WorldWideScience

Sample records for atmospheric temperature profile

  1. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  2. Profile vertical of temperature in an atmosphere semi-gray with a layer of clouds

    International Nuclear Information System (INIS)

    Pelkowski, Joaquin; Anduckia Avila, Juan Carlos

    2000-01-01

    We extend earlier models of planetary layers in radioactive equilibrium by including scattering within a homogeneous cloud layer in a single direction. The atmospheric layers above and below the cloud layer are taken to be in radioactive equilibrium, whose temperature profiles may be calculated. Though the resulting profile, being discontinuous, is unrealistic, the model adds to the effects of the earlier models a cloud albedo, resulting from the scattering of short-wave radiation

  3. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  4. Stable methods for ill-posed problems and application to reconstruction of atmospheric temperature profile

    International Nuclear Information System (INIS)

    Son, H.H.; Luong, P.T.; Loan, N.T.

    1990-04-01

    The problems of Remote Sensing (passive or active) are investigated on the base of main principle which consists in interpretation of radiometric electromagnetic measurements in such spectral interval where the radiation is sensitive to interested physical property of medium. Those problems such as an analysis of composition and structure of atmosphere using the records of scattered radiation, cloud identification, investigation of thermodynamic state and composition of system, reconstructing the atmospheric temperature profile on the base of data processing of infrared radiation emitted by system Earth-Atmosphere... belong to class of inverse problems of mathematical physics which are often incorrect. Int his paper a new class of regularized solution corresponding to general formulated RATP-problem is considered. (author). 14 refs, 3 figs, 3 tabs

  5. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  6. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2009-01-01

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large range of allowed parameter space. In order to run such a large number of models, we have developed a parametric pressure-temperature (P-T) profile coupled with line-by-line radiative transfer, hydrostatic equilibrium, and energy balance, along with prescriptions for non-equilibrium molecular composition and energy redistribution. The major difference from traditional 1D radiative transfer models is the parametric P-T profile, which essentially means adopting energy balance only at the top of the atmosphere and not in each layer. We see the parametric P-T model as a parallel approach to the traditional exoplanet atmosphere models that rely on several free parameters to encompass unknown absorbers and energy redistribution. The parametric P-T profile captures the basic physical features of temperature structures in planetary atmospheres (including temperature inversions), and fits a wide range of published P-T profiles, including those of solar system planets. We apply our temperature and abundance retrieval method to the atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have the best Spitzer and Hubble Space Telescope data available. For HD 189733b, we find efficient day-night redistribution of energy in the atmosphere, and molecular abundance constraints confirming the presence of H 2 O, CO, CH 4 , and CO 2 . For HD 209458b, we confirm and constrain the dayside thermal inversion in an average 1D temperature profile. We also report independent detections of H 2 O, CO, CH 4 , and CO 2 on the dayside of HD 209458b, based on six-channel Spitzer photometry. We report constraints for HD 189733b due to individual data sets separately; a few key observations are variable in different data sets at similar wavelengths. Moreover, a

  7. Developing a Data Record of Lower Troposphere Temperature Profiles for Diurnal Land-Atmosphere Coupling Investigations

    Science.gov (United States)

    Lin, Z.; Li, D.

    2017-12-01

    The lower troposphere, including the planetary boundary layer, is strongly influenced by the land surface at diurnal scales. However, investigations of diurnal land-atmosphere coupling are significantly hindered by the lack of profile measurements that resolve the diurnal cycle. This study aims to bridge this gap by developing a decade-long (from 2007 to 2016) data record of diurnal temperature profiles in the lower troposphere (from the surface to about 4 km above the surface), which is based on the Aircrafts Communications Addressing and Reporting System (ACARS) meteorological observations. We first identify the number of profiles within an hour for each airport over the CONUS. At each airport, only data that passed at least level-1 quality check are retained. 40 airports out of 275 are then selected, which have data for more than 12 hours per day. These selected airports are mainly located along the east and west coasts, as expected. Because the data are recorded at irregular heights, we resample each profile in the lowest 4 km or so to pre-defined vertical coordinates. These temperature profiles are further bias-corrected by comparing to collocated radiosonde observations. This consistent data record of diurnal temperature profiles in the lower troposphere can be also used for regional climatology research, short-term weather forecasts, and numerical model evaluation.

  8. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  9. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  10. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  11. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  12. The Microwave Temperature Profiler (PERF)

    Science.gov (United States)

    Lim, Boon; Mahoney, Michael; Haggerty, Julie; Denning, Richard

    2013-01-01

    The JPL developed Microwave Temperature Profiler (MTP) has recently participated in GloPac, HIPPO (I to V) and TORERO, and the ongoing ATTREX campaigns. The MTP is now capable of supporting the NASA Global Hawk and a new canister version supports the NCAR G-V. The primary product from the MTP is remote measurements of the atmospheric temperature at, above and below the flight path, providing for the vertical state of the atmosphere. The NCAR-MTP has demonstrated unprecedented instrument performance and calibration with plus or minus 0.2 degrees Kelvin flight level temperature error. Derived products include curtain plots, isentropes, lapse rate, cold point height and tropopause height.

  13. Assessment of the Quality of the Version 1.07 Temperature-Versus-Pressure Profiles of the Middle Atmosphere from TIMED/SABER

    Science.gov (United States)

    Remsberg, E. E.; Marshall, B. T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G. S.; Martin-Torres, J.; Mlynczak, M. G.; Russell, J. M., III; Smith, A. K.; Zhao, Y.; hide

    2008-01-01

    The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1-3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (T(sub k)). The T(sub k) profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER T(sub k) values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.

  14. Temperature structure of the Uranian upper atmosphere

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.

    1979-01-01

    The temperature structure of the upper atmosphere of Uranus at two locations on the planet was determined from observations of the occultation of the star SAO158687 by Uranus on 10 March 1977, carried out at the Kuiper Airborne Observatory. The temperature-pressure relationships obtained from the immersion and emersion data for 7280 A channel show peak-to-peak variations of 45 K for immersion and 35 K for emersion. The mean temperature for both immersion and emersion profiles is about 100 K, which shows that Uranus has a temperature inversion between 0.001 mbar and the 100 mbar level probed by IR measurements. Both profiles show wavelike temperature variations, which may be due to dynamical or photochemical processes.

  15. Venus atmosphere profile from a maximum entropy principle

    Directory of Open Access Journals (Sweden)

    L. N. Epele

    2007-10-01

    Full Text Available The variational method with constraints recently developed by Verkley and Gerkema to describe maximum-entropy atmospheric profiles is generalized to ideal gases but with temperature-dependent specific heats. In so doing, an extended and non standard potential temperature is introduced that is well suited for tackling the problem under consideration. This new formalism is successfully applied to the atmosphere of Venus. Three well defined regions emerge in this atmosphere up to a height of 100 km from the surface: the lowest one up to about 35 km is adiabatic, a transition layer located at the height of the cloud deck and finally a third region which is practically isothermal.

  16. Temperature profiles by ground-based remote sensing and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A [ISAC-CNR, Via del Fosso del Cavaliere, 100, 00133 Roma (Italy); Gariazzo, C; Pelliccioni, A; Amicarelli, A [ISPESL Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1, 00040 Monteporzio Catone (RM) (Italy)], E-mail: s.argentini@isac.cnr.it

    2008-05-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere.

  17. Temperature profiles by ground-based remote sensing and in situ measurements

    International Nuclear Information System (INIS)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A; Gariazzo, C; Pelliccioni, A; Amicarelli, A

    2008-01-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere

  18. Temperature profile and other data collected using microstructure profiler (JMSP) from the HAKUHO-MARU as part of the Coupled Ocean-Atmosphere Response Experiment (COARE), from 01 November 1992 - 30 November 1992 (NODC Accession 9600028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using microstructure profiler (JMSP) from the HAKUHO-MARU in the TOGA Area - Pacific Ocean (30 N to 30 S) from...

  19. Temperature profile data from profiling drifter in the Indian, Southern, and Pacific Ocean (NODC Accession 9700028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using the ALACE (Autonomous LAgrangian Circulation Explorer), which is a profiling drifter in the Indian, Southern, and...

  20. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems

    KAUST Repository

    Rosas, Jorge; Houborg, Rasmus; McCabe, Matthew

    2017-01-01

    The land surface temperature (LST) represents a critical element in efforts to characterize global surface energy and water fluxes, as well as being an essential climate variable in its own right. Current satellite platforms provide a range of spatial and temporal resolution radiance data from which LST can be determined. One of the most complete records of data comes via the Landsat series of satellites, which provide a continuous sequence that extends back to 1982. However, for much of this time, Landsat thermal data were provided through a single broadband thermal channel, making surface temperature retrieval challenging. To fully exploit the valuable time-series of thermal information that is available from these satellites requires efforts to better describe and understand the accuracy of temperature retrievals. Here, we contribute to these efforts by examining the impact of atmospheric correction on the estimation of LST, using atmospheric profiles derived from a range of in-situ, reanalysis, and satellite data. Radiance data from the thermal infrared (TIR) sensor onboard Landsat 8 was converted to LST by using the MODTRAN version 5.2 radiative transfer model, allowing the production of an LST time series based upon 28 Landsat overpasses. LST retrievals were then evaluated against in-situ thermal measurements collected over an arid zone farmland comprising both bare soil and vegetated surface types. Atmospheric profiles derived from AIRS, MOD07, ECMWF, NCEP, and balloon-based radiosonde data were used to drive the MODTRAN simulations. In addition to examining the direct impact of using various profile data on LST retrievals, randomly distributed errors were introduced into a range of forcing variables to better understand retrieval uncertainty. Results indicated differences in LST of up to 1 K for perturbations in emissivity and profile measurements, with the analysis also highlighting the challenges in modeling aerosol optical depth (AOD) over arid lands and

  1. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems

    KAUST Repository

    Rosas, Jorge

    2017-09-26

    The land surface temperature (LST) represents a critical element in efforts to characterize global surface energy and water fluxes, as well as being an essential climate variable in its own right. Current satellite platforms provide a range of spatial and temporal resolution radiance data from which LST can be determined. One of the most complete records of data comes via the Landsat series of satellites, which provide a continuous sequence that extends back to 1982. However, for much of this time, Landsat thermal data were provided through a single broadband thermal channel, making surface temperature retrieval challenging. To fully exploit the valuable time-series of thermal information that is available from these satellites requires efforts to better describe and understand the accuracy of temperature retrievals. Here, we contribute to these efforts by examining the impact of atmospheric correction on the estimation of LST, using atmospheric profiles derived from a range of in-situ, reanalysis, and satellite data. Radiance data from the thermal infrared (TIR) sensor onboard Landsat 8 was converted to LST by using the MODTRAN version 5.2 radiative transfer model, allowing the production of an LST time series based upon 28 Landsat overpasses. LST retrievals were then evaluated against in-situ thermal measurements collected over an arid zone farmland comprising both bare soil and vegetated surface types. Atmospheric profiles derived from AIRS, MOD07, ECMWF, NCEP, and balloon-based radiosonde data were used to drive the MODTRAN simulations. In addition to examining the direct impact of using various profile data on LST retrievals, randomly distributed errors were introduced into a range of forcing variables to better understand retrieval uncertainty. Results indicated differences in LST of up to 1 K for perturbations in emissivity and profile measurements, with the analysis also highlighting the challenges in modeling aerosol optical depth (AOD) over arid lands and

  2. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  3. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    2001-01-01

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  4. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  5. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  6. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  7. Remote measurement of atmospheric temperature profiles in clouds with rotational Raman lidar; Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    2000-07-01

    The development of a lidar receiver for remote measurements of atmospheric temperature profiles with the rotational Raman method is described. By a new receiver concept, this instrument allowed for the first time remote temperature measurements without any perturbation by the presence of clouds up to a backscatter ratio of 45. In addition, high efficiency of the spectral separation of atmospheric backscatter signals leads to improved measurement resolution: the minimum integration time needed for a statistical uncertainty < {+-}1 K at, e.g., 10 km height and 960 m height resolution is only 5 minutes. The measurement range extends to over 45 km altitude. Results of field campaigns obtained with the instrument are presented and discussed. In winter 1997/98, the instrument was transferred with the GKSS Raman lidar to Esrange (67.9 N, 21.1 E) in northern Sweden, where pioneering remote measurements of local temperatures in orographically induced polar stratospheric clouds could be carried out. (orig.)

  8. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations. AERIPROF Value-Added Product Technical Description

    Energy Technology Data Exchange (ETDEWEB)

    Feltz, W. F. [Univ. of Wisconsin, Madison, WI (United States); Howell, H. B. [Univ. of Wisconsin, Madison, WI (United; Knuteson, R. O. [Univ. of Wisconsin, Madison, WI (United States); Comstock, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahon, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Smith, W. L. [NASA Langley Research Center, Hampton, VA (United States); Woolf, H. M. [Univ. of Wisconsin, Madison, WI (United; Sivaraman, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halter, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-04-01

    One of the goals of the Atmospheric Radiation Measurement (ARM) Program is to collect a long-term series of radiative and atmospheric state observations to improve the parameterization of these processes in global climate models. The ARM Program intended to move away from the traditional approach of directly measuring profiles of temperature and moisture using radiosondes, which is expensive in terms of expendables and manpower, and develop methods to retrieve these profiles with ground-based remote sensors. The atmospheric emitted radiance interferometer (AERI), whose radiance data contains information on the vertical distribution of water vapor and temperature, is an integral part of the ARM profiling plan.

  9. Lowest-order average effect of turbulence on atmospheric profiles derived from radio occultation

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Haugstad, B.S.

