a media, the equivalent partial pressure of oxygen (imposed by the 850 degrees C in diluted helium atmosphere with a low water vapour content. In such a media, the equivalent partial pressure of oxygen (imposed by the P(H2O)/P(H2) ratio) is very low (P(O2)eq around 10-16 Pa). The equivalent partial pressure of oxygen has no straight influence on the parabolic rate constant (kp); on the other hand, P(H2) and P(H2O) demonstrate a complex influence on kp. Photo-electrochemistry analyses revealed that this oxide could simultaneously contain two types of cationic defects. Specific oxidation tests with D2O showed that the oxide scale also contains hydrogen. A mechanist model is proposed in order to describe the scale growth using both cationic defects. Those theoretical results show, at least qualitatively, how P(H2) and P(H2O) may concurrently influence the oxidation rate. (authors)

  2. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    Science.gov (United States)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard

  3. Application of membranes to monitoring for tritiated water vapour

    International Nuclear Information System (INIS)

    Nafion, a copolymer of tetrafluoroethylene and various perfluoro-sulphonic acids, is very permeable to water compared with other polymers. In the form of tubing, it allows the transfer of tritiated water vapour (HTO) from samples of gaseous effluents to a counter-current gas stream that passes to a radiation detector. The permeation rates for tritiated hydrogen (HT) and radioxenons (Xe) are approximately 10-3 and 10-4 that for HTO. The results of measurements with an assembly of Nafion tubes have demonstrated that, by careful selection of sample and detector flow rates, discrimination factors against HT and Xe of these orders may be attained. At the same time the concentration of HTO in the gas passing to the detector is within a few per cent of the concentration in the air sample. Direct capture of airborne HTO by permeation through a Nafion tube into liquid scintillator has also been demonstrated. With a mixture of 20% water in liquid scintillator and a mixture flow of only 0.1 cm3/min, concentrations of HTO in air down to 250 Bq/m3 (7 nCi/m3) may be measured. (author)

  4. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  5. CRUNCH, Dispersion Model for Continuous Dense Vapour Release in Atmosphere

    International Nuclear Information System (INIS)

    ambient atmospheric turbulence, and to follow the dispersion processes down to low concentrations, especially important for toxic gases, a virtual source passive dispersion model is fitted to the slumping plume. 2 - Restrictions on the complexity of the problem: Acceleration of the plume to the wind velocity is not considered, since an analysis of inertial effects has shown that the time for which these are important is short, compared to the dispersion time. Additionally, wind shear effects on cloud structure are not included; for a puff release producing a cloud of finite extent, this may not be valid but for a plume, extending to large downwind distances, they can be argued to have only a minor influence at the advancing front

  6. Stable isotope ratios in rainfall and water vapour at Bangalore, Southern India during the monsoon period of 2013

    Science.gov (United States)

    Peethambaran, Rahul; Ghosh, Prosenjit

    2015-04-01

    Rainwater and water vapour were collected during monsoon rainfall from Bangalore station to identifying the signature of moisture sources. Moisture responsible for the rainfall originates from Arabian Sea and Bay of Bengal and advected to the station together with vapour generated from the local . Total no of samples includes 72 for water vapour and 81 for rainwater respectively. The mean difference between water vapour and rainwater was found to be -13.27±2.5 ‰ for δ18O, -100±9 ‰ for δD, which was calculated from monthly mean values of water vapour and rainwater. The most enriched samples of rainwater and water vapour were found during the pre monsoon months which correspond to temperature maximum at the study location. Lighter isotopic ratios were recorded in samples collected during the starting of monsoon showers which goes to further depletion in δ18O during the period of post monsoon. This was mainly due to the change in the prevailing wind direction from southwest to northeast. Local Meteoric Water Line (LMWL) generated for rainwater (d = 7.49 δ 18O + 5.2555, R² = 0.93) equation suggesting enrichment due to evaporation. Local Vapour Line (LVL) (d = 7.5248 δ 18O + 6.6534,R² = 0.8957) indicates the dominance of vapor from local source. The time series of d-xcess of rainwater and water vapor reveals large variability, coinciding with the presence of transported and local sources. It was observed that rainwater and water vapor exhibits higher values indicating re-evaporation from the region. Repetition of this feature demonstrated pattern of moisture recycling in the atmosphere and the contribution of continental evaporation and transpiration. The sensitivity of isotopes to the sudden change in wind direction was documented by an abrupt variations in the isotope values. Such changes in wind patterns were mostly associated with the prevalence of low pressure depression systems during the monsoon periods. Detailed analysis on role of wind patterns and

  7. Assessment of UTLS water vapour measurements from limb-sounders within the SPARC Data Initiative

    Science.gov (United States)

    Hegglin, M. I.; Tegtmeier, S.; Anderson, J.; Froidevaux, L.; Fuller, R. A.; Funke, B.; Jones, A. K.; Kyrola, E. T.; Lingenfelser, G. S.; Lumpe, J. D.; Remsberg, E. E.; Rozanov, A.; Toohey, M.; Urban, J.; von Clarmann, T.; Walker, K. A.; Wang, H.

    2012-12-01

    The last few decades represent a "golden age" of stratospheric composition measurements that were crucial in advancing our understanding of atmospheric processes and their role in climate. It is likely that the future stratosphere will not be as well measured as it is now. It is important to capture existing knowledge on current and recent instruments before this knowledge is lost. In this contribution we will present a comprehensive comparison of UTLS water vapour measurements obtained from a multi-national set of limb-viewing satellite instruments within the SPARC Data Initiative. We will highlight key results, such as the physical consistency of the different data sets in reproducing the tape recorder, polar vortex dehydration, interannual variability, and seasonal cycles. We will discuss potential reasons for the differences and implications for the use of the data sets in merging and model validation activities, as well as for the interpretation of atmospheric trends and processes.

  8. The dosage of mercury vapours in air. Application to an atmospheric control

    International Nuclear Information System (INIS)

    The authors have studied a technique making it possible to trap completely the mercury vapours in the atmosphere and to analyse them with precision; their object is an application to an atmospheric control. The analytical method used is particularly sensitive and makes possible the determination of 1 micro-gram of mercury in a 1000 litre sample of air with an accuracy of 2 per cent. The total time for the operation can be estimated to be about 2 1/2 hours, including the analysis. The operations are straightforward and can be carried out by specialised personnel after a short training. (author)

  9. Comparison of IASI water vapour products over complex terrain with COPS campaign data

    Directory of Open Access Journals (Sweden)

    Guido Masiello

    2013-08-01

    Full Text Available In this work, we compare IASI-retrieved vertical water vapour profiles and related precipitable water over a complex region, namely the Rhine Valley area, during the pre-operational period of IASI exploitation (June?August 2007. Both IASI water vapour mixing ratio profiles and integrated water vapour content are retrieved from L1C radiances spectra using two techniques and compared with water vapour related observations acquired during the Convective and Orographically-induced Precipitation Study (COPS field campaign that took place in this area at that time (i.e. lidars, radiosoundings and a global positioning system - GPS - station network. This work addresses the issue of IASI vertical spatial resolution and its capability to detect two-layer water vapour structures such as those observed in a mountainous area and which play an important role in convective initiation or inhibition. We found that this capability mostly relies on the type of a-priori background vector (climatology or space-time colocated ECMWF analysis, which is used within the retrieval scheme. Systematic comparison of water vapour products derived from 71 IASI spectra confirms that IASI can retrieve water vapour amounts in 2 km width layers, in the lower troposphere, with an accuracy of approximately 10%.

  10. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  11. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  12. Mass transfer of gas, water and water vapour through concrete for reactor buildings

    International Nuclear Information System (INIS)

    Permeability tests of concrete showed that the mass transfer of gas and water vapour was up to 100 times that of liquid water. All categories of mass transfer are affected by water:cement ratio, wo, and, initial mix water per unit volume of concrete W. The dominating influence is that of W. Uncracked, completely compacted concrete is highly effective as a barrier against mass transfer of water, water vapour and gas in containment structures. Failure of this function is attributed to voids arising from imperfect construction practice and cracks, either due to drying shrinkage, or to unexpected structurally induced stress. Gas flow through cracks was only about 5 per cent of the theoretical value. This was attributed to the combined effects of surface roughness and tortuosity of the crack path. The integrity of reactor buildings may be usefully monitored by means of permanently installed devices for determining ultra-sonic pulse velocity. (author). 7 refs., 2 tabs., 2 figs

  13. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    P N Mahajan

    2001-09-01

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port Blair islands. Algorithm-3 of Schlussel and Emery (1990) performed best. On the basis of this algorithm, distribution of integrated water vapour is determined during the monsoon depression (22nd{27th July, 1992) that formed over the Bay of Bengal.

  14. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2005-01-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10km, and 2.2% between 10 and 13km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels - 24% of the time in winter between 8 and 10km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  15. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2004-12-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10 km, and 2.2% between 10 and 13 km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels – 24% of the time in winter between 8 and 10 km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  16. Pressure effects on water vapour lines: beyond the Voigt profile.

    Science.gov (United States)

    Ngo, N H; Tran, H; Gamache, R R; Hartmann, J M

    2012-06-13

    A short overview of recent results on the effects of pressure (collisions) regarding the shape of isolated infrared lines of water vapour is presented. The first part of this study considers the basic collisional quantities, which are the pressure-broadening and -shifting coefficients, central parameters of the Lorentzian (and Voigt) profile and thus of any sophisticated line-shape model. Through comparisons of measured values with semi-classical calculations, the influences of the molecular states (both rotational and vibrational) involved and of the temperature are analysed. This shows the relatively unusual behaviour of H(2)O broadening, with evidence of a significant vibrational dependence and the fact that the broadening coefficient (in cm(-1) atm(-1)) of some lines increases with temperature. In the second part of this study, line shapes beyond the Voigt model are considered, thus now taking 'velocity effects' into account. These include both the influence of collisionally induced velocity changes that lead to the so-called Dicke narrowing and the influence of the dependence of collisional parameters on the speed of the radiating molecule. Experimental evidence of deviations from the Voigt shape is presented and analysed. The interest of classical molecular dynamics simulations, to model velocity changes, together with semi-classical calculations of the speed-dependent collisional parameters for line-shape predictions from 'first principles', are discussed. PMID:22547229

  17. Upper tropospheric water vapour variability over tropical latitudes observed using radiosonde and satellite measurements

    Indian Academy of Sciences (India)

    Ghouse Basha; M Venkat Ratnam; B V Krishna Murthy

    2013-12-01

    The present study deals with using long-term database for upper tropospheric water vapour (UTWV) variability studies over three tropical stations (Gadanki, Singapore and Truk), where different climatic conditions prevail. Over Gadanki (13.5°N, 79.2°E) strong seasonal variation in UTWV is revealed but not over Singapore (1.37°N, 103.98°E) and Truk (7.46°N, 151.85°E) except at 100 hPa. It is examined whether high resolution radiosonde measurements represent well the UTWV by comparing with different satellite based (Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit-B (AMSUB) and Microwave Limb Sounder (MLS)) water vapour measurements. Very good comparison in the nature of variations of UTWV is observed between radiosonde data and satellite data, except over Singapore particularly with AIRS and MLS data, on long-term basis. An attempt is also made to examine the source for UTWV. A close relationship is found between UTWV and deep convection over Gadanki indicating that the source for UTWV is convection particularly during the summer monsoon season.

  18. The thermotidal exciting function for water vapour absorption of solar radiation

    Directory of Open Access Journals (Sweden)

    M. BONAFEDE

    1976-06-01

    Full Text Available The thermotidal exciting function J is considered, for
    the absorption of solar radiation by water vapour, according to the model
    derived by Siebert. The Mugge-Moller formula for water vapour absorption
    is integrated numerically, using experimental data for the water vapour
    concentration in the troposphere and the stratosphere. It appears that
    Siebort's formula is a reasonable approximation at low tropospheric levels
    but it dramatically overestimates the water vapour thermotidal heating
    in the upper troposphere and in the stratosphere. It seems thus possible
    that, if the correct vertical profile is employed for J , the amplitudes and
    phases of the diurnal temperature oscillations and of the tidal wind speeds
    may suffer significant changes from those previously calculated and possibly explain the three hours delay of the observed phases from the computed values.

  19. Design Of A Geosynchronous SAR System For Water-Vapour Maps And Deformation Estimation

    Science.gov (United States)

    Guarnieri, Andrea Monti; Perletta, Luca; Rocca, Fabio; Scapin, Diego; Tebaldini, Stefano; Broquetas, Antoni; Ruiz, Josep

    2012-01-01

    In this paper, we propose a geosynchronous SAR concept that makes use of dual frequencies to achieve WIDE and SPOT coverage, aiming at continuous monitoring of deformation and generation of water vapour maps at high space-temporal resolution.

  20. (Vapour + liquid) equilibrium of (DIPE + IPA + water) at 101.32 kPa

    International Nuclear Information System (INIS)

    Thermodynamically consistent (vapour + liquid) equilibrium data at 101.32 kPa have been determined for (diisopropyl ether + isopropyl alcohol + water) and its constituents (diisopropyl ether + isopropyl alcohol) and (isopropyl alcohol + water). The NRTL and UNIQUAC equations for the liquid phase activity coefficients were found to correlate better the experimental data. The ASOG and the original and modified UNIFAC group-contribution methods did not represent adequately the (vapour + liquid) equilibrium data of this study

  1. Vertical structure of stratospheric water vapour trends derived from merged satellite data

    OpenAIRE

    Hegglin, M. I.; D. A. Plummer; Shepherd, T. G.; Scinocca, J. F.; Anderson, J.; Froidevaux, L.; Funke, B.; Hurst, D; Rozanov, A.; Urban, J.; Von Clarmann, T.; Walker, K. A.; Wang, H. J.; Tegtmeier, S.; Weigel, K

    2014-01-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an ...

  2. Stratospheric water vapour in the vicinity of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    M. Maturilli

    2006-07-01

    Full Text Available The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylä, Finland, in January and February 2004. The retrieved H2O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models.

  3. Vertical structure of stratospheric water vapour trends derived from merged satellite data

    Science.gov (United States)

    Hegglin, M. I.; Plummer, D. A.; Shepherd, T. G.; Scinocca, J. F.; Anderson, J.; Froidevaux, L.; Funke, B.; Hurst, D.; Rozanov, A.; Urban, J.; von Clarmann, T.; Walker, K. A.; Wang, H. J.; Tegtmeier, S.; Weigel, K.

    2014-10-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.

  4. Measurement of the water vapour vertical profile and of the Earth's outgoing far infrared flux

    Directory of Open Access Journals (Sweden)

    L. Palchetti

    2008-06-01

    Full Text Available Our understanding of global warming depends on the accuracy with which the atmospheric components that modulate the Earth's radiation budget are known. Many uncertainties still exist as regards the radiative effect of water in the different spectral regions, among which is the far infrared, where very few observations have been made. An assessment is shown of the atmospheric outgoing flux obtained from a balloon-borne platform with wideband spectrally-resolved nadir measurements at the top of the atmosphere over the full spectral range, from 100 to 1400 cm−1, made by a Fourier transform spectrometer with uncooled detectors. From these measurements, we retrieved 15 pieces of information regarding water vapour and temperature profiles and surface temperature, with a major improvement in our knowledge of water vapour in the upper troposphere. The retrieved atmospheric state made it possible to calculate the emitted radiance also at frequencies and zenith angles that have not been observed and to determine the outgoing spectral radiation flux. This proves that spectrally resolved observations can be used to derive accurate information on the integrated flux. While the retrieved temperature was in agreement with ECMWF analysis, the retrieved water vapour profile differed significantly; depending on the time and the location, the derived flux in the far infrared (20–600 cm−1 differed by 2–3.5 W/m2 from that calculated using ECMWF. The error with which the far infrared flux is determined by REFIR-PAD is about 0.4 W/m2 and is caused mainly by calibration uncertainties, while detector noise has a negligible effect. This proves that uncooled detectors are adequate for top-of-the-atmosphere radiometry.

  5. Atmospheric-pressure metalorganic vapour phase epitaxy optimization of GaAsBi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, I. [Unite de Recherche sur l' Hetero-Epitaxie et Applications, Faculte des Sciences de Monastir, Boulevard de l' environnement 5019, Monastir (Tunisia)], E-mail: imed.moussa@fsm.rnu.tn; Fitouri, H.; Rebey, A.; El Jani, B. [Unite de Recherche sur l' Hetero-Epitaxie et Applications, Faculte des Sciences de Monastir, Boulevard de l' environnement 5019, Monastir (Tunisia)

    2008-10-01

    Metalorganic vapour phase epitaxial growth of GaAsBi alloy has been carried out at atmospheric pressure in horizontal geometry reactor. In order to achieve the growth of this alloy, we have investigated the growth conditions which allow epitaxial layers of a good crystalline quality with a maximum bismuth concentration. Growth parameters such as growth temperature, trimethylbismuth (TMBi) flow and V/III ratio were checked on a wide range. Growth temperature was varied between 365 and 450 deg. C, TMBi flow was checked in the range below 2 {mu}mol/min and V/III ratio was varied between 6 and 20. According to our experimental results based on in-situ reflectivity measurements, scanning electron microscopy observations and high resolution X-ray diffraction analysis, it was found that the maximum Bi concentration reached in GaAs{sub 1-x}Bi{sub x} layers was 3.7%. This maximum, relative to atmospheric-pressure metalorganic vapour phase epitaxy technique, was found under a growth temperature of 420 deg. C, a TMBi flow of 0.2 {mu}mol/min and a V/III ratio of 9.5.

  6. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-12-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  7. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  8. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing

    International Nuclear Information System (INIS)

    Atmospheric pressure chemical vapour deposition of VCl4, WCl6 and water at 550 oC lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 oC to - 23 oC. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their optical properties were examined using variable-temperature transmission and reflectance spectroscopy. It was found that incorporation of tungsten into the films led to an improvement in the colour from yellow/brown to green/blue depending on the level of tungsten incorporation. The films were optimized for optical transmission, thermochromic switching temperature, magnitude of the switching behaviour and colour to produce films that are suitable for use as an energy saving environmental glass product.

  9. Isotopic composition of rain and water vapour samples from Lisbon region: Characterization of monthly and daily events

    International Nuclear Information System (INIS)

    The isotopic composition of precipitation is intimately linked with rain formation conditions, specifically with the temperature of formation, the origin of the air masses, the degree and mechanism of rainout. In this framework, the systematic study of the isotopic composition of monthly precipitation, rain events and atmospheric water vapour was initiated at ITN under the CRP - Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to air Circulation Patterns and Climate. The discussion of the results obtained in the Portuguese network was guided by distinct regularities and isotopic data approaches: correlation between the oxygen-18 and deuterium content in monthly precipitation with the geographic location of the stations, correlation between the isotopic content with the local surface air temperature distance to the Atlantic coast and altitude. The comparison between rain events and atmospheric water vapour will be discussed. The very depleted isotopic composition found in vapour and rain event samples are associated to the depressions over Atlantic (in front of the Portuguese coast - Mid North Atlantic) or over the British Islands, crossing Portugal mainland from W to E. (author)

  10. PRECIPITABLE WATER VAPOUR OVER LA SILLA PARANAL OBSERVATORY

    Directory of Open Access Journals (Sweden)

    F. Kerber

    2011-01-01

    Full Text Available En apoyo a la caracterización de sitios potenciales para el European Extremely Large Telescope (E-ELT, la ESO (European Southern Observatory, ISIS (Institute for Space Imaging Science y el grupo de Astrometeorología de la Universidad de Valparaío han establecido conjuntamente una mejor comprensión del PWV (precipitable water vapour sobre los Observatorio de ESO: La Silla y Paranal. Hasta ahora se han analizado estadísticamente 8 años válidos de espectros de alta resolución tomados con VLT-UVES para reconstruir la historia del PWV sobre Paranal. En el caso de La Silla se han usado 5 años de datos tomados con FEROS. En este análisis se utilizó un modelo de transferencia radiativa (BTRAM, desarrollado por ISIS. Tres campañas de medición fueron realizadas en mayo, agosto y noviembre de 2009 para entender mejor los errores sistemáticos presentes, y donde se validaron varios instrumentos y métodos con respecto a radiosondeos, que es la observación estándar en la investigación atmosférica. Después de corregirse los efectos sistemáticos, se encontró la mediana de PWV de 2.4 mm para Paranal mientras que el valor para La Silla es de 3.7 mm. Los resultados del estudio fueron presentados al Comité Asesor para la selección del sitio E-ELT en 2009. Se aprendieron lecciones valiosas para las operaciones del observatorio y ESO está planeando utilizar permanentemente un monitor de vapor de agua en Paranal como parte del proyecto para mejorar VISIR. Un monitor de PWV autónomo y de alta resolución será esencial para optimizar los resultados científicos de E-ELT.

  11. Vapour pressures and densities of the mixed-solvent desiccants (glycols + water + salts)

    International Nuclear Information System (INIS)

    The vapour pressures and densities of the mixed-solvent desiccants have been studied for temperatures ranging from (303.15 to 343.15) K. The mixed-solvent desiccants investigated were aqueous-organic systems with salt. The studied organic solvents were diethylene glycol, tetraethylene glycol, and dipropylene glycol. The chosen salts were lithium chloride and lithium bromide. Six ternaries (glycol/water/salt) were selected for this study. For each ternary system, four systems of which (4-25) mass% salt mixed with various glycols (50-80) mass% were investigated. Incorporated with the pseudo-solvent approach, a vapour pressure model based on the mean spherical approximation for aqueous electrolyte solutions was used to represent the measured vapour pressure of glycol/water/salt systems. A simplified density equation was applied to model the measured density of glycol/water/salt systems. Satisfactory results were obtained for vapour pressure and density calculations. The vapour pressures of the aqueous-organic systems with salt yield smaller values of vapour pressures compared to the conventionally used liquid desiccants. The properties obtained and presented in this study are, in general, of sufficient accuracy for most engineering-design calculations, such as the design of dehumidifier process using mixed-solvent desiccants as absorbents.

  12. Warm water vapour in the sooty outflow from a luminous carbon star

    CERN Document Server

    Decin, L; Barlow, M J; Daniel, F; Cernicharo, J; Lombaert, R; De Beck, E; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; Blommaert, J A D L; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Guelin, M; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kahane, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Yates, J A; Waelkens, C; 10.1038/nature09344

    2010-01-01

    In 2001, the discovery of circumstellar water vapour around the ageing carbon star IRC+10216 was announced. This detection challenged the current understanding of chemistry in old stars, since water vapour was predicted to be absent in carbon-rich stars. Several explanations for the occurrence of water vapour were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. However, the only water line detected so far from one carbon-rich evolved star can not discriminate, by itself, between the different mechanisms proposed. Here we report on the detection by the Herschel satellite of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC+10216, including some high-excitation lines with energies corresponding to ~1000 K. The emission of these high-excitation water lines can only be explained if water vapour is present in the warm inner region of the envelop...

  13. Water Vapour GNSS Based Tomography For Wet Delay Compensation In In-SAR Applications

    Science.gov (United States)

    Notarpietro, Riccardo; Cucca, Manuela; Perona, Giovanni

    2010-05-01

    One of the most challenging exploitation of GNSS signals for meteorological applications is the retrieval of Water Vapor tridimensional distribution. The real-time (or quasi real-time) knowledge of such distributions could be very useful for several applications: from operative meteorology to atmospheric modeling, or for atmospheric compensation purposes applied for example to SAR or In-SAR observations, in order to improve land remote sensing. In the framework of the European Space Agency project METAWAVE (Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water Vapor Effects), several techniques were investigated in order to find out an In-SAR data compensation strategy for the propagation delay effects due to Water Vapour. Thanks to METAWAVE, a quite dense GPS network (7 dual frequency GPS receivers) was deployed over COMO area and was used for an extensive measurement campaign. The acquired L1 and L2 carrier phase observations were processed in terms of hourly averaged Zenith Wet Delays. These vertical information were mapped along the correspondent line of sights (by up-sampling at 30 second sample times the 15 minutes GPS satellites positions obtained from IGS files) and inverted using a tomographic procedure. The used algorithm performs a first reconstruction (namely, the tomographic pre-processing) based on generalized inversion mechanisms, in order to define a low resolution first guess for the next step. This second step inverts GPS observables using a more refined algebraic tomographic reconstruction algorithm, to improve both vertical and horizontal resolution. Results of this inversion are Wet Refractivity maps distributed over an area of 16 km x 20 km (x 10 km height) around the COMO city, characterized by horizontal resolutions varying from 2 km to 4 km and vertical resolution of 500m. This contribution deals with the description of the results obtained evaluating Water Vapour path delays from such Wet Refractivity maps

  14. Forecasting the precipitable water vapour content: validation for astronomical observatories using radiosoundings

    Science.gov (United States)

    Pérez-Jordán, G.; Castro-Almazán, J. A.; Muñoz-Tuñón, C.; Codina, B.; Vernin, J.

    2015-09-01

    The atmospheric precipitable water vapour content (PWV) strongly affects astronomical observations in the infrared (IR). We have validated the Weather Research and Forecasting (WRF) mesoscale numerical weather prediction (NWP) model as an operational forecasting tool for PWV. In the validation, we used atmospheric radiosounding data obtained directly at the Roque de los Muchachos Observatory [ORM: ≈2200 metres above sea level (masl)] during three intensive runs and an aditional verification sample of 1 yr of radiosonde data from World Meteorological Organization (WMO) station 60018 in Güímar (Tenerife, TFE: ≈105 masl). These data sets allowed us to calibrate the model at the observatory site and to validate it under different PWV and atmospheric conditions. The ability of the WRF model in forecasting the PWV at astronomical observatories and the effects of horizontal model grid size on the computed PWV and vertical profiles of humidity are discussed. An excellent agreement between model forecasts and observations was found at both locations, with correlations above 0.9 in all cases. Subtle but significant differences between model horizontal resolutions have been found, the 3 km grid size being the most accurate and the one selected for future work. Absolute calibrations are given for the lowest and finest grid resolutions. The median PWV values obtained were 3.8 and 18.3 mm at ORM and TFE, respectively. WRF forecasts will complement the PWV measured by the GPS monitoring system at the Canarian Observatories.

  15. A preview on the determination of mass return flow of air and water vapour into the stratosphere using tritium as a tracer

    OpenAIRE

    Smith, Michael

    2011-01-01

    A preview is presented of recent work on the uses of tritium in tracing general atmospheric motions. Using monthly moisture flux data it was possible to determine the regions of major outflow of air and water vapour through the tropopause into the stratosphere over North America for July 1962. It was found that these areas were closely related to the mean position of the jet stream. Computations were made of the total masses of air and water vapour leaving the troposphere. It is postulated th...

  16. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    Science.gov (United States)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  17. Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    We report the deposition of indium tin oxide (ITO) by atmospheric pressure chemical vapour deposition (APCVD). This process is potentially scalable for high throughput, large area production. We utilised a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and monobutyltintrichloride, MBTC. [Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds. Monobutyltintrichloride (MBTC) is also easily handled and can be readily vaporised. It is compatible with the process conditions required for using [Me2In(acac)]. Cubic ITO was deposited at a substrate temperature of 550 °C with growth rates exceeding 15 nm/s and growth efficiencies of between 20 and 30%. Resistivity was 3.5 × 10−4 Ω cm and transmission for a 200 nm film was > 85% with less than 2% haze.

  18. Deposition of fluorine doped indium oxide by atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    We report the deposition of fluorine doped indium oxide by atmospheric pressure chemical vapour deposition (APCVD) using a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and trifluoroacetic acid (TFA). This process is potentially scalable for high throughput, large area production. [Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds. Cubic fluorine doped indium oxide (F.In2O3) was deposited at a substrate temperature of 550 °C with growth rates exceeding 8 nm/s. Resistivity was 8 × 10−4 Ω cm and transmission for a 200 nm film was > 80% with less than 1% haze.

  19. EDITORIAL: The global atmospheric water cycle

    Science.gov (United States)

    Bengtsson, Lennart

    2010-06-01

    Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes. Water on planet Earth The total amount of available water on the Earth amounts to some 1.5 x 109 km3. The dominant part of this, 1.4 x 109 km3, resides in the oceans. About 29 x 106 km3 are locked up in land ice and glaciers and some 15 x 106 km3 are estimated to exist as groundwater. If all land ice and glaciers were to melt the sea level would rise some 80 m (Baumgartner and Reichel 1975). 13 x 103 km3 of water vapour are found in the

  20. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  1. Recent decadal trends in Iberian water vapour: GPS analysis and WRF process study

    Science.gov (United States)

    Miranda, Pedro M. A.; Nogueira, Miguel; Semedo, Alvaro; Benevides, Pedro; Catalao, Joao; Costa, Vera

    2016-04-01

    A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. The same analysis with ERA-Interim reanalysis data, which was used to force the WRF simulations, does not reveal the same signal in PWV, and indeed correlates poorly with the GPS observations, indicating that the data assimilation process makes the water vapour data in reanalysis unusable for climate change purposes. The good correlation between the WRF simulated data and GPS observations allow for a detailed analysis of the processes involved in the evolution of the PWV field. Akcnowledgements: Study done within FCT Grant RECI/GEO-MET/0380/2012, financially supported by FCT Grant UID/ GEO/50019/2013-IDL Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http

  2. The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone

    Directory of Open Access Journals (Sweden)

    I. M. Vardavas

    Full Text Available A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.

    Key words. Atmospheric composition and structure · Middle atmosphere · Thermosphere

  3. The first regular measurements of ozone, carbon monoxide and water vapour in the Pacific UTLS by IAGOS

    OpenAIRE

    Clark, Hannah; Sauvage, Bastien; Thouret, Valérie; Nédélec, Philippe; Blot, Romain; Wang, Kuo-Ying; Smit, Herman; Neis, Patrick; Petzold, Andreas; Athier, Gilles; Boulanger, Damien; Cousin, Jean-Marc; Beswick, Karl; Gallagher, Martin; Baumgardner, Darrel

    2015-01-01

    We present the features seen in the first 2 months (July and August 2012) of data collected over the Pacific by IAGOS (In-service Aircraft for a Global Observing System)-equipped aircraft. IAGOS is the continuation and development of the well-known MOZAIC (Measurement of Ozone and Water Vapour on Airbus in-service Aircraft) project where scientific instruments were carried on commercially operated A340 aircraft to make measurements of chemical species in the atmosphere. Here, we show data fro...

  4. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard; Peuhkuri, Ruut Hannele

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...... temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were...... tested experimentally in this way, but it is reasonable to assume that concentration is the driving potential. The close equality of the concentrations makes it unnecessary to invoke temperature difference as a third possible potential for driving diffusion....

  5. Vapour pressure osmometry determination of water activity of binary and ternary aqueous (polymer + polymer) solutions

    International Nuclear Information System (INIS)

    Highlights: • VPO determination of water activity for binary and ternary aqueous polymer solutions. • Vapour pressure of binary and ternary aqueous polymer solutions were determined. • Water activities were correlated using the segment-based NRTL and Wilson models. • Molar Gibbs free energy changes due to mixing were determined. - Abstract: Precise water activity measurements at T = 308.15 K were carried out on several binary (water + polymer) and ternary {water + polymer (1) + polymer (2)} systems using the vapour pressure osmometry (VPO) technique. Polymers were polyethylene glycol 400 (PEG400), polyethylene glycol 6000 (PEG6000), polypropylene glycol 400 (PPG400), polyvinylpyrrolidone (PVP) and dextran (DEX). The water activity results obtained were used to calculate the vapour pressure of solutions as a function of concentration and the segment-based local composition models, NRTL and Wilson, were used to correlate the experimental water activity values. It was found that, for the polymer concentration range studied here, the values of the water activity obtained for the binary (water + polymer) solutions decrease in the order DEX > PVP > PEG6000 > PPG400 > PEG400. Furthermore, water activities of solutions of each polymer in the aqueous solutions of (5, 10, 15 and 20)% (w/w) other polymers investigated were also measured at T = 308.15 K. The ability of polymer (1) in decreasing the water activity of binary {water + polymer (2)} solutions was discussed on the basis of the (polymer + water) and {polymer (1) + polymer (2)} interactions

  6. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30. ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.766, year: 2014

  7. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia;

    2012-01-01

    achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...

  8. Detection of the contamination of air by tritiated water vapour around the reactor EL3

    International Nuclear Information System (INIS)

    The authors describe the apparatus used for the detection of the tritiated water vapour contamination in the air around the reactor EL 3. The apparatus consists of two air-circulation ionisation chambers; the air in one of these is dried by passage through a silica-gel column. By carrying out a differential measurement of the ionization currents, it is possible to measure the tritiated water vapour concentration. A theoretical study of the response of the chambers is carried out for two types of emission of the tritiated water vapour: continuous, or in bursts. The experimental work comprises: calibration in the measurement range employed; study of the selectivity for other active gases; study of typical accidents; the interpretation of the results in the case of discontinuous emission, taking into account the desorption from the walls of the measurement chamber, a phenomenon which is observed during the emptying process. The authors give finally actual examples of how to use the results. The apparatus built makes it possible to detect, in less than ten minutes, contamination by tritiated water vapour in the presence of other active gases, in a measurement range of between 3 and 2200 MPC, and with an accuracy of about 25 per cent. A transposition to calculations of the risk to workers should be made with the utmost caution; an envelope of this risk can be drawn up more or less accurately depending on particular cases. (authors)

  9. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2010-10-01

    Full Text Available We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL, and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. While for global HALOE observations the diabatic prediction underestimates the vertical ozone gradient, for SCOUT-O3 in-situ observations the kinematic prediction shows a clear high bias above 390 K. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity. In turn, ozone may provide constraints on aspects of transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  10. Defence of YBa2O7-δ ceramics from degradation in water vapour

    International Nuclear Information System (INIS)

    Degradation of YBa2Cu3O7-δ ceramics in water vapour under 333 K was studied by measure of magnetic susceptibility, captured magnet flux and oxygen content in samples nearsurface layer. It is shown that dimethyldiethoxylan inhibits degradation of ceramics properties

  11. Water vapour rises from the cooling towers for the ATLAS detector at Point 1

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    Electronics on the ATLAS detector produce heat when the experiment is running. An elaborate cooling system keeps the detector from overheating. On the surface, the warm water vapour that rises from the detector 100metres underground is clearly visible from the ATLAS cooling towers on the CERN Meyrin site in Switzerland.

