WorldWideScience

Sample records for atmospheric temperature

  1. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    Science.gov (United States)

    Gandhiraman, R. P.; Beeler, D.; Meyyappan, M.; Khare, B. N.

    2012-10-01

    Low-temperature atmospheric pressure plasma sterilization shower to address both forward and backward biological contamination issues is presented. The molecular effects of plasma exposure required to sterilize microorganisms is also analysed.

  2. Lidar observations of middle atmosphere temperature variability

    Directory of Open Access Journals (Sweden)

    G. P. Gobbi

    Full Text Available We discuss 223 middle atmosphere lidar temperature observations. The record was collected at Frascati (42°N–13°E, during the 41-month period January 1989-May 1992, corresponding to the maximum of solar cycle 22. The choice of this interval was aimed at minimizing the temperature variability induced by the 11-year solar cycle. The average climatology over the 41-month period and comparison with a reference atmosphere (CIRA86 are presented. Monthly temperature variability over the full period, during opposite quasi-biennial oscillation phases and on a short-term scale (0.5–4 h, is analyzed. Results indicate the 50–55-km region as less affected by variability caused by the natural phenomena considered in the analysis. Due to this minimum in natural noise characterizing the atmospheric temperature just above the stratopause, observations of that region are well suited to the detection of possible temperature trends induced by industrial activities.

  3. Temperature profiling in the atmosphere using lidars

    Science.gov (United States)

    Arshinov, Yuri; Bobrovnikov, Sergey M.; Serikov, Il'ya B.; Althausen, Dietrich; Mattis, Ina; Wandinger, Ulla; Ansmann, Albert

    2001-04-01

    This lecture describes the development of lidar techniques to measure the atmospheric temperature profile. Particular attention is given in the lecture to the technique that uses pure rotational Raman scattering of light by molecular nitrogen and oxygen. At present, this approach to temperature profiling in the atmosphere with lidars has received a new impulse because of recent advances in laser and optoelectronics technologies. The instrumentation aspects that determine the feasibility of one or another lidar technique to measure temperature profiles based on the pure rotational Raman spectrum (PRRS) of N2 and O2 molecules are considered. The primary instrumental problem is isolation of extremely weak Raman-lidar returns within the PRRS of N2 and O2 against the background from the much stronger line of unshifted scattering. Mie + Rayleigh, that simultaneously contributes to lidar returns. Besides, the daytime sky background is the factor that severely hampers daytime lidar measurements especially in the case with Raman lidars. So it is an important task of Raman-lidar technologists to find proper ways to overcome this difficulty that would made it possible the temperature profiling in the atmosphere to be performed whole day round. The approach to achieving this task by use of a Fabry-Perot interferometer (FPI) is discussed in the lecture.

  4. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif;

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic...... Archean rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end...... include the oxygen isotope record of chemical sediments and ancient ocean crust, chemical equilibria amongst primary phases in banded iron formations (BIFs), sedimentary features indicative of temperate or glacial environments, and paleosol indicators of atmospheric CO2. Further, we explore the extent to...

  5. Temperature Swings in a Hot Jupiter's Atmosphere

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Weather variations in the atmosphere of a planet on a highly eccentric orbit are naturally expected to be extreme. Now, a study has directly measured the wild changes in the atmosphere of a highly eccentric hot Jupiter as it passes close to its host star.Diagram of the HD 80606 system. The inset images labeled AH show the temperature distribution of the planet at different stages as it swings around its star. [de Wit et al. 2016]Eccentric OpportunityFor a hot Jupiter a gas giant that orbits close to its host star the exoplanet HD 80606 b exhibits a fairly unusual path. Rather than having a circularized orbit, HD 80606 b travels on an extremely elliptic 111-day orbit, with an eccentricity of e ~ 0.93. Since the amount of flux HD 80606 b receives from its host varies by a factor of ~850 over the course of its orbit, it stands to reason that this planet must have extreme weather swings!Now a team of scientists led by Julien de Wit (Massachusetts Institute of Technology) has reanalyzed old observations of HD 80606 and obtained new ones using the Spitzer Space Telescope. The longer observing time and new data analysis techniques allowed the team to gain new insights into how the exoplanets atmosphere responds to changes in the stellar flux it receives during its orbit.Extreme VariationsBy measuring the infrared light coming from HD 80606, de Wit and collaborators modeled the planets temperature during 80 hours of its closest approach to its host star. This period of time included the ~20 hours in which most of the planets temperature change is expected to occur, as it approaches to a distance a mere 6 stellar radii from its host.The authors find that the layer of the atmosphere probed by Spitzer heats rapidly from 500K to 1400K (thats ~440F to a scalding 2000+F!) as the planet approaches periastron.The atmosphere then cools similarly quickly as the planet heads away from the star once more.Relative infrared brightness of HD 80606 b at 4.5 and 8 m. The dip marks where

  6. Distributed Temperature Sensing in the Atmosphere

    Science.gov (United States)

    van de Giesen, Nicolaas; Selker, John; Sayde, Chadi; Thomas, Christoph K.; Higgins, Chad; Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Wim; Hilgersom, Koen; van Emmerik, Tim; Solcerova, Anna; Berghuijs, Wouter

    2016-04-01

    Over the past ten years, Distributed Temperature Sensing (DTS) has been applied for monitoring many different environmental processes, from groundwater movement, to seepage into streams and canals, to soil moisture, and internal waves in lakes. DTS uses optical fibres, along which temperatures are determined by measuring Raman shifts in light that scatters back after a laser pulse has been sent into the fiber. Over the past decade, performance of DTS equipment has dramatically improved. It is now possible to determine fiber temperatures with 0.05 K accuracy, for each 25 cm along a fiber optic cable. With typical spatial resolutions of 1 m, cable lengths can run up to 5 km. Accuracy improves with integration over longer sampling intervals, but measurements over 60 s can give 0.1 K accuracy with proper in-field calibration. DTS can also be used for atmospheric properties such as air temperature, vapor pressure, and wind speed. This presentation provides a complete overview of recent advances in atmospheric DTS observations. Air temperature is the simplest, as one simply has to suspend a fiber optic cable along the profile of interest. This can be from a balloon or along poles. Care has to be taken to correct for radiative heating of the cable. Using a thin white cable minimalizes radiative effects and normally brings the measured temperature to within 1 K of actual air temperature, sufficient for studies on effects of shading in natural and urban landscapes. It is also possible to correct for radiative heating by modeling in some detail the cable's thermal behavior or by using two cables of different diameters. Supporting structures may also have an effect on cable temperatures, which should be minimized or corrected for. Water vapor can be measured by comparing the temperatures of wet and dry cables. These wet and dry bulb temperatures allow derivation of humidity profiles, which, in turn, allows for Bowen-ratio type of calculations of latent and sensible heat

  7. Comparisons of the Generalized Potential Temperature in Moist Atmosphere with the Equivalent Potential Temperature in Saturated Moist Atmosphere

    OpenAIRE

    Guo Deng; Liping Liu; Yushu Zhou

    2009-01-01

    The real tropospheric atmosphere is neither absolutely dry nor completely saturated. It is in general moist but not saturated. Here the generalized potential temperature (GPT) was introduced to describe this humid feature of real moist atmosphere. GPT's conservation property in moist adiabatic process was discussed and proved. Comparisons of GPT in moist atmosphere with the equivalent potential temperature (EPT) in saturated moist atmosphere were made by analyzing three torrential rain cases ...

  8. TES/Aura L2 Atmospheric Temperatures Nadir V006

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  9. TES/Aura L2 Atmospheric Temperatures Limb V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  10. TES/Aura L2 Atmospheric Temperatures Nadir V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  11. TES/Aura L2 Atmospheric Temperatures Nadir V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  12. TES/Aura L2 Atmospheric Temperatures Limb V006

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  13. TES/Aura L2 Atmospheric Temperatures Limb V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  14. TES/Aura L2 Atmospheric Temperatures Limb V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  15. Atmospheric Circulation of Hot Jupiters: Dayside-Nightside Temperature Differences

    CERN Document Server

    Komacek, Thaddeus D

    2016-01-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here we present a three-dimensional model that explains this relationship, in order to shed insight on the processes that control heat redistribution in tidally-locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside-nightside temperature differences over a range of equilibrium temperature, atmospheric composition, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. This analytic theory shows that the longitudinal propagation of waves mediates dayside-nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth's tropics. These waves can be damped in hot Jupiter atmospheres by either r...

  16. Global atmospheric temperature anomaly monitoring with passive microwave radiometers

    Science.gov (United States)

    Spencer, Roy W.; Christy, John R.

    1990-01-01

    The potential of microwave sounding units (MSU) for augmenting the surface-based thermometer record by providing a measurement representing a significant depth of the troposphere is considered. These radiometers measure the thermal emission by molecular oxygen in the atmosphere at different spectral intervals in the oxygen absorption complex near 60 GHz. Brightness temperature variations measured by NOAA-6 and NOAA-7 MSUs during a near-two year period are analyzed and compared with monthly averaged surface air temperature data. It is demonstrated that MSUs, while of limited use for vertical profiling of the atmosphere, provide stable measurements of vertically average atmospheric temperatures, centered at a constant pressure level.

  17. LIDAR for atmospheric backscatter and temperature measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this effort are to measure atmospheric backscatter profiles and temperature using a zenith looking lidar, designed for a small lander.The lidar...

  18. Fast Temperature Sensor for use in Atmospheric Sciences Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes a novel sensor to measure atmospheric temperature at high frequency (10 Hz) and with high precision and accuracy (0.1 degrees C)....

  19. Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences

    Science.gov (United States)

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  20. Improved controlled atmosphere high temperature scanning probe microscope

    OpenAIRE

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben; Mogensen, Mogens Bjerg; Kuhn, Luise Theil

    2013-01-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a ...

  1. Temperature field simulation of gob influenced by atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    王刚; 罗海珠; 梁运涛; 王继仁

    2015-01-01

    The current temperature field model of mine gob does not take the boundary conditions of the atmospheric pressure into account, while the actual atmospheric pressure is influenced by weather, so as to produce differences between ventilation negative pressure of the working face and the negative pressure of gas drainage in gob, thus interfering the calculated results of gob temperature field. According to the characteristics of the actual air flow and temperature change in gob, a two-dimensional temperature field model of the gob was built, and the relational model between the air pressure of intake and outlet of the gob and the atmospheric pressure was established, which was introduced into the boundary conditions of temperature field to conduct calculation. By means of analysis on the simulation example, and comparison with the traditional model, the results indicate that atmospheric pressure change had notable impact on the distribution of gob temperature field. The laboratory test system of gob temperature field was constructed, and the relative error between simulated and measured value was no greater than 9.6%, which verified the effectiveness of the proposed model. This work offers theoretical basis for accurate calculation of temperature and prediction of ignition source in mine gob, and has important implications on preventing spontaneous combustion of coal.

  2. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben;

    2013-01-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide...... fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface...

  3. Assessing atmospheric temperature data sets for climate studies

    Directory of Open Access Journals (Sweden)

    Magnus Cederlöf

    2016-07-01

    Full Text Available Observed near-surface temperature trends during the period 1979–2014 show large differences between land and ocean, with positive values over land (0.25–0.27 °C/decade that are significantly larger than over the ocean (0.06–0.12 °C/decade. Temperature trends in the mid-troposphere of 0.08-0.11 °C/decade, on the other hand, are similar for both land and ocean and agree closely with the ocean surface temperature trend. The lapse rate is consequently systematically larger over land than over the ocean and also shows a positive trend in most land areas. This is puzzling as a response to external warming, such as from increasing greenhouse gases, is broadly the same throughout the troposphere. The reduced tropospheric warming trend over land suggests a weaker vertical temperature coupling indicating that some of the processes in the planetary boundary layer such as inversions have a limited influence on the temperature of the free atmosphere. Alternatively, the temperature of the free atmosphere is influenced by advection of colder tropospheric air from the oceans. It is therefore suggested to use either the more robust tropospheric temperature or ocean surface temperature in studies of climate sensitivity. We also conclude that the European Centre for Medium-Range Weather Forecasts Reanalysis Interim can be used to obtain consistent temperature trends through the depth of the atmosphere, as they are consistent both with near-surface temperature trends and atmospheric temperature trends obtained from microwave sounding sensors.

  4. Dayside-Nightside Temperature Differences in Hot Jupiter Atmospheres

    Science.gov (United States)

    Komacek, Thaddeus D.; Showman, Adam P.

    2015-12-01

    The infrared phase curves of low-eccentricity transiting hot Jupiters show a trend of increasing flux amplitude, or increasing day-night temperature difference, with increasing equilibrium temperature. Here we utilize atmospheric circulation modeling and analytic theory to understand this trend, and the more general question: what processes control heat redistribution in tidally-locked giant planet atmospheres? We performed a wide range of 3D numerical simulations of the atmospheric circulation with simplified forcing, and constructed an analytic theory that explains the day-night temperature differences in these simulations over a wide parameter space. Our analytic theory shows that day-night temperature differences in tidally-locked planet atmospheres are mediated by wave propagation. If planetary-scale waves are free to propagate longitudinally, they will efficiently flatten isentropes and lessen day-night temperature differences. If these waves are damped, the day-night temperature differences will necessarily be larger. We expect that wave propagation in hot Jupiter atmospheres can be damped in two ways: by either radiative cooling or frictional drag. Both of these processes increase in efficacy with increasing equilibrium temperature, as radiative cooling is directly related to the cube of temperature and magnetically-induced (Lorentz) drag becomes stronger with increasing partial ionization and hence temperature. We find that radiative cooling plays the largest role in damping wave propagation and hence plays the biggest role in controlling day-night temperature differences. As a result, day-night temperature differences in hot Jupiter atmospheres decrease with increasing pressure and increase with increasing stellar flux. One can apply this result to phase curve observations of individual hot Jupiters in multiple bandpasses, as varying flux amplitudes between wavelengths implies that different photospheric pressure levels are being probed. Namely, a larger

  5. Atmospheric temperature sensing with a multiorder Fabry-Perot interferometer.

    Science.gov (United States)

    Wang, J; Drayson, S R; Hayes, P B

    1989-12-01

    A Fabry-Perot interferometer has a periodic response. By matching the free spectral range of a Fabry-Perot interferometer (FPI) with the period of the CO(2) spectrum, considerable advantages of throughput and spectral resolution can be achieved, leading to high spectral resolution and vertical resolution for atmospheric temperature sounders. In this paper, the concept of a high resolution multiorder Fabry-Perot interferometer using portions of the 15-microm and 4.3-microm bands of CO(2)for the purpose of atmospheric temperature sounding is discussed. Suitable sounding spectral positions, FPI free spectral range, and weighting functions are calculated. An effective spectral resolution of 0.02 cm(-1) can be achieved by the proposed sounder with a FPI finess of ~100 which is within the present state-of-the-art technology in the infrared region, leading to considerable improvement in the vertical resolution of the atmospheric temperature sounder. PMID:20555996

  6. Excitation temperatures of atmospheric argon in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu; Wen Xiaohui; Yang Weihong [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2007-08-15

    A method for the determination of excitation temperatures based on optical emission spectroscopy and Fermi-Dirac distribution was set up and experiments were performed on atmospheric argon dielectric barrier discharges. Local thermodynamic equilibrium was proved to exist in the discharge and the validity of Boltzmann distribution is discussed. The main aim of this paper is to obtain the temperatures of atmospheric Ar II as a function of the discharge voltage, discharge frequency, argon flow rate and the argon fraction. It was found that the excitation temperatures are in the range 3800-4950 K. Besides, an increase in the argon flow rate resulting in a slight growth of the temperature and the add-in of air leading to the decrease in temperature was observed.

  7. Atmospheric CO2: principal control knob governing Earth's temperature.

    Science.gov (United States)

    Lacis, Andrew A; Schmidt, Gavin A; Rind, David; Ruedy, Reto A

    2010-10-15

    Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state. PMID:20947761

  8. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H2O, CO, CH4, and CO2. For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H2O, CO, CH4, and CO2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a noticeably

  9. Phase relation between global temperature and atmospheric carbon dioxide

    OpenAIRE

    Stallinga, Peter; Khmelinskii, Igor

    2013-01-01

    The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

  10. Controlled Atmosphere High Temperature SPM for electrochemical measurements

    International Nuclear Information System (INIS)

    A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465deg. C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800deg. C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements

  11. Temperature-Dependent Henry's Law Constants of Atmospheric Amines.

    Science.gov (United States)

    Leng, Chunbo; Kish, J Duncan; Roberts, Jason E; Dwebi, Iman; Chon, Nara; Liu, Yong

    2015-08-20

    There has been growing interest in understanding atmospheric amines in the gas phase and their mass transfer to the aqueous phase because of their potential roles in cloud chemistry, secondary organic aerosol formation, and the fate of atmospheric organics. Temperature-dependent Henry's law constants (KH) of atmospheric amines, a key parameter in atmospheric chemical transport models to account for mass transfer, are mostly unavailable. In this work, we investigated gas-liquid equilibria of five prevalent atmospheric amines, namely 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine using bubble column technique. We reported effective KH, intrinsic KH, and gas phase diffusion coefficients of these species over a range of temperatures relevant to the lower atmosphere for the first time. The measured KH at 298 K and enthalpy of solution for 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine are 61.4 ± 4.9 mol L(-1) atm(-1) and -49.0 ± 4.8 kJ mol(-1); 14.5 ± 1.2 mol L(-1) atm(-1) and -72.5 ± 6.8 kJ mol(-1); 8.9 ± 0.7 mol L(-1) atm(-1) and -49.6 ± 4.7 kJ mol(-1); 103.5 ± 10.4 mol L(-1) atm(-1) and -42.7 ± 4.3 kJ mol(-1); and 952.2 ± 114.3 mol L(-1) atm(-1) and -82.7 ± 9.7 kJ mol(-1), respectively. In addition, we evaluated amines' characteristic times to achieve gas-liquid equilibrium for partitioning between gas and aqueous phases. Results show gas-liquid equilibrium can be rapidly established at natural cloud droplets surface, but the characteristic times may be extended substantially at lower temperatures and pHs. Moreover, our findings imply that atmospheric amines are more likely to exist in cloud droplets, and ambient temperature, water content, and pH of aerosols play important roles in their partitioning. PMID:26200814

  12. Temperature diagnostics of the solar atmosphere using SunPy

    CERN Document Server

    Leonard, Andrew

    2014-01-01

    The solar atmosphere is a hot (about 1MK), magnetised plasma of great interest to physicists. There have been many previous studies of the temperature of the Sun's atmosphere (Plowman2012, Wit2012, Hannah2012, Aschwanden2013, etc.). Almost all of these studies use the SolarSoft software package written in the commercial Interactive Data Language (IDL), which has been the standard language for solar physics. The SunPy project aims to provide an open-source library for solar physics. This work presents (to the authors' knowledge) the first study of its type to use SunPy rather than SolarSoft. This work uses SunPy to process multi-wavelength solar observations made by the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO) and produce temperature maps of the Sun's atmosphere. The method uses SunPy's utilities for querying databases of solar events, downloading solar image data, storing and processing images as spatially aware Map objects, and tracking solar features as the S...

  13. Simulation of low temperature atmospheric pressure corona discharge in helium

    Science.gov (United States)

    Bekasov, Vladimir; Kirsanov, Gennady; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. The calculation was based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharge. The system of equations is solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles, the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage, power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow predicting the temperature of the gases at the designing of atmospheric pressure helium plasma sources.

  14. Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure

    OpenAIRE

    Jidenko, N; Bourgeois, E; Borra, J-P

    2010-01-01

    Abstract The physico-chemical properties of atmospheric pressure filamentary Dielectric Barrier Discharge (f-DBD) depend on its electrical characteristics and thermal profile. In this paper, a method for separating thermal and electrical effects is developed. Therefore, thermal profiles of f-DBD are studied for well defined electrical characteristics of filaments: all filaments are quasi identical with a controlled spatio-temporal density. The temperatures of gas, dielectric surface and pl...

  15. Temperature extremes in Europe: overview of their driving atmospheric patterns

    OpenAIRE

    Andrade, C.; Leite, S. M.; J. A. Santos

    2012-01-01

    As temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation, is particularly pertinent and is discussed here for Europe and in the period 1961–2010 (50 yr). For this aim, a canonical correlation analysis, coupled with a principal component analysis (BPCCA), is applied between the monthly mean sea level pressure field...

  16. NOAA Climate Data Record (CDR) of Upper Atmospheric Temperature 4 Layer Microwave, Version 3.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 4 Layer Upper Atmosphere Temperature (UAT) Climate Data Record (CDR) dataset is a monthly analysis of the tropospheric and stratospheric data using temperature...

  17. Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Physico-chemical properties of atmospheric pressure filamentary dielectric barrier discharges (f-DBD) depend on coupled electrical characteristics and thermal profiles. In this paper, a method for studying thermal and electrical effects is developed. Therefore, thermal profiles of f-DBD are studied for well-defined electrical characteristics of quasi-identical filaments with controlled distribution in time and space. The temperatures of gas, dielectric surface and plasma depend on the surface density and on the temporal frequency of filaments, defining the input power, and can be tuned by controlling heat transfers. Different methods to control these temperatures are depicted. Moreover, heat transfer through conduction and convection from dielectric surface is shown to be the dominant heating mechanism of the flowing gas in the reactor. Finally, experimental results show that the local temperature gradient around each filament can be controlled by the frequency of the applied voltage. Actually, the temperature difference between the filament and the surrounding gas is constant below 10 kHz but increases linearly with the frequency above 10 kHz. At high frequency, the time between two successive filaments occurring at the same position becomes smaller than the relaxation time constant of thermal exchanges (∼0.1 ms). Hence, this rise in local temperature can be attributed to time-limited heat transfers from the filament axis.

  18. Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jidenko, N; Bourgeois, E; Borra, J-P [Laboratoire de Physique des Gaz et des Plasmas (UMR 8578 CNRS-Univ Paris-Sud Orsay, F-91405) SUPELEC, Plateau Moulon, F-91192 Gif-Sur-Yvette (France)

    2010-07-28

    Physico-chemical properties of atmospheric pressure filamentary dielectric barrier discharges (f-DBD) depend on coupled electrical characteristics and thermal profiles. In this paper, a method for studying thermal and electrical effects is developed. Therefore, thermal profiles of f-DBD are studied for well-defined electrical characteristics of quasi-identical filaments with controlled distribution in time and space. The temperatures of gas, dielectric surface and plasma depend on the surface density and on the temporal frequency of filaments, defining the input power, and can be tuned by controlling heat transfers. Different methods to control these temperatures are depicted. Moreover, heat transfer through conduction and convection from dielectric surface is shown to be the dominant heating mechanism of the flowing gas in the reactor. Finally, experimental results show that the local temperature gradient around each filament can be controlled by the frequency of the applied voltage. Actually, the temperature difference between the filament and the surrounding gas is constant below 10 kHz but increases linearly with the frequency above 10 kHz. At high frequency, the time between two successive filaments occurring at the same position becomes smaller than the relaxation time constant of thermal exchanges ({approx}0.1 ms). Hence, this rise in local temperature can be attributed to time-limited heat transfers from the filament axis.

  19. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Science.gov (United States)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  20. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Razenkov Ilya I.

    2016-01-01

    Full Text Available The High Spectral Resolution Lidar (HSRL designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm.

  1. Temperature retrieval at the southern pole of the Venusian atmosphere

    Science.gov (United States)

    Garate-Lopez, Itziar; Garcia-Munoz, A.; Hueso, R.; Sanchez-Lavega, A.

    2013-10-01

    Venus’ thermal radiation spectrum is punctuated by CO2 bands of various strengths probing into different atmospheric depths. It is thus possible to invert measured spectra of thermal radiation to infer atmospheric temperature profiles. VIRTIS-M observations of Venus in the 3-5 µm range allow us to study the night time thermal structure of the planet’s upper troposphere and lower mesosphere from 50 to 105 km [1, 2]. Building a forward radiative transfer model that solves the radiative transfer equation for the atmosphere on a line-by-line basis, we confirmed that aerosol scattering must be taken into account and we studied the impact of factors such as cloud opacity, and the size, composition and vertical distribution of aerosols [3]. The cloud top altitude and aerosol scale height have a notable impact on the spectrum. However, their weighting function matrices have similar structures contributing to the degeneracy of the temperature retrieval algorithm [2]. Our retrieval code is focused on the strong 4.3µm CO2 band, which enables the determination of the thermal profile above the cloud top, and based on the algorithm proposed by Grassi et al. (2008) in their equation (2). We present temperature maps for the south pole of Venus, where a highly variable vortex is observed. We aim to combine these maps with our previously measured velocity fields from the same VIRTIS-M infrared images [4], in order to infer the potential vorticity distribution for different vortex configurations and to improve the understanding of its unpredictable character and its role in the general atmospheric circulation. Acknowledgements This work was supported by the Spanish MICIIN projects AYA2009-10701 and AYA2012-36666 with FEDER funds, by Grupos Gobierno Vasco IT-765-13 and by Universidad País Vasco UPV/EHU through program UFI11/55. IGL and AGM gratefully acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources. References [1] Roos-Serote, M., et al

  2. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-09-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  3. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-12-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  4. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    Science.gov (United States)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  5. Accuracy analysis on Rayleigh lidar measurements of atmospheric temperature based on spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Kun Liang; Yong Ma; Fei Cheng; Hongyuan Wang

    2009-01-01

    We make a detailed analysis on the linearity and accuracy of the relationship between the full-width at half-height (FWHH) of the atmosphere molecules Rayleigh scattering spectrum and the square root of the atmospheric temperature. A simulation of the FWHH of the atmosphere molecules Rayleigh scattering spectrum is made based on the S6 Atmosphere Model and U.S. Standard Atmosphere Model. The calcu-lated temperature is compared with the initial simulation temperature. The result shows that the FWHH of the atmosphere molecules Rayleigh scattering spectrum is nearly proportional to the atmospheric tem-perature. The goodness-of-fit index of the fitting curve is 0.9977 and the maximum absolute error of measured atmospheric temperature is about 2 K.

  6. TES/Aura L3 Atmospheric Temperatures Monthly Gridded V002

    Data.gov (United States)

    National Aeronautics and Space Administration — Monthly averages of atmospheric temperature and VMR for atmospheric species are provided at 2 deg. lat. X 4 deg. long. spatial grids and at a subset of TES standard...

  7. Effect of O3 on the atmospheric temperature structure of early Mars

    OpenAIRE

    von Paris, P.; Selsis, F.; Godolt, M.; Grenfell, J. L.; Stracke, B.; Rauer, H.

    2015-01-01

    Ozone is an important radiative trace gas in the Earth's atmosphere. The presence of ozone can significantly influence the thermal structure of an atmosphere, and by this e.g. cloud formation. Photochemical studies suggest that ozone can form in carbon dioxide-rich atmospheres. We investigate the effect of ozone on the temperature structure of simulated early Martian atmospheres. With a 1D radiative-convective model, we calculate temperature-pressure profiles for a 1 bar carbon dioxide atmosp...

  8. TES/Aura L2 Atmospheric Temperatures Limb Special Observation V006

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  9. TES/Aura L2 Atmospheric Temperatures Nadir Special Observation V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  10. TES/Aura L2 Atmospheric Temperatures Nadir Special Observation V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  11. TES/Aura L2 Atmospheric Temperatures Nadir Special Observation V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  12. TES/Aura L2 Atmospheric Temperatures Limb Special Observation V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  13. TES/Aura L2 Atmospheric Temperatures Limb Special Observation V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  14. TES/Aura L2 Atmospheric Temperatures Nadir Special Observation V006

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  15. TES/Aura L2 Atmospheric Temperatures Limb Special Observation V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  16. Effect of O3 on the atmospheric temperature structure of early Mars

    CERN Document Server

    von Paris, P; Godolt, M; Grenfell, J L; Stracke, B; Rauer, H

    2015-01-01

    Ozone is an important radiative trace gas in the Earth's atmosphere. The presence of ozone can significantly influence the thermal structure of an atmosphere, and by this e.g. cloud formation. Photochemical studies suggest that ozone can form in carbon dioxide-rich atmospheres. We investigate the effect of ozone on the temperature structure of simulated early Martian atmospheres. With a 1D radiative-convective model, we calculate temperature-pressure profiles for a 1 bar carbon dioxide atmosphere. Ozone profiles are fixed, parameterized profiles. We vary the location of the ozone layer maximum and the concentration at this maximum. The maximum is placed at different pressure levels in the upper and middle atmosphere (1-10 mbar). Results suggest that the impact of ozone on surface temperatures is relatively small. However, the planetary albedo significantly decreases at large ozone concentrations. Throughout the middle and upper atmospheres, temperatures increase upon introducing ozone due to strong UV absorpt...

  17. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    CERN Document Server

    Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

    2015-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

  18. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    OpenAIRE

    Venot Olivia; Fray Nicolas; Bénilan Yves; Gazeau Marie-Claire; Hébrard Eric; Larcher Gwenaelle; Schwell Martin; Dobrijevic Michel; Selsis Franck

    2014-01-01

    Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are se...

  19. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  20. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    OpenAIRE

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi Kumar

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a '...

  1. MAIC-2, a latitudinal model for the Martian surface temperature, atmospheric water transport and surface glaciation

    OpenAIRE

    Greve, Ralf; Grieger, Bjoern; Stenzel, Oliver J.

    2009-01-01

    The Mars Atmosphere-Ice Coupler MAIC-2 is a simple, latitudinal model, which consists of a set of parameterisations for the surface temperature, the atmospheric water transport and the surface mass balance (condensation minus evaporation) of water ice. It is driven directly by the orbital parameters obliquity, eccentricity and solar longitude (Ls) of perihelion. Surface temperature is described by the Local Insolation Temperature (LIT) scheme, which uses a daily and latitude-dependent radiati...

  2. Global surface temperatures and the atmospheric electrical circuit

    Science.gov (United States)

    Price, Colin

    1993-01-01

    To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.

  3. Automated measurement of the temperature of the atmosphere at 3.2 cm

    International Nuclear Information System (INIS)

    Concurrent with measurements of sky temperature reported in companion papers by De Amici et al., Friedman et al., Mandolesi et al., and Sironi et al., we made automated measurements of the temperature contributed by the Earth's atmosphere at 9.4 GHz (3.2-cm wavelength) every 8 min. Typical values for T/sub ATM/ in clear weather were 1.03 +- 0.03 K; the total range of recorded values was 0.89--1.24 K. These values were used to provide real-time atmospheric temperature corrections for the spectrum observations described in the companion papers, and to constrain models of the microwave emission of the atmosphere

  4. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Li, Zhongshan; Aldén, Marcus; Salewski, Mirko; Leipold, Frank; Kusano, Yukihiro

    2014-01-01

    Gliding arc discharges have generally been used to generate non-equilibrium plasma at atmospheric pressure. Temperature distributions of a gliding arc are of great interest both for fundamental plasma research and for practical applications. In the presented studies, translational, rotational and...... vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  5. Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Linkin, V.M.; Blamon, Z.; Lipatov, A.P.; Devyatkin, S.I.; Dyachkov, A.V.; Ignatova, S.I.; Kerzhanovich, V.V.; Malyk, K.; Stadny, V.I.; Sanotskiy, Y.V.

    1986-05-01

    Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.

  6. Temperature Structure and Atmospheric Circulation of Dry, Tidally Locked Rocky Exoplanets

    CERN Document Server

    Koll, Daniel D B

    2016-01-01

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with grey radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop a radiative-convective-subsiding model which extends our radiative-convective model to hot and thin atmospheres. We find that rocky planets develop large day-night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters....

  7. A secular carbon debt from atmospheric high temperature combustion of stem wood?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2012-01-01

    Basically, combustion of woody biomass in high temperature processes that react with atmospheric air results in a long lasting addition of carbon dioxide to the atmosphere. When harvesting large extra amounts of stem tree for energetic use, a global as well as secular time frame is needed to assess...

  8. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation

    Science.gov (United States)

    Miralles, Diego G.; Teuling, Adriaan J.; van Heerwaarden, Chiel C.; Vilà-Guerau de Arellano, Jordi

    2014-05-01

    The recent European mega-heatwaves of 2003 and 2010 broke temperature records across Europe. Although events of this magnitude were unprecedented from a historical perspective, they are expected to become common by the end of the century. However, our understanding of extreme heatwave events is limited and their representation in climate models remains imperfect. Here we investigate the physical processes underlying recent mega-heatwaves using satellite and balloon measurements of land and atmospheric conditions from the summers of 2003 in France and 2010 in Russia, in combination with a soil-water-atmosphere model. We find that, in both events, persistent atmospheric pressure patterns induced land-atmosphere feedbacks that led to extreme temperatures. During daytime, heat was supplied by large-scale horizontal advection, warming of an increasingly desiccated land surface and enhanced entrainment of warm air into the atmospheric boundary layer. Overnight, the heat generated during the day was preserved in an anomalous kilometres-deep atmospheric layer located several hundred metres above the surface, available to re-enter the atmospheric boundary layer during the next diurnal cycle. This resulted in a progressive accumulation of heat over several days, which enhanced soil desiccation and led to further escalation in air temperatures. Our findings suggest that the extreme temperatures in mega-heatwaves can be explained by the combined multi-day memory of the land surface and the atmospheric boundary layer.

  9. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    Science.gov (United States)

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi K.

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  10. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    CERN Document Server

    Kasting, James F; Kopparapu, Ravi Kumar

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3-D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a 'moist greenhouse' explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing 'inverse' climate calculations to determine habitable zone boundaries using 1-D models.

  11. Dependence of global temperatures on atmospheric CO2 and solar irradiance

    OpenAIRE

    David J. Thomson

    1997-01-01

    Changes in global average temperatures and of the seasonal cycle are strongly coupled to the concentration of atmospheric CO2. I estimate transfer functions from changes in atmospheric CO2 and from changes in solar irradiance to hemispheric temperatures that have been corrected for the effects of precession. They show that changes from CO2 over the last century are about three times larger than those from changes in solar irradiance. The increase in global average ...

  12. A Minimized Mutual Information retrieval for simultaneous atmospheric pressure and temperature

    OpenAIRE

    Koner, Prabhat K.; Drummond, James R.

    2010-01-01

    The primary focus of the Mars Trace Gas Orbiter (TGO) collaboration between NASA and ESA is the detection of the temporal and spatial variation of the atmospheric trace gases using a solar occultation Fourier transform spectrometer. To retrieve any trace gas mixing ratios from these measurements, the atmospheric pressure and temperature have to be known accurately. Thus, a prototype retrieval model for the determination of pressure and temperature from a broadband high resolution infrared Fou...

  13. Elevational Gradients of Temperature and Atmospheric Moisture on Kilimanjaro, Tanzania

    Science.gov (United States)

    Losleben, M. V.; Hardy, D. R.; Duane, W.; Pepin, N.

    2006-12-01

    Kilimanjaro is the highest free-standing peak in Africa, rising from ~1000 to 5895 meters above sea level, covering at least six ecological zones, and providing an excellent platform for an elevational transect of meteorological measurements. Ten temperature and relative humidity sensors, from 1800 m to 5800 m, show a variety of elevational responses over their first 16 months of operation. In the zone between 3000 and 3500 meters, temperature variability is at maximum, lapse rates are lowest, and the relationship between temperature and relative humidity changes. Ascending from the bottom, variance increases to this zone, then decreases to the summit. This zone might be considered one of maximum sensitivity to climate change, and thus a zone to more carefully observe in the future. At the summit, where dry, free air conditions predominate, glaciers are rapidly losing mass. Our data suggest that lower elevations may be the moisture source for the summit. Typically, temperature and relative humidity are inversely related, but our sensor data show that the reverse is true at upper Kilimanjaro elevations, consistent with the hypothesis that diurnal upslope air flow delivers moisture to the summit. Thus, reduction in available moisture from lower elevations through changes in land-use, increasing pollution-related aerosols (with negative effects on precipitation efficiency), and/or weaker upslope flow, could all be contributing to the disappearance of the Kilimanjaro glaciers.

  14. Using optimal estimation method for upper atmospheric Lidar temperature retrieval

    Science.gov (United States)

    Zou, Rongshi; Pan, Weilin; Qiao, Shuai

    2016-07-01

    Conventional ground based Rayleigh lidar temperature retrieval use integrate technique, which has limitations that necessitate abandoning temperatures retrieved at the greatest heights due to the assumption of a seeding value required to initialize the integration at the highest altitude. Here we suggests the use of a method that can incorporate information from various sources to improve the quality of the retrieval result. This approach inverts lidar equation via optimal estimation method(OEM) based on Bayesian theory together with Gaussian statistical model. It presents many advantages over the conventional ones: 1) the possibility of incorporating information from multiple heterogeneous sources; 2) provides diagnostic information about retrieval qualities; 3) ability of determining vertical resolution and maximum height to which the retrieval is mostly independent of the a priori profile. This paper compares one-hour temperature profiles retrieved using conventional and optimal estimation methods at Golmud, Qinghai province, China. Results show that OEM results show a better agreement with SABER profile compared with conventional one, in some region it is much lower than SABER profile, which is a very different results compared with previous studies, further studies are needed to explain this phenomenon. The success of applying OEM on temperature retrieval is a validation for using as retrieval framework in large synthetic observation systems including various active remote sensing instruments by incorporating all available measurement information into the model and analyze groups of measurements simultaneously to improve the results.

  15. SUMER: Temperatures, densities, and velocities in the outer solar atmosphere

    Science.gov (United States)

    Lemaire, Philippe; Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, Stuart D.; Kuehne, M.; Marsch, Eckart

    1992-01-01

    The SUMER (Solar Ultraviolet Measurement of Emitted Radiation) instrumentation that will be mounted on the SOHO (Solar and Heliospheric Observatory) spacecraft is in development. It has some capability of improving the solar angular resolution and the spectral resolution already obtained in the far UV to the extreme UV, corresponding to the temperature range between 10,000 and a few 1,000,000 K. Some insights into the SUMER spectrometer, developed to study the dynamics and to infer temperatures and densities of the low corona and the chromosphere-corona transition zone in using the 50 to 160 nm wavelength range, are given. The SUMER scientific goals and the techniques used are outlined. The instrumentation and the expected performances are described. The way the observations can be conducted is emphasized and the operation of SUMER in coordination with other SOHO instrumentations and in cooperation with ground based observations is explained.

  16. Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) data processing and atmospheric temperature and trace gas retrieval

    Science.gov (United States)

    Riese, M.; Spang, R.; Preusse, P.; Ern, M.; Jarisch, M.; Offermann, D.; Grossmann, K. U.

    1999-07-01

    The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment aboard the Shuttle Pallet Satellite (SPAS) was successfully flown in early November 1994 (STS 66) and in August 1997 (STS 85). This paper focuses on the first flight of the instrument, which was part of the Atmospheric Laboratory for Application and Science 3 (ATLAS 3) mission of NASA. During a free flying period of 7 days, limb scan measurements of atmospheric infrared emissions were performed in the 4 to 71 μm wavelength region. For improved horizontal resolution, three telescopes (viewing directions) were used that sensed the atmosphere simultaneously. Atmospheric pressures, temperatures, and volume mixing ratios of various trace gases were retrieved from the radiance data by using a fast onion-peeling retrieval technique. This paper gives an overview of the data system including the raw data processing and the temperature and trace gas profile retrieval. Examples of version 1 limb radiance data (level 1 product) and version 1 mixing ratios (level 2 product) of ozone, ClONO2, and CFC-11 are given. A number of important atmospheric transport processes can already be identified in the level 1 limb radiance data. Radiance data of the lower stratosphere (18 km) indicate strong upwelling in some equatorial regions, centered around the Amazon, Congo, and Indonesia. Respective data at the date line are consistent with convection patterns associated with El Niño. Very low CFC-11 mixing ratios occur inside the South Polar vortex and cause low radiance values in a spectral region sensitive to CFC-11 emissions. These low values are a result of considerable downward transport of CFC-11 poor air that occurred during the winter months. Limb radiance profiles and retrieved mixing ratio profiles of CFC-11 indicate downward transport over ˜5 km. The accuracy of the retrieved version 1 mixing ratios is rather different for the various trace gases. In the middle atmosphere the estimated

  17. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben;

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  18. Low-temperature sintering process for UO2 pellets in partially-oxidative atmosphere

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; GAO Jia-cheng; WANG Yong; CHANG Xin

    2008-01-01

    Low-temperature sintering(LTS) experiments of UO2 pellets and their results were reported. Moreover, a routine process of LTS for UO2 pellets was primarily established. Being sintered at 1 400 ℃ for 3 h in a partially-oxidative atmosphere, the relative density of the pellet can be up to around 94%. Pellets with such a high density are of benefit for following-up reduction-sintering processes. Orthogonal test indicates that the importance of factors affecting the density decreases in the sequence of partial-oxidative sintering temperature and time, reduction-sintering time and temperature, and sintering atmosphere. It is found that it is helpful to introducing a small amount of water vapor into the sintering atmosphere during the latter stage. It is believed that it is the key factor to raise the O/U ratio of original powder in order to improve the properties of the low-temperature sintered pellets.

  19. MAIC-2, a latitudinal model for the Martian surface temperature, atmospheric water transport and surface glaciation

    CERN Document Server

    Greve, Ralf; Stenzel, Oliver J

    2009-01-01

    The Mars Atmosphere-Ice Coupler MAIC-2 is a simple, latitudinal model, which consists of a set of parameterizations for the surface temperature, the atmospheric water transport and the surface mass balance (condensation minus evaporation) of water ice. It is driven directly by the orbital parameters obliquity, eccentricity and solar longitude (Ls) of perihelion. Surface temperature is described by the Local Insolation Temperature (LIT) scheme, which uses a daily and latitude-dependent radiation balance, includes a treatment of the seasonal CO2 cap, and has been validated against the surface temperatures from the Mars Climate Database. The evaporation rate of water is calculated by an expression for free convection, driven by density differences between water vapor and ambient air, and the condensation rate follows from the assumption that any water vapour which exceeds the local saturation pressure condenses instantly. Atmospheric transport of water vapour is assumed to be purely diffusive, with an adjustable...

  20. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  1. Interactions between controlled atmospheres and low temperature tolerance: A review of biochemical mechanisms

    OpenAIRE

    JesperGivskovSørensen; ShelleyAJohnson

    2011-01-01

    Controlled atmosphere treatments using carbon dioxide, oxygen, and/or nitrogen, together with controlled temperature and humidity, form an important method for post-harvest sterilization against insect-infested fruit. However, in insects, the cross tolerance and biochemical interactions between the various stresses of modified gas conditions and low temperature may either elicit or block standard stress responses which can potentiate (or limit) lethal low temperature exposure. Thus, the succe...

  2. Effect of stress relief annealing temperature and atmosphere on the magnetic properties of silicon steel

    International Nuclear Information System (INIS)

    Fully processed non-oriented silicon steel samples 0.50 mm thick were sheared and submitted to stress relief annealing under different conditions of temperature and atmosphere to investigate the effect of this treatment on the recovery of magnetic properties. Two different compositions were used, with different Si and Al contents. Temperature was varied in the range of 600-900 deg. C and four atmospheres were used: N2 and N2+10%H2 combined with dew points of -10 and 15 deg. C. The results showed that annealing atmosphere has very important effect on the magnetic properties and that the beneficial effect of stress relief annealing can be overcome by the detrimental effect of the atmosphere under certain conditions, due to oxidation and nitration

  3. Temperature Structure and Atmospheric Circulation of Dry Tidally Locked Rocky Exoplanets

    Science.gov (United States)

    Koll, Daniel D. B.; Abbot, Dorian S.

    2016-07-01

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  4. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    Science.gov (United States)

    Chesters, D.

    1984-05-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  5. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  6. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  7. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California.

    Science.gov (United States)

    Swain, Daniel L; Horton, Daniel E; Singh, Deepti; Diffenbaugh, Noah S

    2016-04-01

    Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949-2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949-2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012-2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California's most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years. PMID:27051876

  8. Interactions between controlled atmospheres and low temperature tolerance: A review of biochemical mechanisms

    Directory of Open Access Journals (Sweden)

    JesperGivskovSørensen

    2011-12-01

    Full Text Available Controlled atmosphere treatments using carbon dioxide, oxygen and/or nitrogen, together with controlled temperature and humidity, form an important method for postharvest sterilization against insect-infested fruit. However, in insects, the cross tolerance and biochemical interactions between the various stresses of modified gas conditions and low temperature may either elicit or block standard stress responses which can potentiate (or limit lethal low temperature exposure. Thus, the success of such treatments is sometimes erratic and does not always result in the desired pest mortality. This review focuses on the biochemical modes of action whereby controlled atmospheres affect insects low temperature tolerance, making them more (or occasionally, less susceptible to cold sterilization. Insights into the integrated biochemical modes of action may be used together with the pests’ low temperature tolerance physiology to determine which treatments may be of value in postharvest sterilization.

  9. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    Science.gov (United States)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  10. Development of Low-Temperature Atmospheric Coaxial Dielectric Barrier Discharge (DBD) Plasma Source

    International Nuclear Information System (INIS)

    Full text: Low-temperature atmospheric plasma has played an increasingly important role in various industrial, medical, and research applications. Nevertheless, this type of plasma usually has low density which imposes a limit on its effectiveness and the type of work that it can be applied to. In this research, a low-temperature atmospheric plasma source has been designed and developed using the dielectric barrier discharge (DBD) plasma production technique. The source is designed to have coaxial geometry for future utilization in medical sterilization. The effects of the amplitude and frequency of the driving potential on the temperature and spectrum of plasma have been studied. It is found that with the amplitudes and frequencies of the driving potentials that can be supplied by the available power supply, similar plasma spectrum have been obtained and the electron temperatures are measured between 4-5 eV

  11. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    Science.gov (United States)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  12. Coupling of surface temperatures and atmospheric CO_2 concentrations during the Palaeozoic era

    OpenAIRE

    Came, Rosemarie E.; Eiler, John M.; Veizer, Ján; Azmy, Karem; Brand, Uwe; Weidman, Christopher R.

    2007-01-01

    Atmospheric carbon dioxide concentrations seem to have been several times modern levels during much of the Palaeozoic era (543–248 million years ago), but decreased during the Carboniferous period to concentrations similar to that of today. Given that carbon dioxide is a greenhouse gas, it has been proposed that surface temperatures were significantly higher during the earlier portions of the Palaeozoic era. A reconstruction of tropical sea surface temperatures based on the δ^(18)O of carbona...

  13. Using MODIS Skin Temperature to Assess Urban Heat Island Effect and Biosphere-Atmosphere-Land Interactions

    Science.gov (United States)

    Jin, M. S.; Dickinson, R.; Shepherd, J. M.