    1977-01-01

    Turbulence in planetary atmospheres and ionospheres causes changes in angles of refraction of radio waves used in occultation experiments. Atmospheric temperature and pressure profiles, and ionospheric electron concentration profiles, derived from radio occultation measurements of Doppler frequency contain errors due to such angular offsets. The lowest-order average errors are derived from a geometrical-optics treatment of the radio-wave phase advance caused by the addition of uniform turbulence to an initially homogeneous medium. It is concluded that the average profile errors are small and that precise Doppler frequency measurements at two or more wavelengths could be used to help determine characteristics of the turbulence, as well as accuracy limits and possible correction terms for the profiles. However, a more detailed study of both frequency and intensity characteristics in radio and optical occultation measurements of turbulent planetary atmospheres and ionospheres is required to realize the full potential of such measurements

  10. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  11. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  12. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    Science.gov (United States)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  13. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.

  14. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    International Nuclear Information System (INIS)

    Shangguan Ming-Jia; Xia Hai-Yun; Dou Xian-Kang; Wang Chong; Qiu Jia-Wei; Zhang Yun-Peng; Shu Zhi-Feng; Xue Xiang-Hui

    2015-01-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. (paper)

  15. Analysis of atmospheric pressure and temperature effects on cosmic ray measurements

    Science.gov (United States)

    de MendonçA, R. R. S.; Raulin, J.-P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2013-04-01

    In this paper, we analyze atmospheric pressure and temperature effects on the records of the cosmic ray detector CARPET. This detector has monitored secondary cosmic ray intensity since 2006 at Complejo Astronómico El Leoncito (San Juan, Argentina, 31°S, 69°W, 2550 m over sea level) where the geomagnetic rigidity cutoff, Rc, is ~9.8 GV. From the correlation between atmospheric pressure deviations and relative cosmic ray variations, we obtain a barometric coefficient of -0.44 ± 0.01 %/hPa. Once the data are corrected for atmospheric pressure, they are used to analyze temperature effects using four methods. Three methods are based on the surface temperature and the temperature at the altitude of maximum production of secondary cosmic rays. The fourth method, the integral method, takes into account the temperature height profile between 14 and 111 km above Complejo Astronómico El Leoncito. The results obtained from these four methods are compared on different time scales from seasonal time variations to scales related to the solar activity cycle. Our conclusion is that the integral method leads to better results to remove the temperature effect of the cosmic ray intensity observed at ground level.

  16. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  17. Haze heats Pluto's atmosphere yet explains its cold temperature.

    Science.gov (United States)

    Zhang, Xi; Strobel, Darrell F; Imanaka, Hiroshi

    2017-11-15

    Pluto's atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto's thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto's temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto's atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought-a brightness that could be detected by future telescopes.

  18. Stokes profile analysis and vector magnetic fields. III. Extended temperature minima of sunspot umbrae as inferred from Stokes profiles of Mg I 4571 A

    International Nuclear Information System (INIS)

    Lites, B.W.; Skumanich, A.; Rees, D.E.; Murphy, G.A.; Carlsson, M.; Sydney Univ., Australia; Oslo Universitetet, Norway)

    1987-01-01

    Observed Stokes profiles of Mg I 4571 A are analyzed as a diagnostic of the magnetic field and thermal structure at the temperature minimum of sunspot umbrae. Multilevel non-LTE transfer calculations of the Mg I-II-III excitation and ionization balance in model umbral atmospheres show: (1) Mg I to be far less ionized in sunspot umbrae than in the quiet sun, leading to greatly enhanced opacity in 4571 A, and (2) LTE excitation of 4571 A. Existing umbral models predict emission cores of the Stokes I profile due to the chromospheric temperature rise. This feature is not present in observed umbral profiles. Moreover, such an emission reversal causes similar anomalous features in the Stokes Q, U, V profiles, which are also not observed. Umbral atmospheres with extended temperature minima are suggested. Implications for chromospheric heating mechanisms and the utility of this line for solar vector magnetic field measurements are discussed. 35 references

  19. The upper atmosphere of Uranus - Mean temperature and temperature variations

    Science.gov (United States)

    Dunham, E.; Elliot, J. L.; Gierasch, P. J.

    1980-01-01

    The number-density, pressure, and temperature profiles of the Uranian atmosphere in the pressure interval from 0.3 to 30 dynes/sq cm are derived from observations of the occultation of SAO 158687 by Uranus on 1977 March 10, observations made from the Kuiper Airborne Observatory and the Cape Town station of the South African Astronomical Observatory. The mean temperature is found to be about 95 K, but peak-to-peak variations from 10 K to 20 K or more exist on a scale of 150 km or 3 scale heights. The existence of a thermal inversion is established, but the inversion is much weaker than the analogous inversion on Neptune. The mean temperature can be explained by solar heating in the 3.3 micron methane band with a methane mixing ratio of 4 x 10 to the -6th combined with the cooling effect of ethane with a mixing ratio of not greater than 4 x 10 to the -6th. The temperature variations are probably due to a photochemical process that has formed a Chapman layer.

  20. Synoptic monthly gridded Global Temperature and Salinity Profile Programme (GTSPP) water temperature and salinity from January 1990 to December 2009 (NCEI Accession 0138647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The synoptic gridded Global Temperature and Salinity Profile Programme (SG-GTSPP) provides world ocean 3D gridded temperature and salinity data in monthly increment...

  1. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O2 airglow temperatures measurements

    Science.gov (United States)

    Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.

    2012-01-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.

  2. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  3. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2017-06-04

    further, changes in lower atmospheric temperature, humidity, winds , and clouds are likely to result from changed sea ice concentrations and ocean...affect changes in cloud properties and cover, • develop novel instrumentation including low cost, expendable, air-deployed micro -aircraft to obtain...from June through October to obtain atmospheric profiles of temperature, humidity, and winds from the time of ice edge retreat in spring to advance

  4. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O{sub 2} airglow temperatures measurements

    Energy Technology Data Exchange (ETDEWEB)

    Taori, A.; Jayaraman, A.; Raghunath, K. [National Atmospheric Research Laboratory, Gadanki (India); Kamalakar, V. [S.V. Univ., Tirupati (India). Dept. of Physics

    2012-07-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O{sub 2} temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation. (orig.)

  5. Temperature profile from NOAA Ship RESEARCHER and other platforms as part of the ARP (Global Atmospheric Research Program) Atlantic Tropical Experiment from 1974-08-28 to 1974-09-20 (NODC Accession 7800314)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using BT and XBT from NOAA Ship RESEARCHER and other platforms in the TOGA area - Atlantic from 28 August 1974 to 20...

  6. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  7. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    Science.gov (United States)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents

  8. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    Science.gov (United States)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  9. Temperature profile retrievals with extended Kalman-Bucy filters

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1979-01-01

    The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.

  10. Atmospheric turbulence profiling with unknown power spectral density

    Science.gov (United States)

    Helin, Tapio; Kindermann, Stefan; Lehtonen, Jonatan; Ramlau, Ronny

    2018-04-01

    Adaptive optics (AO) is a technology in modern ground-based optical telescopes to compensate for the wavefront distortions caused by atmospheric turbulence. One method that allows to retrieve information about the atmosphere from telescope data is so-called SLODAR, where the atmospheric turbulence profile is estimated based on correlation data of Shack-Hartmann wavefront measurements. This approach relies on a layered Kolmogorov turbulence model. In this article, we propose a novel extension of the SLODAR concept by including a general non-Kolmogorov turbulence layer close to the ground with an unknown power spectral density. We prove that the joint estimation problem of the turbulence profile above ground simultaneously with the unknown power spectral density at the ground is ill-posed and propose three numerical reconstruction methods. We demonstrate by numerical simulations that our methods lead to substantial improvements in the turbulence profile reconstruction compared to the standard SLODAR-type approach. Also, our methods can accurately locate local perturbations in non-Kolmogorov power spectral densities.

  11. NODC Standard Product: Global ocean temperature and salinity profiles (2 disc set) (NODC Accession 0098058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs contains global ocean temperature and salinity profiles derived from NODC archive data files. It includes oceanographic station (bottle) data,...

  12. A unique airborne observation. [Martian atmospheric temperature and abundances from occultation of Epsilon Geminorum

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.; Church, C.

    1976-01-01

    The occultation of 3rd magnitude Epsilon Geminorum by Mars was observed using a 36-inch telescope equipped with a photoelectric photometer at the bent Cassegrain focus, carried aboard the Kuiper Airborne Observatory at altitudes up to 45,000 feet. Scintillation from the earth's atmosphere was greatly reduced in comparison with ground observations. The observations clearly show the central flash, caused by the symmetrical refraction of light by the atmosphere of Mars. The data are being analyzed to obtain temperature profiles and to assess the relative abundance of argon and carbon dioxide in the atmosphere of the planet.

  13. Temperature retrieval at the southern pole of the Venusian atmosphere

    Science.gov (United States)

    Garate-Lopez, Itziar; Garcia-Munoz, A.; Hueso, R.; Sanchez-Lavega, A.

    2013-10-01

    Venus’ thermal radiation spectrum is punctuated by CO2 bands of various strengths probing into different atmospheric depths. It is thus possible to invert measured spectra of thermal radiation to infer atmospheric temperature profiles. VIRTIS-M observations of Venus in the 3-5 µm range allow us to study the night time thermal structure of the planet’s upper troposphere and lower mesosphere from 50 to 105 km [1, 2]. Building a forward radiative transfer model that solves the radiative transfer equation for the atmosphere on a line-by-line basis, we confirmed that aerosol scattering must be taken into account and we studied the impact of factors such as cloud opacity, and the size, composition and vertical distribution of aerosols [3]. The cloud top altitude and aerosol scale height have a notable impact on the spectrum. However, their weighting function matrices have similar structures contributing to the degeneracy of the temperature retrieval algorithm [2]. Our retrieval code is focused on the strong 4.3µm CO2 band, which enables the determination of the thermal profile above the cloud top, and based on the algorithm proposed by Grassi et al. (2008) in their equation (2). We present temperature maps for the south pole of Venus, where a highly variable vortex is observed. We aim to combine these maps with our previously measured velocity fields from the same VIRTIS-M infrared images [4], in order to infer the potential vorticity distribution for different vortex configurations and to improve the understanding of its unpredictable character and its role in the general atmospheric circulation. Acknowledgements This work was supported by the Spanish MICIIN projects AYA2009-10701 and AYA2012-36666 with FEDER funds, by Grupos Gobierno Vasco IT-765-13 and by Universidad País Vasco UPV/EHU through program UFI11/55. IGL and AGM gratefully acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources. References [1] Roos-Serote, M., et al

  14. Temperature profile data collected from 03 May 1962 to 15 September 1990 (NODC Accession 0000049)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bottle casts in a world wide distribution from 03 May 1962 to 15 September 1990. Data were collected and submitted by...

  15. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  16. Validation of vertical profile from atmosphere using ATOVS products and its impact over Indian region.

    Science.gov (United States)

    Mahandru, Riddhi; Kumar, Adarsh; Mitra, Ashim kumar

    This research paper summarizes the validation of atmospheric vertical profile using NOAA(National Oceanic and Atmospheric Administration)/ MetOp satellite derived data over India with radiosonde observations over a span of 8 months. NOAA's International Advanced Television and Infrared Observations satellite Vertical Sounder (ATOVS) processing package (IAPP) obtains temperature and moisture profiles in different pressure levels ranging from 1000hpa to 10hpa from real time direct broadcast (DB) receiving system installed at India Meteorological department. Different pressure levels were substituted to the same pressure levels for calculations of standard deviation, bias and RMSE (root mean square error) The sounder derived products like Total precipitable water vapor (TPW) and Lifting index(LI) from NOAA Satellite was also validated with radiosonde data which provided significant results for weather forecasting. The validation shows that the sounder provides unique information about the state of atmosphere and monitoring the convective environment for severe weather forecasting In addition to this, case study on severe weather events was analyzed using ATOVS products.

  17. Global distribution of temperature and salinity profiles from profiling floats as part of the World Ocean Circulation Experiment (WOCE) project, from 1994-11-07 to 2002-01-19 (NCEI Accession 0000936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-Salinity profile and pressure data were collected by using profiling floats in a world-wide distribution from 07 November 1994 to 19 January 2002. Data...

  18. SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Korey; Mandell, Avi M. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Knutson, Heather, E-mail: khaynes0112@gmail.com [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-06-20

    We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a δ-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The rms for our final, binned spectrum is 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We find that our measured spectrum displays an excess in the measured flux toward short wavelengths that is best explained as emission from TiO. If confirmed by additional measurements at shorter wavelengths, this planet would become the first hot Jupiter with a thermal inversion that can be definitively attributed to the presence of TiO in its dayside atmosphere.

  19. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  20. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  1. Temperature variability over the tropical middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1994-04-01

    Full Text Available A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E, located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.

  2. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Science.gov (United States)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  3. Seasonal variation in diurnal atmospheric grass pollen concentration profiles

    DEFF Research Database (Denmark)

    Peel, Robert George; Ørby, Pia Viuf; Skjøth, Carsten Ambelas

    2014-01-01

    the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods......In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish...... of the pollen season. Pollen concentrations are also influenced by meteorological factors - directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season...

  4. Temperature profile data from BATHYTHERMOGRAPH (XBT) in the Pacific Ocean: 19860927 to 19870201 (NODC Accession 8700086)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from the MONTE SARMIENTO and PACPRINCESS in the Pacific Ocean. Data were collected from 27 September 1986 to...

  5. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Science.gov (United States)

    Hauchecorne, Alain; Keckhut, Philippe; Mariscal, Jean-François; d'Almeida, Eric; Dahoo, Pierre-Richard; Porteneuve, Jacques

    2016-06-01

    A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  6. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  7. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  8. A self-adapting and altitude-dependent regularization method for atmospheric profile retrievals

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2009-03-01

    Full Text Available MIPAS is a Fourier transform spectrometer, operating onboard of the ENVISAT satellite since July 2002. The online retrieval algorithm produces geolocated profiles of temperature and of volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. In the validation phase, oscillations beyond the error bars were observed in several profiles, particularly in CH4 and N2O.