  12. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    A. Laaksonen

    2004-11-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulfur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  13. Influence of chemisorption products of carbon dioxide and water vapour on radiolysis of tritium breeder

    International Nuclear Information System (INIS)

    Highlights: • Chemisorption products affect formation proceses of radiation-induced defects. • Radiolysis of chemisorption products increase amount of radiation-induced defects. • Irradiation atmosphere influence radiolysis of lithium orthosilicate pebbles. - Abstract: Lithium orthosilicate pebbles with 2.5 wt% excess of silica are the reference tritium breeding material for the European solid breeder test blanket modules. On the surface of the pebbles chemisorption products of carbon dioxide and water vapour (lithium carbonate and hydroxide) may accumulate during the fabrication process. In this study the influence of the chemisorption products on radiolysis of the pebbles was investigated. Using nanosized lithium orthosilicate powders, factors, which can influence the formation and radiolysis of the chemisorption products, were determined and described as well. The formation of radiation-induced defects and radiolysis products was studied with electron spin resonance and the method of chemical scavengers. It was found that the radiolysis of the chemisorption products on the surface of the pebbles can increase the concentration of radiation-induced defects and so could affect the tritium diffusion, retention and the released species

  14. Analysis of global water vapour trends from satellite measurements in the visible spectral range

    Directory of Open Access Journals (Sweden)

    S. Mieruch

    2008-02-01

    Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.

    Using linear and non-linear methods from time series analysis and standard statistics the trends of H2O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.

  15. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    Directory of Open Access Journals (Sweden)

    F. Khosrawi

    2015-07-01

    Full Text Available More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations. The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000–2014 from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O observed in the polar regions similar to that observed at midlatitudes and in the tropics. Although in the polar regions no significant trend is found in the lower stratosphere, we found from the observations a correlation between cold winters and enhanced water vapour mixing ratios.

  16. Theoretical investigation of water vapour condensation in presence of noncondensable gases

    International Nuclear Information System (INIS)

    Steam condensation phenomenon plays an important role in many industrial applications. Especially in energy sector this process requires deep understanding. When noncondensable gases are taken into consideration description of the entire phenomenon becomes more complicated. If the surface condensation is taken into consideration this additional species accumulates and creates noncondensable layer near the surface on water vapour condenses. Due to this effect heat and mass transfer rates from gas mixture decreases. Also volume condensation (if it occurs) is affected by the presence of inert gases. Several examples where the phenomena described above are important can be taken into consideration: studies of accidents in the nuclear power plants where condensation in the volume and condensation on the cold containment's structures occurs after steam is released due to the pipe brake in the primary loop (especially this is important for PWR's containments which in normal operation conditions are filled with air or nitrogen); condensation of steam in the pipe systems of BWR reactors where some amount of hydrogen can be accumulated due to the water vapour condensation in nonvented pipes; condensation of steam in the condensers after low pressure stage turbine; etc. Also in other fields, e.g. chemistry or meteorology, the condensation of water vapour in presence of noncondensable species plays very important role. Diffusion surface condensation model and its implementation into CFX - 4 CFD code has been described in this licentiate thesis. Three different situations have been taken into account: surface condensation of water vapour in presence of air on the vertical wall (computational results have been compared with several commonly used correlations), surface condensation of water vapour in presence of air on the horizontal wall (results have been compared with experimental data), volume condensation in presence of air (known also as spontaneous condensation

  17. Isotope composition of precipitation and water vapour in the Iberian peninsula

    International Nuclear Information System (INIS)

    The first set of isotope results (δ18O, δD and T) obtained by the Spanish Network of Isotopes in Precipitation (SNIP), obtained during the years 2000-2002 are presented and analysed in terms of the geographical and climatic factors controlling its seasonal and spatial distribution. SNIP maintains in operation 16 meteorological stations. The present evaluation of isotope data in precipitation focus on the governing atmospheric circulation processes in the vicinity of the Iberian Peninsula and the influence of Atlantic and Mediterranean marine air masses as well as the Central European or African continental air masses. Also in this paper are presented the first results of the stable isotope measurements carried out on single precipitation events and water vapour collected in a weather station located near the meteorological station of Madrid-Retiro. The long-term isotope values obtained in this programme show a reasonable agreement with the GMWL, with mean d-excess values for the different stations ranging from +7 to +14 per mille. These values are coherent with the prevailing westerly circulation, being the North and Tropical Atlantic the major sources of water vapour producing precipitation over the Iberian Peninsula. The most depleted isotope values in rain and snow were observed during the invasion of cold continental air masses from Russia and Northern Europe, but in all cases, associated to small amounts of precipitation. The most enriched isotope values in precipitation are measured in summer months when convective rains are formed. The most intense rain events in Portugal and western Spain are generally related to events involved humid air masses originated in the tropical Atlantic, especially during autumn and spring. The influence of the air masses generated over the Mediterranean is generally restricted to a short distance from the coastline, mainly in the form of extreme events (>100 mm in a few hours) during the months of September and October. The

  18. Structural properties of zinc oxide deposited using atmospheric pressure combustion chemical vapour deposition

    International Nuclear Information System (INIS)

    In this study the deposition of thin zinc oxide (ZnO) films under atmospheric pressure conditions was investigated. The deposition technique applied was combustion chemical vapour deposition (CCVD), at which a propane–air mixture was combusted in a burner. Dissolved zinc nitrate was used as precursor, which was guided as aerosol droplets by the processing gas flow directly into the reaction zone. Fundamental investigations were performed to form undoped ZnO. The structural properties of the films were analysed in dependence of the substrate temperature during the coating process. The presence of crystalline ZnO structures was proved and differences in film growth and crystallite sizes are revealed. Additionally, the particles generated by the CCVD-flame are characterised. The thin films showed a slight excess of Zn and several states of binding energy could be observed by fitting the core level spectra. Scanning and transmission electron microscopy also indicated ordered structures and additionally different orientations of crystallites were observed. - Highlights: • Columnar growth structures of ZnO by CCVD were observed. • The presence of polycrystalline ZnO with (002) as main orientation was confirmed. • Initial particles significantly differ from crystallite sizes of the resulting films. • The films show an excess of Zn with a Zn-to-O ratio of around 1.7

  19. Stratospheric water vapour budget and convection overshooting the tropopause: modelling study from SCOUT-AMMA

    Directory of Open Access Journals (Sweden)

    X. M. Liu

    2010-09-01

    Full Text Available The aim of this paper is to study the impacts of overshooting convection at a local scale on the water distribution in the tropical UTLS. Overshooting convection is assumed to be one of the processes controlling the entry of water vapour mixing ratio in the stratosphere by injecting ice crystals above the tropopause which later sublimate and hydrate the lower stratosphere. For this purpose, we quantify the individual impact of two cases of overshooting convection in Africa observed during SCOUT-AMMA: the case of 4 August 2006 over Southern Chad which is likely to have influenced the water vapour measurements by micro-SDLA and FLASH-B from Niamey on 5 August, and the case of a mesoscale convective system over Aïr on 5 August 2006. We make use of high resolution (down to 1 km horizontally nested grid simulations with the three-dimensional regional atmospheric model BRAMS (Brazilian Regional Atmospheric Modelling System. In both cases, BRAMS succeeds in simulating the main features of the convective activity, as well as overshooting convection, though the exact position and time of the overshoots indicated by MSG brightness temperature difference is not fully reproduced (typically 1° displacement in latitude compared with the overshoots indicated by brightness temperature difference from satellite observations for both cases, and several hours shift for the Aïr case on 5 August 2006. Total water budgets associated with these two events show a significant injection of ice particles above the tropopause with maximum values of about 3.7 ton s−1 for the Chad case (4 August and 1.4 ton s−1 for the Aïr case (5 August, and a total upward cross tropopause transport of about 3300 ton h−1 for the Chad case and 2400 ton h−1 for the Aïr case in the third domain of simulation. The order of magnitude of these modelled fluxes is lower but comparable with similar studies in other tropical areas based on

  20. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    OpenAIRE

    Ren, C; MacKenzie, A. R.; Schiller, C.; Shur, G.; Yushkov, V.

    2007-01-01

    We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixi...

  1. Oxidation of X20 in Water Vapour: The Effect of Temperature and Oxygen Partial Pressure

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Montgomery, Melanie; Somers, Marcel A. J.

    2009-01-01

    The oxidation behaviour of X20 in various mixtures of water, oxygen and hydrogen was investigated at temperatures between 500 C and 700 C (time: 336 h). The samples were characterised using reflected light microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy...... are discussed based on the various hypotheses of the accelerating effect of water vapour that have been put forth in the literature....

  2. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-01-01

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 104 and 106, spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. © the Partner Organisations 2014.

  3. Evaluation of ECMWF water vapour fields by airborne differential absorption lidar measurements: a case study between Brazil and Europe

    Directory of Open Access Journals (Sweden)

    H. Flentje

    2007-10-01

    Full Text Available Three extended airborne Differential Absorption Lidar (DIAL sections of tropospheric water vapour across the tropical and sub-tropical Atlantic in March 2004 are compared to short-term forecasts of the European Centre for Medium Range Weather Forecasts (ECMWF. The humidity fields between 28° S and 36° N exhibit large inter air-mass gradients and reflect typical transport patterns of low- and mid-latitudes like convection (e.g. Hadley circulation, subsidence and baroclinic development with stratospheric intrusion. These processes re-distribute water vapour vertically such that locations with extraordinary dry/moist air-masses are observed in the lower/upper troposphere, respectively. The mixing ratios range over 3 orders of magnitude. Back-trajectories are used to trace and characterize the observed air-masses.

    Overall, the observed water vapour distributions are largely reproduced by the short-term forecasts at 0.25° resolution (T799/L91, the correlation ranges from 0.69 to 0.92. Locally, large differences occur due to comparably small spatial shifts in presence of strong gradients. Systematic deviations are found associated with specific atmospheric domains. The planetary boundary layer in the forecast is too moist and to shallow. Convective transport of humidity to the middle and upper troposphere tends to be overestimated. Potential impacts arising from data assimilation and model physics are considered. The matching of air-mass boundaries (transport is discussed with repect to scales and the representativity of the 2-D sections for the 3-D humidity field. The normalized bias of the model with respect to the observations is 6%, 11% and 0% (moist model biases for the three along-flight sections, whereby however the lowest levels are excluded.

  4. Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing

    Energy Technology Data Exchange (ETDEWEB)

    Blackman, Christopher S., E-mail: c.blackman@ucl.ac.u [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Piccirillo, C.; Binions, R.; Parkin, Ivan P. [Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom)

    2009-06-30

    Atmospheric pressure chemical vapour deposition of VCl{sub 4}, WCl{sub 6} and water at 550 {sup o}C lead to the production of high quality tungsten doped vanadium dioxide thin films. Careful control of the gas phase precursors allowed for tungsten doping up to 8 at.%. The transition temperature of the thermochromic switch was tunable in the range 55 {sup o}C to - 23 {sup o}C. The films were analysed using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Their optical properties were examined using variable-temperature transmission and reflectance spectroscopy. It was found that incorporation of tungsten into the films led to an improvement in the colour from yellow/brown to green/blue depending on the level of tungsten incorporation. The films were optimized for optical transmission, thermochromic switching temperature, magnitude of the switching behaviour and colour to produce films that are suitable for use as an energy saving environmental glass product.

  5. SYNTHESIS OF CARBON NANOSTRUCTURES BY PLASMA ENHANCED CHEMICAL VAPOUR DEPOSITION AT ATMOSPHERIC PRESSURE

    OpenAIRE

    Jašek Ondřej; Synek Petr; Zajíčková Lenka; Eliáš Marek; Kudrle Vít

    2010-01-01

    Carbon nanostructures present leading field in nanotechnology research. Wide range of chemical and physical methods was used for carbon nanostructures synthesis including arc discharges, laser ablation and chemical vapour deposition. Plasma enhanced chemical vapour deposition (PECVD) with its application in modern microelectronics industry became soon target of research in carbon nanostructures synthesis. The selection of the ideal growth process depends on the application. Most of PECVD tech...

  6. Isotope characterization of the water vapour in the Amazon region

    International Nuclear Information System (INIS)

    Samples of atmospheric moisture and of precipitation have been collected daily at two stations in the Amazon Basin, that is Belem, close to the Atlantic coast, and Manaus, approximately 1200 km from the ocean. The deuterium and oxygen-18 contents have been determined in these samples. The isotopic composition of the atmospheric moisture varies generally in parallel with that of precipitation. The isotopic data show the occurrence of at least three seasons in the hydro-meteorology of the Central Amazon Basin. The period of moderate rains (usually less than 25mm/day) from June to late September show rather constant isotopic values. From October to November significantly more negative delta values occur occasionally, especially at Manaus, which are uncorrelated with events at the other station. The period January-April (occasionally extending from December to May) is characterised by periods with rains extremely depleted in heavy isotopes. In spite of the isothermy of the area and lack of clearcut frontal systems, the data suggest that many of the rainy episodes are related to events imposed on the basin from outside and that only the winter period is predominantly influenced by the internal processes within the basin. Presumably then, winter is the season whose precipitation pattern would be most influenced by any deforestation program in the basin

  7. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2014-06-01

    water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.

  8. Conductive zinc oxide thin film coatings by combustion chemical vapour deposition at atmospheric pressure

    International Nuclear Information System (INIS)

    We have established a combustion chemical vapour deposition (C-CVD) system for the deposition of zinc oxide (ZnO) at atmospheric pressure. This C-CVD process has the advantage of a short exposure of the substrates to the flame. It is also potentially applicable as an inline coating system. Fundamental studies were performed on undoped ZnO. The specific resistivity of these layers strongly depends on the film thickness and decreases with increasing thickness. As the lowest resistivities, values of about 2.0 · 10−1 Ωcm are achieved. Ultra-violet photoemission spectra show the valence band structure of the deposited ZnO. The work function and valence band edge were determined. UV–vis spectra were taken to investigate the transmission of the coated glass samples. From these spectra the band gap energy was obtained. Raman spectroscopy as well as infrared spectroscopy confirmed the presence of ordered ZnO crystallites. The X-ray diffraction verified this result and illustrates the hexagonal structure. In the mid-infrared range precursor deposits were detected for low substrate temperatures. - Highlights: ► Zinc oxide (ZnO) films are conductive in the range of 2.0 · 10−1 Ωcm. ► X-ray diffraction, Raman and infrared spectroscopy indicate crystalline ZnO films. ► Precursor deposits were proved within the films for low growing temperatures. ► Band gap energy changes are achieved due to different growing temperatures

  9. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO / H2O variations

    Science.gov (United States)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2015-06-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.

  10. Comparison of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    Directory of Open Access Journals (Sweden)

    N. Kalakoski

    2014-12-01

    Full Text Available Total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF is compared with co-located radiosonde and Global Positioning System (GPS observations. The comparisons are performed using recently reprocessed data by the GOME Data Processor (GDP version 4.7. The comparisons are performed for the period of January 2007–July 2013 (GOME-2A and from December 2012 to July 2013 (GOME-2B. Radiosonde data are from the Integrated Global Radiosonde Archive (IGRA maintained by National Climatic Data Center (NCDC and screened for soundings with incomplete tropospheric column. Ground-based GPS observations from COSMIC/SuomiNet network are used as the second independent data source. Good general agreement between GOME-2 and the ground-based observations is found. The median relative difference of GOME-2 to radiosonde observations is −2.7% for GOME-2A and −0.3% for GOME-2B. Against GPS observations, the median relative differences are 4.9 and 3.2% for GOME-2A and B, respectively. For water vapour total columns below 10 kg m−2, large wet biases are observed, especially against GPS observations. Conversely, at values above 50 kg m−2, GOME-2 generally underestimates both ground-based observations.

  11. Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements

    Science.gov (United States)

    Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter

    2016-04-01

    The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.

  12. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.; Møldrup, Per;

    2015-01-01

    (average RMSE = 5.0%, ME = 2.4%) prediction of clay contents. However, the model for soils with small OC contents showed only minor improvement when compared with recently published models. Three main sources of prediction errors, namely large OC and silt contents, and a prevalence of 1:1 clay minerals......Soil texture, in particular the clay fraction, governs numerous environmental, agricultural and engineering soil processes. Traditional measurement methods for clay content are laborious and impractical for large-scale soil surveys. Consequently, clay prediction models that are based on water...... for estimating clay content from hygroscopic water at different relative humidity (RH) levels while considering hysteresis and organic matter content. Continuous adsorption/desorption vapour sorption isotherm loops were measured for 150 differently textured soils with a state-of-the-art vapour...

  13. Mixing characteristics of turbulent water vapour jets measured using an isokinetic sampling probe

    Science.gov (United States)

    Baskaya, S.; Gilchrist, A.; Fraser, S. M.

    Horizontal turbulent water vapour (steam) jets were discharged into ambient air from a circular convergent nozzle under unchoked/choked and saturated/superheated nozzle exit conditions, resulting in two-phase (liquid and vapour), two-fluid (air and water) condensing free jets. Flow properties and mixing characteristics have been measured with the aid of an isokinetic sampling probe arrangement. Radial and axial profiles of air and steam mass flow rates and mass fractions were measured from which entrainment, centreline decay and half-width spreading rates were calculated and compared with data from the literature. Overall, the mixing characteristics of the condensing jets are very similar to those of non-condensing jets extensively reported in the literature.

  14. Validation of two independent retrievals of SCIAMACHY water vapour columns using radiosonde data

    Science.gov (United States)

    du Piesanie, A.; Piters, A. J. M.; Aben, I.; Schrijver, H.; Wang, P.; Noël, S.

    2013-10-01

    Two independently derived SCIAMACHY total water vapour column (WVC) products are compared with integrated water vapour data calculated from radiosonde measurements, and with each other. The two SCIAMACHY WVC products are retrieved with two different retrieval algorithms applied in the visible and short-wave infrared wavelength regions respectively. The first SCIAMACHY WVC product used in the comparison is ESA's level 2 version 5.01 WVC product derived with the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS) retrieval algorithm applied in the visible wavelength range (SCIAMACHY-ESA). The second SCIAMACHY WVC product is derived using the iterative maximum likelihood method (IMLM) in the short-wave infrared wavelength range and developed by Netherlands Institute for Space Research (SCIAMACHY-IMLM). Both SCIAMACHY WVC products are compared with collocated water vapour amounts determined from daily relative humidity radiosonde measurements obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) radiosonde network. The SCIAMACHY-ESA WVC product is compared with radiosonde-derived WVC amounts for an 18-month period from February 2010 to mid-August 2011, and the SCIAMACHY-IMLM WVC amounts are compared with radiosonde WVC amounts for the two individual years of 2004 and 2009. In addition the WVC amounts from SCIAMACHY-ESA and SCIAMACHY-IMLM are also compared with each other for a 1-month period for June 2009. The AMC-DOAS method used to retrieve SCIAMACHY-ESA WVC is able to correct for water vapour present below the clouds and can be used during cloudy conditions over both land and ocean surfaces. Results indicate a good agreement between the WVC amounts of SCIAMACHY-ESA and that of radiosondes, with a mean difference of -0.32 g cm-2 for all collocated cases. Overall the SCIAMACHY-ESA WVC amounts are smaller than the radiosonde WVC amounts, especially over oceans. For cloudy conditions the WVC bias has a clear dependence on

  15. Binary supported nickel catalysts for the deuterium exchange reaction between hydrogen and water vapour

    International Nuclear Information System (INIS)

    Nickel catalysts supported by Fe2O3, CuO, MnO and CeO were prepared from the corresponding metal nitrates. Chemical treatment of the catalysts was carried out at room temperature, while thermal treatment was made at 350 0C. The total surface area of the catalysts was measured by nitrogen adsorption at -195 0C using the BET equation. The specific metallic surface area was measured by hydrogen chemisorption at liquid nitrogen temperature. The activity of the catalysts was tested for the isotopic exchange reaction of deuterium between hydrogen and water vapour. The results obtained showed that Ni-Fe2O3, Ni-CuO and Ni-MnO catalysts exhibit catalytic activity for the deuterium exchange between hydrogen and water vapour, while the catalyst supported by CeO has no such activity. (author)

  16. Validation of two independent retrievals of SCIAMACHY water vapour columns using radiosonde data

    Directory of Open Access Journals (Sweden)

    A. du Piesanie

    2013-10-01

    Full Text Available Two independently derived SCIAMACHY total water vapour column (WVC products are compared with integrated water vapour data calculated from radiosonde measurements, and with each other. The two SCIAMACHY WVC products are retrieved with two different retrieval algorithms applied in the visible and short-wave infrared wavelength regions respectively. The first SCIAMACHY WVC product used in the comparison is ESA's level 2 version 5.01 WVC product derived with the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS retrieval algorithm applied in the visible wavelength range (SCIAMACHY-ESA. The second SCIAMACHY WVC product is derived using the iterative maximum likelihood method (IMLM in the short-wave infrared wavelength range and developed by Netherlands Institute for Space Research (SCIAMACHY-IMLM. Both SCIAMACHY WVC products are compared with collocated water vapour amounts determined from daily relative humidity radiosonde measurements obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF radiosonde network. The SCIAMACHY-ESA WVC product is compared with radiosonde-derived WVC amounts for an 18-month period from February 2010 to mid-August 2011, and the SCIAMACHY-IMLM WVC amounts are compared with radiosonde WVC amounts for the two individual years of 2004 and 2009. In addition the WVC amounts from SCIAMACHY-ESA and SCIAMACHY-IMLM are also compared with each other for a 1-month period for June 2009. The AMC-DOAS method used to retrieve SCIAMACHY-ESA WVC is able to correct for water vapour present below the clouds and can be used during cloudy conditions over both land and ocean surfaces. Results indicate a good agreement between the WVC amounts of SCIAMACHY-ESA and that of radiosondes, with a mean difference of −0.32 g cm−2 for all collocated cases. Overall the SCIAMACHY-ESA WVC amounts are smaller than the radiosonde WVC amounts, especially over oceans. For cloudy conditions the WVC bias has a

  17. Interdigit dielectrometry of water vapour induced changes in granular starch

    Directory of Open Access Journals (Sweden)

    F. Starzyk

    2008-01-01

    Full Text Available Purpose: of this paper was a practical approval whether fringe field interdigit dielectrometry (FFID can beuseful for sensible monitoring of water molecules behavior within granular-starch-population sample during it’shumidification process.Design/methodology/approach: used was to design methodology and perform series of measurementsinvolving calibration of a measuring system, sample preparation and to record initial stage of starch-granulespopulationsamples humidification process as dielectric parameters response on the step of ambient atmosphererelative humidity (~0 to ~100% at room temperature.Findings: it was found that FFID enables to follow and isolate new features and characteristic stages of watervapors behavior during humidification of vacuum- dried starch granules population. The measurement of dielectricproperties of freely stacked granules population with unperturbed inter-granular contacts areas differs from the one,during which this contacts are being broken.Research limitations/implications: the possibility of new insight into humidification of micro-granularmatter sample (starch granules population. It implies the necessity of collective (of global scale model of dielectricproperties creation. The evolution of dielectric permittivity is correlated with mass increase (water dipoles numberand adsorption rate as well as with absorption of water molecules within the granules population. Dielectric energylosses are correlated with evolution of interaction between water molecules and bio-polymeric matrix.Practical implications: huge amounts starch granules are produced transported and stored so properunderstanding of wheat response on humidity change is also of great practical importance.Originality/value: of this paper relays on the fact that FFID was applied for the first time to starch granulespopulation and it turned out to be effective tool in monitoring and modeling of dielectric properties of microgranularmatter population and

  18. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL)

    OpenAIRE

    F. Ploeger; Fueglistaler, S.; Grooß, J.-U.; G. Günther; Konopka, P.; Liu, Y. S.; Müller, R.; F. Ravegnani; Schiller, C; A. Ulanovski; M. Riese

    2011-01-01

    We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL), and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE) and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectorie...

  19. Mechanistic Modeling of Water Vapour Condensation in Presence of Noncondensable Gases

    OpenAIRE

    Karkoszka, Krzysztof

    2007-01-01

    This thesis concerns the analytical and numerical analysis of the water vapour condensation from the multicomponent mixture of condensable and noncondensable gases in the area of the nuclear reactor thermal-hydraulic safety. Following an extensive literature review in this field three aspects of the condensation phenomenon have been taken into consideration: a surface condensation, a liquid condensate interaction with gaseous mixtures and a spontaneous condensation in supersaturated mixtures....

  20. Theoretical investigation of water vapour condensation in presence of noncondensable gases

    OpenAIRE

    Karkoszka, Krzysztof

    2005-01-01

    Steam condensation phenomenon plays an important role in many industrial applications. Especially in energy sector this process requires deep understanding. When noncondensable gases are taken into consideration description of the entire phenomenon becomes more complicated. If the surface condensation is taken into consideration this additional species accumulates and creates noncondensable layer near the surface on water vapour condenses. Due to this effect heat and mass transfer rates from ...

  1. Plasticiser Effect on Water Vapour Permeability Properties of Locust bean gum--Based Edible Films

    OpenAIRE

    BOZDEMİR, Özgür Altan; TUTAŞ, Mehmet

    2003-01-01

    The barrier properties of edible films prepared from polysaccharide polymer (locust bean gum) and various plasticisers (glycerol, propylene glycol, sorbitol, and polyethylene glycol 200) together with hydrophobic modifiers (stearopten and beeswax) were examined. It was determined that the films containing polyethylene glycol 200 (PEG 200) and sorbitol have the lowest water vapour permeability values and the films containing glycerol have the highest WVP values. It was found that the ...

  2. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall

    OpenAIRE

    Benevides, P.; Catalao, J.; P. M. A. Miranda

    2015-01-01

    The temporal behaviour of precipitable water vapour (PWV) retrieved from GPS delay data is analysed in a number of case studies of intense precipitation in the Lisbon area, in the period 2010–2012 and in a continuous annual cycle of 2012 observations. Such behaviour is found to correlate positively with the probability of precipitation, especially in cases of severe rainfall. The evolution of the GPS PWV in a few stations is analysed by a least-squares fitting of a broken li...

  3. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall

    OpenAIRE

    Benevides, P.; Catalao, J.; P. M. A. Miranda

    2015-01-01

    The temporal behaviour of Precipitable Water Vapour (PWV) retrieved from GPS delay data is analysed in a number of case studies of intense precipitation in the Lisbon area, in the period 2010–2012, and in a continuous annual cycle of 2012 observations. Such behaviour is found to correlate positively with the probability of precipitation, especially in cases of severe rainfall. The evolution of the GPS PWV in a few stations is analysed by a...

  4. Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2011-01-01

    Full Text Available We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL, and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390 K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.

  5. Poleward expansion of the tropical belt derived from upper tropospheric water vapour

    OpenAIRE

    You, Qinglong; Min, Jinzhong; Kang, Shichang; Pepin, Nick

    2015-01-01

    Based on intersatellite-calibrated high-resolution infrared radiation sounder (HIRS) upper tropospheric water vapour (UTWV) brightness temperatures, the width of the tropical belt is defined as the distance between the latitudes at which maximum HIRS UTWV brightness temperatures are recorded in both hemispheres. Poleward expansion of the tropical belt is evident during 1979–2013 on an annual basis, with an average global magnitude of 1.57° latitude per decade. Most rapid widening is evident i...

  6. Responses in tropospheric chemistry to changes in UV fluxes, temperatures and water vapour densities

    OpenAIRE

    Fuglestvedt, Jan S.; Jonson, J.E.; WANG, WEI-CHYUNG; Isaksen, Ivar S.A.

    1994-01-01

    A two-dimensional chemistry/transport model of the global troposphere is used to study the chemical response to i) increased UV-radiation from stratospheric ozone depletion and ii) increased temperatures and water vapour densities that follow from in-creased levels of greenhouse gases. Increased UV radiation increases the photolysis rates for several tropospheric gases, in particular ozone. This leads to enhanced levels of odd hydrogen and reduced concentrations of tropospheric ozone. Increas...

  7. Backtrajectory reconstruction of water vapour and ozone in-situ observations in the TTL

    Energy Technology Data Exchange (ETDEWEB)

    Ploeger, F.; Konopka, P.; Mueller, R.; Guenther, G.; Grooss, J.U.; Schiller, C.; Riese, M. [Forschungszentrum Juelich (DE). Inst. fuer Energie- und Klimaforschung (IEK-7); Ravegnani, F. [ISAC-CNR, Bologna (Italy). Inst. of Atmospheric Sciences and Climate; Ulanovski, A. [CAO, Dolgoprudny (Russian Federation)

    2012-06-15

    Water vapour and ozone in-situ observations in the tropical tropopause layer (TTL) during the three tropical campaigns SCOUT-O3, AMMA and TroCCiNOx are reconstructed from diabatic and kinematic backtrajectories, with the reconstruction method for the tracer fields based on freeze-drying and photochemichal ozone production. The results using diabatic trajectories show that both water vapour and ozone in-situ observations can be well reconstructed from trajectories. Consequentially, in-situ observations agree with the assumption of freeze-drying due to the large-scale temperature field as the main control mechanism for water vapour and photochemical production and transport as main control mechanisms for tropical ozone. The kinematic ozone reconstruction, however, shows a large high-bias during SCOUT-O3 and a too strong variability during all campaigns, due to excessive transport of stratospheric ozone into the TTL. We conclude that kinematic reconstructions of in-situ observations are less reliable than diabatic, due to unrealistic inhomogeneities in the velocity field. (orig.)

  8. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    Science.gov (United States)

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour. PMID:27403638

  9. Validation of stratospheric water vapour measurements from the airborne microwave radiometer AMSOS

    Directory of Open Access Journals (Sweden)

    S. C. Müller

    2008-01-01

    Full Text Available We present the validation of a water vapour dataset obtained by the Airborne Microwave Stratospheric Observing System AMSOS, a passive microwave radiometer operating at 183 GHz. Vertical profiles are retrieved from spectra by an optimal estimation method. The useful vertical range lies in the upper troposphere up to the mesosphere with an altitude resolution of 8 to 16 km and a horizontal resolution of about 57 km. Flight campaigns were performed once a year from 1998 to 2006 measuring the latitudinal distribution of water vapour from the tropics to the polar regions. The obtained profiles show clearly the main features of stratospheric water vapour in all latitudinal regions. Data are validated against a set of instruments comprising satellite, ground-based, airborne remote sensing and in-situ instruments. It appears that AMSOS profiles have a dry bias of 3–20%, when compared to satellite experiments. A good agreement with a difference of 3.3% was found between AMSOS and in-situ hygrosondes FISH and FLASH and an excellent matching of the lidar measurements from the DIAL instrument in the short overlap region in the upper troposphere.

  10. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    Science.gov (United States)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  11. Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-12-01

    Full Text Available We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.

  12. Isotopes in the Arctic atmospheric water cycle

    Science.gov (United States)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  13. Improved simulation of water vapour and clear-sky radiation using 24-hour forecasts from ERA40

    OpenAIRE

    Allan, Richard P

    2007-01-01

    Monthly mean water vapour and clear-sky radiation extracted from the European Centre for Medium Range Weather Forecasts 40-year reanalysis (ERA40) forecasts are assessed using satellite observations and additional reanalysis data. There is a marked improvement in the interannual variability of column-integrated water vapour (CWV) over the oceans when using the 24-hour forecasts compared with the standard 6-hour forecasts products. The spatial distribution ofCWV are well simulated by the 6-hou...

  14. The potential impact of changes in lower stratospheric water vapour on stratospheric temperatures over the past 30 years

    OpenAIRE

    Maycock, A. C.; Joshi, M. M.; Shine, K P; Davis, S M; Rosenlof, K. H.

    2014-01-01

    This study investigates the potential contribution of observed changes in lower stratospheric water vapour to stratospheric temperature variations over the past three decades using a comprehensive global climate model (GCM). Three case studies are considered. In the first, the net increase in stratospheric water vapour (SWV) from 1980–2010 (derived from the Boulder frost-point hygrometer record using the gross assumption that this is globally representative) is estimated to have cooled the lo...

  15. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    , thermal diffusion of water vapour in porous materials - diffusion driven by temperature gradients - currently stands out, due to the contradictory findings on the topic. Thermal diffusion proponents uphold that, complementary to vapour pressure gradients, temperature gradients equally yield substantial...... diffusion. Thermal diffusion opponents, on the other hand, assert that these thermal transports are negligibly small. This paper resolves that contradiction. A critical analysis of the investigations supporting the occurrence of thermal diffusion reveals that all are flawed. A correct reinterpretation of...... all measurements allows concluding that no consistent nor significant thermal diffusion can be observed. This brings these investigations in line with their earlier opponents. This conclusion also agrees with thermodynamics, which confirms the actual existence of thermal diffusion, but also indicates...

  16. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  17. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.)

  18. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  19. Total ozone column, water vapour and aerosol effects on erythemal and global solar irradiance in Marsaxlokk, Malta

    Science.gov (United States)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; de Miguel, Argimiro

    2014-12-01

    Observations of erythemal (UVER; 280-400 nm) and total solar shortwave irradiance (SW; 305-2800 nm), total ozone column (TOC), water vapour column (w), aerosol optical depth (AOD) and Ångström exponent (α) were carried out at Marsaxlokk, in south-east Malta. These measurements were recorded during a measurement campaign between May and October 2012, aimed at studying the influence of atmospheric compounds on solar radiation transfer through the atmosphere. The effects of TOC, AOD and w on UVER and SW (global, diffuse and direct) irradiance were quantified using irradiance values under cloud-free conditions at different fixed solar zenith angles (SZA). Results show that UVER (but not SW) irradiance correlates well with TOC. UVER variations ranged between -0.24% DU-1 and -0.32% DU-1 with all changes being statistically significant. Global SW irradiance varies with water vapour column between -2.44% cm-1 and -4.53% cm-1, these results proving statistically significant and diminishing when SZA increases. The irradiance variations range between 42.15% cm-1 and 20.30% cm-1 for diffuse SW when SZA varies between 20° and 70°. The effect of aerosols on global UVER is stronger than on global SW. Aerosols cause a UVER reduction of between 28.12% and 52.41% and a global SW reduction between 13.46% and 41.41% per AOD550 unit. Empirical results show that solar position plays a determinant role, that there is a negligible effect of ozone on SW radiation, and stronger attenuation by aerosol particles in UVER radiation.

  20. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture

    Science.gov (United States)

    He, Siyuan; Richards, Keith

    2016-09-01

    Understanding climate variations over the Qinghai-Tibetan plateau has become essential because the high plateau sustains various ecosystems and water sources, and impacts on the Asian monsoon system. This paper provides new information from isotopic signals in meteoric water and atmospheric water vapour on the Qinghai-Tibetan Plateau using high frequency observation data over a relatively short period. The aim is to explore temporal moisture changes and annual variations at the onset and during the summer monsoon season at a transitional site with respect to the monsoon influence. Data show that high frequency and short period observations can reveal typical moisture changes from the pre-monsoon to the monsoon seasons (2010), and the large variation in isotopic signals in different years with respect to active/inactive periods during a mature phase of the monsoon (2011), especially inferring from the temporal changes in the d-excess of precipitation and its relationship with δ18O values, when higher d-excess is found in the pre-monsoon precipitation. In this transition zone on a daily basis, δ18O values in precipitation are controlled mainly by the amount of rainfall during the monsoon season, while temperature seems more important before the onset of monsoon. Furthermore, the "amount effect" is significant for night-time rain events. From comparison of signals in both the precipitation and water vapour, an inconsistent relationship between d-excess values suggests various moisture fluxes are active in a short period. The temporal pattern of isotopic signal change from the onset of the monsoon to the mature monsoon phase provides information about the larger circulation dynamics of the Asian monsoon.