    2011-12-01

    Two surface temperatures have been used in global change studies - 2-m surface air temperature (Tair) and skin temperature (Tskin). Skin temperature provides additional new information about the Earth surface because its physical meaning and magnitude differ from Tair. We will present two examples to reveal the advantages of using Tskin in studying land-atmosphere-biosphere interactions: an urban system and a Tibetan system. Ten-years of NASA MODIS skin temperature observations reveal new features related to the urban heat island effect (UHI). For example, the UHI is evident in both daytime and nighttime instead of being a nocturnal phenomenon traditionally referred from Tair. UHI is partially due to both albedo and emissivity reduction and partially due to soil moisture modification by urban surfaces (i.e., a change in Bowen ratio). Furthermore, urban aerosols affect surface insloation, which leads to a reduction in surface skin temperature. In summary, clearly the UHI is a result of land-atmosphere-biosphere interactions. Skin temperatures also provide detailed information for remote regions that are difficult to access, in particular, the Tibetan Plateau. Tskin shows a slight increase during 2000-2010, nevertheless, such an increase is only statistically significant for summer urban regions. Different land covers have varying patterns and seasonality of skin temperature. In particular, skin temperature and vegetation index (NDVI) have close relationships for their extremes. Such extremes are also a function of season and land cover. In conclusion, skin temperature is very useful in our understanding on biosphere-land-and atmosphere interactions. Further work is needed to examine the implications of these finding for scientific research and societal applications.

  14. Temperature Profile and Surface Pressure Retrieval of Mars’ Atmosphere Using Infrared Heterodyne Spectroscopy

    Science.gov (United States)

    Smith, Ramsey L.; Hewagama, T.; Livengood, T. A.; Fast, K. E.; Kostiuk, T.

    2012-10-01

    Infrared heterodyne spectroscopy of CO2 transitions in the Martian atmosphere was obtained using the Goddard Space Flight Center’s Heterodyne Instrument for Planetary Winds and Composition, HIPWAC, on the NASA Infrared Telescope Facility 3-m telescope, with resolving power of 2.5107. The measured spectra are not fully consistent with temperature profiles for this location and season derived from the Mars Global Surveyor mission (MGS), particularly constraining the pressure and temperature in the deepest part of the troposphere with unambiguous differences between the MGS temperature profile and that required to satisfy the measured emergent spectrum. The temperature information is useful for studying seasonal and global variability, for comparison of results from flight mission results, as well as better profiles for interpreting flight obtained measurements. We will report data collected from our analysis of our high-resolution measurement of 16O12C16O used to develop a temperature profile and surface pressure. CO2 is uniformly mixed in the Martian atmosphere, which makes it an ideal candidate for temperature determination. We are able to collect spectra of the isotopologues of CO2 in the same spectra, which eliminates a source of error for molecular species identification and atmosphere temperature determination. The aforementioned parameters are critical for Martian atmospheric-surface investigations such as isotopologue determination and isotope ratio calculations. For example, an average over measurements acquired at the subsolar point and in the early afternoon at the subsolar latitude yields the terrestrial VSMOW standard, with a minimal difference of 18O = +9±14 ‰. This precision is sufficient to enable a remote investigation of seasonal variations, i.e. due to mass-dependent fractionation in the polar ice cap freeze-sublimate cycle.

  15. Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought.

    Directory of Open Access Journals (Sweden)

    Kirstin Jansen

    Full Text Available In the future, periods of strongly increased temperature in concert with drought (heat waves will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i plant biomass, (ii carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii apparent respiratory carbon isotope fractionation as well as (iv the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought. Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions.

  16. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    Science.gov (United States)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  17. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores

    Science.gov (United States)

    Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.

    2005-10-01

    Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.

  18. A Minimized Mutual Information retrieval for simultaneous atmospheric pressure and temperature

    CERN Document Server

    Koner, Prabhat K

    2010-01-01

    The primary focus of the Mars Trace Gas Orbiter (TGO) collaboration between NASA and ESA is the detection of the temporal and spatial variation of the atmospheric trace gases using a solar occultation Fourier transform spectrometer. To retrieve any trace gas mixing ratios from these measurements, the atmospheric pressure and temperature have to be known accurately. Thus, a prototype retrieval model for the determination of pressure and temperature from a broadband high resolution infrared Fourier Transform spectrometer experiment with the Sun as a source on board a spacecraft orbiting the planet Mars is presented. It is found that the pressure and temperature can be uniquely solved from remote sensing spectroscopic measurements using a Regularized Total Least Squares method and selected pairs of micro-windows without any a-priori information of the state space parameters and other constraints. The selection of the pairs of suitable micro-windows is based on the information content analysis. A comparative info...

  19. Ocean and atmosphere coupling, connection between sub-polar Atlantic air temperature, Icelandic minimum and temperature in Serbia

    Directory of Open Access Journals (Sweden)

    Milovanović Boško

    2009-01-01

    Full Text Available In the presented paper correlation between the northern part of the Atlantic ocean (belt between 50-65°N and the atmospheric pressure is examined. Connection between the ocean temperature and atmospheric pressure is the most obvious in the El Nino southern oscillation mechanism. Thus, so far it is not known that such a mechanism exist in the Atlantic ocean. The main accent in the presented paper is focused on the connection between Iceland low and the sea surface temperature (SST in the subpolar part of the Atlantic ocean (used data are in grid 5x5°. By hierarchical cluster analysis five relatively unified clusters of sea surface temperatures grid cells are defined. By multiple linear regression, we examined the correlation between each of the depicted clusters with position and intensity of Iceland low, and identified the most important grid cells inside every cluster. The analysis of the relation between Iceland low and air temperature in Serbia and Belgrade has shown the strongest correlation for the longitude of this centre of action. .

  20. Temporal Evolution of the Size and Temperature of Betelgeuse's Extended Atmosphere

    CERN Document Server

    O'Gorman, Eamon; Brown, Alexander; Guinan, Edward F; Richards, Anita M S; Vlemmings, Wouter; Wasatonic, Richard

    2015-01-01

    We use the Very Large Array (VLA) in the A configuration with the Pie Town (PT) Very Long Baseline Array (VLBA) antenna to spatially resolve the extended atmosphere of Betelgeuse over multiple epochs at 0.7, 1.3, 2.0, 3.5, and 6.1 cm. The extended atmosphere deviates from circular symmetry at all wavelengths while at some epochs we find possible evidence for small pockets of gas significantly cooler than the mean global temperature. We find no evidence for the recently reported e-MERLIN radio hotspots in any of our multi-epoch VLA/PT data, despite having sufficient spatial resolution and sensitivity at short wavelengths, and conclude that these radio hotspots are most likely interferometric artefacts. The mean gas temperature of the extended atmosphere has a typical value of 3000 K at 2 $R_{\\star}$ and decreases to 1800 K at 6 $R_{\\star}$, in broad agreement with the findings of the single epoch study from Lim et al. (1998). The overall temperature profile of the extended atmosphere between $2 R_{\\star} \\less...

  1. HIGH-TEMPERATURE PHOTOCHEMISTRY IN THE ATMOSPHERE OF HD 189733b

    International Nuclear Information System (INIS)

    Recent infrared spectroscopy of hot exoplanets is beginning to reveal their atmospheric composition. Deep within the planetary atmosphere, the composition is controlled by thermochemical equilibrium. Photochemistry becomes important higher in the atmosphere, at levels above ∼1 bar. These two chemistries compete between ∼1 and 10 bars in hot-Jupiter-like atmospheres, depending on the strength of the eddy mixing and temperature. HD 189733b provides an excellent laboratory in which to study the consequences of chemistry of hot atmospheres. The recent spectra of HD 189733b contain signatures of CH4, CO2, CO, and H2O. Here we identify the primary chemical pathways that govern the abundances of CH4, CO2, CO, and H2O in the cases of thermochemical equilibrium chemistry, photochemistry, and their combination. Our results suggest that the disequilibrium mechanisms can significantly enhance the abundances of these species above their thermochemical equilibrium value, so some caution must be taken when assuming that an atmosphere is in strict thermochemical equilibrium.

  2. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures

    Science.gov (United States)

    Ackerley, Duncan; Dommenget, Dietmar

    2016-06-01

    General circulation models (GCMs) are valuable tools for understanding how the global ocean-atmosphere-land surface system interacts and are routinely evaluated relative to observational data sets. Conversely, observational data sets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (SSTs) such that 70 % of the Earth's surface temperature field is observationally constrained (known as an Atmospheric Model Intercomparison Project, AMIP, simulation). Nevertheless, in such simulations, land surface temperatures are typically allowed to vary freely, and therefore any errors that develop over the land may affect the global circulation. In this study therefore, a method for prescribing the land surface temperatures within a GCM (the Australian Community Climate and Earth System Simulator, ACCESS) is presented. Simulations with this prescribed land surface temperature model produce a mean climate state that is comparable to a simulation with freely varying land temperatures; for example, the diurnal cycle of tropical convection is maintained. The model is then developed further to incorporate a selection of "proof of concept" sensitivity experiments where the land surface temperatures are changed globally and regionally. The resulting changes to the global circulation in these sensitivity experiments are found to be consistent with other idealized model experiments described in the wider scientific literature. Finally, a list of other potential applications is described at the end of the study to highlight the usefulness of such a model to the scientific community.

  3. LINKS BETWEEN ATMOSPHERIC CIRCULATION AND SURFACE AIR TEMPERATURE IN REGIONAL CLIMATE MODELS

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    Patras: University of Patras, 2010 - (Argiriou, A.; Kazantzidis, A.), s. 825-832 ISBN 978-960-99254-0-2. [International Conference of Meteorology, Climatology and Atmospheric Physics (COMECAP2010) /10./. Patras (GR), 25.05.2010-28.05.2010] R&D Projects: GA ČR GAP209/10/2265 Grant ostatní: ENSEMBLES(XE) 505539 Institutional research plan: CEZ:AV0Z30420517 Keywords : regional climate model * daily air temperature * atmospheric circulation * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology

  4. The atmospheric response over the North Atlantic decadal changes in sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Venzke, S. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Allen, M.R. [Rutherford Appleton Lab., Chilton (United Kingdom). Dept. of Space Sciences]|[Oxford Univ. (United Kingdom). Atmospheric, Oceanic and Planetary Physics; Sutton, R.T. [Oxford Univ. (United Kingdom). Atmospheric, Oceanic and Planetary Physics]|[Reading Univ. (United Kingdom). Dept. of Meteorology; Rowell, D.P. [Hadley Centre for Climate Prediction and Research, Bracknell (United Kingdom). Meteorological Office

    1998-05-04

    Decadal fluctuations in the climate of the North Atlantic/European region may be influenced by interactions between the atmosphere and the Atlantic ocean, possibly as part of a coupled ocean-atmosphere mode of variability. For such a mode to exist, a consistent atmospheric response to fluctuations in North Atlantic sea surface temperatures (SST) is required. Furthermore, this response must provide feedbacks to the ocean. Whether a consistent response exists, and whether it yields the required feedbacks, are issues that remain controversial. We address these issues using a novel approach to analyse an ensemble of six integrations of the Hadley Centre atmospheric general circulation model (HadAM1), all forced with observed SST and sea-ice extents for the period 1949-93. Characterising the forced atmospheric response is complicated by the presence of internal variability. We use a generalisation of principal component analysis to estimate the common forced response given the knowledge of internal variability provided by the ensemble. In the North Atlantic we identify a remote atmospheric response to El Ni no / southern oscillation (ENSO) and a further response related to a tripole pattern in North Atlantic SST. The latter, which is most consistent in spring, involves atmospheric circulation changes over the entire region, including a dipole pattern in sea level pressure often associated with the North Atlantic oscillation (NAO). Only over the tropical/subtropical Atlantic, however, does it account for a substantial fraction of the total variance. We investigate how the atmospheric response could feed back to affect the ocean, and in particular the SST tripole. 46 refs.

  5. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)

    Science.gov (United States)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2015-06-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  7. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    Science.gov (United States)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  8. Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2010-02-01

    Full Text Available In order to illustrate morphological features and variations of temperature in the upper thermosphere, we performed numerical simulations with a whole atmosphere general circulation model (GCM for the solar minimum and geomagnetically quiet conditions in March, June, September, and December. In previous GCMs, tidal effects were imposed at the lower boundaries assuming dominant diurnal and semi-diurnal tidal modes. Since the GCM used in the present study covers all the atmospheric regions, the atmospheric tides with various modes are generated within the GCM. The global temperature distributions obtained from the GCM are in agreement with ones obtained from NRLMSISE-00. In addition, the GCM also represents localised temperature structures which are superimposed on the global day-night distributions. These localised structures, which vary from hour to hour, would be observed as variations with periods of about 2–3 h at a single site. The amplitudes of the 2–3 h variations are significant at high-latitude, while the amplitudes are small at low-latitude. The diurnal temperature variation is more clearly identified at low-latitude than at high-latitude. When we assume the same high-latitude convection electric field in each month, the temperature calculated in the polar cap region shows diurnal variation more clearly in winter than in summer. The midnight temperature maximum (MTM, which is one of the typical low-latitude temperature structures, is also seen in the GCM results. The MTMs in the GCM results show significant day-to-day variation with amplitudes of several 10s to about 150 K. The wind convergence and stream of warm air are found around the MTM. The GCM also represent the meridional wind reversals and/or abatements which are caused due to local time variations of airflow pattern in the low-latitude region.

  9. Laser diagnostics on atmospheric-pressure low-temperature helium pulsed plasmas in room- and cryogenic-temperature environments

    Science.gov (United States)

    Sakakibara, Noritaka; Muneoka, Hitoshi; Urabe, Keiichiro; Yasui, Ryoma; Terashima, Kazuo

    2015-09-01

    In atmospheric-pressure low- temperature plasmas, the control of the plasma gas temperature (Tg) by a few kelvin is considered to be crucial for their applications to novel materials processing such as bio-materials. However, there have been only few studies that focused on the influence of Tg on the plasma characteristics. On the other hand, it was reported that helium metastables played a key role in the dependency of chemical reactions on Tg in helium-nitrogen plasmas. In this study, laser diagnostics were carried out in atmospheric-pressure helium pulsed plasmas near or below room temperature, at 340 -100 K. Parallel electrodes of copper rods (diameter: 2 mm) with a gap distance of 535 μm were used and pulsed discharges with a pulse width of a few hundred nanoseconds were generated inside a reactor. The density and lifetime of helium metastables were estimated by laser absorption spectroscopy measurements and Tg was evaluated by near-infrared laser heterodyne interferometry measurements. At 300 K, the helium metastable density was 1.5 × 1013 cm-3 while the lifetime was 3.1 μs, and increase in Tg was up to 70 K. Dependency of the density and lifetime of helium metastables on Tg was observed and also discussed.

  10. Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth

    Science.gov (United States)

    Trenberth, Kevin E.; Zhang, Yongxin; Fasullo, John T.; Taguchi, Shoichi

    2015-05-01

    The monthly global and regional variability in Earth's radiation balance is examined using correlations and regressions between atmospheric temperatures and water vapor with top-of-atmosphere outgoing longwave (OLR), absorbed shortwave (ASR), and net radiation (RT = ASR - OLR). Anomalous global mean monthly variability in the net radiation is surprisingly large, often more than ±1 W m-2, and arises mainly from clouds and transient weather systems. Relationships are strongest and positive between OLR and temperatures, especially over land for tropospheric temperatures, except in the deep tropics where high sea surface temperatures are associated with deep convection, high cold cloud tops and thus less OLR but also less ASR. Tropospheric vertically averaged temperatures (surface = 150 hPa) are thus negatively correlated globally with net radiation (-0.57), implying 2.18 ± 0.10 W m-2 extra net radiation to space for 1°C increase in temperature. Water vapor is positively correlated with tropospheric temperatures and thus also negatively correlated with net radiation; however, when the temperature dependency of water vapor is statistically removed, a significant positive feedback between water vapor and net radiation is revealed globally with 0.87 W m-2 less OLR to space per millimeter of total column water vapor. The regression coefficient between global RT and tropospheric temperature becomes -2.98 W m-2 K-1 if water vapor effects are removed, slightly less than expected from blackbody radiation (-3.2 W m-2 K-1), suggesting a positive feedback from clouds and other processes. Robust regional structures provide additional physical insights. The observational record is too short, weather noise too great, and forcing too small to make reliable estimates of climate sensitivity.

  11. Analytical design of sensors for measuring during terminal phase of atmospheric temperature planetary entry

    Science.gov (United States)

    Millard, J. P.; Green, M. J.; Sommer, S. C.

    1972-01-01

    An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.

  12. Corona discharge as a temperature probe of atmospheric air microwave plasma jet

    International Nuclear Information System (INIS)

    We developed and tested a new method for temperature measurements of near-LTE air plasmas at atmospheric pressure. This method is specifically suitable for plasmas at relatively low gas temperature (800-1700 K) with no appropriate radiation for direct spectroscopic temperature measurements. Corona discharge producing cold non-equilibrium plasma is employed as a source of excitation and is placed into the microwave plasma jet. The gas temperature of the microwave plasma jet is determined as the rotational temperature of N2* produced in the corona discharge. The corona probe temperature measurement was tested by the use of a thermocouple. We found a fairly good agreement between the two methods after correcting the thermocouple measured temperatures for radiative losses. The corona probe method can be generally applied to determine the temperature of the near-LTE plasmas and contrary to the thermocouple it can be used for higher plasma temperatures and is not affected by radiative losses and problems of interaction with the microwave plasma and electromagnetic fields.

  13. Dominant modes of Diurnal Temperature Range variability over Europe and their relationships with large-scale atmospheric circulation and sea surface temperature anomaly patterns

    OpenAIRE

    Ionita, Monica; Lohmann, Gerrit; Rimbu, Norel; Scholz, Patrick

    2012-01-01

    The relationships between the dominant modes of interannual variability of Diurnal Temperature Range (DTR) over Europe and large-scale atmospheric circulation and sea surface temperature anomaly fields are investigated through statistical analysis of observed and reanalysis data. It is shown that the dominant DTR modes as well as their relationship with large-scale atmospheric circulation and sea surface temperature anomaly fields are specific for each season. During winter the first and seco...

  14. Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1 type polymers

    OpenAIRE

    Galvan-Gonzalez, Adriana; Canva, Michael; Stegeman, George I.; Twieg, Robert; Kowalczyk, Tony C.; Lackritz, Hilary S.

    1999-01-01

    The photodegradation of the azobenzene chromophore DR1 {4-[N-ethyl-N-(2-hydroxyethyl)amino]-4'- nitroazobenzene]} incorporated as a side chain or as a guest in a poly(methyl) methacrylate host has been evaluated as a function of wavelength, temperature, and the atmospheric environment. The effects of these variables on the lifetime of DR1-based electro-optic devices is quantified

  15. Losses of arsenic during the low temperature ashing of atmospheric particulate samples

    International Nuclear Information System (INIS)

    Neutron activation and atomic absorption procedures have been used to study arsenic losses during low temperature ashing at power levels between 50 and 125 watts (RF). Losses of arsenic from ambient atmospheric particulate matter and various synthetic sea salt matrices containing known quantities of arsenic was observed. In general, the magnitude of arsenic losses by this treatment will depend on applied power levels and the physical and chemical properties of the arsenic sample matrix

  16. The measurement of the electron temperature in a spark discharge in air at atmospheric pressure

    International Nuclear Information System (INIS)

    The electron temperature in atmospheric pressure spark surface discharge was measured from the relative intensity ratio using several well-resolved atomic N I, N II, O II lines. The evaluated value is of 18 000 K. The repeated sparks were glowed by a pulsed high voltage source which restricted the are phase of sparks by appropriate low value of capacitors in voltage multiplier. (Authors)

  17. Temperatures at the last interglacial simulated by a coupled ocean-atmosphere climate model

    OpenAIRE

    Montoya Redondo, María Luisa; Crowley, Thomas J.; von Storch, Hans

    1998-01-01

    The last interglacial (Eemian, 125,000 years ago) has generally been considered the warmest time period in the last 200,000 years and thus sometimes been used as a reference for greenhouse projections. Herein we report results from a coupled ocean-atmosphere climate model of the surface temperature response to changes in the radiative forcing at the last interglacial. Although the model generates the expected summer warming in the northern hemisphere, winter cooling of a comparable magnitude ...

  18. Subseasonal temperature trends in Europe (1961-2000) and their links to atmospheric circulation

    Czech Academy of Sciences Publication Activity Database

    Cahynová, Monika; Pokorná, L.

    Brno: Global change research centre, Academy of Sciences of the Czech Republic, v. v. i, 2013 - (Stojanov, R.; Žalud, Z.; Cudlín, P.; Farda, A.; Urban, O.; Trnka, M.), s. 90-94 ISBN 978-80-904351-8-6. [ Global Change and Resilience. Brno (CZ), 22.05.2013-24.05.2013] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : air temperature * daily temperature range * trend * atmospheric circulation * classification Subject RIV: EH - Ecology, Behaviour

  19. Subseasonal temperature trends in Europe (1961-2000) and their links to atmospheric circulation

    Czech Academy of Sciences Publication Activity Database

    Cahynová, Monika; Pokorná, Lucie

    Brno: Global change research centre, Academy of Sciences of the Czech Republic, v. v. i, 2013 - (Stojanov, R.; Žalud, Z.; Cudlín, P.; Farda, A.; Urban, O.; Trnka, M.), s. 100-104 ISBN 978-80-904351-8-6. [ Global Change and Resilience. Brno (CZ), 22.05.2013-24.05.2013] R&D Projects: GA ČR(CZ) GPP209/12/P811 Institutional support: RVO:68378289 Keywords : air temperature * daily temperature range * trend * atmospheric circulation * classification Subject RIV: DG - Athmosphere Sciences, Meteorology

  20. Comment on "Scaling of atmosphere and ocean temperature correlations in observations and climate models"

    CERN Document Server

    Bunde, A; Havlin, S; Koscielny-Bunde, E; Schellnhuber, H J; Vjushin, D; Bunde, Armin; Eichner, Jan F.; Havlin, Shlomo; Koscielny-Bunde, Eva; Schellnhuber, Hans J.; Vjushin, Dmitry

    2003-01-01

    In a recent letter [K. Fraedrich and R. Blender, Phys. Rev. Lett. 90, 108501 (2003)], Fraedrich and Blender studied the scaling of atmosphere and ocean temperature. They analyzed monthly temperature records by using the detrended fluctuation analysis and claim that the scaling exponent alpha over the inner continents is equal to 0.5, being characteristic of uncorrelated random sequences. Here we show that also for the inner continents, the exponent is between 0.6 and 0.7, similar as for the coastline-stations.

  1. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    International Nuclear Information System (INIS)

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  2. High temperature reactions of WC-Co nanopowders in various atmospheres

    International Nuclear Information System (INIS)

    The melting of 30 nanometer size WC-6 w% and -15 w% Co particles, heated in hot chamber microscope under N2 atmosphere, was observed between 1130 oC and 1280 oC, i.e. under the equilibrium melting point of the WC-Co eutectics, 1320 oC. Such a dependence of the melting temperature of ultrafine particles on the grain size can be explained by Allen's model, or in case of a thin layer by a modified version of the model. At cooling, molten phases were observed down till 1190 oC, which shows the probability of chemical reactions occurred at high temperature, and the formation of compounds with lower melting points. Further experiments were carried out by heating the above samples in N2-1 v%CO and in N2-3,5 v%H2 atmospheres, in the chamber of the microscope. The samples were cooled down rapidly to room temperature, and the products were analyzed by x-ray diffractometry and by x-ray microanalysis. Several phases were found, which may help to describe possible solid-liquid-gas phase reactions between the components to be present either in the samples or in the atmosphere. (author)

  3. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    Science.gov (United States)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  4. The relationship between ozone formation and air temperature in the atmospheric surface layer

    Science.gov (United States)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  5. Highly efficient oxidation of silicon at low temperatures using atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Silicon oxide (SiO2) layers were formed with initial oxidation rates in the range of 6.2-14.1 nm/min in the temperature range of 150-400 deg. C by oxidizing Si(001) wafers. Such a high-rate and low-temperature oxidation was realized by using a stable glow He/O2 plasma excited at atmospheric pressure by a 150 MHz very high-frequency power. Increasing the temperature led to both the higher oxidation rate and the better quality of SiO2 and SiO2/Si interface. The oxidation at 400 deg. C showed an interface trap density of 6.2x1010 eV-1 cm-2, which is considerably lower than that in a radical oxidation process using low-pressure He/O2 plasma at the same temperature

  6. Interannual variability of the atmospheric CO2 growth rate: roles of precipitation and temperature

    Science.gov (United States)

    Wang, Jun; Zeng, Ning; Wang, Meirong

    2016-04-01

    The interannual variability (IAV) in atmospheric CO2 growth rate (CGR) is closely connected with the El Niño-Southern Oscillation. However, sensitivities of CGR to temperature and precipitation remain largely uncertain. This paper analyzed the relationship between Mauna Loa CGR and tropical land climatic elements. We find that Mauna Loa CGR lags precipitation by 4 months with a correlation coefficient of -0.63, leads temperature by 1 month (0.77), and correlates with soil moisture (-0.65) with zero lag. Additionally, precipitation and temperature are highly correlated (-0.66), with precipitation leading by 4-5 months. Regression analysis shows that sensitivities of Mauna Loa CGR to temperature and precipitation are 2.92 ± 0.20 PgC yr-1 K-1 and -0.46 ± 0.07 PgC yr-1 100 mm-1, respectively. Unlike some recent suggestions, these empirical relationships favor neither temperature nor precipitation as the dominant factor of CGR IAV. We further analyzed seven terrestrial carbon cycle models, from the TRENDY project, to study the processes underlying CGR IAV. All models capture well the IAV of tropical land-atmosphere carbon flux (CFTA). Sensitivities of the ensemble mean CFTA to temperature and precipitation are 3.18 ± 0.11 PgC yr-1 K-1 and -0.67 ± 0.04 PgC yr-1 100 mm-1, close to Mauna Loa CGR. Importantly, the models consistently show the variability in net primary productivity (NPP) dominates CGR, rather than heterotrophic respiration. Because previous studies have proved that NPP is largely driven by precipitation in tropics, it suggests a key role of precipitation in CGR IAV despite the higher CGR correlation with temperature. Understanding the relative contribution of CO2 sensitivity to precipitation and temperature has important implications for future carbon-climate feedback using such ''emergent constraint''.

  7. Analysis of the influence of temperature and atmosphere on the reduction process of ammonium and uranyl tricarbonate-AUC

    International Nuclear Information System (INIS)

    In this paper, the effect of temperature and atmosphere on the physical and chemical characteristcs of uranium dioxide powder produced from the reduction of AUC have been analysed. The chemical composition and the physical parameters (specific surface area, granulometry and loose density) are directly influenced by the temperature and atmosphere during the reduction of AUC. Uranium dioxide powders produced by direct reduction temperature range 500-8000C and by prior, calcination of AUC have been analysed. (Author)

  8. On the average temperature of airless spherical bodies and the magnitude of Earth’s atmospheric thermal effect

    OpenAIRE

    Volokin, Den; ReLlez, Lark

    2014-01-01

    The presence of atmosphere can appreciably warm a planet’s surface above the temperature of an airless environment. Known as a natural Greenhouse Effect (GE), this near-surface Atmospheric Thermal Enhancement (ATE) as named herein is presently entirely attributed to the absorption of up-welling long-wave radiation by greenhouse gases. Often quoted as 33 K for Earth, GE is estimated as a difference between planet’s observed mean surface temperature and an effective radiating temperature calcul...

  9. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Salama, Farid

    2013-01-01

    Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.

  10. Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change

    International Nuclear Information System (INIS)

    The historical contribution of each country to today’s observed atmospheric CO2 excess and higher temperatures has become a basis for discussions around burden-sharing of greenhouse gas reduction commitments in political negotiations. However, the accounting methods have considered greenhouse gas emissions only during the industrial era, neglecting the fact that land use changes (LUC) have caused emissions long before the Industrial Revolution. Here, we hypothesize that considering preindustrial LUC affects the attribution because the geographic pattern of preindustrial LUC emissions differs significantly from that of industrial-era emissions and because preindustrial emissions have legacy effects on today’s atmospheric CO2 concentrations and temperatures. We test this hypothesis by estimating CO2 and temperature increases based on carbon cycle simulations of the last millennium. We find that accounting for preindustrial LUC emissions results in a shift of attribution of global temperature increase from the industrialized countries to less industrialized countries, in particular South Asia and China, by up to 2–3%, a level that may be relevant for political discussions. While further studies are needed to span the range of plausible quantifications, our study demonstrates the importance of including preindustrial emissions for the most scientifically defensible attribution. (letter)

  11. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    Science.gov (United States)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both

  12. Gas temperature determination in microwave discharges at atmospheric pressure by using different Optical Emission Spectroscopy techniques

    International Nuclear Information System (INIS)

    Non-thermal plasmas sustained at atmospheric pressure are considered as a very promising technology for different purposes, in which the knowledge of the gas temperature is an important issue. In this paper, the gas temperatures of different argon microwave (2.45 GHz) plasma torches were determined by using different Optical Emission Spectroscopy techniques. Thus, they were estimated through the analysis of N2+(B-X) and OH(A-X) molecular spectra. On the other hand, a method based on the measurement of the van der Waals broadening of 588.99 nm Na I line was employed, and the temperatures obtained from it were compared to the rotational temperatures derived from N2+(B-X) and OH(A-X) rotational bands. A reasonable good agreement was found between the values of temperatures obtained by using the 588.99 nm Na I line and those obtained from N2+ rotational band. - Highlights: • We measured the gas temperatures of different 2.45 GHz plasmas. • We obtained the gas temperature from N2 and OH molecular spectra. • We compared with an alternative method using 588.99 and 589.59 nm Na I lines. • A very good agreement between the values of Tgas obtained was found. • Τhe alternative method could be very helpful in plasmas containing nitrogen

  13. Return glider radiosonde to measure temperature, humidity and radiation profiles through the atmosphere

    Science.gov (United States)

    Kraeuchi, Andreas; Philipona, Rolf

    2015-04-01

    Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.

  14. Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile

    Directory of Open Access Journals (Sweden)

    L. Remer

    2009-11-01

    Full Text Available Aerosols suspended in the atmosphere interact with solar radiation and clouds, thus change the radiation energy fluxes in the atmospheric column. In this paper we measure changes in the atmospheric temperature profile as a function of the smoke loading and the cloudiness, over the Amazon basin, during the dry seasons (August and September of 2005–2008. We show that as the aerosol optical depth (AOD increases from 0.02 to a value of ~0.6, there is a decrease of ~4°C at 1000 hPa, and an increase of ~1.5°C at 850 hPa. The warming of the aerosol layer at 850 hPa is likely due to aerosol absorption when the particles are exposed to direct illumination by the sun. The large values of cooling in the lower layers could be explained by a combination of aerosol extinction of the solar flux in the layers aloft together with an aerosol-induced increase of cloud cover which shade the lower atmosphere. We estimate that the increase in cloud fraction due to aerosol contributes about half of the observed cooling in the lower layers.

  15. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; Bernath, P. F.

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  16. Convective organization in the super-parameterized community atmosphere model with constant surface temperature

    Science.gov (United States)

    Kuang, Z.

    2015-12-01

    Organization in a moist convecting atmosphere is investigated using the super-parameterized community atmosphere model (SPCAM) in aquaplanet setting with constant surface temperature, with and without planetary rotation. Without radiative and surface feedbacks, convective organization is dominated by convectively coupled gravity waves without planetary rotation and convectively coupled equatorial waves when there is planetary rotation. This behavior is well captured when the cloud resolving model (CRM) in SPCAM is replaced by its linear response function, computed following Kuang (2010), for the state of radiative convective equilibrium (RCE). With radiative feedback, however, convection self-aggregates, and with planetary rotation, the tropical zonal wavenumber-frequency spectrum features a red noise background. These behaviors in the presence of the radiative feedback are not captured when the CRM is replaced by its linear response function around the RCE state with radiative feedback included in the construction. Implications to organization in a moist convecting atmosphere will be discussed. Kuang, Z., Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962, (2010)

  17. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations: Atmospheric Temperatures During Aerobraking and Science Phasing

    Science.gov (United States)

    Conrath, Barney J.; Pearl, John C.; Smith, Michael D.; Maguire, William C.; Christensen, Philip R.; Dason, Shymala; Kaelberer, Monte S.

    1999-01-01

    Between September 1997, when the Mars Global Surveyor spacecraft arrived at Mars, and September 1998 when the final aerobraking phase of the mission began, the Thermal Emission Spectrometer (TES) has acquired an extensive data set spanning approximately half of a Martian year. Nadir-viewing spectral measurements from this data set within the 15-micrometers CO2 absorption band are inverted to obtain atmospheric temperature profiles from the surface up to about the 0.1 mbar level. The computational procedure used to retrieve the temperatures is presented. Mean meridional cross sections of thermal structure are calculated for periods of time near northern hemisphere fall equinox, winter solstice, and spring equinox, as well as for a time interval immediately following the onset of the Noachis Terra dust storm. Gradient thermal wind cross sections are calculated from the thermal structure. Regions of possible wave activity are identified using cross sections of rms temperature deviations from the mean. Results from both near-equinox periods show some hemispheric asymmetry with peak eastward thermal winds in the north about twice the magnitude of those in the south. The results near solstice show an intense circumpolar vortex at high northern latitudes and waves associated with the vortex jet core. Warming of the atmosphere aloft at mid-northern latitudes suggests the presence of a strong cross-equatorial Hadley circulation. Although the Noachis dust storm did not become global in scale, strong perturbations to the atmospheric structure are found, including an enhanced temperature maximum aloft at high northern latitudes resulting from intensification of the Hadley circulation. TES results for the various seasonal conditions are compared with published results from Mars general circulation models, and generally good qualitative agreement is found.

  18. Experimental evaluation of ground-based microwave radiometric sensing of atmospheric temperature and water vapor profiles

    International Nuclear Information System (INIS)

    Profiles of atmospheric temperature and water vapor derived from ground-based microwave radiometric measurements are compared with concurrent rawinsonde profiles including both clear and cloudy cases. Accuracies of the temperature profiles including the cloudy cases are quite close to predicted accuracies. Mean virtual temperatures between commonly used pressure levels are also compared and resulting rms accuracies are 1.1, 1.6, 2.0 and 2.80C for the 1000--850, 850--700, 700--500 and 500--300 mb layers, respectively. The microwave technique is potentially useful in applications requiring high time resolution or in data-sparse regions of the oceans that might be covered by an ocean data buoy system

  19. Global atmospheric temperature monitoring with satellite microwave measurements - Method and results 1979-84

    Science.gov (United States)

    Spencer, Roy W.; Christy, John R.; Grody, Norman C.

    1990-01-01

    This paper describes a method for determining global atmospheric-temperature anomalies by means of satellite microwave radiometry. It is shown that microwave measurements of molecular oxygen thermal emission by the Microwave Sounding Units (MSUs) flying aboard the NOAA-6 and NOAA-7 can be used to monitor tropospheric temperature anomalies on global basis to a high level of precision. Comparisons between monthly MSU-derived hemispheric temperature anomalies with those computed from surface thermometer data show a very good agreement over the United States, although not for the hemispheres, especially the Southern Hemisphere. In this latter case, the poor agreement is ascribed to weaker thermal coupling between the ocean and the deep troposphere than that over the U.S. Annual anomalies for the hemispheres exhibit better correlations than do monthly anomalies.

  20. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    Science.gov (United States)

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines. PMID:19532147

  1. Radial Temperature Profile Measurements in a Microwave Plasma at Atmospheric Pressure

    Science.gov (United States)

    Green, K. M.; Borras, M. C.; Flores, G. J., III; Woskov, P. P.; Hadidi, K.; Thomas, P.

    1998-11-01

    Radial profile measurements of the electronic excitation and rotational temperature are obtained for a Microwave Plasma Continuous Emissions Monitor (MP-CEM). The MP-CEM, employed in monitoring trace metals in furnace exhausts using atomic emission spectroscopy, operates at atmospheric pressure with air as the working gas. An iron solution is introduced into the plasma, and the intensity of the atomic emission spectrum of the Fe I excited levels is measured. The relative intensities of these lines give the electronic excitation temperature. Rotational temperatures are obtained through molecular emission spectroscopy in nitrogen plasmas. To collect the profile measurements, an optical detection system equipped with a collimator lens scans the plasma. By applying Abel inversion techniques to the integrated signals from the scanned plasma chords, the radial temperature profile is determined. For a plasma maintained at 1.5 kW by a 2.45 GHz microwave source with an axial flow of 10 scfh and a swirl flow of 20 scfh, a core electronic excitation temperature in air of 5300 K ± 600 K is measured, and a rotational temperature in nitrogen of 5100 K ± 300 K has been determined.

  2. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    Science.gov (United States)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  3. Infrared Spectra of N_2-BROADENED 13CH_4 at Titan Atmospheric Temperatures

    Science.gov (United States)

    Smith, M. A. H.; Sung, K.; Brown, L. R.; Crawford, T. J.; Mantz, A. W.; Devi, V. Malathy; Benner, D. Chris

    2010-06-01

    High-resolution spectra of the ν_4 fundamental band of 13CH_4 broadened by N_2 at temperatures relevant to the atmosphere of Titan (80 K to 296 K) have been recorded using new temperature-controlled absorption cells installed in the sample compartment of a Bruker (IFS-125HR) Fourier Transform spectrometer (FTS) at the Jet Propulsion Laboratory (JPL). Details of the cells and spectrometer performance have been discussed in the previous talk. Early analysis of these spectra using multispectrum fitting has determined half widths, pressure-induced shifts, line mixing parameters and their temperature dependences for R-branch transitions from R(0) through R(6). In addition to the initial R(2) study mentioned in the previous talk, the analysis for the other J-manifolds examined in detail whether or not the N_2-broadened half width coefficients follow the simple power-law temperature-dependence over the entire temperature range from 80 K to 296 K. The results are compared with other published measurements of N_2-broadened methane parameters at low temperatures. A. W. Mantz et al., Closed-cycle He-cooled absorption cells designed for a Bruker IFS-125HR: First results between 79 K and 297 K, this session. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  4. Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics: revised

    International Nuclear Information System (INIS)

    This study investigates the influence of a major solar proton event (SPE) similar to the Carrington event of 1–2 September 1859 by means of the 3D chemistry climate model (CCM) SOCOL v2.0. Ionization rates were parameterized according to CRAC:CRII (Cosmic Ray-induced Atmospheric Cascade: Application for Cosmic Ray Induced Ionization), a detailed state-of-the-art model describing the effects of SPEs in the entire altitude range of the CCM from 0 to 80 km. This is the first study of the atmospheric effect of such an extreme event that considers all the effects of energetic particles, including the variability of galactic cosmic rays, in the entire atmosphere. We assumed two scenarios for the event, namely with a hard (as for the SPE of February 1956) and soft (as for the SPE of August 1972) spectrum of solar particles. We have placed such an event in the year 2020 in order to analyze the impact on a near future atmosphere. We find statistically significant effects on NOx, HOx, ozone, temperature and zonal wind. The results show an increase of NOx of up to 80 ppb in the northern polar region and an increase of up to 70 ppb in the southern polar region. HOx shows an increase of up to 4000%. Due to the NOx and HOx enhancements, ozone reduces by up to 60% in the mesosphere and by up to 20% in the stratosphere for several weeks after the event started. Total ozone shows a decrease of more than 20 DU in the northern hemisphere and up to 20 DU in the southern hemisphere. The model also identifies SPE induced statistically significant changes in the surface air temperature, with warming in the eastern part of Europe and Russia of up to 7 K for January. (letter)

  5. FUSE observations of intermediate temperature DA: Atmospheric parameters and metal abundances

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, J [Agence Spatiale Canadienne, 6767 Route de l' Aeroport, Longueuil, Quebec J3Y 8Y9 (Canada); Henault-Brunet, V [Departement de Physique, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7 (Canada); Chayer, P [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Vennes, S [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Kruk, J W, E-mail: jean.dupuis@asc-csa.gc.c, E-mail: henault@astro.umontreal.c, E-mail: chayer@ststci.ed, E-mail: svennes@fit.ed, E-mail: kruk@pha.jhu.ed [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States)

    2009-06-01

    We present results from our analysis of a sample of DA white dwarfs having effective temperature below 25,000 K observed with the FUSE satellite with the goals of better understanding the origin of metals detected in the atmosphere of these stars. When possible, we combine the FUSE spectra with the IUE spectra and determine atmospheric parameters by fitting the Lyman line profiles. In general we find a good agreement with published values based on fits of the Balmer series. We observe that the continuum in the blue wing of the Lyman alpha line profile is generally lower in comparison with model spectra and that the discrepancy appears to become less important at higher effective temperature. The agreement between models and observations is excellent at wavelengths shorter than 1100 A, which gives us confidence in the determination of atmospheric parameters. Finally, using adopted atmospheric parameters; we have performed a detailed analysis of the composition of these stars. In several instances, we have observed the presence of silicon and in one case that of carbon. For each star in the sample we have either measured or set an upper limit on the presence of key species such as CII, CIII, SiIII, and SiIV. We then compare the measured abundances with equilibrium abundance predicted by radiative levitation theory for each star. In this limited sample, we find that when detected, the abundance of silicon is in good agreement with theory. However there are several cases where the upper limits are smaller than the predictions and one case where it is considerably larger.

  6. FUSE observations of intermediate temperature DA: Atmospheric parameters and metal abundances

    International Nuclear Information System (INIS)

    We present results from our analysis of a sample of DA white dwarfs having effective temperature below 25,000 K observed with the FUSE satellite with the goals of better understanding the origin of metals detected in the atmosphere of these stars. When possible, we combine the FUSE spectra with the IUE spectra and determine atmospheric parameters by fitting the Lyman line profiles. In general we find a good agreement with published values based on fits of the Balmer series. We observe that the continuum in the blue wing of the Lyman α line profile is generally lower in comparison with model spectra and that the discrepancy appears to become less important at higher effective temperature. The agreement between models and observations is excellent at wavelengths shorter than 1100 A, which gives us confidence in the determination of atmospheric parameters. Finally, using adopted atmospheric parameters; we have performed a detailed analysis of the composition of these stars. In several instances, we have observed the presence of silicon and in one case that of carbon. For each star in the sample we have either measured or set an upper limit on the presence of key species such as CII, CIII, SiIII, and SiIV. We then compare the measured abundances with equilibrium abundance predicted by radiative levitation theory for each star. In this limited sample, we find that when detected, the abundance of silicon is in good agreement with theory. However there are several cases where the upper limits are smaller than the predictions and one case where it is considerably larger.

  7. Temperature dependence of the rate coefficient for charge exchange of metastable O/+//2D/ with N2. [in atmosphere

    Science.gov (United States)

    Torr, M. R.; Torr, D. G.

    1980-01-01

    Using a data base of aeronomical parameters measured on board the Atmosphere Explorer-C satellite, temperature dependence of the reaction rate coefficient is deduced for the charge exchange of O(+)(2D) with N2. The results indicate the Explorer values determined over the temperature range from 700 to 1900 K are not in conflict with laboratory measurements made at higher temperatures.

  8. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  9. Climate-Induced Variability of Sea Level in Stockholm: Influence of Air Temperature and Atmospheric Circulation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift is removed, the residual is characterized and related to large-scale temperature and atmospheric circulation. The residual shows an overall upward trend, although this result depends on the uplift rate used. However, the seasonal distribution of the trend is uneven. There are even two months (June and August) that show a negative trend. The significant trend in August may be linked to fresh water input that is controlled by precipitation. The influence of the atmospheric conditions on the sea level is mainly manifested through zonal winds, vorticity and temperature. While the wind is important in the period January-May, the vorticity plays a main role during June and December. A successful linear multiple-regression model linking the climatic variables (zonal winds, vorticity and mean air temperature during the previous two months) and the sea level is established for each month. An independent verification of the model shows that it has considerable skill in simulating the variability.

  10. Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics

    Directory of Open Access Journals (Sweden)

    M. Calisto

    2012-06-01

    Full Text Available We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1–2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOx have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60–80% in the mesosphere during the days after the event, and by up to 20–40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3 K and zonal winds change significantly by 3–5 m s−1 in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.

  11. Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics

    Directory of Open Access Journals (Sweden)

    M. Calisto

    2012-09-01

    Full Text Available We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1–2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOx have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60–80% in the mesosphere during the days after the event, and by up to 20–40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3 K and zonal winds change significantly by 3–5 m s−1 in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.

  12. Limitations When Using Proxies of Atmospheric Circulation to Infer Regional Temperature

    Science.gov (United States)

    Kelsey, E. P.; Wake, C. P.; Osterberg, E. C.; Kreutz, K. J.

    2011-12-01

    One objective of ice core paleoclimatology is to reconstruct past variability of climate parameters such as surface air temperature. Stable isotope ratios of ice cores collected from some locations can be used with confidence to reconstruct regional air temperature. Other glaciochemical records (e.g., major ions) have been used as proxies for regional atmospheric circulation patterns, including the Arctic Oscillation and Pacific-North American pattern, typically based on the strength of semi-permanent sea level pressure centers such as the Icelandic Low and Aleutian Low. The Arctic Oscillation and Pacific North American pattern are associated with regional air temperature anomalies, and consequently ice core proxies of these circulation patterns could be used to infer paleotemperature patterns. However, detailed analysis of the 20th Century Reanalysis dataset (1871-2008) for the Northern Hemisphere winter suggests that these atmospheric circulation patterns do not always result in the same regional air temperature anomalies. A principal component analysis of detrended and area-weighted winter (December-March) temperature and sea level pressure was performed, and the leading eigenmodes were compared, along with the winter mean positions of the Icelandic and Aleutian Lows. Robust results based on multiple statistical analyses were obtained only when the extreme seasonal values of these variables were examined. Although statistically significant results were obtained when looking at temperature patterns associated with specific sea level pressure patterns and the positions of the Icelandic and Aleutian Lows, more consistent relationships were found when examining sea level pressure patterns associated with the leading eigenmodes of temperature. The seasons of extreme eigenvalues of the leading temperature eigenmodes are associated with mean positions of the Icelandic and Aleutian Lows at climatologically extreme north/south and west/east locations, respectively

  13. On the '-1' scaling of air temperature spectra in atmospheric surface layer flows

    Science.gov (United States)

    Li, D.; Katul, G. G.; Gentine, P.

    2015-12-01

    The spectral properties of scalar turbulence at high wavenumbers have been extensively studied in turbulent flows, and existing theories explaining the k-5/3 scaling within the inertial subrange appear satisfactory at high Reynolds numbers. Equivalent theories for the low wavenumber range have been comparatively lacking because boundary conditions prohibit attainment of such universal behavior. A number of atmospheric surface layer (ASL) experiments reported a k-1 scaling in air temperature spectra ETT(k) at low wavenumbers but other experiments did not. Here, the occurrence of a k-1 scaling in ETT(k) in an idealized ASL flow across a wide range of atmospheric stability regimes is investigated theoretically and experimentally. Experiments reveal a k-1 scaling persisted across different atmospheric stability parameter values (ζ) ranging from mildly unstable to mildly stable conditions (-0.1budget models and upon using a Heisenberg eddy viscosity as a closure to the spectral flux transfer term, conditions promoting a k-1 scaling are identified. Existence of a k-1 scaling is shown to be primarily linked to an imbalance between the production and dissipation rates of half the temperature variance. The role of the imbalance between the production and dissipation rates of half the temperature variance in controlling the existence of a '-1' scaling suggests that the '-1' scaling in ETT(k) does not necessarily concur with the '-1' scaling in the spectra of longitudinal velocity Euu(k). This finding explains why some ASL experiments reported k-1 in Euu(k) but not ETT(k). It also differs from prior arguments derived from directional-dimensional analysis that lead to simultaneous k-1 scaling in Euu(k) and ETT(k) at low wavenumbers in a neutral ASL.