    To tackle this problem, a Tikhonov regularization scheme has been implemented in the retrieval algorithm. The applied regularization is however rather weak in order to preserve the vertical resolution of the profiles.

    In this paper we present a self-adapting and altitude-dependent regularization approach that detects whether the analyzed observations contain information about small-scale profile features, and determines the strength of the regularization accordingly. The objective of the method is to smooth out artificial oscillations as much as possible, while preserving the fine detail features of the profile when related information is detected in the observations.

    The proposed method is checked for self consistency, its performance is tested on MIPAS observations and compared with that of some other regularization schemes available in the literature. In all the considered cases the proposed scheme achieves a good performance, thanks to its altitude dependence and to the constraints employed, which are specific of the inversion problem under consideration. The proposed method is generally applicable to iterative Gauss-Newton algorithms for the retrieval of vertical distribution profiles from atmospheric remote sounding measurements.

  9. CAMEX-3 AIRBORNE VERTICAL ATMOSPHERE PROFILING SYSTEM (AVAPS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 DC-8 Airborne Vertical Atmosphere Profiling System (AVAPS) uses dropwindsonde and Global Positioning System (GPS) receivers to measure the atmospheric...

  10. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Directory of Open Access Journals (Sweden)

    Hauchecorne Alain

    2016-01-01

    Full Text Available A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  11. A 1290 MHZ profiler with RASS for monitoring wind and temperature in the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Engelbart, D. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Steinhagen, H. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Goersdorf, U. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Lippmann, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorol. Obs.

    1996-02-01

    A boundary layer wind profiler with RASS is described operating at 1290 MHz in a quasi-operational mode at the Meteorological Observatory Lindenberg of the German Weather Service (DWD). It provides vertical profiles of wind and temperature from the lower atmosphere with a height resolution of 50 m to 400 m and a time resolution of about 1 to 60 minutes. For an estimation of the system reliability, the availability of the measurements for all different height levels is analyzed. With regard to the data quality, a comparison of wind profiler/RASS and rawinsonde data is presented based on 856 wind and 451 temperature profiles. It reveals reasonable conformity of both sounding systems. Finally, case studies are shown, demonstrating the system ability to analyze some characteristic phenomena in the lower troposphere, which are unresolved temporally and spatially by the routine rawinsonde network. (orig.)

  12. Atmospheric phenomena deduced from radiosonde and GPS ...

    Indian Academy of Sciences (India)

    The tropopause height and tropopause temperature are sensitive to temperature changes in troposphere and stratosphere. These are the measures of global climatic variability. Atmospheric profiles of temperature, refractivity and water vapour are always needed for communication, navigation and atmospheric modeling ...

  13. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    Science.gov (United States)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  14. A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations

    Science.gov (United States)

    Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.

    2017-12-01

    The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.

  15. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  16. NODC Standard Product: Experimental Compact Disk NODC-01 Pacific Ocean Temperature-Salinity Profiles (1900-1988) (NODC Accession 0086259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanographic Data Center (NODC) created a compact disk containing over 1.3 million temperature-depth and salinity-depth profiles taken in the Pacific...

  17. Oceanographic profile temperature and salinity measurements collected using bottle from the Zarnitsa in the Barents Sea (NODC Accession 0002235)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data from the SCIENTIFIC ICHTIOLOGICAL INSTITUTE OF LENINGRAD (RUSSIA), digitized from "Bulletin of the Institute of Ichthyology,...

  18. Temperature profiles of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Sensogut, C.; Ozdeniz, A.H.; Gundogdu, I.B. [Dumlupinar University, Kutahya (Turkey). Mining Engineering Department

    2008-07-01

    Excess of produced coals should be kept in the stockyards of the collieries. The longer the duration time for these coals, the greater possibility for spontaneous combustion to take place. Spontaneously burnt coals result in economical and environmental problems. Therefore, taking the necessary precautions before an outburst of the spontaneous combustion phenomenon is too important in terms of its severe results. In this study, a stockpile having industrial dimensions was formed in coal stockyard. The effective parameters on the stockpiles of coal such as temperature and humidity of the weather, time, and atmospheric pressure values were measured. The interior temperature variations of these stockpiles caused by the atmospheric conditions were also measured. The interior temperature distribution maps of the stockpile together with maximum and minimum temperature values were expressed visually and numerically by the assistance of obtained data.

  19. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  20. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  1. Assessing atmospheric temperature data sets for climate studies

    Directory of Open Access Journals (Sweden)

    Magnus Cederlöf

    2016-07-01

    Full Text Available Observed near-surface temperature trends during the period 1979–2014 show large differences between land and ocean, with positive values over land (0.25–0.27 °C/decade that are significantly larger than over the ocean (0.06–0.12 °C/decade. Temperature trends in the mid-troposphere of 0.08-0.11 °C/decade, on the other hand, are similar for both land and ocean and agree closely with the ocean surface temperature trend. The lapse rate is consequently systematically larger over land than over the ocean and also shows a positive trend in most land areas. This is puzzling as a response to external warming, such as from increasing greenhouse gases, is broadly the same throughout the troposphere. The reduced tropospheric warming trend over land suggests a weaker vertical temperature coupling indicating that some of the processes in the planetary boundary layer such as inversions have a limited influence on the temperature of the free atmosphere. Alternatively, the temperature of the free atmosphere is influenced by advection of colder tropospheric air from the oceans. It is therefore suggested to use either the more robust tropospheric temperature or ocean surface temperature in studies of climate sensitivity. We also conclude that the European Centre for Medium-Range Weather Forecasts Reanalysis Interim can be used to obtain consistent temperature trends through the depth of the atmosphere, as they are consistent both with near-surface temperature trends and atmospheric temperature trends obtained from microwave sounding sensors.

  2. On the influence of density and temperature fluctuations on the formation of spectral lines in stellar atmospheres

    International Nuclear Information System (INIS)

    Stahlberg, J.

    1985-01-01

    A method taking into account the influence of temperature and density fluctuations generated by the velocity field in stellar atmospheres on the formation of spectral lines is presented. The influenced line profile is derived by exchanging the values in a static atmosphere by a mean value and a fluctuating one. The correlations are calculated with the help of the well-know hydrodynamic eqs. It results, that in normal stellar atmospheres the visual lines are only very weakly influenced by such fluctuations due to the small values of the gradients of the pressure and density and of the velocity dispersion. (author)

  3. Total solar eclipse of 16 February 1980 and the vertical profiles of atmospheric parameters in the lowest 200M

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Vertical profiles of air temperature, wind and humidity at Raichur (16 degrees 12'N and 77 degrees 21'E) in the lowest 200m of the atmosphere are presented for the period 15-18 February 1980. The effect of the total solar eclipse, on 16 February...

  4. Atmospheric Profile Imprint in Firewall Ablation Coefficient

    Science.gov (United States)

    Ceplecha, Z.; Pecina, P.

    1984-01-01

    A general formula which expresses the distance along the meteoric fireball trajectory 1 as a function of t is discussed. Differential equations which include the motion and ablation of a single nonfragmenting meteor body are presented. The importance of the atmospheric density profile in the meteor formula is emphasized.

  5. Temperature profiles in the Harwell boreholes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1983-03-01

    Heat flow at Harwell is estimated at 45 mWm -2 (milli Watt per metre squared is the unit of heat flow). Thermal conductivity values for the formations penetrated range from 1.0 to 4.6 Wm -1 K -1 . The temperature profiles recorded in the boreholes enable the vertical groundwater flow patterns within two poorly permeable mudrock units to be evaluated. The two mudrock units act as leaky barriers each separating a pair of aquifer units which induce a vertical hydraulic gradient across the mudrocks. The flow velocity results for the upper mudrock units derived from the temperature profile are compatible with values for groundwater potential derived from hydraulic data (10 -9 ms -1 from the temperature profile and 10 -12 ms -1 from the hydraulic observations). The results from the lower mudrock sequence are incompatible and this may be due to some other overiding influence upon the temperature profile. (author)

  6. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago in 2013 (NCEI Accession 0161327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  7. A temperature profiler

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.; Desa, E.

    An instrument developed for measuring temperature profiles at sea in depth or time scales is described. PC-based programming offers flexibility in setting up the instrument for the mode of operation prior to each cast. A real time clock built...

  8. Innovative measurement within the atmosphere of Venus.

    Science.gov (United States)

    Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander

    The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.

  9. Ionization rates and profiles of electron concentration in Martian atmosphere

    International Nuclear Information System (INIS)

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  10. Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

    Science.gov (United States)

    Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc

    2018-05-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together

  11. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  12. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    Science.gov (United States)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  13. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Schäfer, J; Foest, R; Reuter, S; Kewitz, T; Šperka, J; Weltmann, K-D

    2012-10-01

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  14. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Kewitz, T. [Institute of Experimental and Applied Physics, University Kiel, 24098 Kiel (Germany); Sperka, J. [Department of Physical Electronics, Masaryk University, 61137 Brno (Czech Republic)

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  15. Temperature profiles from Salt Valley, Utah

    Science.gov (United States)

    Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

    Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

  16. Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC) consist of time series of radiosonde-based temperature anomalies for the years...

  17. Validation of the Atmospheric Chemistry Experiment (ACE version 2.2 temperature using ground-based and space-borne measurements

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2008-01-01

    Full Text Available An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.

  18. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  19. Controlled meteorological (CMET free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses

    Directory of Open Access Journals (Sweden)

    T. J. Roberts

    2016-09-01

    Full Text Available Observations from CMET (Controlled Meteorological balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind around Svalbard, European High Arctic. Five Controlled Meteorological (CMET balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen over 5–12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I and to a high-resolution (15 km Arctic System Reanalysis (ASR product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.

  20. Simultaneous observations of SAO and QBO in winds, temperature and ozone in the tropical middle atmosphere over Thumba (8.5 N, 77 E)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Karanam Kishore; Swain, Debadatta; John, Sherine Rachel; Ramkumar, Geetha [Vikram Sarabhai Space Center, Space Physics Laboratory, Thiruvananthapuram (India)

    2011-11-15

    Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002-2007 at Thumba (8.5 N, 77 E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100 km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20-100 km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone

  1. 1.6 μm DIAL Measurement and Back Trajectory Analysis of CO2 Concentration Profiles in the Lower-Atmosphere

    Science.gov (United States)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In addition to the ground level CO2 network, vertical CO2 concentration profiles also play an important role for the estimation of the carbon budget and global warming in the inversion method. Especially, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, vertical CO2 concentration profiles with high spatial and temporal resolution in the lower atmosphere have been conducted by a differential absorption lidar (DIAL). We have observed several vertical profiles of CO2 concentrations for nighttime and daytime from 0.25 to 2.5 km altitude with range resolution of 300 m and integration time of 1 hour. In order to extract information on the origin of the CO2 masses, one day back trajectories were calculated by using a three dimensional (3-D) atmospheric transport model. In many cases, CO2 low concentration layers of over 1.5km altitude were flown by westerly winds from the forest. In another case, high concentration layers of CO2 were flown from the urban areas. As the spectra of absorption lines of any molecules are influenced basically by the temperature in the atmosphere, laser beams of three wavelengths around a CO2 absorption spectrum are transmitted alternately to the atmosphere for simultaneous measurements of CO2 concentration and temperature profiles. Moreover, a few processing algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. For computation of trajectories and drawing their figures, the JRA-25 data provided by the cooperative research project for the JRA-25 long-term reanalysis of the Japan Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) and the NIPR trajectory model (Tomikawa and Sato, 2005; http://firp-nitram.nipr.ac.jp) were used. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and

  2. Statistical modeling of temperature, humidity and wind fields in the atmospheric boundary layer over the Siberian region

    Science.gov (United States)

    Lomakina, N. Ya.

    2017-11-01

    The work presents the results of the applied climatic division of the Siberian region into districts based on the methodology of objective classification of the atmospheric boundary layer climates by the "temperature-moisture-wind" complex realized with using the method of principal components and the special similarity criteria of average profiles and the eigen values of correlation matrices. On the territory of Siberia, it was identified 14 homogeneous regions for winter season and 10 regions were revealed for summer. The local statistical models were constructed for each region. These include vertical profiles of mean values, mean square deviations, and matrices of interlevel correlation of temperature, specific humidity, zonal and meridional wind velocity. The advantage of the obtained local statistical models over the regional models is shown.

  3. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1990 to 31 December 1990 (NODC Accession 0000386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1990 to December 31, 1990. Data were submitted by Institut Francais De Recherche...

  4. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1991 to 31 December 1991 (NODC Accession 0000387)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1991 to December 31, 1991. Data were submitted by the Institut Francais De...

  5. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1998 to 31 December 1998 (NODC Accession 0000394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1998 to December 31, 1998. Data were submitted by the Institut Francais De...

  6. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1997 to 31 December 1997 (NODC Accession 0000393)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1997 to December 31, 1997. Data were submitted by the Institut Francais De...

  7. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1994 to 31 December 1994 (NODC Accession 0000390)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1994 to December 31, 1994. Data were submitted by Institut Francais De Recherche...

  8. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1993 to 31 December 1993 (NODC Accession 0000389)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1993 to December 31, 1993. Data were submitted by Institut Francais De Recherche...

  9. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1999 to 31 December 1999 (NODC Accession 0000395)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1999 to December 31, 1999. Data were submitted by the Institut Francais De...

  10. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1992 to 31 December 1992 (NODC Accession 0000388)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1992 to December 31, 1992. Data were submitted by Institut Francais De Recherche...

  11. Temperature profile data from the SEA-LAND DEFENDER using bottle, CTD, profiling floats, and XBT casts in a world-wide distribution from 01 January 1995 to 31 December 1995 (NODC Accession 0000391)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the SEA-LAND DEFENDER from January 1, 1995 to December 31, 1995. Data were submitted by Institut Francais De Recherche...