  1. Localized sources of water vapour on the dwarf planet (1) Ceres

    Science.gov (United States)

    Küppers, M.; O'Rourke, L.; Bockelée-Morvan, D.; Zakharov, V.; Lee, S.; von Allmen, P.; Carry, B.; Teyssier, D.; Marston, A.; Müller, T.; Crovisier, J.; Barucci, A.; Moreno, R.

    2014-07-01

    We report the detection of water vapour on (1) Ceres, the first unambiguous discovery of water on an object in the asteroid main belt. Most of the water vapour stems from localized regions at low latitude, possibly from surface features known from adaptive-optics observations. We suggest either cometary-type sublimation from the near surface or cryovolcanism as the origin of the waver vapour [1]. The snowline conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Recently, the detection of dust emission from ''main-belt comets'' [2] and of hydration features and possible water ice absorption on some main-belt asteroids [3], together with theories of migration of small bodies in the solar system [4], cast some doubts on the classical picture. Ceres is thought to be differentiated into an icy core and a silicate mantle [5] and hydrated minerals were found on infrared spectra of its surface [6]. A marginal detection of OH, a photodissociation product of water was reported in 1991 [7], but questioned by later, more sensitive observations [8]. We observed Ceres with the Heterodyne Instrument for the Far Infrared (HIFI) [9] on the Herschel Space Observatory [10] in the context of the MACH 11 guaranteed time program and with a follow-up DDT program. The observations took place in Nov. 2011, Oct. 2012, and March 2013. We searched for the signature of water in the ground state line of ortho-water at 556.936 GHz. After a non- detection in the first observation, an absorption line is clearly visible in all other observations. In March 2013, water is detected in emission as well (at 3 sigma level). The production rate of water on Ceres is a few times 10^{26} s^{-1}. The signal from the water vapour from Ceres was found to be linearly polarized during some of the observations, with the absorption being stronger in the horizontal branch. The measured line-area ratio of up to 2.5 between H and V

  2. Water vapour self-continuum and water dimers: 1. Analysis of recent work

    International Nuclear Information System (INIS)

    Recent laboratory observations and advances in theoretical quantum chemistry allow a reappraisal of the fundamental mechanisms that determine the water vapour self-continuum absorption throughout the infrared and millimetre wave spectral regions. By starting from a framework that partitions bimolecular interactions between water molecules into free-pair states, true bound and quasi-bound dimers, we present a critical review of recent observations, continuum models and theoretical predictions. In the near-infrared bands of the water monomer, we propose that spectral features in recent laboratory-derived self-continuum can be well explained as being due to a combination of true bound and quasi-bound dimers, when the spectrum of quasi-bound dimers is approximated as being double the broadened spectrum of the water monomer. Such a representation can explain both the wavenumber variation and the temperature dependence. Recent observations of the self-continuum absorption in the windows between these near-infrared bands indicate that widely used continuum models can underestimate the true strength by around an order of magnitude. An existing far-wing model does not appear able to explain the discrepancy, and although a dimer explanation is possible, currently available observations do not allow a compelling case to be made. In the 8-12 μm window, recent observations indicate that the modern continuum models either do not properly represent the temperature dependence, the wavelength variation, or both. The temperature dependence is suggestive of a transition from the dominance of true bound dimers at lower temperatures to quasi-bound dimers at higher temperatures. In the mid- and far-infrared spectral region, recent theoretical calculations indicate that true bound dimers may explain at least between 20% and 40% of the observed self-continuum. The possibility that quasi-bound dimers could cause an additional contribution of the same size is discussed. Most recent

  3. Mass spectrometric investigation of the ionic species in a dielectric barrier discharge operating in helium-water vapour mixtures

    International Nuclear Information System (INIS)

    Using advanced mass spectrometry the chemistry of ionic species present in an atmospheric-pressure parallel plate dielectric barrier discharge (DBD) with a single dielectric on the powered electrode have been identified. The discharge was driven in helium with controllable concentrations of water vapour using an excitation frequency of 10 kHz and an applied voltage of 1.2 kV. Both negative and positive ions were identified and their relative intensity determined with variation of water concentration in the discharge, inter-electrode spacing, gas residence time and nominal applied power. The most abundant negative ions were of the family OH−(H2O)n, while the positive ions were dominated by those of the form H+(H2O)n, with n up to 9 in both cases. Negative and positive ions responded in a similar way to changes in the operating parameters, with the particular response depending on the ion mass. Increasing the inter-electrode spacing and the water concentration in the discharge led to an increase in the intensity of large mass ionic water clusters. However, increasing the residence time of the species in the plasma region and increasing the applied power resulted in fragmentation of large water clusters to produce smaller ions. (paper)

  4. A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis

    Directory of Open Access Journals (Sweden)

    R. Van Malderen

    2014-02-01

    Full Text Available Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. At one hand, networks of ground-based instruments allowing to retrieve homogeneous Integrated Water Vapour (IWV datasets are being set up. Typical examples are Global Navigation Satellite System (GNSS observation networks such as the International GNSS Service (IGS, with continuous GPS (Global Positioning System observations spanning over the last 15+ yr, and the AErosol RObotic NETwork (AERONET, providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 yr (e.g. AIRS or are being merged in order to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2. The present study aims at setting up a techniques intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS, in-situ measurements (radiosondes and ground-based instruments (GPS, sun photometer, to assess the applicability of either dataset for water vapour trends analysis. To this end, we selected 28 sites worldwide at which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. We found that the mean biases of the different techniques w.r.t. the GPS estimates vary only between −0.3 to 0.5 mm of IWV, but the small bias is accompanied by large Root Mean Square (RMS values, especially for the satellite instruments. In particular, we analysed the impact of the presence of clouds on the techniques IWV agreement. Also, the influence of specific issues for each instrument on the intercomparison is investigated, e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the

  5. Validation of two independent retrievals of SCIAMACHY water vapour columns using radiosonde data

    Directory of Open Access Journals (Sweden)

    A. du Piesanie

    2013-01-01

    Full Text Available Two independently derived SCIAMACHY total water vapour column (WVC products are compared with integrated water vapour data calculated from radiosonde measurements, and with each other. The two SCIAMACHY WVC products are retrieved with two different retrieval algorithms applied in the visible and short wave infrared wavelength regions respectively. The first SCIAMACHY WVC product used in the comparison is ESA's level 2 version 5.01 WVC product derived with the Air Mass Corrected Differential Absorption Spectroscopy (AMC-DOAS retrieval algorithm (SCIAMACHY-ESA. The second SCIAMACHY WVC product is derived using the Iterative Maximum Likelihood Method (IMLM developed by Netherlands Institute for Space Research (SCIAMACHY-IMLM. Both SCIAMACHY WVC products are compared with collocated water vapour amounts determined from daily relative humidity radiosonde measurements obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF radiosonde network, over an 18 month and 2 yr period respectively.

    Results indicate a good agreement between the WVC amounts of SCIAMACHY-ESA and the radiosonde, and a mean difference of 0.03 g cm−2 is found for cloud free conditions. Overall the SCIAMACHY-ESA WVC amounts are smaller than the radiosonde WVC amounts, especially over oceans. For cloudy conditions the WVC bias has a clear dependence on the cloud top height and increases with increasing cloud top heights larger than approximately 2 km. A likely cause for this could be the different vertical profile shapes of water vapour and O2 leading to different relative changes in their optical thickness, which makes the AMF correction method used in the algorithm less suitable for high clouds.

    The SCIAMACHY-IMLM WVC amounts compare well to the radiosonde WVC amounts during cloud free conditions over land. A mean difference of 0.08 g cm−2 is found which is consistent with previous results when comparing daily

  6. A multi-site techniques intercomparison of integrated water vapour observations for climate change analysis

    Science.gov (United States)

    Van Malderen, R.; Brenot, H.; Pottiaux, E.; Beirle, S.; Hermans, C.; De Mazière, M.; Wagner, T.; De Backer, H.; Bruyninx, C.

    2014-02-01

    Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. At one hand, networks of ground-based instruments allowing to retrieve homogeneous Integrated Water Vapour (IWV) datasets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ yr, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 yr (e.g. AIRS) or are being merged in order to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). The present study aims at setting up a techniques intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in-situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess the applicability of either dataset for water vapour trends analysis. To this end, we selected 28 sites worldwide at which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. We found that the mean biases of the different techniques w.r.t. the GPS estimates vary only between -0.3 to 0.5 mm of IWV, but the small bias is accompanied by large Root Mean Square (RMS) values, especially for the satellite instruments. In particular, we analysed the impact of the presence of clouds on the techniques IWV agreement. Also, the influence of specific issues for each instrument on the intercomparison is investigated, e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan

  7. Water vapour passivation of poly-Si thin film solar cells

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Fejfar, Antonín; Píč, Vlastimil; Müller, Martin; Ledinský, Martin; Vetushka, Aliaksi; Kočka, Jan

    München: WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012 - (Nowak, S.), s. 2393-2395 ISBN 3-936338-28-0. [European Photovoltaic Solar Energy Conference and Exhibition (PVSEC) /17./. Frankfurt (DE), 24.09.2012-28.09.2012] R&D Projects: GA MŠk 7E10061; GA MPO FR-TI2/736; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 240826 - POLYSIMODE Institutional research plan: CEZ:AV0Z10100521 Keywords : polycrystalline * silicon * thin film solar cell * water vapour passivation * in situ investigation * Suns-Voc Subject RIV: BM - Solid Matter Physics ; Magnetism

  8. Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk.

    Science.gov (United States)

    Eisner, J A

    2007-05-31

    Planetary systems (ours included) formed in disks of dust and gas around young stars. Disks are an integral part of the star and planet formation process, and knowledge of the distribution and temperature of inner-disk material is crucial for understanding terrestrial planet formation, giant planet migration, and accretion onto the central star. Although the inner regions of protoplanetary disks in nearby star-forming regions subtend only a few nano-radians, near-infrared interferometry has recently enabled the spatial resolution of these terrestrial zones. Most observations have probed only dust, which typically dominates the near-infrared emission. Here I report spectrally dispersed near-infrared interferometric observations that probe the gas (which dominates the mass and dynamics of the inner disk), in addition to the dust, within one astronomical unit (1 au, the Sun-Earth distance) of the young star MWC 480. I resolve gas, including water vapour and atomic hydrogen, interior to the edge of the dust disk; this contrasts with results of previous spectrally dispersed interferometry observations. Interactions of this accreting gas with migrating planets may lead to short-period exoplanets like those detected around main-sequence stars. The observed water vapour is probably produced by the sublimation of migrating icy bodies, and provides a potential reservoir of water for terrestrial planets. PMID:17538613

  9. Water vapour permeability of poly(lactic acid): Crystallinity and the tortuous path model

    Science.gov (United States)

    Duan, Z.; Thomas, N. L.

    2014-02-01

    The water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial poly(lactic acid) (PLA) were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0% to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38 °C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0% to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the "Tortuous Path Model." The model was also successfully used to explain published data on water permeability of polyethylene terephthalate.

  10. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Directory of Open Access Journals (Sweden)

    N. David

    2009-04-01

    Full Text Available We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks.

    Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both may also interfere with the ability to conduct accurate measurements.

    We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements, the other in central Israel (29 measurements. The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences

  11. The oxidation of stainless steels in water vapour-oxygen mixtures. Design and development of an original equipment

    International Nuclear Information System (INIS)

    A device including a thermobalance placed in a tight housing has been conceived and built. This apparatus is suitable to submit metallic samples to the action of dry oxygen, deoxygenated water vapour or mixtures of water vapour and oxygen. The first results obtained with this device, at 6000C, and for a 18-10 stainless steel are: - in the presence of deoxygenated water vapour, one observes very fast oxidation kinetics, with a roughly parabolic law (K approximately equal to 3x10-2 mg2.cm-4.h-1); - the addition of oxygen from about 10 vpm onwards, induces an important initial slowing down of the kinetics; - the duration of this 'induction' period rises with increasing the oxygen content of the water vapour, but the protection of the alloy due to the action of oxygen remains temporary; - in another way, experiments begun with water vapour, were continued with pure oxygen, and reciprocally. During these 'mixed' experiments, the weight increases were continually recorded. A swift slowing down has been observed in the first case and an important acceleration in the second one

  12. Inline atmospheric pressure metal-organic chemical vapour deposition for thin film CdTe solar cells

    International Nuclear Information System (INIS)

    A detailed study has been undertaken to assess the deposition of CdTe for thin film devices via an inline atmospheric pressure metal-organic chemical vapour deposition (AP-MOCVD) reactor. The precursors for CdTe synthesis were released from a showerhead assembly normal to a transparent conductive oxide (TCO)/glass substrate, previously coated with a CdZnS window layer using a conventional batch AP-MOCVD reactor with horizontal flow delivery. Under a simulated illumination with air mass coefficient 1.5 (AM1.5), the initial best cell conversion efficiency (11.2%) for such hybrid cells was comparable to a reference device efficiency (∼ 13%), grown entirely in the AP-MOCVD batch reactor. The performance and structure of the hybrid and conventional devices are compared for spectral response, CdTe grain morphology and crystal structure. These preliminary results reported on the transfer from a batch to an inline AP-MOCVD reactor which holds a good potential for the large-scale production of thin film photovoltaics devices and related materials. - Highlights: • Inline metal-organic chemical vapour deposition (MOCVD) used to grow CdTe films • Desired dopant profiles in CdTe:As achieved with inline MOCVD reactor • Initial conversion efficiency of 11.2% was comparable to batch devices (∼ 13%). • Inline MOCVD holds a good potential for large-scale thin film photovoltaics production

  13. Cost of water from a single-purpose multi-stage flash plant with vapour recompression

    International Nuclear Information System (INIS)

    A number of countries that are deficient in fresh-water supplies are seriously considering the desalting of seawater in their medium- and long-range development plans. In some developed countries where large power grids exist, electricity may be derived from dual-purpose plants that also promise to produce desalinated water at a unit cost low enough for municipal and industrial use. In water-deficient developing countries, however, the power needs are usually low in relation to the water needs, and therefore there is a need for single-purpose desalting plants that could produce water at unit costs approaching those achievable in dual-purpose plants. The International Atomic Energy Agency has sought to encourage the development of single-purpose desalting plants and requested Applied Research and Engineering Ltd (AREL), United Kingdom, to investigate single-purpose vapour recompression as a promising system for a plant. This report presents the cost of water from a single purpose MSF/Recompression plant and compares the cost of water from dual purpose plant. It also shows the cost of water from a plant producing both water and power separately from a common reactor

  14. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.;

    2007-01-01

    Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour...... concentration measurements decreases exponentially with increasing relative humidity. After correction for this unintended filtering, the fluxes are consistent with CO2 and H2O fluxes that were measured with an open-path sensor at the same time. The correction of water vapour flux measurements over a Beech...

  15. MAIC-2, a latitudinal model for the Martian surface temperature, atmospheric water transport and surface glaciation

    CERN Document Server

    Greve, Ralf; Stenzel, Oliver J

    2009-01-01

    The Mars Atmosphere-Ice Coupler MAIC-2 is a simple, latitudinal model, which consists of a set of parameterizations for the surface temperature, the atmospheric water transport and the surface mass balance (condensation minus evaporation) of water ice. It is driven directly by the orbital parameters obliquity, eccentricity and solar longitude (Ls) of perihelion. Surface temperature is described by the Local Insolation Temperature (LIT) scheme, which uses a daily and latitude-dependent radiation balance, includes a treatment of the seasonal CO2 cap, and has been validated against the surface temperatures from the Mars Climate Database. The evaporation rate of water is calculated by an expression for free convection, driven by density differences between water vapor and ambient air, and the condensation rate follows from the assumption that any water vapour which exceeds the local saturation pressure condenses instantly. Atmospheric transport of water vapour is assumed to be purely diffusive, with an adjustable...

  16. Influence of HCl and water vapour on the corrosion kinetics of Fe beneath molten ZnCl{sub 2}/KCl

    Energy Technology Data Exchange (ETDEWEB)

    Ruh, Andreas; Spiegel, Michael [Max-Planck-Institut fuer Eisenforschung GmbH, MPIE, Max-Planck-Str. 1, D-40237 Duesseldorf, Germany (Germany)

    2004-07-01

    Heat exchanger tubes in waste-fired boilers are usually covered by solid and molten salts, formed by condensation of aerosols within the flue gas. The presence of salts accelerates the corrosion process, especially if they are associated with the formation of melts on the material surface or in the oxide scales. But also corrosive gas species in the flue gases like HCl and H{sub 2}O are known to accelerate the corrosion kinetics by supplying more oxidant. This report focuses on investigations on the influence of HCl and H{sub 2}O on the kinetics of high temperature corrosion of pure Fe beneath a molten chloride deposit. Thermogravimetric (TG) experiments were conducted on pure Fe with a 50 mol.% KCl - 50 mol.% ZnCl{sub 2}-salt mixture (15 mg/cm{sup 2}) at T=320 deg. C in an Ar - O{sub 2} atmosphere with additional H{sub 2}O and HCl. TG tests carried out on pure Fe covered with KCl - ZnCl{sub 2} yield enhanced mass gain for atmospheres containing HCl in comparison to TG tests without HCl. This effect will be discussed with respect to incubation time and overall kinetics. Results showing the influence of water vapour are presented as well. (authors)

  17. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?

    Science.gov (United States)

    Bunce, James A

    2006-08-01

    A reduction in leaf stomatal conductance (g) with increasing leaf-to-air difference in water vapour pressure (D) is nearly ubiquitous. Ecological comparisons of sensitivity have led to the hypothesis that the reduction in g with increasing D serves to maintain leaf water potentials above those that would cause loss of hydraulic conductance. A reduction in leaf water potential is commonly hypothesized to cause stomatal closure at high D. The importance of these particular hydraulic factors was tested by exposing Abutilon theophrasti, Glycine max, Gossypium hirsutum and Xanthium strumarium to D high enough to reduce g and then decreasing ambient carbon dioxide concentration ([CO2]), and observing the resulting changes in g, transpiration rate and leaf water potential, and their reversibility. Reducing the [CO2] at high D increased g and transpiration rate and lowered leaf water potential. The abnormally high transpiration rates did not result in reductions in hydraulic conductance. Results indicate that low water potential effects on g at high D could be overcome by low [CO2], and that even lower leaf water potentials did not cause a reduction in hydraulic conductance in these well-watered plants. Reduced g at high D in these species resulted primarily from increased stomatal sensitivity to [CO2] at high D, and this increased sensitivity may mediate stomatal responses to leaf hydraulics at high D. PMID:16898024

  18. Characterization of the distribution of water vapour for DInSAR studies on the volcanic island of Tenerife, Canary Islands

    OpenAIRE

    Eff-Darwich, Antonio; García-Lorenzo, Begoña; Pérez-Darias, Juan C.; González, Albano; Fernández Torres, José; González Méndez, Pablo José

    2009-01-01

    Measurements of ground displacement have been carried out on the entire active volcanic island of Tenerife, Canary Islands, by means of classical and advanced DInSAR techniques. The main limiting factor on the accuracy of DInSAR measurements is the distribution of the water vapour in the lower troposphere. Hence, it is yet necessary to perform a detailed spatial and temporal characterization of water vapour to understand, and to be able to carry out a direct computation of, the effect of the ...

  19. Structural and Luminescent Properties of ZnO Thin Films Deposited by Atmospheric Pressure Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-Liang; LIN Bi-Xia; HONG Liang; MENG Xiang-Dong; FU Zhu-Xi

    2004-01-01

    ZnO thin films were successfully deposited on Si (100) substrates by chemical vapour deposition (CVD) at atmospheric pressure (1 atm). The only solid source used here is zinc acetate, (CHsCOO)2Zn, and the carrier gas is nitrogen. The sample, which was prepared at 550℃ during growth and then annealed in air at 900℃ , has only a ZnO (002) diffraction peak at 34.6° with its FWHM of 0.23° in the XRD pattern. The room-temperature PL spectrum shows a strong ultraviolet emission with the peak centred at 380nm. We analysed the effects of many factors, such as the source, substrates, growth and annealing temperatures, and annealing ambience, on the structural and optical properties of our prepared ZnO films.

  20. Atmospheric pressure chemical vapour deposition of NbSe2-TiSe2 composite thin films

    International Nuclear Information System (INIS)

    Atmospheric pressure chemical vapour deposition of titanium tetrachloride and niobium pentachloride with di-tert-butyl selenide at 550 deg. C was investigated for different precursors' flow rates. Scanning electron microscopy of the films showed that they were composed of two different kinds of plate-like crystallites. Point wavelength dispersive X-ray (WDX) analyses of the crystallites revealed that they either had the NbSe2 or the TiSe2 composition. The presence of the two phases was confirmed by X-ray diffraction (XRD) and the calculated cell parameters indicate that niobium or titanium was not incorporated into each others' lattice. WDX and XRD analyses highlighted how the NbSe2:TiSe2 ratio in the composite films could be controlled by precursor flow rate.

  1. Effect of resin hydrophilicity on water-vapour permeability of dental adhesive films.

    Science.gov (United States)

    King, Nigel M; Hiraishi, Noriko; Yiu, Cynthia K Y; Pashley, Edna L; Loushine, Robert J; Rueggeberg, Fred A; Pashley, David H; Tay, Franklin R

    2005-10-01

    This study examined the water-vapour permeability of thin polymerized resin films fabricated from five co-monomer blends of increasing degrees of hydrophilicity, as measured by their Hoy's solubility parameters. Neat resin films were prepared from five experimental light-curable resins (n = 10). Each film was mounted in a Fisher permeability cup with 8 g of water placed inside the cup. The experiments were conducted in a modified twin-outlet desiccator connected to a vacuum pump in one outlet to permit a continuous airflow to encourage water evaporation. Weight losses by water evaporation were measured at 3, 6, 9, 24, 30, and 48 h by using an analytical balance. Additional resin films were examined by using transmission electron microscopy (TEM) after immersion in ammoniacal silver nitrate. A significant correlation was observed between the cumulative water loss at 48 h and the Hoy's total cohesive energy density (delta(t)). Transmission electron microscopy revealed silver-filled channels along film peripheries and silver grains of decreasing dimensions toward the film centres in co-monomer blends 3, 4, and 5 of increasing hydrophilicity. Hydrophilic dentin adhesives polymerized in thin films are prone to water loss by evaporation. This probably accounts for the water droplets seen on the surface of vital-bonded dentin after the application of simplified dentin adhesives. PMID:16202033

  2. Atmospheric drivers of storage water use in Scots pine

    Directory of Open Access Journals (Sweden)

    H. Verbeeck

    2007-02-01

    Full Text Available In this study we determined the microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L. growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and – storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May–18 October.

    Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation was the main driver of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed, mainly driven by vapour pressure deficit (VPD. During dry atmospheric conditions (high VPD storage water use was reduced. This reduction was disproportionally higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought.

    A third important factor was the tree water deficit. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water deficit.

  3. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  4. Chemical vapour deposition enhanced by atmospheric microwave plasmas: a large-scale industrial process or the next nanomanufacturing tool?

    Science.gov (United States)

    Belmonte, T.; Gries, T.; Cardoso, R. P.; Arnoult, G.; Kosior, F.; Henrion, G.

    2011-04-01

    This paper describes several specific aspects of atmospheric plasma deposition carried out with a microwave resonant cavity. Deposition over a wide substrate is first studied. We show that high deposition rates (several hundreds of μm h-1) are due to localization of fluxes on the substrate by convection when slightly turbulent flows are used. Next, we describe possible routes to localize deposition over a nanometre-sized area. Scaling down atmospheric plasma deposition is possible and two strategies to reach nanometre scales are described. Finally, we study self-organization of SiO2 nanodots deposited by chemical vapour deposition at atmospheric pressure enhanced by an Ar-O2 micro-afterglow operating at high temperature (>1200 K). When the film being deposited is thin enough (~500 nm) nanodots are obtained and they can be assembled into threads to create patterned surfaces. When the coating becomes thicker (~1 µm), and for relatively high content in HMDSO, SiO2 walls forming hexagonal cells are obtained.

  5. Back-tracking water vapour contributing to a precipitation event over Trentino: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Berto, A.; Zardi, D. [Dipt. di Ingegneria Civile ed Ambientale Univ. di Trento, Trento (Italy); Buzzi, A. [Inst. of Atmospheric Sciences and Climate, Bologna (Italy)

    2004-06-01

    The relation between individual precipitation patterns over an Alpine target area and the origin of the water vapour which contributes to them is investigated. Back-trajectories are calculated, starting from selected ending points over the target area, by means of the Lagrangian model FLEXTRA, on the basis of meteorological fields provided by ECMWF 4d-Var analysis data. Suitable clustering procedure is devised to identify representative flow patterns from calculated trajectories. The procedure is applied to a recent precipitation event (24-27 November 2002) adopted as a test case. The analysis allows to identify the contribution of various air streams to the precipitation, as well as the regions where most of the evaporation into the air streams occurred at various phases of the event. (orig.)

  6. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  7. Terrestrial atmosphere, water and astrobiology

    OpenAIRE

    Coradini M.; Brack A.

    2010-01-01

    Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bon...

  8. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2014-02-01

    Full Text Available Soil-water characteristics of Gaomiaozi (GMZ Ca-bentonite at high suctions (3–287 MPa are measured by vapour equilibrium technique. The soil-water retention curve (SWRC of samples with the same initial compaction states is obtained in drying and wetting process. At high suctions, the hysteresis behaviour is not obvious in relationship between water content and suction, while the opposite holds between degree of saturation and suction. The suction variation can change its water retention behaviour and void ratio. Moreover, changes of void ratio can bring about changes in degree of saturation. Therefore, the total change in degree of saturation includes changes caused by suction and that by void ratio. In the space of degree of saturation and suction, the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio. However, the relationship between water content and suction is less affected by changes of void ratio. The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction. Moreover, the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale. From this linear relationship, the variation of degree of saturation caused by the change in void ratio can be obtained. Correspondingly, SWRC at a constant void ratio can be determined from SWRC at different void ratios.

  9. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 9000C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  10. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    Science.gov (United States)

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  11. The vapour pressure of water as a function of solute concentration above aqueous solutions of fructose, sucrose, raffinose, erythritol, xylitol, and sorbitol

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    The vapour pressure of water above an aqueous solution of sucrose at T = 298.06 K has been measured for 9 sucrose mole fractions up to 0.12. Vapour pressure measurements have also been made on aqueous solutions of meso-erythritol, xylitol, sorbitol, fructose, and raffinose at T = 317.99 K. The...

  12. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    Directory of Open Access Journals (Sweden)

    G. Mengistu Tsidu

    2014-09-01

    Full Text Available Water vapour is one of the most important green house gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a green house gas but also because of its role in amplifying other feedbacks in general circulation models. In recent decades, monitoring of water vapour on regular and continuous basis is becoming possible as a result of increase in the number of deployed Global Positioning Satellite (GPS ground-based receivers at a faster pace. However, Horn of Africa region remains a data void region in this regard until recently when some GPS ground-receiver stations have been deployed to monitor tectonic movements in the Great Rift Valley. This study seizes this opportunity and the installation of Fourier Transform Infrared Spectrometer (FTIR at Addis Ababa to assess the quality and comparability of Precipitable Water Vapour (PWV from GPS, FTIR, radiosonde and ERA-Interim over Ethiopia. The PWVs from the three instruments and reanalysis show good correlation in the range from 0.83 to 0.92. The radiosonde PWV shows dry bias with respect to other observations and reanalysis. ERA-Interim PWV shows wet bias with respect to all while GPS PWV exhibits wet bias with respect to FTIR. The intercomparison between GPS and ERA-Interim is extended to seven other GPS stations in the country. Despite the sensitivity of GPS PWV to uncertainty in surface pressure in general, observed surface pressure is used only at four GPS stations. The gain obtained from using observed surface pressure in terms of reducing bias and strengthening correlation is significant but shows some variations among the GPS sites. In contrast to comparison at Addis Ababa, the comparison between GPS and ERA-Interim PWVs over seven other GPS stations shows difference in the magnitude and sign of bias of ERA-Interim with respect to GPS PWV from station to station. This variation is also visible across different seasons. The

  13. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    Science.gov (United States)

    Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.

    2014-09-01

    Water vapour is one of the most important green house gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a green house gas but also because of its role in amplifying other feedbacks in general circulation models. In recent decades, monitoring of water vapour on regular and continuous basis is becoming possible as a result of increase in the number of deployed Global Positioning Satellite (GPS) ground-based receivers at a faster pace. However, Horn of Africa region remains a data void region in this regard until recently when some GPS ground-receiver stations have been deployed to monitor tectonic movements in the Great Rift Valley. This study seizes this opportunity and the installation of Fourier Transform Infrared Spectrometer (FTIR) at Addis Ababa to assess the quality and comparability of Precipitable Water Vapour (PWV) from GPS, FTIR, radiosonde and ERA-Interim over Ethiopia. The PWVs from the three instruments and reanalysis show good correlation in the range from 0.83 to 0.92. The radiosonde PWV shows dry bias with respect to other observations and reanalysis. ERA-Interim PWV shows wet bias with respect to all while GPS PWV exhibits wet bias with respect to FTIR. The intercomparison between GPS and ERA-Interim is extended to seven other GPS stations in the country. Despite the sensitivity of GPS PWV to uncertainty in surface pressure in general, observed surface pressure is used only at four GPS stations. The gain obtained from using observed surface pressure in terms of reducing bias and strengthening correlation is significant but shows some variations among the GPS sites. In contrast to comparison at Addis Ababa, the comparison between GPS and ERA-Interim PWVs over seven other GPS stations shows difference in the magnitude and sign of bias of ERA-Interim with respect to GPS PWV from station to station. This variation is also visible across different seasons. The main cause of the

  14. Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation

    DEFF Research Database (Denmark)

    Modi, Anish; Knudsen, Thomas; Haglind, Fredrik;

    2014-01-01

    Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance...... temperatures without corroding the equipment by using suitable additives with the mixture. This paper assesses the thermodynamic feasibility of using ammonia-water mixture in high temperature (450 °C) and high pressure (over 100 bar) concentrated solar power plants with direct vapour generation. The following...... is to use direct vapour generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables to operate the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixture at high...

  15. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rahsadeghi@yahoo.co [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Gholamireza, Afsaneh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg{sup -1} di-ammonium hydrogen citrate {l_brace}(NH{sub 4}){sub 2}HCit{r_brace} and those of (NH{sub 4}){sub 2}HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH{sub 4}){sub 2}HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {l_brace}glycine + (NH{sub 4}){sub 2}HCit{r_brace}, {l_brace}alanine + (NH{sub 4}){sub 2}HCit{r_brace}, and {l_brace}serine + (NH{sub 4}){sub 2}HCit{r_brace} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  16. Soil-plant-atmosphere: A contribution to the study of the isotopic composition of water in the different components of this system

    International Nuclear Information System (INIS)

    It is essential to know the isotopic composition of water vapour for a geochemical study of systems controlled by evaporation. Owing to difficulties of analysis, however, this composition is most often only estimated (from water balances and precipitation). The authors' intention is to study the content of 18O in the vapour of continental water at the soil-atmosphere interface on the assumption that, locally, the isotopic composition of vapour, which is a mixture of continental and oceanic vapours, should reflect these different origins if they are sufficiently pronounced. A number of samples were taken at the station of the Villeau National Institute of Astronomy and Geophysics (France) with a view to verifying this hypothesis. The study was made possible through use of a new analytical technique by which routine analysis can be made of the 18O content of vapour in a limited volume of air and in moduled time steps. It was found that: (1) regional water vapour was likely to have very wide isotopic variations in time, associated with the origin and history of the air mass; (2) this regional isotopic signal was strongly perturbed in the first few metres above the soil and plant cover, where there was evidence of a local vapour source. At the level of this source the water vapour was re-equilibrated with the isotopic composition of the soil water, the extent of this phenomenon depending on the conditions of meteorological circulation. (author)

  17. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hunt, Patricia A. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2015-03-21

    The test-area (TA) perturbation approach has been gaining popularity as a methodology for the direct computation of the interfacial tension in molecular simulation. Though originally implemented for planar interfaces, the TA approach has also been used to analyze the interfacial properties of curved liquid interfaces. Here, we provide an interpretation of the TA method taking the view that it corresponds to the change in free energy under a transformation of the spatial metric for an affine distortion. By expressing the change in configurational energy of a molecular configuration as a Taylor expansion in the distortion parameter, compact relations are derived for the interfacial tension and its energetic and entropic components for three different geometries: planar, cylindrical, and spherical fluid interfaces. While the tensions of the planar and cylindrical geometries are characterized by first-order changes in the energy, that of the spherical interface depends on second-order contributions. We show that a greater statistical uncertainty is to be expected when calculating the thermodynamic properties of a spherical interface than for the planar and cylindrical cases, and the evaluation of the separate entropic and energetic contributions poses a greater computational challenge than the tension itself. The methodology is employed to determine the vapour-liquid interfacial tension of TIP4P/2005 water at 293 K by molecular dynamics simulation for planar, cylindrical, and spherical geometries. A weak peak in the curvature dependence of the tension is observed in the case of cylindrical threads of condensed liquid at a radius of about 8 Å, below which the tension is found to decrease again. In the case of spherical drops, a marked decrease in the tension from the planar limit is found for radii below ∼ 15 Å; there is no indication of a maximum in the tension with increasing curvature. The vapour-liquid interfacial tension tends towards the planar limit for large

  18. Water vapour and the equatorial mesospheric semi-annual oscillation (MSAO

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    2013-01-01

    Full Text Available Observations of the mesospheric semi-annual oscillation (MSAO in the equatorial region have been reported dating back several decades. Seasonal variations in both species densities and airglow emissions are well documented. The extensive observations available offer an excellent case study for comparison with model simulations. The broad range of measurements is summarised with emphasis on the 80 to 100 km region. Photochemical model simulations are described for near-equinox and near-solstice conditions, the two times with notable differences in the observed MSAO parameters. Diurnal tides are included in order to facilitate comparisons of observations made at different local times. The roles of water vapour as the "driver" species and ozone as the "response" species are examined to test for consistency between the model results and observations. The model simulations suggest the interactions between eddy mixing and background vertical advection play a significant role in the MSAO phenomenon. At the equator, 90 km altitude, the derived eddy mixing rate is approximately 1 × 106 cm2 s−1 and vertical advection 0.8 cm s−1. For April the corresponding values are 4 × 105 cm2 s−1 and 0.1 cm s−1.