  14. Mechanical characterisation of tungsten–1 wt.% yttrium oxide as a function of temperature and atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, T.; Jiménez, A. [Materials Science Department, Technical University of Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, C/Profesor Aranguren s/n, 28040 Madrid (Spain); Muñóz, A.; Monge, M.A.; Ballesteros, C. [Departamento de Física, Universidad Carlos III de Madrid, Leganés (Spain); Pastor, J.Y. [Materials Science Department, Technical University of Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, C/Profesor Aranguren s/n, 28040 Madrid (Spain)

    2014-11-15

    This study evaluates the mechanical behaviour of an Y{sub 2}O{sub 3}-dispersed tungsten (W) alloy and compares it to a pure W reference material. Both materials were processed via mechanical alloying (MA) and subsequent hot isostatic pressing (HIP). We performed non-standard three-point bending (TPB) tests in both an oxidising atmosphere and vacuum across a temperature range from 77 K, obtained via immersion in liquid nitrogen, to 1473 K to determine the mechanical strength, yield strength and fracture toughness. This research aims to evaluate how the mechanical behaviour of the alloy is affected by oxides formed within the material at high temperatures, primarily from 873 K, when the materials undergo a massive thermal degradation. The results indicate that the alloy is brittle to a high temperature (1473 K) under both atmospheres and that the mechanical properties degrade significantly above 873 K. We also used Vickers microhardness tests and the dynamic modulus by impulse excitation technique (IET) to determine the elastic modulus at room temperature. Moreover, we performed nanoindentation tests to determine the effect of size on the hardness and elastic modulus; however, no significant differences were found. Additionally, we calculated the relative density of the samples to assess the porosity of the alloy. Finally, we analysed the microstructure and fracture surfaces of the tested materials via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In this way, the relationship between the macroscopic mechanical properties and micromechanisms of failure could be determined based on the temperature and oxides formed.

  15. An estimate of the impact of transient luminous events on the atmospheric temperature

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2008-09-01

    Full Text Available We present an order of magnitude estimate of the impact of sprites and other transient luminous events (TLEs on the atmospheric temperature via ozone changes. To address the effects of expected TLE-ozone changes of at most a few percent, we first study the linearity of the radiatively driven response of a stratosphere-mesosphere model and of a general circulation model (GCM to a range of uniform climatological ozone perturbations. The study is limited to Northern Hemisphere winter conditions, when planetary wave activity is high and the non linear stratosphere-troposphere coupling can be strong. Throughout most of the middle atmosphere of both models, the radiatively driven temperature response to uniform 5% to 20% ozone perturbations shows a close-to linear relationship with the magnitude of the perturbation. A mid-latitude stratopause ozone perturbation is then imposed as an idealised experiment that mimics local temperature gradients introduced by the latitudinal dependence of TLEs. An unrealistically high 20% magnitude is adopted for the regional ozone perturbation to obtain statistical significance in the model response. The local linearity of the radiatively driven response is used to infer a first order estimate of TLE-induced temperature changes of the order of 0.015 K under typical conditions, and less than a peak temperature change of 0.3 K at 60–70 km height in coincidence of extraordinarily active TLE-producing thunderstorms before horizontal mixing quickly occurs. In the latter case, dedicated mesoscale modelling is needed to study the relevance of regional non linear processes which are expected to impact these radiatively driven responses.

  16. On the quality of MIPAS kinetic temperature in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2011-08-01

    Full Text Available The kinetic temperature and line of sight elevation information are retrieved from the MIPAS Middle Atmosphere (MA, Upper Atmosphere (UA and NoctiLucent-Cloud (NLC modes of high spectral resolution limb observations of the CO2 15 μm emission using the dedicated IMK/IAA retrieval algorithm, which considers non-local thermodynamic equilibrium conditions. These variables are accurately derived from about 20 km (MA and 40 km (UA and NLC to 105 km globally and both at daytime and nighttime. Typical temperature random errors are smaller than 0.5 K below 50 km, 0.5–2 K at 50–70 km, and 2–8 K above. The systematic error is typically 1 K below 70 km, 1–3 K from 70 to 85 km and 3–11 K from 85 to 100 km. The average vertical resolution is typically 4 km below 35 km, 3 km at 35–50 km, 4–6 km at 50–90 km, and 6–10 km above. We compared our MIPAS temperature retrievals from 2005 to 2009 with co-located ground-based measurements from the lidars located at the Table Mountain Facility and Mauna Loa Observatory, the SATI spectrograph in Granada (Spain and the Davis station spectrometer, and satellite observations from ACE-FTS, Aura-MLS and TIMED-SABER from 20 km to 100 km. We also compared MIPAS temperatures with the high latitudes climatology from falling sphere measurements. The comparisons show very good agreement, with differences smaller than 3 K below 85–90 km in mid-latitudes. Differences over the poles in this altitude range are larger but can be generally explained in terms of known biases of the other instruments. The comparisons above 90 km worsen and MIPAS retrieved temperatures are always larger than other instrument measurements.

  17. On the quality of MIPAS kinetic temperature in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2012-07-01

    Full Text Available The kinetic temperature and line of sight elevation information are retrieved from the MIPAS Middle Atmosphere (MA, Upper Atmosphere (UA and NoctiLucent-Cloud (NLC modes of high spectral resolution limb observations of the CO2 15 μm emission using the dedicated IMK/IAA retrieval algorithm, which considers non-local thermodynamic equilibrium conditions. These variables are accurately derived from about 20 km (MA and 40 km (UA and NLC to 105 km globally and both at daytime and nighttime. Typical temperature random errors are smaller than 0.5 K below 50 km, 0.5–2 K at 50–70 km, and 2–7 K above. The systematic error is typically 1 K below 70 km, 1–3 K from 70 to 85 km and 3–11 K from 85 to 100 km. The average vertical resolution is typically 4 km below 35 km, 3 km at 35–50 km, 4–6 km at 50–90 km, and 6–10 km above. We compared our MIPAS temperature retrievals from 2005 to 2009 with co-located ground-based measurements from the lidars located at the Table Mountain Facility and Mauna Loa Observatory, the SATI spectrograph in Granada (Spain and the Davis station spectrometer, and satellite observations from ACE-FTS, Aura-MLS and TIMED-SABER from 20 km to 100 km. We also compared MIPAS temperatures with the high latitudes climatology from falling sphere measurements. The comparisons show very good agreement, with differences smaller than 3 K below 85–90 km in mid-latitudes. Differences over the poles in this altitude range are larger but can be generally explained in terms of known biases of the other instruments. The comparisons above 90 km worsen and MIPAS retrieved temperatures are always larger than other instrument measurements.

  18. Observation of semiannual and annual oscillation in equatorial middle atmospheric long term temperature pattern

    OpenAIRE

    A. Guharay; D. Nath; Pant, P.; B. Pande; Russell, J.M.; Pandey, K

    2009-01-01

    Extensive measurement of middle atmospheric temperature with the help of lidar data of more than 10 years (1998–2008) and TIMED/SABER data of 7 years (2002–2008), has been carried out from a low latitude station, Gadanki, India (13.5° N, 79.2° E), which exhibits the presence of semiannual oscillation (SAO) and annual oscillation (AnO). The AnO component is stronger in the mesospheric region (80–90 km) and the SAO is dominant at stratospheric altitudes (30–50 km). Overall, the ...

  19. Electron Density and Temperature Measurements, and Abundance Anomalies in the Solar Atmosphere

    Indian Academy of Sciences (India)

    Anita Mohan; Bhola N. Dwivedi; Enrico Landi

    2000-09-01

    Using spectra obtained from the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) spectrograph on the spacecraft SOHO (Solar and Heliospheric Observatory), we investigate the height dependence of electron density, temperature and abundance anomalies in the solar atmosphere. In particular, we present the behaviour of the solar FIP effect (the abundance enhancement of elements with first ionization potential < 10 eV in the corona with respect to photospheric values) with height above an active region observed at the solar limb, with emphasis on the so-called transition region lines.

  20. Surface modification of non-fabricated polypropylene textile in low-temperature plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    The plasma activation of polypropylene (PP) non-fabricated textile in low temperature plasma at atmospheric pressure has been studied. The aim of the present work was the study of the surface modification of non-fabricated textiles in order to improve their hydrophilic properties. The surface treatment has been provided by nonequilibrium discharges as barrier discharge and surface discharge. The surface properties have been characterized by measuring the contact angle of PP textiles with liquid, standard industrial permeability measurements and absorption tests. The degradation of treated PP samples has also been studied. (author)

  1. Pure rotational Raman lidar for the measurement of vertical profiles of temperature in the lower atmosphere

    Science.gov (United States)

    Satyanarayana, M.; Radhakrishnan, S. R.; Presennakumar, B.; Murty, V. S.; Bindhu, R.

    2006-12-01

    The design and development of the new Raman lidar of the Space Physics Laboratory, Vikram Sarabhai Space Centre is presented here. This station is located at 8 degrees 33 minutes N, 77 degrees E in India. This lidar can monitor atmospheric temperature (using Pure Rotational Raman Spectrum), aerosol extinction coefficient, water vapor profile and clouds. Advantages of Pure Rotational Raman method over Vibrational Raman method are presented with the result obtained using Vibrational Raman lidar. Optical layout of the lidar system, PRRS method and aerosol extinction measurements are described briefly.

  2. A case study of multi-annual temperature oscillations in the atmosphere: Middle Europe

    Science.gov (United States)

    Offermann, D.; Goussev, O.; Kalicinsky, Ch.; Koppmann, R.; Matthes, K.; Schmidt, H.; Steinbrecht, W.; Wintel, J.

    2015-12-01

    SABER temperature measurements from 2002 to 2012 are analyzed from 18 to 110 km altitude in Middle Europe. Data are complemented by radiosonde measurements in the altitude range from 0 to 30 km. Low frequency oscillations with periods of about 2.4-2.2 yr, 3.4 yr, and 5.5 yr are seen in either data set. Surprising vertical structures in amplitudes and phases are observed with alternating minima and maxima of amplitudes, steep phase changes (180°) at the altitudes of the minima, and constant phase values in between. HAMMONIA CCM simulations driven by boundary conditions for the years 1996-2006 are analyzed for corresponding features, and very similar structures are found. Data from another CCM, the CESM-WACCM model, are also analyzed and show comparable results. Similar oscillation periods have been reported in the literature for the ocean. A possible forcing of the atmospheric oscillations from below was therefore tested with a special HAMMONIA run. Here, climatological boundary conditions were used, i.e. the boundaries in all eleven years were the same. Surprisingly also in this data set the same atmospheric oscillations are obtained. We therefore conclude that the oscillations are intrinsically forced, self-sustained in the atmosphere. The oscillations turned out to be quite robust as they are still found in a HAMMONIA run with strongly reduced vertical resolution. Here only the form of the vertical amplitude and phase profile of the 2.2 yr feature is lost but the oscillation itself is still there, and the two other oscillations are essentially unchanged. Similar oscillations are seen in the earth surface temperatures. Global Land Ocean Temperature Index data (GLOTI) reaching back to 1880 show such oscillations during all that time. The oscillations are also seen in parameters other than atmospheric temperature. They are found in surface data such as the North Atlantic Oscillation Index (NAO) and in zonal winds in the troposphere and lower stratosphere. The

  3. Comparison of Temperature Measurements in the Middle Atmosphere by Satellite with Profiles Obtained by Meteorological Rockets

    Science.gov (United States)

    Goldberg, Richard A.; Schmidlin, Francis J.; Feofilov, Artem; Bedrick, M.; Rose, R. Lynn

    2012-01-01

    Measurements using the inflatable falling sphere technique have occasionally been used to obtain temperature results from density data and thereby provide comparison with temperature profiles obtained by satellite sounders in the mesosphere and stratosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within seconds of the nearly overhead satellite pass. Sphere measurements can be used to validate remotely measured temperatures but also have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres available (the manufacture of these systems has been discontinued), it may be time to consider whether the remote measurements are mature enough to stand alone. Three field studies are considered, one in 2003 from Northern Sweden, and two in 2010 from the vicinity of Kwajalein Atoll in the South Pacific and from Barking Sands, Hawaii. All three sites are used to compare temperature retrievals between satellite and in situ falling spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for detailed studies in space and time, compare sufficiently well to be highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less frequently. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to those obtained from the falling sphere, thereby providing a reliable measure of global temperature

  4. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere.

    Science.gov (United States)

    Makowska, Małgorzata G; Theil Kuhn, Luise; Cleemann, Lars N; Lauridsen, Erik M; Bilheux, Hassina Z; Molaison, Jamie J; Santodonato, Louis J; Tremsin, Anton S; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components. PMID:26724075

  5. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Makowska, Małgorzata G., E-mail: malg@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Theil Kuhn, Luise; Cleemann, Lars N. [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); Lauridsen, Erik M. [Xnovo Technology ApS, Galoche Alle 15, Køge 4600 (Denmark); Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tremsin, Anton S. [Space Sciences Laboratory, University of California at Berkeley, Berkeley, California 94720 (United States); Grosse, Mirco [Institute for Applied Material Research, Karlsruhe Institute of Technology, Karlsruhe DE-76021 (Germany); Morgano, Manuel [Paul Scherrer Institut, Villigen PSI CH-5232 (Switzerland); Kabra, Saurabh [ISIS, Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom); Strobl, Markus [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  6. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    International Nuclear Information System (INIS)

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components

  7. Thermodynamic analysis of chemical stability of ceramic materials in hydrogen-containing atmospheres at high temperatures

    Science.gov (United States)

    Misra, Ajay K.

    1990-01-01

    The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.

  8. Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen Guangliang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: glchen@zstu.edu.cn; Chen Shihua [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States); Feng Wenran [Department of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Chen Wenxing [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yang Size [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-04-30

    Using hexamethyldisiloxane (HMDSO) monomer, the magnetic nanoparticles (NPs) of nickel oxide (NiO) were modified by using an atmospheric room-temperature plasma fluidized bed (ARPFB). The plasma gas temperature of the ARPFB was not higher than 325 K, which was favorable for organic polymerization. The plasma optical emission spectrum (OES) of the gas mixture consisting of argon (Ar) and HMDSO was recorded by a UV-visible monochromator. The as-treated NPs were characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that the assembling NPs were isolated greatly after modified by the organosilicon polymer. Moreover, this treatment process changed the wettability of the NPs from super-hydrophilicity to super-hydrophobicity, and the contact angle (CA) of water on the modified NPs surface exceeded 150 deg. Therefore, the ARPFB is a prospective technology for the NPs surface modification according to the different requirements.

  9. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DEFF Research Database (Denmark)

    Makowska, Malgorzata G.; Kuhn, Luise Theil; Cleemann, Lars Nilausen;

    2015-01-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible...... with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 ◦C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging...... with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of...

  10. Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents

    Science.gov (United States)

    Cortesi, Ugo; Del Bianco, Samuele; Ceccherini, Simone; Gai, Marco; Dinelli, Bianca Maria; Castelli, Elisa; Oelhaf, Hermann; Woiwode, Wolfgang; Höpfner, Michael; Gerber, Daniel

    2016-05-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote sounding and increasing attention is devoted to investigate optimized or innovative methods for the combination of two or more measured data sets. This paper focuses on the synergy between middle infrared and millimeter-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation) mission candidate to the Core Missions of the European Space Agency (ESA) Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments on-board the high-altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden, for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O3, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inversion of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inversion of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori

  11. Synergy between middle infrared and millimetre-wave limb sounding of atmospheric temperature and minor constituents

    Science.gov (United States)

    Cortesi, U.; Del Bianco, S.; Ceccherini, S.; Gai, M.; Dinelli, B. M.; Castelli, E.; Oelhaf, H.; Woiwode, W.; Höpfner, M.; Gerber, D.

    2015-11-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote-sounding and increasing attention is devoted to investigate optimised or innovative methods for the combination of two or more measured data sets. This paper is focusing on the synergy between middle infrared and millimetre-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimetre wave Emitted Radiation) mission candidate to the Core Missions of ESA Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments onboard the high altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O2, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inverse processing of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inverse processing of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori information (L1

  12. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  13. High temperature corrosion in chloridizing atmospheres: development of material quasi-stability diagrams and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, S.; Schuetze, M. [Karl-Winnacker-Institut der DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2004-07-01

    Chlorine gas is widely encountered in chemical industries, e. g. in waste incinerators and plastic/polymer decomposition mills. The presence of chlorine may significantly reduce the life-time of the components. Although metallic materials have been widely used under such conditions there is still a need for data on the role of the different alloying elements in commercial alloys. The purpose of this work is to produce a clear picture of which alloying elements play a detrimental role and which elements are beneficial. These results can be used as a tool for general assessment of metallic alloys with regard to their performance in chloridizing high temperature environments. A previous study has already been performed in oxidizing-chloridizing atmospheres and led to the elaboration of material quasi-stability diagrams. As a follow-up the present work has been performed in reducing-chloridizing atmospheres in order to validate these diagrams at low partial pressures of oxygen. The behaviour of 9 commercial materials where the content of the major alloying elements was varied in a systematic manner was investigated in reducing-chloridizing atmospheres (in Ar containing up to 2 vol.% Cl{sub 2} and down to 1 ppm O{sub 2}) at 800 deg. C. As the thermodynamical approach to corrosion in such atmospheres could not explain all the phenomena which occur, kinetics calculations i.e. diffusion calculations were carried out. Pack cementation and High Velocity Oxy-Fuel (HVOF) coatings were also developed from the best alloying elements previously found by the calculations and the corrosion experiments. Corrosion tests on the coated materials were then performed in the same conditions as the commercial alloys. (authors)

  14. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    Science.gov (United States)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  15. Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation

    Science.gov (United States)

    Meinvielle, M.; Brankart, J.-M.; Brasseur, P.; Barnier, B.; Dussin, R.; Verron, J.

    2013-10-01

    In ocean general circulation models, near-surface atmospheric variables used to specify the atmospheric boundary condition remain one of the main sources of error. The objective of this research is to constrain the surface forcing function of an ocean model by sea surface temperature (SST) data assimilation. For that purpose, a set of corrections for ERAinterim (hereafter ERAi) reanalysis data is estimated for the period of 1989-2007, using a sequential assimilation method, with ensemble experiments to evaluate the impact of uncertain atmospheric forcing on the ocean state. The control vector of the assimilation method is extended to atmospheric variables to obtain monthly mean parameter corrections by assimilating monthly SST and sea surface salinity (SSS) climatological data in a low resolution global configuration of the NEMO model. In this context, the careful determination of the prior probability distribution of the parameters is an important matter. This paper demonstrates the importance of isolating the impact of forcing errors in the model to perform relevant ensemble experiments. The results obtained for every month of the period between 1989 and 2007 show that the estimated parameters produce the same kind of impact on the SST as the analysis itself. The objective is then to evaluate the long-term time series of the forcing parameters focusing on trends and mean error corrections of air-sea fluxes. Our corrections tend to equilibrate the net heat-flux balance at the global scale (highly positive in ERAi database), and to remove the potentially unrealistic negative trend (leading to ocean cooling) in the ERAi net heat flux over the whole time period. More specifically in the intertropical band, we reduce the warm bias of ERAi data by mostly modifying the latent heat flux by wind speed intensification. Consistently, when used to force the model, the corrected parameters lead to a better agreement between the mean SST produced by the model and mean SST

  16. Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation

    Directory of Open Access Journals (Sweden)

    M. Meinvielle

    2012-07-01

    Full Text Available In ocean general circulation models, near surface atmospheric variables used to specify the atmospheric remain one of the main sources of error. The objective of this research is to constrain the surface forcing function of an ocean model by Sea Surface Temperature (SST data assimilation. For that purpose, a set of corrections for ERAinterim (hereafter ERAi reanalysis data is estimated for the period from 1989 to 2007 using a sequential assimilation method, with ensemble experiments to evaluate the impact of uncertain atmospheric forcing on the ocean state. The control vector of the assimilation method is extended to atmospheric variables to obtain monthly mean parameter corrections by assimilating monthly SST and Sea Surface Salinity (SSS climatological data in a low resolution global configuration of the NEMO model. In this context, the careful determination of the prior probability distribution of the parameters is an important matter. This paper demonstrates the importance of isolating the impact of forcing errors in the model to perform relevant ensemble experiments.

    The results obtained for every month of the period between 1989 and 2007 show that the estimated parameters produce the same kind of impact on the SST as the analysis itself. The objective is then to evaluate the long term time-series of the forcing parameters focusing on trends and mean error corrections of air-sea fluxes. Our corrections tend to equilibrate the net heat flux balance at the global scale (highly positive in ERAi database, and to remove the potentially unrealistic negative trend (leading to ocean cooling in the ERAi net heat flux over the whole time period. More specifically in the intertropical band, we reduce the warm bias of ERAi data by mostly modifying the latent heat flux by wind velocity intensification. Consistently, when used to force the model, the corrected parameters lead to a better agreement between the mean SST produced by the model and

  17. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Science.gov (United States)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  18. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  19. Neptunium oxide precipitation kinetics in aqueous systems at elevated temperatures. Part I: Colloidal, temperature, inert atmosphere, and ionic strength measurements

    International Nuclear Information System (INIS)

    We evaluate the proposed NpO2+(aq)-NpO2(cr) reduction-precipitation system at elevated temperatures to obtain primary information on the effects of temperature, ionic strength, O2 and CO2. Experiments conducted on unfiltered solutions at 10-4 M NpO2+(aq), neutral pH, and 200 C indicated that solution colloids strongly affect precipitation kinetics. Subsequent experiments on filtered solutions at 200, 212, and 225 C showed consistent and distinctive temperature-dependent behavior at reaction times (le) 800 hours. At longer times, the 200 C experiments showed unexpected dissolution of neptunium solids, but experiments at 212 C and 225 C demonstrated quasi steady-state neptunium concentrations of 3 x 10-6 M and 6 x 10-6 M, respectively. Solids from a representative experiment analyzed by X-ray diffraction were consistent with NpO2(cr). A 200 C experiment with a NaCl concentration of 0.05 M showed a dramatic increase in the rate of neptunium loss. A 200 C experiment in an argon atmosphere resulted in nearly complete loss of aqueous neptunium. Previously proposed NpO2+(aq)-NpO2(cr) reduction-precipitation mechanisms in the literature specified a 1:1 ratio of neptunium loss and H+ production in solution over time. However, all experiments demonstrated ratios of approximately 0.4 to 0.5. Carbonate equilibria can account for only about 40% of this discrepancy, leaving an unexpected deficit in H+ production that suggests that additional chemical processes are occurring.

  20. Tuning phase transition temperature of VO2 thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    A simple new way to tune the optical phase transition temperature of VO2 films was proposed by only controlling the pressure of oxygen during the annealing process. Vanadium films were deposited on glass by a large-scale magnetron sputtering coating system and then annealed in appropriate oxygen atmosphere to form the VO2 films. The infrared transmission change (at 2400 nm) is as high as 58% for the VO2 thin film on the glass substrate, which is very good for tuning infrared radiation and energy saving as smart windows. The phase transition temperature of the films can be easily tuned from an intrinsic temperature to 44.7 °C and 40.2 °C on glass and sapphire by annealing oxygen pressure, respectively. The mechanism is: V3+ ions form in the film when under anaerobic conditions, which can interrupt the V4+ chain and reduce the phase transition temperature. The existence of V3+ ions has been observed by x-ray photoelectron spectroscopy (XPS) experiments as proof. (paper)

  1. Atmospheric temperature in the Venus mesosphere, investigated by VIRTIS/Venus Express

    Science.gov (United States)

    Migliorini, A.; Grassi, D.; Piccioni, G.; Lebonnois, S.; Montabone, L.; Drossart, P.

    2012-04-01

    Atmospheric temperature, retrieved using remote sensing data acquired with the VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) instrument on board the European Venus Express mission, is presented for the night side of Venus both in the northern and southern hemispheres of the planet. The explored pressure range covers from 100 to 4 mbar, corresponding approximately to the altitude range from 65 to 80 km. Differences between the dusk and dawn sides are observed in the temperature values, the dawn being the coldest quadrant in the pressure range 100 to 12 mbar. The most important observed feature is the cold-collar region around 60-70°, which is 15 to 20 K colder than the temperature at the pole at 100 mbar (about 65 km), also showing a significant thermal inversion. A peculiar pattern of maxima and minima in temperature is observed at 100 and 12 mbar. The application of a global circulation model (Lebonnois et al., 2010) to our data allows to interpret the observed features as indication of diurnal and/or semidiurnal thermal tides (Migliorini et al., 2011).

  2. High atmospheric temperatures and 'ambient incubation' drive embryonic development and lead to earlier hatching in a passerine bird.

    Science.gov (United States)

    Griffith, Simon C; Mainwaring, Mark C; Sorato, Enrico; Beckmann, Christa

    2016-02-01

    Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo's develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to 'ambient incubation'. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315

  3. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird

    Science.gov (United States)

    Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa

    2016-01-01

    Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315

  4. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars

    Science.gov (United States)

    Bessell, M. S.; Castelli, F.; Plez, B.

    1998-05-01

    Broad band colors and bolometric corrections in the Johnson-Cousins-Glass system (Bessell, 1990; Bessell & Brett, 1988) have been computed from synthetic spectra from new model atmospheres of Kurucz (1995a), Castelli (1997), Plez, Brett & Nordlund (1992), Plez (1995-97), and Brett (1995a,b). These atmospheres are representative of larger grids that are currently being completed. We discuss differences between the different grids and compare theoretical color-temperature relations and the fundamental color temperature relations derived from: (a) the infrared-flux method (IRFM) for A-K stars (Blackwell & Lynas-Gray 1994; Alonso et al. 1996) and M dwarfs (Tsuji et al. 1996a); (b) lunar occultations (Ridgway et al. 1980) and (c) Michelson interferometry (Di Benedetto & Rabbia 1987; Dyck et al. 1996; Perrin et al. 1997) for K-M giants, and (d) eclipsing binaries for M dwarfs. We also compare color - color relations and color - bolometric correction relations and find good agreement except for a few colors. The more realistic fluxes and spectra of the new model grids should enable accurate population synthesis models to be derived and permit the ready calibration of non-standard photometric passbands. As well, the theoretical bolometric corrections and temperature - color relations will permit reliable transformation from observed color magnitude diagrams to theoretical HR diagrams. Tables 1-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  5. A novel atmospheric Temperature Sounding Unit: system design and performance analyses

    Science.gov (United States)

    Chakraborty, Prantik; Gupta, Priyanka; Dave, Dilip B.; Desai, Nilesh M.; Misra, Tapan

    2016-05-01

    This paper reports the development of a millimeter-wave space-borne atmospheric Temperature Sounding Unit (TSU) in Indian Space Research Organization (ISRO). This is ISRO's first leap towards millimeter-wave technology. The sensor has several new accomplishments to its credit which include among others, the philosophy of sounding channel selection, the new assortment of temperature sounding channels, simultaneous observation of both polarizations of all channels, compact dual-band scanning Gregorian reflector antenna, indigenously developed black-body target for in-orbit calibration, in-house developed millimeter-wave RF front-end and pre-detection automatic gain control method. The prime feature of this instrument is its unique set of channels which can profile the earth's atmosphere from surface to 40 km altitude with vertical resolution ranging from less than a km near surface to +/-2.5 km at 30km altitude. The channels are predominantly off-resonant frequencies in the 50―60 GHz O2 absorption spectrum which offer near-uniform attenuation and hence more channel-bandwidth and better temperature sensitivity and yet have adequate overlap of their weighting functions to achieve the desired vertical resolution. These channels are different and have fewer bands from what has been flown in all earlier sounding missions worldwide e.g. AMSU-A, SSMIS, ATMS etc. The TSU radiometer has been characterized thoroughly using ingenious methods such as low-power active RF energizing along with frequency sweep. This is a compact, low-mass, low-power instrument and has been configured for the ISRO mini-satellite (IMS-2) bus. The flight model with improved hardware performance is being built and a suitable opportunity of flying it is being explored.

  6. Atmosphere

    Science.gov (United States)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  7. Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure

    Science.gov (United States)

    Marchal, F.; Robert, H.; Merbahi, N.; Fontagné-Faucher, C.; Yousfi, M.; Romain, C. E.; Eichwald, O.; Rondel, C.; Gabriel, B.

    2012-08-01

    This work is devoted to the evaluation of the efficiency of a new low-temperature plasma jet driven in ambient air by a dc-corona discharge to inactivate adherent cells and biofilms of Gram-positive bacteria. The selected microorganisms were lactic acid bacteria, a Weissella confusa strain which has the particularity to excrete a polysaccharide polymer (dextran) when sucrose is present. Both adherent cells and biofilms were treated with the low-temperature plasma jet for different exposure times. The antimicrobial efficiency of the plasma was tested against adherent cells and 48 h-old biofilms grown with or without sucrose. Bacterial survival was estimated using both colony-forming unit counts and fluorescence-based assays for bacterial cell viability. The experiments show the ability of the low-temperature plasma jet at atmospheric pressure to inactivate the bacteria. An increased resistance of bacteria embedded within biofilms is clearly observed. The resistance is also significantly higher with biofilm in the presence of sucrose, which indicates that dextran could play a protective role.

  8. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    International Nuclear Information System (INIS)

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature

  9. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    Science.gov (United States)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-01

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron—ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  10. ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF CORONAL LOOPS: CROSS-FIELD TEMPERATURE DISTRIBUTIONS

    International Nuclear Information System (INIS)

    We construct revised response functions for the Atmospheric Imaging Assembly (AIA) using the new atomic data, ionization equilibria, and coronal abundances available in CHIANTI 7.1. We then use these response functions in multithermal analysis of coronal loops, which allows us to determine a specific cross-field temperature distribution without ad hoc assumptions. Our method uses data from the six coronal filters and the Monte Carlo solutions available from our differential emission measure (DEM) analysis. The resulting temperature distributions are not consistent with isothermal plasma. Therefore, the observed loops cannot be modeled as single flux tubes and must be composed of a collection of magnetic strands. This result is now supported by observations from the High-resolution Coronal Imager, which show fine-scale braiding of coronal strands that are reconnecting and releasing energy. Multithermal analysis is one of the major scientific goals of AIA, and these results represent an important step toward the successful achievement of that goal. As AIA DEM analysis becomes more straightforward, the solar community will be able to take full advantage of the state-of-the-art spatial, temporal, and temperature resolution of the instrument.

  11. Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen

    Science.gov (United States)

    Mohamed, A.-A. H.; Kolb, J. F.; Schoenbach, K. H.

    2010-12-01

    Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 μm thick molybdenum electrodes separated by a 200 μm thick alumina layer, is 150 to 450 μm in diameter in the cathode and has an opening of 100 to 300 μm in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.

  12. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  13. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    Science.gov (United States)

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions. PMID:11875208

  14. Atmospheric aerosol impacts on sea surface temperatures and medium range forecast.

    Science.gov (United States)

    Oyola, M. I.; Joseph, E.; Lu, C. H.; Nalli, N. R.

    2014-12-01

    This work proposes a series of experiments to analyze the impact of dust aerosols on numerical weather prediction (NWP) and the global data assimilation system. We strive to accomplish this by the application of the NOAA Environmental Modeling System/Global Forecasting System (NEMS/GFS) aerosol component (NGAC), which corresponds to the first global interactive atmosphere-aerosol forecast system ever implemented at NOAA's National Center for Environmental Prediction (NCEP) and which has been operational since September 2012. Specifically, our approach will include the implementation of an improved satellite sea surface temperature (SST) retrieval methodology, that allows for better representation of the atmospheric state under dust-laden conditions. Specifically, the new algorithm will be included within the NGAC aerosol product to improve the accuracy of the SST analysis and examine the impact on NWP, particularly in tropical cyclone genesis regions in the eastern Atlantic. The results of these corrections are validated against observed measurements from the eastern Atlantic Ocean, which is dominated by Saharan dust throughout most of the year and that is also a genesis region for Atlantic tropical cyclones. These observations are obtained from the NOAA Aerosols and Ocean Science Expeditions (AEROSE) and PIRATA Northeast Extension (PNE) buoys network. We believe that the improved physical SST methodology has the potential to allow for improved representation of the geophysical state under dust-laden conditions

  15. High-quality epitaxial Si growth at low temperatures by atmospheric pressure plasma CVD

    International Nuclear Information System (INIS)

    We have studied the epitaxial Si growth on 4-inch-(001) Si wafers by atmospheric pressure plasma chemical vapor deposition (AP-PCVD) using a porous-carbon electrode. Defect-free growth of epitaxial Si is confirmed in the temperature range 470-570 deg. C by transmission electron microscopy. High minority carrier generation lifetime (2.0 ms) is observed in the Si film grown at 570 deg. C with a rate of 0.35 μm/min. In situ H2 AP-plasma cleaning of the substrate surface is effective for eliminating O and C concentration peaks at the film/substrate interface. Effects of plasma heating and ion bombardment of the growing-film surface have been discussed

  16. The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements

    International Nuclear Information System (INIS)

    In this study, we report insights into the dynamics of atmospheric-pressure low-temperature plasma jets (APLTPJs). The plasma jet current was measured by a Pearson current monitor for different operating conditions. These jet current measurements confirmed a proposed photo-ionization model based on streamer theory. Our results are supported by intensified charged-couple device camera observations. It was found that a secondary discharge ignition, arising from the positive high-voltage electrode, causes the inhibition of plasma bullet propagation. Our observations also showed the existence of an ionization channel between the APLTPJ reactor and the plasma bullet. In addition, the maximum electron density along the plasma jet was estimated using Ohm's law, and an empirical relationship was derived between the plasma bullet velocity and the plasma bullet area. (paper)

  17. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    International Nuclear Information System (INIS)

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials

  18. Recharge to extensive aquifers by means of atmospheric chloride deposition and ground temperature

    International Nuclear Information System (INIS)

    One of the most uncertain and at the same time essential values for groundwater knowledge and management is aquifer recharge, especially in large areas with scarce data. Under steady state circumstances the atmospheric chloride deposition balance is an effective method to estimate average diffuse recharge and its possible error. Progress in the application are reported to some aquifers, in some of which the water mixtures in groundwater sampling from the aquifer due to recharge spatial variability are considered. Also, recharge affects in ground temperature distribution is considered as an indicator of recharge. Spanish examples from the Iberian Peninsula: Donana, Anoia, the Llobregat delta, and the whole territory are considered, and also from the archipelagos The Canaries: Gran Canaria, Fuerteventura and La Gomera, and the Balearic Islands: Mallorca. (Author) 19 refs.

  19. Solar Atmospheric Magnetic Energy Coupling: Broad Plasma Conditions and Temperature Scales

    CERN Document Server

    Orange, N Brice; Gendre, Bruce; Morris, David C; Oluseyi, Hakeem M

    2016-01-01

    Solar variability investigations that include its magnetic energy coupling are paramount to solving many key solar/stellar physics problems. Particularly understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the {\\it Solar Dynamics Observatory's} Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, radiative and magnetic fluxes were measured from coronal hole, quiet Sun, active regions, active region cores (i.e., inter moss), and at full-disk scales, respectively. We present, and mathematically describe, their coupling of radiative fluxes, across broad temperature gradients, to the available photospheric magnetic energy. A comparison of the common linear relationship of radiative to magnetic coupling is performed against our extended broken power-law description, which reveals a potential entanglement of thermodynamic and magnetic energy contributions in existing literature. As such, our work provides an improved approach...

  20. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn; Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  1. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    International Nuclear Information System (INIS)

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  2. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    Science.gov (United States)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  3. Relationship between North American winter temperature and large-scale atmospheric circulation anomalies and its decadal variation

    Science.gov (United States)

    Yu, B.; Lin, H.; Wu, Z. W.; Merryfield, W. J.

    2016-07-01

    The interannual relationship between North American (NA) winter temperature and large-scale atmospheric circulation anomalies and its decadal variation are analyzed. NA temperature anomalies are dominated by two leading maximum covariance analysis (MCA) modes of NA surface temperature and Northern Hemisphere 500 hPa geopotential anomalies. A new teleconnection index, termed the Asian-Bering-North American (ABNA) pattern, is constructed from the normalized geopotential field after linearly removing the contribution of the Pacific-North American (PNA) pattern. The ABNA pattern is sustained by synoptic eddy forcing. The first MCA mode of NA surface temperature is highly correlated with the PNA and ABNA teleconnections, and the second mode with the North Atlantic Oscillation (NAO). This indicates that NA temperature is largely controlled by these three large-scale atmospheric patterns, i.e., the PNA, ABNA and NAO. These temperature-circulation relationships appear stationary in the 20th century.

  4. Three Years of Atmospheric Infrared Sounder Radiometric Calibration Validation using Sea Surface Temperatures

    Science.gov (United States)

    Aumann, H. H.; Broberg, Steve; Elliott, Denis; Gaiser, Steve; Gregorich, Dave

    2006-01-01

    This paper evaluates the absolute accuracy and stability of the radiometric calibration of the Atmospheric Infrared Sounder (AIRS) by analyzing the difference between the brightness temperatures measured at 2616 cm(exp -1) and those calculated at the top of the atmosphere (TOA), using the Real-Time Global Sea Surface Temperature (RTGSST) for cloud-free night tropical oceans between +/- 30 degrees latitude. The TOA correction is based on radiative transfer. The analysis of the first 3 years of AIRS radiances verifies the absolute calibration at 2616 cm(exp -1) to better than 200 mK, with better than 16 mK/yr stability. The AIRS radiometric calibration uses an internal full aperture wedge blackbody with the National Institute of Standards and Technology (NIST) traceable prelaunch calibration coefficients. The calibration coefficients have been unchanged since launch. The analysis uses very tight cloud filtering, which selects about 7000 cloud-free tropical ocean spectra per day, about 0.5% of the data. The absolute accuracy and stability of the radiometry demonstrated at 2616 cm(sup -1) are direct consequences of the implementation of AIRS as a thermally controlled, cooled grating-array spectrometer and meticulous attention to details. Comparable radiometric performance is inferred from the AIRS design for all 2378 channels. AIRS performance sets the benchmark for what can be achieved with a state-of-the-art hyperspectral radiometer from polar orbit and what is expected from future hyperspectral sounders. AIRS was launched into a 705 km altitude polar orbit on NASA's Earth Observation System (EOS) Aqua spacecraft on 4 May 2002. AIRS covers the 3.7-15.4 micron region of the thermal infrared spectrum with a spectral resolution of nu/Delta nu = 1200 and has returned 3.7 million spectra of the upwelling radiance each day since the start of routine data gathering in September 2002.

  5. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    International Nuclear Information System (INIS)

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  6. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Kewitz, T. [Institute of Experimental and Applied Physics, University Kiel, 24098 Kiel (Germany); Sperka, J. [Department of Physical Electronics, Masaryk University, 61137 Brno (Czech Republic)

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  7. Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation

    Directory of Open Access Journals (Sweden)

    M. Meinvielle

    2013-10-01

    Full Text Available In ocean general circulation models, near-surface atmospheric variables used to specify the atmospheric boundary condition remain one of the main sources of error. The objective of this research is to constrain the surface forcing function of an ocean model by sea surface temperature (SST data assimilation. For that purpose, a set of corrections for ERAinterim (hereafter ERAi reanalysis data is estimated for the period of 1989–2007, using a sequential assimilation method, with ensemble experiments to evaluate the impact of uncertain atmospheric forcing on the ocean state. The control vector of the assimilation method is extended to atmospheric variables to obtain monthly mean parameter corrections by assimilating monthly SST and sea surface salinity (SSS climatological data in a low resolution global configuration of the NEMO model. In this context, the careful determination of the prior probability distribution of the parameters is an important matter. This paper demonstrates the importance of isolating the impact of forcing errors in the model to perform relevant ensemble experiments. The results obtained for every month of the period between 1989 and 2007 show that the estimated parameters produce the same kind of impact on the SST as the analysis itself. The objective is then to evaluate the long-term time series of the forcing parameters focusing on trends and mean error corrections of air–sea fluxes. Our corrections tend to equilibrate the net heat-flux balance at the global scale (highly positive in ERAi database, and to remove the potentially unrealistic negative trend (leading to ocean cooling in the ERAi net heat flux over the whole time period. More specifically in the intertropical band, we reduce the warm bias of ERAi data by mostly modifying the latent heat flux by wind speed intensification. Consistently, when used to force the model, the corrected parameters lead to a better agreement between the mean SST produced by the

  8. Retrieving Atmospheric Temperature Profiles from AMSU-A Data with Neural Networks

    Institute of Scientific and Technical Information of China (English)

    YAO Zhigang; CHEN Hongbin; LIN Longfu

    2005-01-01

    Back propagation neural networks are used to retrieve atmospheric temperature profiles from NOAA-16 Advanced Microwave Sounding Unit-A (AMSU-A) measurements over East Asia. The collocated radiosonde observation and AMSU-A data over land in 2002-2003 are used to train the network, and the data over land in 2004 are used to test the network. A comparison with the multi-linear regression method shows that the neural network retrieval method can significantly improve the results in all weather conditions.When an offset of 0.5 K or a noise level of +0.2 K is added to all channels simultaneously, the increase in the overall root mean square (RMS) error is less than 0.1 K. Furthermore, an experiment is conducted to investigate the effects of the window channels on the retrieval. The results indicate that the brightness temperatures of window channels can provide significantly useful information on the temperature retrieval near the surface. Additionally, the RMS errors of the profiles retrieved with the trained neural network are compared with the errors from the International Advanced TOVS (ATOVS) Processing Package (IAPP).It is shown that the network-based algorithm can provide much better results in the experiment region and comparable results in other regions. It is also noted that the network can yield remarkably better results than IAPP at the low levels and at about the 250-hPa level in summer skies over ocean. Finally,the network-based retrieval algorithm developed herein is applied in retrieving the temperature anomalies of Typhoon Rananim from AMSU-A data.

  9. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa

    Science.gov (United States)

    Fontaine, Bernard; Janicot, Serge; Monerie, Paul-Arthur

    2013-08-01

    study documents the time evolution of air temperature and heat waves occurrences over Northern Africa for the period 1979-2011. A significant warming (1°-3°C), appearing by the mid-1960s over Sahara and Sahel, is associated with higher/lesser frequency of warm/cold temperatures, as with longer duration and higher occurrences of heat waves. Heat waves episodes of at least 4 day duration have been examined after removing the long-term evolution. These episodes are associated with specific anomalies: (i) in spring, positive low-level temperature anomalies over the Sahel and Sahara; low and midlevel cyclonic rotation over Morocco associated with a Rossby wave pattern, lessening the Harmattan; more/less atmospheric moisture westward/eastward to 0°; upward/downward anomalies above the western/eastern regions associated with the Rossby wave pattern; (ii) in summer, a similar but weaker positive low-level temperature anomaly (up to 3°C); less moisture westward to 10°W, a cyclonic anomaly in central Sahel favoring the monsoon eastward to 0° and a midlevel anticyclonic anomaly over the Western Sahara, increasing southward the flux divergence associated with the African Easterly Jet. In March-May, two to three heat waves propagate eastward. They are preceded by an abnormal warm cell over Libya and southwesterlies over the West Sahara. A large trough stands over North Atlantic while midtropospheric subsidence and anticyclonic rotation reinforce over the continent, then migrates toward the Arabian peninsula in breaking up. These signals are spatially coherent and might suggest the role of short Rossby waves with an eastward group velocity and a baroclinic mode, possibly associated with jet stream deformation.

  10. Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications

    Science.gov (United States)

    Wang, Junhong; Zhang, Liangying; Dai, Aiguo

    2005-11-01

    Water-vapor-weighted atmospheric mean temperature, Tm, is a key parameter in the retrieval of atmospheric precipitable water (PW) from ground-based Global Positioning System (GPS) measurements of zenith path delay (ZPD), as the accuracy of the GPS-derived PW is proportional to the accuracy of Tm. We compare and analyze global estimates of Tm from three different data sets from 1997 to 2002: the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40), the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and the newly released Integrated Global Radiosonde Archive (IGRA) data set. Temperature and humidity profiles from both the ERA-40 and NCEP/NCAR reanalyses produce reasonable Tm estimates compared with those from the IGRA soundings. The ERA-40, however, is a better option for global Tm estimation because of its better performance and its higher spatial resolution. Tm is found to increase from below 255 K in polar regions to 295-300 K in the tropics, with small longitudinal variations. Tm has an annual range of ˜2-4 K in the tropics and 20-35 K over much of Eurasia and northern North America. The day-to-day Tm variations are 1-3 K over most low latitudes and 4-7 K (2-4 K) in winter (summer) Northern Hemispheric land areas. Diurnal variations of Tm are generally small, with mean-to-peak amplitudes less than 0.5 K over most oceans and 0.5-1.5 K over most land areas and a local time of maximum around 16-20 LST. The commonly used Tm-Ts relationship from Bevis et al. (1992) is evaluated using the ERA-40 data. Tm derived from this relationship (referred to as Tmb) has a cold bias in the tropics and subtropics (-1 ˜ -6 K, largest in marine stratiform cloud regions) and a warm bias in the middle and high latitudes (2-5 K, largest over mountain regions). The random error in Tmb is much smaller than the bias. A serious problem in Tmb is its erroneous large diurnal cycle owing to

  11. The effects of atmosphere and calcined temperature on photocatalytic activity of TiO2 nanofibers prepared by electrospinning.

    Science.gov (United States)

    Hu, Meiling; Fang, Minghao; Tang, Chao; Yang, Tao; Huang, Zhaohui; Liu, Yangai; Wu, Xiaowen; Min, Xin

    2013-01-01

    TiO2-based nanofibers were synthesized using a sol-gel method and electrospinning technique. The as-spun composite fibers were heat-treated at different temperatures (500°C, 550°C, 600°C, and 650°C) and atmospheres (ammonia and nitrogen) for 4 h. The fibers had diameters of 50 to 200 nm and mainly featured anatase and rutile phases. The anatase phase decreased and the rutile phase increased with increasing temperature. Different nitrogen conditions exerted minimal effects on the TiO2 crystalline phase. Different nitriding atmospheres during preservation heating yielded various effects on fibers. The effect of nitrogen in ammonia atmosphere is better than that in nitrogen atmosphere. The fibers heat-treated at 600°C and subjected to preservation heating in NH3 showed high photocatalytic activity. PMID:24373382

  12. The Temperature of the Dimethylhydrazine Drops Moving in the Atmosphere after Depressurization of the Fuel Tank Rockets

    Directory of Open Access Journals (Sweden)

    Bulba Elena

    2016-01-01

    Full Text Available This work includes the results of the numerical modeling of temperature changes process of the dimethylhydrazine (DMH drops, taking into account the radial temperature gradient in the air after the depressurization of the fuel compartments rockets at high altitude. There is formulated a mathematical model describing the process of DMH drops thermal state modifying when it's moving to the Earth's surface. There is the evaluation of the influence of the characteristic size of heptyl drops on the temperature distribution. It's established that the temperatures of the small size droplets practically completely coincide with the distribution of temperature in the atmosphere at altitudes of up to 40 kilometers.