  12. Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared: generalization to arbitrary average scene temperatures

    Science.gov (United States)

    Florio, Christopher J.; Cota, Steve A.; Gaffney, Stephanie K.

    2010-08-01

    In a companion paper presented at this conference we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) may be used in conjunction with a limited number of runs of AFRL's MODTRAN4 radiative transfer code, to quickly predict the top-of-atmosphere (TOA) radiance received in the visible through midwave IR (MWIR) by an earth viewing sensor, for any arbitrary combination of solar and sensor elevation angles. The method is particularly useful for large-scale scene simulations where each pixel could have a unique value of reflectance/emissivity and temperature, making the run-time required for direct prediction via MODTRAN4 prohibitive. In order to be self-consistent, the method described requires an atmospheric model (defined, at a minimum, as a set of vertical temperature, pressure and water vapor profiles) that is consistent with the average scene temperature. MODTRAN4 provides only six model atmospheres, ranging from sub-arctic winter to tropical conditions - too few to cover with sufficient temperature resolution the full range of average scene temperatures that might be of interest. Model atmospheres consistent with intermediate temperature values can be difficult to come by, and in any event, their use would be too cumbersome for use in trade studies involving a large number of average scene temperatures. In this paper we describe and assess a method for predicting TOA radiance for any arbitrary average scene temperature, starting from only a limited number of model atmospheres.

  13. Temperature profile data from EBT casts in the Indian Ocean from 13 February 1986 to 01 January 1989 (NODC Accession 0000210)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using EBT casts in the Indian Ocean from the MYS OSTROVSKOGO, IGNAT PAVLYUCHENKOV, ZVEZDA AZOVA, and KARA-DAG from February...

  14. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  15. Discovering Parameters for Ancient Mars Atmospheric Profiles by Modeling Volcanic Eruptions

    Science.gov (United States)

    Meyer, A.; Clarke, A. B.; Van Eaton, A. R.; Mastin, L. G.

    2017-12-01

    Evidence of explosive volcanic deposits on Mars motivates questions about the behavior of eruption plumes in the Ancient and current Martian atmosphere. Early modeling studies suggested that Martian plumes may rise significantly higher than their terrestrial equivalents (Wilson and Head, 1994, Rev. Geophys., 32, 221-263). We revisit the issue using a steady-state 1-D model of volcanic plumes (Plumeria: Mastin, 2014, JGR, doi:10.1002/2013JD020604) along with a range of reasonable temperature and pressures. The model assumes perfect coupling of particles with the gas phase in the plume, and Stokes number analysis indicates that this is a reasonable assumption for particle diameters less than 5 mm to 1 micron. Our estimates of Knudsen numbers support the continuum assumption. The tested atmospheric profiles include an estimate of current Martian atmosphere based on data from voyager mission (Seif, A., Kirk, D.B., (1977) Geophys., 82,4364-4378), a modern Earth-like atmosphere, and several other scenarios based on variable tropopause heights and near-surface atmospheric density estimates from the literature. We simulated plume heights using mass eruption rates (MER) ranging from 1 x 103 to 1 x 1010 kg s-1 to create a series of new theoretical MER-plume height scaling relationships that may be useful for considering plume injection heights, climate impacts, and global-scale ash dispersal patterns in Mars' recent and ancient geological past. Our results show that volcanic plumes in a modern Martian atmosphere may rise up to three times higher than those on Earth. We also find that the modern Mars atmosphere does not allow eruption columns to collapse, and thus does not allow for the formation of column-collapse pyroclastic density currents, a phenomenon thought to have occurred in Mars' past based on geological observations. The atmospheric density at the surface, and especially the height of the tropopause, affect the slope of the MER-plume height curve and control

  16. Estimating Mixing Heights Using Microwave Temperature Profiler

    Science.gov (United States)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  17. Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles

    Directory of Open Access Journals (Sweden)

    J. Schwarz

    2018-05-01

    Full Text Available Global Navigation Satellite System (GNSS radio occultation (RO observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere – such as pressure, temperature, and tropospheric water vapor profiles (involving background information – can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP; Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC; and Meteorological Operational Satellite A (MetOp. The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs

  18. Temperature profiles and current measurements from the Nathaniel B. Palmer during the 1997 Dovetail cruise in the Southern Ocean (NODC Accession 9900243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection includes temperature profiles from CTD casts and current measurements from hull-mounted ADCP system aboard the research vessel Nathaniel B....

  19. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K; Riedel, K [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  20. Temperature profile data from XBT casts by participating vessels in NOAA's Volunteer Observing Ships Program, August - December 2001 (NODC Accession 0000635)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the ENTERPRISE and other vessels from a world-wide distribution from 01 August 2001 to 03 December 2001. Data...

  1. Temperature profile data from XBT casts by participating vessels in NOAA's Volunteer Observing Ships Program, July - November 2001 (NODC Accession 0000633)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected by from XBT casts from the OLEANDER and other platforms from a world-wide distribution from 12 July 2001 to 27 November 2001....

  2. Temperature profile data collected from the ALE ANDRO DE HUMBOLDT from 19 September 1971 to 26 September 1971 (NODC Accession 7500942)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bottle casts from the ALE ANDRO DE HUMBOLDT in the coastal waters of California from 19 September 1971 to 26 September...

  3. Temperature profile data from XBT casts by participating vessel in NOAA's Volunteer Observing Ships Program, June - August 2001 (NODC Accession 0000574)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the OLEANDER and other platforms from a world-wide distribution from 14 June 2001 to 20 August 2001. Data...

  4. Profiles of temperature, salinity, and other measurements from CTD, XBT, and bottle samplers received from the Japan Oceanographic Data Center (NODC Accession 0054093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profiles of temperature, salinity, and other measurements received from the Japan Oceanographic Data Center, Hydrographic and Oceanographic Department as a...

  5. Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990 (NODC Accession 0002717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen measurements collected using bottle from multiple platforms in the Azov, Black Seas from 1924-1990

  6. Vertical grid of retrieved atmospheric profiles

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-01-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application. - Highlights: • Data fusion application is taken into account for the choice of the vertical grid. • The study is performed using ozone profiles retrieved from MIPAS measurements. • A very fine vertical grid is not needed for the analysis of a single instrument. • The instrument dependent vertical grid is not the best choice for data fusion. • A data fusion dependent vertical grid must be used for profiles that will be fused.

  7. Distribution of temperature coefficient density for muons in the atmosphere

    Directory of Open Access Journals (Sweden)

    Kuzmenko V.S.

    2017-12-01

    Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.

  8. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    2017-01-20

    Jan 20, 2017 ... influence of profile width and super-Gaussian exponent of the profile on temperature distribution are investigated. Consequently, the profile width turns out to have a greater influence on the temperature compared to the type of the profile. Keywords. Side-pumped laser rod; pump cavity; absorbed pump ...

  9. Temperature profile data from MBT casts in a world-wide distribution from 23 December 1964 to 19 December 1991 (NODC Accession 0000216)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts from multiple platforms in a world-wide distribution from December 23, 1964 to December 19, 1991. Additonal...

  10. Temperature and salinity profiles to provide supporting data between MiniBat tows off the Oregon coast, June 2003 (NODC Accession 0002113)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the Northeast Pacific Ocean from the NEW HORIZON from 24 June 2003 to 30 June 2003. Data were submitted by...

  11. Temperature profile data from XBT casts in a world wide distribution from 1996-06-01 to 1997-08-10 (NODC Accession 9700224)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from XBT casts from several research vessels in a world wide distribution. Data were collected from June 1, 1996 to August...

  12. Temperature profile data from XBT casts by participating vessels in NOAA's Volunteer Observing Ships program, December 2000 - September 2001 (NODC Accession 0000589)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SKOGAFOSS and other platforms from a world-wide distribution from 27 December 27, 2000 to 19 September...

  13. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across Wake Island from 2014-03-16 to 2014-03-19 (NCEI Accession 0162248)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  14. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across Jarvis Island from 2016-05-19 to 2016-05-23 (NCEI Accession 0162245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  15. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa from 2015-02-15 to 2015-03-28 (NCEI Accession 0161169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  16. Oceanographic profile Biomass, temperature salinity and other measurements collected using bottle from Alpha Helix in the Pacific Ocean from 1976 (NODC Accession 0002070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle casts from the ALPHA HELIX in the Pacific Ocean. Data were collected from 06...

  17. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  18. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    International Nuclear Information System (INIS)

    Sellitto, P.; Del Frate, F.

    2014-01-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320–325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet. - Highlights: • A sensitivity analysis and an inversion scheme to retrieve temperature profiles from satellite UV observations (320–325 nm). • The exploitation of the temperature dependence of the absorption cross section of ozone in the Huggins band is proposed. • First demonstration of the feasibility of temperature profiles retrieval from satellite UV observations. • RMSEs and biases comparable with more established techniques involving TIR and MW observations

  19. The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval

    Science.gov (United States)

    Blecic, Jasmina; Dobbs-Dixon, Ian; Greene, Thomas

    2017-10-01

    Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer, the Hubble Space Telescope (HST), and the James Web Space Telescope (JWST) bandpasses, covering the wavelength range between 1 and 11 μm where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature-pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and the

  20. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  1. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago from 2014-03-24 to 2014-05-05 (NCEI Accession 0161168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  2. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago from 2016-09-01 to 2016-09-27 (NCEI Accession 0161171)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  3. Temperature profile, pressure, and nutrients data from bottle in South Atlantic Ocean from 24 November 1987 to 12 March 1989 (NODC Accession 0000196)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, pressure, and nutrients data were collected using bottle in the South Atlantic Ocean from 24 November 1987 to 12 March 1989. Data were collected...

  4. Temperature profile and oxygen data from bottle casts in the Barents Sea from 04 January 1899 to 04 December 1992 (NODC Accession 0000379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — temperature profile and oxygen data were collected from multiple ships from January 4, 1899 to December 4, 1992. These data were collected using bottle in the...

  5. Modeling the wafer temperature profile in a multiwafer LPCVD furnace

    Energy Technology Data Exchange (ETDEWEB)

    Badgwell, T.A. [Rice Univ., Houston, TX (United States). Dept. of Chemical Engineering; Trachtenberg, I.; Edgar, T.F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1994-01-01

    A mathematical model has been developed to predict wafer temperatures within a hot-wall multiwafer low pressure chemical vapor deposition (LPCVD) reactor. The model predicts both axial (wafer-to-wafer) and radial (across-wafer) temperature profiles. Model predictions compare favorably with in situ wafer temperature measurements described in an earlier paper. Measured axial and radial temperature nonuniformities are explained in terms of radiative heat-transfer effects. A simulation study demonstrates how changes in the outer tube temperature profile and reactor geometry affect wafer temperatures. Reactor design changes which could improve the wafer temperature profile are discussed.

  6. Temperature profile data collected in a world wide distribution using XBT casts from 01 January 1994 to 25 May 1994 (NODC Accession 9600159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from the ANGO and other platforms in a world wide distribution. Data were collected from 01 January 1994 to...

  7. Oceanographic profile temperature, salinity, oxygen, nutrients, and plankton measurements collected using bottle from the Parizeau in the North Pacific Ocean (NODC Accession 0002242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 09/09/04 by Sydney Levitus from the Institute of Ocean Sciences (Sidney, B.C.), digitized...

  8. Temperature, salinity, nutrient, and ammonia profiles collected by bottle in the Black Sea from 5/5/1955 - 4/16/1989 (NODC Accession 0000131)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients and temperature profile data were collected using bottle casts from the FIOLENT and other platforms in the Black Sea. Data were collected from 05 May 1955...

  9. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    ... the two silos for twenty-eight (28) months of storage were recorded in order to monitor temperature fluctuation at different sections inside the inert atmosphere silos loaded with two varieties of wheat namely LACRIWHT-2 (Cettia) and LACRIWHT-4 (Atilla-Gan-Atilla) from Lake Chad Research Institute, Maiduguri, Nigeria.

  10. The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Dobbs-Dixon, Ian [NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Greene, Thomas, E-mail: jasmina@nyu.edu [NASA Ames Research Center, Space Sciece and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States)

    2017-10-20

    Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer , the Hubble Space Telescope ( HST ), and the James Web Space Telescope ( JWST ) bandpasses, covering the wavelength range between 1 and 11 μ m where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature–pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and

  11. Oceanographic profile temperature, salinity, and oxygen measurements collected from BLUE FIN in the North Atlantic Ocean from 1988 to 1993 (NODC Accession 0002230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from the BLUE FIN in the North Atlantic Ocean. Data were collected from 26 September 1988 to 18...

  12. Chemical and temperature profile data from CTD casts in the East China Sea, Sea of Japan, and North Pacific Ocean (NODC Accession 9700022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and temperature profile data were collected from CTD casts in the East China Sea, Sea of Japan, and North Pacific Ocean. Data were submitted by the Japan...

  13. Atmospheric stability index using radio occultation refractivity profiles

    Indian Academy of Sciences (India)

    A new stability index based on atmospheric refractivity at ∼500 hPa level and surface measurements of temperature ... able at different heights rather than pressure levels. However ..... the radio occultation technique being a limb sound-.

  14. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Capalbo, Fernando J.; Bénilan, Yves [Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR 7583 du CNRS, Universités Paris Est Créteil (UPEC) and Paris Diderot - UPD, 61 avenue du Général de Gaulle, F-94010, Créteil Cédex (France); Yelle, Roger V.; Koskinen, Tommi T., E-mail: fernando.capalbo@lisa.u-pec.fr [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States)

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  15. NOAA Climate Data Record (CDR) of Atmospheric Layer Temperatures, Version 3.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atmospheric Layer Temperature Climate Data Record (CDR) dataset is a monthly analysis of the tropospheric and stratospheric data using temperature sounding...