  19. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall

    Directory of Open Access Journals (Sweden)

    P. Benevides

    2015-06-01

    Full Text Available The temporal behaviour of Precipitable Water Vapour (PWV retrieved from GPS delay data is analysed in a number of case studies of intense precipitation in the Lisbon area, in the period 2010–2012, and in a continuous annual cycle of 2012 observations. Such behaviour is found to correlate positively with the probability of precipitation, especially in cases of severe rainfall. The evolution of the GPS PWV in a few stations is analysed by a least-squares fitting of a broken line tendency, made by a temporal sequence of ascents and descents over the data. It is found that most severe rainfall event occurs in descending trends after a long ascending period, and that the most intense events occur after steep ascents in PWV. A simple algorithm, forecasting rain in the 6 h after a steep ascent of the GPS PWV in a single station is found to produce reasonable forecasts of the occurrence of precipitation in the nearby region, without significant misses in what concerns larger rain events, but with a substantial amount of false alarms. It is suggested that this method could be improved by the analysis of 2-D or 3-D time varying GPS PWV fields, or by its joint use with other meteorological data relevant to nowcast precipitation.

  20. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall

    Science.gov (United States)

    Benevides, P.; Catalao, J.; Miranda, P. M. A.

    2015-12-01

    The temporal behaviour of precipitable water vapour (PWV) retrieved from GPS delay data is analysed in a number of case studies of intense precipitation in the Lisbon area, in the period 2010-2012 and in a continuous annual cycle of 2012 observations. Such behaviour is found to correlate positively with the probability of precipitation, especially in cases of severe rainfall. The evolution of the GPS PWV in a few stations is analysed by a least-squares fitting of a broken line tendency, made by a temporal sequence of ascents and descents over the data. It is found that most severe rainfall events occur in descending trends after a long ascending period and that the most intense events occur after steep ascents in PWV. A simple algorithm, forecasting rain in the 6 h after a steep ascent of the GPS PWV in a single station, is found to produce reasonable forecasts of the occurrence of precipitation in the nearby region, without significant misses in what concerns larger rain events, but with a substantial amount of false alarms. It is suggested that this method could be improved by the analysis of 2-D or 3-D time-varying GPS PWV fields or by its joint use with other meteorological data relevant to nowcast precipitation.

  1. A lidar for water vapour measurements in daytime at Lampedusa, Italy

    Directory of Open Access Journals (Sweden)

    F. Marenco

    2003-06-01

    Full Text Available ENEA is planning to develop a lidar system for measurement of the vertical profi le of water vapour mixing ratio in daytime at a remote site, the Station for Climate Observations located in Lampedusa, Italy. The Raman lidar technique has been retained because of its experimental simplicity with respect to DIAL, and the UV spectral range has been chosen because Raman cross-sections and detector effi ciencies are larger. For a wavelength larger than ~ 300 nm the signal is limited in daytime by sky background, but extinction is acceptable, and the aims of the system can be reached with a strong laser source. The 355 nm wavelength of a frequency-tripled Nd:YAG laser has been retained as this laser source permits to reach a large pulse energy while keeping the system simple to operate. Geometrical form factor calculations need to be performed to evaluate the near-range overlap between the laser beam and the fi eld-of-view of the receiver. Among several options, a dual-receiver system has been retained to account for the several orders of magnitude expected in the backscattered signal intensity: a smaller receiver, with a primary mirror of 200 mm diameter for the 0.2-1 km range, and a larger 500 mm receiver for the 1-3 km range.

  2. RDF gasification with water vapour: influence of process temperature on yield and products composition

    International Nuclear Information System (INIS)

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950oC or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling

  3. Data Sets for Simultaneous Water Vapour and Rain Sampling Used in Modelling Efforts

    International Nuclear Information System (INIS)

    The Isotope Hydrology Section has been testing a newly available automated precipitation sampler to obtain short term isotopic data on precipitation and a laser spectroscopy analyzer for water vapour isotope analysis. The reliability of model based future climate scenarios described in the Intergovernmental Panel on Climate Change (IPCC) assessment report depends on how these models can simulate the observed present day climate - both globally and at the regional level. It is well known that the climate models fail to simulate the observed precipitation field in the tropics and there are wide variations between models for the simulated global field. Recently, to reduce these model uncertainties, a high resolution climate model was developed and a more realistic scheme incorporated into the model. These developments may contribute to improving the reproducibility of present day climate, though an accurate simulation of the present day climate field does not guarantee a precise future prediction. One of the most important things for future prediction is whether the current climate model can reproduce key climate processes both in the present and the past.

  4. Penetration of tritium (as tritiated water vapour) into low carbon steel and remediation using abrasive cleaning

    International Nuclear Information System (INIS)

    The UKAEA Winfrith site is in a phase of accelerated decommissioning and de-licensing which will generate significant volumes of metal wastes some of which may be suitable for disposal as exempt wastes. If contamination is present, it is often confined within the surface layers of the metal. The UKAEA Winfrith site operates a shot-blast facility (WACM) that removes paint and surface contamination from low carbon steel enabling surface contaminated painted metal to be processed and therefore certified as exempt. A study was conducted to determine whether tritium (as tritiated water vapour) has penetrated into the metal to levels exceeding the Radioactive Substances Act (1993), Substances of Low Activity (SoLA) Exemption Order criteria, and whether processing via the WACM removes sufficient tritium contamination that the SoLA Exemption Order criteria can be met. The results of sampling and analysis show that the tritium is mainly held in the paint or outer 40 μm layer of the metal and that processing through the WACM removes these layers along with sufficient tritium to meet the SoLA Exemption Order criteria

  5. SIGNAL : Water vapour flux variability and local wind field investigations within five differently managed agroforestry sites across Germany

    Science.gov (United States)

    Markwitz, Christian; Siebicke, Lukas; Knohl, Alexander

    2016-04-01

    Optimising soil water uptake and ground water consumption in mono-specific agricultural systems plays an important role for sustainable land management. By including tree alleys into the agricultural landscape, called agroforestry (AF), the wind flow is modified leading to a presumably favourable microclimate behind the tree alleys. We expect that this zone is characterized by increased air temperature and atmospheric water vapour content, compared to mono-specific fields. This would extend the growing season and increase the yield production behind the tree alleys. Within the SIGNAL (Sustainable Intensification of Agriculture through Agroforestry) project the evapotranspiration (ET) variability and the local wind field of agroforestry sites compared to mono-specific agricultural systems is investigated. Our study is based on the comparison of five differently managed agroforestry sites across Germany. All site feature one agroforestry plot and one reference plot, which represents a mono-specific cropped system. Each plot is equipped with an eddy-covariance tower, including a high frequency 3D SONIC anemometer and instruments gathering standard meteorological parameter as pressure, temperature, relative humidity, precipitation, ground heat flux, net- and global radiation. The Surface Energy Budget (SEB) method will be used to calculate evapotranspiration QE as QE = ‑ QN ‑ QH ‑ QG ‑ Res by measuring the sensible heat flux, QH, with the eddy covariance method, the radiation balance, QN and the ground heat flux, QG. QH and QN will be measured continuously long-term. We will quantify site specific energy balance non-closure, Res, by temporarily measuring QE, using eddy covariance and a roving tower and then solving the SEB equation for Res. The short term Res will be used to then continuously derive QE from the SEB method. We will compare measured evapotranspiration rates from the SEB method to modelled evapotranspiration of the agroforestry systems through

  6. Vapour phase mercury in the atmosphere. Methodology for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Atmospheric gas phase mercury was collected on commercial charcoal by a mercury collection apparatus in Antalya, on the Mediterranean coast of Turkey. Because of the high collection efficiency due to its high surface area and low blank concentration for mercury and other metals, activated coconut charcoal was used as a sorbent material. Ozone was also monitored automatically during the collection period. Instrumental neutron activation analysis was used as the analytical technique. The collected charcoal samples were irradiated with neutrons at the CNAEM reactor with a flux of 1.1013 n·cm-2·s-1. The 77 keV gamma ray energy of 197Hg (T1/2 = 2.672 d) and 279 keV gamma ray energy of 203Hg (T1/2 = 46.61 d) isotopes were analysed separately. The 75Se correction for 203Hg was made because of interfering gamma ray energy. The average concentration of gas phase mercury was found to be 3.7 ± 1.5 ng·m-3. The correlation with other gas phase pollutants was also investigated. (author)

  7. Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure

    International Nuclear Information System (INIS)

    Silicon nitride films were deposited using an atmospheric pressure plasma source. The discharge was produced by flowing nitrogen and helium through two perforated metal electrodes that were driven by 13.56 MHz radio frequency power. Deposition occurred by mixing the plasma effluent with silane and directing the flow onto a rotating silicon wafer heated to between 100 deg. C and 500 deg. C. Film growth rates ranged from 90±10 to 1300±130 A min-1. Varying the N2/SiH4 feed ratio from 55.0 to 5.5 caused the film stoichiometry to shift from SiN1.45 to SiN1.2. Minimum impurity concentrations of 0.04% carbon, 3.6% oxygen and 13.6% hydrogen were achieved at 500 deg. C, and an N2/SiH4 feed ratio of 22.0. The growth rate increased with increasing silane and nitrogen partial pressures, but was invariant with respect to substrate temperature and rotational speed. The deposition rate also decreased sharply with distance from the plasma. These results combined with emission spectra taken of the afterglow suggest that gas-phase reactions between nitrogen atoms and silane play an important role in this process

  8. Feasibility of using ammonia-water mixture in high temperature concentrated solar power plants with direct vapour generation

    OpenAIRE

    Modi, Anish; Knudsen, Thomas; HAGLIND, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance is to use direct vapour generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables to operate the plant with higher turbine inlet temperatu...

  9. Measurements of the Water Vapour, Tritium and Carbon-14 Content of the Middle Stratosphere over Southern England

    OpenAIRE

    Brown, F; Goldsmith, P.; Green, H F; Holt, A.; Parham, A. G.

    2011-01-01

    Measurements of the water vapour, tritium and carbon-14 content of the stratosphere at heights of between 80,000 and 100,000 feet, made over England during the years 1956 to 1960, are described. The tritium and carbon-14 concentrations are greater than those expected from natural production due to the cosmic radiation. The bulk of these two isotopes, at present in the stratosphere, has been injected there during the course of thermonuclear explosions. Mass spectrometric analyses show that t...

  10. Separation of CO2 from CH4 and CO2 capture in the presence of water vapour in NOTT-400

    International Nuclear Information System (INIS)

    From a binary equimolar gas-mixture of CO2 and CH4, NOTT-400 shows CO2 separation from CH4. By kinetic uptake experiments, this material confirms a maximum of 4.3 wt% CO2 capture at 30 C and a significant 2-fold increase (∼9.3 wt%) in CO2 capture under 40% relative humidity of water vapour. (authors)

  11. Effect of Water Vapour on the Acidity of ZSM-5Zeolite Used for Catalytic Cracking of Naphtha to Manufacture Ethylene and Propylene

    Institute of Scientific and Technical Information of China (English)

    Ma Guangwei; Xiao Jingxian; ZhangHuining; Xie Zaiku

    2008-01-01

    The change in acidity of the ZSM-5 zeolite was investigated after it was treated with water vapour,and its capability on ammonia adsorption was also studied after having adsorbed water vapour.The effect of water vapour on products distribution was studied during catalytic cracking of naphtha,the changes in the adsorption ability and catalytic performance of the ZSM-5 zeolite was investigated after the catalyst was loaded with phosphorus species.These results all indicated that water vapour could reduce the acid strength and acid density of ZSM-5 zeolite and affect the capability of ZSM-5 on adsorption of gases,therefore the activated energy contributed by the ZSM-5 zeolite to the catalytic cracking reaction would be low to prevent the feedstock from deepened catalytic cracking and coke formation.

  12. From GNSS and meteorological data to NRT 4D water vapour distribution - GNSS meteorology activities at WUELS

    Science.gov (United States)

    Bosy, Jaroslaw; Kaplon, Jan; Rohm, Witold; Sierny, Jan; Wilgan, Karina; Hadas, Tomasz; Hordyniec, Pawel

    2014-05-01

    The GNSS and Meteo group at Wroclaw University of Environmental and Life Sciences (WUELS), Poland is continuously working on GNSS meteorology since 2010. Currently group maintain real-time (RT) service collecting GNSS and meteorological data and near real-time (NRT) services for estimation of Zenith Troposphere Delay (ZTD), Zenith Hydrostatic Delay (ZHD), Integrated Water Vapour (IWV) and GNSS tomography over the territory of Poland. Data are obtained with high resolution from EUREF Permanent Network (EPN) stations and Ground Base Augmentation System (GBAS) called ASG-EUPOS (www.asgeupos.pl). The GNSS data are available from 124 reference stations located in Poland and neighbour countries, with the average 70km distance between stations. The ground meteorological observations in the area of Poland and neighbour countries are available from: ASG-EUPOS stations included in EUREF Permanent Network (EPN), airport meteorological stations (METAR messages stations) and stations managed by national Institute of Meteorology and Water Management (SYNOP messages stations). The first part of the paper presents the methodology of ASG-EUPOS GNSS data processing for NRT ZTD and ZTD horizontal gradients estimation in double-differenced mode (under Bernese GNSS Software V5.0) as well as new results from PPP mode (under Bernese GNSS Software V5.2) and their validation with respect to Rapid and Final troposphere products. The second part is describing the quality assessment of meteorological parameters interpolation methods for determination of ZHD at GNSS sites performed on GNSS stations equipped with meteorological sensors. The third part concerns on the comparisons of ZTD from GNSS data and meteorological parameters from SYNOP stations with data from COAMPS numerical weather prediction system (NWP) and IWV calculation. The fourth part presents the development of GNSS tomography model TOMO2. The last part describes methods of above products validation and visualization over the

  13. The impact of temperature resolution on trajectory modeling of stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    T. Wang

    2014-11-01

    Full Text Available Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapour (H2O in the stratosphere, in which the tropical cold-point temperatures regulate H2O amount entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL is of great importance for trajectory studies. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective-Analysis for Research and Applications, only provide temperatures with ~1.2 km vertical resolution in the TTL, which has been argued to introduce uncertainties in the simulations. In this paper, we quantify this uncertainty by comparing the trajectory results using MERRA temperatures on model levels (traj.MER-T to those using temperatures in finite resolutions, including GPS temperatures (traj.GPS-T and MERRA temperatures adjusted to recover wave-induced variability underrepresented by the current ~1.2 km vertical resolution (traj.MER-Twave. Comparing with traj.MER-T, traj.GPS-T has little impact on simulated stratospheric H2O (changes ~0.1 ppmv, whereas traj.MER-Twave tends to dry air by 0.2–0.3 ppmv. The bimodal dehydration peaks in traj.MER-T due to limited vertical resolution disappear in traj.GPS-T and traj.MER-Twave by allowing the cold-point tropopause to be found at finer vertical levels. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that the finite resolution of temperature has limited impact on predicted H2O in the trajectory model.

  14. The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere

    Science.gov (United States)

    Le Texier, H.; Solomon, S.; Garcia, R. R.

    1988-01-01

    The detailed photochemistry of methane oxidation has been studied in a coupled chemical/dynamical model of the middle atmosphere. The photochemistry of formaldehyde plays an important role in determining the production of water vapor from methane oxidation. At high latitudes, the production and transport of molecular hydrogen is particularly important in determining the water vapor distribution. It is shown that the ratio of the methane vertical gradient to the water vapor vertical gradient at any particular latitude should not be expected to be precisely 2, due both to photochemical and dynamical effects. Modeled H2O profiles are compared with measurements from the Limb Infrared Monitor of the Stratosphere (LIMS) experiment at various latitudes. Molecular hydrogen is shown to be responsible for the formation of a secondary maximum displayed by the model water vapor profiles in high latitude summer, a feature also found in the LIMS data.

  15. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  16. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    Science.gov (United States)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  17. Positive water vapour feedback in climate models confirmed by satellite data

    Science.gov (United States)

    Rind, D.; Lerner, J.; Chiou, E.-W.; Chu, W.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1991-01-01

    It has recently been suggested that GCMs used to evaluate climate change overestimate the greenhouse effect due to increased concentrations of trace gases in the atmosphere. Here, new satellite-generated water vapor data are used to compare summer and winter moisture values in regions of the middle and upper troposphere that have previously been difficult to observe with confidence. It is found that, as the hemispheres warm, increased convection leads to increased water vapor above 500 mbar in approximate quantitative agreement with results from current climate models. The same conclusion is reached by comparing the tropical western and eastern Pacific regions. Thus, water vapor feedback is not overestimated in models and should amplify the climate response to increased trace-gas concentrations.

  18. Assessment of small-scale integrated water vapour variability during HOPE

    Science.gov (United States)

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2015-03-01

    The spatio-temporal variability of integrated water vapour (IWV) on small scales of less than 10 km and hours is assessed with data from the 2 months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sun photometer, radiosondes, Raman lidar, infrared and near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of random differences (standard deviation ≤1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Nonhydrostatic modelling framework (ICON), which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities on the order of 0.4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower-resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is

  19. Assessment of small-scale integrated water vapour variability during HOPE

    Directory of Open Access Journals (Sweden)

    S. Steinke

    2014-09-01

    Full Text Available The spatio-temporal variability of integrated water vapour (IWV on small-scales of less than 10 km and hours is assessed with data from the two months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP2 Observational Prototype Experiment (HOPE. The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR, Global Positioning System (GPS, sunphotometer, radiosondes, Raman Lidar, infrared and near infrared Moderate Resolution Imaging Spectroradiometer (MODIS on the satellites Aqua and Terra measuring close together reveals a good agreement in terms of standard deviation (≤ 1 kg m−2 and correlation coefficient (≥ 0.98. The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Non-hydrostatic modelling framework (ICON which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3–4 km or time of 10–15 min induce IWV variabilities in the order of 4 kg m−2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m−2 even at very short time scales of a few minutes. These cannot be captured by the temporally lower resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is sufficient

  20. Characterizing spatial and seasonal variability of carbon dioxide and water vapour fluxes above a tropical mixed mangrove forest canopy, India

    Indian Academy of Sciences (India)

    Abhra Chanda; Anirban Akhand; Sudip Manna; Sachinandan Dutta; Sugata Hazra; Indrani Das; V K Dadhwal

    2013-04-01

    The above canopy carbon dioxide and water vapour fluxes were measured by micrometeorological gradient technique at three distant stations, within the world’s largest mangrove ecosystem of Sundarban (Indian part), between April 2011 and March 2012. Quadrat analysis revealed that all the three study sites are characterized by a strong heterogeneity in the mangrove vegetation cover. At day time the forest was a sink for CO2, but its magnitude varied significantly from −0.39 to −1.33 mg m−2 s−1. The station named Jharkhali showed maximum annual fluxes followed by Henry Island and Bonnie Camp. Day time fluxes were higher during March and October, while in August and January the magnitudes were comparatively lower. The seasonal variation followed the same trend in all the sites. The spatial variation of CO2 flux above the canopy was mainly explained by the canopy density and photosynthetic efficiency of the mangrove species. The CO2 sink strength of the mangrove cover in different stations varied in the same way with the CO2 uptake potential of the species diversity in the respective sites. The relationship between the magnitude of day time CO2 uptake by the canopy and photosynthetic photon flux was defined by a non-linear exponential curve (2 ranging from 0.51 to 0.60). Water vapour fluxes varied between 1.4 and 69.5 mg m−2 s−1. There were significant differences in magnitude between day and night time water vapour fluxes, but no spatial variation was observed.

  1. Three dimensional water vapour visualization in porous packing by near-infrared diffuse transmittance tomography

    OpenAIRE

    Aiouache, Farid; Hardacre, Christopher; de Sa, J.; Fernandes, D.L.A.; Kitagawa, K; Nic an tSaoir, Meabh

    2012-01-01

    Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed une...

  2. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Water vapour

    International Nuclear Information System (INIS)

    Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for water vapour (H2O, D2O and HDO). About 1200 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1915 through 2000 for H2O. Finally, author's comments for electron collision cross sections and photodissociation processes of H2O are given. (author)

  3. The Status of GNSS Data Processing Systems to Estimate Integrated Water Vapour for Use in Numerical Weather Prediction Models

    OpenAIRE

    Ahmed, Furqan; Teferle, Felix Norman; Bingley, Richard; Laurichesse, Denis

    2015-01-01

    Modern Numerical Weather Prediction (NWP) models make use of the GNSS-derived Zenith Total Delay (ZTD) or Integrated Water Vapour (IWV) estimates to enhance the quality of their forecasts. Usually, the ZTD is assimilated into the NWP models on 3-hourly to 6-hourly intervals but with the advancement of NWP models towards higher update rates e.g. 1-hourly cycling in the Rapid Update Cycle (RUC) NWP, it has become of high interest to estimate ZTD on sub-hourly intervals. In turn, this imposes...

  4. Effects of ultraviolet irradiation, pulsed electric field, hot water and ethanol vapours treatment on functional properties of mung bean sprouts

    OpenAIRE

    Goyal, Ankit; Siddiqui, Saleem; Upadhyay, Neelam; Soni, Jyoti

    2011-01-01

    The present investigation was conducted with the objective to study the effects of various treatments and storage conditions on ascorbic acid, total phenols, antioxidant activity and polyphenol oxidase activity of mung bean sprouts. The sprouts subjected to various treatments viz., pulsed electric field (PEF) (10,000 V for 10 s), hot water dip (HWD) (50 °C for 2 min), ethanol vapours (1 h) and UV-Irradiation (10 kJm-2 in laminar flow chamber for 1 h); and then stored at room (25 ± 1 °C) and l...

  5. The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite

    Directory of Open Access Journals (Sweden)

    M. Schröder

    2012-09-01

    Full Text Available The "European Organisation for the Exploitation of Meteorological Satellites" (EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF aims at the provision and sound validation of well documented Climate Data Records (CDRs in sustained and operational environments. In this study, a total column water vapour (WVPA climatology from CM SAF is presented and inter-compared to water vapour data records from various data sources. Based on homogenised brightness temperatures from the Special Sensor Microwave Imager (SSM/I, a climatology of WVPA has been generated within the Hamburg Ocean-Atmosphere Fluxes and Parameters from Satellite (HOAPS framework. Within a research and operation transition activity the HOAPS data and operations capabilities have been successfully transferred to the CM SAF where the complete HOAPS data and processing schemes are hosted in an operational environment. An objective analysis for interpolation, kriging, has been developed and applied to the swath-based WVPA retrievals from the HOAPS data set. The resulting climatology consists of daily and monthly mean fields of WVPA over the global ice-free ocean. The temporal coverage ranges from July 1987 to August 2006. After a comparison to the precursor product the CM SAF SSM/I-based climatology has been comprehensively compared to different types of meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA40, ERA INTERIM and operational analyses and from the Japan Meteorological Agency (JMA-JRA. This inter-comparison shows an overall good agreement between the climatology and the analyses, with daily absolute biases generally smaller than 2 kg m−2. The absolute bias to JRA and ERA INTERIM is typically smaller than 0.5 kg m−2. For the period 1991–2006, the root mean square error (RMSE to both reanalysis is approximately 2 kg m−2. As SSM/I WVPA and radiances are assimilated in JMA and all

  6. The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite

    Directory of Open Access Journals (Sweden)

    M. Schröder

    2013-03-01

    Full Text Available The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF aims at the provision and sound validation of well documented Climate Data Records (CDRs in sustained and operational environments. In this study, a total column water vapour path (WVPA climatology from CM SAF is presented and inter-compared to water vapour data records from various data sources. Based on homogenised brightness temperatures from the Special Sensor Microwave Imager (SSM/I, a climatology of WVPA has been generated within the Hamburg Ocean–Atmosphere Fluxes and Parameters from Satellite (HOAPS framework. Within a research and operation transition activity the HOAPS data and operation capabilities have been successfully transferred to the CM SAF where the complete HOAPS data and processing schemes are hosted in an operational environment. An objective analysis for interpolation, namely kriging, has been applied to the swath-based WVPA retrievals from the HOAPS data set. The resulting climatology consists of daily and monthly mean fields of WVPA over the global ice-free ocean. The temporal coverage ranges from July 1987 to August 2006. After a comparison to the precursor product the CM SAF SSM/I-based climatology has been comprehensively compared to different types of meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA40, ERA INTERIM and operational analyses and from the Japan Meteorological Agency (JMA–JRA. This inter-comparison shows an overall good agreement between the climatology and the analyses, with daily absolute biases generally smaller than 2 kg m−2. The absolute value of the bias to JRA and ERA INTERIM is typically smaller than 0.5 kg m−2. For the period 1991–2006, the root mean square error (RMSE for both reanalyses is approximately 2 kg m−2. As SSM/I WVPA and radiances are assimilated into JMA and all ECMWF analyses and

  7. Surface fluxes of water vapour, momentum and CO{sub 2} over a savanna in Niger. A contribution to HAPEX-SAHEL

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, A.; De Bruin, H.A.R.; Krikke, R. [Dept. of Meteorology. Landbouwuniversiteit, Wageningen (Netherlands)

    1995-11-01

    For large scale models such as Global Circulation Models (GCM) the lower boundary condition is often provided by a SVAT model (Soil-Vegetation-Atmosphere Transfer). A wide range of SVATs is in use nowadays, varying from models based on the simple big-leaf concept to complicated multiple source models. Obviously, a SVAT intended to provide the lower boundary condition in GCM`s needs to be able to describe a wide range of surface types, varying from completely vegetated to sparsely vegetated or completely bare surfaces. Especially sparse canopy surface types exhibit rather demanding features with respect to the exchange of momentum, water vapour, CO{sub 2} and heat between the surface and the atmosphere. In this paper attention is focused on a sparse canopy. We will compare SVAT model simulations with data collected in 1992 at a Savannah site, in the framework of the HAPEX-SAHEL project (a large-scale study of land atmosphere interactions in the semi-arid tropics). Two existing SVAT models are considered (Choudhury-Monteith and Deardorff). In a separate study these models have been tested. A combined model has been constructed, consisting of the `best` parts of the original SVAT`s. Some preliminary results will be presented. 4 figs., 14 refs., 1 appendix

  8. Precipitable water vapour contents at "local" scale: a comparative study on GNSS-derived data versus modelled ones from ECMWF operational models

    Science.gov (United States)

    Riccardi, Umberto; Tammaro, Umberto; Boy, Jean-Paul; Masson, Frederic; Capuano, Paolo

    2016-04-01

    We present a comparative study between GNSS-derived precipitable water (PW) contents and modelled data from ECMWF operational models. Nearly 4 years of PW contents derived from meteorological and GNSS data are analyzed. We use GNSS data from a geodetic monitoring network of the Neapolitan active volcanoes managed by INGV as well as from some GPS stations installed on purpose. We compare PW time series retrieved from GNSS observations with those coming from models. The total water vapour content of the atmosphere can be derived by modelling from the vertical profile of the specific humidity. We use ECMWF operational models available at a horizontal resolution of about 15 km, 3-hourly samples. The number of vertical model levels is 91 up to mid 2013 and 137 afterwards. We recomputed the surface pressure on the real Earth surface, which differs from the orography, i.e. the smooth surface of the atmospheric model, by propagating the pressure from the orography to the surface. A very good agreement is achieved between PW retrieved from GNSS observations and computed from models using the highest time and space resolution (0.15 degree, 3-hourly 91-137 layers) operational models. We even focus our analysis on the occasion of some extreme raining events hitting Campania region (Italy).

  9. A high-resolution extraterrestrial solar spectrum and water vapour continuum at near infrared wavelengths from ground-based spectrometer measurements

    Science.gov (United States)

    Menang, K. P.

    A high resolution extraterrestrial solar spectrum (CAVIAR solar spectrum) and water vapour continuum have been derived in near infrared windows from 2000-10000 cm-1 (105μm), by applying the Langley technique to calibrated ground-based high-resolution Fourier transform spectrometer measurements, made under clear-sky conditions. The effect of the choice of an extraterrestrial solar spectrum for radiative transfer calculations of clear-sky absorption and heating rates in the near infrared was also studied. There is a good agreement between the solar lines strengths and positions of the CAVIAR solar spectrum and those from both high-resolution satellite and ground-based measurements in their regions of spectral overlap. However, there are significant differences between the structure of the CAVIAR solar spectrum and spectra from models. Many of the detected lines are missing from widely-used modelled extraterrestrial solar spectrum. The absolute level and hence wavenumber-integrated solar irradiance of the CAVIAR solar spectrum was also found to be 8% lower than the satellite-based Thuillier et al spectra from 5200-10000 cm-1. Using different extraterrestrial solar spectra for radiative transfer calculations in the near infrared led to differences of up to about 11 W m-2 (8.2%) in the absorbed solar irradiance while the tropospheric and stratospheric heating rates could respectively differ by up to about 0.13K day-1 (8.1%) and 0.19 K day-1 (7.6%) for an overhead Sun and mid-latitude summer atmosphere. This work has shown that the widely-used empirically modelled continuum may be underestimating the strength of the water vapour continuum from 2000-10000 cm-1, with the derived continuum up to more than 2 orders of magnitude stronger at some wavenumbers in the windows. The derived continuum is also stronger than that implied by laboratory measurements, by a factor of up to 40 in some spectral regions.

  10. The GEWEX water vapour assessment (G-VAP) - first results from inter-comparisons and stability analysis.

    Science.gov (United States)

    Schröder, Marc; Lockhoff, Maarit; Shi, Lei; Fennig, Karsten

    2014-05-01

    In a Joint Letter from the Global Climate Observing System (GCOS) and the World Climate Research Programme (WCRP) the general need for coordinated international assessments of climate products was formulated. Such assessments are important mechanisms for improvements and to enhance and promote utilisation. The GEWEX Radiation Panel (GRP, renamed to GEWEX Data and Assessment Panel - GDAP) has initiated a Water Vapor Assessment in 2011, further on referred to as G-VAP. The major purpose of G-VAP is to: • Quantify the state of the art in water vapour products being constructed for climate applications, and by this; • Support the selection process of suitable water vapour products by GDAP for its production of globally consistent water and energy cycle products. The usage of products within GDAP activities essentially implies to study long-term data records. Since the start of G-VAP in 2011 two workshops have been conducted. The results of these workshops together with feedback from the first GDAP meeting were used for setting up the G-VAP assessment plan. This plan (available at www.gewex-vap.org) summarizes scope and goals of the assessement, introduces science questions and provides details on the planned technical and scientific activities. Major elements of G-VAP are: • All three parts of the GCOS Essential Climate Variables (ECV) on water vapour and their consistency are considered: Total Column Water Vapour, Upper Tropospheric Humidity as well as water vapour profiles and their related temperature profiles; • The assessment focuses on overall characteristics of participating satellite data records and reanalyses as determined from inter-comparison and comparisons against in situ observations as well as against ground-based products; • In this characterisation process the data records are not ranked according to their quality. Rather, the application areas and requirements of the individual data records as well as the GEWEX requirements are documented

  11. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    Science.gov (United States)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  12. Determination of permeation parameters of experimental PET films coated with SiOx to ethyl acetate, oxygen and water vapour.

    Science.gov (United States)

    Adamantiadi, A; Badeka, A; Kontominas, M G

    2001-11-01

    The permeation parameters of conventional PET films, films coated with SiOx and SiOx-coated films laminated to LDPE were determined for ethyl acetate using the permeation cell/gas chromatography method. Permeation to O2 and water vapour was also determined to monitor overall changes in the barrier properties of the experimental films. Coating of the PET film was achieved by a 'directed evaporation' method that increased the yield of the coating process from 30-35 to > 70%. It was shown that the SiOx coating increased the film barrier to ethyl acetate by approximately 20-30 times. Permeation values showed low reproducibility, indicating the need for further development and standardization of the 'directed evaporation' web-coating process. The barrier to oxygen and water vapour increased by 20-25 and 12-14 times respectively after coating. The web-coating speed did not seem to influence the barrier properties of the films. Permeation coefficients, diffusion coefficients and solubility coefficients were calculated for all samples. PMID:11665733

  13. Effect of Atmospheric Ions on Interfacial Water

    OpenAIRE

    Chien-Chang Kurt Kung; Pollack, Gerald H.

    2014-01-01

    The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ) water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ...

  14. Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2

    International Nuclear Information System (INIS)

    Thin films of vanadium arsenide were deposited via the dual-source atmospheric pressure chemical vapour deposition reactions of VCl4 or VOCl3 with tBuAsH2. Using the vanadium precursor VCl4, films were deposited at substrate temperatures of 550–600 °C, which were black-gold in appearance and were found to be metal-rich with high levels of chlorine incorporation. The use of VOCl3 as the vanadium source resulted in films being deposited between 450 and 600 °C and, unlike when using VCl4, were silver in appearance. The films deposited using VOCl3 demonstrated vanadium to arsenic ratios close to 1:1, and negligible chlorine incorporation. Films deposited using either vanadium precursor were identified as VAs using powder X-ray diffraction and possessed borderline metallic/semiconductor resistivities. - Highlights: • Formation of VAs films via atmospheric pressure chemical vapour deposition. • Films formed using VCl4 or VOCl3 and tBuAsH2. • Powder X-ray diffraction showed that crystalline VAs films were deposited. • Films from VOCl3 had a V:As ratio close to 1 with negligible Cl incorporation. • Films were silver and possessed borderline metallic/semiconductor resistivities

  15. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis

    Science.gov (United States)

    Mengistu Tsidu, G.; Blumenstock, T.; Hase, F.