  13. Effect of irradiation and modified atmosphere packaging on the microbiological and sensory quality of pork stored at refrigeration temperatures

    International Nuclear Information System (INIS)

    The effect of combining low-dose irradiation (1.75 kGy) with modified atmosphere packaging (MAP) on the microbiological and sensory quality of pork chops stored at refrigeration temperatures was studied. The microflora of irradiated MAP pork was almost exclusively composed of lactic acid bacteria, predominantly Lactobacillus spp. Modified atmospheres containing either 25 or 50% CO2, balance N2, resulted in the best microbial control in irradiated pork held at 4°C, compared to an unirradiated MAP control, and these atmospheres were subsequently used in sensory studies. The atmosphere containing 25% CO2 75% N2 maintained the uncooked colour and odour of irradiated pork chops more effectively than 50% CO2 50% N2. Therefore packaging in a modified atmosphere containing 25% CO2, balance N2, followed by irradiation to a dose of 1.75 kGy is recommended to improve the microbiological and sensory quality of pork chops

  14. Physiological and phytochemical quality of ready-to-eat rocket leaves as affected by processing, modified atmosphere and storage temperature

    OpenAIRE

    Amaro, Ana Luísa; Pereira, Maria João; Carvalho, Susana; Vasconcelos, Marta; Pintado, Maria Manuela

    2014-01-01

    Rocket leaves are widely consumed as a ready-to-eat (RTE) leafy vegetable, valued by its wide range of health promoting phytonutrients, including vitamin C and phenolic compounds. Processing and storage conditions are known to affect quality of RTE rocket leaves, with package atmosphere and low temperature as key factors in quality maintenance throughout processing to consumption. However, information on rocket leaves nutritional quality as affected by modified atmosphere and storage...

  15. Synthesis of porous superparamagnetic iron oxides from colloidal nanoparticles: Effect of calcination temperature and atmosphere

    International Nuclear Information System (INIS)

    Nanostructured iron oxides with superparamagnetism were synthesized from colloidal particles of hydrous iron oxide. The synthesis procedure involved preparation of acetone-nanoparticle composite and calcination of the composite in air or nitrogen. The effects of calcination temperature and atmosphere on the properties of the products were investigated. Powder X-ray diffraction, 57Fe Mössbauer spectra, transmission electron microscopy, nitrogen sorption, thermal analysis and vibrating-sample magnetometry were applied to characterize the materials. The products calcined in flowing air are composed of nanoparticles, while those calcined in flowing nitrogen contain nanosheets. The former has larger specific surface areas, whereas the latter has stronger saturation magnetization in external magnetic field. Increasing calcination temperature reduced the specific surface area of the product, whereas enhanced its saturation magnetization. Furthermore, the iron oxides with superparamagnetism showed good affinity to arsenite, and therefore they could be potential adsorbents for arsenic remediation in water. - Highlights: • Nanostructured superparamagnetic iron oxides were synthesized from colloidal nanoparticles. • Calcination in air led to formation of nanoparticles. • Calcination in nitrogen led to formation of nanosheets. • The superparamagnetic materials had high adsorption capabilities for arsenite

  16. High Temperature Behavior of Oxidized Mild Steel in Dry and Wet Atmospheres

    International Nuclear Information System (INIS)

    During the hot rolling process, steels develop an oxide scale on their surface. This scale can affect the mechanical properties of the rolled steel and its surface aspect. The main problem comes from the mechanical integrity of the oxide scales which could delaminate or crack, leading eventually to later oxide incrustation within the steel. The objective of the present work is to qualify the mechanical integrity of the iron oxide scales during the hot rolling process. The laboratory experiments use a four point bending test to simulate the mechanical solicitation which takes place during the rolling sequence of the steel slabs. The oxide scales grow on a mild steel at 900 .deg. C under wet or dry atmosphere and the oxidized steel is then mechanically tested at 900 .deg. C or 700 .deg. C. The high temperature four point bending tests are completed with microstructural observations and with the record of acoustic emission to follow in-situ the mechanical damages of the oxide scales. The results show the role of water vapor which promotes the scale adherence, and the role of the temperature as the oxide are more damaged at 700 .deg. C than at 900 .deg. C

  17. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    Science.gov (United States)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  18. Response of leaf litter decomposition to rises in atmospheric CO2 and temperature

    Science.gov (United States)

    Hammrich, A.; Flury, S.; Gessner, M. O.

    2007-05-01

    Atmospheric concentrations of CO2 have considerably increased in the last century and are expected to rise further. Elevated CO2 concentrations not only increase global temperature but also have potential to change plant litter quality, for example by increasing lignin content, changing C:N ratios and altering tannin contents. These chemical changes may interact with increased temperature to alter litter decomposition. To test whether changes in litter quality and warming affect decomposition, we conducted a field experiment with leaf litter collected from six species of mature deciduous trees exposed to either ambient or elevated CO2 levels. We used a set of 16 enclosures installed in four blocks in a freshwater marsh in a prealpine lake to test for the effects of CO2-mediated litter quality and temperature and the interaction of both factors. We measured leaf mass loss of the twelve litter types in control and heated enclosures (4 °C above ambient) and also in the open marsh. In contrast to expectations, species decomposing at low (oak and beech) and medium (hornbeam and maple) rates showed faster mass loss when leaves were grown under elevated CO2 conditions, whereas fast-decomposing species (cherry and basswood) showed no clear response. The accelerated decomposition of CO2-enriched litter could be due to higher amounts of nonstructural carbohydrates, which may have been either leached or readily degraded. Warming had a surprisingly small influence on mass loss of the tested litter species, and interactive effects were weak. These results suggest that direct and indirect effects of elevated CO2 levels on litter decomposition may not be readily predictable from first principles.

  19. Carbon dioxide, temperature, salinity, and atmospheric pressure from surface underway survey in the North Pacific from January 1998 to January 2004 (NODC Accession 0045502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface pCO2, sea surface temperature, sea surface salinity, and atmospheric pressure measurements collected in the North Pacific as part of the NOAA Office of...

  20. Simulation of atmospheric temperature inversions over greater cairo using the MM5 Meso-Scale atmospheric model

    International Nuclear Information System (INIS)

    Air pollution episodes have been recorded in Cairo, during the fall season, since 1999, as a result of specific meteorological conditions combined with large quantity of pollutants created by several ground-based sources. The main reason for the smog-like episodes (black clouds) is adverse weather conditions with low and variable winds, high humidity and strong temperature inversions in the few-hundred meters above the ground. The two important types of temperature inversion affecting the air pollution are surface or ground (radiation) inversion and subsidence (elevated) inversion. The surface temperature inversion is associated with a rapid decrease in the ground surface temperature with the simultaneous existence of warm air in the lower troposphere. The inversion develops at dusk and continues until the surface warms again the following day. Pollutants emitted during the night are caught under this inversion lid.Subsidence inversion forms when warm air masses move over colder air masses. The inversion develops with a stagnating high-pressure system (generally associated with fair weather). Under these conditions, the pressure gradient becomes progressively weaker so that winds become light. These light winds greatly reduce the horizontal transport and dispersion of pollutants. At the same time, the subsidence inversion acts as a barrier to the vertical dispersion of the pollutants. In this study, the Penn State/NCAR meso -scale model (MM5) is used to simulate the temperature inversion phenomenon over Greater Cairo region during the fall season of 2004. Accurate computations of the heat transfer at the surface are needed to capture this phenomenon. This can only be achieved by high-resolution simulations in both horizontal and vertical directions. Hence, for accurate simulation of the temperature inversion over Greater Cairo, four nested domains of resolutions of 27 km, 9 km, 3 km and 1 km, respectively, were used in the horizontal planes. Furthermore, 42 levels

  1. Spatial and Temporal Dependence of Temperature Variations Induced by Atmospheric Pressure Variations in Shallow Underground Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, F.; Le Mouel, J.L. [Inst Phys Globe, Equipe Geomagnetisme, F-75005 Paris (France); Univ Paris Diderot, UMR7154, F-75005 Paris (France); Richon, P. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Richon, P. [Inst Phys Globe, Equipe Geol Syst Volcan, UMR7154, F-75005 Paris (France)

    2010-07-01

    Pressure-induced temperature (PIT) variations are systematically observed in the atmosphere of underground cavities. Such PIT variations are due to the compressibility of the air, damped by heat exchange with the rock surface. It is important to characterize such processes for numerous applications, such as the preservation of painted caves or the assessment of the long-term stability of underground laboratories and underground waste repositories. In this paper we thoroughly study the spatio-temporal dependence of the PIT response versus frequency using vertical and horizontal profiles of temperature installed in an abandoned underground quarry located in Vincennes, near Paris. The PIT response varies from about 20 * 10{sup -3} C hPa{sup -1} at a frequency of 2 * 10{sup -4} Hz to 2-3 * 10{sup -3} C hPa{sup -1} at a frequency of one cycle per day. An analytical expression based on a simple heat exchange model accounts for the observed features of the PIT response and allows for correcting the measured time series, having standard deviations of about 10{sup -2} C, to residual variations with a standard deviation of about 2 * 10{sup -3} C. However, a frequency-dependent attenuation of the response, corresponding to a reduction in amplitude with a factor varying from 2 to 3, is observed near the walls. This effect is not included in the simple analytical expression, but it can be accounted for by a one-dimensional differential equation, solved numerically, where temperature variations in the atmosphere are damped by an effective radiative coupling with the rock surface, complemented by a diffusive coupling near the walls. The TIP response is observed to remain stable over several years, but a large transient enhancement of about a factor of two is observed near the roof at one location from July to October 2005. In a cavity located below the Paris Observatory, an additional contribution is identified in the PIT response function versus frequency for frequencies smaller

  2. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    Science.gov (United States)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  3. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  4. An atmospheric general circulation model for Pluto with predictions for New Horizons temperature profiles

    Science.gov (United States)

    Zalucha, Angela M.

    2016-06-01

    Results are presented from a 3D Pluto general circulation model (GCM) that includes conductive heating and cooling, non-local thermodynamic equilibrium (non-LTE) heating by methane at 2.3 and 3.3 μm, non-LTE cooling by cooling by methane at 7.6 μm, and LTE CO rotational line cooling. The GCM also includes a treatment of the subsurface temperature and surface-atmosphere mass exchange. An initially 1 m thick layer of surface nitrogen frost was assumed such that it was large enough to act as a large heat sink (compared with the solar heating term) but small enough that the water ice subsurface properties were also significant. Structure was found in all three directions of the 3D wind field (with a maximum magnitude of the order of 10 m s-1 in the horizontal directions and 10-5 microbar s-1 in the vertical direction). Prograde jets were found at several altitudes. The direction of flow over the poles was found to very with altitude. Broad regions of up-welling and down-welling were also found. Predictions of vertical temperature profiles are provided for the Alice and Radio science Experiment instruments on New Horizons, while predictions of light curves are provided for ground-based stellar occultation observations. With this model methane concentrations of 0.2 per cent and 1.0 per cent and 8 and 24 microbar surface pressures are distinguishable. For ground-based stellar occultations, a detectable difference exists between light curves with the different methane concentrations, but not for different initial global mean surface pressures.

  5. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures

    Science.gov (United States)

    Marshall, Gareth J.; Thompson, David W. J.

    2016-04-01

    We investigate the impact that the four principal large-scale patterns of Southern Hemisphere (SH) atmospheric circulation variability have on Antarctic surface air temperature (SAT): (1) the southern baroclinic annular mode (BAM), which is associated with variations in extratropical storm amplitude; (2) the Southern Annular Mode (SAM), associated with latitudinal shifts in the midlatitude jet; and (3) the two Pacific-South American patterns (PSA1 and PSA2), which are characterized by wave trains originating in the tropical Pacific that extend across the SH extratropics. A key aspect is the use of 35 years of daily observations and reanalysis data, which affords a sufficiently large sample size to assess the signatures of the circulation patterns in both the mean and variability of daily mean SAT anomalies. The BAM exerts the weakest influence on Antarctic SAT, albeit it is still important over select regions. Consistent with previous studies, the SAM is shown to influence SAT across most of the continent throughout the year. The PSA1 also affects SAT across almost all of Antarctica. Regionally, both PSA patterns can exert a greater impact on SAT than the SAM but also have a significantly weaker influence during summer, reflecting the seasonality of the SH response to El Niño-Southern Oscillation. The SAM and PSA patterns have distinct signatures in daily SAT variance that are physically consistent with their signatures in extratropical dynamic variability. The broad-scale climate linkages identified here provide benchmarks for interpreting the Antarctic climate response to future changes in tropical sea surface temperatures, ozone recovery, and greenhouse gas increases.

  6. Diversity in neotropical wet forests during the Cenozoic is linked more to atmospheric CO2 than temperature

    OpenAIRE

    Royer, Dana L.; Chernoff, Barry

    2013-01-01

    Models generally predict a response in species richness to climate, but strong climate-diversity associations are seldom observed in long-term (more than 106 years) fossil records. Moreover, fossil studies rarely distinguish between the effects of atmospheric CO2 and temperature, which limits their ability to identify the causal controls on biodiversity. Plants are excellent organisms for testing climate-diversity hypotheses owing to their strong sensitivity to CO2, temperature and moisture. ...

  7. Modeling of atmospheric corrosion of metals and its acceleration by increasing temperature in chambers of artificial climate

    International Nuclear Information System (INIS)

    Data are given on studying the effect of temperature on the rates of iron, zinc, cadmium, and copper corrosion in a pure humid atmosphere and in the presence of a thin phase water layer on the metal. The coefficients of corrosion acceleration with temperature have been determined. By conducting the experiments in chambers with artificial climate at 40-60 deg C, it has been shown how the corrosion process can be accelerated on the metals investigated in comparison with real conditions

  8. Observation of semiannual and annual oscillation in equatorial middle atmospheric long term temperature pattern

    Directory of Open Access Journals (Sweden)

    A. Guharay

    2009-11-01

    Full Text Available Extensive measurement of middle atmospheric temperature with the help of lidar data of more than 10 years (1998–2008 and TIMED/SABER data of 7 years (2002–2008, has been carried out from a low latitude station, Gadanki, India (13.5° N, 79.2° E, which exhibits the presence of semiannual oscillation (SAO and annual oscillation (AnO. The AnO component is stronger in the mesospheric region (80–90 km and the SAO is dominant at stratospheric altitudes (30–50 km. Overall, the AnO possesses higher amplitude ~6–7 K, and the SAO shows less amplitude ~1–2 K. The AnO present at 90 km finds crest near summer solstice, and the same at 80 km shows peak near winter solstice with a downward progression speed ~1.7 km/month. The SAO propagates downward with an average phase speed ~9 km/month and phase maximizes around equinox and solstice at 50 and 30 km, respectively. The observed SAO has also shown seasonal asymmetry in peaks.

  9. Characteristics of SAO and AO in equatorial middle atmospheric temperature pattern

    International Nuclear Information System (INIS)

    Complete text of publication follows. More than 10 years (1998-2008) of data from a low latitude station, Gadanki, India (13.5deg N, 79.2deg E), has been utilized to measure middle atmospheric temperature pattern, using lidar and TIMED/SABER, which exhibits the presence of semi-annual oscillation (SAO) and annual oscillation (AO). AO component is stronger in mesospheric region (80-90 km) and SAO is dominant at stratospheric altitudes (30-50 km). Overall, AO possesses higher amplitude ∼ 6 K, and SAO shows relatively less amplitude ∼ 1-2 K. AO at 90 km, has its crest around summer solstice, and the same at 80 shows peak around winter solstice with a downward progression speed ∼ 1.67 km/month. SAO propagates downward with an average phase speed ∼ 7 km/month and its phase maximizes around equinox and solstice at 50 and 30 km, respectively. Observed SAO has also shown seasonal asymmetry in the peak.

  10. Observation of semiannual and annual oscillation in equatorial middle atmospheric long term temperature pattern

    Energy Technology Data Exchange (ETDEWEB)

    Guharay, A.; Pant, P. [Aryabhatta Research Institute of observational scienES (ARIES), Nainital (India); Nath, D. [National Atmospheric Research Lab. (NARL), Gadanki (India); Pande, B.; Pandey, K. [Kumaun Univ., Nainital (India). Dept. of Physics; Russell, J.M. III [Hampton Univ., Hampton, VA (United States). Center for Atmospheric Sciences

    2009-07-01

    Extensive measurement of middle atmospheric temperature with the help of lidar data of more than 10 years (1998-2008) and TIMED/SABER data of 7 years (2002-2008), has been carried out from a low latitude station, Gadanki, India (13.5 N, 79.2 E), which exhibits the presence of semiannual oscillation (SAO) and annual oscillation (AnO). The AnO component is stronger in the mesospheric region (80-90 km) and the SAO is dominant at stratospheric altitudes (30-50 km). Overall, the AnO possesses higher amplitude {proportional_to}6-7 K, and the SAO shows less amplitude {proportional_to}1-2 K. The AnO present at 90 km finds crest near summer solstice, and the same at 80 km shows peak near winter solstice with a downward progression speed {proportional_to}1.7 km/month. The SAO propagates downward with an average phase speed {proportional_to}9 km/month and phase maximizes around equinox and solstice at 50 and 30 km, respectively. The observed SAO has also shown seasonal asymmetry in peaks. (orig.)

  11. Temperature Dependence of Nitro-Quenching by Atmospheric-Pressure Plasma

    Science.gov (United States)

    Mitani, Masaki; Ichiki, Ryuta; Iwakiri, Yutaro; Akamine, Shuichi; Kanazawa, Seiji

    2015-09-01

    A lot of techniques exist as the hardening method of steels, such as nitriding, carburizing and quenching. However, low-alloy steels cannot be hardened by nitriding because hardening by nitriding requires nitride precipitates of special alloy elements such as rare metals. Recently, nitro-quenching (NQ) was developed as a new hardening process, where nitrogen invokes martensitic transformation instead of carbon. NQ is adaptable to hardening low-alloy steels because it does not require alloy elements. In industrial NQ, nitrogen diffusion into steel surface is operated in high temperature ammonia gas. As a new technology, we have developed surface hardening of low-alloy steel by NQ using an atmospheric-pressure plasma. Here the pulsed-arc plasma jet with nitrogen/hydrogen gas mixture is sprayed onto steel surface and then water quench the sample. As a result, the surface of low-alloy steel was partially hardened up to 800 Hv by producing iron-nitrogen martensite. However, the hardness profile is considerably non-uniform. We found that the non-uniform hardness profile can be controlled by changing the treatment gap, the gap between the jet nozzle and the sample surface. Eventually, we succeeded in hardening a targeted part of steel by optimizing the treatment gap. Moreover, we propose the mechanism of non-uniform hardness.

  12. Development of High-Temperature and Low-Oxygen Atmosphere Controlled Furnace and Its Application to Metal Jointing Technology

    Science.gov (United States)

    Kanda, Kiichi; Hashimoto, Hiromu

    Metal joining by brazing or diffusion bonding is typically performed at temperatures around 1573K. At such temperatures, atmosphere or vacuum furnaces are required to avoid metal oxidation while heating. The drawbacks of atmosphere furnaces are their use of explosive gases such as hydrogen and the inability of using metal conveyor belts above 1423K. In this study, a non-oxidizing continuous furnace that uses only inert gas atmospheres was developed to work in conjunction with a carbon/carbon composite conveyor belt that can be used up to 2873K, and was used in metal joining processes. The development of the furnace, its working principle and features, and its application in brazing and diffusion bonding of stainless steel are reported with supporting experimental data.

  13. Growth behavior prediction of fresh catfish fillet with Pseudomonas aeruginosa under stresses of allyl isothiocyanate, temperature and modified atmosphere

    Science.gov (United States)

    Pseudomonas aeruginosa, a common spoilage microorganism in fish, grows rapidly when temperature rises above 4 degree C. The combination of allyl isothiocyanate (AIT) and modified atmosphere (MA) was applied and proved to be effective to retard the growth of P. aeruginosa. The objective of this resea...

  14. Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature

    DEFF Research Database (Denmark)

    Hashimoto, Shin-Ichi; Poulsen, Finn Willy; Mogensen, Mogens Bjerg

    The conductivities of several donor-doped SrTiO3 based oxides, which were prepared in air, were studied in a reducing atmosphere at high temperature. The conductivities of all specimens increased slowly with time at 1000 degrees C in 9% H-2/N-2, even after 100 h. Nb-doped SrTiO3 showed relatively...

  15. Retrieval of structure functions of air temperature and refractive index from large eddy simulations of the atmospheric boundary layer

    NARCIS (Netherlands)

    Wilson, C.; Eijk, A.M.J. van; Fedorovich, E.

    2013-01-01

    A methodology is presented to infer the refractive-index structure function parameter and the structure parameters for temperature and humidity from numerical simulations of the turbulent atmospheric convective boundary layer (CBL). The method employs spatial and temporal averaging of multiple reali

  16. A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters

    International Nuclear Information System (INIS)

    Highlights: • Concentrating grid-connected systems are working at maximum power point. • The operating cell temperature is inherently lower than at open circuit. • Two novel methods for estimating the cell temperature are proposed. • Both predict the operating cell temperature from atmospheric parameters. • Experimental results show that both methods perform effectively. - Abstract: The working cell temperature of high concentrator photovoltaic systems is a crucial parameter when analysing their performance and reliability. At the same time, due to the special features of this technology, the direct measurement of the cell temperature is very complex and is usually obtained by using different indirect methods. High concentrator photovoltaic modules in a system are operating at maximum power since they are connected to an inverter. So that, their cell temperature is lower than the cell temperature of a module at open-circuit voltage since an important part of the light power density is converted into electricity. In this paper, a procedure for indirectly estimating the cell temperature of a high concentrator photovoltaic system from atmospheric parameters is addressed. Therefore, this new procedure has the advantage that is valid for estimating the cell temperature of a system at any location of interest if the atmospheric parameters are available. To achieve this goal, two different methods are proposed: one based on simple mathematical relationships and another based on artificial intelligent techniques. Results show that both methods predicts the cell temperature of a module connected to an inverter with a low margin of error with a normalised root mean square error lower or equal than 3.3%, an absolute root mean square error lower or equal than 2 °C, a mean absolute error lower or equal then 1.5 °C, and a mean bias error and a mean relative error almost equal to 0%

  17. Online diagnosis of electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure by optical emission spectra

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy. In this study, CH4+H2 dis- charge plasma was on-line diagnosed by optical emission spectra so as to char- acterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas. The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure. The diagnostic method is easy, efficient and fairly precise. A serious er- ror in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas.

  18. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    International Nuclear Information System (INIS)

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use

  19. GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Richard S. [SETI Institute, Mountain View, CA (United States); Lustig-Yaeger, Jacob [Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lupu, Roxana E.; Marley, Mark S. [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA (United States); Lodders, Katharina, E-mail: Richard.S.Freedman@nasa.gov [Planetary Chemistry Laboratory, Washington University, St. Louis, MO (United States)

    2014-10-01

    We present new calculations of Rosseland and Planck gaseous mean opacities relevant to the atmospheres of giant planets and ultracool dwarfs. Such calculations are used in modeling the atmospheres, interiors, formation, and evolution of these objects. Our calculations are an expansion of those presented in Freedman et al. to include lower pressures, finer temperature resolution, and also the higher metallicities most relevant for giant planet atmospheres. Calculations span 1 μbar to 300 bar, and 75-4000 K, in a nearly square grid. Opacities at metallicities from solar to 50 times solar abundances are calculated. We also provide an analytic fit to the Rosseland mean opacities over the grid in pressure, temperature, and metallicity. In addition to computing mean opacities at these local temperatures, we also calculate them with weighting functions up to 7000 K, to simulate the mean opacities for incident stellar intensities, rather than locally thermally emitted intensities. The chemical equilibrium calculations account for the settling of condensates in a gravitational field and are applicable to cloud-free giant planet and ultracool dwarf atmospheres, but not circumstellar disks. We provide our extensive opacity tables for public use.

  20. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    Science.gov (United States)

    Shangguan, Ming-Jia; Xia, Hai-Yun; Dou, Xian-Kang; Wang, Chong; Qiu, Jia-Wei; Zhang, Yun-Peng; Shu, Zhi-Feng; Xue, Xiang-Hui

    2015-09-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh-Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett-Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry-Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. Project supported by the National Natural Science Foundation of China (Grant Nos. 41174131, 41274151, 41304123, 41121003 and 41025016).

  1. Atmospheric forcing intensifies the effects of regional ocean warming on reef-scale temperature anomalies during a coral bleaching event

    Science.gov (United States)

    Zhang, Zhenlin; Falter, James; Lowe, Ryan; Ivey, Greg; McCulloch, Malcolm

    2013-09-01

    We investigate how local atmospheric conditions and hydrodynamic forcing contributed to local variations in water temperature within a fringing coral reef-lagoon system during the peak of a marine heat wave in 2010-2011 that caused mass coral bleaching across Western Australia. A three-dimensional circulation model Regional Ocean Modeling System (ROMS) with a built-in air-sea heat flux exchange module Coupled Ocean Atmosphere Experiment (COARE) was coupled with a spectral wave model Simulating Waves Nearshore (SWAN) to resolve the surface heat exchange and wave-driven reef circulation in Coral Bay, Ningaloo Reef. Using realistic oceanic and atmospheric forcing, the model predictions were in good agreement with measured time series of water temperature at various locations in the coral reef system during the bleaching event. Through a series of sensitivity analyses, we found that the difference in temperature between the reef and surrounding offshore waters (ΔT) was predominantly a function of both the daily mean net heat flux (Qnet>¯) and residence time, whereas diurnal variations in reef water temperature were dependent on the diurnal fluctuation in the net heat flux. We found that reef temperatures were substantially higher than offshore in the inner lagoon under normal weather conditions and over the entire reef domain under more extreme weather conditions (0.7°C-1.5°C). Although these temperature elevations were still less than that caused by the regional ocean warming (2°C-3°C), the arrival of peak seasonal temperatures in the summer of 2010-2011 (when net atmospheric heat fluxes were positive and abnormally high) caused substantially higher thermal stresses than would have otherwise occurred if offshore temperatures had reached their normal seasonal maxima in autumn (when net atmospheric heat fluxes were negative or cooling). Therefore, the degree heating weeks calculated based on offshore temperature substantially underestimated the thermal stresses

  2. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    Indian Academy of Sciences (India)

    Naveen R Shahi; Neeraj Agarwal; Aloke K Mathur; Abhijit Sarkar

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5–12.5 m thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50–1.02 K) and to ship datasets (1.41–1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  3. GHRSST Level 2P Global Skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-B satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  4. GHRSST Level 2P Global Skin Sea Surface Temperature from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  5. Independent Cooling Controller for Temperature Control of High Strength and Atmosphere Corrosion Resisting Steel in Hot Strip Mills

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Jae [Daegu University, Kyungsan (Korea, Republic of)

    2015-03-15

    In this paper, we propose an independent cooling control (ICC) scheme for high strength and atmosphere corrosion resisting steel to obtain the desired temperature and properties along the longitudinal direction of the steel in the run-out table (ROT) process. A temperature model of the independent process is developed to divide the ROT into front and back sections. The control concept uses field data, problem analysis, and a time-temperature transformation diagram. The effectiveness of the proposed control is verified using simulation results under a temperature disturbance by the transformation in the middle of the ROT. The results of a hot strip mill field test show that the temperature control performance is significantly improved by the proposed control scheme.

  6. Atmospheric and Coupled Model Intercomparison in Terms of Amplitude-Phase Characteristics of Surface Air Temperature Annual Cycle

    Institute of Scientific and Technical Information of China (English)

    Alexey V. ELISEEV; Igor I. MOKHOV; Konstantin G. RUBINSTEIN; Maria S. GUSEVA

    2004-01-01

    A model intercomparison in terms of surface air temperature annual cycle ampitude-phase characteristics(SAT AC APC)is performed. The models included in the intercomparison belong to two groups:five atmospheric models with prescribed sea surface temperature and sea ice cover and four coupled models forced by the atmospheric abundances of anthropogenic consituents (in total six coupled model simulations). Over land, the models, simulating higher than observed time averaged SAT,also tend to simulate smaller than observed amplitude of its annual and semiannual harmonics and (outside the Tropics laterthan-observed spring and autumn moments. The models with larger(smaller) time averaged amplitudes of annual and semiannual harmonics also tend to simulate larger(smaller)interannual standard deviations. Over the oceans, the coupled models with larger interannual standard deviations of annual mean SAT tend to simulate larger interannual standard deviations of both annual and semiannual SAT harmonics amplitudes. Most model errors are located in the belts 60°-70°N and 60°-70°S and over Antarctica. These errors are larger for those coupled models which do not employ dynamical modules for sea ice.No systematic differences are found in the simulated time averaged fields of the surface air temperature annual cycle characteristics for atmospheric models on one hand and for the coupled models on the other. But the coupled models generally simulate interannual variability of SAT AC APC better than the atmospheric models (which tend to underestimate it). For the coupled models, the results are not very sensitive to the choice of the particular scenario of anthropogenic forcing.There is a strong linear positive relationship between the model simulated time averaged semiannual SAT harmonics amplitude and interannual standard deviation of annual mean SAT.It is stronger over the tropical oceans and is weaker in the extratropics. In the tropical oceanic areas, it is stronger for the

  7. Temperature and atmospheric pressure may be considered as predictors for the occurrence of bacillary dysentery in Guangzhou, Southern China

    Directory of Open Access Journals (Sweden)

    Tiegang Li

    2014-06-01

    Full Text Available Introduction The control of bacillary dysentery (BD remains a big challenge for China. Methods Negative binomial multivariable regression was used to study relationships between meteorological variables and the occurrence of BD during the period of 2006-2012. Results Each 1°C rise of temperature corresponded to an increase of 3.60% (95%CI, 3.03% to 4.18% in the monthly number of BD cases, whereas a 1 hPa rise in atmospheric pressure corresponded to a decrease in the number of BD cases by 2.85% (95%CI = 3.34% to 2.37% decrease. Conclusions Temperature and atmospheric pressure may be considered as predictors for the occurrence of BD in Guangzhou.

  8. Simulating Titan’s atmospheric chemistry at low temperature (200K)

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jesse L.; Salama, Farid

    2016-06-01

    We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames Research Center. In Titan’s atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, the chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (150 K). The residence time of the gas in the pulsed plasma discharge is on the order of 3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry by adding heavier precursors into the initial N2-CH4 gas mixture.Two complementary studies of the gas phase and solid phase products have been performed in 4 different gas mixtures: N2-CH4, N2-CH4-C2H2, N2-CH4-C6H6 and N2-CH4-C2H2-C6H6 using a combination of in situ and ex situ diagnostics. The mass spectrometry analysis of the gas phase was the first to demonstrate that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry (Sciamma-O’Brien et al. 2014). The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates that form in the gas phase were jet deposited on various substrates then collected for ex situ analysis. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, which could have a large impact for Titan’s models. We will present the latest results of the X-ray Absorption Near Edge Structure measurements, that show the different functional groups present in our samples and give the C/N ratio; as well as the Direct Analysis in Real Time Mass Spectrometry coupled with Collision Induced Dissociation analyses that have been

  9. Understanding convection features over Bay of Bengal using sea surface temperature and atmospheric variables

    Science.gov (United States)

    Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.

    2016-08-01

    Tropical oceanic regions are frequently prone to deep convections. Hence, it is very essential to understand the features of convection with the help of oceanic and atmospheric variables such as sea surface temperature (SST), outgoing longwave radiation (OLR), rainfall, relative humidity, columnar water vapour (CWV) etc. and the linkage among them. In our present study, we have divided the Bay of Bengal (BoB) into ten different subregions (SR) and have attempted to study the connection between the above-stated variables during convective and non-convective events in the southwest monsoon (SWM) season (June to September) for the period 1998-2010. The monthly behaviour of SST/OLR decreased by 0.5 °C/14 W/m2 from May to June and increased by 0.1 °C/7 W/m2 from September to October. Among the ten SRs, SR 5 and SR 10 are observed to be coldest and warmest, respectively, based on the SST variations. Intra-seasonal oscillations of the above-mentioned variables show the influences of quasi-biweekly oscillations (QBWO) and Madden-Julian oscillations (MJO). As the threshold values for SST, OLR and rainfall were already reported, we have drawn our attention to deduce a threshold value for water vapour in lower level troposphere (water vapour density (WVD) at 850 mb) which highly influences the convection. In arriving at a threshold of low-level water vapour, we have analysed the convective and non-convective events of each central 1 × 1° grid in all the SRs for the period from 1998 to 2010, along with water vapour scale height. Our analysis inferred that the low-level water vapour density at 850 mb varied above 12 g/m3during convective days and below 12 g/m3during non-convective days. We noticed that the variability in water vapour density is more in non-convective days than in convective days over BoB. The results of the study may be useful to understand the water vapour dynamics with SST, OLR and rainfall.

  10. Temporal Variations of Titan's Middle-Atmospheric Temperatures from 2004 to 2009 Observed by Cassini/CIRS

    Science.gov (United States)

    Achterberg, Richard K.; Gierasch, Peter J.; Conrath, Barney J.; Flasar, F. Michael; Nixon, Conor A.

    2011-01-01

    We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (Ls from 293 deg. to 48 deg.; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009, at north polar latitudes within the polar vortex, temperatures in the middle stratosphere show an approximately 4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.

  11. Radiative analysis of global mean temperature trends in the middle atmosphere: Effects of non-locality and secondary absorption bands

    Science.gov (United States)

    Fomichev, V. I.; Jonsson, A. I.; Ward, W. E.

    2016-02-01

    In this paper, we provide a refined and extended assignment of past and future temperature changes relative to previous analyses and describe and evaluate the relevance of vertical coupling and non-linear and secondary radiative mechanisms for the interpretation of climatic temperature variations in the middle atmosphere. Because of their nature, the latter mechanisms are not adequately accounted for in most regression analyses of temperature trends as a function of local constituent variations. These mechanisms are examined using (1) globally averaged profiles from transient simulations with the Canadian Middle Atmosphere Model (CMAM) forced by changes in greenhouse gases and ozone depleting substances and (2) a one-dimensional radiative-equilibrium model forced using the diagnosed global mean changes in radiatively active constituents as derived from the CMAM model runs. The conditions during the periods 1975 to 1995 and 2010 to 2040 (during which the rates of change in ozone and CO2 differ) provide a suitable contrast for the role of the non-linear and non-local mechanisms being evaluated in this paper to be clearly differentiated and evaluated. Vertical coupling of radiative transfer effects and the influence of secondary absorption bands are important enough to render the results of multiple linear regression analyses between the temperature response and constituent changes misleading. These effects are evaluated in detail using the 1D radiative-equilibrium model using profiles from the CMAM runs as inputs. In order to explain the differences in the CMAM temperature trends prior to and after 2000 these other radiative effects must be considered in addition to local changes in the radiatively active species. The middle atmosphere temperature cools in response to CO2 and water vapor increases, but past and future trends are modulated by ozone changes.

  12. Design and fabrication of a data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector development

    CERN Document Server

    Sahu, S; Rudra, Sharmili; Biswas, S; Mohanty, B; Sahu, P K

    2015-01-01

    A novel instrument has been developed to monitor and record the ambient pa- rameters such as temperature, atmospheric pressure and relative humidity. These parameters are very essential for understanding the characteristics such as gain of gas filled detectors like Gas Electron Multiplier (GEM) and Multi Wire Propor- tional Counter (MWPC). In this article the details of the design, fabrication and operation processes of the device has been presented.

  13. Mutation Breeding of Extracellular Polysaccharide-Producing Microalga Crypthecodinium cohnii by a Novel Mutagenesis with Atmospheric and Room Temperature Plasma

    OpenAIRE

    Bin Liu; Zheng Sun; Xiaonian Ma; Bo Yang; Yue Jiang; Dong Wei; Feng Chen

    2015-01-01

    Extracellular polysaccharides (EPS) produced by marine microalgae have the potential to be used as antioxidants, antiviral agents, immunomodulators, and anti-inflammatory agents. Although the marine microalga Crypthecodinium cohnii releases EPS during the process of docosahexaenoic acid (DHA) production, the yield of EPS remains relatively low. To improve the EPS production, a novel mutagenesis of C. cohnii was conducted by atmospheric and room temperature plasma (ARTP). Of the 12 mutants o...

  14. Links between atmospheric circulation and surface air temperature in climate models in control climate and future scenarios

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    Bern: Swiss Climate Research, 2011, s. 84-85. [International NCCR Climate Summer School "Climate Change, Extremes and Ecosystem Services" /10./. Grindelwald (CH), 04.09.2001-09.09.2011] R&D Projects: GA ČR GAP209/10/2265 Institutional research plan: CEZ:AV0Z30420517 Keywords : regional climate models * air temperature * atmospheric circulation * future climate change scenarios Subject RIV: DG - Athmosphere Sciences, Meteorology

  15. Temperature-programmed desorption of oxygen from La-Sr-Co-Fe perovskite in atmospheres with varying oxygen partial pressure

    International Nuclear Information System (INIS)

    A temperature-programmed desorption technique under atmospheres with variable partial pressure of oxygen has been developed using a homemade fixed-bed flow reactor equipped with a yttria-stabilized zirconia (YSZ) oxygen sensor as a detector of oxygen desorbed from a sample. Its significance has been verified for the particular catalytic material of La-Sr-Co-Fe-O perovskite-type oxide. (author)

  16. Temperature Measurements in Venus Upper Atmosphere between 2007 and 2015 from ground-based Infrared Heterodyne Spectroscopy

    Science.gov (United States)

    Krause, Pia; Wischnewski, Carolin; Sornig, Manuela; Stangier, Tobias; Sonnabend, Guido; Herrmann, Maren; Wiegand, Moritz; Kostiuk, Theodor; Livengood, Timothy

    2016-04-01

    The structure of Venus atmosphere has been the target of intense studies in the past decade. Among manifold ground based observations, the recent space mission Venus Express in particular has shed light on many open questions concerning the thermal and the dynamical behavior of its atmosphere. A comprehensive understanding of this atmospheric region is still missing. Therefore, direct measurements of atmospheric parameters on various time scales and at different locations on the planet are essential for an understanding and for the validation of global circulation models. Such observations are provided by the infrared heterodyne spectrometers THIS (University of Cologne), HIPWAC (NASA GSFC) and MILAHI (Tohoku University). These instruments fully resolve CO2 non-LTE emission lines for Doppler-wind and temperature retrievals at an pressure level of 1μbar (~110 km) by operating around 10μm. The Long- and short-term variability of daytime temperatures at the ~1μbar level from ground-based observing campaigns between 2007 to 2015 shall be presented. The observations yield a large quantity of temperature measurements at different positions on the planetary disk which allows to map a good part of the dayside of Venus. In addition a detailed study of the interesting but not well understood and only poorly investigated area close to the terminator will be given. Investigations on the general behavior of the temperature and differences between the morning and evening terminators are accomplished. Ongoing analysis of thermal variability and comparison to other observing methods and model calculations are in progress and will be included in the presentation if already available.

  17. Model evaluation of the radiative and temperature effects of the ozone content changes in the global atmosphere of 1980's

    Science.gov (United States)

    Karol, Igor L.; Frolkis, Victor A.

    1994-01-01

    Radiative and temperature effects of the observed ozone and greenhouse gas atmospheric content changes in 1980 - 1990 are evaluated using the two-dimensional energy balance radiative-convective model of the zonally and annually averaged troposphere and stratosphere. Calculated radiative flux changes for standard conditions quantitatively agree with their estimates in WMO/UNEP 1991 review. Model estimates indicate rather small influence of ozone depletion in the lower stratosphere on the greenhouse tropospheric warming rate, being more significant in the non-tropical Southern Hemisphere. The calculated cooling of the lower stratosphere is close to the observed temperature trends there in the last decade.

  18. Comparative study of middle atmosphere temperature at Rothera with Lidar and SABER, and the effect of the Antarctic Vortex

    Science.gov (United States)

    Tan, B.; Harvey, L.; Chu, X.; Espy, P. J.; Gardner, C. S.

    2009-12-01

    The data collected by Fe Boltzmann lidar from 2003 to 2005 at Rothera, Antarctica (67.5 S, 68.0 W) are used to generate temperature morphology in stratosphere and mesosphere covering an entire year. Satellite temperatures by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) are compared to the lidar data and show good agreements in general. SABER provides near global coverage on a daily basis but yaws toward the Northern Hemisphere resulting in months when comparisons are not available. The lidar measures the temperature profile over Rothera at high vertical resolution while the vertical resolution of SABER is 2-3 km. Large variability in temperature is observed in austral fall and spring around 60 km. In this work, we explore the extent to which the observed variability is due to sampling inside, at the edge, or outside the Antarctic polar vortex. The edge of the vortex is co-located with very large temperature gradient and daily movement of the vortex likely contributes to a geophysical explanation for large temperature variations. The position of the vortex edge, based on GEOS-5 temperatures and winds, is used to aid in the interpretation of the temperature structure as a function of altitude and time. Results will be shown that indicate notable differences between profiles sampled in the different air mass regions.

  19. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    International Nuclear Information System (INIS)

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m3 and 180 pg/m3, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logKp) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logKp) also correlated with the sub-cooled liquid vapor pressure (logPLo). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning

  20. A Novel Continuously Initiated Polymerization by One-Atmosphere Low Temperature Plasma Device

    Institute of Scientific and Technical Information of China (English)

    You qingliang; Meng yuedong; Wang jianhua; Ou qiongrong; Xu xu; Zhong shaofeng

    2005-01-01

    A novel atmospheric plasma device developed in this paper, which is more effective and convenient to study the plasma-initiated polymerization (PIP) than conventional setup. The structure and mechanism of the device is introduced. Some plasma-initiated polymerization experiments are carried out on the device, and the conversion of AA (Acrylic acid) and AM (Acryl amide) atmospheric (N2) plasma polymerization are respectively 89% and 94% after 120 h post polymerization, whereby IR spectra of the product (AA, AM). Our PIP result are confirmed.

  1. Elusive anion growth in Titan's atmosphere: Low temperature kinetics of the C3N- + HC3N reaction

    Science.gov (United States)

    Bourgalais, Jérémy; Jamal-Eddine, Nour; Joalland, Baptiste; Capron, Michael; Balaganesh, Muthiah; Guillemin, Jean-Claude; Le Picard, Sébastien D.; Faure, Alexandre; Carles, Sophie; Biennier, Ludovic

    2016-06-01

    Ion chemistry appears to be deeply involved in the formation of heavy molecules in the upper atmosphere of Titan. These large species form the seeds of the organic aerosols responsible for the opaque haze surrounding the biggest satellite of Saturn. The chemical pathways involving individual anions remain however mostly unknown. The determination of the rates of the elementary reactions with ions and the identification of the products are essential to the progress in our understanding of Titan's upper atmosphere. We have taken steps in that direction through the investigation of the low temperature reactivity of C3N- , which was tentatively identified in the spectra measured by the CAPS-ELS instrument of the Cassini spacecraft during its high altitude flybys. The reaction of this anion with HC3N, one of the most abundant trace organics in the atmosphere, has been studied over the 49-294 K temperature range in uniform supersonic flows using the CRESU technique. The proton transfer is found to be the main exit channel (>91%) of the C315N- + HC3N reaction. It remains however indistinguishable with the non-isotopically labeled C314N- reactant. The T - 1 / 2 temperature dependence of this proton transfer reaction and its global rate are reasonably well reproduced theoretically using an average dipole orientation model. A minor exit channel, reactive detachment (products has not been determined. It is concluded that the C314N- + HC3N reaction cannot contribute to the growth of molecular anions in the upper atmosphere of Titan. Due to the low branching into the neutral exit channel, it cannot contribute either to the growth of neutrals even assuming a complete mass transfer.

  2. UAS and DTS: Using Drones and Fiber Optics to Measure High Resolution Temperature of the Atmospheric Boundary Layer

    Science.gov (United States)

    Predosa, R. A.; Darricau, B.; Higgins, C. W.

    2015-12-01

    The atmospheric boundary layer (ABL) is the lowest part of the atmosphere that directly interacts with the planet's surface. The development of the ABL plays a vital role, as it affects the transport of atmospheric constituents such as air pollutants, water vapor, and greenhouse gases. Measurements of the processes in the ABL have been difficult due to the limitations in the spatial and temporal resolutions of the equipment as well as the height of the traditional flux tower. Recent advances in the unmanned aerial vehicle (UAV) and distributed temperature sensing (DTS) technologies have provided us with new tools to study the complex processes in ABL. We conducted a series of pioneering experiments in Eastern Oregon using a platform that combines UAV and DTS to collect data during morning and evening transitions in the ABL. The major components of this platform consists of a quad-copter, a DTS computer unit, and a set of customized fiber optic cables. A total of 75 flights were completed to investigate: (1) the capability of a duplexed fiber optic cable to reduce noise in the high spatial and temporal temperature measurements taken during the morning transition; (2) the possibility of using fiber optic cable as "wet bulb" thermometer to calculate relative humidity in the ABL at high spatial and temporal resolution. The preliminary results showed that using a fiber optic cable in a duplexed configuration with the UAV-DTS platform can effectively reduce noise level during the morning transition data collection. The customized "wet bulb" fiber optic cable is capable of providing information for the calculation of relative humidity in the ABL at unprecedented spatial and temporal resolutions. From this study, the UAV-DTS platform demonstrated great potential in collecting temperature data in the ABL and with the development of atmospheric sensor technologies, it will have more applications in the future.

  3. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    Science.gov (United States)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  4. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres.

    Science.gov (United States)

    Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric

    2016-04-15

    BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres. PMID:26799218

  5. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contac

  6. Sterilization of packed matter by means of low temperature atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank

    2010-01-01

    Summary form only given. The decontamination of material in closed containers by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua, is ...

  7. Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2602-2607. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.489, year: 2014

  8. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  9. Sterilization of packed matter by means of low temperature atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank

    2010-01-01

    Summary form only given. The decontamination of material in closed containers by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua, is...

  10. Influence of 21st century atmospheric and sea surface temperature forcing on West African climate

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Chris B [Stanford University; Ashfaq, Moetasim [ORNL; Diffenbaugh, Noah [Stanford University

    2011-01-01

    he persistence of extended drought events throughout West Africa during the 20th century has motivated a substantial effort to understand the mechanisms driving African climate variability, as well as the possible response to elevated greenhouse gas (GHG) forcing. We use an ensemble of global climate model experiments to examine the relative roles of future direct atmospheric radiative forcing and SST forcing in shaping potential future changes in boreal summer precipitation over West Africa. We find that projected increases in precipitation throughout the Western Sahel result primarily from direct atmospheric radiative forcing. The changes in atmospheric forcing generate a slight northward displacement and weakening of the African easterly jet (AEJ), a strengthening of westward monsoon flow onto West Africa and an intensification of the tropical easterly jet (TEJ). Alternatively, we find that the projected decreases in precipitation over much of the Guinea Coast region are caused by SST changes that are induced by the atmospheric radiative forcing. The changes in SSTs generate a weakening of the monsoon westerlies and the TEJ, as well as a decrease in low-level convergence and resultant rising air throughout the mid levels of the troposphere. Our experiments suggest a potential shift in the regional moisture balance of West Africa should global radiative forcing continue to increase, highlighting the importance of climate system feedbacks in shaping the response of regional-scale climate to global-scale changes in radiative forcing.