  16. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Northwestern Hawaiian Islands from 2015-07-31 to 2015-08-19 (NCEI Accession 0161170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  17. Temperature profile and nutrients data from bottle casts in the Equatorial Pacific Ocean from 19 April 1971 to 30 March 1994 (NODC Accession 0000225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts from the ORION and EASTWARD in the Equatorial Pacific Ocean. Data were collected from 19...

  18. TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2016-07-10

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  19. Interpretation of biomass gasification yields regarding temperature intervals under nitrogen-steam atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2007-04-15

    Gasification of some agricultural waste biomass samples (sunflower shell, pine cone, cotton refuse, and olive refuse) and colza seed was performed using a thermogravimetric analyzer at temperatures up to 1273 K with a constant heating rate of 20 K/min under a dynamic nitrogen-steam atmosphere. Derivative thermogravimetric analysis profiles of the samples were derived from the non-isothermal thermogravimetric analysis data. Gasification yields of the biomass samples at temperature intervals of 473-553 K, 553-653 K, 653-773 K, 773-973 K, and 973-1173 K were investigated considering the successive stages of ''evolution of carbon oxides'', ''start of hydrocarbon evolution'', ''evolution of hydrocarbons'', ''dissociation'', and ''evolution of hydrogen'', respectively. Although, there were some interactions between these stages, some evident relations were observed between the gasification yields in a given stage and the chemical properties of the parent biomass materials. (author)

  20. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the Iselin Columbus in the Indian Ocean (Somalia Coast) (NODC Accession 0002225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts from the COLUMBUS ISELIN in the Indian Ocean. Data were collected from 26 February 1979 to...

  1. Temperature profiles from MBT casts from a World-Wide distribution from MULTIPLE PLATFORMS from 1948-04-08 to 1968-12-14 (NODC Accession 9300131)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from MBT casts from a World-Wide distribution. Data were collected from MULTIPLE PLATFORMS from 08 April 1948 to 14 Decmeber...

  2. Temperature profile and pressure data from CTD casts in the Northwest Atlantic Ocean from 19 April 2001 to 15 December 2001 (NODC Accession 0000370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected from the NAVIGATION RESPONSE TEAM 2 from April 19, 2001 to December 15, 2001. Data were submitted by National...

  3. SPICAM: studying the global structure and composition of the Martian atmosphere

    Science.gov (United States)

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  4. Two-dimensional characterization of atmospheric profile retrievals from limb sounding observations

    International Nuclear Information System (INIS)

    Worden, J.R.; Bowman, K.W.; Jones, D.B.

    2004-01-01

    Limb sounders measure atmospheric radiation that is dependent on atmospheric temperature and constituents that have a radial and angular distribution in Earth-centered coordinates. In order to evaluate the sensitivity of a limb retrieval to radial and angular distributions of trace gas concentrations, we perform and characterize one-dimensional (vertical) and two-dimensional (radial and angular) atmospheric profile retrievals. Our simulated atmosphere for these retrievals is a distribution of carbon monoxide (CO), which represents a plume off the coast of south-east Asia. Both the one-dimensional (1D) and two-dimensional (2D) limb retrievals are characterized by evaluating their averaging kernels and error covariances on a radial and angular grid that spans the plume. We apply this 2D characterization of a limb retrieval to a comparison of the 2D retrieval with the 1D (vertical) retrieval. By characterizing a limb retrieval in two dimensions the location of the air mass where the retrievals are most sensitive can be determined. For this test case the retrievals are most sensitive to the CO concentrations about 2 deg.latitude in front of the tangent point locations. We find the information content for the 2D retrieval is an order of magnitude larger and the degrees of freedom is about a factor of two larger than that of the 1D retrieval primarily because the 2D retrieval can estimate angular distributions of CO concentrations. This 2D characterization allows the radial and angular resolution as well as the degrees of freedom and information content to be computed for these limb retrievals. We also use the 2D averaging kernel to develop a strategy for validation of a limb retrieval with an in situ measurement

  5. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2007-08-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA. The high resolution (0.035 cm−1 full width half maximum, unapodized limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62 of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons.

    The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three than the corresponding estimate derived on the basis of error propagation.

    In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF. The bias and the standard deviation of these discrepancies are consistent with those obtained when

  6. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  7. Temperature profiles from XBT casts from a World-Wide distribution from MULTIPLE PLATFORMS from 1979-06-03 to 1988-05-27 (NODC Accession 8800182)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from a World-Wide distribution. Data were collected from MULTIPLE PLATFORMS from 03 June 1979 to 27 May 1988. Data...

  8. Temperature and salinity profile data collected by CTD and XBT on multiple cruises from 1991-09-10 to 1993-08-29 (NODC Accession 0000123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD and XBT casts from LANCE and other platforms in the Norwegian Sea and Arctic Ocean. Data were collected from 10...

  9. Ion temperature profiles in JET

    International Nuclear Information System (INIS)

    Hellermann, M. von; Mandl, W.; Summers, H.P.; Weisen, H.

    1989-01-01

    The results presented in this paper have shown some extreme cases of ion temperature profiles illustrating the different operation modes of the JET tokamak. In the three examples of low-density high temperature, high-density moderates and high-density high-confinement plasmas comparable values of a maximum fusion product n d T i τ E in the order of 10 20 keV m -3 sec are achieved. (author) 1 ref., 7 figs

  10. Oceanographic profile temperature, salinity, and nutrients measurements collected using bottle, CTD from various platforms in the North West Pacific from 1995-2005 (NODC Accession 0010565)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and Chemical Oceanographic Time Series (Line-P) containing profiles for Nutrients, temperature, salinity near Ocean Station PAPA (50 deg N;145 deg W)....

  11. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas from 2015-01-26 to 2015-04-28 (NCEI Accession 0162247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  12. Oceanographic profile temperature, chlorophyll and other measurements collected using bottle from the SHIRASE (JSVY) in the Antarctic from 1984 to 1985 (NODC Accession 0001048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Source: Temperature, chlorophyll and other profile data received at NODC on 04/01/03 by Todd O'Brien from "Fukuda, Y., M. Ohno, M. Fukuchi, 1986 "Surface Chlorophyll...

  13. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle and MBT from the A.I. VOEIKOV in the Pacific Ocean (NODC Accession 0002214)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle and MBT casts from the A.I. VOEIKOV in the Pacific Ocean. Data were collected...

  14. Thermodynamic evaluation of distillation columns using exergy loss profiles: a case study on the crude oil atmospheric distillation column

    Energy Technology Data Exchange (ETDEWEB)

    Tarighaleslami, Amir Hossein [Mahshahr Branch, Islamic Azad University, Chemical Engineering Faculty, Mahshar, Khouzestan (Iran, Islamic Republic of); Omidkhah, Mohammad Reza [Tarbiat Modares University, Chemical Engineering Department, Faculty of Engineering, Tehran (Iran, Islamic Republic of); Ghannadzadeh, Ali [University of Toulouse, Department of Process and System Engineering, Chemical Engineering Laboratory, Toulouse (France); Hoseinzadeh Hesas, Roozbeh [University of Malaya, Chemical Engineering Department, Faculty of Engineering, Kuala Lumpur (Malaysia)

    2012-06-15

    This paper presents a case study on the crude oil atmospheric distillation column of Tabriz refinery plant to show the applicability of exergy loss profiles in thermodynamic examination of the different retrofit options. The atmospheric distillation column of Tabriz refinery has been revamped as a consequence of increase of the plant capacity to 100,000 bpd. To cover the deficit of feedstock of the revamped unit, a blend of the existing feedstock with imported crude oil is used as a feedstock. However, to investigate how the blend of these two different types of crudes as a feedstock has an influence on the operating conditions, the examination of the column is needed. Exergy as a comprehensive thermodynamic property which translates the temperature, pressure and composition change into a common unit has been chosen to evaluate the distillation column thermodynamically. Furthermore, the exergy loss profile of the base case serves as a scoping tool to pinpoint the source of inefficiencies. Then, the exergy loss profile as a screening tool has found the retrofit options which are likely to yield greatest energy saving from a list of retrofit options proposed by the industrial partner. In the presented case study, the exergy loss profile identifies the best retrofit option with 17.16% reduction in exergy losses, which finally lead to 3.6% reduction of primary fuel demand. (orig.)

  15. Temperature profile data from XBT casts in a world wide distribution from multiple platforms from 04 September 2002 to 18 November 2002 (NODC Accession 0000831)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts from LYKES COMMANDER and other platforms in a world wide distribution from 04 September 2002 to 18 November...

  16. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    Science.gov (United States)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  17. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  18. Velocity profile measurement of lead-lithium flows by high-temperature ultrasonic doppler velocimetry

    International Nuclear Information System (INIS)

    Ueki, Y.; Kunugi, T.; Hirabayashi, Masaru; Nagai, Keiichi; Saito, Junichi; Ara, Kuniaki; Morley, N.B.

    2014-01-01

    This paper describes a high-temperature ultrasonic Doppler Velocimetry (HT-UDV) technique that has been successfully applied to measure velocity profiles of the lead-lithium eutectic alloy (PbLi) flows. The impact of tracer particles is investigated to determine requirements for HT-UDV measurement of PbLi flows. The HT-UDV system is tested on a PbLi flow driven by a rotating-disk in an inert atmosphere. We find that a sufficient amount of particles contained in the molten PbLi are required to successfully measure PbLi velocity profiles by HT-UDV. An X-ray diffraction analysis is performed to identify those particles in PbLi, and indicates that those particles were made of the lead mono-oxide (PbO). Since the specific densities of PbLi and PbO are close to each other, the PbO particles are expected to be well-dispersed in the bulk of molten PbLi. We conclude that the excellent dispersion of PbO particles enables in HT-UDV to obtain reliable velocity profiles for operation times of around 12 hours. (author)

  19. Temperature profile data from BATHYTHERMOGRAPH (XBT) from the CATALUNA and other platforms in BAY OF BISCAY and other areas: 19840914 to 19850923 (NODC Accession 8600110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from the CATALUNA and ALCALA GALIANO in the Bay of Biscay and other areas. Data were collected from 14...

  20. Temperature profile data from XBT casts in a world wide distribution from multiple platforms from 20 February 2003 to 24 April 200 (NODC Accession 0001019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts from LYKES RAIDER and other platforms in a world wide distribution from 20 February 2003 to 24 April 2003....

  1. Temperature profile and wave data from CTD casts in the East/South China Sea from 10 January 1977 to 12 December 1986 (NODC Accession 9400045)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and wave data were collected using CTD casts and other instruments in the East / South China Sea. Data were collected from 10 January 1977 to 12...

  2. Temperature profile data from XBT casts in a world wide distribution from multiple platforms from 02 April 2003 to 21 May 2003 (NODC Accession 0001042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from SEA-LAND DEFENDER and other platforms in a world wide distribution from 02 April 2003 to 21 May 2003....

  3. Temperature profile data from XBT casts from cooperating vessels in support of the NOAA volunteer observing program, 2000-08 to 2001-07 (NODC Accession 0000528)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from NOAA Ship MILLER FREEMAN and other vessels from a world-wide distribution from 6 August 2000 to 21 July 2001....

  4. Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970 through 1975 (NODC Accession 0002125)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1970...

  5. Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976 through 1982 (NODC Accession 0002126)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic profile temperature, salinity, oxygen and other measurement collected using bottle in the Barents, Kara, Laptev, White, and Norwegian Seas from 1976...

  6. Temperature profile data collected using XBT casts from multiple platforms in a world wide distribution from 07 November 2001 to 24 July 2002 (NODC Accession 0000762)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from OLEANDER, TAI HE, SEA-LAND ENTERPRISE, and other platforms in a world wide distribution. Data were...

  7. Temperature profiles from MBT casts from in the Red Sea and Indian Ocean from the MYS OSTROVSKOGO and other platforms from 29 May 1964 to 22 December 1989 (NODC Accession 0000209)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected from the Red Sea and Indian Ocean from the Mys Ostrovskogo from 29 May 1964 to 22 December 1989. Temperature profiles were obtained...

  8. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  9. Temperature profile data collected using bottle casts from the YANTAR in the Black Sea from 27 June 1980 to 15 July 2000 (NODC Accession 0000781)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bottle casts in the Black Sea from the YANTAR and others. Data were collected from 27 June 1980 to 15 July 2000. Data...

  10. Temperature profile data collected using XBT casts from multiple platforms in a world wide distribution from 01 March 2002 to 26 August 2002 (NODC Accession 0000777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from MELBOURNE STAR and other platforms in a world wide distribution. Data were collected from 01 March 2002...

  11. Temperature, salinity, and zooplankton species and number profiles collected by towed net for the Barents Sea from 7/20/1963 - 8/31/1963 (NODC Accession 0000108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, zooplantkon, and other data were collected using plankton net and bottle casts from the TANNER in the Barents Sea. Data were collected from 20...

  12. Temperature profile data from MBT casts from AKHILL and other platforms in the Atlantic Ocean from 02 August 1984 to 11 December 1990 (NODC Accession 0000323)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts in the Atlantic Ocean from the AKHILL, ARTEMIDA, AYAKS, and other platforms from 02 August 1984 to 11...

  13. Temperature profile data from the DONGHAE ILHO and DONUZLAV in a world-wide distribution survey from 01 January 1968 to 11 June 1983 (NODC Accession 0000243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the DONGHAE ILHO and DONUZLAV from January 1, 1968 to June 11, 1993. Additional funding for digitizing historic data was...

  14. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  15. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  16. Temperature, salinity, oxygen, and phosphate profiles collected by CTD or bottle in the World-wide Oceans from 11/4/1902 to 12/17/1998 (NODC Accession 0000198)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, meteorological, and nutrients data were collected using CTD and bottle casts from the HOLLAND and other platforms in a world wide distribution....