    2015-08-01

    Water vapour is one of the most important greenhouse gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a greenhouse gas but also because of its role in amplifying other feedbacks such as clouds and albedo. In recent decades, monitoring of water vapour on a regular and continuous basis has become possible as a result of the steady increase in the number of deployed global positioning satellite (GPS) ground-based receivers. However, the Horn of Africa remained a data-void region in this regard until recently, when some GPS ground-receiver stations were deployed to monitor tectonic movements in the Great Rift Valley. This study seizes this opportunity and the installation of a Fourier transform infrared spectrometer (FTIR) at Addis Ababa to assess the quality and comparability of precipitable water vapour (PWV) from GPS, FTIR, radiosonde and interim ECMWF Re-Analysis (ERA-Interim) over Ethiopia. The PWV from the three instruments and the reanalysis show good correlation, with correlation coefficients in the range from 0.83 to 0.92. On average, GPS shows the highest PWV followed by FTIR and radiosonde observations. ERA-Interim is higher than all measurements with a bias of 4.6 mm compared to GPS. The intercomparison between GPS and ERA-Interim was extended to seven other GPS stations in the country. Only four out of eight GPS stations included simultaneous surface pressure observations. Uncertainty in the model surface pressure of 1 hPa can cause up to 0.35 mm error in GPS PWV. The gain obtained from using observed surface pressure in terms of reducing bias and strengthening correlation is significant but shows some variations among the GPS sites. The comparison between GPS and ERA-Interim PWV over the seven other GPS stations shows differences in the magnitude and sign of bias of ERA-Interim with respect to GPS PWV from station to station. This feature is also prevalent in diurnal and seasonal

  16. A Project on Atmospheric Water Generator with the Concept of Peltier Effect

    Directory of Open Access Journals (Sweden)

    Aditya Nandy

    2014-06-01

    Full Text Available In many countries like India it is difficult to obtain water resources for irrigation or other purposes, especially in the arid regions. The problem of water scarcity is also observed in other places of the world due to lack of rainfall. However, in highly humid areas such as places close to the sea, water can be obtained by condensing the water vapour present in air. Here, the paper presents the method to develop a water condensation system based on thermoelectric cooler. The system consists of cooling elements, heat exchange unit and air circulation unit. A solar cell panel unit with a relevant high current output drives the cooling elements through a controlling circuit. Atmospheric Water Generator is a device that can convert atmospheric moisture directly into usable and even drinkable water. It is such a device which uses the principle of latent heat to convert molecules of water vapour into water droplets. It has been introduced a bit before, though it is not very common in India and some other countries. It has a great application standing on such age of technology where we all are running behind renewable sources. This paper also describes the experimental results and the system’s performance.

  17. The Earth as an extrasolar transiting planet - II: HARPS and UVES detection of water vapour and biogenic species O$_2$ and O$_3$

    CERN Document Server

    Arnold, Luc; Vidal-Madjar, Alfred; Dumusque, Xavier; Nitschelm, Christian; Querel, Richard R; Hedelt, Pascal; Berthier, Jérôme; Lovis, Christophe; Moutou, Claire; Ferlet, Roger; Crooker, David

    2014-01-01

    The atmospheric composition of transiting exoplanets can be characterized during transit by spectroscopy. For an Earth twin, models predict that oxygen and ozone biogenic gases should be detectable, as well as water vapour, a molecule linked to habitability as we know it on Earth. The aim is to measure the Earth radius versus wavelength at the highest spectral resolution available to fully characterize the signature of the Earth seen as a transiting exoplanet. We present observations of Dec. 21, 2010 Moon eclipse. The Earth observed from the Moon during a lunar eclipse transits in front of the Sun and opens access to the Earth atmosphere transmission spectrum. We used two different ESO spectrographs to take penumbra and umbra high-resolution spectra from 3100 to 10400\\AA. A change in moisture above the telescope compromised the UVES data. We explain how we correct this effect. The data are analyzed by three different methods, the first method being the method described in Vidal-Madjar et al. 2010 based on the...

  18. Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE

    Directory of Open Access Journals (Sweden)

    M. Scherer

    2008-03-01

    Full Text Available This paper presents an updated trend analysis of water vapour in the lower midlatitude stratosphere from the Boulder balloon-borne NOAA frostpoint hygrometer measurements and from the Halogen Occulation Experiment (HALOE. Two corrections for instrumental bias are applied to homogenise the frostpoint data series, and a quality assessment of all soundings after 1991 is presented. Linear trend estimates based on the corrected data for the period 1980–2000 are up to 40% lower than previously reported. Vertically resolved trends and variability are calculated with a multi regression analysis including the quasi-biennal oscillation and equivalent latitude as explanatory variables. In the range of 380 to 640 K potential temperature (≈14 to 25 km, the frostpoint data from 1981 to 2006 show positive linear trends between 0.3±0.3 and 0.7±0.1%/yr. The same dataset shows trends between −0.2±0.3 and 1.0±0.3%/yr for the period 1992 to 2005. HALOE data over the same time period suggest negative trends ranging from −1.1±0.2 to −0.1±0.1%/yr. In the lower stratosphere, a rapid drop of water vapour is observed in 2000/2001 with little change since. At higher altitudes, the transition is more gradual, with slowly decreasing concentrations between 2001 and 2007. This pattern is consistent with a change induced by a drop of water concentrations at entry into the stratosphere. Previously noted differences in trends and variability between frostpoint and HALOE remain for the homogenised data. Due to uncertainties in reanalysis temperatures and stratospheric transport combined with uncertainties in observations, no quantitative inference about changes of water entering the stratosphere in the tropics could be made with the mid latitude measurements analysed here.

  19. Improved water vapour spectroscopy in the 4174–4300 cm−1 region and its impact on SCIAMACHY HDO/H2O measurements

    Directory of Open Access Journals (Sweden)

    R. A. Scheepmaker

    2013-04-01

    Full Text Available The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007 spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.

  20. Modelling water and solute flows at land-sea and land-atmosphere interfaces under data limitations

    OpenAIRE

    Shibuo, Yoshihiro

    2007-01-01

    Water and vapour flows from land to sea and the atmosphere are important for water resources, coastal ecosystems and climate. This thesis investigates possible methods for modelling these flows under often encountered unmonitored hydrological conditions and data limitations. Two contrasting types of drainage basin and associated data limitation/availability cases are considered: the Swedish unmonitored near-coastal catchment areas Forsmark and Simpevarp, for which detailed spatial but not muc...

  1. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  2. Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines

    DEFF Research Database (Denmark)

    Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola; Burba, George; Papale, Dario

    2012-01-01

    It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m...... data from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method, a...... correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy...

  3. Growth and characterization of nitrogen-doped single-walled carbon nanotubes by water-plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    Nitrogen-doped single-walled carbon nanotubes (N-SWNTs) are directly grown on SiO2/Si substrates at 450 deg. C with methane and ammonia gases by water-plasma chemical vapour deposition. The strongest radial breathing mode peak in Raman spectra of the grown N-SWNTs, probed with a 633 nm laser excitation, was assigned to (7, 5) semiconducting nanotubes with a diameter of 0.83 nm. As the doped nitrogen content increases, the D-band to G-band ratio in Raman spectra, indicating the imperfection of nanotubes, gradually increases and saturates at around 4%. X-ray photoelectron spectroscopy shows that nitrogen atoms are doped with a pyridine-like configuration in the N-SWNTs

  4. Sorption of water vapour by the Na+-exchanged clay-sized fractions of some tropical soil samples

    International Nuclear Information System (INIS)

    Water vapour sorption isotherms at 299K for the Na+-exchanged clay-sized (≤ 2μm e.s.d.) fraction of two sets of samples taken at three different depths from a tropical soil profile have been studied. One set of samples was treated (with H2O2) for the removal of much of the organic matter (OM); the other set (of the same samples) was not so treated. The isotherms obtained were all of type II and analyses by the BET method yielded values for the Specific Surface Areas (SSA) and for the average energy of adsorption of the first layer of adsorbate (Ea). OM content and SSA for the untreated samples were found to decrease with depth. Whereas removal of organic matter made negligible difference to the SSA of the top/surface soil, the same treatment produced a significant increase in the SSA of the samples taken from the middle and from the lower depths in the profile; the resulting increase was more pronounced for the subsoil. It has been deduced from these results that OM in the surface soil was less involved with the inorganic soil colloids than that in the subsoil. The increase in surface area which resulted from the removal of OM from the subsoil was most probably due to disaggregation. Values of Ea obtained show that for all the samples the adsorption of water vapour became more energetic after the oxidative removal of organic matter; the resulting ΔEa also increased with depth. This suggests that in the dry state, the ''cleaned'' surface of the inorganic soil colloids was more energetic than the ''organic-matter-coater surface''. These data provide strong support for the deduction that OM in the subsoil was in a more ''combined'' state than that in the surface soil. (author). 21 refs, 4 figs, 2 tabs

  5. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line...

  6. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) and Flowing Afterglow Mass Spectrometry (FA-MS) for the Determination of the Deuterium Abundance in the Water Vapour

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Smith, D.

    Vol. 1. Amsterdam: Elsevier, 2004 - (De Groot, P.), s. 88-104 ISBN 0-444-51114-8 Institutional research plan: CEZ:AV0Z4040901 Keywords : SIFT-MS * FA-MS * water vapour Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Lidar Observations of Low-level Wind Reversals over the Gulf of Lion and Characterization of Their Impact on the Water Vapour Variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Mancini, Ignazio; Richard, Evelyne; Ducrocq, Véronique; Nuret, Mathieu; Said, Frédérique

    2016-06-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  8. (Vapour + liquid + liquid) equilibria and excess molar enthalpies of binary and ternary mixtures of isopropanol, water, and propylene

    International Nuclear Information System (INIS)

    A static VLE apparatus has been used for the measurement of the (vapour + liquid + liquid) equilibrium of the (propylene + isopropanol + water) system at T = 313.15 K and pressures between (1.381 and 1.690) MPa. Using an isothermal flow calorimeter, HE values have been obtained for the binary system (isopropanol + water) over the temperature range from (313.15 to 353.15) K and pressures from (3.8 to 4.19) MPa. For the pseudo-binary mixture (propylene + (isopropanol + water)), HE values have been measured in the temperature range from (313.15 to 353.15) K and pressures from (1.997 to 5.89) MPa. This last mixture was studied starting from (isopropanol + water) at 0.25, 0.50, and 0.75 molar compositions in isopropanol. The new data, together with the available phase equilibrium and HE data from the literature, have been regressed by a conventional GE-EoS model reaching satisfactory results, except for the VLLE representation

  9. Relationships of solar radiation and vapour pressure deficit with photosynthesis and water relations in dry-land pigeon pea

    International Nuclear Information System (INIS)

    A study was undertaken to compare the relationships of photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) with carbon assimilation and water relations of dry-land pigeon pea at the vegetative and reproductive phases. Photosynthetic rate (Pn), transpiration rate (T), leaf water potential (wL), and stomatal conductance (gs) were measured at 7- to 10-day intervals from 1 month after seedling until a fortnight before harvest during two seasons. Generally, Pn, T, and gs were higher and wL was lower during the reproductive than during the vegetative phase. At high PAR and VPD, Pn, T, wL, and gs decreased. The decrease in the T at high PAR was smaller during the reproductive phase. Growth of dry-land pigeon pea was affected not only during periods of water stress which was associated with high PAR and high VPD but also under conditions of favourable plant water status which were associated with less than optimal levels of PAR. It also showed transpiration efficiency (TE) was lower during the pod-filling than during the vegetative phase, when PAR was optimum

  10. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Science.gov (United States)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  11. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  12. Perspective: Water cluster mediated atmospheric chemistry

    International Nuclear Information System (INIS)

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  13. Gravitational Condensation of Atmospheric Water Vapor

    OpenAIRE

    De Aquino, Fran

    2015-01-01

    Devices that collect water from the atmospheric air using condensation are well-known. They operate in a manner very similar to that of a dehumidifier: air is passed through a cooled coil, making water to condense. This is the most common technology in use. Here, we present a device that can collect a large amount of water (more than 1m 3 /s) from the atmospheric air using gravitational condensation. Another novelty of this device is that it consumes little electricity. In addition, the new t...

  14. Water dimer and the atmospheric continuum

    International Nuclear Information System (INIS)

    The physical origin of humidity-related atmospheric continuum absorption is examined. The existence of double water molecules (dimers) in equilibrium water vapor at room temperature is proved by direct spectroscopic experiments supported by ab initio calculations. It is demonstrated that diluting water vapor with air does not significantly reduce the abundance of dimers. Numerous previous studies have predicted the presence of water dimers in the atmosphere and their influence on chemical reactions, homogeneous condensation, and Earth's radiation balance. Our results provide experimental proof of the presence of dimers in the atmosphere, thus enabling a detailed study of their role in natural processes. Prospects for future research are discussed. (reviews of topical problems)

  15. Water vapour absorption in the penicillate millipede Polyxenus lagurus (Diplopoda: Penicillata: Polyxenida): microcalorimetric analysis of uptake kinetics.

    Science.gov (United States)

    Wright, Jonathan C; Westh, Peter

    2006-07-01

    The aberrant millipedes of the order Polyxenida are minute animals that inhabit xeric microclimates of bark and rock faces. The lichens and algae that provide their main food substrates tolerate extensive dehydration, effectively eliminating a liquid water source during periods of drought. In this study, we used microcalorimetry to test whether Polyxenus lagurus (L.) exploits active water vapour absorption (WVA) for water replenishment. Individual animals were pre-desiccated to 10-20% mass-loss and heat fluxes then monitored using a TAM 2277 microcalorimeter. The calorimetric cell was exposed to an air stream increasing progressively in humidity from 84% to 96%. WVA was distinguishable as large exothermic fluxes seen in > or = 86% RH. Owing to very small and opposing heat fluxes from metabolism and passive water loss, the measured flux provided a good measure of water uptake. WVA showed an uptake threshold of 85% RH and linear sorption kinetics until >94% RH, when uptake became asymptotic. Uptake was rapid, and would allow recovery from 20% dehydration (by mass) in little over 5 h. The uptake flux scales proportional, variant mass (0.61), suggesting an area-limited mechanism. Polyxenus possesses a cryptonephric system, analogous to that of tenebrionid beetle larvae. Measurements of water absorption and desorption from faecal pellets voided in different humidities gave an estimated rectal humidity of 85.5%. The close congruence between this value and the WVA threshold provides evidence for a cryptonephric uptake mechanism derived independently from that of tenebrionids. Polyxenus represents the first documented example of WVA in the myriapod classes. PMID:16788032

  16. Tritium content in atmospheric water vapor inside of the reactor hall (reactor R-A) in Institute Vinca

    International Nuclear Information System (INIS)

    Tritium content in atmospheric water vapour inside of the reactor hall was measured during the regular inspection of the fuel channels in Institute of Nuclear Sciences 'Vinca', in March and May 2006. Tritium content in HTO form varied from 1.56·102 Bqm-3 to 4.05·102 Bqm-3. Tritium concentrations in precipitation collected at Zeleno Brdo and Institute 'Vinca' during the 2006. were (-1 and (3.52 - 13.09) Bql-1, respectively. (author)

  17. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    Directory of Open Access Journals (Sweden)

    O. Bock

    2013-10-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute-Provence (OHP. Two Raman lidars (IGN mobile lidar and OHP NDACC lidar, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these data sets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. Changes in the calibration factor of IGN Raman lidar are evidenced which are attributed to frequent optical re-alignments. When modelling and correcting the changes as a linear function of time, the precision of the calibration factors improves to 2–3%. However, the variations in the calibration factor, and hence the absolute accuracy, between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow White measurements up to 12 km. An overall dry bias is found

  18. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine

    Directory of Open Access Journals (Sweden)

    H. Verbeeck

    2007-08-01

    Full Text Available Storage water use is an indirect consequence of the interplay between different meteorological drivers through their effect on water flow and water potential in trees. We studied these microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L. growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and – storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May–18 October.

    Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation and vapour pressure deficit (VPD were the main atmospheric drivers of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed. VPD was determined to be one of the main drivers of these differences. During dry atmospheric conditions (high VPD storage water use was reduced. This reduction was higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. The daily minimum tree water content was lower in periods of high VPD, but the reserves were not completely depleted after the first day of high VPD, due to refilling during the night.

    Nevertheless, the tree water content deficit was a third important factor influencing storage water use. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water content

  19. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    Science.gov (United States)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  20. Base dissociation and vapour-liquid equilibria of some amines in water at elevated temperatures

    International Nuclear Information System (INIS)

    In recent years great interest has been shown in the use, possible and actual, of amines as alkalizing agents for the suppression of corrosion in the steam/water circuits of PWR and gas cooled nuclear power plants. The interest stems mainly from the calculated ability of the amine to produce a higher liquid phase pH than ammonia in a two phase system. The field of choice is wide and because of lack of data reliance has had to be placed on calculated high temperature values of base dissociation and steam/water partition as a means of assessing the candidates. This paper presents the experimentally determined values of base dissociation constant and steam/water partition coefficient for a selection of amines. These data have been obtained mainly at 250 degree C using a novel technique based on volatility measurements. It is shown that the use of these new data leads to a considerable improvement in the accuracy of pH predictions in steam-water circuits. Assessment of the results in terms of the effect of specific groups has also been made. In general, it is found that groups which cause a reduction in steam/water partition also produce a weakening in base strength of the molecule

  1. Total column water vapour measurements from GOME-2 MetOp-A and MetOp-B

    Directory of Open Access Journals (Sweden)

    M. Grossi

    2014-03-01

    Full Text Available The knowledge of the total column water vapour (TCWV global distribution is fundamental for climate analysis and weather monitoring. In this work, we present the retrieval algorithm used to derive the operational TCWV from the GOME-2 sensors and perform an extensive inter-comparison and validation in order to estimate their absolute accuracy and long-term stability. We use the recently reprocessed data sets retrieved by the GOME-2 instruments aboard EUMETSAT's MetOp-A and MetOp-B satellites and generated by DLR in the framework of the O3M-SAF using the GOME Data Processor (GDP version 4.7. The retrieval algorithm is based on a classical Differential Optical Absorption Spectroscopy (DOAS method and combines H2O/O2 retrieval for the computation of the trace gas vertical column density. We introduce a further enhancement in the quality of the H2O column by optimizing the cloud screening and developing an empirical correction in order to eliminate the instrument scan angle dependencies. We evaluate the overall consistency between about 8 months measurements from the newer GOME-2 instrument on the MetOp-B platform with the GOME-2/MetOp-A data in the overlap period. Furthermore, we compare GOME-2 results with independent TCWV data from ECMWF and with SSMIS satellite measurements during the full period January 2007–August 2013 and we perform a validation against the combined SSM/I + MERIS satellite data set developed in the framework of the ESA DUE GlobVapour project. We find global mean biases as small as ± 0.03 g cm−2 between GOME-2A and all other data sets. The combined SSM/I-MERIS sample is typically drier than the GOME-2 retrievals (−0.005 g cm−2, while on average GOME-2 data overestimate the SSMIS measurements by only 0.028 g cm−2. However, the size of some of these biases are seasonally dependent. Monthly average differences can be as large as 0.1 g cm−2, based on the analysis against SSMIS measurements, but are not as evident in

  2. Water, vapour and heat transport in concrete cells for storing radioactive waste

    Science.gov (United States)

    Carme Chaparro, M.; Saaltink, Maarten W.

    2016-08-01

    Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.

  3. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.; Stipp, Susan L.S.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  4. Integrated Precipitable Water Vapour Measurements At Polish Polar Station Hornsund From GPS Observations Verified By Aerological Techniques

    OpenAIRE

    Kruczyk Michał; Liwosz Tomasz

    2015-01-01

    We present results of the comparison of integrated precipitable water measurements from GPS solution and aerological techniques: CIMEL-318 sun-photometer and radiosoundings (RAOB). Integrated Precipitable Water (IPW) - important meteorological parameter is derived from GPS tropospheric solutions by known procedure for GPS station at Polish Polar Station, Hornsund (Svalbard). The relation between 2 m temperature and the mean temperature of atmosphere above, used to convert from wet part of tro...

  5. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water va

  6. Validation of sea surface temperature, wind speed and integrated water vapour from MSMR measurements. Project report

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.

    and autonomous weather station) were utilized for measuring sea truth parameters such as sea surface temperature (SST), Sea Surface Wind Speed (WS) and Columnar Water Vapor (WV). Total match-ups for SST and WS measured from various platforms exceeded 1400 (2 hrs...

  7. Contribution to the activation analysis of the rare gases. Contribution to the analysis of carbon monoxide and water vapour in gases (1963)

    International Nuclear Information System (INIS)

    In the present work, we have applied radioactive analysis to the general technique of rare gas separation. This separation is carried out on active charcoal, at constant pressure. The desorption of the gas is caused by an increase in the initial temperature of adsorption. These separations are quantitative and can be confirmed by chemical analysis. The volumes of desorbed gas are measured by radioactive counting. We have also used radioactivation to study the reduction of palladous chloride by carbon monoxide. Since this reduction is quantitative, we can have a knowledge of the mass of palladium reduced by measuring its activity. We have used the property which have organic chlorides of being hydrolysed by water vapour and of liberating hydrochloric acid to study quantitatively the amount of water vapour which a gas contains. The hydrochloric acid formed is measured by activation of the chlorine in the acid. (author)

  8. Investigation into the permeability of polymer membranes of food packaging quality to gases and water vapour after radiation treatment with radurizing doses

    International Nuclear Information System (INIS)

    The work involved the determination of permeability of polymer membranes to nitrogen, oxygen, carbon dioxide and water vapour by means of the method developed by the author at the temperature of 30 deg C from 0 to 35 days after treatment with doses of 50, 100, 200, 400 and 800 krad, respectively. The results obtained by the determination of permeability were checked by determining the crystalline to amorphous ratio in the polymers by photometry in the infrared region. The permeability of low density polyethylene, high density polyethylene, polypropylene, polyvinylchloride, polyvinylidene chloride and polyester to nitrogen, oxygen, carbon dioxide and water vapour radiation treatment did not differ significantly from the permeability prior to irradiation. Radiation treatment with up to 800 krad did not cause or initiate change in the ordered crystalline part in the polymers. These results mean that irradiation dosed even as high as 800 krad will not induce changes in the properties of the investigated food packaging

  9. Impact of water vapour and carbon dioxide on surface composition of C3A polymorphs studied by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The surface specific analytical method, X-ray photoelectron spectroscopy (XPS), has been used to study the effects of water vapour and CO2 on the cubic and orthorhombic polymorphs of C3A. Significant differences between the two polymorphs were observed in the XPS spectra. Upon exposure to water vapour, both polymorphs produced C4AH13 on their surfaces. Additionally, the sodium-doped o-C3A developed NaOH and traces of C3AH6 on its surface. Subsequent carbonation yielded mono carboaluminate on both polymorphs. Large amounts of Na2CO3 also formed on the surface of o-C3A as a result of carbonation of NaOH. Furthermore, the extent of carbonation was much more pronounced for o-C3Ao than for c-C3A

  10. Effect of water vapour on the molecular structures of supported vanadium oxide catalysts at elevated temperatures

    NARCIS (Netherlands)

    Jehng, Jih-Mirn; Deo, G.; Weckhuysen, B.M.; Wachs, I.E.

    2001-01-01

    The effect of water vapor on the molecular structures of V2O3-supported catalysts (SiO2, Al2o3, TiO2, and CeO2) was investigated by in situ Raman spectroscopy as a function of temperature (from 500°C to 120°C). Under dry conditions only isolated surface VO4 species are present on the dehydrated SiO2

  11. G305.8 - 0.2 water vapour source: A young object

    Science.gov (United States)

    Vilas-Boas, J. W. S.; Scalise, E., Jr.; Sanzovo, C. G.

    1991-09-01

    Observations of water vapor and silicon monoxide masers were conducted in the direction of G305.8-0.2. No SiO maser emission above 7 Jy of flux density was detected. The short-time variability of the H20 maser together with the absence of compact radio continuum emission suggests that the excitation energy of the maser could originate from an O7-O9 protostar in its earlier evolutionary stages.

  12. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    OpenAIRE

    Ren, C; MacKenzie, A. R.; Schiller, C.; Shur, G.; Yushkov, V.

    2007-01-01

    We have developed a Lagrangian air-parcel cirrus model (LACM), to diagnose the processes controlling water in the tropical tropopause layer (TTL). LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the...

  13. Influence of capillary forces on water injection into hot rock, saturated with superheated vapour

    Energy Technology Data Exchange (ETDEWEB)

    Tsypkin, G.G. [Institute for Problems in Mechanics, RAS, Vernadskogo Ave. 101, 119420 Moscow (Russian Federation); Calore, C. [Istituto di Geoscienze e Georisorse - CNR, Sezione di Firenze, via La Pira 4, 50121 Florence (Italy)

    2007-07-15

    The results of a theoretical study and numerical analysis of the role of capillary pressure of cold water injection into depleted geothermal reservoirs are presented. A simplified 1-D mathematical model is developed, that describes the motion of a sharp vaporization front. Some asymptotic estimates for a wide range of parameters are given and a similarity solution is derived. Analytical results are then compared with those obtained from the numerical reservoir simulator TOUGH2, showing a good agreement between the two. (author)

  14. Assessment of adequate quality and collocation of reference measurements with space-borne hyperspectral infrared instruments to validate retrievals of temperature and water vapour

    Science.gov (United States)

    Calbet, X.

    2016-01-01

    A method is presented to assess whether a given reference ground-based point observation, typically a radiosonde measurement, is adequately collocated and sufficiently representative of space-borne hyperspectral infrared instrument measurements. Once this assessment is made, the ground-based data can be used to validate and potentially calibrate, with a high degree of accuracy, the hyperspectral retrievals of temperature and water vapour.

  15. Lidar Observations of Low-level Wind Reversals over the Gulf of Lion and Characterization of Their Impact on the Water Vapour Variability

    OpenAIRE

    Di Girolamo Paolo; Flamant Cyrille; Cacciani Marco; Summa Donato; Stelitano Dario; Mancini Ignazio; Richard Evelyne; Ducrocq Véronique; Nuret Mathieu; Said Frédérique

    2016-01-01

    International audience Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMe...

  16. Behavioural Change according to the Si/Al Ratio of Successive Na-Mordenites Observed through Their Dielectric Relaxation during Water Vapour Adsorption Process

    OpenAIRE

    Sekou Diaby

    2016-01-01

    The experimental study of water vapour adsorption phenomenon on a zeolite, by dielectric relaxation measurement, makes it possible to determine the variations in the exchangeable cation hopping activation energy, on the surface of the solid, in relation to the number of adsorbed molecules. The present work shows that it is possible to explain the change observed in the energy, by means of simple assumptions based, on the one hand, on the models used in order to simulate the adsorption process...

  17. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO2 + water. • Data includes (CO2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼104) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO2 + (E)-2-hexenal + water) and (CO2 + hexanal + water), at fixed liquid phase composition (600 mg · kg−1), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼104) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  18. An observational study of air and water vapour convergence over the Bernese Alps, Switzerland, during summertime and the development of isolated thunderstorms

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Edward [Bern Univ. (Switzerland). Inst. of Applied Physics; Lews Castle College, University of the Highlands and Islands, Stornoway, Scotland (United Kingdom); N' Dri Koffi, Ernest; Maetzler, Christian [Bern Univ. (Switzerland). Inst. of Applied Physics

    2012-12-15

    The daytime summer phenomenon of the mesoscale transport of air and water vapour from the Swiss lowlands into the nearby western Alps, leading to orographic convection, is investigated using a range of independent observations. These observations are: Global Positioning System (GPS) integrated water vapour (IWV) data, the TROWARA microwave radiometer, MeteoSwiss ANETZ surface weather station data, the Payerne radiosonde, synoptic analyses for Switzerland and Europe, EUMETSAT and NOAA visible and infrared satellite images, MeteoSwiss operational precipitation radar, photographs and webcam images including time-lapse cloud animations. The intention was to show, using GPS IWV data, that significant differences in IWV may occur between the Swiss plain and nearby Alps during small single-cell Alpine thunderstorm events, and that these may be attributable to regional airflow convergence. Two particular case studies are presented for closer examination: 20 June 2005 and 13 June 2006. On both days, fine and warm weather was followed by isolated orographic convection over the Alps in the afternoon and evening, producing thunderstorms. The thunderstorms investigated were generally small, local, discrete and short-lived phenomena. They were selected for study because of almost stationary position over orography, rendering easy observation because they remained contained within a particular mountain region before dissipating. The results show that large transfers of air and water vapour occur from the Swiss plain to the mountains on such days, with up to a 50% increase in GPS IWV values at individual Alpine stations, coincident with strong airflow convergence in the same locality. (orig.)

  19. Derivation of water vapour absorption cross-sections in the red region

    Science.gov (United States)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  20. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  1. Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower-middle stratosphere over the Tibetan Plateau during boreal summer

    Science.gov (United States)

    Yan, Xiaolu; Wright, Jonathon S.; Zheng, Xiangdong; Livesey, Nathaniel J.; Vömel, Holger; Zhou, Xiuji

    2016-08-01

    We validate Aura Microwave Limb Sounder (MLS) version 3 (v3) and version 4 (v4) retrievals of summertime temperature, water vapour and ozone in the upper troposphere and lower-middle stratosphere (UTLS; 10-316 hPa) against balloon soundings collected during the Study of Ozone, Aerosols and Radiation over the Tibetan Plateau (SOAR-TP). Mean v3 and v4 profiles of temperature, water vapour and ozone in this region during the measurement campaigns are almost identical through most of the stratosphere (10-68 hPa), but differ in several respects in the upper troposphere and tropopause layer. Differences in v4 relative to v3 include slightly colder mean temperatures from 100 to 316 hPa, smaller mean water vapour mixing ratios in the upper troposphere (215-316 hPa) and a more vertically homogeneous profile of mean ozone mixing ratios below the climatological tropopause (100-316 hPa). These changes substantially improve agreement between ozonesondes and MLS ozone retrievals in the upper troposphere, but slightly worsen existing cold and dry biases at these levels. Aura MLS temperature profiles contain significant cold biases relative to collocated temperature measurements in several layers of the lower-middle stratosphere and in the upper troposphere. MLS retrievals of water vapour volume mixing ratio generally compare well with collocated measurements, excepting a substantial dry bias (-32 ± 11 % in v4) that extends through most of the upper troposphere (121-261 hPa). MLS retrievals of ozone volume mixing ratio are biased high relative to collocated ozonesondes in the stratosphere (18-83 hPa), but are biased low at 100 hPa. The largest relative biases in ozone retrievals (approximately +70 %) are located at 83 hPa. MLS v4 offers substantial benefits relative to v3, particularly with respect to water vapour and ozone. Key improvements include larger data yields, reduced noise in the upper troposphere and smaller fluctuations in the bias profile at pressures larger than 100

  2. Laser Filament Induced Water Condensation

    OpenAIRE

    Kasparian J.; Webe K.; Vogel A; Petit Y.; Lüder J.; Hao Z.Q.; Rohwetter P.; Petrarca M.; Stelmaszczyk K.; Henin S.; Wöste L.; Wolf J.-P.

    2013-01-01

    At relative humidities above 70%, femtosecond laser filaments generate aerosol particles and water droplets in the atmosphere. The water vapour condensation and droplet stabilization are assured by soluble species produced in the laser plasma.

  3. Estimation of precipitable water vapour using kinematic GNSS precise point positioning over an altitude range of 1 km

    Science.gov (United States)

    Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.

    2013-12-01

    The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.

  4. Modified TEWL in vitro measurements on transdermal patches with different additives with regard to water vapour permeability kinetics.

    Science.gov (United States)

    Fokuhl, Joana; Müller-Goymann, Christel C

    2013-02-28

    Water vapour permeability (WVP) and water absorption capacity (WAC) influence physicochemical properties and wearability of transdermal patches considerably. For determination of WVP, a modified transepidermal water loss (TEWL) measurement was developed. These measurements continuously measure WVP of transdermal patches in vitro along with time required to reach steady state, and its magnitude according to the type of polymer used. Additionally, WAC of the patches was examined and related to WVP. According to literature in the field of WVP determination, usually selected points are taken from the evaporation time curve and averaged over a given time span without knowing whether steady state has already been reached or not. The latter causes errors upon averaging. The advantage of the in vitro TEWL measurement presented includes reproducibly adjustable conditions for every time span desired, thus providing information on the kinetics of the experiment and avoiding biased results from averaging. Knowing the shape of the evaporation time curve and thus the kinetics of the experiment allows for focusing on the relevant part of the measurement, i.e. the determination of the steady state level and the time to reach it. Four different polymers (P1-P4) based on sugar-modified polyacrylates were investigated with regard to WVP and WAC of the matrices prepared thereof along with the influence of drug loading and the incorporation of a variety of additives commonly used for transdermal patches. A clear correlation between WVP and the hydrophilicity in terms of the number of free hydroxyl groups of the polymer was elaborated. Additives of higher hydrophilicity compared to that of the polymer itself led to higher WVPs and vice versa. The combination of the model drug lidocaine in its free base form together with the additive succinic acid (Suc) resulted in ionization of the drug and thus in substantially increased WVPs. Addition of α-tocopherol acetate (Toc) into P3 and P4 and

  5. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    International Nuclear Information System (INIS)

    Future fusion reactors using tritium as fuel will contain large inventories of the gas. The possibility that a significant fraction of an inventory may accidentally escape into the atmosphere from this and other potential sources such as tritium handling facilities and some fission reactors e g, PWRs has to be recognized and its potential impact on local human populations and biota assessed. Tritium gas is relatively inert chemically and of low radiotoxicity but it is readily oxidized by soil organisms to the mixed oxide, HTO or tritiated water. In this form it is highly mobile, strongly reactive biologically and much more toxic. Models of how tritiated water vapour is transported through the biosphere to foodstuffs important to man are essential components of such an assessment and it is important to test the models for their suitability when used for this purpose. To evaluate such models, access to experimental measurements made after actual releases are needed. There have however, been very few accidental releases of tritiated water to the atmosphere and the experimental findings of those that have occurred have been used to develop the models under test. Models must nevertheless be evaluated before their predictions can be used to decide the acceptability or otherwise of designing and operating major nuclear facilities. To fulfil this need a model intercomparison study was carried out for a hypothetical release scenario. The study described in this report is a contribution to the development of model evaluation procedures in general as well as a description of the results of applying these procedures to the particular case of models of HTO transport in the biosphere which are currently in use or being developed. The study involved eight modelers using seven models in as many countries. In the scenario farmland was exposed to 1E10 Bq d/m3 of HTO in air during 1 hour starting at midnight in one case and at 10.00 a.m. in the other, 30 days before harvest of crops

  6. Derivation of canopy resistance for water vapour fluxes over a spruce forest, using a new technique for the viscous sublayer resistance

    DEFF Research Database (Denmark)

    Jensen, N.O.; Hummelshøj, P.

    The paper reports on some evaporation measurements made above a spruce forest (Picea abies) during late August and the beginning of September 1991. The period was dry, and the response of the trees to this condition is clearly seen in the form of the diurnal course of the evapotranspiration. The...... trees close their stomata to limit the water loss. This is also shown through a calculation of the canopy resistance to water vapour exchange. During periods around noon and in the afternoon the resistance becomes very high. The calculations are carried out by using a novel theory for the viscous...

  7. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-06-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first CEAS detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. A further innovation consists in the measurement of extinction losses from the cavity, e.g. due to aerosols, at two wavelengths by observing O4 (477 nm and H2O (443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7×10-7 cm-1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement in open cavity mode (mirrors facing the open atmosphere, and eliminates the need for sampling lines to supply air to the cavity, and/or keep the cavity enclosed and aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2

  8. Experimental and Numerical Studies of Atmosphere Water Interactions

    KAUST Repository

    Bou-Zeid, Elie

    2011-07-04

    Understanding and quantifying the interaction of the atmosphere with underlying water surfaces is of great importance for a wide range of scientific fields such as water resources management, climate studies of ocean-atmosphere exchange, and regional weat

  9. Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions

    Science.gov (United States)

    Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas

    2016-04-01

    Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm‑3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and

  10. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    International Nuclear Information System (INIS)

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer

  11. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Science.gov (United States)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  12. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  13. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-07-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  14. Low-cost and easy experiments about water in the atmosphere

    Science.gov (United States)

    Costa, M.; Mazon, J.