  11. Diversity in neotropical wet forests during the Cenozoic is linked more to atmospheric CO2 than temperature.

    Science.gov (United States)

    Royer, Dana L; Chernoff, Barry

    2013-08-01

    Models generally predict a response in species richness to climate, but strong climate-diversity associations are seldom observed in long-term (more than 10(6) years) fossil records. Moreover, fossil studies rarely distinguish between the effects of atmospheric CO2 and temperature, which limits their ability to identify the causal controls on biodiversity. Plants are excellent organisms for testing climate-diversity hypotheses owing to their strong sensitivity to CO2, temperature and moisture. We find that pollen morphospecies richness in an angiosperm-dominated record from the Palaeogene and early Neogene (65-20 Ma) of Colombia and Venezuela correlates positively to CO2 much more strongly than to temperature (both tropical sea surface temperatures and estimates of global mean surface temperature). The weaker sensitivity to temperature may be due to reduced variance in long-term climate relative to in higher latitudes, or to the occurrence of lethal or sub-lethal temperatures during the warmest times of the Eocene. Physiological models predict that productivity should be the most sensitive to CO2 within the angiosperms, a prediction supported by our analyses if productivity is linked to species richness; however, evaluations of non-angiosperm assemblages are needed to more completely test this idea. PMID:23760866

  12. 3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    CERN Document Server

    Forget, Francois; Millour, Ehouarn; Madeleine, Jean-Baptiste; Kerber, Laura; Leconte, Jeremy; Marcq, Emmanuel; Haberle, Robert M

    2012-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young sun and a CO2 atmosphere with pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored by using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet...

  13. The effect of gravity waves on the global mean temperature and composition structure of the upper atmosphere

    Science.gov (United States)

    Gavrilov, Nikolai M.; Roble, Raymond G.

    1994-01-01

    Formulas are presented that parameterize the heating rate and coefficient of turbulent heat conduction produced by saturated internal gravity waves (IGW) in the upper atmosphere. Estimates of these values are made using observational data. The parameterization of IGW influences are introduced into a one-dimensional model of global mean thermal and composition balances of the upper atmosphere. Computations are performed for different values of IGW energy fluxes entering into the upper atmosphere from below. It is shown that realistic vertical profiles of the global mean temperature can be obtained using different values of IGW energy flux into the upper atmosphere. Increasing the IGW intensity leads not only to an increase of the heating rate due to wave enery dissipation, but also to an increase of the heating rate due to wave energy dissipation, but also to an increase in the coefficient of turbulent heat conduction and cooling rate produced by turbulence generated by the wave. So, near an altitude of 100 km the main part of solar heating is compensated by infrared cooling on one hand, and the main part of wave dissipation heating is compensated by turbulent cooling on the other hand. These quasi-balances generally hold for different values of IGW intensity.

  14. Effect of oxygen concentration in modified atmosphere packaging on color and texture of beef patties cooked to different temperatures.

    Science.gov (United States)

    Bao, Yulong; Puolanne, Eero; Ertbjerg, Per

    2016-11-01

    Patties were made from raw minced beef after storage for 6days in modified atmosphere (0, 20, 40, 60, and 80% oxygen) to study the combined effect of oxygen concentration and cooking temperature on hardness and color. Increased oxygen concentrations generally led to larger (P<0.01) thiobarbituric acid-reactive substances (TBARS) values, greater (P<0.01) loss of free thiols and more formation of cross-linked myosin heavy chain. Hardness of cooked patties was generally lower (P<0.01) without oxygen. Premature browning of cooked patties was observed already at a relative low oxygen concentration of 20%. The internal redness of cooked patties decreased (P<0.05) with increasing oxygen concentrations and increasing cooking temperatures. Mean particle size (D(3,2)) of homogenized cooked meat generally increased (P<0.05) with increasing cooking temperatures and increasing oxygen concentrations, and particle size was correlated (r=0.80) with hardness of cooked patties. PMID:27341620

  15. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment

    Science.gov (United States)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2015-03-01

    The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.

  16. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-01

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  17. The effect of temperature and atmosphere on spinel phase formation of nano-manganese ferrite

    OpenAIRE

    B. Nasr; J. Amighian; M. Mozaffar

    2006-01-01

     Phase formation of manganese ferrite prepared by co-precipitation method is studied at different annealing temperatures. It is shown that the spinel phase is formed by quenching only in inert gas. XRD patterns show that the background picks fall in intensity by increasing annealing temperature and the single phase is achieved by magnetic separation.

  18. Atmospheric correction of Landsat data for the retrieval of sea surface temperature in coastal waters

    Institute of Scientific and Technical Information of China (English)

    XING Qianguo; CHEN Chuqun; SHI Ping; YANG Jingkun; TANG Shilin

    2006-01-01

    A mono-window algorithm was introduced to retrieve sea surface temperature (SST) using Landsat data in coastal waters. In this algorithm, the effective mean air temperature and the water vapor content of air column were estimated with the local meteorological parameters of air temperature and relative humidity, based on the facts that in the troposphere, ( 1 ) air temperature decreases linearly with the altitude, and (2) water vapor content lapses exponentially with the altitude. The sea-truth temperature data and MODIS Terra SST product were used to validate the SST retrieved from Landsat TM and ETM + thermal infrared (TIR) data with the algorithm. The results show that the algorithm can improve the spatial temperature contrast which is often masked due to water vapor effects, and the temperature derived from the algorithm is closer to the sea-truth SST. When applying the algorithm, the initial parameters of air temperature and relative humidity can be easily collected from local meteorological stations, and there is no need to identify the model of air profile.

  19. Interdecadal Variations of Precipitation and Temperature in China Around the Abrupt Change of Atmospheric Circulation in 1976

    Institute of Scientific and Technical Information of China (English)

    LI Chunhui; WAN Qilin; LIN Ailan; GU Dejun; ZHENG Bin

    2009-01-01

    The interdecadal characteristics of rainfall and temperature in China before and after the abrupt change of the general circulation in 1976 are analyzed using the global 2.5°×2.5° monthly mean reanalysis data from the National Centers for Environmental Prediction of US and the precipitation and temperature data at the 743 stations of China from the National Climate Center of China. The results show that after 1976, springtime precipitation and temperature were anomalously enhanced and reduced respectively in South China, while the reverse was true in the western Yangtze River basin. In summer, precipitation was anomalously less in South China, more in the Yangtze River basin, less again in North China and more again in Northeast China, showing a distribution pattern alternating with negative and positive anomalies ("-, +, -, +"). Meanwhile, temperature shows a distribution of warming in South China, cooling in the Yangtze and Huaihe River basins, and warming again in northern China. In autumn, precipitation tended to decrease and temperature tended to increase in most parts of the country. In winter, precipitation increased moderately in South China and warming was the trend across all parts of China. The interdecadal decline of mean temperature in spring and summer in China was mainly due to the daily maximum temperature variation, while the interdecadal increase was mainly the result of the minimum temperature change. The overall warming in autumn (winter) was mostly influenced by the minimum (maximum) temperature variation. These changes were closely related to the north-south shifts of the ascending and descending branches of the Hadley cell, the strengthening and north-south progression of the westerly jet stream, and the atmospheric stratification and water vapor transport conditions.

  20. Spectroscopic Evidence for a Temperature Inversion in the Dayside Atmosphere of the Hot Jupiter WASP-33b

    CERN Document Server

    Haynes, Korey; Madhusudhan, Nikku; Deming, Drake; Knutson, Heather

    2015-01-01

    We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the HST, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a delta-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The RMS for our final, binned spectrum is approximately 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We also find that our spectrum displays an excess in the measured flux towards short wavelengths that is best...

  1. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    Science.gov (United States)

    Lorenz, Ruth; Argüeso, Daniel; Donat, Markus G.; Pitman, Andrew J.; Hurk, Bart; Berg, Alexis; Lawrence, David M.; Chéruy, Frédérique; Ducharne, Agnès.; Hagemann, Stefan; Meier, Arndt; Milly, P. C. D.; Seneviratne, Sonia I.

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  2. Temperature-Pressure Profile of the hot Jupiter HD 189733b from HST Sodium Observations: Detection of Upper Atmospheric Heating

    CERN Document Server

    Huitson, Catherine M; Vidal-Madjar, Alfred; Ballester, Gilda E; Etangs, Alain Lecavelier des; Désert, Jean-Michel; Pont, Frédéric

    2012-01-01

    We present transmission spectra of the hot Jupiter HD 189733b taken with the Space Telescope Imaging Spectrograph aboard HST. The spectra cover the wavelength range 5808-6380 Ang with a resolving power of R=5000. We detect absorption from the NaI doublet within the exoplanet's atmosphere at the 9 sigma confidence level within a 5 Ang band (absorption depth 0.09 +/- 0.01%) and use the data to measure the doublet's spectral absorption profile. We detect only the narrow cores of the doublet. The narrowness of the feature could be due to an obscuring high-altitude haze of an unknown composition or a significantly sub-solar NaI abundance hiding the line wings beneath a H2 Rayleigh signature. We compare the spectral absorption profile over 5.5 scale heights with model spectral absorption profiles and constrain the temperature at different atmospheric regions, allowing us to construct a vertical temperature profile. We identify two temperature regimes; a 1280 +/- 240 K region derived from the NaI doublet line wings ...

  3. Measure and exploitation of multisensor and multiwavelength synergy for remote sensing: 2. Application to the retrieval of atmospheric temperature and water vapor from MetOp

    OpenAIRE

    Aires, F.; Paul, M; Prigent, C; Rommen, B.; Bouvet, M

    2011-01-01

    In the companion paper, classical information content (IC) analysis was used to measure the potential synergy between the microwave (MW) and infrared (IR) observations from Atmospheric Microwave Sounding Unit-A, Microwave Humidity Sounder, and Improved Atmospheric Sounding in the Infrared instruments, used to retrieve the atmospheric profiles of temperature and water vapor over ocean, under clear-sky conditions. Some limitations of IC were pointed out that questioned the reliability of this t...

  4. Development of Pt/ASDBC catalyst for room temperature recombiner of atmosphere detritiation system

    International Nuclear Information System (INIS)

    A combined catalytic reactor and water absorber system has been applied in the field of nuclear fusion to control the tritium release into the environment as low as reasonably achievable. Efficient tritium oxidation performance at room temperature has been strongly required taking a severe accident in a facility into consideration. We have developed hydrophobic Pt catalysts applicable for tritium oxidation in the presence of saturated water vapor at room temperature. A new type of hydrophobic catalyst, Pt/ASDBC, has been prepared by dipositting platinum on alkyl-styrene diviyl-benzene copolymer (ASDBC). Tritium oxidation tests of the catalysts using 3 GBq/m3 of tritium were performed in the absence/presence of saturated water vapor at room temperature. The overall reaction rate constant for Pt/ASDBC catalyst in the ambient temperature range was considerably larger than that for the traditionally applied Pt/Al2O3 catalyst. Oxidation reaction on the catalyst surface is the rate-controlling step in the ambient temperature range. The overall reaction rate constant in the ambient temperature range was dependent on the space velocity and hydrogen concentration in carrier. Values of the overall reaction rate constant in the ambient temperature range were correlated to koverall = 1.60 x 105exp(-33.0 (kJ/mol)/Rg/T) (s-1) at the space velocity of 5556 h-1 under the dry condition.

  5. The influence of atmospheric circulation on the air pollution concentration and temperature inversion in Sosnowiec. Case study

    Directory of Open Access Journals (Sweden)

    Widawski Artur

    2015-06-01

    Full Text Available Sosnowiec is located in the Katowice Region, which is the most urbanized and industrialized region in Poland. Urban areas of such character favor enhancement of pollution concentration in the atmosphere and the consequent emergence of smog. Local meteorological and circulation conditions significantly influence not only on the air pollution level but also change air temperature considerably in their centers and immediate vicinities. The synoptic situation also plays the major role in dispersal and concentration of air pollutants and changes in temperature profile. One of the most important are the near-ground (100 m inversions of temperature revealed their highest values on clear winter days and sometimes stay still for the whole day and night. Air temperature inversions in Sosnowiec occur mainly during anticyclone stagnation (Ca-anticyclone centre and Ka-anticyclonic ridge and in anticyclones with air advection from the south and southwest (Sa and SWa which cause significantly increase of air pollution values. The detailed evaluation of the influence of circulation types on the appearance of a particular concentration of pollutants carried out in this work has confirmed the predominant influence of individual circulation types on the development of air pollution levels at the Katowice region. This paper presents research case study results of the thermal structure of the near-ground atmospheric layer (100 m and air pollution parameters (PM10, SO2, NO, NO2 changes in selected days of 2005 year according to regional synoptic circulation types. The changes in urban environment must be taken into account in analyses of multiyear trends of air temperature and air conditions on the regional and global scales.

  6. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    Czech Academy of Sciences Publication Activity Database

    Plavcová, Eva; Kyselý, Jan

    2012-01-01

    Roč. 39, 7-8 (2012), s. 1681-1695. ISSN 0930-7575 R&D Projects: GA ČR GAP209/10/2265 Grant ostatní: ENSEMBLES: EU-FP6(XE) 505539 Institutional support: RVO:68378289 Keywords : Regional climate models * Global climate models * Atmospheric circulation * Surface air temperature * ENSEMBLES * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.231, year: 2012 http://link.springer.com/article/10.1007%2Fs00382-011-1278-8#

  7. The effects of re-firing process under oxidizing atmosphere and temperatures on the properties of strontium aluminate phosphors

    International Nuclear Information System (INIS)

    Graphical abstract: The comparative emission spectra of standard and re-fired Phosphor A under oxidizing atmosphere at various temperatures. The colour of Phosphor A re-fired at higher temperatures above 900 °C shifted from yellowish-green to bluish-green in the dark. But, the bluish-green emission could only be seen when it was exposed to UV and disappeared as soon as the light source was removed. Moreover, the emission intensities decreased as the re-firing temperatures increased. This could be attributed to the oxidation of Eu2+ during the re-firing process. It is well known fact from the literature that the reduction of Eu3+ to Eu2+ in appropriate host materials needs an annealing process in a reducing atmosphere such as H2, H2/N2 mixture or CO. Up to now, the reduction phenomena of Eu3+ → Eu2+ in air have been found in phosphates (Ba3(PO4)2:Eu), sulphates (BaSO4:Eu), borates (SrB4O7:Eu, SrB6O10:Eu and BaB8O13:Eu) and aluminates (Sr4Al14O25:Eu). Interestingly, an apparent blue shift in the phosphorescence spectrum was observed in the samples re-fired at 1000 °C and above, indicating a minimal effect on the oxidation state or the electronic energy levels of the co-doped Dy3+ ions, which were thought to act as long-lived hole traps resulting in long afterglow. - Highlights: • This study examines the effects re-firing at oxidizing atmosphere of photoluminescence of three different commercial SrAl2O4:Eu2+,Dy3+-phosphors. • All the commercial SrAl2O4:Eu2+,Dy3+-phosphors completely lost their phosphorescence after being re-fired at 1300 °C. • Oxidizing environment and re-firing temperature naturally affecting the valance of Eu2+ may cause the basic lattice structure to be modified and also limit their applications at higher temperatures, such as third firing vetrosa décor or glaze applications in ceramic industry. • It was thought that this kind of study may be promising to provide many outcome studies, may act to encourage additional efforts along

  8. High Temperature Energy Storage for In Situ Planetary Atmospheric Measurement Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of energy storage capable of operational temperatures of 380:C and 486oC with a specific capacity 200 Wh/kg for use as a power source on the Venusian...

  9. An X-ray camera for single-crystal studies at high temperatures under controlled atmosphere

    International Nuclear Information System (INIS)

    A vacuum heating camera has been developed for extremely low background X-ray film work between room temperature and 2000 K. It can be used with modified conventional Weissenberg goniometers and with a specially designed focusing goniometer. The temperature control is maintained by a Pt/Pt-10% Rh thermocouple, a three-term proportional, integral and derivative (PID) controller and a programmable power supply. The accuracy in the absolute temperature setting is 10 K, the stability better than 1 K and the maximum thermal gradient over the crystal 7 K mm-1 at 1330 K. A small oxygen pressure can be applied, depending on the temperature, to control oxidation or reduction reactions of the sample. (Auth.)

  10. High temperature corrosion of boiler steels in hydrochloric atmosphere under oil shale ashes

    International Nuclear Information System (INIS)

    Highlights: • High temperature gaseous hydrochloric corrosion analysis of different boiler steels. • Influence on the corrosion of the presence of oil shale ashes and cyclic removing. • Empiric kinetic coherence equation and diagram for corrosion depth versus time. • Additional oxidation tests of all materials investigated. • Qualitative analysis of the present corrosion mechanisms. - Abstract: High temperature corrosion in power plants is a main breakdown criterion in boiler applications. This study is focused on the high-temperature corrosion resistance of several boiler steels used in Estonian power plants, which were experimentally tested in gaseous hydrochloric environment combined with Estonian oil shale ashes in a high temperature corrosion test up to 600 °C. Scanning electron microscopy supported by energy dispersive X-ray spectroscopy was used to reveal different corrosion mechanisms. Results indicate a strong dependence of the boiler steel corrosion to the present anions in the oil shale ash and their removal in the boiler

  11. Global atmospheric change and herbivory: Effects of elevated levels of UV-B radiation, atmospheric CO2 and temperature on boreal woody plants and their herbivores

    International Nuclear Information System (INIS)

    The aim of this study was to assess the effects of elevated ultraviolet-B radiation (UV-B, 280- 320 nm), atmospheric CO2, temperature and soil nitrogen level on the growth and chemical quality of boreal deciduous woody plants and on performance of the herbivorous insects feeding on them. Eggs and larvae of Operophtera brumata (L.) (Lepidoptera, Geometridae) were subjected to elevated UV-B radiation in the laboratory. Two willow species, Salix phylicifolia L. (Salicaceae) and S. myrsinifolia Salisb., were grown in an UV-B irradiation field where the responses of both plants and their herbivorous insects were monitored. S. myrsinifolia, Betula pendula Ehrh. (Betulaceae) and B. pubescens Roth. were subjected to elevated CO2 and temperature and different fertilisation levels in closed-top climatic chambers. To assess the indirect effects of the different treatments, the leaves of experimental willows and birches were fed to larvae of Phratora vitellinae (L.) (Coleoptera, Chrysomelidae) and adults of Agellastica alni L. in the laboratory. Elevated UV-B radiation significantly decreased the survival and performance of eggs and larvae of O. brumata. It also increased concentrations of some flavonoids and phenolic acids in S. myrsinifolia and S. phylicifolia, while the low-UV-B- absorbing phenolics, e. g. condensed tannins, gallic acid derivatives and salicylates, either decreased or remained unaffected. Both the height growth and biomass of one S. phylicifolia clone was sensitive to elevated levels of UV-B radiation. Abundance of adults and larvae of a willow- feeding leaf beetle, P. vitellinae, was increased under elevated UV-B; but this did not lead to increased leaf damage on the host plants. There were no significant differences in performance of the larvae feeding on differentially treated willow leaves, but adult A. alni preferred UV-B-treated leaves to ambient control leaves. Elevated CO2 and temperature significantly increased the height growth of S. myrsinifolia

  12. NOAA Climate Data Record (CDR) of Reflectance and Brightness Temperatures from AVHRR Pathfinder Atmospheres - Extended (PATMOS-x), Version 5.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of AVHRR reflectance and brightness temperatures was produced by the University of Wisconsin using the AVHRR Pathfinder...

  13. Simulation of sea surface temperatures with the surface heat fluxes from an atmospheric circulation model

    OpenAIRE

    Karaca, Mehmet; MÜLLER, DETLEV

    2011-01-01

    The global fields of the surface heat fluxes for the December-February period are calculated with the UCLA atmospheric circulation model (ACM). This model operates on a global grid net. The planetary boundary layer (PBL), as the decisive subsystem for the surface fluxes, is parameterized in terms of its bulk properties. For several locations in the north Atlantic, the model heat fluxes are incorporated into the forcing of a simple ocean mixed-layer (OML) model. The OML-model uses a slight gen...

  14. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    International Nuclear Information System (INIS)

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes

  15. A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles

    Science.gov (United States)

    Korb, C. L.; Weng, C. Y.

    1982-01-01

    The theory of differential absorption lidar measurements for lines with a Voigt profile is given and applied to a two-wavelength technique for measuring the atmospheric temperature profile using a high J line in the oxygen A band. Explicit expressions for the temperature and pressure dependence of the absorption coefficient are developed for lines with a Voigt profile. An iteration procedure for calculating the temperature for narrow laser bandwidths is described which has an accuracy better than 0.2 K for bandwidths less than 0.01/cm. To reduce the errors in lidar measurements due to uncertainties in pressure, a method for estimating the pressure from the temperature profile is described. A procedure for extending the differential absorption technique to the case of finite laser bandwidth with good accuracy is also described. Simulation results show that a knowledge of the laser frequency is needed to 0.005/cm for accurate temperature measurements. Evaluation of the sensitivity for both ground- and Shuttle-based measurements shows accuracies generally better than 1 K. This technique allows up to an order of magnitude improvement in sensitivity compared to other differential absorption lidar techniques.

  16. Relationships of surface air temperature anomalies over Europe to persistence of atmospheric circulation patterns conducive to heat waves

    Directory of Open Access Journals (Sweden)

    J. Kyselý

    2008-04-01

    Full Text Available Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.

  17. Inter-annual temperature and precipitation variations over the Litani Basin in response to atmospheric circulation patterns

    Science.gov (United States)

    Ramadan, H. H.; Ramamurthy, A. S.; Beighley, R. E.

    2012-05-01

    This study examines the sensitivity of a mid-size basin's temperature and precipitation response to different global and regional climate circulation patterns. The implication of the North Atlantic Oscillation (NAO), El Niño Southern Oscillation (ENSO), Indian Monsoon and ten other teleconnection patterns of the Northern Hemisphere are investigated. A methodology to generate a basin-scale, long-term monthly surface temperature and precipitation time series has been established using different statistical tests. The Litani River Basin is the focus of this study. It is located in Lebanon, east of the Mediterranean Basin, which is known to have diverse geophysical and environmental characteristics. It was selected to explore the influence of the diverse physical and topographical features on its hydroclimatological response to global and regional climate patterns. We also examine the opportunity of conducting related studies in areas with limited long-term measured climate and/or hydrological data. Litani's monthly precipitation and temperature data have been collected and statistically extrapolated using remotely sensed data products from satellites and as well as in situ gauges. Correlations between 13 different teleconnection indices and the basin's precipitation and temperature series are investigated. The study shows that some of the annual and seasonal temperature and precipitation variance can be partially associated with many atmospheric circulation patterns. This would give the opportunity to relate the natural climate variability with the watershed's hydroclimatology performance and thus differentiate it from other anthropogenic induced climate change outcomes.

  18. Quantitative schlieren diagnostics for the determination of ambient species density, gas temperature and calorimetric power of cold atmospheric plasma jets

    Science.gov (United States)

    Schmidt-Bleker, A.; Reuter, S.; Weltmann, K.-D.

    2015-05-01

    A measurement and evaluation technique for performing quantitative Schlieren diagnostics on an argon-operated cold atmospheric plasma jet is presented. Combined with computational fluid dynamics simulations, the method not only yields the temporally averaged ambient air density and temperature in the effluent of the fully turbulent jet, but also allows for an estimation of the calorimetric power deposited by the plasma. The change of the refractive index due to mixing of argon and air is in the same range as caused by the temperature increase of less than 35 K in the effluent of the plasma jet. The Schlieren contrast therefore needs to be corrected for the contribution from ambient air diffusion. The Schlieren system can be calibrated accurately using the signal obtained from the argon flow when the plasma is turned off. The temperature measured in this way is compared to the value obtained using a fibre-optics temperature probe and shows excellent agreement. By fitting a heat source in a fluid dynamics simulation to match the measured temperature field, the calorimetric power deposited by the plasma jet can be estimated as 1.1 W.

  19. Quantitative schlieren diagnostics for the determination of ambient species density, gas temperature and calorimetric power of cold atmospheric plasma jets

    International Nuclear Information System (INIS)

    A measurement and evaluation technique for performing quantitative Schlieren diagnostics on an argon-operated cold atmospheric plasma jet is presented. Combined with computational fluid dynamics simulations, the method not only yields the temporally averaged ambient air density and temperature in the effluent of the fully turbulent jet, but also allows for an estimation of the calorimetric power deposited by the plasma.The change of the refractive index due to mixing of argon and air is in the same range as caused by the temperature increase of less than 35 K in the effluent of the plasma jet. The Schlieren contrast therefore needs to be corrected for the contribution from ambient air diffusion. The Schlieren system can be calibrated accurately using the signal obtained from the argon flow when the plasma is turned off. The temperature measured in this way is compared to the value obtained using a fibre-optics temperature probe and shows excellent agreement. By fitting a heat source in a fluid dynamics simulation to match the measured temperature field, the calorimetric power deposited by the plasma jet can be estimated as 1.1 W. (paper)

  20. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes. PMID:26520986

  1. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  2. TRIBOLOGICAL BEHAVIORS OF PLASMA NITRIDED AISI 316 LN TYPE STAINLESS STEEL IN AIR AND HIGH VACUUM ATMOSPHERE AT ROOM TEMPERATURE

    Directory of Open Access Journals (Sweden)

    A.DEVARAJU

    2010-09-01

    Full Text Available In this work, tribological behaviors of the plasma nitrided AISI 316 LN type austenitic stainless steel specimens (both pins and rings have been analyzed. The experiments have been conducted in high vacuum and in air atmosphere using Vacuum based high temperature Pin-on-disc tribometer. The tribological parameters such as friction coefficient and wear resistance have been analyzed by Origin graphs. The wear mechanisms involved have been identified by recording surface morphology on the wear track and pin surface through scanning electron microscope (SEM and Optical profilometer. The self mating of AISI 316 LN type stainless steel (316LN exhibits strong adhesion between the contact surfaces and severe surface damage both in air and in vacuum atmosphere. But, the self mating of Plasma Nitrided 316LN (CrN/CrN reveals mild wear till the CrN coating peeled off from the pin surface. It has also been proved that Plasma Nitrided (CrN layer on 316 LN ring was wear resistant layer when it issliding against the untreated 316 LN pin in air and high vacuum atmosphere.

  3. Low Temperature Performance of Selective Catalytic Reduction of NO with NH3 under a Concentrated CO2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2015-10-01

    Full Text Available Selective catalytic reduction of NOx with NH3 (NH3-SCR has been widely investigated to reduce NOx emissions from combustion processes, which cause environmental challenges. However, most of the current work on NOx reduction has focused on using feed gas without CO2 or containing small amounts of CO2. In the future, oxy-fuel combustion will play an important role for power generation, and this process generates high concentrations of CO2 in flue gas. Therefore, studies on the SCR process under concentrated CO2 atmosphere conditions are important for future SCR deployment in oxy-fuel combustion processes. In this work, Mn- and Ce-based catalysts using activated carbon as support were used to investigate the effect of CO2 on NO conversion. A N2 atmosphere was used for comparison. Different process conditions such as temperature, SO2 concentration, H2O content in the feed gas and space velocity were studied. Under Mn-Ce/AC conditions, the results suggested that Mn metal could reduce the inhibition effect of CO2 on the NO conversion, while Ce metal increased the inhibition effect of CO2. High space velocity also resulted in a reduction of CO2 inhibition on the NO conversion, although the overall performance of SCR was greatly reduced at high space velocity. Future investigations to design novel Mn-based catalysts are suggested to enhance the SCR performance under concentrated CO2 atmosphere conditions.

  4. Trifluoro methyl peroxynitrate (CF 3OONO 2): Temperature dependence of the UV absorption spectrum and atmospheric implications

    Science.gov (United States)

    Malanca, Fabio E.; Chiappero, Malisa S.; Argüello, Gustavo A.; Wallington, Timothy J.

    The ultraviolet absorption spectrum of gas phase CF 3OONO 2 has been measured over the wavelength range 200-340 nm at 233-300 K. Absorption cross-sections at wavelengths of 290-340 nm were found to increase significantly with increasing temperature. The UV spectra of CF 3C(O)Cl and CF 3C(O)F were measured and were consistent with previous work [Rattigan et al., 1993. Temperature-dependent absorption cross-sections of CF 3COCl, CF 3COF, CH 3COF, CCl 3CHO and CF 3COOH. Journal of Photochemistry and Photobiology A: Chemistry 73, 1-9]. Implications for the atmospheric chemistry of CF 3OONO 2 are discussed.

  5. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226Ra, 232Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232Th and U content. The soil permeability is 5.0 x 10-12, which is considered average. The 226Ra (22.2 ± 0.3 Bq.m-3); U content (73.4 ± 3.6 Bq.kg-1) and 232Th content (55.3 ± 4.0 Bq.kg-1) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg-1) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m-3) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m-3). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  6. Mean ocean temperature change over the last glacial transition based on atmospheric changes in heavy noble mixing ratios

    Science.gov (United States)

    Bereiter, Bernhard; Severinghaus, Jeff; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji

    2016-04-01

    On paleo-climatic timescales heavy noble gases (Krypton and Xenon) are passively cycled through the atmosphere-ocean system without seeing any significant sink or source. Since the solubility in water of each gas species is characterized by a specific temperature dependency, mixing ratios in the atmosphere change with changing ocean temperatures. In this study, we use this fact to reconstruct mean global ocean temperatures (MOT) over the course of the last glacial transition based on measurements of trapped air in the WAIS Divide ice core. We analyzed 70 ice samples with a recently developed method which determines the isotopic ratios of N2, Ar, Kr (and in some cases also of Xe, though with less precision) and the elemental ratios of Kr/N2, Xe/N2 and Xe/Kr. We use the isotope ratios to correct the elemental ratios for gravitational enrichment in the firn column. The corrected elemental ratios are then used in a simple box model to reconstruct MOT. The three elemental ratio pairs are first interpreted as independent measures of MOT and then combined to a single "best-estimate" MOT record with an average uncertainty of 0.27°C. We find a clear link to Antarctic temperatures and a LGM-Holocene change in MOT of 2.4°C. This value is in good agreement with results from marine sediment cores (which, however, have an uncertainty of 1°C). Our record provides an unprecedented constrain on ocean heat uptake over the last glacial transition and therefore gives new insights in the mechanisms underlying long term ocean heat fluxes. To our knowledge, this is the first time that MOT has been reconstructed in such great detail.

  7. Temperature dependence of the atmospheric photolysis rate coefficient for NO2

    Science.gov (United States)

    Shetter, Richard E.; Davidson, James A.; Cantrell, Christopher A.; Burzysnki, Norbert J., Jr.; Calvert, Jack G.

    1988-01-01

    Accurate values for the photolysis rate coefficient of NO2 (j1) are required for studies related to the observed imbalance in the photostationary state of O3, NO, and NO2 in the troposphere. Direct measurements of the temperature dependence of j1 at temperatures from -70 to 30 C were made in sunlight for relatively cloudless summer days in Boulder, Colorado. The ratios of j1 (30 C)/j1 (T C) for T = -10 C and -70 C, respectively, were 1.046 + or - 0.040 and 1.070 + or - 0.031. The j1 ratios were independent of solar zenith angle. Theoretical estimates of the temperature-dependent j1 ratios based upon recently reported cross section (sigma) and quantum yield (phi) data are more consistent with these experimental measurements than those based upon the currently accepted sigma and phi data.

  8. Synthesis of MIL-100(Fe at Low Temperature and Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Jing Shi

    2013-01-01

    Full Text Available MIL-100(Fe, a mesoporous metal-organic framework (MOF, has a large BET specific surface area and pore volume with the presence of a significant amount of accessible Lewis acid metal sites upon dehydration. The structural characteristics of MIL-100(Fe make it a good candidate for potential applications in gas storage, separation, and heterogeneous catalysis. Mainly, this MOF is obtained by the hydrothermal synthesis in a Teflon-lined autoclave at high temperature (>150°C under static conditions. However, this method has several disadvantages such as high temperature, high (autogenous pressure, long time, and comparable low MOF yield. Therefore, development of a facile method for synthesis of MIL-100(Fe is vitally important for fundamental understanding and practical application. Herein, MIL-100(Fe is synthesized by a facile low-temperature (90% still could be achieved, suggesting that this simple and energy saving method has the potential to be used practically.

  9. Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry

    Science.gov (United States)

    Njoku, E. G.; Swanson, L.

    1983-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the Seasat and Nimbus 7 satellites in 1978. The SMMR has the ability to measure sea surface temperature and wind speed with the aid of microwaves. In addition, the instrument was designed to measure water vapor and cloud liquid water with better spatial resolution than previous microwave radiometers, and to make sea-ice measurements with higher precision. A description is presented of the results of global analyses of sea surface temperature, wind speed, water vapor, and cloud liquid water, taking into account data provided by the SMMR on the Seasat satellite. It is found that the SMMR data show good self-consistency, and can usefully measure global distributions of sea surface temperatures, surface winds, water vapor, and cloud liquid water.

  10. Effect of Elevated Atmospheric CO2 and Temperature on Leaf Optical Properties and Chlorophyll Content in Acer saccharum (Marsh.)

    Science.gov (United States)

    Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.

    1999-01-01

    Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.

  11. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa

    OpenAIRE

    Fontaine, B.; Janicot, Serge; Monerie, P. A.

    2013-01-01

    This study documents the time evolution of air temperature and heat waves occurrences over Northern Africa for the period 1979-2011. A significant warming (1 degrees-3 degrees C), appearing by the mid-1960s over Sahara and Sahel, is associated with higher/lesser frequency of warm/cold temperatures, as with longer duration and higher occurrences of heat waves. Heat waves episodes of at least 4 day duration have been examined after removing the long-term evolution. These episodes are associated...

  12. Numerical study of a buoyant plume from a multi-flue stack into a variable temperature gradient atmosphere.

    Science.gov (United States)

    Velamati, Ratna Kishore; Vivek, M; Goutham, K; Sreekanth, G R; Dharmarajan, Santosh; Goel, Mukesh

    2015-11-01

    Air pollution is one of the major global hazards and industries have been one of its major contributors. This paper primarily focuses on analyzing the dispersion characteristics of buoyant plumes of the pollutant released from a multi-flue vertical stack into a variable temperature gradient atmosphere (α) in a constant-velocity cross wind using two stack configurations-inline and parallel. The study is conducted for different Froude numbers, Fr = 12.64, 9.55, and 8.27. The atmospheric temperature gradients considered for the study are 0, +1, +1.5, and +2 K/100 m. The numerical study is done using the commercial computational fluid dynamics (CFD) code FLUENT. The effects of stack configuration, α, and Fr on the plume characteristics are presented. It is observed that the plume rises higher and disperses over a larger area with the inline configuration due to better mixing and shielding effect. With higher α, it is seen that the plume rises initially and then descends due to variation of the buoyant force. The plume rise initially is strongly influenced by the momentum of the jet, and as it moves downstream, it is influenced by the cooling rate of the plume. Furthermore, the plume rises higher and disperses over a larger area with a decrease in Fr. PMID:26099599

  13. Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature

    Science.gov (United States)

    Nikovski, M.; Kiss'ovski, Zh; Tatarova, E.

    2016-03-01

    We present a 3D model of a surface-wave-sustained discharge at 2.45 GHz at atmospheric pressure. A small plasma source creates a plasma column in a dielectric tube and a plasma torch is observed above the top. The plasma parameters and the axial profile of the gas temperature are significantly changed in the presence of the substrate above the plasma torch. The Boltzmann equation for electrons under the local approximation is solved, together with the heavy particle balance equations at a fixed axial profile of the gas temperature. The model of this finite length plasma column includes also the dispersion relation of azimuthally-symmetric surface waves. A detailed collisional-radiative model is also implemented for argon discharge at atmospheric pressure, which includes 21 rate balance equations for excited Ar atoms [(Ar(1s5-1s2), Ar(2p10-2p1), Ar(2s3d), Ar(3p)], for positive Ar+ and Ar2 + ions and for excited molecules. The changes in the EEDF shape and the mean electron energy along the plasma column are investigated and the axial structures of the discharge and plasma parameters are obtained.

  14. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    NARCIS (Netherlands)

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride

  15. Response of atmospheric ground level temperatures to changes in the total solar irradiance

    CERN Document Server

    Erlykin, Anatoly

    2015-01-01

    The attribution of part of global warming to changes in the total solar irradiance (TSI) is an important topic which is not, yet, fully understood. Here, we examine the TSI induced temperature (T) changes on a variety of time scales, from one day to centuries and beyond, using a variety of assumptions. Also considered is the latitude variation of the T-TSI correlations, where it appears that over most of the globe there is a small increase in the sensitivity of temperature to TSI in time. It is found that the mean global sensitivity (alpha)measured in K(Wm-2)-1 varies from about 0.003 for 1 day, via 0.05 for 11-years to about 0.2 for decades to centuries. We conclude that mean global temperature changes related to TSI are not significant from 1975 onwards. Before 1975, when anthropogenic gases were less important, many of the temperature changes can be attributed to TSI variations. Over much longer periods of time, from Kyear to Myear, the TSI changes are more efficient still, the sensitivity alpha increasing...

  16. Coupling between atmospheric CO2 and temperature during the onset of the Little Ice Age

    NARCIS (Netherlands)

    Hoof, T.B. van

    2004-01-01

    Present day global warming is primarily caused by the greenhouse effect of the increased CO2 emissions since the onset of the industrial revolution. A coupling between temperature and the greenhouse gas CO2 has also been observed in several ice-core records on a glacial-interglacial timescale as we

  17. Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets

    International Nuclear Information System (INIS)

    A set of diagnostic methods to obtain the plasma parameters including power dissipation, gas temperature and electron density is evaluated for an atmospheric pressure helium or argon radio frequency (RF) plasma needle for biomedical applications operated in open air. The power density of the plasma is more or less constant and equal to 1.3 × 109 W m−3. Different methods are investigated and evaluated to obtain the gas temperature. In this paper the gas temperatures obtained by rotational spectra of OH(A–X) and N2+ (B–X) are compared with Rayleigh scattering measurements and measurements of the line broadening of hydrogen and helium emission lines. The obtained gas temperature ranges from 300 to 650 K, depending on the gas. The electron densities are estimated from the Stark broadening of the hydrogen α and β lines which yield values between 1019 and 1020 m−3. In the case of helium, this is an overestimate as is shown by a power balance from the measured power density in the plasma jet. The obtained plasma parameters enable us to explain the radial contraction of the argon plasma compared with the more diffuse helium plasma. The accuracy of all considered diagnostics is discussed in detail.

  18. Effects of Environmental Humidity and Temperature on Sterilization Efficiency of Dielectric Barrier Discharge Plasmas in Atmospheric Pressure Air

    Science.gov (United States)

    Kikuchi, Yusuke; Miyamae, Masanori; Nagata, Masayoshi; Fukumoto, Naoyuki

    2011-01-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma in atmospheric humid air was investigated in order to develop a low-temperature, low-cost, and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of B. atrophaeus spores was found to be dependent strongly on humidity, and was completed within 15 min at a relative humidity of 90% and a temperature of 30 °C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. The inactivation rates depend on not only relative humidity but also temperature, so that water content in air could determine the generation of reactive species such as hydroxyl radicals that are effective for the inactivation of B. atrophaeus spores.

  19. Optimization of spectral filtering parameters of acousto-optic pure rotational Raman lidar for atmospheric temperature profiling

    Science.gov (United States)

    Zhu, Jianhua; Wan, Lei; Nie, Guosheng; Guo, Xiaowei

    2003-12-01

    In this paper, as far as we know, it is the first time that a novel acousto-optic pure rotational Raman lidar based on acousto-optic tunable filter (AOTF) is put forward for the application of atmospheric temperature measurements. AOTF is employed in the novel lidar system as narrow band-pass filter and high-speed single-channel wavelength scanner. This new acousto-optic filtering technique can solve the problems of conventional pure rotational Raman lidar, e.g., low temperature detection sensitivity, untunability of filtering parameters, and signal interference between different detection channels. This paper will focus on the PRRS physical model calculation and simulation optimization of system parameters such as the central wavelengths and the bandwidths of filtering operation, and the required sensitivity. The theoretical calculations and optimization of AOTF spectral filtering parameters are conducted to achieve high temperature dependence and sensitivity, high signal intensities, high temperature of filtered spectral passbands, and adequate blocking of elastic Mie and Rayleigh scattering signals. The simulation results can provide suitable proposal and theroetical evaluation before the integration of a practical Raman lidar system.

  20. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    Science.gov (United States)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  1. Effects of Modified Atmosphere Packaging, Food Life Extenders and Temperature on the Shelf Life of Ready-Made Dishes.

    Science.gov (United States)

    Sato, Jun; Maenishi, Takuya; Saito, Yuki; Masuda, Toshiro; Kadotani, Naoki; Kozakai, Hiroshi; Ito, Masanori

    2016-01-01

    The combined effect of several microbial control factors including gas barrier of containers, modified atmosphere packaging, food life extenders and storage temperature was discussed in order to determine the possibility for improving the shelf life for hamburger steak and deepfried chicken, representative ready-made dishes sold at convenience stores in Japan. Multiple measures including cold storage were effective in improving the shelf life of ready-made dishes. It was also suggested that storage tests for ready-made dishes should be conducted at 10℃, a practical temperature, to confirm the storable period, as well as at 15℃, an adequate abuse temperature, to confirm the effects of various microbial control factors. In the present study, the test group 4 (nitrogen + barrier containers + pH modifier) performed most favorably at both temperatures, indicating the efficacy of multiple means including "cold storage" in improving the shelf life (extending the consume-by date) of ready-made dishes. All strains isolated from the tested hamburger steak and deep-fried chicken were common food contaminant bacterial species. PMID:27009505

  2. Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra

    Directory of Open Access Journals (Sweden)

    M. Kiefer

    2010-04-01

    Full Text Available We examine volume mixing ratios (vmr retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. In level 2 (L2 data products of three different retrieval processors, which perform one dimensional (1-D retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D retrieval, L2 products generally do not show these differences. This implies that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem is to be expected to affect in

  3. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2007-04-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA. The high resolution (0.035 cm−1 limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62 of the inversion algorithms. The products of this processing chain are geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons.

    The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three than the corresponding estimate derived on the basis of error propagation.

    In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF. The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the

  4. Simultaneous measurement of Ni-Al particle size, velocity, and temperature in atmospheric thermal plasmas

    International Nuclear Information System (INIS)

    A technique for simultaneously measuring particle size, velocity, and temperature has been applied to the in-flight characterization of a Ni--Al particles sprayed in a 28 kW plasma torch. The radial distribution of particle size, velocity, temperature and particle concentration were obtained at stand off distances between 63.5 and 88.9 mm. These measurements and their relationship to the characteristics of the resulting coating are discussed. Injection geometry dependent particle sizing and an apparant fracturing of the original particles into smaller particles was observed. A significant fraction of the largest particles observed did not appear to the molten. Particle behavior was found to be relatively insensitive to gas mixture and flow rate. 1 ref., 8 figs

  5. Rheological behavior of Shengli coal-solvent slurry at low-temperatures and atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-gang; YAN Yan; GUO Xiang-kun; Xu De-ping

    2009-01-01

    We report the results from systematic studies of Shengli lignite coal-solvent slurries. Solvent type, temperature, coal to solvent ratio, particle granularity, shear rate and shear time were investigated. The viscosity of the solvents is time independent. However, the slurries are thixotropic. A change from pseudo-plastic to Newtonian behavior occurs as the temperature, or as the solvent to coal ratio, increases. The solvent used in the slurry affects the point at which the theology changes from pseudo-plastic to Newtonian. The REC slurry changes at 1 : 1.2 coal to solvent ratio and at 40 ℃. The HAR slurry changes at a 1:1.5 ratio and at 60 ℃. The theology of the slurries is pseudo-plastic at low shear rates but Newtonian at high shear rates.

  6. Microstructure and mechanical properties of Inconel 617 degraded at high temperature with atmosphere

    International Nuclear Information System (INIS)

    Full text of publication follows. Inconel 617 is a candidate tube material of intermediate heat-exchanger and hot gas duct for high temperature gas-cooled reactors (HTGR) for hydrogen production. The microstructure and mechanical properties of Inconel 617 were investigated after exposure at 1050 deg C in air and helium. Oxide layers were observed by cross-section image. The de-lamination of oxide layer occurs because of the difference of thermal expansion coefficient between oxide layer and matrix. The depth of Cr-depleted zone and internal oxide increased with exposure time. It was observed that the carbide phase was changed on grain boundary during exposure. These carbides were coarsened increasing exposure time. High temperature compression test and hardness test were carried out after aging at 1050 deg C. The changes of yield strength and hardness were observed with increasing aging time. (authors)

  7. The temperature structure and pressure balance of magnetic loops in active regions. [in solar atmosphere

    Science.gov (United States)

    Foukal, P.

    1975-01-01

    EUV observations show many active region loops in lines formed at temperatures between 10,000 and 2,000,000 K. The brightest loops are associated with flux tubes leading to the umbrae of sunspots. It is shown that the high visibility of certain loops in transition region lines is due principally to a sharp radial decrease of temperature to chromospheric values toward the loop axis. The plasma density of these cool loops is not significantly greater than in the hot gas immediately surrounding it. Consequently, the internal gas pressure of the cool material is clearly lower. The hot material immediately surrounding the cool loops is generally denser than the external corona by a factor 3-4. When the active region is examined in coronal lines, this hot high pressure plasma shows up as loops that are generally parallel to the cool loops but significantly displaced laterally.

  8. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    OpenAIRE

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride gave [2-13C]2-nitropropane in 14,3% overall yield.

  9. A 6U CubeSat Constellation for Atmospheric Temperature and Humidity Sounding

    Science.gov (United States)

    Padmanabhan, Sharmila; Brown, Shannon; Kangaslahti, Pekka; Cofield, Richard; Russell, Damon; Stachnik, Robert; Steinkraus, Joel; Lim, Boon

    2013-01-01

    We are currently developing a 118/183 GHz sensor that will enable observations of temperature and precipitation profiles over land and ocean. The 118/183 GHz system is well suited for a CubeSat deployment as 10cm antenna aperture provides sufficiently small footprint sizes (is approx. 25km). This project will enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U CubeSat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters that are needed to improve prediction of extreme weather events. We will take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass and low-power high frequency airborne radiometers. The 35 nm InP enabling technology provides significant reduction in power consumption (Low Noise Amplifier + Mixer Block consumes 24 mW). In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder instrument on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of the temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation consisting of suite of these instruments. The proposed constellation of these 6U CubeSat radiometers would allow sampling of tropospheric temperature and humidity with fine temporal (on the order of minutes) and spatial resolution (is approx. 25 km).

  10. Incipient corrosion behavior of Haynes 230 under a controlled reducing atmosphere at high temperatures

    Science.gov (United States)

    Tung, Hsiao-Ming; Stubbins, James F.

    2012-08-01

    In situ thermogravimetry analysis (TGA) was used to investigate the incipient corrosion behavior of alloy 230 exposed under a reducing environment in a temperature range of 850-1000 °C. Both oxidation and loss of alloying elements of alloy 230 were observed to occur concurrently in these conditions. The surface oxide which formed on the substrate does not appear to be as effective in providing a protective layer during the incipient corrosion period.

  11. Night temperature effects on transpiration response to atmospheric drought and leaf area in wheat

    OpenAIRE

    Schoppach, Rémy; Sadok, Walid; Intergrought IV conference

    2013-01-01

    Increasing evidence indicates that limited transpiration rate (TR) response to high (>3 kPa) vapour pressure deficit (VPD) is a valuable trait in identifying water-saving, drought-tolerant genotypes. However, the relevance of this trait under a warming climate is much less investigated. In particular, the effect of different night temperature (NT) regimes on wheat TR sensitivity to increasing VPD and whole-plant evaporative area remains unknown. A controlled-environment study was undertaken o...