  17. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1995-02-24 to 1996-06-23 (NODC Accession 9700060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from February 24,...

  18. Temperature profile data from MBT casts from AELITA and other platforms in a World wide distribution from 30 January 1970 to 26 July 1990 (NODC Accession 0000227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts in a world wide distribution from AELITA, ESTAFETA OKTYABRYA, MARLIN, ORHEVI, POLYAKOV, and ZVEZDA AZOVA from...

  19. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-09-30 to 1997-05-27 (NODC Accession 9700161)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from September 30,...

  20. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-09-19 to 1997-03-25 (NODC Accession 9700061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from September 19,...

  1. Temperature and salinity profile data collected by NOAA's Navigation Response Team 5 during operations along the northeast US coast, March 2005 - March 2006 (NODC Accession 0002674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the Northwest Atlantic Ocean and the Northeast US Coast from the NAVIGATION RESPONSE TEAM 5 from 03 March...

  2. On the structure of the upper atmosphere of Mars according to data from experiments on the Viking space vehicles

    Science.gov (United States)

    Izakov, M. N.

    1979-01-01

    Altitude profiles of the concentrations of the atmospheric components measured by the on board mass spectrometers during the descent of Viking lander are discussed by assuming that temperature has a smoother profile, and the eddy mixing coefficients are smaller at altitudes of 120 to 170 km than those formally determined. The influence of acoustic gravitational waves and errors in measurements and calculations are discussed in relation to the convolutions in the altitude profiles of the concentrations of the atmospheric components and the temperature of the atmosphere.

  3. Mean atmospheric temperature model estimation for GNSS meteorology using AIRS and AMSU data

    Directory of Open Access Journals (Sweden)

    Rata Suwantong

    2017-03-01

    Full Text Available In this paper, the problem of modeling the relationship between the mean atmospheric and air surface temperatures is addressed. Particularly, the major goal is to estimate the model parameters at a regional scale in Thailand. To formulate the relationship between the mean atmospheric and air surface temperatures, a triply modulated cosine function was adopted to model the surface temperature as a periodic function. The surface temperature was then converted to mean atmospheric temperature using a linear function. The parameters of the model were estimated using an extended Kalman filter. Traditionally, radiosonde data is used. In this paper, satellite data from an atmospheric infrared sounder, and advanced microwave sounding unit sensors was used because it is open source data and has global coverage with high temporal resolution. The performance of the proposed model was tested against that of a global model via an accuracy assessment of the computed GNSS-derived PWV.

  4. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  5. Temperature profile data using XBT casts in the TOGA - Atlantic Ocean from NOAA Ship RESEARCH from 1979-07-10 to 1979-07-24 (NODC Accession 7900278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from NOAA Ship RESEARCHER in the TOGA - Atlantic Ocean from 10 July 1979 to 24 July 1989. Data were submitted...

  6. Temperature profile data from bucket, surface seawater intake, and XBT casts in a world wide distribution from 07 December 1995 to 18 October 1996 (NODC Accession 9600167)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bucket, surface seawater intake, and XBT casts from several vessels in a world wide distribution from December 07, 1995...

  7. Oceanographic profile temperature, salinity and other measurements collected using bottle from the SNP-1 in the Coastal South Pacific and South Pacific in 1976 (NODC Accession 0001483)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle casts from the SNP-1 in the South Pacific Ocean. Data were collected from 24...

  8. Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs

    Science.gov (United States)

    Garland, Ryan; Irwin, Patrick

    2018-01-01

    A significant number of ultracool (types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a self-consistent Mie scattering cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.

  9. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    Science.gov (United States)

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  10. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  11. Temperature profile and water depth data collected from TOWERS in the NE Atlantic (limit-180 W) from 06 June 1986 to 29 August 1986 (NODC Accession 8600378)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the TOWERS in the Northeast Atlantic Ocean, South China Sea, Philippine Sea, and...

  12. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1994-06-29 to 1996-06-08 (NODC Accession 9600120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from multiple vessels in a world wide distribution from June 29, 1994 to...

  13. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-03-01 to 1997-01-03 (NODC Accession 9700036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts from several vessels in a world wide distribution from March 1, 1996 to...

  14. Temperature profile data from surface seawater intake, bucket, and XBT casts in a world wide distribution from 1996-08-11 to 1997-07-16 (NODC Accession 9700213)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using surface seawater intake, bucket, and XBT casts in a world wide distribution by several vessels from August 11, 1996 to...

  15. Temperature profiles from XBT casts from the OLEANDER as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1982-06-11 (NODC Accession 8200127)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the OLEANDER from 11 June 1982. Data were collected by the National Marine Fisheries Service (NMFS) as part...

  16. Current meter and temperature profile data from moored current meter casts in the TOGA area - Atlantic Ocean from 10 September 1970 - 27 October 1980 (NODC Accession 8600320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using moored current meter - PCM casts in the TOGA area - Atlantic Ocean from September 10, 1970 to October...

  17. Temperature profiles from MBT casts from a World-Wide distribution from the ALASKA and other platforms from 1943-02-02 to 1964-10-10 (NODC Accession 9200027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from MBT casts from a a World-Wide distribution. Data were collected from the ALASKA and other platforms from 02 February...

  18. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  19. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    Science.gov (United States)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  20. Delayed XBT data collected by Royal Australian Navy and submitted to NODC for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 2009-2011 (NODC Accession 0089585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts in the Arafura Sea, Bass Strait, Coral Sea, Great Australian Bight, Indian Ocean, Molukka Sea, North Pacific...

  1. Pressure/temperature/salinity profiler measurements collected in the Sea of Japan, 2001-06 to July 2001, under the sponsorship of the Office of Naval Research (NODC Accession 0002416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure/temperature/salinty profiles collected in support of a study to investigate the shallow and deep current variability in the southwest Japan/East Sea....

  2. Oceanographic profile temperature, salinity and other measurements collected using bottle and high resolution CTD from the POLARSTERN in the Antarctic and South Atlantic in 1992 (NODC Accession 0000463)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and other data were collected using plankton net, bottle, and CTD casts from the POLARSTERN in the Southern Oceans. Data were...

  3. Temperature profile and water depth data collected from USS THACH using BT and XBT casts in the Persian Sea for 1987-11-21 (NODC Accession 8800016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS THACH in the Persian Sea. Data were collected from 21 November 1987 to 21...

  4. Temperature profile data collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 1981-11-21 to 1981-12-07 (NODC Accession 8200194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 21 November 1981 to 07 December 1981....

  5. Temperature profile collected using XBT casts in the North/South Atlantic Ocean from NOAA Ship RESEARCHER from 1977-11-05 to 1979-02-13 (NODC Accession 7900324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile were collected using BT and XBT casts from NOAA Ship RESEARCHER in North/South Atlantic Ocean from 05 November 1977 to 13 February 1979. Data...

  6. Temperature profile data from MBT casts from NAUKA and other platforms in a World-wide distribution from 26 July 1966 to 09 September 1990 (NODC Accession 0000228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts in a World-wide distribution from the NAUKA, FIOLENT, LESNOYE, and other platforms from 26 July 1966 to 09...

  7. Arctic Strato-Mesospheric Temperature and Wind Variations

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  8. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    Science.gov (United States)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  9. Oceanographic profile Temperature, Salinity, Phosphate collected using bottle from the PROFESSOR VIZE, SMOLNIY, PROFESSOR ZUBOV and other platforms in the Atlantic from 1942 to 1983 (NODC Accession 0002021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts from the SUCHAN and other platforms in the North/South Pacific Ocean. Data were collected...

  10. Temperature profile data from MBT casts from NAUKA and other platforms in a World-wide distribution from 18 June 1970 to 05 May 1989 (NODC Accession 0000229)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using MBT casts in a World-wide distribution from the NAUKA, AELITA, LESNOYE, and other platforms from 18 June 1970 to 05 May...

  11. Comparison of RASS temperature profiles with other tropospheric soundings

    International Nuclear Information System (INIS)

    Bonino, G.; Lombardini, P.P.; Trivero, P.

    1980-01-01

    The vertical temperature profile of the lower troposphere can be measured with a radio-acoustic sounding system (RASS). A comparison of the thermal profiles measured with the RASS and with traditional methods shows a) RASS ability to produce vertical thermal profiles at an altitude range of 170 to 1000 m with temperature accuracy and height discrimination comparable with conventional soundings, b) advantages of remote sensing as offered by new sounder, c) applicability of RASS both in assessing evolution of thermodynamic conditions in PBL and in sensing conditions conducive to high concentrations of air pollutants at the ground level. (author)

  12. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  13. Composition and structure of the martian upper atmosphere: analysis of results from viking.

    Science.gov (United States)

    McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O

    1976-12-11

    Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.

  14. Temperature profile data collected using CTD casts from NOAA Ship RESEARCHER in the TOGA area - Indian from 1979-04-15 to 1979-06-02 (NODC Accession 8200199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the TOGA Area - Indian from 15 April 1979 to 02 June 1979. Data were...

  15. EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Rocchetto, M.; Waldmann, I. P.; Tinetti, G.; Venot, O.; Lagage, P.-O.

    2016-01-01

    With a scheduled launch in 2018 October, the James Webb Space Telescope ( JWST ) is expected to revolutionize the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us to extract far more information from exoplanet spectra than what has been possible with current observations. In this paper, we investigate whether current retrieval methods will still be valid in the era of JWST , exploring common approximations used when retrieving transmission spectra of hot Jupiters. To assess biases, we use 1D photochemical models to simulate typical hot Jupiter cloud-free atmospheres and generate synthetic observations for a range of carbon-to-oxygen ratios. Then, we retrieve these spectra using TauREx, a Bayesian retrieval tool, using two methodologies: one assuming an isothermal atmosphere, and one assuming a parameterized temperature profile. Both methods assume constant-with-altitude abundances. We found that the isothermal approximation biases the retrieved parameters considerably, overestimating the abundances by about one order of magnitude. The retrieved abundances using the parameterized profile are usually within 1 σ of the true state, and we found the retrieved uncertainties to be generally larger compared to the isothermal approximation. Interestingly, we found that by using the parameterized temperature profile we could place tight constraints on the temperature structure. This opens the possibility of characterizing the temperature profile of the terminator region of hot Jupiters. Lastly, we found that assuming a constant-with-altitude mixing ratio profile is a good approximation for most of the atmospheres under study.

  16. EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetto, M.; Waldmann, I. P.; Tinetti, G. [Department of Physics and Astronomy, University College London, Gower Street, WC1E6BT London (United Kingdom); Venot, O. [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Lagage, P.-O., E-mail: m.rocchetto@ucl.ac.uk [Irfu, CEA, Université Paris-Saclay, F-9119 Gif-sur Yvette (France)

    2016-12-10

    With a scheduled launch in 2018 October, the James Webb Space Telescope ( JWST ) is expected to revolutionize the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us to extract far more information from exoplanet spectra than what has been possible with current observations. In this paper, we investigate whether current retrieval methods will still be valid in the era of JWST , exploring common approximations used when retrieving transmission spectra of hot Jupiters. To assess biases, we use 1D photochemical models to simulate typical hot Jupiter cloud-free atmospheres and generate synthetic observations for a range of carbon-to-oxygen ratios. Then, we retrieve these spectra using TauREx, a Bayesian retrieval tool, using two methodologies: one assuming an isothermal atmosphere, and one assuming a parameterized temperature profile. Both methods assume constant-with-altitude abundances. We found that the isothermal approximation biases the retrieved parameters considerably, overestimating the abundances by about one order of magnitude. The retrieved abundances using the parameterized profile are usually within 1 σ of the true state, and we found the retrieved uncertainties to be generally larger compared to the isothermal approximation. Interestingly, we found that by using the parameterized temperature profile we could place tight constraints on the temperature structure. This opens the possibility of characterizing the temperature profile of the terminator region of hot Jupiters. Lastly, we found that assuming a constant-with-altitude mixing ratio profile is a good approximation for most of the atmospheres under study.

  17. Simultaneous temperature measurement of ionospheric plasma and neutral atmosphere with K-10-11 rocket

    International Nuclear Information System (INIS)

    Murasato, Yukio; Kaneko, Osamu; Sasaki, Susumu; Kawashima, Nobuki; Kibune, Tadashi.

    1976-01-01

    Ion temperature and neutral atmospheric temperature in lower ionospheric layer were measured by the ''Shadow Method'', which has been developed and improved by the authors. The principle of the method, which utilizes the fact that the shadow due to the reduction of density of medium behind on obstacle depends upon the flow velocity and the temperature of the medium, is briefly explained together with the apparatus used for the measurement. A pair of the Langmuir probes with the interval of 44 mm was used for the measurement of ion temperature. For the measurement of the neutral atmospheric temperature, its density was measured with the ionization gauge. The measuring system was mounted on the K-10-11 rocket, and launched from KSC at 2 p.m., September 24, 1975. Although the rocket itself reached its highest altitude of 196 km, the temperature measurement was performed between the altitude of 80 km and 140 km. The measured temperatures of ions, neutral atmosphere, and electrons are presented as the functions of altitude. It is confirmed that the temperatures of ions and neutral atmosphere are lower than that of electrons in that range of altitude. (Aoki, K.)

  18. Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne Ardenne, Reims (France); Koskinen, T., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)

    2017-09-20

    We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b’s atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.

  19. Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow

    NARCIS (Netherlands)

    Bense, Victor F.; Kurylyk, Barret L.; Daal, van Jonathan; Ploeg, van der Martine J.; Carey, Sean K.

    2017-01-01

    Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state

  20. Temperature, salinity, species identification, nutrient profiles and meteorological data collected by bottle and net in the Northwest Pacific Ocean from 6/10/1975 - 8/5/1975 (NODC Accession 0000194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, species identification, and other data were collected using net and bottle casts from the RYOFU MARU in the Northwest Pacific Ocean....