    2012-04-01

    Atmospheric water represents only the 0,001% of the total water in the hydrosphere. Despite this tiny percentage, the physical changes water experiences in the atmosphere are essential for the conservation of this substance in our planet. Often, the understanding of the presence of water in the Earth's atmosphere and its physical changes inside this gas layer are difficult for most secondary and primary school students. We present 5 examples of simple practical activities that will facilitate students to think about and understand some important concepts about atmospheric water. Two of the basic principles to bear in mind when designing these activities are the use of cheap and easy to find materials and the simplicity of the construction and development of each activity. This simplicity makes it possible for the students to easily carry the experiments in the classroom or in the laboratory, using only a part of a class session. We think that the use of these kinds of activities enables us to work some basic concepts about atmospheric water with the students which lead to a more meaningful understanding, not only of these concepts but also of many other processes related to this part of the hydrosphere, such as meteorological phenomena, erosion, floods, etc. Here we present a brief description of the five experiments we suggest: 1- a crazy thermometer? Using water at the same temperature of the air, a piece of paper and two thermometers, we can easily "build" a dry and a wet bulb thermometer. Making questions about the differences between the temperatures of both thermometers we can understand what the air's humidity is and how we can calculate it. 2- what are clouds made of? Most of people think that clouds are made of water vapour. Observing what happens with the air above a small container filled with warm water when we approach a tray containing ice, we can conduct a Socratic dialogue that allows us to understand that clouds are made of ice or liquid water

  15. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9 − x)ZrxY0.1O(3 − δ)

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Caboche, G:

    2009-01-01

    sample. The direct current conductivity has been measured as a function of oxygen partial pressure, at a water vapour partial pressure of 0.015 atm. The total conductivity has been resolved into a p-type and an ionic component using a fitting procedure appropriate to the assumed defect model. An......The perovskite BaCe(0.9 − x)ZrxY0.1O(3 − δ) has been prepared by solid state reaction at 1400 °C and conventional sintering at 1700 °C. Water uptake experiments performed between 400 and 600 °C, at a water vapour pressure of 0.02 atm, provide data on the concentration of protons incorporated in the...... estimation of the protonic component was made by assuming a conductivity isotope effect between 1.4 and 1.8. The total conductivity, obtained using impedance spectroscopy has been measured as a function of temperature in the water and heavy water exchanged states. The activation energy has been found to be 0...

  16. The importance of the poikilohydric nature of lichens as natural tracers for delta18O of ambient vapour

    Science.gov (United States)

    Hartard, Britta; Cuntz, Matthias; Lakatos, Michael; Máguas, Cristina

    2010-05-01

    The stable isotope composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in poikilohydric organisms (i.e. lichens and bryophytes), where relative water content equilibrate with the surrounding humidity conditions and that are able to use distinct water sources such as precipitation, dew, fog and also water vapour. Moreover, lichens are ubiquitous organisms, and on a global scale, they are found in nearly all terrestrial ecosystems and also within these ecosystems they inhabit many microhabitats. As poikilohydric. especially green algal lichens are known to photosynthetically reactivate solely upon uptake of atmospheric moisture, even at non-saturated ambient humidity conditions. To understand basic isotope exchange processes on non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation. The study indicates that lichens equilibrates with the isotopic composition of surrounding water vapour. We found that the thallus water of lichens exposed to high relative humidity shows fast isotopic equilibration with the surrounding vapour regardless of whether the lichen experiences water loss or vapour uptake. The time until isotopic equilibrium is achieved depends on the initial water status as well as on the lichen's specific morphology. It ranged from 5 to 12h in previously dried lichens to approximately 40h in lichens previously rehydrated with liquid water of distinct isotopic composition. Even though markedly slower, isotopic equilibration between leaf water and ambient vapour may also occur in homoiohydric plants exposed to high relative humidity. At low relative humidity, however, the apparent vapour pressure deficit between the evaporative sites and the ambient air and the increased stomatal diffusion resistance generally causes leaf water enrichment. In contrast, poikilohydric lichens lack

  17. Adding constraints by in situ informations to optimal estimation retrievals of tropospheric water vapour profiles from microwave radiometry

    International Nuclear Information System (INIS)

    The optimal estimation method is a widely used method to invert species profiles from spectra observed by a microwave radiometer. The classical retrieval is constrained by the a priori profile and the corresponding covariance matrix, which is a “soft” constraining of the retrieved profile to a certain range of values. However, in some cases a “hard” constraining of the profile to a fixed value known from other measurements would be desirable. This work presents an approach to introduce such “hard” retrieval constraints (fixed-points) into optimal estimation retrievals by adapting the a priori covariance matrix. Its application is tested on the example of the retrieval of tropospheric water vapour volume mixing ratio (vmr) profiles from spectra of the MIAWARA radiometer operated by the Institute of Applied Physics, University of Bern. Thereby the cloud base height is one candidate to deliver a fixed-point, as the corresponding vmr value can be determined by assuming a relative humidity of 100%. As a test, the approach is applied to spectra simulated from balloon soundings. The cloud base height is derived from these same balloon soundings. The results show a significant improvement of the retrieval performance for all cases with liquid clouds except for fog. Afterwards the approach is also applied to real MIAWARA data. Thereby the measurements of a ceilometer and an infrared sensor (both installed close to the instrument) are used to derive a fixed-point. In principle, the application on real data also works. However the retrieval performance is limited, because we are currently not able to determine the vmr value at fixed-point altitude with suitable precision. The cloud base temperature, needed for the calculation of the vmr value at fixed-point altitude, is determined indirectly from measurements of an infrared sensor attached to the instruments or by for example interpolating data from ECMWF-reanalysis. In both cases the precision is not very high

  18. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from GRUAN network

    Directory of Open Access Journals (Sweden)

    M. Antón

    2014-09-01

    Full Text Available The main goal of this article is to validate the total water vapour column (TWVC measured by the Global Ozone Monitoring Experiment-2 (GOME-2 satellite sensor and generated using the GOME Data Processor (GDP retrieval algorithm developed by the German Aerospace Center (DLR. For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009–May 2014 at six sites are used. These balloon-borne data are provided by GCOS Reference Upper-Air Network (GRUAN. The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient (R2 of 0.89 when all available radiosondes (1400 are employed in the inter-comparison. When cloud-free cases (544 are selected by means of the satellite cloud fraction (CF, the correlation exhibits a remarkable improvement (R2 ~ 0.95. Nevertheless, analyzing the six datasets together, the relative differences between GOME-2 and GRUAN data shows mean values (in absolute term of 19% for all-sky conditions and 14% for cloud-free cases, which evidences a notable bias in the satellite TWVC data against the reference balloon-borne measurements. The satellite-sounding TWVC differences show a strong solar zenith angle (SZA dependence for values above 50° with a stable behaviour for values below this zenith angle. The smallest relative differences found in the inter-comparison (between −5 and +3% are achieved for those cloud-free cases with SZA below 50°. Furthermore, the detailed analysis of the influence of cloud properties (CF, cloud top albedo (CTA and cloud top pressure (CTP on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from +5 to −20% when CTA rises from 0.3 to 0.9. Finally, the satellite-sounding differences also show a negative dependence on the reference TWVC values

  19. Open- vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective

    OpenAIRE

    Haslwanter, Alois; Hammerle, Albin; Wohlfahrt, Georg

    2009-01-01

    The differential design, deployment and data post-processing of open- (OP) and closed-path (CP) eddy covariance systems is a potential source of bias for ongoing global flux synthesis activities. Here we use a unique six year data set of concurrent CP and OP carbon dioxide (CO2) and water vapour (H2O) eddy covariance flux measurements above a temperate mountain grassland in Austria to explore the consequences of these differences on a long-term basis. The theoretically based transfer function...

  20. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25μm absorption bands

    OpenAIRE

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-01-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400–1840 cm−1 and 3440–3970 cm−1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with t...

  1. Integrated Precipitable Water Vapour Measurements At Polish Polar Station Hornsund From GPS Observations Verified By Aerological Techniques

    Directory of Open Access Journals (Sweden)

    Kruczyk Michał

    2015-07-01

    Full Text Available We present results of the comparison of integrated precipitable water measurements from GPS solution and aerological techniques: CIMEL-318 sun-photometer and radiosoundings (RAOB. Integrated Precipitable Water (IPW - important meteorological parameter is derived from GPS tropospheric solutions by known procedure for GPS station at Polish Polar Station, Hornsund (Svalbard. The relation between 2 m temperature and the mean temperature of atmosphere above, used to convert from wet part of tropospheric delay (ZWD to IPW, has been derived using local radiosonde data at Ny Alesund. Sunphotometer data have been provided by AERONET. Quality of dedicated tropospheric solutions has been verified by comparison with EPN tropospheric combined product. Several IPW comparisons and analyses lead to determination of systematic difference between techniques: GPS IPW and sunphotometer data (not present in case of RAOBs. IPW measured by CIMEL is on average 5% bigger (0.5 mm than IPW from GPS. This bias changes seasonally and is a function of atmospheric temperature what signals some systematic deficiencies in solar photometry as IPW retrieval technique. CIMEL IPW show some temperature dependent bias also in relation to radiosoundings.

  2. Diurnal variability of water vapour in the Baltic Sea region according to NCEP-CFSR and BaltAn65+ reanalyses

    Directory of Open Access Journals (Sweden)

    Erko Jakobson

    2014-03-01

    Full Text Available Diurnal variations in water vapour in the Baltic Sea region are examined using BaltAn65+ and NCEP-CFSR reanalyses of summer (JJA data for the period 1979-2005. A systematic difference between precipitable water (PW diurnal variability above the land and the water is revealed. Above the land, PW diurnal variability has minimal values at 00 and 06 UTC, as in previous studies, whereas above the water, the minima are at 12 and 18 UTC. Diurnal variability in the vertical humidity profile is controlled by turbulent mixing and the diurnal behaviour of sea breezes. The impacts and proportions of diurnal variability of humidity are evaluated at different vertical levels.

  3. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  4. Effect of densifying the GNSS GBAS network on monitoring the troposphere zenith total delay and precipitable water vapour content during severe weather events

    Science.gov (United States)

    Kapłon, Jan; Stankunavicius, Gintautas

    2016-04-01

    The dense ground based augmentation networks can provide the important information for monitoring the state of neutral atmosphere. The GNSS&METEO research group at Wroclaw University of Environmental and Life Sciences (WUELS) is operating the self-developed near real-time service estimating the troposphere parameters from GNSS data for the area of Poland. The service is operational since December 2012 and it's results calculated from ASG-EUPOS GBAS network (120 stations) data are supporting the EGVAP (http://egvap.dmi.dk) project. At first the zenith troposphere delays (ZTD) were calculated in hourly intervals, but since September 2015 the service was upgraded to include SmartNet GBAS network (Leica Geosystems Polska - 150 stations). The upgrade included as well: increasing the result interval to 30 minutes, upgrade from Bernese GPS Software v. 5.0 to Bernese GNSS Software v. 5.2 and estimation of the ZTD and it's horizontal gradients. Processing includes nowadays 270 stations. The densification of network from 70 km of mean distance between stations to 40 km created the opportunity to investigate on it's impact on resolution of estimated ZTD and integrated water vapour content (IWV) fields during the weather events of high intensity. Increase in density of ZTD measurements allows to define better the meso-scale features within different synoptic systems (e.g. frontal waves, meso-scale convective systems, squall lines etc). These meso-scale structures, as a rule are short living but fast developing and hardly predictable by numerical models. Even so, such limited size systems can produce very hazardous phenomena - like widespread squalls and thunderstorms, tornadoes, heavy rains, snowfalls, hail etc. because of prevalence of Cb clouds with high concentration of IWV. Study deals with two meteorological events: 2015-09-01 with the devastating squalls and rainfall bringing 2M Euro loss of property in northern Poland and 2015-10-12 with the very active front bringing

  5. Impact of Pt additives on the surface reactions between SnO2, water vapour, CO and H2; an operando investigation.

    Science.gov (United States)

    Großmann, Katharina; Wicker, Susanne; Weimar, Udo; Barsan, Nicolae

    2013-11-28

    The impact of Pt doping on the surface reactions between tin dioxide, water vapour, CO and H2 was investigated by a combination of simultaneously performed operando DRIFT (Diffuse Reflectance Infrared Fourier Transform) spectroscopy, DC resistance measurements and analysis of the reaction products by using a MS (Mass Spectrometer). Both undoped and Pt doped tin dioxide sensors were exposed to different test gases in synthetic air or in N2 backgrounds. The approach made it possible to identify the differences between the two materials with respect to their surface chemistry and their impact on the gas sensing performance. The main finding is that the presence of Pt changes the reaction partners' nature for water vapour and H2 on the one hand, and CO on the other hand when the sensors are operated in air. In this way the cross interference effect of humidity, which is responsible for the loss of CO sensing performance for the sensors based on undoped SnO2, is reversed. PMID:24105035

  6. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    Science.gov (United States)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  7. Leaf Stomatal Responses to Vapour Pressure Deficit Under Current and CO2- Enriched Atmosphere Explained by the Economics of gas Exchange

    Science.gov (United States)

    Palmroth, S.; Katul, G. G.; Oren, R.

    2008-12-01

    Climate models predict that warming caused by increasing atmospheric greenhouse gases will not be accompanied with a change in atmospheric relative humidity (RH) but will cause an exponential increase in vapor pressure deficit (D). Predictions of water cycling in future climates are sensitive to the response of stomatal conductance (g) to all these changes. In currently used ecosystem models, the simulation of CO2 and water vapor exchange through stomata is typically based on empirical or semi-empirical stomatal responses to environmental stimuli. Depending on the formulation, stomata respond to either D or RH and, consequently, g predicted under future climate scenarios will greatly differ. In difference to the semi- empirical formulations of g, the tradeoffs between leaf-level carbon gain in photosynthesis and water loss in transpiration can be analyzed using the economics of gas exchange. First presented by Cowan (1977) and Cowan and Farquhar (1977; hereafter CF77) and reformulated by Berninger and Hari (1993; hereafter BH93), the cost (water loss) to benefit (carbon gain) analysis was framed as an economic optimization where the daily carbon gain is maximized for a given loss of water. While the assumptions on the form of the underlying functions differ between CF77 and BH93, we show that the optimal solutions can be made identical where the solution is independent of the time scale of flux integration. The stomatal control over gas exchange is described through a concept of invariant 'cost of water', without a priori specification of stomatal response to D or atmospheric CO2. The expressions are "emergent properties" of the optimization theory. These emergent responses are compared with data from studies from a wide range of conditions and are shown to be consistent with (1) the onset of an apparent "feed-forward" mechanism, (2) the sensitivity of stomatal conductance to D, and (3) the nonlinear variation in intercellular CO2 concentration with increasing D

  8. Concentration effects on laser-based δ18 O and δ2 H measurements and implications for the calibration of vapour measurements with liquid standards.

    Science.gov (United States)

    Schmidt, Markus; Maseyk, Kadmiel; Lett, Céline; Biron, Philippe; Richard, Patricia; Bariac, Thierry; Seibt, Ulli

    2010-12-30

    Recently available isotope ratio infrared spectroscopy can directly measure the isotopic composition of atmospheric water vapour (δ(18) O, δ(2) H), overcoming one of the main limitations of isotope ratio mass spectrometry (IRMS) methods. Calibrating these gas-phase instruments requires the vapourisation of liquid standards since primary standards in principle are liquids. Here we test the viability of calibrating a wavelength-scanned cavity ring-down spectroscopy (CRDS) instrument with vapourised liquid standards. We also quantify the dependency of the measured isotope values on the water concentration for a range of isotopic compositions. In both liquid and vapour samples, we found an increase in δ(18) O and δ(2) H with water vapour concentration. For δ(18) O, the slope of this increase was similar for liquid and vapour, with a slight positive relationship with sample δ-value. For δ(2) H, we found diverging patterns for liquid and vapour samples, with no dependence on δ-value for vapour, but a decreasing slope for liquid samples. We also quantified tubing memory effects to step changes in isotopic composition, avoiding concurrent changes in the water vapour concentration. Dekabon tubing exhibited much stronger, concentration-dependent, memory effects for δ(2) H than stainless steel or perfluoroalkoxy (PFA) tubing. Direct vapour measurements with CRDS in a controlled experimental chamber agreed well with results obtained from vapour simultaneously collected in cold traps analysed by CRDS and IRMS. We conclude that vapour measurements can be calibrated reliably with liquid standards. We demonstrate how to take the concentration dependencies of the δ-values into account. Copyright © 2010 John Wiley & Sons, Ltd. PMID:21080508

  9. Accuracy assessment of water vapour measurements from in-situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    Directory of Open Access Journals (Sweden)

    O. Bock

    2013-04-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute Provence. Two Raman lidars, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow-White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these datasets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. A drift in the IGN-LATMOS Raman lidar calibration of 15% over the 45 days of the experiment is evidenced but not yet explained. When this drift is removed, the precision of the calibration factors improves to 2–3%. However, the variations in the absolute calibration factor between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow-White measurements up to 12 km. An overall dry bias is found in the measurements from both MODEM radiosondes. Investigation of situations with low RH values (<10% in

  10. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  11. Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay

    CERN Document Server

    Tang, Anh-Minh

    2005-01-01

    Problems related to unsaturated soils are frequently encountered in geotechnical or environmental engineering works. In most cases, for the purpose of simplicity, the problems are studied by considering the suction effects on volume change or shear strength under isothermal conditions. Under isothermal condition, very often, a temperature independent water retention curve is considered in the analysis, which is obviously a simplification. When the temperature changes are too significant to be neglected, it is necessary to account for the thermal effects. In this paper, a method for controlling suction using the vapour equilibrium technique at different temperatures is presented. First, calibration of various saturated saline solutions was carried out from temperature of 20 degrees C to 60 degrees C. A mirror psychrometer was used for the measurement of relative humidity generated by saturated saline solutions at different temperatures. The results obtained are in good agreement with the data from the literatu...

  12. Formation of binary ion clusters from polar vapours: Effect of the dipole-charge interaction

    Directory of Open Access Journals (Sweden)

    A. B. Nadykto

    2003-10-01

    Full Text Available Formation of binary cluster ions from polar vapours is considered. The effect of vapour polarity on the size and composition of the critical clusters is investigated theoretically and a corrected version of classical Kelvin-Thomson theory of binary ion-induced nucleation is derived. The model predictions of the derived theory are compared to the results given by classical binary homogeneous nucleation theory and ion-induced nucleation theory. The calculations are performed in wide range of the ambient conditions for a system composed of sulfuric acid and water vapour. It is shown that dipole-charge interaction significantly decreases the size of the critical clusters, especially under the atmospheric conditions when the size of critical clusters is predicted to be small.

  13. Formation of binary ion clusters from polar vapours: effect of the dipole-charge interaction

    Directory of Open Access Journals (Sweden)

    A. B. Nadykto

    2004-01-01

    Full Text Available Formation of binary cluster ions from polar vapours is considered. The effect of vapour polarity on the size and composition of the critical clusters is investigated theoretically and a corrected version of classical Kelvin-Thomson theory of binary ion-induced nucleation is derived. The model predictions of the derived theory are compared to the results given by classical binary homogeneous nucleation theory and ion-induced nucleation theory. The calculations are performed in wide range of the ambient conditions for a system composed of sulfuric acid and water vapour. It is shown that dipole-charge interaction significantly decreases the size of the critical clusters, especially under the atmospheric conditions when the size of critical clusters is predicted to be small.

  14. Experimental evaluation of water vapour cross-sensitivity for accurate eddy covariance measurement of CO2 flux using open-path CO2/H2O gas analysers

    Directory of Open Access Journals (Sweden)

    Fumiyoshi Kondo

    2014-10-01

    Full Text Available Non-dispersive infrared CO2/H2O gas analysers produce erroneous CO2 outputs when CO2 is measured in humid air, unless a correction for water vapour cross-sensitivity is applied. Spectroscopic cross-sensitivities arising from direct absorption interference and from the pressure broadening effect are significant in CO2 flux measurements by the eddy covariance technique using open-path gas analysers over the ocean, as opposed to land-surface measurements, where CO2 fluxes are orders of magnitude larger. In this study, a widely used analyser with manufacturer-determined correction coefficients for both cross-sensitivities was tested by laboratory experiments. Our results showed that the correction coefficient for direct absorption interference was not optimised to calculate CO2 flux accurately, and that the correction coefficient for the pressure broadening caused overestimation of the CO2 mixing ratio flux in the same direction as the water vapour flux. Overestimations of open-path eddy covariance measurements of upward CO2 fluxes in previous ocean observations probably resulted from inaccuracies in both of these correction coefficients. We also found that slight changes in spectroscopic cross-sensitivities due to contamination of the analyser's optical windows by sea salt caused a low bias in CO2 outputs with increasing H2O; however, this contamination effect was not always observed in repeated tests under different contamination conditions. We suggest that previously proposed methods for correcting the effect of optical window contamination is of limited value and that measurement of small CO2 fluxes by the open-path eddy covariance technique over the ocean should be performed after confirming the spectroscopic cross-sensitivity and ensuring that the optical windows are as clean as possible.

  15. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification.

    Science.gov (United States)

    Su, Ren; Forde, Michael M; He, Qian; Shen, Yanbin; Wang, Xueqin; Dimitratos, Nikolaos; Wendt, Stefan; Huang, Yudong; Iversen, Bo B; Kiely, Christopher J; Besenbacher, Flemming; Hutchings, Graham J

    2014-10-28

    As co-catalyst materials, metal nanoparticles (NPs) play crucial roles in heterogeneous photocatalysis. The photocatalytic performance strongly relies on the physical properties (i.e., composition, microstructure, and surface impurities) of the metal NPs. Here we report a convenient chemical vapour impregnation (CVI) approach for the deposition of monometallic-, alloyed, and core-shell structured metal co-catalysts onto the TiO2 photocatalyst. The as-synthesised metal NPs are highly dispersed on the support and show narrow size distributions, which suit photocatalysis applications. More importantly, the surfaces of the as-synthesised metal NPs are free of protecting ligands, enabling the photocatalysts to be ready to use without further treatment. The effect of the metal identity, the alloy chemical composition, and the microstructure on the photocatalytic performance has been investigated for hydrogen production and phenol decomposition. Whilst the photocatalytic H2 production performance can be greatly enhanced by using the core-shell structured co-catalyst (Pdshell-Aucore and Ptshell-Aucore), the Ptshell-Aucore modified TiO2 yields enhanced quantum efficiency but a reduced effective decomposition of phenol to CO2 compared to that of the monometallic counterparts. We consider the CVI approach provides a feasible and elegant process for the decoration of photocatalyst materials. PMID:24970298

  16. Water loss from terrestrial planets with CO2-rich atmospheres

    OpenAIRE

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the mi...

  17. Numerical implementation and oceanographic application of the thermodynamic potentials of water, vapour, ice, seawater and air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-03-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  18. Investigation of sodium iodide hydration and dehydration in moist atmosphere

    International Nuclear Information System (INIS)

    Effect of different factors on NaI hydration and dehydration kinetics under nonequilibrium conditions is studied. NaIx2H2O solid or homogeneous solution is established to be formed at sodium iodide interaction with water vapour depending on air humidity. At low humidity water absorption is not observed. Effect of water vapour pressure, the NaI particle size, the air flux rate over a salt on the absorption rate is studied. The latter points to process rate limitation by diffusion in a gaseous phase. The NaI solution decomposition at light with iodine formation is marked. The character of NaIx2H2O dehydration depends on water vapour removing from the over-salt space. Total water removing before and after crystal hydrate thermal degradation when aqueous solution evaporation occurs, is possible. At 143 deg C the water vapour pressure over solution equals the atmospheric one

  19. Applications of Copper Vapour Lasers in science and industry

    International Nuclear Information System (INIS)

    Scientific applications of tunable lasers pumped by Copper Vapour Lasers include AVLIS, RIMS, atmospheric OH detection and laser guide stars. Industrial applications include high speed photography and micromachining. (author)

  20. On-line separation for the speciation of mercury in natural waters by flow injection-cold vapour-atomic absorption spectrometry.

    Science.gov (United States)

    Sanz, Jon; Raposo, Juan Carlos; Larreta, Joana; Martinez-Arkarazo, Irantzu; de Diego, Alberto; Madariaga, Juan Manuel

    2004-10-01

    Inorganic mercury and methylmercury are determined in natural waters by injecting the filtered samples onto a low cost commercial flow injection system in which an anion exchange microcolumn is inserted after the injection loop (FIA-IE). If hydrochloric acid is used as the carrier solution, the HgCl4(2-) species (inorganic mercury) will be retained by the anion exchanger while the CH3HgCI species (methylmercury) will flow through the resin with negligible retention. Four anion exchangers and seven elution agents were checked, in a batch mode, to search for the best conditions for optimal separation and elution of both species. Dowex M-41 and L-cysteine were finally selected. Mercury detection was performed by cold vapour-electrothermal atomic adsorption spectrometry (HG-ETAAS). Both systems were coupled to perform the continuous on-line separation/detection of both inorganic mercury and methylmercury species. Separation and detection conditions were optimized by two chemometric approaches: full factorial design and central composite design. A limit of detection of 0.4 microg L(-1) was obtained for both mercury species (RSD < 3.0% for 20 microg L(-1) inorganic and methylmercury solutions). The method was applied to mercury speciation in natural waters of the Nerbioi-lbaizabal estuary (Bilbao, North of Spain) and recoveries of more than 95% were obtained. PMID:15537077

  1. Effects of drought and changes in vapour pressure deficit on water relations of Populusdeltoides growing in ambient and elevated CO2

    International Nuclear Information System (INIS)

    According to the Intergovernmental Panel on Climate Change (IPCC), changes in the earth's climate are expected to become more extreme as carbon dioxide (CO2) concentrations increase over the next century. This study examined the means by which growth CO2 concentration affects anatomy and water relation responses to drought and vapour pressure deficit (VPD). Yearly coppiced, 4-year-old Populus deltoides clones grown in either ambient or elevated CO2 for 3 years were examined to determine if trees growing in elevated CO2 during drought would have a lower volume flux density of water (JV), stomatal conductance (gs) and transpiration per leaf area (E), as well as a lower stomatal density and a greater stomatal response to drought and changes in VPD than would trees in ambient CO2. The study showed that trees in elevated CO2 actually had higher JV values, but did not differ from trees in ambient CO2 in terms of gs or E under saturating light or E scaled from JV. The higher JV in elevated CO2 was attributed to the greater leaf area in the trees and not from differences in gs. Plants in elevated CO2 had greater absolute leaf loss during the drought, but the percentage of leaf area lost was similar to that of trees in ambient CO2. Under saturating light, gs and E were influenced by changes in VPD after the first 9 days of the experiment, which coincided with a large decrease in water potential. It was concluded that longer-term growth of P. deltoides clone under elevated CO2 did not improve the effects of drought and high VPD on plant and water relations. 56 refs., 3 tabs., 4 figs.

  2. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea.

    Science.gov (United States)

    Perez-Martin, A; Flexas, J; Ribas-Carbó, M; Bota, J; Tomás, M; Infante, J M; Diaz-Espejo, A

    2009-01-01

    The present work aims to study the interactive effect of drought stress and high vapour pressure deficit (VPD) on leaf gas exchange, and especially on mesophyll conductance to CO(2) (g(m)), in two woody species of great agronomical importance in the Mediterranean basin: Vitis vinifera L. cv. Tempranillo and Olea europaea L. cv. Manzanilla. Plants were grown in specially designed outdoor chambers with ambient and below ambient VPD, under both well-irrigated and drought conditions. g(m) was estimated by the variable J method from simultaneous measurements of gas exchange and fluorescence. In both species, the response to soil water deficit was larger in g(s) than in g(m), and more important than the response to VPD. Olea europaea was apparently more sensitive to VPD, so that plants growing in more humid chambers showed higher g(s) and g(m). In V. vinifera, in contrast, soil water deficit dominated the response of g(s) and g(m). Consequently, changes in g(m)/g(s) were more related to VPD in O. europaea and to soil water deficit in V. vinifera. Most of the limitations of photosynthesis were diffusional and especially due to stomatal closure. No biochemical limitation was detected. The results showed that structural parameters played an important role in determining g(m) during the acclimation process. Although the relationship between leaf mass per unit area (M(A)) with g(m) was scattered, it imposed a limitation to the maximum g(m) achievable, with higher values of M(A) in O. europaea at lower g(m) values. M(A) decreased under water stress in O. europaea but it increased in V. vinifera. This resulted in a negative relationship between M(A) and the CO(2) draw-down between substomatal cavities and chloroplasts in O. europaea, while being positive in V. vinifera. PMID:19457982

  3. Factors governing water condensation in the Martian atmosphere

    Science.gov (United States)

    Colburn, David S.; Pollack, J. B.; Haberle, Robert M.

    1988-01-01

    Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation.

  4. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method

    Science.gov (United States)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-11-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapour equilibration and laser spectrometry (DVE-LS) was first described in 2008, and has since been rapidly adopted. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement, as well as accuracy, is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g. water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g. clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g. sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents > 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas-sampling bags were determined to be as good as, if not better than, other, more expensive specialty bags. Sample storage in sample bags provides acceptable results for up to 10 days of storage; however, measurable water loss, as well as evaporitic isotopic enrichment, occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high-resolution pore water

  5. Beta radiation effect on catalytic activity of BASF K-3-10 catalyst in low-temperature water vapour conversion of carbon monoxide

    International Nuclear Information System (INIS)

    The CuO-ZnO-Cr2O3 based K-3-10 catalyst manufactured by BASF allows the conversion of CO with water vapour during the industrial production of hydrogen to be conducted at a relatively low temperature of 420 to 500 K. The effect of beta radiation on catalytic activity was studied in a troughflow tube reactor operating in integral mode. The effect of radiation was observed using the value of relative catalytic activity expressed as the ratio of reaction rate conctants during irradiation and without irradiation. Two cases were studied: a) preliminary irradiation of 8 samples of catalysts with a 90Sr-90Y source with doses of 1.7 to 3524 kGy, b) the incorporation of the 32P radionuclide in the catalytic bed of 6 samples such that the dose absorbed bz the catalyst during the experiment was 19.1 to 687.8 Gy. For preliminary irradiation, a non-monotonous increase was found in the catalytic activity amounting to 28 - 83 % (reaching maximum at a dose of 125.9 kGy.). Radioactive bed experiments showed a monotonous increase in catalytic activity with bed radioactivity; the highest achieved increase in activity was 72 %. Differences were found in the stability in time of radiation modified catalytic activity showing that effects induced by the two methods have a different character. A probable explanation of observed dependences is suggested. (A.K.)

  6. Mechanical properties and water vapour permeability of film from Haruan (Channa striatus) and fusidic acid spray for wound dressing and wound healing.

    Science.gov (United States)

    Febriyenti; Noor, Azmin Mohd; Bai, Saringat Bin

    2010-04-01

    Aerosol is a new dosage form for wound dressing and wound healing. Concentrate of aerosols which were prepared for wound dressing and wound healing will produced films after sprayed onto the surface of wounds. The aim of this study is to evaluate the mechanical and water vapour permeability properties of the films from the aerosol concentrates. Film forming dispersions contained Haruan extract and Fusidic acid as the active ingredients, hydroxypropyl methylcellulose (HPMC) as polymer and polyethylene glycol (PEG) 400, glycerin and propylene glycol as plasticizers. Haruan extract is used to promote healing and Fusidic acid is added in formula as antibiotic to prevent the infections. The films were prepared by using casting technique. Based on the results, it is concluded that films produced from Formula E1, E2 and F4 possessed good elongation at break but low tensile strength. All Formula E, Formula F4 and F5 were permeable but Formula F5 was brittle and would peel off by themselves from the Petri dish. PMID:20363692

  7. Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique

    Science.gov (United States)

    Jha, Chandra Shekhar; Thumaty, Kiran Chand; Rodda, Suraj Reddy; Sonakia, Ajit; Dadhwal, Vinay Kumar

    2013-10-01

    In the present study, we report initial results on analysis of carbon dioxide (CO2), water vapour (H2O), and energy fluxes (sensible and latent heat flux) over teak mixed deciduous forests of Madhya Pradesh, central India, during winter (November 2011 and January 2012) and summer (February-May 2012) seasons using eddy covariance flux tower datasets. During the study period, continuous fast response measurements of CO2, H2O and heat fluxes above the canopy were carried out at 10 Hz and averaged for 30 minutes. Concurrently, slow response measurements of meteorological parameters are also being carried out. Diurnal and seasonal variations of CO2, H2O and heat fluxes were analysed and correlated with the meteorological variables. The study showed strong influence of leaf off and on scenario on the CO2, H2O and energy fluxes due to prevalence of deciduous vegetation type in the study area. Maximum amount of CO2 was sequestered for photosynthesis during winter (monthly mean of mol/m2/s) compared to summer (monthly mean of mol/m2/s). Energy flux analysis (weekly mean) showed more energy being portioned into latent heat during winter (668 W/m2) and sensible heat during summer (718 W/m2).

  8. Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique

    Indian Academy of Sciences (India)

    Chandra Shekhar Jha; Kiran Chand Thumaty; Suraj Reddy Rodda; Ajit Sonakia; Vinay Kumar Dadhwal

    2013-10-01

    In the present study, we report initial results on analysis of carbon dioxide (CO2), water vapour (H2O), and energy fluxes (sensible and latent heat flux) over teak mixed deciduous forests of Madhya Pradesh, central India, during winter (November 2011 and January 2012) and summer (February–May 2012) seasons using eddy covariance flux tower datasets. During the study period, continuous fast response measurements of CO2, H2O and heat fluxes above the canopy were carried out at 10 Hz and averaged for 30 minutes. Concurrently, slow response measurements of meteorological parameters are also being carried out. Diurnal and seasonal variations of CO2, H2O and heat fluxes were analysed and correlated with the meteorological variables. The study showed strong influence of leaf off and on scenario on the CO2, H2O and energy fluxes due to prevalence of deciduous vegetation type in the study area. Maximum amount of CO2 was sequestered for photosynthesis during winter (monthly mean of −25 mol/m2/s) compared to summer (monthly mean of −2 mol/m2/s). Energy flux analysis (weekly mean) showed more energy being portioned into latent heat during winter (668 W/m2) and sensible heat during summer (718 W/m2).