  12. Some atmospheric dispersion, wind and temperature statistics from Jervis Bay, Australian Capital Territory 1972 to 1974

    International Nuclear Information System (INIS)

    A meteorological study of winds, temperatures and Pasquill stability categories was conducted in the coastal conditions at Jervis Bay. Three Pasquill stability categorisation schemes were compared. These indicated a predominance of neutral to slightly unstable conditions. During the daytime, north bay breezes and north-east sea breezes were most common together with on-shore south-east winds. Off-shore south-west winds prevailed during winter and were observed most frequently at night

  13. Coupling between atmospheric CO2 and temperature during the onset of the Little Ice Age

    OpenAIRE

    Hoof, T.B. van

    2004-01-01

    Present day global warming is primarily caused by the greenhouse effect of the increased CO2 emissions since the onset of the industrial revolution. A coupling between temperature and the greenhouse gas CO2 has also been observed in several ice-core records on a glacial-interglacial timescale as well as on a millennial timescale during the glacials. In marked contrast, no significant ice-derived CO2 fluctuations occur on centennial time scales contemporaneously with well-documented cooling ev...

  14. Solar cycle variability in mean thermospheric composition and temperature induced by atmospheric tides

    Science.gov (United States)

    Jones, M.; Forbes, J. M.; Hagan, M. E.

    2016-06-01

    In this paper we demonstrate that dissipation of upward propagating tides produces significant changes in the mean temperature of the thermosphere, ranging from +19 K at solar minimum to -15 K at solar maximum in the equatorial region. Our methodology consists of measuring the differential response of the thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) under solar minimum and solar maximum conditions to constant tidal forcing at its 97 km lower boundary, as specified by the observationally based Climatological Tidal Model of the Thermosphere. Diagnosis of the model reveals that these changes are mainly driven by 5.3 μm nitric oxide (NO) cooling, which more efficiently cools the thermosphere at solar maximum. The main role of the tides is to modify the mean molecular oxygen densities ([O2]) through tidal-induced advective transport, which then lead to changes in NO densities through oxygen-nitrogen chemistry. Through tidal-induced changes in temperature and O, O2, and N2 densities, effects on the ionosphere are also quite substantial; tidal-induced modifications to zonal-mean F region peak electron densities (NmF2) are of order -10% at solar maximum and -30% at solar minimum in the equatorial region. Our results introduce an additional consideration when attributing long-term changes in thermospheric temperature and electron densities to CO2 cooling effects alone; that is, dissipation of upward propagating tides may constitute an additional element of global change in the ionosphere-thermosphere (IT) system.

  15. Quasi-16-day period oscillations observed in middle atmospheric ozone and temperature in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Demissie, T.D.; Hibbins, R.E.; Espy, P.J. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway); Birkeland Centre for Space Science, Bergen (Norway); Kleinknecht, N.H.; Straub, C. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway)

    2013-09-01

    Nightly averaged mesospheric temperature derived from the hydroxyl nightglow at Rothera station (67 34' S, 68 08' W) and nightly midnight measurements of ozone mixing ratio obtained from Troll station (72 01' S, 2 32' E) in Antarctica have been used to investigate the presence and vertical profile of the quasi-16-day planetary wave in the stratosphere and mesosphere during the Antarctic winter of 2009. The variations caused by planetary waves on the ozone mixing ratio and temperature are discussed, and spectral and cross-correlation analyses are performed to extract the wave amplitudes and to examine the vertical structure of the wave from 34 to 80 km. The results show that while planetary-wave signatures with periods 3-12 days are strong below the stratopause, the oscillations associated with the 16-day wave are the strongest and present in both the mesosphere and stratosphere. The period of the wave is found to increase below 42 km due to the Doppler shifting by the strong eastward zonal wind. The 16-day oscillation in the temperature is found to be correlated and phase coherent with the corresponding oscillation observed in O{sub 3} volume mixing ratio at all levels, and the wave is found to have vertical phase fronts consistent with a normal mode structure. (orig.)

  16. Quasi-16-day period oscillations observed in middle atmospheric ozone and temperature in Antarctica

    Directory of Open Access Journals (Sweden)

    T. D. Demissie

    2013-07-01

    Full Text Available Nightly averaged mesospheric temperature derived from the hydroxyl nightglow at Rothera station (67°34' S, 68°08' W and nightly midnight measurements of ozone mixing ratio obtained from Troll station (72°01' S, 2°32' E in Antarctica have been used to investigate the presence and vertical profile of the quasi-16-day planetary wave in the stratosphere and mesosphere during the Antarctic winter of 2009. The variations caused by planetary waves on the ozone mixing ratio and temperature are discussed, and spectral and cross-correlation analyses are performed to extract the wave amplitudes and to examine the vertical structure of the wave from 34 to 80 km. The results show that while planetary-wave signatures with periods 3–12 days are strong below the stratopause, the oscillations associated with the 16-day wave are the strongest and present in both the mesosphere and stratosphere. The period of the wave is found to increase below 42 km due to the Doppler shifting by the strong eastward zonal wind. The 16-day oscillation in the temperature is found to be correlated and phase coherent with the corresponding oscillation observed in O3 volume mixing ratio at all levels, and the wave is found to have vertical phase fronts consistent with a normal mode structure.

  17. Effects of temperature and other atmospheric conditions on long-term gaseous mercury observations in the Arctic

    Directory of Open Access Journals (Sweden)

    A. S. Cole

    2009-12-01

    Full Text Available Gaseous elemental mercury (GEM measurements at Alert, Canada, from 1995 to 2007 were analyzed for statistical time trends and for correlations with meteorological and climate data. A significant decreasing trend in annual GEM concentration is reported at Alert, with an estimated slope of −0.0086 ng m−3 yr−1 (−0.6% yr−1 over this 13-year period. It is shown that there has been a shift in the month of minimum mean GEM concentration from May to April due to a change in the timing of springtime atmospheric mercury depletion events (AMDEs. These AMDEs are found to decrease with increasing local temperature within each month, both at Alert and at Amderma, Russia. These results agree with the temperature dependence suggested by previous experimental results and theoretical kinetic calculations and highlight the potential for changes in Arctic mercury chemistry with climate. A correlation between total monthly AMDEs at Alert and the Polar/Eurasian Teleconnection Index was observed only in March, perhaps due to higher GEM inputs in early spring in those years with a weak polar vortex. A correlation of AMDEs at Alert with wind direction supports the origin of mercury depletion events over the Arctic Ocean, in agreement with a previous trajectory study of ozone depletion events. Interannual variability in total monthly depletion event frequency at Alert does not appear to correlate significantly with total or first-year northern hemispheric sea ice area or with other major teleconnection patterns. Nor do AMDEs at either Alert or Amderma correlate with local wind speed, as might be expected if depletion events are sustained by stable, low-turbulence atmospheric conditions. The data presented here – both the change in timing of depletion events and their relationship with temperature – can be used as additional constraints to improve the ability of global models to predict the cycling and deposition of mercury

  18. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  19. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams

    International Nuclear Information System (INIS)

    Formaldehyde (HCHO) is a typical air pollutant capable of causing serious health disorders in human beings. This work reports plasma-catalytic oxidation of formaldehyde in gas streams via dielectric barrier discharges over Ag/CeO2 pellets at atmospheric pressure and 70 0C. With a feed gas mixture of 276 ppm HCHO, 21.0% O2, 1.0% H2O in N2, ∼99% of formaldehyde can be effectively destructed with an 86% oxidative conversion into CO2 at GHSV of 16500 h-1 and input discharge energy density of 108 J l-1. At the same experimental conditions, the conversion percentages of HCHO to CO2 from pure plasma-induced oxidation (discharges over fused silica pellets) and from pure catalytic oxidation over Ag/CeO2 (without discharges) are 6% and 33% only. The above results and the CO plasma-catalytic oxidation experiments imply that the plasma-generated short-lived gas phase radicals, such as O and HO2, play important roles in the catalytic redox circles of Ag/CeO2 to oxidize HCHO and CO to CO2

  20. Oxidation characteristics of nickel-base superalloys at high temperature in air and helium atmospheres

    International Nuclear Information System (INIS)

    Nickel-base superalloys are considered as materials for piping and structural materials in a very high temperature gas cooled reactor (VHTR). They are subjected to the environmental degradation caused by a continuous process for oxidation due to small amount of impurities in He coolant during long term operation. In the present study, the oxidation behaviors of several nickel-base superalloys such as Alloy-617, Haynes-214 and Haynes-230 in particular, were studied at the temperature of 900 and 1100 C degrees in air, and in the high purity He environment. Oxide layers were analyzed by SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray analysis). The differences in oxidation behaviors of these alloys were mainly caused by different protective oxide layers on surface. In the case of Alloy-617 and Haynes-230, Cr2O3 layer formed on the surface which is not stable at 1100 C degrees. Therefore, the weight increased significantly due to oxidation at the initial stage, which followed by a decrease due to the scaling and volatilization of Cr2O3 layer. On the other hand, since Haynes-214 has mainly Al2O3 oxide layer on surface which is more stable and has more dense structure at higher temperature, the weight gain eventually reaches to parabolic. Microstructural characteristics of internal carbides and carbide depletion zone were analyzed. With oxidation time, continuous grain boundary carbides of M23C6 type were getting thin or it disappeared partially. Especially, carbides on grain boundary disappeared entirely below oxide layer (carbide depletion zone). It was getting wide with oxidation time. For Haynes-214, the size of carbide depletion zone was smaller than other alloys because Al2O3 layer acted as a diffusion layer prevented effectively the penetration of oxygen into base metal. (authors)

  1. Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    Directory of Open Access Journals (Sweden)

    A. Gobiet

    2007-02-01

    Full Text Available This study describes and evaluates a Global Navigation Satellite System (GNSS radio occultation (RO retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to November 2006 from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the Global Ozone Monitoring for Occultation of Stars (GOMOS sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realized given care in the data processing to strictly limit structural uncertainty. The results demonstrate that an adequate high-altitude initialisation technique is crucial for accurate stratospheric RO retrievals and that still common methods of initialising the involved hydrostatic integral with an upper boundary

  2. The influence of persistence of atmospheric circulation on temperature anomalies revisited

    Science.gov (United States)

    Cahynova, Monika; Huth, Radan

    2010-05-01

    In this study we focus on the effect of persistence of circulation types on the occurrence of high and low temperatures in summer and winter, respectively, at several stations in Central Europe in the second half of the 20th century. The key question is to compare the subjective Hess-Brezowsky catalogue with its "objectivized" version, because serious concern has arisen on the credibility of the mid-1980s enhancement of persistence of the Hess-Brezowsky circulation types. For a direct comparison we have chosen an objective (automated) circulation catalogue that is based on the definition of Hess-Brezowsky types, and that also reproduces the minimum 3-day duration of circulation types. In this catalogue there is no significant upward trend in the persistence of types. We identify "hot" and "cold" circulation types and examine if there is a trend within these types, either in their frequency or temperature severity. We then determine whether the persistence of circulation types plays a role in these trends, e.g. whether the warming of "hot" types is caused rather by their longer duration or by the overall rise of their extremeness. The research is conducted within the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions". The Czech participation in it is supported by the Ministry of Education, Youth, and Sports of the Czech Republic, contract OC115.

  3. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite

    Science.gov (United States)

    Gehler, Alexander; Gingerich, Philip D.; Pack, Andreas

    2016-07-01

    The Paleocene–Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene–Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene–Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM.

  4. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  5. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    International Nuclear Information System (INIS)

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable “normal-glow” mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O2 at C3Π(v = 2)←X3Σ(v′ = 0) transitions. The Boltzmann plots from analyses of the O2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ∼1150 K to ∼1350 K within the discharge area. The measurements had an accuracy of ∼±50 K.

  6. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  7. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite.

    Science.gov (United States)

    Gehler, Alexander; Gingerich, Philip D; Pack, Andreas

    2016-07-12

    The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene-Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM. PMID:27354522

  8. Effect of ionizing radiation and modified atmosphere packaging on shelf-life and quality of tomato stored at low temperature

    International Nuclear Information System (INIS)

    Investigation was conducted to extend the shelf-life and maintain the fruit quality characteristics of tomatoes (Lycopersicum esculentum) under the influence of modified atmosphere packaging (MAP) in low density polyethylene (LDPE) film pouches, γ-irradiation at 0, 1,2, 3 and 4 KGy and low temperature (12±1 deg.C) storage at 90-95% RH. Changes in gas composition of modified atmosphere (MA) packages, total soluble solids (TSS), acidity, lycopene content, ascorbic acid, reducing and total sugars of MA packed tomatoes with or without irradiation treatments during storage were recorded at 0,7,14 and 21 days. Results revealed that tomatoes packed with LDPE pouches alone as well as treatment with MAP and low doses (1 and 2 KGy) of γ-irradiation showed good storability up to 21 days at 12±1 deg.C and 90- 95% RH with maximum retention of fruit quality characteristics as compared to 7 days for openly kept control tomatoes. (author)

  9. Temperature and atmosphere tunability of the nanoplasmonic resonance of a volumetric eutectic-based Bi₂O₃-Ag metamaterial.

    Science.gov (United States)

    Sadecka, Katarzyna; Toudert, Johann; Surma, Hancza B; Pawlak, Dorota A

    2015-07-27

    Nanoplasmonic materials are intensively studied due to the advantages they bring in various applied fields such as photonics, optoelectronics, photovoltaics and medicine. However, their large-scale fabrication and tunability are still a challenge. One of the promising ways of combining these two is to use the self-organization mechanism and after-growth engineering as annealing for tuning the properties. This paper reports the development of a bulk nanoplasmonic, Bi2O3-Ag eutectic-based metamaterial with a tunable plasmonic resonance between orange and green wavelengths. The material, obtained by a simple growth technique, exhibits a silver nanoparticle-related localized surface plasmon resonance (LSPR) in the visible wavelength range. We demonstrate the tunability of the LSPR (spectral position, width and intensity) as a function of the annealing temperature, time and the atmosphere. The critical role of the annealing atmosphere is underlined, annealing in vacuum being the most effective option for a broad control of the LSPR. The various potential mechanisms responsible for tuning the localized surface plasmon resonance upon annealing are discussed in relation to the nanostructures of the obtained materials. PMID:26367573

  10. Determination of the electron temperature in plane-to-plane He dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Gangwar, R. K.; Levasseur, O.; Naudé, N.; Gherardi, N.; Massines, F.; Margot, J.; Stafford, L.

    2016-02-01

    Optical emission spectroscopy (OES) measurements coupled with a collisional-radiative model were used to characterize a plane-to-plane dielectric barrier discharge at atmospheric pressure operated in nominally pure helium. The model predicts the population densities for the n  =  3 levels of He excited by electron impact processes from either ground or metastable states and takes into account excitation transfer processes between He n  =  3 levels as well as all relevant radiative decays and quenching reactions. Time-resolved OES measurements indicate that line ratios from He n  =  3 triplet states (for example, 587.5 nm-to-706.5 nm) and singlet states (for example, 667.8 nm-to-728.1 nm) first sharply rise as the discharge ignites and then slowly decrease as it extinguishes. Assuming that n  =  3 levels are first populated only by electron impact on ground state He atoms and then only by electron impact on metastable He atoms as the discharge current and thus the metastable number density rise, triplet and singlet line ratios predicted by the model become in each opposite case solely dependent on the electron temperature T e (assuming Maxwellian electron energy distribution function). The values of T e deduced from the analysis of both ratios were relatively high early in the discharge cycle (around 1.0-1.4 eV) and then much lower near discharge extinction (around 0.15 eV). For analysis of time-integrated (or cycle-averaged) OES measurements, the electron temperatures were closer to the 0.15 eV values near the end of the discharge cycle, in good agreement with the values expected from theoretical predictions in the positive columns of He glow discharges at atmospheric pressure.

  11. Combined effect of temperature and controlled atmosphere on storage and shelf-life of 'Rocha' pear treated with 1-methylcyclopropene.

    Science.gov (United States)

    Gago, Custódia M L; Miguel, Maria G; Cavaco, Ana M; Almeida, Domingos P F; Antunes, Maria D C

    2015-03-01

    The combination of temperature and atmosphere composition for storage of Pyrus communis L. 'Rocha' treated with 1-methylcyclopropene was investigated. Fruits treated with 312 nl l(-1) 1-methylcyclopropene were stored at 0 ℃ and 2.5 ℃ in air and controlled atmosphere (CA) (3.04 kPa O2+ 0.91 kPa CO2). Fruits were removed from storage after 14, 26 and 35 weeks, transferred to shelf-life at approximately 22 ℃ and assessed for ripening and quality, symptoms of superficial scald and internal browning and the accumulation of biochemical compounds related to scald after 0, 1 and 2 weeks. Superficial scald occurred only in fruits stored for 35 weeks in air at 2.5 ℃. Levels of conjugated trienols and α-farnesene increased during the first 26 weeks in storage, remaining constant thereafter. During shelf-life, conjugated trienols were higher in fruits stored in air at 2.5 ℃. Internal browning developed in shelf-life after 26 weeks at 2.5 ℃. Pears in air at 2.5 ℃ were not able to stand a 2-week shelf-life after 35 weeks of storage, while fruits stored at 0 ℃ under CA ripened slowly after the same storage period. The retention of firmness during shelf-life of 1-methylcyclopropene-treated 'Rocha' pear can be overcome by elevating the storage temperature from 0 ℃ to 2.5 ℃, but CA is a required complement to avoid excessive softening after long-term storage. The ratio carotenoid/chlorophyll increased during storage and shelf-life, as plastids senesced. CA reduced the rate of chlorophyll loss during the first 14 weeks in storage, but its effect was reduced afterwards. 'Rocha' pear treated with 1-methylcyclopropene had a similar post-harvest behaviour during long-term storage at 0 ℃ in air or at 2.5 ℃ under CA. PMID:24216324

  12. New Index for Winter Temperature of the Korean Peninsula and the East Asia based on the atmospheric teleconnection patterns

    Science.gov (United States)

    Kim, S. T.; Sohn, S. J.

    2015-12-01

    This study proposes a new index for monitoring and predicting winter temperature of the Korean Peninsula based on dominant atmospheric winter teleconnection modes and the utilization of the index is extended further to representing the East Asia Winter Monsoon (EAWM). Among the teleconnection modes it is found that both East Atlantic (EA) and Western Pacific (WP) modes are most strongly correlated with the Korean winter temperature in a way that the modes are partly associated with change in sea level pressure (SLP) around the Korean Peninsula. Particularly, the EA and WP modes are related with SLP variation over both Siberian High region and the Kuroshio extension region to the east of Japan, respectively. Based on this relationship, the two boxed regions representing the northeast-southwest SLP gradients are determined for the new index, which is found to be related with the EAWM circulation. The SLP gradients control the intensity of surface winds blowing into the Korean Peninsula from the Siberian regions which can transport cold air. The index shows the best performance in representing winter climate not only for the Korean Peninsula but also for the East Asia among the SLP-based EAWM indices. Furthermore, the new index maintains a better correlation with the winter temperature of both the East Asia and Korea over a certain period of years (i.e., running 30 year periods) than other SLP based EAWM indices and also shows good performance in delineating extreme cold/warm winters. The predictability of the new index and its usable potential for winter temperature prediction in coupled climate models are assessed and discussed further.

  13. Atmospheric corrosion effects of HNO 3—Influence of temperature and relative humidity on laboratory-exposed copper

    Science.gov (United States)

    Samie, Farid; Tidblad, Johan; Kucera, Vladimir; Leygraf, Christofer

    The effect of HNO 3 on the atmospheric corrosion of copper has been investigated at varied temperature (15-35 °C) and relative humidity (0-85% RH). Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) confirmed the existence of cuprite and gerhardtite as the two main corrosion products on the exposed copper surface. For determination of the corrosion rate and for estimation of the deposition velocity ( Vd) of HNO 3 on copper, gravimetry and ion chromatography has been employed. Temperature had a low effect on the corrosion of copper. A minor decrease in the mass gain was observed as the temperature was increased to 35 °C, possibly as an effect of lower amount of cuprite due to a thinner adlayer on the metal surface at 35 °C. The Vd of HNO 3 on copper, however, was unaffected by temperature. The corrosion rate and Vd of HNO 3 on copper was the lowest at 0% RH, i. e. dry condition, and increased considerably when changing to 40% RH. A maximum was reached at 65% RH and the mass gain remained constant when the RH was increased to 85% RH. The Vd of HNO 3 on copper at ⩾65% RH, 25 °C and 0.03 cm s -1 air velocity was as high as 0.15±0.03 cm s -1 to be compared with the value obtained for an ideal absorbent, 0.19±0.02 cm s -1. At sub-ppm levels of HNO 3, the corrosion rate of copper decreased after 14 d and the growth of the oxide levelled off after 7 d of exposure.

  14. Variable Temperature Setup for Scanning Electron Microscopy in Liquids and Atmospheric Pressure Gaseous Environments

    Science.gov (United States)

    Al-Asadi, Ahmed; Zhang, Jie; Li, Jianbo; Denault, Lauraine; Potyrailo, Radislav; Kolmakov, Andrei

    2014-03-01

    A thermoelectric cooling / heating setup for commercial Quantomix QX WETSEM scanning electron microscopy environmental cells was designed and tested. This addition allows extending ambient pressure in situ studies to be conducted in a wide temperature range both in liquid and gaseous environments. Instead of cooling/heating the entire body of QX-WETCELL, ultrathin polyimide electron transparent membrane window supported by metal mesh on the top of the cell has been used as an agent for heat transfer to/ from the Pelltier element. A butterfly wing of Morph sulkowskyi has been used as a model object in the QX-WETCELL's chamber due to its unique micro/nanostructure and peculiar wettability behavior. The dynamics of the water desorption, condensation and freezing processes were observed complementary using both optical microscopy and Scanning Electron Microscopy in vivo. The observations revel that the initial droplet formation were most likely taking place on the top of the wing ridges due to the waxy component of its surface. In addition, The SEM observation showed that the high intensity electron beam can heat the butterfly wing locally delaying the water condensation and freezing processes.

  15. Exploiting the atmosphere's memory for monthly, seasonal and interannual temperature forecasting using Scaling LInear Macroweather Model (SLIMM)

    Science.gov (United States)

    Del Rio Amador, Lenin; Lovejoy, Shaun

    2016-04-01

    Traditionally, most of the models for prediction of the atmosphere behavior in the macroweather and climate regimes follow a deterministic approach. However, modern ensemble forecasting systems using stochastic parameterizations are in fact deterministic/ stochastic hybrids that combine both elements to yield a statistical distribution of future atmospheric states. Nevertheless, the result is both highly complex (both numerically and theoretically) as well as being theoretically eclectic. In principle, it should be advantageous to exploit higher level turbulence type scaling laws. Concretely, in the case for the Global Circulation Models (GCM's), due to sensitive dependence on initial conditions, there is a deterministic predictability limit of the order of 10 days. When these models are coupled with ocean, cryosphere and other process models to make long range, climate forecasts, the high frequency "weather" is treated as a driving noise in the integration of the modelling equations. Following Hasselman, 1976, this has led to stochastic models that directly generate the noise, and model the low frequencies using systems of integer ordered linear ordinary differential equations, the most well-known are the Linear Inverse Models (LIM). For annual global scale forecasts, they are somewhat superior to the GCM's and have been presented as a benchmark for surface temperature forecasts with horizons up to decades. A key limitation for the LIM approach is that it assumes that the temperature has only short range (exponential) decorrelations. In contrast, an increasing body of evidence shows that - as with the models - the atmosphere respects a scale invariance symmetry leading to power laws with potentially enormous memories so that LIM greatly underestimates the memory of the system. In this talk we show that, due to the relatively low macroweather intermittency, the simplest scaling models - fractional Gaussian noise - can be used for making greatly improved forecasts

  16. Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature

    OpenAIRE

    Gauthier, Paul P. G.; Crous, Kristine Y.; Ayub, Gohar; Duan, Honglang; Weerasinghe, Lasantha K.; Ellsworth, David S.; Tjoelker, Mark G.; Evans, John R.; Tissue, David T.; Atkin, Owen K.

    2014-01-01

    Climate change is resulting in increasing atmospheric [CO2], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO2], sustained warming, and drought on leaf dark respiration (R dark), and the short-term T response of R dark were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO2], T, and drought tr...

  17. Rlationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter

    Institute of Scientific and Technical Information of China (English)

    Jinshan Zhu; Yubao Chen; Zhaoai Yan; Songhua Wu; Zhishen Liu

    2008-01-01

    The sensitivity of Doppler wind lidar is an important parameter which affects the performance of Doppler wind lidar. Aerosol scattering ratio, atmospheric temperature, and wind speed obviously affect the mea- surement of Doppler wind lidar with iodine filter. We discuss about the relationship between the measurement sensitivity and the above atmospheric parameters. The numerical relationship between them is given through the theoretical simulation and calculation.

  18. Seasonal modes of dryness and wetness variability over Europe and their connections with large scale atmospheric circulation and global sea surface temperature

    OpenAIRE

    Ionita, Monica; Boroneant, Constanta; Chelcea, Silvia

    2015-01-01

    The relationship between the seasonal modes of interannual variability of a multiscalar drought index over Europe and the large-scale atmospheric circulation and sea surface temperature (SST) anomaly fields is investigated through statistical analysis of observed and reanalysis data. It is shown that the seasonal modes of dryness and wetness variability over Europe and their relationship with the large-scale atmospheric circulation and global SST anomaly fields differ from one season to anoth...

  19. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma:Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment

    Institute of Scientific and Technical Information of China (English)

    Atsushi KUWABARA; Shin-ichi KURODA; Hitoshi KUBOTA

    2007-01-01

    The polymer treatment with a low-temperature plasma jet generated on the atmospheric pressure surface discharge (SD) plasma is performed.The change of the surface property over time,in comparison with low pressure oxygen (O2) plasma treatment,is examined.As one compares the treatment by atmospheric pressure plasma to that by the low pressure O2 plasma of PS (polystyrene) the treatment effects were almost in complete agreement.However,when the atmospheric pressure plasma was used for PP(polypropylene),it produced remarkable hydrophilic effects.

  20. Quality of fresh retail pork cuts stored in modified atmosphere under temperature conditions simulating export to distant markets.

    Science.gov (United States)

    McMullen, L M; Stiles, M E

    1994-01-01

    The effect of storage temperature on microbial and sensory quality of retail cuts of pork was determined on samples stored under temperature regimens designed to simulate conditions that could be encountered in accessing distant markets with retail-ready product. Samples were packaged in modified atmosphere with 100% CO(2) and retail sale for two weeks and one week, restpectively. The microbial flora was dominated by lactic acid bacteria under all three storage conditions. Appearance of the cuts was the principal criterion limiting storage life. Discoloration of the meat was not a problem in this study, but purge and odour, including sour and sulphur notes, became a problem with time. The study indicated that export of retail-ready pork cuts to distant markets with a three-week time for delivery to market at -1·5°C can be achieved with one to two weeks of marketing time at retail market at 4 to 7°C. PMID:22059655

  1. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  2. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km

    Directory of Open Access Journals (Sweden)

    G. Baumgarten

    2010-11-01

    Full Text Available A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E. The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS at the iodine line 1109 (~532.260 nm. DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009.

  3. Study on the growth of ZnO micro and nano-structures at low temperature and atmospheric pressure

    Science.gov (United States)

    Morales, M.; Claflin, B.; Farlow, G. C.; Look, D. C.

    2007-03-01

    Deposition of ZnO from the vapor in flowing carrier gases has been studied for use in the growth of micro- and nano- structures. We have investigated how variations in the carrier gas composition and flow rate and the position of the substrate control the morphology of the nanostructures. Source material was either Zn powder or Zn acetate, either evaporated (powder) or decomposed (acetate) in the temperature range 500^oC to 650^oC in flowing Ar/O2 at atmospheric pressure. It was also found that Zn powder must be washed in HCl to achieve reliable deposition at the lower temperatures. Scanning electron microscopy (SEM) images of samples grown from a Zn acetate source show micron-sized chimneys forming at 5 cm from the source, to 100 nm dispersed crystals at 7 cm or greater distance from the source. SEM images of samples grown from a Zn powder source show forrested needles ˜ 100 nm in diameter by 1 micron long.Photoluminescence measurements from these samples show a dominate line at 3.36 eV with additional features at 3.32 and 3.37 eV. The line widths are ˜ 3.5 meV, indicating good quality material. The usual gree-band emission is also observed.

  4. Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer.

    Science.gov (United States)

    Li, Jingsong; Parchatka, Uwe; Königstedt, Rainer; Fischer, Horst

    2012-03-26

    A compact, mobile mid-infrared laser spectrometer based on a thermoelectrically (TE) cooled continuous-wave room temperature quantum cascade laser and TE-cooled detectors has been newly developed to demonstrate the applicability of high sensitivity and high precision measurements of atmospheric CO. Performance of the instrument was examined with periodic measurements of reference sample and ambient air at 1 Hz sampling rate and a 1-hourly calibration cycle. The typical precision evaluated from replicate measurements of reference sample over the course of 66-h is 1.41 ppbv. With the utilization of wavelet filtering to improve the spectral SNR and minimize the dispersion of concentration values, a better precision of 0.88 ppbv and a lower detection limit of ~0.4 ppbv with sub-second averaging time have been achieved without reducing the fast temporal response. Allan variance analysis indicates a CO measurement precision of ~0.28 ppbv for optimal integration time of approximate 50 s. The absolute accuracy is limited by the calibration gas standard. This completely thermoelectrically cooled system shows the capability of long-term, unattended and continuous operation at room temperature without complicated cryogenic cooling. PMID:22453438

  5. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  6. The response of the SSM/I to the marine environment. I - An analytic model for the atmospheric component of observed brightness temperatures

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1992-01-01

    A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.

  7. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Science.gov (United States)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  8. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    C. M. Archuleta

    2005-01-01

    Full Text Available This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.

  9. Atmospheric variables, nutrients, pH, salinity, and temperature collected by bottle and from meteorological stations in the Sea of Japan and the Yellow Sea from 01 July 1952 to 31 December 1998 (NODC Accession 0000032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atmospheric variables, nutrients, pH, salinity, and temperature data were collected using bottle casts in the Sea of Japan from 01 July 1952 to 31 December 1998....

  10. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    Science.gov (United States)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  11. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, Per; Albert, Kristian Rost;

    2011-01-01

    change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which......In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between...

  12. Desulfurization from thiophene by SO42-/ZrO2 catalytic oxidation at room temperature and atmospheric pressure

    International Nuclear Information System (INIS)

    Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO42-/ZrO2 (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO42-/ZrO2 catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S6+ and S2-) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S6+). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5 h and SZB-3 h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5 h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO42-/ZrO2 catalytic oxidation reaction

  13. A statistical examination of Nimbus-7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surface wind speed

    Science.gov (United States)

    Prabhakara, C.; Chang, A. T. C.; Gloersen, P.; Wang, I.

    1983-01-01

    Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperature measurements over the global oceans have been examined with the help of statistical and empirical techniques. Such analyses show that zonal averages of brightness temperature measured by SMMR over the oceans on a large scale are primarily influenced by the water vapor in the atmosphere. Liquid water in the clouds and rain, which has a much smaller spatial and temporal scale, contributes substantially to the variability of the SMMR measurements within the latitudinal zones. The surface wind not only increases the surface emissivity, but through its interactions with the atmosphere produces correlations in the SMMR brightness temperature data that have significant meteorological implications. It is found that a simple meteorological model can explain the general characteristics of the SMMR data. With the help of this model, methods to infer over the global oceans, the surface temperature, liquid water content in the atmosphere, and surface wind speed are developed. Monthly mean estimates of the sea surface temperature and surface winds are compared with the ship measurements. Estimates of liquid water content in the atmosphere are consistent with earlier satellite measurements. Previously announced in STAR as N83-19187

  14. A statistical examination of Nimbus 7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surfaces wind speed

    Science.gov (United States)

    Prabhakara, C.; Wang, I.; Chang, A. T. C.; Gloersen, P.

    1982-01-01

    Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperature measurements over the global oceans have been examined with the help of statistical and empirical techniques. Such analyses show that zonal averages of brightness temperature measured by SMMR, over the oceans, on a large scale are primarily influenced by the water vapor in the atmosphere. Liquid water in the clouds and rain, which has a much smaller spatial and temporal scale, contributes substantially to the variability of the SMMR measurements within the latitudinal zones. The surface wind not only increases the surface emissivity but through its interactions with the atmosphere produces correlations, in the SMMR brightness temperature data, that have significant meteorological implications. It is found that a simple meteorological model can explain the general characteristics of the SMMR data. With the help of this model methods to infer over the global oceans, the surface temperature, liquid water content in the atmosphere, and surface wind speed are developed. Monthly mean estimates of the sea surface temperature and surface winds are compared with the ship measurements. Estimates of liquid water content in the atmosphere are consistent with earlier satellite measurements.

  15. Decadal variability of the Tropical Atlantic Ocean Surface Temperature in shipboard measurements and in a Global Ocean-Atmosphere model

    Science.gov (United States)

    Mehta, Vikram M.; Delworth, Thomas

    1995-01-01

    Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of

  16. Low temperature carrier transport study of monolayer MoS2 field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    International Nuclear Information System (INIS)

    Large size monolayer Molybdenum disulphide (MoS2) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS2 field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm2V−1s−1 was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS2 FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature

  17. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  18. Evaluation of a new Cr-free alloy as interconnect material for hydrogen production by high temperature water vapour electrolysis: Study in cathode atmosphere

    International Nuclear Information System (INIS)

    For economic and ecological reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 degrees C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a new Cr-free Fe-Ni-Co alloy were tested in cathode atmosphere (H2/H2O) at 800 degrees C. The alloy exhibits a poor oxidation resistance but an excellent ASR parameter, as a result of the formation of a highly-conductive Cr-free surface spinel layer. Moreover, the role of water vapour and hydrogen was discussed and a diffusion mechanism in cathode atmosphere could be suggested. (authors)

  19. The effect of test atmosphere on the formation and propagation of creep cracks in commercial high temperature alloys

    International Nuclear Information System (INIS)

    The influence of surface cracks caused by corrosion on the creep rupture properties of the alloys INCOLOY 800H and INCONEL 617 has been investigated for temperatures in the range 1073 K to 1223 K. The test environments were air and impure helium simulating the primary coolant gas of a high temperature reactor (HTR helium). The depths of surface cracks in creep test specimens were measured metallographically and a characteristic crack depth, a90, was derived. a90 is defined so that 90% of the cracks present have depths below a90. The dependence of a90 on test time, creep strain and stress was examined. The growth of creep cracks at the specimen surface as a function of the creep strain was described analytically. This allowed the stress increase due to loss of specimen cross section by surface crack formation to be estimated. It was shown that the surface cracks resulting from corrosion lead to an increase in the creep rate at creep strains above 5%, but the increases were similar in both atmospheres. Rupture of the specimens occurred when the surface cracks and voids developed inside the specimen due to the creep damage processes. This is the main reason for the similar creep rupture properties of the alloys in the two test environments. Finally, a method has been developed to allow the plotting of the depth of surface cracks caused by corrosion with the stress-rupture curves. In this type of diagram, the damage resulting from surface cracks can be related to the creep rupture data to indicate whether corrosion effects need to be considered in the derivation of design stresses. (orig./IHOE)

  20. Mutation Breeding of Extracellular Polysaccharide-Producing Microalga Crypthecodinium cohnii by a Novel Mutagenesis with Atmospheric and Room Temperature Plasma

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2015-04-01

    Full Text Available Extracellular polysaccharides (EPS produced by marine microalgae have the potential to be used as antioxidants, antiviral agents, immunomodulators, and anti-inflammatory agents. Although the marine microalga Crypthecodinium cohnii releases EPS during the process of docosahexaenoic acid (DHA production, the yield of EPS remains relatively low. To improve the EPS production, a novel mutagenesis of C. cohnii was conducted by atmospheric and room temperature plasma (ARTP. Of the 12 mutants obtained, 10 mutants exhibited significantly enhanced EPS yield on biomass as compared with the wild type strain. Among them, mutant M7 was the best as it could produce an EPS volumetric yield of 1.02 g/L, EPS yield on biomass of 0.39 g/g and EPS yield on glucose of 94 mg/g, which were 33.85%, 85.35% and 57.17% higher than that of the wild type strain, respectively. Results of the present study indicated that mutagenesis of the marine microalga C. cohnii by ARTP was highly effective leading to the high-yield production of EPS.

  1. Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA

    Directory of Open Access Journals (Sweden)

    N. Wildmann

    2013-08-01

    Full Text Available Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA. The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.

  2. Effect of irradiation and modified atmosphere packaging on the microbiological safety of minced pork stored under temperature abuse conditions

    International Nuclear Information System (INIS)

    The safety of irradiated pork packed in 25% CO2:75% N2 and stored at abuse temperature (10 or 15°C) was assessed by inoculation studies involving Salmonella typhimurium, Listeria monocytogenes, Escherichia coli, Yersinia enterocolitica and Clostridium perfringens. Irradiation to a dose of 1.75 kGy reduced pathogen numbers to below the detection limit of 102 cells g-1. When higher inoculum levels were used (106 cells g-1) irradiation at 1.75 kGy reduced pathogen numbers by 1 –>5 log10 cycles depending on strain. Clostridium perfringens was the most resistant, and Y. enterocolitica the most sensitive of the pathogens studied. In all cases when high numbers (106 to 107g-1) of spoilage and/or pathogenic bacteria were present initially on the pork the meat appeared spoiled, and although irradiation reduced the number of microorganisms, the meat was still unacceptable from a sensory viewpoint after treatment. It was concluded that the microbiological safety of irradiated, modified atmosphere packaged (MAP) pork is better than that of unirradiated MAP pork

  3. The variability of extreme temperatures and their relationship with atmospheric circulation: the contribution of applying linear and quadratic models

    Science.gov (United States)

    Savić, Stevan; Milovanović, Boško; Lužanin, Zorana; Lazić, Lazar; Dolinaj, Dragan

    2015-08-01

    This paper presents an analysis of the homogenised mean maximum ( T max) and minimum ( T min) temperatures. The data used in the analysis were collected at eight stations in the Autonomous Province of Vojvodina (Serbia) during the 1949-2008 period. The trends obtained from the slopes of the regression lines using the least square method show 0.9 °C/60 years for T max and 1.1 °C/60 years for T min; the non-parametric Mann-Kendall test was used to determine the statistically significant increasing trends of these two extreme parameters. In this paper, we analyse the influence of the Vangengeim-Girs classification of atmospheric circulation on the T max and T min trends in the Autonomous Province of Vojvodina (Serbia) using linear and quadratic models based on the least square method. Linear stepwise regression and the forward method reveal the highest dependence of T max and T min when the W or E circulation types are included in the model. Non-linear models show a greater contribution of T max and T min at W, E and C circulation types, respectively. The correction of the variance contribution of quadratic models ranges from approximately 16 to 44 % for T max and 32 to 38 % for T min.

  4. Three different low-temperature plasma-based methods for hydrophilicity improvement of polyethylene films at atmospheric pressure

    International Nuclear Information System (INIS)

    Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethylene (PE) films, and all the modification processes were carried out by employing an atmospheric pressure plasma jet (APPJ) system. (a) PE films were directly modified by APPJ using a gas mixture of He and O2. (b) Acrylic acid (AA) was introduced into the system and a polymer acrylic acid (PAA) coating was deposited onto the PE films. (c) AA was grafted onto the PE surface activated by plasma pre-treatment. It was found that the hydrophilicity of the PE films was significantly improved for all the three methods. However, the samples modified by Process (a) showed hydrophobicity recovery after a storage time of 20 days while no significant change was found in samples modified by Process (b) and Process (c). The Fourier transform infrared spectroscopy (FTIR) results indicated that the most intensive C=O peak was detected on the PE surface modified by Process (c). According to the X-ray photoelectron spectroscopy (XPS) analysis, the ratios of oxygen-containing polar groups for samples modified by Process (b) and Process (c) were higher than that modified by Process (a)

  5. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    International Nuclear Information System (INIS)

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H2O2), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells. (paper)

  6. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  7. Changes in flavonoids of sliced and fried yellow onions (allium cepa L. var. zittauer) during storage at different atmospheric, temperature and light conditions

    DEFF Research Database (Denmark)

    Islek, Merve; Nilufer-Erdil, Dilara; Knuthsen, Pia

    2015-01-01

    Flavonoid changes in sliced and fried onions which were packed and stored at different atmospheric conditions (air, nitrogen and vacuum), temperatures (ambient, +5 and -18C) and light (dark or light) were investigated. Flavonoids were extracted using accelerated solvent extraction and analyzed...

  8. Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco;

    2015-01-01

    The objective of the work is validation of HITEMP-2010 at atmospheric pressures and temperatures reaching 1770K. To this end, spectral transmissivities at 1cm-1 resolution and excellent signal-to-noise-ratio have been measured for 22 CO2/H2O/N2 mixtures. In this paper we consider the 450cm-1-7600cm...

  9. Impact of elevated atmospheric CO2 and temperature on plant available phosphorus (A value) in soil - assessment using 32P tracer technique

    International Nuclear Information System (INIS)

    Atmospheric CO2 concentration is projected to exceed 600 ppm during the latter half of this century, with the consequent increase in atmospheric temperature as well (IPCC 2007). As current CO2 concentration is suboptimal for the photosynthesis, growth and yield responses of C3 crops (such as rice and wheat), any further increase in CO2 can be expected to increase their growth and biomass production in future. Rising temperature is an important factor governing the crop growth and regulating the nutrient availability and uptake by plants, can also interact with increasing CO2, potentially influencing the demand and supply dynamics of P in a changing climate. In view of such an important role of P availability in soil for sustainability of crop production under climate change, it is rather tempting to know as to how the rising levels of atmospheric CO2 and temperature might affect plant-available P in soil. A few traceable reports in this line suggest the possibilities of both increase as well as decrease in plant-available P in soil under elevated CO2 and temperature. Increased microbial activity in crop rhizosphere under elevated CO2 and temperature, due mainly to increased rhizodeposition of organic substrates, may reduce the availability of P in soil owing to the possible increase in P immobilization by soil microorganisms. On the contrary, a possible increase in the activity of P solubilizing/mobilizing rhizo-chemicals may increase the plant-available P in soil. It is, however, still unclear as to how the plant-available P in soil will respond to a more realistic scenario in of concurrently elevated CO2 and temperature, particularly in the soil and climatic conditions of India. The present study was, therefore, undertaken to explore the likely impacts of India-specific projected elevation in atmospheric CO2, and temperature on plant-available P (A-value) in soil using 32P isotope dilution technique

  10. Mechanism of Na2SO4-induced corrosion of molybdenum containing nickel-base superalloys at high temperatures. I - Corrosion in atmospheres containing O2 only. II - Corrosion in O2 + SO2 atmospheres

    Science.gov (United States)

    Misra, A. K.

    1986-01-01

    Kinetics of the Na2SO4-induced corrosion of the molybdenum-containing nickel-base superalloys, B-1900 and Udimet 700, coated with Na2MoO4, has been studied in oxygen atmosphere at temperatures ranging from 750 to 950 C. Because the gas turbine atmosphere always contains some SO2 and SO3, the effect of atmospheric SO2 content on corrosion of Udimet-700 has also been studied. It was found that in the O2 atmosphere the melt in the catastrophic corrosion phase consists of Na2MoO4 plus MoO3, with the onset of the catastrophic corrosion coinciding with the appearance of MoO3. In the presence of low levels of atmospheric SO2 (below 0.24 percent), the melt during catastrophic corrosion contains, in addition to Na2MoO4 and MoO3, some quantities of Na2SO4. At the levels of SO2 above 1 percent, no catastrophic corrosion was observed. At these SO2 levels, internal sulfidation appears to be the primary mode of degradation.

  11. Remote measurement of atmospheric temperature profiles in clouds with rotational Raman lidar; Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    2000-07-01

    The development of a lidar receiver for remote measurements of atmospheric temperature profiles with the rotational Raman method is described. By a new receiver concept, this instrument allowed for the first time remote temperature measurements without any perturbation by the presence of clouds up to a backscatter ratio of 45. In addition, high efficiency of the spectral separation of atmospheric backscatter signals leads to improved measurement resolution: the minimum integration time needed for a statistical uncertainty < {+-}1 K at, e.g., 10 km height and 960 m height resolution is only 5 minutes. The measurement range extends to over 45 km altitude. Results of field campaigns obtained with the instrument are presented and discussed. In winter 1997/98, the instrument was transferred with the GKSS Raman lidar to Esrange (67.9 N, 21.1 E) in northern Sweden, where pioneering remote measurements of local temperatures in orographically induced polar stratospheric clouds could be carried out. (orig.)

  12. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2010-11-01

    Full Text Available The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm and for temperature (Φh. It uses three different stability parameters, i.e., h/L(h at tree top, local z/L(z, and the local bulk Richardson number (Ri, within a tall forest canopy in nighttime stable (indicated by h/L(h > 0 conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| < 1. When local |Ri| > 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri < 1. However, Φh does not change with Ri (or much more scattered when Ri > 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  13. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2010-06-01

    Full Text Available The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (φm and for temperatureh using three different stability parameters, i.e., h/L(h at tree top, local z/L(z, and local bulk Richardson number (Ri, within a tall forest canopy in nighttime stable (indicated by h/L(h>0 conditions. Results suggest that the in-canopy φm can be described using the local Richardson number Ri. φm is found to increase linearly with Ri in the upper canopy layer for |Ri|<1. When local |Ri|>1, |φm| decreases with |Ri|, a result consistent for all levels of measurements within the canopy. When both local φh and local Ri are positive, i.e., local downward turbulent heat flux is consistent with local temperature gradient, local φh increases with local Ri when Ri<1 but does not change with Ri (or much more scattered when Ri>1. The relationship between local φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  14. Trapping of water vapor from an atmosphere by condensed silicate matter formed by high-temperature pulse vaporization

    Science.gov (United States)

    Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.

    1993-01-01

    The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.

  15. An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

    Science.gov (United States)

    Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.

    2013-01-01

    been specifically optimized to maximize the mixer performance beyond 1 THz. The measured DSB noise temperatures and conversion losses of the receiver are 2,000 to 3,500 K and 12 to 14 dB, respectively, at 120 K, and 4,000 to 6,000 K and 13 to 15 dB, respectively, at 300 K. These results establish the state-of-the-art for all-solid-state, all-planar heterodyne receivers at 1.2 THz operating at either room temperature or using passive cooling only. Since no cryogenic cooling is needed, the receiver is eminently suited to atmospheric heterodyne spectroscopy of the outer planets and their moons.

  16. Sensitivity of Venus surface emissivity retrieval to model variations of CO2 opacity, cloud features, and deep atmosphere temperature field

    OpenAIRE

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2012-01-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Ex- press space probe has acquired a wealth of nightside emission spectra from Venus and provides the first global database for systematic atmospheric and surface studies in the IR. The in- frared mapping channel (VIRTIS-M-IR) sounds the atmosphere and surface at high spatial and temporal resolution and coverage. Quantitative analyses of data call for a sophisticated radiative transfer simulation ...