  1. Temperature profile and water depth data collected from HARRIOT LANE in the NW Atlantic (limit-40 W) from 20 February 1987 to 22 February 1987 (NODC Accession 8700096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the HARRIOT LANE in the Northwest Atlantic Ocean and TOGA Area - Atlantic Ocean. Data...

  2. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the NW Atlantic Ocean for 1987-05-31 (NODC Accession 8700225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC Harriot Lane in the Northwest Atlantic Ocean and TOGA Area - Atlantic...

  3. Temperature profile and oxygen data collected from multiple ships using CTD casts in a world wide distribution from 04 September 1979 to 15 April 1998 (NODC Accession 0002716)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and oxygen data were collected using CTD casts in a world wide distribution from multiple platforms from 04 September 1979 to 15 April 1998. Data...

  4. Temperature profile data collected using CTD casts from the JAMES CLARK ROSS in the South Atlantic Ocean from 15 November 1996 to 20 November 1996 (NODC Accession 0000874)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the South Atlantic Ocean from JAMES CLARK ROSS. Data were collected from 15 November 1996 to 20 November...

  5. Temperature profile data collected using CTD casts from the JAMES CLARK ROSS in the South Atlantic Ocean from 15 November 1994 to 21 November 1994 (NODC Accession 0000873)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the South Atlantic Ocean from JAMES CLARK ROSS. Data were collected from 15 November 1994 to 21 November...

  6. Hall Thruster Modeling with a Given Temperature Profile

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  7. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    Science.gov (United States)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  8. Non-LTE profiles of the Al I autoionization lines. [for solar model atmospheres

    Science.gov (United States)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at 1932 and 1936 A through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. The results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.

  9. Temperature profile and water depth data collected from HARRIOT LANE in the NW Atlantic (limit-40 W) from 29 December 1986 to 31 December 1986 (NODC Accession 8700074)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XTB casts in the NW Atlantic Ocean from the HARRIOT LANE. Data were collected from 29 December...

  10. Temperature profile data from XBT and BT casts in the North Atlantic Ocean through NOAA Ship RESEARCHER from 1979-10-25 to 1979-11-06 (NODC Accession 8100575)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 25 October 1979 to 06 November 1979. Data...

  11. Temperature profile and other data from CTD casts in the South Pacific Ocean from NOAA Ship RESEARCHER from 1982-11-21 to 1983-07-24 (NODC Accession 8400113)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the South Pacific Ocean from 21 November 1982 to 24 July 1983. Data...

  12. Temperature profile data collected using CTD casts from NOAA Ship RESEARCHER in the TOGA area - Atlantic Ocean from 1980-02-21 to 1980-03-07 (NODC Accession 8200239)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the TOGA area - Atlantic Ocean from 21 February 1980 to 07 March 1980....

  13. Temperature profile and water depth data collected from COCHRANE in the South China Sea and other seas from 09 January 1987 to 22 February 1987 (NODC Accession 8700095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the COCHRANE in the South China and other seas. Data were collected from 09 January...

  14. Observation of electron temperature profile in HL-1M tokamak

    International Nuclear Information System (INIS)

    Cao Jianyong; Xu Deming; Ding Xuantong

    2000-01-01

    The principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been described. Several results under different conditions on HL-1M tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre

  15. Temperature profile and other data from CTD casts in the Pacific Ocean as part of the Vents Program from 01 June 1985 to 31 August 2001 (NODC Accession 0000656)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, conductivity, pressure, and other data were collected using CTD casts in the Pacific Ocean from 01 June 1985 to 31 August 2001. Data were...

  16. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  17. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  18. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  19. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  20. Temperature profile and water depth data collected from SAXON STAR and other platforms in a World wide distribution from 09 March 1983 to 12 November 1986 (NODC Accession 8700035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the SAXON STAR and other platforms in a World wide distribution. Data were collected...

  1. Temperature profile and other data collected using CTD casts in the North Atlantic Ocean from NOAA Ship RESEARCHER from 1980-01-22 to 1980-02-03 (NODC Accession 8900302)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 22 January 1980 to 03 February 1980....

  2. Water temperature, salinity and other profiles from CTD taken from near-shore well in Puerto Morelos from 2014-03-27 to 2014-03-28 (NCEI Accession 0163741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a 12-hr time series of CTD profiles of water temperature and salinity taken from near-shore well in Puerto Morelos from 2014-03-27 to 2014-03-28. Data were...

  3. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2001-05-01

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  4. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  5. Temperature profile and nutrients data collected using bottle and CTD casts from the HESPERIDES in the South Atlantic Ocean from 11 February 1995 to 20 February 1995 (NODC Accession 0000870)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle and CTD casts in the South Atlantic Ocean from HESPERIDES. Data were collected from 11 February...

  6. Temperature profile and nutrients data collected using bottle and CTD casts from the HESPERIDES in the South Atlantic Ocean from 15 February 1996 to 21 February 1996 (NODC Accession 0000871)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle and CTD casts in the South Atlantic Ocean from HESPERIDES. Data were collected from 15 February...

  7. Structure of the Venusian atmosphere from surface up to 100 km

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Linkin, V. M.; Khatuntsev, I. V.; Maiorov, B. S.

    2006-07-01

    The goal of this paper is to summarize the experimental data on the atmosphere of Venus obtained after 1985, when the VIRA (Venus International Reference Atmosphere) or COSPAR model was published. Among the most important results that have appeared since then are the following: measurements of the vertical temperature profile by the VEGA spacecraft with high precision and high altitude resolution; measurements made with balloons of the VEGA spacecraft; radio occultation measurements of Magellan, Venera-15, and Venera-16; and temperature profiles derived from the data of infrared spectrometry obtained by Venera-15. The new result as compared to VIRA is the creation of a model of the atmosphere in the altitude range 55 to 100 km dependent on local time. This model is presented in our paper in tabulated form.

  8. Temperature profile data from XBT casts in the TOGA area of the Pacific Ocean from NOAA Ship OCEANOGRAPHER from 1986-11-13 to 1987-01-12 (NODC Accession 8700330)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts in the TOGA area of the Pacific Ocean from NOAA Ship OCEANOGRAPHER from 13 November 1986 to 12 January 1987....

  9. Temperature profile data from XBT casts in a World-wide distribution from NOAA Ship RESEARCHER and other platforms from 1982-05-24 to 1996-03-21 (NODC Accession 9600116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts in a World-wide distribution from NOAA Ship RESEARCHER and other platforms from 24 May 1982 to 21 March 1996....

  10. Temperature profile data collected from XBT casts in the Indian Ocean from the HMAS MELBOURNE and other vessels from 01 January 1991 to 31 December 2001 (NODC Accession 0000714)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the HMAS MELBOURNE and other vessels in the Indian Ocean from 01 January 1991 to 31 December 2001. Data were...

  11. Temperature and salinity profile data from CTD casts from the NOAA ship WHITING from the North Atlantic Ocean from 5 April 1995 to 1 June 1995 (NODC Accession 9500092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected from CTD cast from the NOAA ship WHITING from the North Atlantic Ocean. Data were collected from 5 April 1995 to...

  12. Algorithm Development for Multi-Energy SXR based Electron Temperature Profile Reconstruction

    Science.gov (United States)

    Clayton, D. J.; Tritz, K.; Finkenthal, M.; Kumar, D.; Stutman, D.

    2012-10-01

    New techniques utilizing computational tools such as neural networks and genetic algorithms are being developed to infer plasma electron temperature profiles on fast time scales (> 10 kHz) from multi-energy soft-x-ray (ME-SXR) diagnostics. Traditionally, a two-foil SXR technique, using the ratio of filtered continuum emission measured by two SXR detectors, has been employed on fusion devices as an indirect method of measuring electron temperature. However, these measurements can be susceptible to large errors due to uncertainties in time-evolving impurity density profiles, leading to unreliable temperature measurements. To correct this problem, measurements using ME-SXR diagnostics, which use three or more filtered SXR arrays to distinguish line and continuum emission from various impurities, in conjunction with constraints from spectroscopic diagnostics, can be used to account for unknown or time evolving impurity profiles [K. Tritz et al, Bull. Am. Phys. Soc. Vol. 56, No. 12 (2011), PP9.00067]. On NSTX, ME-SXR diagnostics can be used for fast (10-100 kHz) temperature profile measurements, using a Thomson scattering diagnostic (60 Hz) for periodic normalization. The use of more advanced algorithms, such as neural network processing, can decouple the reconstruction of the temperature profile from spectral modeling.

  13. Preliminary study of the offshore wind and temperature profiles at the North of the Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David; Ricalde-Cab, Lifter

    2011-01-01

    Highlights: → This is the first study that reports the properties of the vertical wind resources for the offshore conditions of the North coast of the Yucatan Peninsula. → A significant and detailed analysis of the thermal patterns has revealed a complex structure of the atmospheric boundary layer close to the shore. → The structure of the diurnal wind patterns was assessed to produce an important reference for the wind resource availability in the study region. → It was identified that the sea breeze blows in directions almost parallel to the shoreline of the North of the Yucatan Peninsula during the majority of the 24 h cycle. → The analysis of the offshore data revealed a persistent non-uniform surface boundary layer developed as result of the advection of a warn air over a cold sea. - Abstract: The stability conditions in the atmospheric boundary layer, the intensity of the wind speeds and consequently the energy potential available in offshore conditions are highly influenced by the distance from the coastline and the differences between the air and sea temperatures. This paper presents a preliminary research undertook to study the offshore wind and temperature vertical profiles at the North-West of the Yucatan Peninsula coast. Ten minute averages were recorded over approximately 2 years from sensors installed at two different heights on a communication tower located at 6.65 km from the coastline. The results have shown that the offshore wind is thermally driven by differential heating of land and sea producing breeze patterns which veer to blow parallel to the coast under the action of the Coriolis force. To investigate further, a dataset of hourly sea surface temperatures derived from GEOS Satellite thermal maps was combined with the onsite measured data to study its effect on the vertical temperature profile. The results suggested largely unstable conditions and the potentially development of a shallow Stable Internal Boundary Layer which occurs

  14. Degradation of ZrN films at high temperature under controlled atmosphere

    International Nuclear Information System (INIS)

    Lu, F.-H.; Lo, W.-Z.

    2004-01-01

    The degradation of ZrN films deposited onto Si substrates by unbalanced magnetron sputtering was investigated over temperatures of 300-1200 deg. C in different atmospheres by analyzing changes in color and appearance, as well as microstructures. The atmospheres contained air, nitrogen, and forming gas (N 2 /H 2 =9), which exhibited drastically different oxygen/nitrogen partial pressure ratios. The resultant degradation included mainly color changes and formation of blisters on the film surface. Color change was associated with the oxidation of the nitride film, which was analyzed by looking into the Gibbs free-energy changes at various temperatures and oxygen partial pressures. Two types of blisters occurred at different temperature ranges. Several large round blisters, denoted as A-type blisters, occurring at low temperatures originated from the large residual stress in the films. Many small irregular blisters, denoted as B-type blisters, appearing at relatively high temperatures resulted from the oxidation of the film

  15. Observations on Stratospheric-Mesospheric-Thermospheric temperatures using Indian MST radar and co-located LIDAR during Leonid Meteor Shower (LMS

    Directory of Open Access Journals (Sweden)

    R. Selvamurugan

    2002-11-01

    Full Text Available The temporal and height statistics of the occurrence of meteor trails during the Leonid meteor shower revealed the capability of the Indian MST radar to record large numbers of meteor trails. The distribution of radio meteor trails due to a Leonid meteor shower in space and time provided a unique opportunity to construct the height profiles of lower thermospheric temperatures and winds, with good time and height resolution. There was a four-fold increase in the meteor trails observed during the LMS compared to a typical non-shower day. The temperatures were found to be in excellent continuity with the temperature profiles below the radio meteor region derived from the co-located Nd-Yag LIDAR and the maximum height of the temperature profile was extended from the LIDAR to ~110 km. There are, how-ever, some significant differences between the observed profiles and the CIRA-86 model profiles. The first results on the meteor statistics and neutral temperature are presented and discussed below.  Key words. Atmospheric composition and structure (pres-sure, density, and temperature History of geophysics (at-mospheric sciences Meteorology and atmospheric dynamics (middle atmosphere dynamics

  16. Temperature profile and other data collected from XBT casts in South Pacific Ocean from BOTANY BAY and other platforms from 24 January 1991 to 20 November 1991 (NODC Accession 9400208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using XBT casts from BOTANY BAY and other platforms in South Pacific Ocean. Data were collected from 24 January...

  17. Temperature profile data from XBT casts from a world-wide distribution from the SEA-LAND NAVIGATOR and other platforms from 21 September 2000 to 18 March 2002 (NODC Accession 0000696)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected by deploying XBT casts from the SEA-LAND NAVIGATOR and other platforms over a world-wide distribution from 21 September 2000 to...

  18. Iterative approach to self-adapting and altitude-dependent regularization for atmospheric profile retrievals.

    Science.gov (United States)

    Ridolfi, Marco; Sgheri, Luca

    2011-12-19

    In this paper we present the IVS (Iterative Variable Strength) method, an altitude-dependent, self-adapting Tikhonov regularization scheme for atmospheric profile retrievals. The method is based on a similar scheme we proposed in 2009. The new method does not need any specifically tuned minimization routine, hence it is more robust and faster. We test the self-consistency of the method using simulated observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We then compare the new method with both our previous scheme and the scalar method currently implemented in the MIPAS on-line processor, using both synthetic and real atmospheric limb measurements. The IVS method shows very good performances.

  19. An optical fiber expendable seawater temperature/depth profile sensor

    Science.gov (United States)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  20. Temperature profile and other data collected using CTD casts in the SE Pacific Ocean from NOAA Ship RESEARCHER from 1984-06-12 to 1984-06-30 (NODC Accession 8500249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the SE Pacific Ocean from 12 June 1984 to 30 June 1984. Data were...