  9. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Science.gov (United States)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  10. Diurnal to annual variations in the atmospheric water cycle

    OpenAIRE

    Ruane, Alexander C

    2007-01-01

    This dissertation examines aspects of diurnal to annual variability in the atmospheric water cycle in observations and global numerical weather prediction models. Investigations begin with an in-depth evaluation of variance at a single time scale, followed by a comprehensive analysis of a particular water cycle component, and finally a complete description of the balances and exchanges of water cycle components across time scales. Comparisons of global and regional reanalyses reveal ...

  11. Characterisation and source attribution of the semi-volatile organic content of atmospheric particles and associated vapour phase in Birmingham, UK

    Science.gov (United States)

    Harrad, Stuart; Hassoun, Suzanne; Callén Romero, María. S.; Harrison, Roy M.

    Concentrations of n-alkanes, petroleum biomarkers such as hopanes and steranes, n-alkanoic acids, n-alkanols, polycyclic aromatic hydrocarbons (PAH), dicarboxylic acids, and selected oxygenated PAH were separately determined in total suspended particulate matter and associated vapour phase in ambient air in Birmingham, UK. Samples were taken simultaneously at two locations on 24 separate occasions every 1-2 weeks between August 1999 and August 2000. Site A was 10 m from a busy road, 800 m from site B that was located within the "green space" of the University of Birmingham campus. Despite some differences in concentrations of some compounds, data from this study is in line with that reported in London, UK and in California. Differences between Sites A and B in both concentrations and carbon preference indices are consistent with greater traffic inputs at Site A, with some evidence of an appreciable biogenic input of n-alkanols and n-alkanes at the less-traffic influenced and more vegetated Site B. The biogenic input at Site B appears greater in the spring and summer months and suggests that biogenic emissions are appreciable even in British urban areas. Secondary formation mechanisms for some compounds including dicarboxylic acids and oxygenated PAH like fluoren-9-one are indicated by the lack of any significant intersite difference in concentrations. Intersite differences in concentrations provide new evidence that while petroleum biomarkers arise predominantly from local traffic, regional as well as local sources play an important rôle for the higher molecular weight PAH which exist predominantly in the particle phase.

  12. Retrieving Atmospheric Precipitable Water Vapor Using Artificial Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2013-07-01

    Full Text Available Discussing of water vapor and its variation is the important issue for synoptic meteorology and meteorology. In physical Atmospheric, the moisture content of the earth atmosphere is one of the most important parameters, it is hard to represent water vapor because of its space-time variation. High-spectral resolution Atmospheric Infrared Sounder (AIRS data can be used to retrieve the small scale vertical structure of air temperature, which provided a more accurate and good initial field for the numerical forecasting and the large-scale weather analysis. This paper proposes an artificial neural network to retrieve the clear sky atmospheric radiation data from AIRS and comparing with the AIRS Level-2 standard product, and gain a good inversion results.

  13. THE STUDY OF HEAT EXCHANGE DYNAMICS OF VENTILATION EMISSIONS ON HEAT UTILIZATION WITH CONSIDERATION FOR WATER VAPOUR CONDENSATION

    OpenAIRE

    V. S. Ezhov; D. B. Kladov

    2010-01-01

    Problem statement. Known corrosion-resistant air heaters made from glass tubes have not received wide acceptance because of some defects (low mechanical strength, temperature deformation, complexity and unreliability of assemblies, etc.), whereas the structure of insulated glazing heat exchange devices has some advantages. The aim of present paper is to study heat exchange dynamics of venti-lation emissions in insulated glazing air heater on heat utilization with considera-tion for water vapo...

  14. Water loss from terrestrial planets with CO2-rich atmospheres

    International Nuclear Information System (INIS)

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO2-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m–2 (global mean) unlikely to lose more than one Earth ocean of H2O over their lifetimes unless they lose all their atmospheric N2/CO2 early on. Because of the variability of H2O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO2/H2O-rich atmospheres, and high mean surface temperatures.

  15. Open- vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective.

    Science.gov (United States)

    Haslwanter, Alois; Hammerle, Albin; Wohlfahrt, Georg

    2009-02-01

    The differential design, deployment and data post-processing of open- (OP) and closed-path (CP) eddy covariance systems is a potential source of bias for ongoing global flux synthesis activities. Here we use a unique six year data set of concurrent CP and OP carbon dioxide (CO2) and water vapour (H2O) eddy covariance flux measurements above a temperate mountain grassland in Austria to explore the consequences of these differences on a long-term basis. The theoretically based transfer function approach was able to account and correct for the differences in low-pass filtering between the two systems. Corrected CO2 and H2O fluxes exhibited excellent 1:1 correspondence, but the CP system tended to underestimate OP H2O fluxes during conditions of high air temperature, wind speed and global radiation, large sun angles and low relative humidity. Corrections for self-heating of the OP infra-red gas analyser had a very small effect on these relationships. Energy balance closure was slightly more favourable for the OP system. No significant differences were found for the random flux uncertainty of both systems. A larger fraction of OP data had to be excluded because of obstructions of the infra-red path by water and snow. This, however, did not translate into a correspondingly larger fraction of accepted CP flux values, because of a larger percentage of CP flux data failing on the stationarity test. Integrated over the annual cycle, the CP system yielded on average a more positive net ecosystem CO2 exchange (25 vs. 0 gC m(-2) y(-1)) and a lower evapotranspiration (465 vs. 549 mm y(-1)) as compared to the OP system. PMID:24465069

  16. OPERA: An Atmospheric Correction for Land and Water

    Science.gov (United States)

    Sterckx, Sindy; Knaeps, Els; Adriaensen, Stefan; Reusen, Ils; De Keukelaere, Liesbeth; Hunter, Peter; Giardino, Claudia; Odermatt, Daniel

    2015-12-01

    Atmospheric correction is one of the most important part of the pre-processing of satellite remotely sensed data used to retrieve bio-geophysical paramters. In this paper we present the scene and sensor generic atmospheric correction scheme ‘OPERA’ allowing to correct both land and water areas in the remote sensing image. OPERA can now be used to correct for atmospheric effects in scenes acquired by MERIS, Landsat-8, hyperspectral sensors and will be applicable to Sentinel-3 and Sentinel-2.

  17. High-resolution terahertz atmospheric water vapor continuum measurements

    Science.gov (United States)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.

    2014-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum due to the large number of rotational and vibrational transitions of many molecules of interest. This region of the spectrum has particular utility for applications such as pollution monitoring and the detection of energetic chemicals using remote sensing over long path lengths through the atmosphere. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum are lacking. The water vapor continuum absorption is an excess absorption that is unaccounted for in resonant line spectrum simulations. Currently a semiempirical model is employed to account for this absorption, however more measurements are necessary to properly describe the continuum absorption in this region. Fourier Transform Spectroscopy measurements from previous work are enhanced with high-resolution broadband measurements in the atmospheric transmission window at 1.5THz. The transmission of broadband terahertz radiation through pure water vapor as well as air with varying relative humidity levels was recorded for multiple path lengths. The pure water vapor measurements provide accurate determination of the line broadening parameters and experimental measurements of the transition strengths of the lines in the frequency region. Also these measurements coupled with the atmospheric air measurements allow the water vapor continuum absorption to be independently identified at 1.5THz. Simulations from an atmospheric absorption model using parameters from the HITRAN database are compared with the current and previous experimental results.

  18. Investigation on the interactions between soil water, irrigation and transpiration in the soil-plant-atmosphere continuum with 18O

    International Nuclear Information System (INIS)

    Full text: The complex interaction between plant and soil water during the cropping season requires further investigation. How does the plant react in terms of transpiration to water stress during its growth? How is the interaction between the plant, the soil water and irrigation at different levels of water stress? These are the questions to be answered by a pot experiment conducted in a glasshouse at Seibersdorf laboratories involving 18O. Oxygen 18 is a rare (natural abundance of 0.2 %), natural and stable isotope of water and therefore very useful for tracking water pathways from irrigation or precipitation within the soil-plant-atmosphere continuum. One of the noteworthy properties of 18O is the temperature dependency of its fractionation factor between the liquid phase and the vapour during evaporation, while the plant water uptake does not change the isotopic signature of soil water. These two properties can be exploited to investigate not only soil evaporation and plant transpiration but also the irrigation water pathway within the soil-plant-atmosphere continuum. Thirty six large pots (diam. 50 cm) were filled with a 1:1 Seibersdorf soil (diam. 0.5 cm)/quartz sand mixture in a randomised block experiment, consisting of 3 treatments: (i) field capacity + crop, (ii) 60% of field capacity + crop and (iii) 60% of field capacity + bare soil. The crop used for the experiment is corn (Zea Mays). Climatic data and soil humidity will be monitored during the cropping season. Oxygen 18 in irrigation, soil and plant water (sap and dry organic matter) at different stages of plant growth will be analysed. Soil water and plant sap will need to be extracted before isotopic analyses with the mass-spectrometer can be conducted, involving the construction of a cryodistillation line in the laboratory. (author)

  19. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  20. Non-Gaussian Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour from Odin-SMR measurements

    Directory of Open Access Journals (Sweden)

    B. Rydberg

    2009-07-01

    Full Text Available Improved Odin-SMR retrievals of upper tropospheric water are presented. The new retrieval algorithm retrieves humidity and cloud ice mass simultaneously and takes into account of cloud inhomogeneities. Both these aspects are introduced for microwave limb sounding inversions for the first time. A Bayesian methodology is applied allowing for a formally correct treatment of non-unique retrieval problems involving non-Gaussian statistics. Cloud structure information from CloudSat is incorporated into the retrieval algorithm. This removes a major limitation of earlier inversion methods where uniform cloud layers were assumed and caused a systematic retrieval error. The core part of the retrieval technique is the generation of a database that must closely represent real conditions. Good agreement with Odin-SMR observations indicates that this requirement is met. The retrieval precision is determined to be about 5–17% RHi and 65% for humidity and cloud ice mass, respectively. For both quantities, the vertical resolution is about 5 km and the best retrieval performance is found between 11 and 15 km. New data show a significantly improved agreement with CloudSat cloud ice mass retrievals, at the same time consistency with the Aura MLS humidity results is maintained. The basics of the approach presented can be applied for all passive cloud observations and should be of broad interest. The results can also be taken as a demonstration of the potential of down-looking sub-mm radiometry for global measurements of cloud ice properties.

  1. Non-Gaussian Bayesian retrieval of tropical upper tropospheric cloud ice and water vapour from Odin-SMR measurements

    Directory of Open Access Journals (Sweden)

    B. Rydberg

    2009-10-01

    Full Text Available Improved Odin-SMR retrievals of upper tropospheric water are presented. The new retrieval algorithm retrieves humidity and cloud ice mass simultaneously and takes into account of cloud inhomogeneities. Both these aspects are introduced for microwave limb sounding inversions for the first time. A Bayesian methodology is applied allowing for a formally correct treatment of non-unique retrieval problems involving non-Gaussian statistics. Cloud structure information from CloudSat is incorporated into the retrieval algorithm. This removes a major limitation of earlier inversion methods where uniform cloud layers were assumed and caused a systematic retrieval error. The core part of the retrieval technique is the generation of a database that must closely represent real conditions. Good agreement with Odin-SMR observations indicates that this requirement is met. The retrieval precision is determined to be about 5–17% RHi and 65% for humidity and cloud ice mass, respectively. For both quantities, the vertical resolution is about 5 km and the best retrieval performance is found between 11 and 15 km. New data show a significantly improved agreement with CloudSat cloud ice mass retrievals, at the same time consistency with the Aura MLS humidity results is maintained. The basics of the approach presented can be applied for all passive cloud observations and should be of broad interest. The results can also be taken as a demonstration of the potential of down-looking sub-mm radiometry for global measurements of cloud ice properties.

  2. Tritium in atmospheric precipitations and water systems of Belarus

    International Nuclear Information System (INIS)

    Experimental and literature data concerning analysis of tritium in atmospheric precipitation and natural waters of Belarus including the lakes near the Ignalina NPP are compared and analyzed. It is concluded that the maximum of the curve 'amount of the samples - their activity' is shifted to the higher activity in the period 1994-2000 in comparison with 1980-1989. This increasing of the concentration of tritium in water can not be explained definitely by the Chernobyl accident. Consumption of drinking water with maximum registered tritium concentration in natural waters (10 Bq/l) will produce accumulation of dose equal 1,3·10-3 of public permissible dose limit (authors)

  3. Porous Silicon & Titanium Dioxide Coatings Prepared by Atmospheric Pressure Plasma Jet Chemical Vapour Deposition Technique-A Novel Coating Technology for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    S. Bhatt

    2011-01-01

    Full Text Available Atmospheric Pressure Plasma Jet (APPJ is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200 at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300. The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm. Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm. The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions.

  4. Atmospheric water uptake by an atacama desert shrub.

    Science.gov (United States)

    Mooney, H A; Gulmon, S L; Ehleringer, J; Rundel, P W

    1980-08-01

    Nolana mollis, a succulent-leaved shrub of the extreme coastal desert of Chile, has the capacity to condense water on its leaves out of unsaturated atmospheres, Metabolic energy would have to be expended to move this water either from the leaf surface directly to the mesophyll or, when dripped to the soil, from there into the roots. Because of the unusual aridity of its habitat and of the utilization of water-use-efficient metabolism by Nolana, at least during certain periods, such an energy expenditure could be effective. PMID:17821192

  5. Water loss from terrestrial planets with CO2-rich atmospheres

    CERN Document Server

    Wordsworth, Robin

    2013-01-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on atmospheric composition (CO2 and N2 levels), planetary mass, and external parameters (stellar spectrum, orbital distance and impacts). From coupled 1D climate and escape modeling, we show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1 to 1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but XUV/UV luminosity decreases, this places strong limits on moist...

  6. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    International Nuclear Information System (INIS)

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation

  7. ATMOSPHERIC MOISTURE CONDENSATION TO WATER RECOVERY BY HOME AIR CONDITIONERS

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2013-01-01

    Full Text Available Earth’s atmosphere contains billion cubic meters of fresh water, which is considerable as a reliable water resource, especially in sultry areas. What is important in this context, how to extract the water, in an economic manner. In order to extract water from air conditioner, no need to spend any cost, because water produced as a by-product and trouble production. This cross-sectional study was conducted to evaluate the quantity and chemical quality of water obtained from Bandar Abbas air conditioners; at intervals beginning of March to early December of 2010. Sixty six samples were taken in cluster random plan. Bandar Abbas divided into four clusters; based on distance to shore and population density. Chemical tests which included: Turbidity, alkalinity, total hardness, Dissolved Solids (TDS and Electrical Conductivity (EC and quantity measurement were performed on them. Obtained water had slightly acidic pH, near to neutral range. Total dissolved solids, electrical conductivity, total hardness and alkalinity of extracted water were in low rate. Each air conditioner produced 36 liter per day averagely. Split types obtained more water to window air conditioners. With regard to some assumptions, approximately 4680 to 9360 cubic meter per day water is obtainable which is suitable for many municipal and industrial water applications.

  8. The pyrolytic decomposition of ATSB during chemical vapour deposition of thin alumina films

    OpenAIRE

    Haanappel, V.A.C.; Corbach, van, H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    The effect of the deposition temperature and the partial pressure of water on the thermal decomposition chemistry of aluminium-tri-sec-butoxide (ATSB) during metal organic chemical vapour deposition (MOCVD) is reported. The MOCVD experiments were performed in nitrogen at atmospheric pressure. The partial pressure of ATSB was 0.026 kPa (0.20 mmHg) and that of water was between 0 and 0.026 kPa (0–0.20 mmHg). The pyrolytic decomposition chemistry of ATSB was studied by mass spectrometry at tempe...

  9. A Project on Atmospheric Water Generator with the Concept of Peltier Effect

    OpenAIRE

    Aditya Nandy; Sharmi Saha; Souradeep Ganguly; Sharmistha Chattopadhyay

    2014-01-01

    In many countries like India it is difficult to obtain water resources for irrigation or other purposes, especially in the arid regions. The problem of water scarcity is also observed in other places of the world due to lack of rainfall. However, in highly humid areas such as places close to the sea, water can be obtained by condensing the water vapour present in air. Here, the paper presents the method to develop a water condensation system based on thermoelectric cooler. The system consists...

  10. Analytical Models of Exoplanetary Atmospheres: Atmospheric Dynamics via the Shallow Water System

    CERN Document Server

    Heng, Kevin

    2014-01-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical and spherical), rotation, magnetic tension and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag and magnetic drag) and magnetic tension are included. The global atmospheric structure is largely controlled by a single, key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag varies significantly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulatio...

  11. Atmospheric correction for China's coastal water color remote sensing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The space satellite programs, such as CZCS/Nimbus- 7, VHRSR/FY - 1, OCTS/ADEOS and SeaWiFS/SeaStar, have demonstrated and proven that remote sensing is a powerful tool for understanding the spatial and temporal ocean color distribution. In general, there are two main techni cal keys in the processing ocean color satellite data. They are the atmospheric correction and the inver sion of water-leaving radiance into water constituents (such as chlorophyll, suspended material and yel low substance) quantitatively. The SeaWiFS (sea-viewing wide field-of-view sensor) atmospheric correc tion algorithm for China's coastal waters is discussed.First, the major advantages of SeaWiFS are introduced. Second, in view of the problems of the SeaDAS algorithm applying in China' s coastal waters, the local atmospheric correction algorithms are discussed and developed. Finally, the advantages of the loc al algorithms are presented by the compari son of the results from two different algorithms.

  12. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    International Nuclear Information System (INIS)

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature. -- Highlights: •Broadband absorption measurements of water vapor were performed at 300–1500 GHz. •The absorption coefficient of water vapor was modeled and compared with data. •The air-broadened continuum coefficient for water vapor was determined. •The modeled absorption coefficient is presented for 10–90% humidity at 0–3 THz

  13. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  14. Automated continuous monitoring of inorganic and total mercury in wastewater and other waters by flow-injection analysis and cold-vapour atomic absorption spectrometry

    OpenAIRE

    Birnie, S. E.

    1988-01-01

    An automated continuous monitoring system for the determination of inorganic and total mercury by flow-injection analysis followed by cold-vapour atomic absorption spectrometry is described. The method uses a typical flow-injection manifold where digestion and reduction of the injected sample takes place. Mercury is removed by aeration from the flowing stream in a specially designed air-liquid separator and swept into a silica cell for absorption measurement at a wavelength of 253.7 nm. A cal...

  15. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time

  16. Optimized sampling of hydroperoxides and investigations of the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes; Optimierung der Probenahme von Hydroperoxiden und Untersuchungen zur Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Plagens, H.

    1997-06-01

    There are several sampling methods for hydroperoxides none of which is particularly reliable. The authors therefore tested three new methods in order to optimize hydroperoxide sampling and, using the optimized sampling procedure, to investigate the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes. (orig.) [Deutsch] Fuer die Probenahme von Hydroperoxiden existieren verschiedene Verfahren, von denen bisher keines als besonders zuverlaessig angesehen werden konnte. Daher wurden in dieser Arbeit drei Verfahren getestet, um die Probenahme von Hydroperoxiden zu optimieren und mit dem entsprechenden Verfahren die Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen zu untersuchen. (orig.)

  17. Corrigendum to “Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines” [Agric. Forest Meteorol. 165 (2012) 53–63

    DEFF Research Database (Denmark)

    Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola; Burba, George; Papale, Dario

    2012-01-01

    It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m......) and long (7 m) sampling lines. To date, only a few analytical or in situ analyses have been proposed to quantify and correct such effects, among which the comprehensive method by Ibrom et al. (2007) was proved effective for the very long sampling line of a forest eddy-covariance setup.Here we analyze...

  18. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    International Nuclear Information System (INIS)

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  19. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk [OCIAM, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG (United Kingdom)

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  20. Concentration of tritium in the atmosphere

    International Nuclear Information System (INIS)

    Concentration of tritium in the atmosphere was measured in Ibaraki, Japan. At first, sampled air was passed through a column of molecular sieve, and all the water vapour was removed. Hydrogen gas obtained by the electrolysis of water was added to the air, and oxidized by a Pd catalyst column, then the oxidized hydrogen was absorbed by a last column of molecular sieves. These columns of molecular sieves were dehydrated by heating at 400 deg C. The concentration range of atmospheric HTO and HT was 1-2 pCi/m3 in Ibaraki for a year. The concentration of atmospheric HTO varied depending on the content of water vapour in air. (J.P.N.)

  1. Potential evaporation trends over land between 1983–2008: driven by radiative fluxes or vapour-pressure deficit?

    Directory of Open Access Journals (Sweden)

    C. Matsoukas

    2011-08-01

    Full Text Available We model the Penman potential evaporation (PE over all land areas of the globe for the 25-yr period 1983–2008, relying on radiation transfer models (RTMs for the shortwave and longwave fluxes. Penman's PE is determined by two factors: available energy for evaporation and ground to atmosphere vapour transfer. Input to the PE model and RTMs comprises satellite cloud and aerosol data, as well as data from reanalyses. PE is closely linked to pan evaporation, whose trends have sparked controversy in the community, since the factors responsible for the observed pan evaporation trends are not determined with consensus. Our particular interest is the temporal evolution of PE, and the provided insight to the observed trends of pan evaporation. We examine the decadal trends of PE and various related physical quantities, such as net solar flux, net longwave flux, water vapour saturation deficit and wind speed. Our findings are the following: Global warming has led to a larger water vapour saturation deficit. The periods 1983–1989, 1990–1999, and 2000–2008 were characterised by decreasing, increasing, and slightly decreasing PE, respectively. In these last 25 yr, global dimming/brightening cycles generally increased the available energy for evaporation. PE trends seem to follow more closely the trends of energy availability than the trends of the atmospheric capability for vapour transfer, at most locations on the globe, with trends in the Northern hemisphere significantly larger than in the Southern. These results support the hypothesis that global potential evaporation trends are attributed primarily to secular changes in the radiation fluxes, and secondarily to vapour transfer considerations.

  2. The seasonal and global behavior of water vapor in the Mars atmosphere - Complete global results of the Viking atmospheric water detector experiment

    Science.gov (United States)

    Jakosky, B. M.; Farmer, C. B.

    1982-01-01

    A key question regarding the evolution of Mars is related to the behavior of its volatiles. The present investigation is concerned with the global and seasonal abundances of water vapor in the Mars atmosphere as mapped by the Viking Mars Atmospheric Water Detector (MAWD) instrument for almost 1-1/2 Martian years from June 1976 to April 1979. Attention is given to the implications of the observed variations for determining the relative importance of those processes which may be controlling the vapor cycle on a seasonal basis. The processes considered include buffering of the atmosphere water by a surface or subsurface reservior of ground ice, physically adsorbed water, or chemically bound water. Other processes are related to the supply of water from the residual or seasonal north polar ice cap, the redistribution of the vapor resulting from atmospheric circulation, and control of the vapor holding capacity of the atmosphere by the local atmospheric temperatures.

  3. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  4. Solar geoengineering, atmospheric water vapor transport, and land plants

    Science.gov (United States)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  5. Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution

    International Nuclear Information System (INIS)

    Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF4] > [HDEA][BF4] > [HMEA][BF4]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.

  6. Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chong [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Ma Xiaoyan [College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Lu Yingzhou [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Li Chunxi, E-mail: Licx@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-03-15

    Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF{sub 4}] > [HDEA][BF{sub 4}] > [HMEA][BF{sub 4}]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.

  7. Habitability of waterworlds: runaway greenhouses, atmospheric expansion and multiple climate states of pure water atmospheres

    OpenAIRE

    Goldblatt, Colin

    2015-01-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds". I map these as a function of solar constant for planets ranging in size from Mars size to 10 Earth-mass. The states are: globally ice covered (Ts< 245K), cold and damp (270 < Ts< 290K), hot and moist (350< Ts< 550K) and very hot and dry (Ts< 900K). No stable climate exists for 290< Ts < 350K or 550 < Ts < 900K. The union of hot moist and cold damp climates describe the liquid ...

  8. Linking Hydrology and Atmospheric Sciences in Continental Water Dynamics Modeling

    Science.gov (United States)

    David, C. H.; Gochis, D. J.; Maidment, D. R.; Wilhelmi, O.

    2006-12-01

    Atmospheric observation and model output datasets as well as hydrologic datasets are increasingly becoming available on a continental scale. Although the availability of these datasets could allow large-scale water dynamics modeling, the different objects and semantics used in atmospheric science and hydrology set barriers to their interoperability. Recent work has demonstrated the feasibility for modeling terrestrial water dynamics for the continental United States of America. Continental water dynamics defines the interaction of the hydrosphere, the land surface and subsurface at spatial scales ranging from point to continent. The improved version of the National Hydrographic Dataset (NHDPlus, an integrated suite of geospatial datasets stored in a vector and raster GIS format) was used as hydrologic and elevation data input to the Noah community Land Surface Model, developed at NCAR. Noah was successfully run on a watershed in the Ohio River Basin with NHDPlus inputs. The use of NHDPlus as input data for Noah is a crucial improvement for community modeling efforts allowing users to by-pass much of the time consumed in Digital Elevation Model and hydrological network processing. Furthermore, the community Noah land surface model, in its hydrologically-enhanced configuration, is capable of providing flow inputs for a river dynamics model. Continued enhancement of Noah will, as a consequence, be beneficial to the atmospheric science community as well as to the hydrologic community. Ongoing research foci include using a diversity of weather drivers as an input to Noah, and investigation of how to use land surface model outputs for river forecasting, using both the ArcHydro and OpenMI frameworks.

  9. Water vapor measurement system in global atmospheric sampling program, appendix

    Science.gov (United States)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  10. Equipment selection for atmospheric drying

    International Nuclear Information System (INIS)

    Heavy water management is a major factor in deciding the economics of the PHWRs. Hence it is necessary to have an efficient recovery system, for the heavy water vapour escaping from various process systems and maintain a dry atmosphere in the recovery areas. While the basic objective of the atmospheric drying system is to maximize recovery and to minimize stack losses, it is equally important to optimally design the system with due consideration to operational and maintenance aspects. At present, heavy water vapour recovery in the existing Nuclear Power Plants (NPPs) is carried out by dryers of dual fixed bed design. While moving bed design could have some advantages, this has not been adopted so far because of the cumbersome mechanical design involved and special requirements for nuclear application. Developmental work done in this direction has resulted in compact alternative designs. In one of the designs, the change over from adsorption to regeneration is achieved by rotating the bed slowly. This concept is further refined in another alternative using a dessicant wheel. This paper contains brief equipment description of different designs; enumerates the design requirements of an atmospheric drying system for reactor building; describes steps for designing fixed bed type D2O vapour recovery system, and highlights advances in dryer technology. (author)

  11. Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle

    Science.gov (United States)

    Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael; Osterman, Gregory; Rinsland, Curtis P.; Rogders, Clive; Sander, Stanley; Shepard, Mark; Webster, Christopher R.; Worden, H. M.

    2007-01-01

    Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.

  12. Sub-60 deg. C atmospheric helium-water plasma jets: modes, electron heating and downstream reaction chemistry

    International Nuclear Information System (INIS)

    For plasma treatment of many heat-labile materials (e.g. living tissues) that either are moist or contain a surface layer of liquid, it is desirable that the gas plasma is generated at atmospheric pressure for process convenience and with a gas temperature ideally no more than 60 deg. C for mitigating permanent damage to the integrity of the test material. This implies that the liquid-containing plasma needs to be of low dissipated electrical energy and that plasma treatment should be based largely on non-equilibrium reaction chemistry. In this paper, a class of sub-60 deg. C atmospheric helium-water plasma jets is studied in terms of their main physiochemical properties. It is shown that there are five distinct modes appearing in the sequence of, with increasing voltage, the first chaotic mode, the plasma bullet mode, the second chaotic mode, the abnormal glow mode and the non-thermal arc mode. Its chaotic modes may be sustained over a wide range of water vapour concentrations (0-2500 ppm). Compared with other liquid-containing plasmas, the He-H2O plasma jet operated below its non-thermal arc mode has several distinct advantages, namely very low energy consumption (2-10 μJ per pulse), sub-60 deg. C gas temperature, electron-modulated production of He, N2, N2+, O*, H and OH(A-X), and low ozone production (0.1-0.4 ppm). These results provide a first attempt at the landscape of the physiochemical characteristics in atmospheric He-H2O plasma jets.

  13. Ethanol vapour sensing properties of screen printed WO3 thick films

    Indian Academy of Sciences (India)

    R S Khadayate; R B Waghulde; M G Wankhede; J V Sali; P P Patil

    2007-04-01

    This paper presents ethanol vapour sensing properties of WO3 thick films. In this work, the WO3 thick films were prepared by standard screen-printing method. These films were characterized by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM). The ethanol vapour sensing properties of these thick films were investigated at different operating temperatures and ethanol vapour concentrations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity of ∼1424.6% at 400°C in air atmosphere with fast response and recovery time.

  14. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.

    Science.gov (United States)

    Goldblatt, Colin

    2015-05-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance. PMID:25984919

  15. Habitability of waterworlds: runaway greenhouses, atmospheric expansion and multiple climate states of pure water atmospheres

    CERN Document Server

    Goldblatt, Colin

    2015-01-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds". I map these as a function of solar constant for planets ranging in size from Mars size to 10 Earth-mass. The states are: globally ice covered (Ts< 245K), cold and damp (270 < Ts< 290K), hot and moist (350< Ts< 550K) and very hot and dry (Ts< 900K). No stable climate exists for 290< Ts < 350K or 550 < Ts < 900K. The union of hot moist and cold damp climates describe the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong non-linearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surfa...

  16. Water in HD 209458b's atmosphere from 3.6 - 8 microns IRAC photometric observations in primary transit

    CERN Document Server

    Beaulieu, J P; Batista, V; Tinetti, G; Ribas, I; Carey, S; Noriega-Crespo, J A; Griffith, C A; Campanella, G; Dong, S; Tennyson, J; Barber, R J; Deroo, P; Fossey, S J; Liang, D; Swain, M R; Yung, Y; Allard, N

    2009-01-01

    The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5, 5.8 and 8.0 microns using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We detail here the procedures we adopted to correct for the systematic trends present in the IRAC data. The light curves were fitted including limb darkening effects and fitted using Markov Chain Monte Carlo and prayer-bead Monte Carlo techniques, finding almost identical results. The final depth measurements obtained by a combined Markov Chain Monte Carlo fit are at 3.6 microns, 1.469 +- 0.013 % and 1.448 +- 0.013 %; at 4.5 microns, 1.478 +- 0.017 % ; at 5.8 microns, 1.549 +- 0.015 % and at 8.0 microns 1.535 +- 0.011 %. Our results clearly indicate the presence of water in the planetary atmosphere. Our broad band photometric measurements with IRAC prevent us from determining the additional presence of other other molecules such as CO, CO2 and methane for which spectroscopy is needed. While water vapour with a mixing ratio of 10^-4-10^-3 combine...

  17. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air - Part 2: The library routines

    Science.gov (United States)

    Wright, D. G.; Feistel, R.; Reissmann, J. H.; Miyagawa, K.; Jackett, D. R.; Wagner, W.; Overhoff, U.; Guder, C.; Feistel, A.; Marion, G. M.

    2010-07-01

    The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS-10) was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air) library and the GSW (Gibbs SeaWater) library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org). This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i) almost unlimited extension with respect to additional properties or relations, (ii) an extraction of self-contained sub-libraries, (iii) separate updating of the empirical thermodynamic potentials, and (iv) code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site. 1SCOR/IAPSO: Scientific Committee on Oceanic Research/International Association for the Physical Sciences of the Oceans 2

  18. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2010-07-01

    Full Text Available The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS–10 was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air library and the GSW (Gibbs SeaWater library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org. This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i almost unlimited extension with respect to additional properties or relations, (ii an extraction of self-contained sub-libraries, (iii separate updating of the empirical thermodynamic potentials, and (iv code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site.

    1

  19. Atmospheric CO2 Enrichment of Water Hyacinths: Effects on Transpiration and Water Use Efficiency

    Science.gov (United States)

    Idso, Sherwood B.; Kimball, Bruce A.; Anderson, Michael G.

    1985-11-01

    Open-top clear plastic wall chambers enclosing pairs of sunken metal stock tanks, one of each pair of which contained a full cover of water hyacinths, were maintained out-of-doors at Phoenix, Arizona for several weeks during the summer of 1984. One of these chambers represented ambient conditions, while the other three were continuously enriched with carbon dioxide to approximate target concentrations of 500, 650, and 900 ppm. During a 4-week period when plant growth was at its maximum, water hyacinth biomass production increased by 36% for a 300-600 ppm doubling of the atmospheric CO2 content, while water use efficiency, or the biomass produced per unit of water transpired, actually doubled. These results are similar to what has been observed in several terrestrial plants and they indicate the general trend which may be expected to occur as atmospheric CO2 continues to rise in the years ahead.

  20. Can painted glass felt or glass fibre cloth be used as vapour barrier?

    DEFF Research Database (Denmark)

    El-Khattam, Amira; Andersen, Mie Them; Hansen, Kurt Kielsgaard; Møller, Eva B.

    In most Nordic homes the interior surfaces of walls and ceilings have some kind of surface treatment for aesthetical reasons. The treatments can for example be glass felt or glass fibre cloth which are painted afterwards. To evaluate the hygrothermal performance of walls and ceilings it is...... a ventilated attic where the ceiling may be air tight but has no vapour barrier; post-insulation of the attic may cause the need for a vapour barrier. Placing a vapour barrier above the ceiling can be tiresome and it is difficult to ensure tightness. A simpler way is to paint a vapour barrier...... directly on the ceiling e.g. as an ordinary paint. This paper presents the results of an investigation of the water vapour resistance of surface treatments which are commonly used in-door. The water vapour resistance was measured by the cup method. Aerated concrete was investigated with and without various...

  1. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.G.; Newland, M.S. [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  2. The slant path atmospheric refraction calibrator - An instrument to measure the microwave propagation delays induced by atmospheric water vapor

    Science.gov (United States)

    Walter, Steven J.; Bender, Peter L.

    1992-01-01

    The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.

  3. Protection of historical lead against acetic acid vapour

    OpenAIRE

    Pecenová Z.; Kouřil M.

    2016-01-01

    Historical lead artefacts (small figurines, appliques, bull (metal seal) can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous co...

  4. Effect of atmospheric environment on the attenuation coefficient of light in water

    OpenAIRE

    LIU, JUAN; Shi, Jiulin; Tang, Yijun; Zhu, Kaixing; Ge, Yuan; Chen, Xuegang; He, Xingdao; Liu, Dahe

    2014-01-01

    The attenuation coefficient of 532 nm light in water under different atmospheric conditions was investigated. Measurements were made over a two-year period at the same location and show that the attenuation coefficient is significantly influenced by the atmospheric environment. It is lowest when the atmospheric pressure is high and temperature is low, and is highest when the atmospheric pressure is low and temperature is high. The maximum attenuation coefficient of pure water in these studies...