  17. Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval

    Institute of Scientific and Technical Information of China (English)

    Eun-Han KWON; Jun LI; Jinlong LI; B. J. SOHN; Elisabeth WEISZ

    2012-01-01

    This study investigates the use of dynamic a priori error information according to atmospheric moistness and the use of quality controls in temperature and water vapor profile retrievals from hyperspectral infrared (IR) sounders.Temperature and water vapor profiles are retrieved from Atmospheric InfraRed Sounder (AIRS) radiance measurements by applying a physical iterative method using regression retrieval as the first guess. Based on the dependency of first-guess errors on the degree of atmospheric moistness,the a priori first-guess errors classified by total precipitable water (TPW) are applied in the AIRS physical retrieval procedure.Compared to the retrieval results from a fixed a priori error,boundary layer moisture retrievals appear to be improved via TPW classification of a priori first-guess errors.Six quality control (QC)tests,which check non-converged or bad retrievals,large residuals,high terrain and desert areas,and large temperature and moisture deviations from the first guess regression retrieval,are also applied in the AIRS physical retrievals.Significantly large errors are found for the retrievals rejected by these six QCs,and the retrieval errors are substantially reduced via QC over land,which suggest the usefulness and high impact of the QCs,especially over land.In conclusion,the use of dynamic a priori error information according to atmospheric moistness,and the use of appropriate QCs dealing with the geographical information and the deviation from the first-guess as well as the conventional inverse performance are suggested to improve temperature and moisture retrievals and their applications.

  18. Sensitivity of simulated Martian atmospheric temperature to prescribed dust opacity distribution: Comparison of model results with reconstructed data from Mars Exploration Rover missions

    Science.gov (United States)

    Natarajan, Murali; Dwyer Cianciolo, Alicia; Fairlie, T. Duncan; Richardson, Mark I.; McConnochie, Timothy H.

    2015-11-01

    We use the Mars Weather Research and Forecasting (MarsWRF) general circulation model to simulate the atmospheric structure corresponding to the landing location and time of the Mars Exploration Rovers (MER) Spirit (A) and Opportunity (B) in 2004. The multiscale capability of MarsWRF facilitates high-resolution nested model runs centered near the landing site of each of the rovers. Dust opacity distributions based on measurements by Thermal Emission Spectrometer (TES) aboard the Mars Global Surveyor spacecraft, and those from an old version of the Mars Climate Database (MCD v3.1 released in 2001) are used to study the sensitivity of the model temperature profile to variations in the dust prescription. The reconstructed entry, descent, and landing (EDL) data from the rover missions are used for comparisons. We show that the model using dust opacity from TES limb and nadir data for the year of MER EDL, Mars Year 26 (MY26), yields temperature profiles in closer agreement with the reconstructed data than the prelaunch EDL simulations and models using other dust opacity specifications. The temperature at 100 Pa from the model (MY26) and the reconstruction are within 5°K. These results highlight the role of vertical dust opacity distribution in determining the atmospheric thermal structure. Similar studies involving data from past missions and models will be useful in understanding the extent to which atmospheric variability is captured by the models and in developing realistic preflight characterization required for future lander missions to Mars.

  19. Monitoring middle-atmospheric dynamics using independent ground-based wind and temperature measurements at Reunion Island

    Science.gov (United States)

    Le Pichon, Alexis; Hauchecorne, Alain; Keckhut, Philippe; Khaykin, Sergey; Camas, Jean Pierre; Payen, Guillaume; Kämpfer, Niklaus; Rüfenacht, Rolf; Ceranna, Lars

    2016-04-01

    There are very few multi-instrumented sites in the tropics and particularly in the Southern Hemisphere. In these regions, developing atmospheric sounding methods in the middle and high-atmosphere provides valuable means to improve the physical representation of deep convection in atmospheric models (breaking of gravity waves, coupling between layers) and to better characterize large-scale atmospheric perturbations (cyclones, storms, tropical convection). The Maïdo observatory at Reunion Island (21°S, 55°E) offers trans-national access to host experiments or measurement campaigns for high resolution measurements of dynamic atmospheric processes in a wide range of altitude such as Rayleigh lidar, Doppler lidar, Modem radiosonde, or microwave Doppler spectro-radiometer (WIRA, operated by Institute of Applied Physics, University of Bern). Collocated to the existing instruments, a small aperture infrasound array (CEA) has been operating continuously since 2014. In the 0.1-1 Hz band, the coherent energy is dominated by microbarom signals resulting from the non-linear interaction of large swells systems which circulate along the Antarctic Circumpolar Current (ACC). The seasonal transition in the bearings along with the stratospheric general circulation between summer and winter is clearly noted. Interestingly, the semiannual oscillation (SAO) of the zonal stratospheric wind is well captured by infrasound measurements. It manifests by opposite ducts between 30 and 60 km that persist for several weeks during the equinox period. For the ARISE project (http://arise-project.eu/), this multi-technology site opens new perspectives to study the climatology of SAO as well as poorly resolved atmospheric disturbances of the tropical middle atmosphere where data coverage is sparse.

  20. Sensitivity of Temperature Profiles Retrieved from Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES) Observations to the GSFC Synthetic Mars Model Atmosphere

    Science.gov (United States)

    Maguire, William C.; Pearl, J. C.; Smith, M. D.; Thompson, R. F.; Conrath, B. J.; Dason, S.; Kaelberer, M. S.; Christensen, P. R.

    1999-01-01

    Part of the task of interpreting IR spectral features observed by MGS/TES due to surface minerals requires distinguishing those IR signatures from atmospheric signatures of gas and dust. Surface-atmosphere separation for MGS/TES depends on knowledge of the retrieved temperature profile. In turn, the temperature retrieval Erom the observed data depends on molecular parameters including 15 micron CO2 line shape or line intensities which contribute to defining the Mars synthetic radiative transfer model. Using a simple isothermal, homogeneous single layer model of Pinnock and Shine, we find the ratio of (the error in degrees Kelvin of the retrieved temperature profile) to (the percentage error in the absorption coefficient) (deg K/percent) to be 0.4 at 200K. This ratio at 150K and 250K is 0.2 and 0.6, respectively. A more refined model, incorporating observed MGS/TES retrieved temperature profiles, the TES instrumental resolution and the most recent molecular modelling, will yield an improved knowledge of this error sensitivity. We present results of such a sensitivity study to determine the dependence of temperature profiles inverted from MGS/TES on these and other molecular parameters. This work was supported in part by NASA's Mars Data Analysis Program.

  1. The impact of temperature dependent CO2 cross section measurements: A role for heterogeneous chemistry in the atmosphere of Mars?

    Science.gov (United States)

    Anbar, A. D.; Allen, M.; Nair, H.; Leu, M-T.; Yung, Y. L.

    1992-01-01

    Carbon dioxide comprises over 95 percent of the Mars atmosphere, despite continuous photolysis of CO2 by solar ultraviolet (UV) radiation. Since the direct recombination of CO and O is spinforbidden, the chemical stability of CO2 in the Martian atmosphere is thought to be the result of a HO(x)-catalyzed recombination scheme. Thus the rate of CO oxidation is sensitive to the abundance and altitude distribution of OH, H, and HO2. Most Martian atmospheric models assume that HO(x) abundances are governed purely by gas phase chemistry. However, it is well established that reactive HO(x) radical are adsorbed by a wide variety of surfaces. The authors have combined laboratory studies of H, OH, and HO2 adsorption on inorganic surfaces, observational data of aerosol distributions, and an updated photochemical model to demonstrate that adsorption on either dust or ice aerosols is capable of reducing HO(x) abundances significantly, thereby retarding the rate of CO oxidation.

  2. On the differences between early and middle winter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic

    International Nuclear Information System (INIS)

    Using an atmospheric global spectral model at RPN with T42 horizontal resolution, we have shown that the winter atmosphere in the mid-latitude is capable of reacting to the SST anomalies prescribed in the northwest Atlantic with two different responses. The nature of the response is determined by the climatological conditions of the winter system. Experiments are conducted using either the perpetual November or January conditions, with or without the SST anomalies prescribed. Six 50-day integrations, with positive (or negative) SST anomalies prescribed, initialized from independent November analyses and similarly, four runs initialized from January analyses, have been examined in comparison with their control runs

  3. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    Science.gov (United States)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  4. Exoplanetary Atmospheres

    CERN Document Server

    Madhusudhan, Nikku; Fortney, Jonathan; Barman, Travis

    2014-01-01

    The study of exoplanetary atmospheres is one of the most exciting and dynamic frontiers in astronomy. Over the past two decades ongoing surveys have revealed an astonishing diversity in the planetary masses, radii, temperatures, orbital parameters, and host stellar properties of exoplanetary systems. We are now moving into an era where we can begin to address fundamental questions concerning the diversity of exoplanetary compositions, atmospheric and interior processes, and formation histories, just as have been pursued for solar system planets over the past century. Exoplanetary atmospheres provide a direct means to address these questions via their observable spectral signatures. In the last decade, and particularly in the last five years, tremendous progress has been made in detecting atmospheric signatures of exoplanets through photometric and spectroscopic methods using a variety of space-borne and/or ground-based observational facilities. These observations are beginning to provide important constraints...

  5. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window.

    Science.gov (United States)

    Ventrillard, I; Romanini, D; Mondelain, D; Campargue, A

    2015-10-01

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the center of the 2.1 μm transparency window, at 4302 and 4723 cm(-1), respectively. Self-continuum cross sections, CS, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the CS value at 4302 cm(-1) is found 40% higher than predicted by the MT_CKD V2.5 model, while at 4723 cm(-1), our value is 5 times larger than the MT_CKD value. On the other hand, these OF-CEAS CS values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D0 ≈ 1100 cm(-1). PMID:26450311

  6. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    International Nuclear Information System (INIS)

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the center of the 2.1 μm transparency window, at 4302 and 4723 cm−1, respectively. Self-continuum cross sections, CS, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the CS value at 4302 cm−1 is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm−1, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS CS values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D0 ≈ 1100 cm−1

  7. Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models

    NARCIS (Netherlands)

    Le Pichon, A.; Assink, J.D.; Heinrich, P.; Blanc, E.; Charlton-Perez, A.; Lee, C.F.; Keckhut, P.; Hauchecorne, A.; Rufenacht, R.; Kampfer, N.; Drob, D.P.; Smets, P.S.M.; Evers, L.G.; Ceranna, L.; Pilger, C.; Ross, O.; Claud, C.

    2015-01-01

    High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlat

  8. A forward model for calculating the AMSR brightness temperatures of sea-ice and ocean as seen through the atmosphere

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Hofmann-Bang, Dorthe

    SSM/I retrievals, with ocean and atmosphere retrievals by Remote Sensing Systems, with SST data from the Ocean and Sea Ice SAF and with sea ice concentrations and MY-fractions of the NASA Team and Comiso Bootstrap sea ice algorithms. The forward model is the level 0 emissivity and radiative transfer...

  9. The atmospheric chemistry of the warm Neptune GJ 3470b: Influence of metallicity and temperature on the CH4/CO ratio

    Science.gov (United States)

    Venot, Olivia; Agúndez, Marcelino; Selsis, Franck; Tessenyi, Marcell; Iro, Nicolas

    2014-02-01

    Context. Current observation techniques are able to probe the atmosphere of some giant exoplanets and get some clues about their atmospheric composition. However, the chemical compositions derived from observations are not fully understood. For instance, the CH4/CO abundance ratio is often inferred to be different from the value that has been predicted by chemical models. Recently, the warm Neptune GJ 3470b has been discovered, and because of its close distance from us and high transit depth, it is a very promising candidate for follow-up characterisation of its atmosphere. Aims: We study the atmospheric composition of GJ 3470b to compare to the current observations of this planet and to prepare for future ones but also to understand the chemical composition of warm (sub-)Neptunes as a typical case study. The metallicity of such atmospheres is totally uncertain and are likely to vary to values up to 100× solar. We explore the space of unknown parameters to predict the range of possible atmospheric compositions. Methods: We use a one-dimensional chemical code to compute a grid of models with various thermal profiles, metallicities, eddy diffusion coefficient profiles, and stellar UV incident fluxes. Thanks to a radiative transfer code, we then compute the corresponding emission and transmission spectra of the planet and compare them with the observational data already published. Results: Within the parameter space explored we find that methane is the major carbon-bearing species in most cases. We, however, find that for high metallicities with a sufficiently high temperature, the CH4/CO abundance ratio can become lower than unity, as suggested by some multiwavelength photometric observations of other warm (sub-)Neptunes, such as GJ 1214b and GJ 436b. As for the emission spectrum of GJ 3470b, brightness temperatures at infrared wavelengths may vary between 400 and 800 K depending on the thermal profile and metallicity. Conclusions: Combined with a hot temperature

  10. The Measurement of Tropospheric Temperature Profiles using Rayleigh-Brillouin Scattering: Results from Laboratory and Atmospheric Studies

    Science.gov (United States)

    Witschas, Benjamin; Reitebuch, Oliver; Lemmerz, Christian; Gomez Kableka, Pau; Kondratyev, Sergey; Gu, Ziyu; Ubachs, Wim

    2016-06-01

    In this letter, we suggest a new method for measuring tropospheric temperature profiles using Rayleigh-Brillouin (RB) scattering. We report on laboratory RB scattering measurements in air, demonstrating that temperature can be retrieved from RB spectra with an absolute accuracy of better than 2 K. In addition, we show temperature profiles from 2 km to 15.3 km derived from RB spectra, measured with a high spectral resolution lidar during daytime. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 K and 1.5 K.

  11. Influence of annealing atmosphere and temperature on photoluminescence of Tb 3+ or Eu 3+-activated zinc silicate thin film phosphors via sol-gel method

    Science.gov (United States)

    Zhang, Q. Y.; Pita, K.; Ye, W.; Que, W. X.

    2002-01-01

    Thin films of Zn 2SiO 4:Tb 3+ or Eu 3+ were deposited on silicon wafers by a sol-gel method. The films exhibited prominent green or red photoluminescence, due to the sharp and strong intra-4f n-shell electronic transitions. The thermogravimetric analysis curve shows a remarkable weight loss in the temperature range 50-400 ° C, and a slow loss at higher temperature. The increases in fluorescence intensity and decay lifetimes of rare-earth ions sensitive to microstructure and chemical components are attributed to OH removal, nano-crystallite formation and the increased surface roughness by treatment of temperature. Strongly enhanced photoluminescence was observed in samples annealed at 950 °C in a nitrogen atmosphere.

  12. Correlations of the first and second derivatives of atmospheric CO2 with global surface temperature and the El Nino-Southern Oscillation respectively

    CERN Document Server

    Leggett, L M W

    2014-01-01

    Understanding current global climate requires an understanding of trends both in Earth's atmospheric temperature and the El Nino-Southern Oscillation (ENSO), a characteristic large-scale distribution of warm water in the tropical Pacific Ocean and the dominant mode of year-to-year climate variability (Holbrook et al. 2009. However, despite much effort, the average projection of current climate models has become statistically significantly different from the observed 21st century global surface temperature trend (Fyfe 2013)and has failed to reflect the statistically significant evidence that annual-mean global temperature has not risen in the 21st century (Fyfe 2013, Kosaka 2013). Modelling also provides a wide range of predictions for future ENSO variability, some showing an increase, others a decrease and some no change (Guilyardi, et al. 2012; Bellenger, 2013). Here we present correlations which include the current era and do not have these drawbacks. The correlations arise as follows. First it has been sho...

  13. Impact of Rain Snow Threshold Temperature on Snow Depth Simulation in Land Surface and Regional Atmospheric Models

    Institute of Scientific and Technical Information of China (English)

    WEN Lijuan; Nidhi NAGABHATLA; L(U) Shihua; Shih-Yu WANG

    2013-01-01

    This study investigates the impact of rain snow threshold (RST) temperatures on snow depth simulation using the Community Land Model (CLM) and the Weather Research and Forecasting model (WRF coupled with the CLM and hereafter referred to as WRF_CLM),and the difference in impacts.Simulations were performed from 17 December 1994 to 30 May 1995 in the French Alps.Results showed that both the CLM and the WRF_CLM were able to represent a fair simulation of snow depth with actual terrain height and 2.5℃ RST temperature.When six RST methods were applied to the simulation using WRF_CLM,the simulated snow depth was the closest to observations using 2.5℃ RST temperature,followed by that with Pipes',USACE,Kienzle's,Dai's,and 0℃ RST temperature methods.In the case of using CLM,simulated snow depth was the closest to the observation with Dai's method,followed by with USACE,Pipes',2.5℃ RST temperature,Kienzle's,and 0℃ RST temperature method.The snow depth simulation using the WRF_CLM was comparatively sensitive to changes in RST temperatures,because the RST temperature was not only the factor to partition snow and rainfall.In addition,the simulated snow related to RST temperature could induce a significant feedback by influencing the meteorological variables forcing the land surface model in WRF_CLM.In comparison,the above variables did not change with changes in RST in CLM.Impacts of RST temperatures on snow depth simulation could also be influenced by the patterns of temperature and precipitation,spatial resolution,and input terrain heights.

  14. Photoinduced superhydrophilicity of amorphous TiOx-like thin films by a simple room temperature sol-gel deposition and atmospheric plasma jet treatment

    International Nuclear Information System (INIS)

    A room temperature sol gel process of TTIP / iPrOH / H2O /HNO3 sol was applied for the deposition of functional Ti alkoxide thin films on glass and polymeric substrates (PEEK). The unheated – amorphous films become superhydrophilic after 7 minutes of UV exposure which deteriorates after one day of storage in dark, exhibiting stable amphiphilic behavior. Superhydrophilicity is also obtained after 5 min of atmospheric pressure Ar – O2 plasma jet treatment. As the plasma power and the oxygen content of the mixture of the treatment increase (70W, 3.2 -5% O2) the films high hydrophilicity is maintained for many days even in dark atmospheric conditions providing long term hydrophilic coatings

  15. Photoinduced superhydrophilicity of amorphous TiOx-like thin films by a simple room temperature sol-gel deposition and atmospheric plasma jet treatment

    Science.gov (United States)

    Vrakatseli, V. E.; Pagonis, E.; Amanatides, E.; Mataras, D.

    2014-11-01

    A room temperature sol gel process of TTIP / iPrOH / H2O /HNO3 sol was applied for the deposition of functional Ti alkoxide thin films on glass and polymeric substrates (PEEK). The unheated - amorphous films become superhydrophilic after 7 minutes of UV exposure which deteriorates after one day of storage in dark, exhibiting stable amphiphilic behavior. Superhydrophilicity is also obtained after 5 min of atmospheric pressure Ar - O2 plasma jet treatment. As the plasma power and the oxygen content of the mixture of the treatment increase (70W, 3.2 -5% O2) the films high hydrophilicity is maintained for many days even in dark atmospheric conditions providing long term hydrophilic coatings.

  16. Estimation of the Total Atmospheric Water Vapor Content and Land Surface Temperature Based on AATSR Thermal Data

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2008-03-01

    Full Text Available The total atmospheric water vapor content (TAWV and land surfacetemperature (LST play important roles in meteorology, hydrology, ecology and some otherdisciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track ScanningRadiometer thermal data are used to estimate the TAWV and LST over the Loess Plateauin China by using a practical split window algorithm. The distribution of the TAWV isaccord with that of the MODIS TAWV products, which indicates that the estimation of thetotal atmospheric water vapor content is reliable. Validations of the LST by comparingwith the ground measurements indicate that the maximum absolute derivation, themaximum relative error and the average relative error is 4.0K, 11.8% and 5.0%respectively, which shows that the retrievals are believable; this algorithm can provide anew way to estimate the LST from AATSR data.

  17. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Ni, De Wei; Charlas, Benoit; Kwok, Kawai;

    2016-01-01

    need to be characterized to ensure reliable operation. In this study, the effect of reduction temperature on microstructural stability, high temperature strength and elastic modulus of Ni-YSZ anode supports were investigated. The statistical distribution of strength was determined from a large number...... of samples (∼30) at each condition to ensure high statistical validity. It is revealed that the microstructure and mechanical properties of the Ni-YSZ strongly depend on the reduction temperature. Further studies were conducted to investigate the temperature dependence of the strength and elastic...... modulus for both the unreduced and reduced Ni(O)-YSZ anode supports. With increasing temperature, the strength and elastic modulus of the reduced Ni-YSZ specimens drop almost linearly. In contrast, the strength and elastic modulus of the unreduced NiO-YSZ remain almost constant over the investigated...

  18. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    Science.gov (United States)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  19. Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: reactions of the CN radical.

    Science.gov (United States)

    Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R

    2010-01-01

    The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere. PMID:21302546

  20. A Critical Review of Published Data on the Gas Temperature and the Electron Density in the Electrolyte Cathode Atmospheric Glow Discharges

    Directory of Open Access Journals (Sweden)

    Tamás Cserfalvi

    2012-05-01

    Full Text Available Electrolyte Cathode Discharge (ELCAD spectrometry, a novel sensitive multielement direct analytical method for metal traces in aqueous solutions, was introduced in 1993 as a new sensing principle. Since then several works have tried to develop an operational mechanism for this exotic atmospheric glow plasma technique, however these attempts cannot be combined into a valid model description. In this review we summarize the conceptual and technical problems we found in this upcoming research field of direct sensors. The TG gas temperature and the ne electron density values published up to now for ELCAD are very confusing. These data were evaluated by three conditions. The first is the gas composition of the ELCAD plasma, since TG was determined from the emitted intensity of the N2 and OH bands. Secondly, since the ELCAD is an atmospheric glow discharge, thus, the obtained TG has to be close to the Te electron temperature. This can be used for the mutual validation of the received temperature data. Thirdly, as a consequence of the second condition, the values of TG and ne have to agree with the Engel-Brown approximation of the Saha-equation related to weakly ionized glow discharge plasmas. Application of non-adequate experimental methods and theoretical treatment leads to unreliable descriptions which cannot be used to optimize the detector performance.

  1. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    Science.gov (United States)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For

  2. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo;

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection of...... mixtures of common volatile organic compounds. Amounts down to ca. 0.5 ng (on column) could be detected for most compounds and with a chromatographic performance comparable to that of GC/EIMS. In the positive mode, LTP ionization resulted in a compound specific formation of molecular ions M+center dot...

  3. Grid-pattern formation of extracellular matrix on silicon by low-temperature atmospheric-pressure plasma jets for neural network biochip fabrication

    International Nuclear Information System (INIS)

    Grid patterns of extracellular matrices (ECMs) have been formed on silicon (Si) substrates with the use of low-temperature atmospheric-pressure plasma (APP) jets with metal stencil masks and neuron model cells have been successfully cultured on the patterned ECMs. Arrangement of living neuron cells on a microelectronics chip in a desired pattern is one of the major challenges for the fabrication of neuron-cell biochips. The APP-based technique presented in this study offers a cost-effective solution to this problem by providing a simple patterning method of ECMs, which act as biological interfaces between living cells and non-biological materials such as Si.

  4. Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports

    Science.gov (United States)

    Ni, De-Wei; Charlas, Benoit; Kwok, Kawai; Molla, Tesfaye Tadesse; Hendriksen, Peter Vang; Frandsen, Henrik Lund

    2016-04-01

    Solid Oxide Fuel Cells are subjected to significant stresses during production and operation. The various stress-generating conditions impose strength requirements on the cell components, and thus the mechanical properties of the critical load bearing materials at relevant operational conditions need to be characterized to ensure reliable operation. In this study, the effect of reduction temperature on microstructural stability, high temperature strength and elastic modulus of Ni-YSZ anode supports were investigated. The statistical distribution of strength was determined from a large number of samples (∼30) at each condition to ensure high statistical validity. It is revealed that the microstructure and mechanical properties of the Ni-YSZ strongly depend on the reduction temperature. Further studies were conducted to investigate the temperature dependence of the strength and elastic modulus for both the unreduced and reduced Ni(O)-YSZ anode supports. With increasing temperature, the strength and elastic modulus of the reduced Ni-YSZ specimens drop almost linearly. In contrast, the strength and elastic modulus of the unreduced NiO-YSZ remain almost constant over the investigated temperature range. Compared to the NiO-YSZ, a significantly lower strength and elastic modulus of the reduced Ni-YSZ is observed; while reduction leads to a remarkable increase in failure strain of the anode support.

  5. Temperature, current meter, and other data from moored buoy as part of the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) project, 30 July 1974 - 14 August 1974 (NODC Accession 7601675)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, current meter, and other data were collected using moored buoy from the CAPRICORNE from July 30, 1974 to August 14, 1974. Data were collected as part...

  6. Temperature profile and other data collected using microstructure profiler (JMSP) from the HAKUHO-MARU as part of the Coupled Ocean-Atmosphere Response Experiment (COARE), from 01 November 1992 - 30 November 1992 (NODC Accession 9600028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using microstructure profiler (JMSP) from the HAKUHO-MARU in the TOGA Area - Pacific Ocean (30 N to 30 S) from...

  7. Temperature profile from NOAA Ship RESEARCHER and other platforms as part of the ARP (Global Atmospheric Research Program) Atlantic Tropical Experiment from 1974-08-28 to 1974-09-20 (NODC Accession 7800314)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using BT and XBT from the NOAA Ship RESEARCHER and other platforms in the TOGA area - Atlantic from 28 August 1974 to 20...

  8. Underway pressure, temperature, and salinity data from the MOANA WAVE from the Pacific warm pool in support of the Coupled Ocean-Atmosphere Response Experiment (COARE) from 02 February 1993 to 21 February 1993 (NODC Accession 9600090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure, temperature, and salinity data were collected while underway from the MOANA WAVE from the Pacific warm pool. Data were collected in support of the Coupled...

  9. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Schram, Daan C [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Iza, Felipe; Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Guns, Peter; Lauwers, Daniel; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Gonzalvo, Yolanda Aranda [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: p.j.bruggeman@tue.nl

    2010-02-15

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H{sub 2}O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J {<=} 7) are thermalized and representative for the gas temperature.

  10. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    International Nuclear Information System (INIS)

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H2O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J ≤ 7) are thermalized and representative for the gas temperature.

  11. Fertilizer P use efficiency in wheat under elevated atmospheric CO2 and temperature in subtropical India: a 32P tracer study

    International Nuclear Information System (INIS)

    A phytotron experiment was undertaken in which wheat was grown as a test crop under two levels of atmospheric CO2: ambient (385, μmol mol-1) and elevated (650, μmol mol-1); two levels of temperature: ambient (ambient air temperature of rabi season in Subtropical India) and elevated (ambient+3 deg C); and three levels of P: zero (control), 100% and 200% of recommended P dose to wheat. There were significant increases in total P and fertilizer P uptake by plant under singly elevated CO2 as well as concurrently elevated CO2 and temperature, with no significant change in %Pdff. As a consequence, fertilizer P use efficiency (PUE) also showed significant improvements both under the elevated CO2 alone as well as under combined elevation of CO2 and temperature. While this increase in fertilizer PUE was a welcome change under the projected levels of CO2 and temperature, low efficiency at higher doses of P application still remained a matter of concern. (author)

  12. Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature control wind power output and circulation cell size

    CERN Document Server

    Makarieva, A M; Nefiodov, A V; Sheil, D; Nobre, A D; Shearman, P L; Li, B -L

    2015-01-01

    The gross spatial features of the atmospheric kinetic energy budget are analytically investigated. Kinetic energy generation is evaluated in a hydrostatic atmosphere where the axisymmetric circulation cells are represented by Carnot cycles. The condition that kinetic energy generation is positive in the lower atmosphere is shown to limit the poleward cell extension via a relationship between the meridional differences in surface pressure and temperature $\\Delta p_s$ and $\\Delta T_s$: an upper limit to cell size exists when $\\Delta p_s$ increases sublinearly with $\\Delta T_s$. This is the case for the Hadley cells as demonstrated here using data from MERRA re-analysis. The limited cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of heat engines -- cells where the low-level air moves towards the warmer areas -- and can in principle drive the global efficiency of atmo...

  13. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    Science.gov (United States)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and

  14. Effects of aging temperature on electrical conductivity and hardness of Cu-3 at. pct Ti alloy aged in a hydrogen atmosphere

    KAUST Repository

    Semboshi, S.

    2011-08-01

    To improve the balance of the electrical conductivity and mechanical strength for dilute Cu-Ti alloys by aging in a hydrogen atmosphere, the influence of aging temperature ranging from 673 K to 773 K (400 °C to 500 °C) on the properties of Cu-3 at. pct Ti alloy was studied. The Vickers hardness increases steadily with aging time and starts to fall at 3 hours at 773 K (500 °C), 10 hours at 723 K (450 °C), or over 620 hours at 673 K (400 °C), which is the same as the case of conventional aging in vacuum. The maximum hardness increases from 220 to 236 with the decrease of aging temperature, which is slightly lower than aging at the same temperature in vacuum. The electrical conductivity at the maximum hardness also increases from 18 to 32 pct of pure copper with the decrease of the temperature, which is enhanced by a factor of 1.3 to 1.5 in comparison to aging in vacuum. Thus, aging at 673 K (400 °C) in a hydrogen atmosphere renders fairly good balance of strength and conductivity, although it takes nearly a month to achieve. The microstructural changes during aging were examined by transmission electron microscopy (TEM) and atom-probe tomography (APT), it was confirmed that precipitation of the Cu4Ti phase occurs first and then particles of TiH2 form as the third phase, thereby efficiently removing the Ti solutes in the matrix.

  15. Sliding friction characteristics of different pairs of materials at room temperature in a He atmosphere and in vacuum

    International Nuclear Information System (INIS)

    In the framework of testing a refueling canal valve for fuel transfer systems of high-temperature reactors, investigations were carried out on metal alloys, CVD hard material coatings (carbides, nitrides) and solid lubricants at room temperature. These investigations are to discover suitable material combinations for the inner and outer wedge pairs of the expanding mechanism subjected to heavy strain and to provide general information about the applicability of material combinations with helium and vacuum conditions. The tribological fundamentals were prepared and 19 material combinations were tested at room temperature in helium and partly in vacuum with regard to a durability of 75x103 dynamic loading cycles. The tests showed that under the conditions mentioned and for the selected arrangement - wedge mechanism - material combinations can be chosen the working life of which will exceed the required durability. (orig./IHOE)

  16. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

    Science.gov (United States)

    Piazza, Marie; Terray, Laurent; Boé, Julien; Maisonnave, Eric; Sanchez-Gomez, Emilia

    2016-03-01

    A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air-sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

  17. Electron Density and Temperature Measurement by Stark Broadening in a Cold Argon Arc-Plasma Jet at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiuping; CHENG Cheng; MENG Yuedong

    2009-01-01

    Determination of both the electron density and temperature simultaneously in a cold argon arc-plasma jet by analyzing the Stark broadening of two different emission lines is presented.This method is based on the fact that the Stark broadening of different lines has a different dependence on the electron density and temperature.Therefore,a comparison of two or more line broadenings allows us to diagnose the electron density and temperature simultaneously.In this study we used the first two Balmer series hydrogen lines H_α and H_β for their large broadening width.For this purpose,a small amount of hydrogen was introduced into the discharge gas.The results of the Gigosos-Cardenoso computational model,considering more relevant processes for the hydrogen Balmer lines,is used to process the experimental data.With this method,we obtained reliable electron density and temperature,1.88 ×10 ~(15) cm~(-3 )and 13000 K,respectively.Possible sources of error were also analyzed.

  18. Relationship between rotational temperature and energy density in atmospheric pressure hollow-needle to plate electrical discharge

    Czech Academy of Sciences Publication Activity Database

    Pekárek, S.; Šimek, Milan

    2004-01-01

    Roč. 49, č. 5 (2004), s. 66. ISSN 0003-0503. [Annual Gaseous Electronics Conference /57./. Bunratty, 26.09.2004-29.09.2004] R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z2043910 Keywords : hollow needle to plate discharge, rotational temperature, vibrational distribution Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Effect of particulate matter, atmospheric gases, temperature, and humidity on respiratory and circulatory diseases’ trends in Lisbon, Portugal

    NARCIS (Netherlands)

    Freitas, M.C.; Pacheco, A.M.G.; Verburg, T.G.; Wolterbeek, H.T.

    2009-01-01

    This study addresses the significant effects of both well-known contaminants (particles, gases) and less-studied variables (temperature, humidity) on serious, if relatively common, respiratory and circulatory diseases. The area of study is Lisbon, Portugal, and time series of health outcome (daily a

  20. Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations

    Directory of Open Access Journals (Sweden)

    Lilong Zhao

    2015-12-01

    Full Text Available The tropospheric and stratospheric temperature trends and uncertainties in the fifth Coupled Model Intercomparison Project (CMIP5 model simulations in the period of 1979–2005 have been compared with satellite observations. The satellite data include those from the Stratospheric Sounding Units (SSU, Microwave Sounding Units (MSU, and the Advanced Microwave Sounding Unit-A (AMSU. The results show that the CMIP5 model simulations reproduced the common stratospheric cooling (−0.46–−0.95 K/decade and tropospheric warming (0.05–0.19 K/decade features although a significant discrepancy was found among the individual models being selected. The changes of global mean temperature in CMIP5 simulations are highly consistent with the SSU measurements in the stratosphere, and the temporal correlation coefficients between observation and model simulations vary from 0.6–0.99 at the 99% confidence level. At the same time, the spread of temperature mean in CMIP5 simulations increased from stratosphere to troposphere. Multiple linear regression analysis indicates that the temperature variability in the stratosphere is dominated by radioactive gases, volcanic events and solar forcing. Generally, the high-top models show better agreement with observations than the low-top model, especially in the lower stratosphere. The CMIP5 simulations underestimated the stratospheric cooling in the tropics and overestimated the cooling over the Antarctic compared to the satellite observations. The largest spread of temperature trends in CMIP5 simulations is seen in both the Arctic and Antarctic areas, especially in the stratospheric Antarctic.

  1. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets

    Science.gov (United States)

    Simmons, A. J.; Willett, K. M.; Jones, P. D.; Thorne, P. W.; Dee, D. P.

    2010-01-01

    Evidence is presented of a reduction in relative humidity over low-latitude and midlatitude land areas over a period of about 10 years leading up to 2008, based on monthly anomalies in surface air temperature and humidity from comprehensive European Centre for Medium-Range Weather Forecasts reanalyses (ERA-40 and ERA-Interim) and from Climatic Research Unit and Hadley Centre analyses of monthly station temperature data (CRUTEM3) and synoptic humidity observations (HadCRUH). The data sets agree well for both temperature and humidity variations for periods and places of overlap, although the average warming over land is larger for the fully sampled ERA data than for the spatially and temporally incomplete CRUTEM3 data. Near-surface specific humidity varies similarly over land and sea, suggesting that the recent reduction in relative humidity over land may be due to limited moisture supply from the oceans, where evaporation has been limited by sea surface temperatures that have not risen in concert with temperatures over land. Continental precipitation from the reanalyses is compared with a new gauge-based Global Precipitation Climatology Centre (GPCC) data set, with the combined gauge and satellite products of the Global Precipitation Climatology Project (GPCP) and the Climate Prediction Center (CPC), Merged Analysis of Precipitation (CMAP), and with CPC's independent gauge analysis of precipitation over land (PREC/L). The reanalyses agree best with the new GPCC and latest GPCP data sets, with ERA-Interim significantly better than ERA-40 at capturing monthly variability. Shifts over time in the differences among the precipitation data sets make it difficult to assess their longer-term variations and any link with longer-term variations in humidity.

  2. An evaluation of uncertainties in monitoring middle atmosphere temperatures with the ground-based lidar network in support of space observations

    Science.gov (United States)

    Keckhut, P.; Randel, W. J.; Claud, C.; Leblanc, T.; Steinbrecht, W.; Funatsu, B. M.; Bencherif, H.; McDermid, I. S.; Hauchecorne, A.; Long, C.; Lin, R.; Baumgarten, G.

    2011-04-01

    The capability of the longest lidar data sets to monitor long-term temperature changes have been evaluated through comparisons with the successive Stratospheric Sounder Units (SSU) onboard NOAA satellites. Cross-consistency investigations between SSU and the lidar network can be considered as a first attempt to demonstrate how the synergistic use of space and ground-based instruments could provide reliable monitoring of the temperature of the middle atmosphere. The breakdown of the temperature cooling trend, and the following flattening observed in the satellite temperature series, is qualitatively confirmed by the lidars. However, there are still large differences that can either be due to SSU continuity (orbit drifts or weighting function modifications) or lidar operation changes (time of measurements, accuracy, sampling, etc.). SSU vertical weighting functions have been taken into account for comparisons. Some discontinuity events cannot be explained by the SSU weighting function drifts due to CO2. For the upper channels of SSU (peaking around 50 km), the results are probably sensitive to the mesospheric part of the lidar profiles that can explain some discontinuities. Tropical lidar stations show clear inter-annual differences with the SSU channels covering the lowest altitude range that needs further investigations to understand if the origin is instrumental or geophysical. An attempt to derive non-linear trends with combinations of linear, hockey stick, and quadratic functions has been made. While the quadratic term is not highly significant, this approach allows the derivation of a better quantification of the linear trend terms.

  3. Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of N2 and O2

    International Nuclear Information System (INIS)

    Reliable experimental data on nanosecond discharge plasmas in air become more and more crucial considering their interest in a wide field of applications. However, the investigations on such nonequilibrium plasmas are made difficult by the spatial non-homogeneities, in particular under atmospheric pressure, the wide range of time scales, and the complexity of multi-physics processes involved therein. In this study, we report spatiotemporal experimental analysis on the gas temperature and the vibrational excitation of N2 and O2 in their ground electronic state during the post-discharge of an overvoltage nanosecond-pulsed discharge generated in a pin-to-plane gap of air at atmospheric pressure. The gas temperature during the pulsed discharge is measured by optical emission spectroscopy related to the rotational bands of the 0–0 vibrational transition N2(C 3 Πu, v = 0) → N2(B3 Πg, v = 0) of nitrogen. The results show a rapid gas heating up to 700 K in tens of nanoseconds after the current rise. This fast gas heating leads to a high gas temperature up to 1000 K measured at 150 ns in the first stages of the post-discharge using spontaneous Raman scattering (SRS). The spatiotemporal measurements of the gas temperature and the vibrational distribution function of N2 and O2, also obtained by SRS, over the post-discharge show the spatial expansion of the high vibrational excitation of N2, and the gas heating during the post-discharge. The present measurements, focused on thermal and energetic aspect of the discharge, provide a base for spatiotemporal analysis of gas number densities of N2, O2 and O atoms and hydrodynamic effects achieved during the post-discharge in part II of this investigation. All these results provide space and time database for the validation of plasma chemical models for nanosecond-pulsed discharges at atmospheric pressure air. (paper)

  4. Retrieval techniques and information content analysis to improve remote sensing of atmospheric water vapor, liquid water and temperature from ground-based microwave radiometer measurements

    Science.gov (United States)

    Sahoo, Swaroop

    Observation of profiles of temperature, humidity and winds with sufficient accuracy and fine vertical and temporal resolution are needed to improve mesoscale weather prediction, track conditions in the lower to mid-troposphere, predict winds for renewable energy, inform the public of severe weather and improve transportation safety. In comparing these thermodynamic variables, the absolute atmospheric temperature varies only by 15%; in contrast, total water vapor may change by up to 50% over several hours. In addition, numerical weather prediction (NWP) models are initialized using water vapor profile information, so improvements in their accuracy and resolution tend to improve the accuracy of NWP. Current water vapor profile observation systems are expensive and have insufficient spatial coverage to observe humidity in the lower to mid-troposphere. To address this important scientific need, the principal objective of this dissertation is to improve the accuracy, vertical resolution and revisit time of tropospheric water vapor profiles retrieved from microwave and millimeter-wave brightness temperature measurements. This dissertation advances the state of knowledge of retrieval of atmospheric water vapor from microwave brightness temperature measurements. It focuses on optimizing two information sources of interest for water vapor profile retrieval, i.e. independent measurements and background data set size. From a theoretical perspective, it determines sets of frequencies in the ranges of 20-23, 85-90 and 165-200 GHz that are optimal for water vapor retrieval from each of ground-based and airborne radiometers. The maximum number of degrees of freedom for the selected frequencies for ground-based radiometers is 5-6, while the optimum vertical resolution is 0.5 to 1.5 km. On the other hand, the maximum number of degrees of freedom for airborne radiometers is 8-9, while the optimum vertical resolution is 0.2 to 0.5 km. From an experimental perspective, brightness

  5. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    Science.gov (United States)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.

  6. Assessments of F16 Special Sensor Microwave Imager and Sounder Antenna Temperatures at Lower Atmospheric Sounding Channels

    OpenAIRE

    Fuzhong Weng; Banghua Yan

    2009-01-01

    The main reflector of the Special Sensor Microwave Imager/Sounder (SSMIS) aboard the Defense Meteorological Satellite Program (DMSP) F-16 satellite emits variable radiation, and the SSMIS warm calibration load is intruded by direct and indirect solar radiation. These contamination sources produce antenna brightness temperature anomalies of around 2 K at SSMIS sounding channels which are obviously inappropriate for assimilation into numerical weather prediction models and remote sensing retrie...

  7. The role of residual charges in the repeatability of the dynamics of atmospheric pressure room temperature plasma plume

    Science.gov (United States)

    Wu, S.; Lu, X.

    2014-12-01

    To better understand the role of residual electrons in the repeatability of an atmospheric pressure plasma plume, the characteristics of a helium plasma jet from the 1st, 2nd,… until the repeatable discharge pulse are investigated for the first time. It's found that the longest plasma plume is achieved in the 1st discharge pulse. The length of the plasma plume becomes shorter and shorter and reaches a constant value in the 3rd discharge pulse and keeps the same for the following pulses. The dynamics of the 1st discharge pulse show that the plasma bullet appears random in nature. Two photomultiplier tubes are used to distinguish the two potential factors that could result in the stochastic dynamics of the plasma bullet, i.e., stochastic ignition of the plasma and the stochastic propagation velocity. The results show that the stochastic propagation velocity occurs only in the 1st and the 2nd discharge pulses, while the stochastic ignition of the plasma presents until the 100th pulse. The dynamics of the plasma propagation become repeatable after about 100 pulses. Detail analysis shows that the repeatability of plasma bullet is due to the residual electrons density. The residual electron density of 109 cm-3 or higher is needed for repeatable discharges mode.

  8. 大气压空气等离子体羽的振动温度研究%Vibrational Temperature of Plasma Plume in Atmospheric Pressure Air

    Institute of Scientific and Technical Information of China (English)

    李雪辰; 常媛媛; 贾鹏英; 赵欢欢; 鲍文婷

    2013-01-01

    A tri-electrode discharge device was designed in a dielectric barrier discharge configurations to generate a fairly large volume plasma plume in atmospheric pressure air.The discharge characteristics of the plasma plume were investigated by an optical method.The discharge emission from the plasma plume was collected by a photomultiplier tube.It was found that the number of discharge pulse per cycle of the applied voltage increased with increasing the peak value of the applied voltage.The emission spectra of the plasma plume were collected by a spectrometer.The vibrational temperature was calculated by fitting the experimental data to the theoretical one.Results showed that the vibrational temperature of the plasma plume decreases with increasing the Up.Spatially resolved measurement of the vibrational temperature was also conducted on the plasma plume with the same method.Results showed that the vibrational temperature increases firstly and then decreases with increasing distance from the nozzle.The vibrational temperature reachs its maximum when the distance is 5.4 mm from the nozzle.These experimental phenomena were analyzed qualitatively based on the discharge theory.These results have important significance for the industrial applications of the plasma plume in atmospheric pressure air.%利用三电极介质阻挡放电装置,在大气压空气中产生了较大体积的等离子体羽.采用光学方法对该等离子体羽的特性进行了研究.发现随着外加电压峰值增加,每个外加电压周期的放电脉冲个数增加.通过采集等离子体羽的发射光谱,空间分辨地研究了放电等离子体羽的振动温度.结果表明等离子体羽的振动温度随着外加电压峰值的增加而减小;随着远离喷嘴的距离的增加,等离子体振动温度先增加后减小,当距离喷嘴5.4mm时振动温度达到最高值.对上述现象进行了定性分析.研究结果对大气压空气等离子体羽在杀菌消毒等领域的应用具有重要意义.

  9. Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system

    International Nuclear Information System (INIS)

    Highlights: ► Dimethyl sulfide (DMS) was fully decomposed by two-electrode Ar micro-plasma. ► The reaction of DMS/Ar resulted in forming solid compound and gaseous product. ► The C-, H- and S-containing solid compound was fixed on the quartz inner tube. ► The H2-, CS2-, and H2S-gaseous products were possibly recyclable and trapped. ► The dissociation mechanism and treatment efficiency of DMS were also discussed. - Abstract: A custom-made atmospheric argon micro-plasma system was employed to dissociate dimethyl sulfide (DMS) into a non-foul-smelling species. The proposed system takes the advantages of low energy requirement and non-thermal process with a constant flow rate at ambient condition. In the experiments, the compositions of DMS/argon plasma, the residual gaseous phases, and solid precipitates were respectively characterized using an optical emission spectrometer, various gas-phase analyzers, and X-ray photoemission spectroscopy. For 400 ppm DMS introduced into argon plasma with two pairs of electrodes (90 W), a complete decomposition of DMS was achieved; the DMS became converted into excited species such as C*, C2*, H*, and CH*. When gaseous products were taken away from the treatment area, the excited species tended to recombine and form stable compounds or species, which formed as solid particles and gaseous phases. The solid deposition was likely formed by the agglomeration of C-, H-, and S-containing species that became deposited on the quartz inner tube. For the residual gaseous phases, low-molecular-weight segments mostly recombined into relatively thermodynamic stable species, such as hydrogen, hydrogen sulfide, and carbon disulfide. The dissociation mechanism and treatment efficiency are discussed, and a treatment of converting DMS into H2-, CS2-, and H2S-dominant by-products is proposed.

  10. Measure and exploitation of multisensor and multiwavelength synergy for remote sensing: 2. Application to the retrieval of atmospheric temperature and water vapor from MetOp

    Science.gov (United States)

    Aires, Filipe; Paul, Maxime; Prigent, Catherine; Rommen, BjöRn; Bouvet, Marc

    2011-01-01

    In the companion paper, classical information content (IC) analysis was used to measure the potential synergy between the microwave (MW) and infrared (IR) observations from Atmospheric Microwave Sounding Unit-A, Microwave Humidity Sounder, and Improved Atmospheric Sounding in the Infrared instruments, used to retrieve the atmospheric profiles of temperature and water vapor over ocean, under clear-sky conditions. Some limitations of IC were pointed out that questioned the reliability of this technique for synergy characterization. The goal of this second paper is to develop a methodology to measure realistic potential synergies and to construct retrieval methods able to exploit them. Three retrieval methods are considered: the k nearest neighbors, the linear regression, and the neural networks (NN). These statistical retrieval schemes are tested on an application involving IR and MW synergy. Only clear-sky, near-nadir radiances over ocean are considered. The IR/MW synergy is expected to be stronger in cloudy cases, but it will be shown that it can also be observed in clear situations. The inversion algorithms are calibrated and tested with simulated observations, without any loss of generality, using similar theoretical assumption (same radiative transfer model, observational noise, and a priori information) in order to truly compare the IC and the direct statistical retrieval approaches. Multivariate and nonlinear methods such as the NN approach show that there is a strong potential for synergy. Synergy measurement tools such as the method proposed in this study should be considered in the future for the definition of new missions: The instrument characteristics should be determined not independently, sensor by sensor, but taking into account all the instruments together as a whole observing system.