  5. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water

    Directory of Open Access Journals (Sweden)

    A. Steffen

    2007-07-01

    Full Text Available It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg. This phenomenon is termed atmospheric mercury depletion events (AMDEs and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review the history of Hg in Polar Regions, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the roles that the snow pack, oceans, fresh water and the sea ice play in the cycling of Hg are presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not

  6. Oxidation of ferritic 9-12% Cr-steels in water vapour containing environments at 550 to 650 C; Oxidation von ferritischen 9-12% Cr-Staehlen in wasserdampfhaltigen Atmosphaeren bei 550 bis 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, R.J.; Quadakkers, W.J.

    2001-06-01

    In the present work, the oxidation behaviour of several of the new 9-12 wt.% Cr steels in environments containing water vapour, mainly Ar-50 vol.% H{sub 2}O has been studied especially at temperatures between 550 and 650 C. The oxidation behaviour is compared to that of common alloys such as 1CrMoV, 12Cr1MoV and the austenitic steel 316LN. Besides this, a number of model alloys were investigated to study the influence of alloying elements on the oxidation behaviour. A variety of analytical methods have been used, such as optical microscopy, electron microscopy (SEM incl. EDX and WDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectroscopy (SIMS) and various specially designed experimental techniques, e.g. in-situ gas change between wet and dry gas, as well as oxygen-18 isotope tracer experiments. The results of the oxidation tests clearly indicate that the oxygen coming from the water vapour is incorporated in the oxide scale in a different way as the oxygen originating from the O{sub 2} molecule. A typical feature of 9-12% Cr-steels is the bell-shaped temperature dependence of the oxidation rates in water vapour, i.e. at 550 and especially at 800 C the oxidation rates are much lower than at 600 to 650 C. For the enhanced oxidation rates of the 9-12 chromium steels in environments containing water vapour a mechanism is proposed which involves the evaporation of volatile iron hydroxide. Tests with simple model steels have shown that additions of cobalt may provide significant improvement in the steam oxidation behaviour of the studied steels. (orig.) [German] In dieser Arbeit wurde das Oxidationsverhalten der neuen 9-12% Cr-Staehle in wasserdampfhaltigen Atmosphaeren, vornehmlich Ar-50Vol.% H{sub 2}O, insbesondere im Temperaturbereich von 550 bis 650 C betrachtet. Das Oxidationsverhalten wurde mit dem der bekannten Staehle 30 CrMoNiV 5 11, X20 CrMoV 12 1 und dem Austenit X3 CrNiMoN 17 13 verglichen. Die Untersuchungen

  7. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    Science.gov (United States)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3

  8. Protection of historical lead against acetic acid vapour

    Directory of Open Access Journals (Sweden)

    Pecenová Z.

    2016-03-01

    Full Text Available Historical lead artefacts (small figurines, appliques, bull (metal seal can be stored in depository and archives in inconvenient storage conditions. The wooden show-case or paper packagings release volatile organic compound to the air during their degradation. These acids, mainly acetic acid are very corrosive for lead. The thin layer of corrosion products which slows atmospheric corrosion is formed on lead surface in atmospheric condition. In presence of acetic acid vapour the voluminous corrosion products are formed and fall off the surface. These corrosion products do not have any protection ability. The lead could be protected against acid environment by layer of “metal soup” which is formed on surface after immersion in solution of salt of carboxylic acid for 24 hours. The solutions of acids (with vary long of carbon chain and their salts are examined. Longer carbon chain provides better efficiency convers layer. The disadvantages are low solubility of carboxylic acids in water and bad abrasion resistance of formed layer.

  9. Use of tritium-labelled water in the study of transfers and exchanges in Helianthus annuus

    International Nuclear Information System (INIS)

    A labelling method with tritium-labelled water was developed and an experiment was carried out to study the kinetics of water transfer in the plant, to measure the extend of water vapour exchange between the leaves and atmosphere and the migration of this water towards the root systems

  10. A eutectic gold vapour laser

    Science.gov (United States)

    Tou, T. Y.; Cheak, K. E.; Low, K. S.

    This paper presents a eutectic gold vapour laser (EGVL) which uses the eutectic alloy of gold and silicon, Au/3.15Si, as the lasant. It was observed that, at low input power operation, the presence of the silicon vapour could increase the output of the 627.8 nm laser line by (50-60)% when compared with a gold vapour laser (GVL) which uses pure gold as the lasant. The improved laser output for the EGVL may be explained by an increased electron density, as a result of Penning ionization of silicon atoms. However, for higher input power operation, the EGVL showed a slower rate of increase in its laser output power and was overtaken by GVLs at a tube operating temperature of around 1650°C. This may be explained by a lowering of the electron temperature owing to increasing inelastic collisions between the electrons and silicon atoms which, although excited, may not produce additional electrons.

  11. Clear sky atmosphere at cm-wavelengths from climatology data

    OpenAIRE

    Lew, Bartosz; Uscka-Kowalkowska, Joanna

    2015-01-01

    We utilise ground-based, balloon-borne and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature ($T_{\\rm atm}$) and optical depth ($\\tau$) at centimetre wavelengths. We validate the reconstruction by comparing the model column PWV with photometric measurements of PWV, performed in clear sky conditions point...

  12. Regional terrestrial water storage change and evapotranspiration from terrestrial and atmospheric water balance computations

    OpenAIRE

    Yeh, Pat J.-F.; J. S. Famiglietti

    2008-01-01

    In this study we estimate the regional terrestrial water storage change (TWSC) and evapotranspiration (ET) in Illinois (∼2 × 105 km2) from reanalysis data for a 22-year period (1984–2005) using terrestrial and atmospheric water balance computations. The estimates are compared with in situ observations of TWSC as well as ET, derived as the residual of observed precipitation, streamflow, and TWSC. The 22-year mean annual cycles of estimated TWSC and ET agree well with observations. Monthly esti...

  13. The ignitability of petrol vapours and potential for vapour phase explosion by use of TASER® law enforcement electronic control device.

    Science.gov (United States)

    Clarke, C; Andrews, S P

    2014-12-01

    An experimental study was made of the potential of the TASER-X26™ law enforcement electronic control device to ignite petrol vapours if used by an officer to incapacitate a person soaked in petrol, or within a flammable atmosphere containing petrol vapour. Bench scale tests have shown that a wooden mannequin with pig skin covering the chest was a suitable representation of a human target. Full scale tests using the mannequin have shown that the arc from a TASER-X26™ is capable of igniting petrol/air vapours on a petrol-soaked person. Further tests in a 1/5 scale and a full scale compartment have shown that if a TASER is used within a compartment, a petrol vapour explosion (deflagration) may be achieved. It is evident from this research that if used in a flammable vapour rich environment, the device could prove fatal not only to the target but the TASER® operator as well. PMID:25498927

  14. The model study of water mass and energy exchange between the inland water body and atmosphere

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on a one-dimensional eddy diffusion model,a model to study the water mass and energy exchange between the water body(such as lake and wetland) and the atmosphere is developed,which takes the phase change process due to the seasonal melting and freezing of water and the convection mixing process of energy caused by temperature stratification into consideration. The model uses enthalpy instead of temperature as predictive variable,which will help to deal with the phase change process and to design an efficient numerical scheme for obtaining the solution more easily. The performance of the model and the rationality of taking convection mixing into the consideration are validated by using observed data of Kinneret Lake in Israel and Lower Two Medicine Lake in Montana State in America. The comparison of model results with observed data indicates that the model presented here is capable of describing the physical process of water mass and energy between the water body(lake and wetland) and atmosphere. Comparison of the result from wetland with shallow and deep lakes under the same forcing conditions shows that the evaporation from wetland is much greater than that from lakes,which accords with the real observation fact and physical mechanism.

  15. Effect of vapour velocity on condensate retention on horizontal pin-fin tubes

    International Nuclear Information System (INIS)

    Highlights: • Effect of vapour velocity on condensate retention is reported on pin-fin tubes. • Condensate was simulated using R-141b, water and ethylene glycol. • Vapour was simulated using air. • Retention angle when less than 90° at low velocity, increased with velocity increase. • Velocity marginally effected retention angle when greater than 90° at low velocity. - Abstract: New experimental data for condensate retention angle as a function of vapour velocity (0–19 m/s) are reported on six horizontal pin-fin tubes and an equivalent integral-fin tube (i.e. with same longitudinal fin spacing, tooth thickness, tooth height, inner and outer diameter as that of pin-fin tubes) using water, ethylene glycol and R-141b. Only geometric parameter varied was the circumferential pin spacing. For all tubes tested, an increase in vapour velocity causes an increase in condensate retention angle for the cases when retention angle was less than 90° at low approaching zero vapour velocity. For the cases when the retention angle was greater than 90° at low approaching zero vapour velocity, vapour velocity shows negligible effect on retention angle for all pin-fin tubes, while for the case of integral-fin tube (i.e. using R-141b as a test fluid where retention angle is greater than 90° at low approaching zero vapour velocity) retention angle decreased with increasing vapour velocity

  16. International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

    Science.gov (United States)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.

  17. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water in Hot, Hydrogen-dominated Atmospheres

    OpenAIRE

    Heng, Kevin; Lyons, James R.

    2015-01-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres in hot, hydrogen-dominated atmospheres. We construct novel analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the m...

  18. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    Science.gov (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  19. Isotopic signature of atmospheric xenon released from light water reactors

    International Nuclear Information System (INIS)

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of 135Xe, 133mXe, 133Xe and 131mXe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios

  20. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    OpenAIRE

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Gabriel J Bowen

    2015-01-01

    Human activities affect the water cycle in many ways, some of which remain difficult to measure. One such process is emission of water vapor through combustion of fossil fuels, which may be a significant part of the atmospheric water budget in urban centers. It has not previously been possible to uniquely identify combustion-derived water vapor with atmospheric measurements. We introduce a method for the measurement of combustion-derived vapor, and show that this source contributes as much as...

  1. GCM simulations of the martian water cycle

    OpenAIRE

    Bottger, H.M.; Lewis, S R; Read, P. L.; Forget, F.

    2003-01-01

    Results from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) have long been the definitive data set for observations of the Martian water cycle (Farmer et al., 1977). The ongoing Mars Global Surveyor Thermal Emission Spectrometer (TES) observations are providing new insights into the current water cycle, with detailed longitude-latitude dependence of water vapour (Figure 1) and water cloud (Figure 2) with time, as well as information on vertical distribution...

  2. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937. ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  3. Tritium/tritiated water within atmosphere-plant-soil-hydrosphere system

    International Nuclear Information System (INIS)

    The work has as purpose to highlight tritium/tritiated water participation in processes within atmosphere-plant-soil-hydrosphere system. As a hydrogen's isotope, tritium is fully found in atmosphere-hydrosphere and vegetation-environment-human, and for that reason it has to be supervised and monitored, although it has a small radiotoxicity. This work is structured on the following problems: - tritium and tritiated water sources; - tritium/tritiated water involvement in natural physico-chemical and biologic processes; - tritium cycle within soil-plant-atmosphere-hydrosphere system; - tritium activity measurement in atmosphere and hydrosphere and tritium monitoring. (authors)

  4. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... COMMISSION Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and... Guidance (LR-ISG), LR-ISG-2012-02, ``Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric... availability was published in the Federal Register on June 22, 2010 (75 FR 35510). The NRC staff has...

  5. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    OpenAIRE

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-01-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land–atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few secon...

  6. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: eutrophication modeling

    OpenAIRE

    P. Sundarambal; P. Tkalich; Balasubramanian, R

    2010-01-01

    Atmospheric deposition of nutrients (N and P species) can intensify anthropogenic eutrophication of coastal waters. It was found that the atmospheric wet and dry depositions of nutrients was remarkable in the Southeast Asian region during the course of smoke haze events, as discussed in a companion paper on field observations (Sundarambal et al., 2010b). The importance of atmospheric deposition of nutrients in terms of their biological responses in the coastal waters of the ...

  7. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.

  8. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    International Nuclear Information System (INIS)

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems

  9. Metrological challenges for measurements of key climatological observables, Part 4: Atmospheric relative humidity

    OpenAIRE

    Lovell-Smith, J W; Feistel, R; Harvey, A H; Hellmuth, O.; Bell, S A; Heinonen, M.; Cooper, J R

    2016-01-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest “greenhouse” gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. In this paper, we examine the climatologically relevant atmospheric relative humidity, noting fundamental deficiencies in the definition of this key observable. The met...

  10. Regulation of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs

    International Nuclear Information System (INIS)

    The possible order of radionuclides discharges to the atmosphere and emissions to the water from Ukraine NPPs regulation is given allowance for laws and norms of Ukraine and ICRP and IAEA guidelines. For definition of a dose relevant to marginal discharges to the atmosphere and emissions to the water of separate radionuclides are counted dose coefficients (Sv/Bg). Considered three critical age groups: the babies (up to 1 year), children (till 10 years) and adult. The age group being critical for discharges to the atmosphere and emissions to the water are determined. The radionuclides producing the greatest contribution to a dose are determined. Guidelines on calculation of marginal radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs are given. Matching of doses from actual radionuclides discharges to the atmosphere and emissions to the water of Ukraine NPPs with quotas, assigned in RSNU-97 is carried out

  11. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    Science.gov (United States)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  12. Determination of water vapor and ozone profiles in the middle atmosphere by microwave-spectroscopy. Bestimmung von Wasserdampf- und Ozonprofilen in der mittleren Atmosphaere durch Millimeterwellenspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Puliafito, S.E.

    1989-10-17

    This work was performed at the Max-Planck-Institut fuer Aeronomie (F.R.G.) and treats the following points: 1. Satellite borne microwave radiometry. Principles for a real-time evaluation of the MAS-Limb-Sounding measurements. (MAS: Millimeter Wave Atmospheric Sounder from Space Shuttle as part of the NASA ATLAS Missions, 1991-1997). (a) Deconvolution of the 60 GHz-antenna. (b) Test of different inversion proceedings. A detailed study of the boundary conditions and 'error influence' as well as a discussion of the radiometer specifications. (c) Near real time inversion of microwave spectral lines of the Earth atmosphere. i. The possibility of a (near) real time evaluation (retrieval of the profiles of the atmospheric components) was proved for the first time with a space proof microprocessor. ii. Data reduction of about a factor > 10{sup 3} in comparison with other methods. 2. Airborne and ground based microwave radiometry. (a) Study of the possibilities of ground- and aircraft based measurements for validation and cross calibration of the satellite measurements. (b) Study of the possibilities of ground based radiometric measurements of water vapour in the Artic or Antartica. Precise boundary conditions were given for the first time in order to perform ground based millimeter radiometric measurements in these areas. (orig.).

  13. Effects of atmospheric water on the optical properties of soot aerosols with different mixing states

    International Nuclear Information System (INIS)

    Soot aerosols have become the second most important contributor to global warming after carbon dioxide in terms of direct forcing, which is the dominant absorber of visible solar radiation. The optical properties of soot aerosols depend strongly on the mixing mechanism of black carbon with other aerosol components and its hygroscopic properties. In this study, the effects of atmospheric water on the optical properties of soot aerosols have been investigated using a superposition T-matrix method that accounts for the mixing mechanism of soot aerosols with atmospheric water. The dramatic changes in the optical properties of soot aerosols were attributed to its different mixing states with atmospheric water (externally mixed, semi-embedded mixed, and internally mixed). Increased absorption is accompanied by a larger increase in scattering, which is reflected by the increased single scattering albedo. The asymmetry parameter also increased when increasing the atmospheric water content. Moreover, atmospheric water intensified the radiative absorption enhancement attributed to the mixing states of the soot aerosols, with values ranging from 1.5 to 2.5 on average at 0.870 μm. The increased absorption and scattering ability of soot aerosols, which is attributed to atmospheric water, exerted an opposing effect on climate change. These findings should improve our understanding of the effects of atmospheric water on the optical properties of soot aerosols and their effects on climate. The mixing mechanism for soot aerosols and atmospheric water is important when evaluating the climate effects of soot aerosols, which should be explicitly considered in radiative forcing models. - Highlights: • Effects of atmospheric water on optical properties of soot aerosols are investigated. • Increased absorption is accompanied by a larger increase in scattering. • Atmospheric water intensified the absorption enhancement due the mixing states

  14. Emission to atmosphere of tritiated water formed at soil surface by oxidation of HT

    International Nuclear Information System (INIS)

    In the event of a release of molecular tritium to atmosphere, some tritium can oxidized at soil surface and be gradually re-emitted to atmosphere as HTO. The two processes are characterized by a deposition velocity and an emission rate, which are commonly used in deposition/emission models designed to calculate the concentrations of HTO in atmosphere. A technique has been developed to determine the emission rate and its evolution, by covering a small area of undisturbed soil by a field chamber, exposing the enclosed soil to molecular tritium, then determining the changes in HTO vapour content of a measured air-stream passing through the chamber. The emission rate is derived by dividing the amount of HTO extracted from the chamber during a given period of time, by the average amount of HTO contained in the soil during the same period. First experiments have been done on bare and grass-covered soils. The data obtained from these small-scale field experiments are consistent with those obtained from a full-scale field study carried out at nearly the same place

  15. Under vapour. The use of evaporators for the up-concentration of waste water; Unter Dampf. Einsatz von Verdampfern zur Aufkonzentrierung von Abwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P. [Guetling Wassertechnologie GmbH, Fellbach (Germany)

    2008-03-15

    The evaporation technology is an alternative method to the common waste water treatment technologies, like membranes or chemophysical treatment.The thermal separation of water from the other substances yields a very good result with respect to the quality of the distillate. This fact allows a circulation stream of the recovered water and a significant reduction of the waste water volume. The re-usability of the concentrate is possible in some cases. Several evaporation technologies allow an up-concentration up to solid state. Due to the compact construction the facility does not require high installation costs. The facilities are delivered ready for implementation into the supply line.

  16. Variation in leaf water delta D and delta 18O values during the evapotranspiration process

    International Nuclear Information System (INIS)

    A theoretical model was developed to evaluate leaf water delta D and delta 18O variation in relation to: leaf temperature, relative humidity converted to leaf temperature and delta D and delta 18O values of atmospheric water vapour and soil water. (M.A.C.)

  17. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Pedersen, Jens Olaf Pepke; Marsh, N.D.;

    2007-01-01

    Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields nu...

  18. Water vapour pressure influence on the kinetics of the superconducting YBCO thin films epitaxic growth by the TFA-MOD method

    International Nuclear Information System (INIS)

    We have found two different regimes in the kinetics of the YBCO formation depending on the water partial pressure at a constant temperature and total flow rate of the carrier gas. The first regime at low partial water pressure shows continual kinetics curves until the end of YBCO growth and the reaction is controlled chemically. The second regime at high partial water pressure shows irreproducible steps in the kinetics curves during the thin films YBCO growth. In this work we suggest that there is formation of a boundary layer of water (Nernst layer) when the partial water pressure is higher than 20 hPa at 795 deg. C for a total gas flow rate lower than 2.4 x 10-2 m s-1. These irreproducible steps dues probably to a water boundary layer formation can be eliminated by increasing the stirring rate of the carrier gas. The reaction order of YBa2Cu3O7-x formation respect to the water pressure is n = 0.5 when the water boundary layer is not formed, but the apparent reaction order respect to the partial water pressure is zero or negative when the gas flow rate of the carrier gas is not big enough for the elimination of this water layer. This work also evidences that there is an intermediate step in the kinetics curves before the formation of YBCO. This step, which starts at low temperature during the heating ramp (∼400 deg. C) is attributed to the partial elimination of F from the BaF2 precursor to form oxyfluoride compounds. So, at low total flow gas rates and low partial water pressures, the reaction is controlled by diffusion mechanism due to the formation of a HF boundary layer (Nernst layer), because the apparent order of YBCO formation is one respect to the stirring rate. Nevertheless, at high flow gas rates and low partial water pressures, the YBCO formation is controlled chemically, then the apparent order respect to the stirring rate is zero and the HF Nernst layer is eliminated. The apparent E a for the oxyfluoride formation at low temperatures is only ∼18

  19. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    OpenAIRE

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi Kumar

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a '...

  20. Chemical vapour deposition of metal oxides and phosphides.

    OpenAIRE

    Binions, R.

    2006-01-01

    This thesis investigates the deposition of thin films of main group metal phosphide and main group metal oxide compounds on glass substrates by the use of dual source atmospheric pressure chemical vapour deposition. Binary phosphide systems with tin, germanium, silicon, antimony, copper or boron have been examined. Binary oxide systems of gallium, antimony, tin or niobium have also been investigated. Additionally these systems were deposited on gas sensor substrates and evaluated as metal oxi...

  1. Effect of paint on vapour resistivity in plaster

    Directory of Open Access Journals (Sweden)

    de Villanueva, L.

    2008-12-01

    Full Text Available The vapour resistivity of plaster coatings such as paint and their effectiveness as water repellents were studied in several types of plaster. To this end, painted, unpainted and pigmented specimens were tested. Experimental values were collected on diffusion and vapour permeability, or its inverse, water vapour resistivity.The data obtained were very useful for evaluating moisture exchange between plaster and the surrounding air, both during initial drying and throughout the life of the material. They likewise served as a basis for ensuring the proper evacuation of water vapour in walls, and use of the capacity of the porous network in plaster products to regulate moisture content or serve as a water vapour barrier to avoid condensation.Briefly, the research showed that pigments, water-based paints and silicon-based water repellents scantly raised vapour resistance. Plastic paints, enamels and lacquers, however, respectively induced five-, ten- and twenty-fold increases in vapour resistivity, on average.Se estudia el fenómeno de la resistividad al vapor de los de yeso y el efecto impermeabilizante que producen los recubrimientos de pintura sobre diversos tipos de yeso y escayola. Para ello, se ensayan probetas desnudas y recubiertas con distintos tipos de pintura, así como coloreados en masa. Se obtienen valores experimentales de la difusividad o permeabilidad al vapor o su inverso la resistividad al vapor de agua.Los datos obtenidos son muy útiles para valorar el fenómeno del intercambio de humedad entre el yeso y el ambiente, tanto durante el proceso de su secado inicial, como en el transcurso de su vida. Así como para disponer soluciones adecuadas para la evacuación del vapor de agua a través de los cerramientos, para utilizar la capacidad de regulación de la humedad, que proporciona el entramado poroso de los productos de yeso, o para impedir el paso del vapor de agua y evitar condensaciones.Como resumen de la investigación, se

  2. The Vapour Pressure of Plutonium

    International Nuclear Information System (INIS)

    The vapour pressure of liquid plutonium has been determined over the temperature range 1100 to 1800°K by the Knudsen effusion method. The least-squares equation which fits the data is log10p(atm) = -17 420/T(°K) + 4.913. The standard deviation corresponds to about ±10% in the pressures calculated from this equation. The heat of vaporization computed from the temperature dependence of the experimental data is ΔH0298 = 82.3 kcal/g-at. The heat computed by combining independent entropy and heat capacity data with the present measurements is ΔH0298 = 82.1 kcal/g-at. Effects of oxygen upon the volatility of liquid plutonium were sought by comparing the vapour pressures observed with the liquid in contact with tantalum, tantalum carbide, magnesia, and plutonium sesquioxide. No differences were found. In addition, the vapour pressure was measured with different degrees of vacuum in the system. No effect was found here either, except that in very poor vacuums a surface film of oxide apparently formed and reduced the volatility by about a factor of 2. (author)

  3. Decomposition of water-insoluble organic waste by water plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    The water plasma was generated in atmospheric pressure with the emulsion state of 1-decanol which is a source of soil and ground water pollution. In order to investigate effects of operating conditions on the decomposition of 1-decanol, generated gas and liquid from the water plasma treatment were analysed in different arc current and 1-decanol concentration. The 1-decanol was completely decomposed generating hydrogen, carbon monoxide, carbon dioxide, methane, treated liquid and solid carbon in all experimental conditions. The feeding rate of 1- decanol emulsion was increased with increasing the arc current in virtue of enhanced input power. The generation rate of gas and the ratio of carbon dioxide to carbon monoxide were increased in the high arc current, while the generation rate of solid carbon was decreased due to enhanced oxygen radicals in the high input power. Generation rates of gas and solid carbon were increased at the same time with increasing the concentration of 1-decanol, because carbon radicals were increased without enhancement of oxygen radicals in a constant power level. In addition, the ratio of carbon dioxide to carbon monoxide was increased along with the concentration of 1-decanol due to enhanced carbon radicals in the water plasma flame.

  4. Evaluating the vapour shift concept in agriculture: some aspects

    Science.gov (United States)

    Schmidt, S.; Metselaar, K.; van Dam, J. C.; Klik, A.

    2009-04-01

    Human population growth leads to an increasing pressure on freshwater resources. By 2050 Falkenmark et al. (2004) estimate a global water deficit for crop production of 5800 km3.y-1. This has important consequences for management of fresh water resources at different scales, and new strategies at different scales are required. One of the strategies suggested is that of managing crops in such a way that the use of rainfall and irrigation is shifted as much as possible from evaporation towards transpiration, a so-called vapour shift. The suggested savings are in the order of 330 km3.y-1, and are based on estimates of the magnitude of three processes: Reducing early season evaporation; increasing canopy cover; and increasing yield levels. The vapour shift concept was evaluated empirically, and in a simulation study. The empirical evaluation using results for wheat, maize, millet, cotton, and barley suggests the estimate of potential savings is 37% lower than the estimate by Falkenmark et al. (2004). The uncertainty is large and due to the limited number of experiments in which a separation of evapotranspiration in evaporation and transpiration has been made over the entire growing season. This suggests that theoretical support for the vapour shift concept should become more important. In the simulation approach two management options, mulching and planting density, are evaluated for a site in India for an irrigated wheat crop using a simulation approach for water limited crop yield. Given the simulation model used, and the management options investigated, the assumption implicit in the vapour shift concept - decreasing evaporation with increasing yield level - does not hold in irrigated areas, or in areas in which water is the most limiting factor. This suggests that vapour shift will be largest in those areas where nutrients and pests- and diseases are still limiting or reducing crop yields, and measures are taken to reduce those limitations.

  5. CW-Cavity Ring Down Spectroscopy of deuterated water in the 1.58 μm atmospheric transparency window

    International Nuclear Information System (INIS)

    The spectrum of water vapour enriched in deuterium has been recorded by highly sensitive CW-Cavity Ring Down Spectroscopy in the 5855–6802 cm−1 spectral region. The studied region includes the 1.58 µm atmospheric transparency window of particular interest for remote sensing. More than 8000 absorption lines belonging to eight water isotopologues – H216O, H218O HD16O, D216O, HD18O, D218O, HD17O and D217O – were identified. The spectrum was assigned using both the IUPAC database of experimental transitions and energy levels, and accurate variational calculations. Overall, 1396 and 1277 experimental energy levels belonging to 18 and 16 upper vibrational states were retrieved for the HD16O and D216O species, respectively. 773 energy levels are newly derived. New experimental information concerns the high J (up to 20) and high Ka (up to 12) energy levels of the (101), (021), (040), (210), (120) states of HD16O and of the (111), (031), (210), (012), (130) states of D216O. While only a few energy levels were available, the rotational structure of the (130) and (220) states of HD16O could be analysed in detail. Rotational sublevels of the (140) state of D216O are reported for the first time. A detailed comparison of the derived energy levels with the values recommended by an IUPAC task group is presented. In particular, a significant improvement is evidenced for a number of quasi degenerate energy levels of HD16O. The obtained results are also discussed in relation with several recent studies. - Highlights: • The CRDS spectrum of deuterated water is recorded between 5855 and 6802 cm−1. • In the studied region, HDO contributes importantly to the spectrum of natural water. • More than 8000 lines were assigned to eight water isotopologues. • 773 energy levels are newly derived for HD16O and D216O. • The results are compared to the energy levels recommended by the IUPAC task group

  6. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    Science.gov (United States)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  7. Methane present in an extrasolar planet atmosphere

    CERN Document Server

    Swain, Mark R; Tinetti, Giovanna

    2008-01-01

    Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thu...

  8. The Martian atmospheric water cycle as viewed from a terrestrial perspective

    Science.gov (United States)

    Zurek, Richard W.

    1988-01-01

    It is noted that the conditions of temperature and pressure that characterize the atmosphere of Mars are similar to those found in the Earth's stratosphere. Of particular significance is the fact that liquid water is unstable in both environments. Thus, it is expected that terrestrial studies of the dynamical behavior of stratospheric water should benefit the understanding of water transport on Mars as well.

  9. The heat recovery thermal vapour-compression desalting system: a comparison with other thermal desalination processes

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, M.A.; El-Dessouky, Hisham [Kuwait Univ., Coll. of Engineering and Petroleum, Safat (Kuwait)

    1996-03-01

    Technical factors affecting the choice of distillation system for desalting water are presented. In particular, the thermal vapour-compression process is compared with the predominant multi-stage flash (MSF) desalting system. It was shown that the conventional multi-effect (ME) system can produce desalted water at a lower cost than the MSF system when both are supplied with steam after its expansion in steam turbines. Mechanical or thermal vapour-compression desalting systems are more cost-effective when compared with directly boiler-operated MSF systems. Thermal analysis of the multi-effect thermo-vapour-compression system is presented with an example. (author)

  10. The use of coupled atmospheric and hydrological models for water-resources management in headwater basins

    Science.gov (United States)

    Leavesley, G.; Hay, L.

    1998-01-01

    Coupled atmospheric and hydrological models provide an opportunity for the improved management of water resources in headwater basins. Issues currently limiting full implementation of coupled-model methodologies include (a) the degree of uncertainty in the accuracy of precipitation and other meteorological variables simulated by atmospheric models, and (b) the problem of discordant scales between atmospheric and bydrological models. Alternative methodologies being developed to address these issues are reviewed.

  11. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    Science.gov (United States)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  12. Simulating the Vapour Phase Air/Water Exchange of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin

    Science.gov (United States)

    Uncertainties in our understanding of gaseous air/water exchange have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...

  13. Thermal cycling effects on degradation of YBa2Cu3O7-x ceramics in water vapour and protective properties of hydrocarbon coatings

    International Nuclear Information System (INIS)

    The thermocycling of high temperature superconducting ceramics YBa2Cu3O7-x from 77 to 273 K was shown to decrease strongly its resistance to the influence of saturated water steam. The deposition of hydrocarbon films can reduce considerably the degradation of superconducting characteristics

  14. Effects of Irrigation in India on the Atmospheric Water Budget

    NARCIS (Netherlands)

    Tuinenburg, O.A.; Hutjes, R.W.A.; Stacke, T.; Wiltshire, A.; Lucas-Picher, P.

    2014-01-01

    The effect of large-scale irrigation in India on the moisture budget of the atmosphere was investigated using three regional climate models and one global climate model, all of which performed an irrigated run and a natural run without irrigation. Using a common irrigation map, year-round irrigation

  15. Formation of Organic Molecules and Water in Warm Disk Atmospheres

    CERN Document Server

    Najita, Joan R; Glassgold, Alfred E

    2011-01-01

    Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molec...

  16. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    Science.gov (United States)

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi K.

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  17. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    CERN Document Server

    Kasting, James F; Kopparapu, Ravi Kumar

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a 'moist greenhouse' explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing 'inverse' climate calculations to determine habitable zone boundaries using 1-D models.

  18. A simplified method to estimate atmospheric water vapor using MODIS near-infrared data

    Science.gov (United States)

    Wang, Xinming; Gu, Xiaoping; Wu, Zhanping

    2016-03-01

    Atmospheric water vapor plays a significant role in the study of climate change and hydrological cycle processes. In order to acquire the accurate distribution of atmospheric water vapor which is varying with time, location, and altitude, it is necessary to monitor it at high spatial and temporal resolution. Unfortunately, it is difficult to map the spatial distribution of atmospheric water vapor due to the lack of meteorological instrumentation at adequate spatial and temporal observation scales. This paper introduces a simplified method to retrieve Precipitable Water Vapor (PWV) using the ratio of the apparent reflectance values of the 18th and 19th band of Moderate Resolution Imaging Spectroradiometer (MODIS). Compared to the EOS PWV products of the same time and area, the PWV estimated using this simplified method is closer to the radiosonde results which is considered as the true PWV value. Results reveal that this simplified method is applicable over cloud-free atmospheric conditions of the mid-latitude regions.

  19. Modelling strategies of the soil plant atmosphere continuum in water limited environments and elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Higher temperatures and changes in rainfall patterns have been forecasted for the future because of higher levels of carbon dioxide in the atmosphere. Warmer temperatures may cause an increase in evapotranspiration (ET) demand. A reduction in rainfall could heighten the severity and duration of drought in arid and semi-arid regions. This paper presented the water transfer scheme which includes water uptake by roots. It also described the interaction between ET and carbon dioxide enrichment. The predicted response of a plant canopy in relation to energy exchange processes was also tested for elevated atmospheric carbon dioxide level. Simulated and measured canopy conductances were reduced by about 30 per cent under elevated carbon dioxide under ideal water supply conditions. A 6 per cent reduction in both simulated and measured seasonal water use was observed under ideal conditions, while a 2 per cent reduction was observed under suboptimum irrigation. The modelling framework also included adaptation and functioning of root system of woody plant canopies. The hypothesis that water that has been relocated via hydraulic lift prevents the upper soil layers from becoming extremely dry was confirmed. Soil layers close to the surface were found to maintain soil water potential between -1.0 and -1.3 MPs during the drought period as well as under 2 different rainfall regimes. In contrast, the absence of hydraulic lift caused the soil layer close to the surface to drop to -20 MPa and -28 MPa. An additional amount of water for plant transpiration was not provided in any large amounts when water was relocated via hydraulic lift. It was concluded that carbon dioxide modelling and transpiration interactions may produce accurate estimates of canopy water use under the predicted climate change. Hydraulic lift was found to be more important for redistribution of soil moisture than for canopy transpiration

  20. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga

    OpenAIRE

    Tchebakova, Nadejda M.; Kolle, Olaf; Zolotoukhine, Daniil; Arneth, Almut; Styles, Julie M.; Vygodskaya, Natalia N.; Schluze, E.-Detlef; Shibistova, Olga; Lloyd, Jon

    2002-01-01

    Long-term eddy covariance measurements of energy and water fluxes and associated climatic parameters were carried out above a Scots pine (Pinus sylvestris) forest in the middle taiga zone of Central Siberia. Data from June 1998 through October 2000 are presented. With the exception of winter 1998/1999, data collection over this period were more or less continuous. A distinct seasonality in surface energy exchange characteristics was observed in all years. In early spring in the absence of phy...