  11. A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign

    Science.gov (United States)

    Xia, Geng; Zhou, Liming; Freedman, Jeffrey M.; Roy, Somnath Baidya; Harris, Ronald A.; Cervarich, Matthew Charles

    2016-04-01

    Recent studies using satellite observations show that operational wind farms in west-central Texas increase local nighttime land surface temperature (LST) by 0.31-0.70 °C, but no noticeable impact is detected during daytime, and that the diurnal and seasonal variations in the magnitude of this warming are likely determined by those in the magnitude of wind speed. This paper further explores these findings by using the data from a year-long field campaign and nearby radiosonde observations to investigate how thermodynamic profiles and surface-atmosphere exchange processes work in tandem with the presence of wind farms to affect the local climate. Combined with satellite data analyses, we find that wind farm impacts on LST are predominantly determined by the relative ratio of turbulence kinetic energy (TKE) induced by the wind turbines compared to the background TKE. This ratio explains not only the day-night contrast of the wind farm impact and the warming magnitude of nighttime LST over the wind farms, but also most of the seasonal variations in the nighttime LST changes. These results indicate that the diurnal and seasonal variations in the turbine-induced turbulence relative to the background TKE play an essential role in determining those in the magnitude of LST changes over the wind farms. In addition, atmospheric stability determines the sign and strength of the net downward heat transport as well as the magnitude of the background TKE. The study highlights the need for better understanding of atmospheric boundary layer and wind farm interactions, and for better parameterizations of sub-grid scale turbulent mixing in numerical weather prediction and climate models.

  12. Midwestern streamflow, precipitation, and atmospheric vorticity influenced by Pacific sea-surface temperatures and total solar-irradiance variations

    Science.gov (United States)

    Perry, C.A.

    2006-01-01

    A solar effect on streamflow in the Midwestern United States is described and supported in a six-step physical connection between total solar irradiance (TSI), tropical sea-surface temperatures (SSTs), extratropical SSTs, jet-stream vorticity, surface-layer vorticity, precipitation, and streamflow. Variations in the correlations among the individual steps indicate that the solar/hydroclimatic mechanism is complex and has a time element (lag) that may not be constant. Correct phasing, supported by consistent spectral peaks between 0.092 and 0.096 cycles per year in all data sets within the mechanism is strong evidence for its existence. A significant correlation exists between total solar irradiance and the 3-year moving average of annual streamflow for Iowa (R = 0.67) and for the Mississippi River at St Louis, Missouri (R = 0.60), during the period 1950-2000. Published in 2005 by John Wiley & Sons, Ltd.

  13. Study of the corrosion of metallic coatings and alloys containing aluminum in a mixed atmosphere - sulphur, oxygen - at high temperatures

    International Nuclear Information System (INIS)

    The objective of this research thesis is the development of materials for a sulphur experimental loop allowing the thermodynamic properties of such an energy cycle to be checked. As solutions must comply with industrial methods, rare materials are excluded as they are too expensive or difficult to implement. Iron-based materials have been tested but could not have at the same time a good corrosion resistance and high temperature forming and mechanical toughness properties. Therefore, metallic coatings have been chosen, specifically alumina. After having reported a bibliographical study on corrosion by sulphur vapour and by oxygen and by sulphur-oxygen, the author presents the experimental materials and methods. Then, the author reports the study of mixed corrosion (by sulphur and oxygen together) of metallic alloys (ferritic and austeno-ferritic alloys, aluminium and titanium alloys), and of the corrosion of FeAlx coatings, of AlTix alloys

  14. Effect of modified atmosphere and temperature abuse on the growth from spores and cereulide production of Bacillus weihenstephanensis in a cooked chilled meat sausage

    DEFF Research Database (Denmark)

    Thorsen, Line; Budde, Birgitte Bjørn; Koch, Anette Granly; Klingberg, Trine Danø

    2009-01-01

    observed at the earliest within 2 weeks when 20% CO2 was combined with 2% O2 and in 3 weeks when combined with "0"% O2 (the remaining atmosphere wasmade up from N2). Results were validated in a cookedmeat sausage model for two non-emetic and one emetic B. weihenstephanensis strain. The packaging film...... oxygen transfer rates (OTR) were 1.3 and 40 ml/m2/24 h and the atmospheres were 2% O2/20% CO2 and "0"% O2/20% CO2. Oxygen availability had a large impact on the growth from spores in the MAP meat sausage, only the most oxygen restricted condition (OTR of 1.3 ml/m2/24 h and "0"% O2/20 % CO2) inhibited...... temperature abuse for 1.5 h daily at 20 °C during 1 week resulted in increased cell counts and variable cereulide production in the meat sausage. A pre-history at 8 °C for 1 week inMAP with OTR of 1.3 or 40ml/m2/24 h and 2% O2 resulted in cereulide concentrations of 0.816-1.353 µg/gmeat sausage, while a pre...

  15. Effect of ionizing radiation dose, temperature, and atmosphere on the survival of Salmonella typhimurium in sterile, mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    The response to gamma radiation (0 to 3.60 kGy; 100 krad = 1 kGy) of Salmonella typhimurium was tested in otherwise sterile, mechanically deboned chicken meat (MDCM) in the absence of competing microflora. Response was determined at temperatures of -20 to +20 C and when the MDCM was packaged in vacuum or in the presence of air. A central composite response-surface design was used to test the response of the pathogen to the treatments in a single experiment. Predictive equations were developed from the analyses of variances of the resulting data. The accuracy of each predictive equation was tested by further studies of the effects of gamma radiation on S. typhimurium in the presence or absence of air at -20, 0, and +20 C. All data were then analyzed to refine the predictive equations further. Both the original and the refined equations adequately predicted the response of S. typhimurium in MDCM to gamma radiation doses up to 3.60 kGy in the presence of air or in vacuo. Gamma irradiation was significantly more lethal for S. typhimurium in the presence of air and at higher temperatures. The final equations predict a reduction in the number of surviving Salmonella in MDCM irradiated to 1.50 kGy at -20 C of 2.53 logs in air or 2.12 logs if irradiated in vacuum. If the contaminated MDCM were to receive a dose of 3.0 kGy at -20 C in air, the number of Salmonella would be decreased by 4.78 logs, and if irradiated in vacuum, by 4.29 logs

  16. Quantifying the Accuracy of a Quad-Rotor Unmanned Aerial Vehicle as a Platform for Atmospheric Pressure, Temperature and Humidity Measurements near the Surface.

    Science.gov (United States)

    Guest, P. S.

    2014-12-01

    Miniature multi-rotor unmanned aerial vehicles (UAVs) can be used to directly sample the lower atmosphere over land and over the ocean in the vicinity of ships or shorelines. These UAVs are generally inexpensive and easy to operate. The author used the InstantEye quad-rotor UAV, manufactured by Physical Sciences Inc., as a test platform for meteorological measurements. In this case, the atmospheric sensor was the RS-92 radiosonde manufactured by Vaisala Inc. The author will present quantitative results of several experiments performed over land at Camp Roberts, California in which the InstantEye with radiosonde sensors was flown alongside a calibrated meteorological tower, thus allowing the accuracy of the UAV measurements to be quantified. Measurements near the surface were most strongly affected by turbulent fluctuations during sunny, low wind days over a dry surface. The rotor wash (1) provides sensor aeration which counteracts radiation contamination effects (2) creates a dynamic pressure effect in lowest 1.5 m and (3) moves air from a different level (1 - 2 m). Horizontal motion of the UAV had little effect on the measurements. The accuracy of the mean temperature measurements in the surface layer during unstable conditions was estimated to be 0.2 to 0.3 C, if samples are taken for at least one minute, except in the lowest 1.5 m above the surface, where rotor wash effects brought hot surface air to the sensors, degrading the accuracy. Above the turbulent surface layer, the temperature measurements approached a 0.1 C accuracy.

  17. Temperature and modified atmosphere affect the quality of okra Temperatura e atmosfera modificada influenciam a qualidade do quiabo

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Finger

    2008-01-01

    Full Text Available Little information is available on the influence of temperature on plastic films wrapped okra (Albelmoschus esculentus for their postharvested conservation. This works investigated the influence of the temperature and PVC film on the development of chilling injury and storability from one of the most popular Brazilian cultivar of okra cv. Amarelinho in fruits stored at 5, 10ºC and at 25ºC. Fruits were harvest at commercial maturity stage with length ranging from 8 to 12 cm, and immediately wrapped in PVC over a polystyrene tray and than stored until visible deterioration or wilting symptoms. Lowering the temperature of storage room from 25 to 10 or 5ºC decreased the weight loss in both PVC wrapped and control fruits, with a lower rate at 5ºC. By reducing the temperature to 5 or 10ºC and wrapping the fruits in PVC film, the relative water content of the fruit pericarp was maintained throughout the storage, while at 25ºC the high weight loss was associated with significant reduction of the water content. The development of chilling symptoms was delayed by the presence of PVC film in fruits stored at 5ºC. However, at 10ºC symptoms of pitting were not developed in PVC wrapped or control fruits up to tenth day of storage. The rate of chlorophyll degradation was diminished by reducing the temperature and by wrapping the fruits with PVC film. The appearance of severe chilling symptoms at 5ºC was associated to less chlorophyll in the fruit pericarp on the control as compared to their content in the PVC wrapped fruits.Para o armazenamento do quiabo (Albelmoschus esculentus há poucas informações disponíveis sobre a influência da temperatura e filmes plásticos na conservação pós-colheita desta hortaliça. Para investigar a influência da temperatura e do filme de PVC na qualidade e desenvolvimento de sintomas de injúria por frio de uma das mais populares cultivares brasileira de quiabo cv. Amarelinho, os frutos foram armazenados a 5, 10

  18. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  19. Absorption of nitric oxide from simulated flue gas using different absorbents at room temperature and atmospheric pressure

    International Nuclear Information System (INIS)

    Effective removal of nitrogen oxides (NOx) from flue gas allows more fossil fuels to be produced and utilized with less negative impact on the environment. It would be more cost-effective, however, if nitric oxide (NO) is oxidized to soluble nitrate and nitrite and then removed from the air by existing desulfurization wet scrubbers. This paper compares the effectiveness of three different oxidants for this purpose, namely, ethylenediaminetetraacetic acid; iron (2+) (Fe(II)–EDTA), hexamminecobalt(II) chloride ([Co(NH3)6]Cl2), and hydrogen peroxide (H2O2). Experimental results using column reactors showed that [Co(NH3)6]Cl2 was more effective over the same period of time. The best initial NO removal efficiency of about 96.45% was measured at the inlet flow rate of 500 ml/min; the temperature of approximately 19 °C; the pH value of around 10.5; and the concentrations of [Co(NH3)6]Cl2 , NO and O2 of 0.06 mol/L, 500 ppm and 5.0%, respectively.

  20. Synthesis of carbon nitride powder by selective etching of TiC0.3N0.7 in chlorine-containing atmosphere at moderate temperature

    International Nuclear Information System (INIS)

    We reported the synthesis of carbon nitride powder by extracting titanium from single inorganic precursor TiC0.3N0.7 in chlorine-containing atmosphere at ambient pressure and temperature not exceeding 500 deg. C. The TiC0.3N0.7 crystalline structure acted as a template, supplying active carbon and nitrogen atoms for carbon nitride when it was destroyed in chlorination. X-ray diffraction data showed that the obtained carbon nitride powders were amorphous, which was in good agreement with transmission electron microscope analysis. The composition and structure of carbon nitride powders were analyzed by employing Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Results indicated that disorder structure was most likely for the carbon nitride powders and the N content depended greatly on the chlorination temperature. Thermal analysis in flowing N2 indicated that the mass loss started from 300 deg. C and the complete decomposition occurred at around 650 deg. C, confirming the low thermal stability of the carbon nitride material.

  1. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O2, operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O3 in the core of the plasma is mainly caused by an enhanced destruction of O3 due to a large atomic oxygen density. (paper)

  2. Nonisothermal Pluto atmosphere models

    International Nuclear Information System (INIS)

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs

  3. A novel method to determine the electron temperature and density from the absolute intensity of line and continuum emission: application to atmospheric microwave induced Ar plasmas

    International Nuclear Information System (INIS)

    An absolute intensity measurement (AIM) technique is presented that combines the absolute measurements of the line and the continuum emitted by strongly ionizing argon plasmas. AIM is an iterative combination of the absolute line intensity-collisional radiative model (ALI-CRM) and the absolute continuum intensity (ACI) method. The basis of ALI-CRM is that the excitation temperature T13 determined by the method of ALI is transformed into the electron temperature Te using a CRM. This gives Te as a weak function of electron density ne. The ACI method is based on the absolute value of the continuum radiation and determines the electron density in a way that depends on Te. The iterative combination gives ne and Te. As a case study the AIM method is applied to plasmas created by torche a injection axiale (TIA) at atmospheric pressure and fixed frequency at 2.45 GHz. The standard operating settings are a gas flow of 1 slm and a power of 800 W; the measurements have been performed at a position of 1 mm above the nozzle. With AIM we found an electron temperature of 1.2 eV and electron density values around 1021 m-3. There is not much dependence of these values on the plasma control parameters (power and gas flow). From the error analysis we can conclude that the determination of Te is within 7% and thus rather accurate but comparison with other studies shows strong deviations. The ne determination comes with an error of 40% but is in reasonable agreement with other experimental results.

  4. Are microbial N transformation rates in a permanent grassland soil after 17 years of elevated atmospheric CO2 sensitive to soil temperature?

    Science.gov (United States)

    Moser, Gerald; Gorenflo, André; Brenzinger, Kristof; Clough, Tim; Braker, Gesche; Müller, Christoph

    2016-04-01

    Long-term observations (17 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed that the carbon fertilization caused significant changes in the ecosystem nitrogen cycle. These changes are responsible for a doubling of annual N2O emissions under elevated atmospheric CO2 (eCO2) caused by increased emissions during the plant growing season. The goal of this lab study was to understand how soil temperature influences the long-term effects of eCO2 and plant carbon input on microbial N transformations in the Giessen FACE. Therefore, a pulse labelling study with 15N tracing of 15NH4+ and 15NO3‑ was carried out with incubated soil samples from elevated and ambient CO2 FACE rings in climate chambers at two different temperatures (10°C and 19°C), while water filled pore space of the samples was adjusted to the same level. The various N pools in the soil (NH4+, NO3‑, NO2‑, soil organic matter), N2O emissions and simultaneous gross N transformation rates were quantified. The quantification of the gross N transformations are based on the turnover of 15NH4+, 15NO3‑, 15NO2‑ and shall illuminate the interaction between carbon fertilization, temperature and changes in nitrogen cycle in this grassland soil. While the soil respiration after labelling was significantly increased at 19°C compared to 10°C, N2O emissions showed no significant differences. There were also no significant differences of N2O emissions between soil samples from control and elevated CO2 rings within each temperature level. As the soil temperature (within the range of 10-19°C) had no significant effects on N transformations responsible for the observed doubling of N2O emissions under eCO2, it seems most likely that other factors like direct carbon input by plants and/or soil moisture differences between ambient and elevated rings in the field are responsible for the observed increase in N2O emissions under eCO2.

  5. Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China

    Science.gov (United States)

    Kong, Shaofei; Ji, Yaqin; Liu, Lingling; Chen, Li; Zhao, Xueyan; Wang, Jiajun; Bai, Zhipeng; Sun, Zengrong

    2013-08-01

    Phthalic acid esters (PAEs) are produced in large amounts throughout the world and are excessively used in various industries, which have posed a serious threat to human health and the environment. An investigation of six major PAEs congeners in atmospheric PM10 and PM2.5 was synchronously conducted at seven sites belonging to different functional zones in spring, summer and winter in Tianjin, China in 2010. Results showed that the average concentrations of DMP, DEP, DBP, BBP, DEHP and DOP in PM10 were 0.88, 0.73, 12.90, 0.15, 98.29 and 0.83 ng m-3, respectively, and in PM2.5, they were 0.54, 0.30, 8.72, 0.08, 75.68 and 0.33 ng m-3, respectively. DEHP and DBP were the predominant species. The industrial site exhibited highest PAEs values as 135.9 ± 202.8 ng m-3. In winter, the detected percentages for DOP were low. The other five PAEs concentrations were higher in winter than those in spring and summer, which may be related to the influence of emission sources, meteorological parameters and the chemical-physical characteristic of themselves. Except for DOP, other PAEs were negatively correlated with ambient temperature and the relationships were the best fitted as exponential forms. Significant positive correlations were found for PAEs in PM2.5 and PM10, indicating common sources. The PM2.5/PM10 ratios (0.53-0.70) for the six PAEs concentrations suggested that they were preferentially concentrated in finer particles. Principal component analysis indicated the emission from cosmetics and personal care products, plasticizers and sewage and industrial wastewater may be important sources for PAEs in atmospheric particulate matter in Tianjin.

  6. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes, time series, diel variations, and temperature dependencies

    Directory of Open Access Journals (Sweden)

    Y. Gómez-González

    2011-08-01

    Full Text Available Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL" project. The objectives of this study were to determine sources, source processes, time series, and diel variations of the organic species, and to explore the relationships between their concentrations and those of trace gases (O3, NO2, SO2, and CO2 or meteorological parameters (temperature, relative humidity, wind speed, and rain fall. The measured organic species included (i low-molecular weight (MW dicarboxylic acids (LMW DCAs, (ii methanesulfonate (MSA, and (iii terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv organosulfates related to secondary organic aerosol (SOA from the oxidation of isoprene and α-pinene. The measurements of MSA, the LMW DCAs and selected inorganic species were done with ion chromatography (IC, while those of the terpenoic acids and organosulfates were performed using liquid chromatography with negative ion electrospray ionisation mass spectrometry [LC/(−ESI-MS]. The organic tracers explained, on average, 5.3 % of the organic carbon (OC, of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, and 1.2 % to organosulfates and terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their photochemical origin, except the MW 295 α-pinene-related nitrooxy organosulfates and the terpenoic acids,

  7. Pluto's atmosphere near perihelion

    International Nuclear Information System (INIS)

    A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir

  8. Photochemistry in planetary atmospheres

    Science.gov (United States)

    Levine, J. S.; Graedel, T. E.

    1981-01-01

    Widely varying paths of evolutionary history, atmospheric processes, solar fluxes, and temperatures have produced vastly different planetary atmospheres. The similarities and differences between the earth atmosphere and those of the terrestrial planets (Venus and Mars) and of the Jovian planets are discussed in detail; consideration is also given to the photochemistry of Saturn, Uranus, Pluto, Neptune, Titan, and Triton. Changes in the earth's ancient atmosphere are described, and problems of interest in the earth's present troposphere are discussed, including the down wind effect, plume interactions, aerosol nucleation and growth, acid rain, and the fate of terpenes. Temperature fluctuations in the four principal layers of the earth's atmosphere, predicted decreases in the ozone concentration as a function of time, and spectra of particles in the earth's upper atmosphere are also presented. Finally, the vertical structure of the Venus cloud system and the thermal structure of the Jovian planets are shown graphically.

  9. Low temperature rate coefficients for the reactions of 1CH2 with reactive and non-reactive species, and the implications for Titan's atmosphere

    Science.gov (United States)

    Douglas, Kevin; Slater, Eloise; Blitz, Mark; Plane, John; Heard, Dwayne; Seakins, Paul

    2016-04-01

    The Cassini-Huygens mission to Titan revealed unexpectedly large amounts of benzene in the troposphere, and confirmed the absence of a global ethane ocean as predicted by photochemical models of methane conversion over the lifetime of the solar system. An important chemical intermediate in both the production and loss of benzene and ethane is the first electronically excited state of methylene, 1CH2. For example, at room temperature an important reaction of 1CH2 is with acetylene (R1a), leading to the formation of propargyl (C3H3)[1]. The subsequent recombination of propargyl radicals is the major suggested route to benzene in Titan's atmosphere (R2)[2]. In addition to reaction of 1CH2 leading to products, there is also competition between inelastic electronic relaxation to form the ground triplet state 3CH2 (R1b). This ground state 3CH2 has a markedly different reactivity to the singlet, reacting primarily with methyl radicals (CH3) to form ethene (R3). As methyl radical recombination is the primary route to ethane (R4)[3], reactions of 1CH2 will also heavily influence the ethane budget on Titan. 1CH2 + C2H2 → C3H3 + H (R1a) 1CH2 + C2H2 → 3CH2 + C2H2 (R1b) C3H3 + C3H3 → C6H6 (R2) 3CH2 + CH3 → C2H4 + H (R3) CH3 + CH3 (+ M) → C2H6 (R4) Thus this competition between chemical reaction and electronic relaxation in the reactions of 1CH2 with H2, CH4, C2H4, and C2H6 will play an important role in determining the benzene and ethane budgets on Titan. Despite this there are no measurements of any rate constants for 1CH2 at temperatures relevant to Titan's atmosphere (60 - 170 K). Using a pulsed Laval nozzle apparatus coupled with pulsed laser photolysis laser-induced fluorescence, the low temperature reaction kinetics for the removal of 1CH2 with nitrogen, hydrogen, methane, ethane, ethene, acetylene, and oxygen, have been studied. The results revealed an increase in the removal rate of 1CH2 at temperatures below 200 K, with a sharp increase of around a factor of

  10. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate

    Science.gov (United States)

    Sedehi, Nahzaneen; Takano, Hiromi; Blasic, Vanessa A.; Sullivan, Kristin A.; De Haan, David O.

    2013-10-01

    Reactions of glyoxal (Glx) and methylglyoxal (MG) with primary amines and ammonium salts may produce brown carbon and N-containing oligomers in aqueous aerosol. 1H NMR monitoring of reactant losses and product appearance in bulk aqueous reactions were used to derive rate constants and quantify competing reaction pathways as a function of pH and temperature. Glx + ammonium sulfate (AS) and amine reactions generate products containing C-N bonds, with rates depending directly on pH: rate = (70 ± 60) M-1 s-1fAld [Glx]totfAm [Am]tot, where fAld is the fraction of aldehyde with a dehydrated aldehyde functional group, and fAm is the fraction of amine or ammonia that is deprotonated at a given pH. MG + amine reactions generate mostly aldol condensation products and exhibit less pH dependence: rate = 10[(0.36 ± 0.06) × pH - (3.6 ± 0.3)] M-1 s-1fAld [MG]tot [Am]tot. Aldehyde + AS reactions are less temperature-dependent (Ea = 18 ± 8 kJ mol-1) than corresponding amine reactions (Ea = 50 ± 11 kJ mol-1). Using aerosol concentrations of [OH] = 10-12 M, [amine]tot = [AS] = 0.1 M, fGlx = 0.046 and fMG = 0.09, we estimate that OH radical reactions are normally the major aerosol-phase sink for both dicarbonyl compounds. However, reactions with AS and amines together can account for up to 12 and 45% of daytime aerosol-phase glyoxal and methylglyoxal reactivity, respectively, in marine aerosol at pH 5.5. Reactions with AS and amines become less important in acidic or non-marine aerosol, but may still be significant atmospheric sources of brown carbon, imidazoles, and nitrogen-containing oligomers.

  11. The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010-12 La Niña event

    Science.gov (United States)

    Gao, Chuan; Zhang, Rong-Hua

    2016-04-01

    An intermediate coupled model (ICM) yields a successful real-time prediction of the sea surface temperature (SST) evolution in the tropical Pacific during the 2010-12 La Niña event, whereas many other coupled models fail. It was previously identified that the thermocline effect on the SST (including vertical advection and mixing), as represented by water temperature entrained into the mixed layer (Te) and its relationship with the thermocline fluctuation, is an important factor that affects the second-year cooling in mid-late 2011. Because atmospheric wind forcing is also important to ENSO processes, its role is investigated in this study within the context of real-time prediction of the 2010-12 La Niña event using the ICM in which wind stress anomalies are calculated using an empirical model as a response to SST anomalies. An easterly wind anomaly is observed to persist over the western-central Pacific during 2010-11, which acts to sustain a horse shoe-like Te pattern connecting large negative subsurface thermal anomalies in the central-eastern regions off and on the equator. Sensitivity experiments are conducted using the ICM to demonstrate how its SST predictions are directly affected by the intensity of wind forcing. The second-year cooling in 2011 is not predicted to occur in the ICM if the easterly wind anomaly intensity is weakly represented below certain levels; instead, a surface warming can emerge in 2011, with weak SST variability. The results of the current study indicate that the intensity of interannual wind forcing is equally important to SST evolution during 2010-11 compared with that of the thermocline effect. To correctly predict the observed La Niña conditions in the fall of 2011, the ICM needs to adequately represent the intensity of both the wind forcing and the thermocline effects.

  12. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric

    OpenAIRE

    Jacquemin, J.; Costa Gomes, M.F.; Husson, P.; Majer, V.

    2006-01-01

    Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3- methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the oth...

  13. Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas

    International Nuclear Information System (INIS)

    This study focuses on the generation and loss of reactive oxygen species (ROS) in low-temperature atmospheric-pressure RF (13.56 MHz) He + O2 + H2O plasmas, which are of interest for many biomedical applications. These plasmas create cocktails of ROS containing ozone, singlet oxygen, atomic oxygen, hydroxyl radicals, hydrogen peroxide and hydroperoxyl radicals, i.e. ROS of great significance as recognized by the free-radical biology community. By means of one-dimensional fluid simulations (61 species, 878 reactions), the key ROS and their generation and loss mechanisms are identified as a function of the oxygen and water content in the feed gas. Identification of the main chemical pathways can guide the optimization of He + O2 + H2O plasmas for the production of particular ROS. It is found that for a given oxygen concentration, the presence of water in the feed gas decreases the net production of oxygen-derived ROS, while for a given water concentration, the presence of oxygen enhances the net production of water-derived ROS. Although most ROS can be generated in a wide range of oxygen and water admixtures, the chemical pathways leading to their generation change significantly as a function of the feed gas composition. Therefore, care must be taken when selecting reduced chemical sets to study these plasmas. (fast track communication)

  14. Reconstructing sea surface temperature, sea surface salinity and partial pressure of carbon dioxide in atmosphere in the Okinawa Trough during the Holocene and their paleoclimatic implications

    Institute of Scientific and Technical Information of China (English)

    MENGXianwei; LIUYanguang; LlUZhenxia; DUDewen; HUANGQiyu; Y.Saito

    2003-01-01

    The sediment core DGKS9603 collected from the Okinawa Trough was used as research target. By use of unsaturated index U37k of long-chain alkenone, δ13C of POC and of planktonic foraminifera (G sacculifer), the evolutions of sea surface temperature and partial pressure of carbon dioxide in the atmosphere during the Holocene were reconstructed in the Okinawa Trough. And in combination of δ18O of planktonic foraminifera, the relative difference of sea surface salinity during the Holocene was also reconstructed.Consequently, three cooling events (E1-E3) were identified,each of which occurred at 1.7-1.6, 5.1-4.8 and 8.1-7.4kaBP (cal), respectively. Of the three events, E2 and E3 are globally comparable, their occurrence mechanism would be that the main stream of the Kuroshio Current shifted eastward due to the enhanced circulation of the northeastern Pacific Ocean, which was driven in turn by amplified intensity of sunshine and subsequent enhancement of subtropical high pressure; E1 corresponds to the Small Ice-Age Event occurring between 1550 and 1850AD in China. In the Okinawa Trough, E1 might be also related to the eastward shift of main stream of the Kuroshio current driven by powerful Asia winter monsoon.

  15. EO-based lake-ice cover and surface temperature products: Advancing process understanding and modeling capabilities of lake-atmosphere interactions in cold regions

    Science.gov (United States)

    Duguay, C. R.; Kheyrollah Pour, H.; Ochilov, S.

    2011-12-01

    Our ability to determine the energy and water budgets of lakes is critical to modeling high latitude weather and climate. In recent years, the proper representation of lake processes in numerical weather prediction (NWP) and regional climate (RCM) models has become a topic of much interest by the scientific community. With the increased resolution of the NWP models and RCMs, it has now become possible and necessary to improve the representation of lake-atmosphere interactions to better describe the energy exchange between the atmosphere and the lake surface. Among other lake properties, knowledge about lake surface temperature and ice-coverage is critical. These two parameters can either be obtained from observations or through simulations. Although much progress is being made with lake models, as implemented in NWP/RCM models, the assimilation of data on lake temperature and fractional ice coverage has been identified as highly desirable. Spatially and temporally consistent lake ice and lake surface temperature (LST) products are invaluable in this respect. These can be derived from Earth Observation (EO) systems. However, satellite-based products must be compared with existing lake models, as well as validated and further improved as needed, to generate lake ice and LST products for operational use by the modeling community. The European Space Agency (ESA) is supporting the international efforts coordinated by the Climate and Cryosphere (CliC) project of the World Climate Research Programme (WCRP) to exploit the use of EO technology, models and in situ data to improve the characterization of river and lake ice processes and their contribution to the Northern Hydrology system. The ESA-sponsored North Hydrology project aims to develop a portfolio of novel multi-mission geo-information products, maximizing the use of ESA satellite data, to respond to the scientific requirements of the CliC community and the operational requirements of the weather and climate

  16. Roto-Translational Collision-Induced Absorption of CO 2for the Atmosphere of Venus at Frequencies from 0 to 250 cm -1, at Temperatures from 200 to 800 K

    Science.gov (United States)

    Gruszka, Marcin; Borysow, Aleksandra

    1997-09-01

    The collision-induced absorption of gaseous CO2is the primary source of far-infrared opacity of the atmosphere of Venus. At the temperatures and densities of the venusian atmosphere, the absorption is due mainly to binary collisions of CO2molecules. Using a realistic anisotropic intermolecular potential and assuming the absorbing dipole to be due to the electrostatic induction and a quantum overlap, a series of molecular dynamics simulations were performed for the temperature range 200 to 800 K, and the roto-translational collision-induced absorption spectra at frequencies from 0 to 250 cm-1were derived. The absorption coefficient in the submillimeter region, used in constituency retrieval studies, decreases more than 10 times in the temperature range 200 to 800 K. On the other hand, the absorption coefficient at 800 K and at the frequency range above 150 cm-1was found to be almost 10 times higher than at 200 K. Earlier works relied on experimental RT CIA data at a fixed temperature of 300 K. The new, temperature-dependent absorption bands may, when included in the analysis of the atmospheric radiative transfer of the planet, help explain the observed high far-infrared opacity of the lower layers of the atmosphere. To make the results of the simulations readily available for atmospheric abundance and radiative transfer analysis, an analytic model of the roto-translational collision-induced absorption spectral profile, applicable from 200 to 800 K, is being proposed here. The FORTRAN computer code of this newly developed model is available from the authors on request.

  17. Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac

    Science.gov (United States)

    Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen

    2016-01-01

    Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.

  18. Anomalous equivalent potential temperature: an atmospheric feature predicting days with higher risk for fatal outcome in acute ischemic stroke-a preliminary study.

    Science.gov (United States)

    Folyovich, András; Biczó, Dávid; Al-Muhanna, Nadim; Béres-Molnár, Anna K; Fejős, Ádám; Pintér, Ádám; Bereczki, Dániel; Fischer, Antal; Vadasdi, Károly; Pintér, Ferenc

    2015-09-01

    Acute stroke is a life-threatening condition. Fatal outcome is related to risk factors, some of these affected by climatic changes. Forecasting potentially harmful atmospheric processes may therefore be of practical importance in the acute care of stroke patients. We analyzed the history of all patients with acute ischemic stroke (N = 184) confirmed by neuroimaging including those who died (N = 35, 15 males) at our hospital department in the winter months of 2009. Patient data were anonymized, and the human meteorologists were only aware of patients' age, gender, and exact time of death. Of the meteorological parameters, equivalent potential temperature (EPT) has been chosen for analysis. EPT is generally used for forecasting thunderstorms, but in the case of synoptic scale airflow (10(6) m), it is suitable for characterizing the air mass inflowing from different regions. The behavior of measured EPT values was compared to the climatic (30 years) averages. We developed meteorological criteria for anomalous periods of EPT and tested if such periods are associated with higher rate of fatal outcome. The duration of anomalous and non-anomalous periods was nearly equal during the studied 3 months. Stroke onset distributed similarly between anomalous and non-anomalous days; however, of the 35 deaths, 27 occurred during anomalous periods: on average, 0.56 deaths occurred on anomalous days and 0.19 on non-anomalous days. Winter periods meeting the criteria of anomalous EPT may have a significant adverse human-meteorological impact on the outcome in acute ischemic stroke. PMID:26233665

  19. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong

    2016-07-19

    Synergy for low temperature Hg0 oxidation under selective catalytic reduction (SCR) atmosphere was achieved when copper oxides and cerium oxides were combined in a CuO-CeO2/TiO2 (CuCeTi) catalyst. Hg0 oxidation efficiency as high as 99.0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over CuO/TiO2 (CuTi), CeO2/TiO2 (CeTi) and CuCeTi catalysts prepared by sol-gel method. The interactions between copper oxides and cerium oxides in CuCeTi catalyst yielded more surface chemisorbed oxygen, and facilitated the conversion of gas-phase O2 to surface oxygen, which are favorable for Hg0 oxidation. Copper oxides in the combination interacted with NO forming more chemisorbed oxygen for Hg0 oxidation in the absence of gas-phase O2. Cerium oxides in the combination promoted Hg0 oxidation through enhancing the transformations of NO to NO2. In the absence of NO, NH3 exhibited no inhibitive effect on Hg0 oxidation, because enough Lewis acid sites due to the combination of copper oxides and cerium oxides scavenged the competitive adsorption between NH3 and Hg0. In the presence of NO, although NH3 lowered Hg0 oxidation rate through inducing reduction of oxidized mercury, complete recovery of Hg0 oxidation activity over the CuCeTi catalyst was quickly achieved after cutting off NH3. This study revealed the synergistic effect of the combination of copper oxides and cerium oxides on Hg0 oxidation, and explored the involved mechanisms. Such knowledge would help obtaining maximum Hg0 oxidation co-benefit from SCR units in coal-fired power plants.

  20. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tsapakis, Manolis [Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, EL-71409 Heraklion (Greece); Stephanou, Euripides G. [Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, EL-71409 Heraklion (Greece)]. E-mail: stephanou@chemistry.uoc.gr

    2005-01-01

    The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0 {+-} 7.0 ng m{sup -3}), fluoranthene (6.5 {+-} 1.7 ng m{sup -3}), pyrene (6.6 {+-} 2.4 ng m{sup -3}), and chrysene (3.1 {+-} 1.5 ng m{sup -3}). Total concentration (gas + particulate) of PAH ranged from 44.3 to 129.2 ng m{sup -3}, with a mean concentration of 79.3 ng m{sup -3}. Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m{sup -3} with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m{sup -3}, with an average of 25.2 ng m{sup -3}. PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles. - Capsule: Ambient PAH partitioning between gas and particle phases vary between compounds and with environmental conditions.

  1. Atmospheric contamination

    International Nuclear Information System (INIS)

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  2. Qualidade de ameixas 'Laetitia' em função da temperatura e da atmosfera de armazenamento Quality of 'Laetitia' plums as affected by temperature and storage atmosphere

    Directory of Open Access Journals (Sweden)

    Erlani de Oliveira Alves

    2010-12-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da temperatura e de atmosferas de armazenamento sobre a manutenção da qualidade de ameixas 'Laetitia'. Os tratamentos avaliados constituíram-se na combinação de duas temperaturas (-0,5ºC e 0,5ºC, com três atmosferas de armazenamento: armazenamento refrigerado (AR, com 21,0 kPa de O2 + 0,03 kPa de CO2; atmosfera controlada (AC, com 1,0 kPa de O2 + 3,0 kPa de CO2; e AC, com 2,0 kPa de O2 + 5,0 kPa de CO2. Após 60 dias de armazenamento, foram avaliadas: taxas respiratória e de produção de etileno, acidez titulável (AT, firmeza de polpa, atributos de textura, índice de cor vermelha e ângulo 'hue' (hº da casca, e incidência de rachaduras, podridões e degenerescência da polpa. O armazenamento refrigerado a -0,5ºC resultou em menores valores para o índice de cor vermelha, taxa respiratória e de produção de etileno e incidência de frutos rachados. Em ambas as condições de AC, a temperatura de 0,5ºC resultou em menor índice de cor vermelha, cor da epiderme mais verde, maior firmeza de polpa e menor taxa de produção de etileno, tanto na abertura da câmara como após quatro dias em condição ambiente. As condições de AC retardaram o amadurecimento dos frutos e reduziram a incidência de degenerescência de polpa. O armazenamento em AC, com 2,0 kPa de O2 + 5,0 kPa de CO2, a 0,5ºC, proporcionou menor taxa respiratória e menor incidência de podridões na saída da câmara, mas maior AT e força para penetração da polpa, após quatro dias em condição ambiente. No entanto, o armazenamento da ameixa 'Laetitia', nas condições de AC avaliadas, por um período de 60 dias, não reduziu a incidência de degenerescência da polpa.The aim of this work was to evaluate the effect of temperature and storage atmospheres on the quality of 'Laetitia' plums. The treatments were obtained from the combination of two temperatures (-0.5ºC and 0.5ºC with three storage atmospheres: cold

  3. Measurement of the Temperature Dependence of Line Mixing and Pressure Broadening Parameters between 296 and 90 K in the v3 band of 12CH4 and their Influence on Atmospheric Methane Retrievals

    Science.gov (United States)

    Mondelain, Didier; Payan, Sebastien; Deng, Wenping; Camy-Peyret, Claude; Hurtmans, Daniel; Mantz, Arlan W.

    2007-01-01

    We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the v3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperature between 90 K and room temperature. We have investigate the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.

  4. The ignition delay, laminar flame speed and adiabatic temperature characteristics of n-pentane, n-hexane and n-heptane under O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ran [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Wuhan Textile Univ. (China). School of Environment and Urban Construction; Liu, Hao; Zhong, Xiaojiao; Wang, Zijian; Jin, Ziqin; Qiu, Jianrong [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Chen, Yingming [Wuhan Textile Univ. (China). School of Environment and Urban Construction

    2013-07-01

    Oxy-fuel (O{sub 2}/CO{sub 2}) combustion is one of the several promising new technologies which can realize the integrated control of CO{sub 2}, SO{sub 2}, NO{sub X} and other pollutants. However, when fuels are burned in the high CO{sub 2} concentration environment, the combustion characteristics can be very different from conventional air-fired combustion. Such changes imply that the high CO{sub 2} concentration atmosphere has impacts on the combustion processes. In this paper, the ignition time, laminar flame speed and adiabatic temperature property of C{sub 5} {proportional_to} C{sub 7} n-alkane fuels were studied under both ordinary air atmosphere and O{sub 2}/CO{sub 2} atmospheres over a wide range of CO{sub 2} concentration in the combustion systems. A new unified detailed chemical kinetic model was validated and used to simulate the three liquid hydrocarbon fuel's flame characteristics. Based on the verified model, the influences of various parameters (atmosphere, excess oxygen ratio, O{sub 2} concentration, CO{sub 2} concentration, and alkane type) on the C{sub 5} {proportional_to} C{sub 7} n-alkane's flame characteristics were systematically investigated. It can be concluded that high CO{sub 2} concentration atmosphere has negative effect on n-pentane, n-hexane and n-heptane flame's ignition, laminar flame speed and adiabatic temperature. Besides, this work confirms that high CO{sub 2} concentration atmosphere's chemical effects play a pronounced role on the flame characteristics, especially for the ignition time property.

  5. The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH4/CO ratio

    CERN Document Server

    Venot, Olivia; Selsis, Franck; Tessenyi, Marcell; Iro, Nicolas

    2013-01-01

    Current observation techniques are able to probe the atmosphere of some giant exoplanets and get some clues about their atmospheric composition. However, the chemical compositions derived from observations are not fully understood, as for instance in the case of the CH4/CO abundance ratio, which is often inferred different from what has been predicted by chemical models. Recently, the warm Neptune GJ3470b has been discovered and because of its close distance from us and high transit depth, it is a very promising candidate for follow up characterisation of its atmosphere. We study the atmospheric composition of GJ3470b in order to compare with the current observations of this planet, to prepare the future ones, but also as a typical case study to understand the chemical composition of warm (sub-)Neptunes. The metallicity of such atmospheres is totally uncertain, and vary probably to values up to 100x solar. We explore the space of unknown parameters to predict the range of possible atmospheric compositions. Wi...

  6. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon

  7. Carbon dioxide, temperature, salinity, wind speed, air temperature, and atmospheric pressure collected via surface underway survey from R/V Aegaeo in Aegean Sea from February 8, 2006 to February 13, 2006 (NODC Accession 0084543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0084543 includes chemical, meteorological, and physical underway data collected aboard the AEGAEO in Aegean Sea, and Mediterranean Sea from 8...

  8. Comment on "The phase relation between atmospheric carbon dioxide and global temperature" Humlum et al. [Glob. Planet. Change 100: 51-69.]: Isotopes ignored

    Science.gov (United States)

    Kern, Zoltán; Leuenberger, Markus

    2013-10-01

    A recent study relying purely on statistical analysis of relatively short time series suggested substantial re-thinking of the traditional view about causality explaining the detected rising trend of atmospheric CO2 (atmCO2) concentrations. If these results are well-justified then they should surely compel a fundamental scientific shift in paradigms regarding both atmospheric greenhouse warming mechanism and global carbon cycle. However, the presented work suffers from serious logical deficiencies such as, 1) what could be the sink for fossil fuel CO2 emissions, if neither the atmosphere nor the ocean - as suggested by the authors - plays a role? 2) What is the alternative explanation for ocean acidification if the ocean is a net source of CO2 to the atmosphere? Probably the most provocative point of the commented study is that anthropogenic emissions have little influence on atmCO2 concentrations. The authors have obviously ignored the reconstructed and directly measured carbon isotopic trends of atmCO2 (both δ13C, and radiocarbon dilution) and the declining O2/N2 ratio, although these parameters provide solid evidence that fossil fuel combustion is the major source of atmCO2 increase throughout the Industrial Era.

  9. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  10. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric

    International Nuclear Information System (INIS)

    Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the other five gases that have mole fraction solubilities of the order of 10-4. Hydrogen is the less soluble of the gaseous solutes studied. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations is of 1%

  11. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  12. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  13. Effects of 1-Methylcyclopropene and Modified Atmosphere Packaging on the Antioxidant Capacity in Pepper “Kulai” during Low-Temperature Storage

    OpenAIRE

    Chung Keat Tan; Zainon Mohd Ali; Ismanizan Ismail; Zamri Zainal

    2012-01-01

    The objective of the present study was to simultaneously evaluate the effect of a postharvest treatment on the pepper's antioxidant content and its ability to retain its economical value during the postharvest period. The fruits were pretreated by modified atmosphere packaging (MAP) with or without treatment with 1-methylcyclopropene (1-MCP) before cold storage at 10°C. Changes in the levels of non-enzymatic antioxidants, including the total phenolic, ascorbic acid levels and the total glutat...

  14. Survival of lactic acid and chlorine dioxide treated Campylobacter jejuni under suboptimal conditions of pH, temperature and modified atmosphere

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Nielsen, Dennis Sandris;

    2010-01-01

    Campylobacter jejuni cells treated with lactic acid (LA, 3% lactic acid, pH 4.0, 2 min) or chlorine dioxide (ClO(2), 20 ppm, 2 min) were inoculated in Bolton broth (pH 6.0) and incubated under 80% O(2)/20% N(2), 80% CO(2)/20% N(2), air or micro-aerophilic (10% CO(2)/85% N(2)/5% O(2)) atmosphere, at 4 degrees C...

  15. Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0

    OpenAIRE

    Meinshausen, M.; RAPER S.c.b.; Wigley, T. M. L.

    2008-01-01

    Current scientific knowledge on the future response of the climate system to human-induced perturbations is comprehensively captured by various model intercomparison efforts. In the preparation of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), intercomparisons were organized for atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models, named "CMIP3" and "C4MIP", respectively. Despite their tremendous value fo...

  16. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    International Nuclear Information System (INIS)

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique

  17. High temperature corrosion of iron-base and nickel-base alloys for hydrogen production apparatus by thermochemical method in H2O+SO3 atmosphere

    International Nuclear Information System (INIS)

    Corrosion tests for ten iron-base and nickel-base alloys at 850degC for 1000h in H2O + SO3 atmosphere were carried out to obtain data for selection of candidate container materials in the thermochemical process which produces hydrogen from water by use of iodine and sulfur as circulating materials. The following results were obtained: (1) Oxidation, spallation of corrosion film, uniform corrosion and grain boundary penetration composed of internal oxidation and sulfuration occur in this atmosphere and the corrosion proceeds by grain boundary penetration. (2) SUS304, SUS316 and Hastelloy C276 are inferior in corrosion resistance and SUS329J4L is superior among ten alloys used in this experiment. Alloys such as Alloy 800H and Hastelloy XR show intermediate corrosion resistance. (3) Oxide films of alloys containing iron and chromium are mostly composed of outer iron-oxide and inner chromium-oxide. Sulfur concentrates at scale/metal interfaces and grain boundary penetration portions, and sulfides form. (4) Corrosion in this atmosphere could be expressed using the parabolic law between the grain boundary penetration depth and time. It is considered that causes of the apparently observed parabolic law were a high concentration of SO3 and change of the gas composition caused by catalytic action of the corrosion film formed with the progress of corrosion. (author)

  18. High-temperature brazing of X5CrNi18 10 and NiCr20TiAl using the atmospherically plasma-sprayed L-Ni2 filler metal

    International Nuclear Information System (INIS)

    The hybrid-technological combination of the atmospheric plasma spraying for the application of a high-temperature filler metal followed by a brazing process was analyzed in terms of structure and mechanical properties of X5CrNi18 10 and NiCr20TiAl brazing joints. The thickness of the filler metal layer was minimized at <50μm by optimization of the atmospheric plasma spraying process. The brazing seam is hence partly free from brittle phases and yields a increased ultimate tensile strength of brazed and heat-treated joints at different temperatures (room temperature, 500degC and 700degC). Additional information concerning the mechanical properties of the brazing joints was derived from the results of the fractographic examinations of the fracture surfaces and from the characteristic strength values of the long-period creep tests. It was also attempted to apply the results of inductively brazed, cylindrical samples to complex (overlapping joints) and large-surface components produced under practical conditions in the vacuum furnace. (orig.)

  19. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  20. Photoacoustic study of the influence of the cooling temperature on the CO2 emission rate by Carica papaya L. in modified atmosphere

    Science.gov (United States)

    Schramm, D. U.; Sthel, M. S.; da Silva, M. G.; Carneiro, L. O.; Silva, H. R. F.; Martins, M. L. L.; Resende, E. D.; Vitorazi, L.; Vargas, H.

    2005-06-01

    The monitoring of trace gas emitted by papaya fruits and assessments of its mass loss can contribute to improve the conditions for their storage and transport. The C02 emission rate by the papaya fruits, monitored by a commercial infrared-based gas analyzer, was influenced by the temperature and storage time. The fruits stored at temperature of 13 °C accumulated more CO2 inside the PEBD bags than those fruits stored at 6 °C. The loss of mass of the fruits progressively increased with storage time for both temperatures until the saturation of the moisture inside the PEBD bag, been more pronounced at 13 ºC.