  1. Temperature profile data collected using XBT and BT casts in the North Atlantic Ocean from NOAA Ship RESEARCHER from 1975-07-09 to 1975-07-28 (NODC Accession 8600278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 09 July 1975 to 28 July 1975. Data were...

  2. Water level sensor and temperature profile detector

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  3. Water-level sensor and temperature-profile detector

    Science.gov (United States)

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  4. Water level sensor and temperature profile detector

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows

  5. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    Science.gov (United States)

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  6. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  7. Corrections for hydrostatic atmospheric models: radii and effective temperatures of Wolf Rayet stars

    International Nuclear Information System (INIS)

    Loore, C. de; Hellings, P.; Lamers, H.J.G.L.M.

    1982-01-01

    With the assumption of plane-parallel hydrostatic atmospheres, used generally for the computation of evolutionary models, the radii of WR stars are seriously underestimated. The true atmospheres may be very extended, due to the effect of the stellar wind. Instead of these hydrostatic atmospheres the authors consider dynamical atmospheres adopting a velocity law. The equation of the optical depth is integrated outwards using the equation of continuity. The ''hydrostatic'' radii are to be multiplied with a factor 2 to 8, and the effective temperatures with a factor 0.8 to 0.35 when Wolf Rayet characteristics for the wind are considered, and WR mass loss rates are used. With these corrections the effective temperatures of the theoretical models, which are helium burning Roche lobe overflow remnants, range between 30,000 K and 50,000 K. Effective temperatures calculated in the hydrostatic hypothesis can be as high as 150,000 K for helium burning RLOF-remnants with WR mass loss rates. (Auth.)

  8. TES/Aura L2 Summary Profiles V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates, along with retrieved surface temperature, cloud effective optical depth, column estimates, quality flags, and a priori...

  9. TES/Aura L2 Summary Profiles V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates, along with retrieved surface temperature, cloud effective optical depth, column estimates, quality flags, and a priori...

  10. 915-MHz Radar Wind Profiler (915RWP) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R

    2005-01-01

    The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

  11. Temperature profile and pressure data collected from bottle casts in Banda Sea and other areas from BARUNA JAYA I from 08 August 1993 to 25 February 1994 (NODC Accession 0000436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using bottle casts in the Banda Sea, Celebes Sea, Ceram Sea, and Java Sea from BARUNA JAYA I. Data were...

  12. Temperature profile data from NOAA Ship JOHN N. COBB using CTD casts as part of the larval fish survey from 1991-05-21 to 1991-06-28 (NODC Accession 0000331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from NOAA Ship JOHN N. COBB from May 21, 1991 to June 28, 1991. Data were collected by University of Alaska - Fairbanks;...

  13. Temperature profile and water depth data collected from RATHBURNE in the NW Pacific (limit-180 W) and other areas from 02 February 1986 to 28 February 1986 (NODC Accession 8600093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the RATHBURNE in the Northwest Pacific Ocean and other areas. Data were collected from...

  14. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  15. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of elevated atmospheric CO2 concentration and temperature on the soil profile methane distribution and diffusion in rice-wheat rotation system.

    Science.gov (United States)

    Yang, Bo; Chen, Zhaozhi; Zhang, Man; Zhang, Heng; Zhang, Xuhui; Pan, Genxing; Zou, Jianwen; Xiong, Zhengqin

    2015-06-01

    The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments: ambient conditions (CKs), CO2 concentration elevated to ~500 μmol/mol (FACE), temperature elevated by ca. 2°C (T) and combined elevation of CO2 concentration and temperature (FACE+T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE+T and T treatments, respectively, at the 7 cm depth during the rice season (pCO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem (p<0.05). Copyright © 2015. Published by Elsevier B.V.

  17. Temperature profile and water depth data collected from BROOKE using BT and XBT casts in the North Pacific Ocean from 03 October 1975 to 18 November 1977 (NODC Accession 8900225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the BROOKE in the North Pacific Ocean and TOGA Area - Pacific Ocean. Data were...

  18. Temperature profile and other data collected using CTD casts in the TOGA Area - Atlantic Ocean from NOAA Ship RESEARCHER from 1985-04-18 to 1986-11-20 (NODC Accession 8700149)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the TOGA Area - Atlantic Ocean from 18 April 1985 to 20 November 1986....

  19. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December 1993 (NODC Accession 9900057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 29 March 1991 to 24 December...

  20. Temperature profile and water depth data from BT and XBT casts in the Atlantic Ocean from USCGC POLAR SEA from 14 December 1983 to 06 May 1984 (NODC Accession 8600108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC POLAR SEA in the Atlantic Ocean. Data were collected from 14 December...

  1. Temperature profile and current speed/direction data from ADCP, XBT, buoy, and CTD casts in the Northwest Pacific Ocean from 01 March 1989 to 01 June 1995 (NODC Accession 0000031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and current speed/direction data were collected using ADCP, XBT, buoy, and CTD casts in the Northwest Pacific Ocean from 01 March 1989 to 01 June...

  2. Temperature profile and other data collected using CTD casts in the TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER from 1984-04-09 to 1984-11-05 (NODC Accession 8800072)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 09 April 1984 to 05 November 1984....

  3. Delayed XBT data collected by Atlantic Oceanographic Meteorological Laboratory (AOML) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 3/27/1996 - 11/28/1999 (NODC Accession 0000155)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from High Density XBT AX07 lines from Ships TOLUCA, TMM MORELOS, and MITLA from the North Atlantic Oceans from 27 March 1996 to...

  4. Temperature profile and nutrients data collected using bottle and CTD casts from the GARCIA DEL CID in the Mediterranean Sea from 02 November 1996 to 08 November 1996 (NODC Accession 0000875)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle and CTD casts in the Mediterranean Sea from the GARCIA DEL CID. Data were collected from 02...

  5. Temperature profile and nutrients data collected using bottle casts from the POLAR DUKE in the Ross Sea and Southern Oceans from 05 February 1992 to 28 February 1992 (NODC Accession 0000888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts in the Ross Sea and Southern Oceans from the POLAR DUKE. Data were collected from 05...

  6. Temperature profiles from XBT casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-11-08 to 1974-11-14 (NODC Accession 7500079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DOLPHIN from 08 November 1974 to 14 November 1974. Data were collected by the National Marine Fisheries...

  7. Temperature profile and water depth collected from ZAMBEZE and other platforms using BT and XBT casts in the Atlantic Ocean from 21 July 1981 to 02 December 1985 (NODC Accession 8600293)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the ZAMBEZE and other platforms in the Northeast / Southwest Atlantic Ocean. Data...

  8. Temperature profile and nutrients data collected using bottle casts from the POLAR DUKE in the Ross Sea and Southern Oceans from 08 October 1996 to 06 November 1996 (NODC Accession 0000894)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts in the Ross Sea and Southern Oceans from POLAR DUKE. Data were collected from 08 October...

  9. Temperature profile and nutrients data collected using bottle casts from the POLAR DUKE in the Ross Sea and Southern Oceans from 06 September 1996 to 12 September 1996 (NODC Accession 0000890)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts in the Ross Sea and Southern Oceans from POLAR DUKE. Data were collected from 06 September...

  10. Temperature profile and nutrients data collected using bottle casts from the POLAR DUKE in the Ross Sea and Southern Oceans from 13 November 1996 to 26 November 1996 (NODC Accession 0000895)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts in the Ross Sea and Southern Oceans from the POLAR DUKE. Data were collected from 13...

  11. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, Ahmad, E-mail: gholizadeh@du.ac.ir; Jafari, Elahe, E-mail: ah_gh1359@yahoo.com

    2017-01-15

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe{sup 3+}-ion concentration due to the presence of Fe{sup 4+} and Fe{sup 2+} ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere. - Highlights: • Different sintering atmosphere and temperature cause substantial differences in Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles. • The saturation magnetization gradually grows. • A maximum 63 emu/g was achieved at 600 °C under a reducing atmosphere.

  12. Thermal structure of the Martian atmosphere retrieved from the IR spectrometry in the 15 μm CO2 band: input to MIRA

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Grassi, D.; Igantiev, N. I.; Moroz, V. I.

    This paper describes one of the sources of the data concerning the thermal structure of the Martian atmosphere, based on the thermal IR spectrometry method. It allows to investigate the Martian atmosphere below 55 km by retrieving the temperature profiles from the 15 μm CO2 band. This approach enables to reach the vertical resolution of several kilometers and the temperature accuracy of several Kelvins. An aerosol abundance, which influences the temperature profile, is obtained from the continuum of the same spectrum parallel with the temperature profile and is taken into account in the temperature retrieval procedure in a self consistent way. Although this method has the limited vertical resolution, it possesses a significant advantage: the thermal IR spectrometry allows to monitor the temperature profiles with a good coverage both in space and local time. The Planetary Fourier spectrometer on board of Mars Express has the spectral range from 250 to 8000 cm-1 and a high spectral resolution of about 2 cm-1. Vertical temperature profiles retrieval is one of the main scientific goals of the experiment. The important data are expected to be obtained on the vertical thermal structure of the atmosphere, and its dependence on latitude, longitude, season, local time, clouds and dust loadings. These results should give a significant input in the future MIRA, being included in the Chapter “Structure of the atmosphere from the surface to 100 km”.

  13. Temperature profile data collected using BT and XBT casts in the TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER from 1984-06-09 to 1984-06-21 (NODC Accession 8700051)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 09 June 1984 to 21 June 1984. Data...

  14. Current meter and temperature profile data from current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994 (NODC Accession 9700042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using current meter and buoy casts in the TOGA area of Pacific Ocean from 27 April 1993 to 09 June 1994....

  15. Temperature profile data collected using BT and XBT casts from NOAA Ship RESEARCHER in the TOGA Area- Pacific Ocean from 1984-04-11 to 1984-05-05 (NODC Accession 8800211)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 11 April 1984 to 05 May 1984. Data...

  16. Temperature profile and other data from surface measurements casts from the R/V ATLANTIC in a world-wide survey from 17 March 1900 to 08 March 1998 (NODC Accession 0000241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected from the R/V ATLANTIC in a world-wide distribution from March 17, 1900 to March 8, 1996. Data were collected by...

  17. Temperature profile data from CTD casts as part of the Exxon Valdez Oil Spill Study and Norton Sound Project from 1985-07-14 to 1989-09-08 (NODC Accession 0000360)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from the O'HARE and NOAA Ship JOHN N. COBB from July 14, 1985 to September 8, 1989. Data were submitted by University of...

  18. The influence of atmospheric circulation on the air pollution concentration and temperature inversion in Sosnowiec. Case study

    Directory of Open Access Journals (Sweden)

    Widawski Artur

    2015-06-01

    Full Text Available Sosnowiec is located in the Katowice Region, which is the most urbanized and industrialized region in Poland. Urban areas of such character favor enhancement of pollution concentration in the atmosphere and the consequent emergence of smog. Local meteorological and circulation conditions significantly influence not only on the air pollution level but also change air temperature considerably in their centers and immediate vicinities. The synoptic situation also plays the major role in dispersal and concentration of air pollutants and changes in temperature profile. One of the most important are the near-ground (100 m inversions of temperature revealed their highest values on clear winter days and sometimes stay still for the whole day and night. Air temperature inversions in Sosnowiec occur mainly during anticyclone stagnation (Ca-anticyclone centre and Ka-anticyclonic ridge and in anticyclones with air advection from the south and southwest (Sa and SWa which cause significantly increase of air pollution values. The detailed evaluation of the influence of circulation types on the appearance of a particular concentration of pollutants carried out in this work has confirmed the predominant influence of individual circulation types on the development of air pollution levels at the Katowice region. This paper presents research case study results of the thermal structure of the near-ground atmospheric layer (100 m and air pollution parameters (PM10, SO2, NO, NO2 changes in selected days of 2005 year according to regional synoptic circulation types. The changes in urban environment must be taken into account in analyses of multiyear trends of air temperature and air conditions on the regional and global scales.

  19. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  20. Temperature profile data from Mechanical Bathythermograph (MBT) casts from the BERING STRAIT, STRANGER, and other platforms in the North Pacific, Coastal Equatorial Pacific, and other locations from 1945 to 1968 (NODC Accession 0000507)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from Mechanical Bathythermograph (MBT) casts from the BERING STRAIT, STRANGER, and other platforms. Data were collected from 02...

  1. Temperature profile and water depth data collected from AMERICAN VIKING using BT and XBT casts in the Northeast Pacific Ocean from 23 September 1986 to 17 September 1987 (NODC Accession 8800048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the AMERICAN VIKING in the Northeast Pacific Ocean. Data were collected from 23...

  2. Temperature profile and water depth data collected from ANGO and other platforms using XBT casts in the TOGA Area - Atlantic from 14 February 1992 to 13 April 1993 (NODC Accession 9400047)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using XBT casts from the ANGO and other platforms in the TOGA - Atlantic Ocean. Data were collected from 14...

  3. Electron Bernstein wave electron temperature profile diagnostic (invited)

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., ω pe >>Omega ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k perp . In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B 0 ∼2kG, e >∼10 13 cm -3 and T e ∼10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤T e and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ω pe >>Omega ce

  4. Temperature profile and water depth data collected from USS THACH using BT and XBT casts in the Persian Sea from 04 December 1987 to 08 December 1987 (NODC Accession 8800030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS THACH in the Persian Sea. Data were collected from 04 December 1987 to 08...

  5. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    Science.gov (United States)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model

  6. Atmospheric Profiles of Carbon Dioxide Obtained with a UAS: Constraints on Square Kilometre Scale Carbon Budgets

    Science.gov (United States)

    Kunz, M.; Lavric, J. V.; Grant, R. H.; Gerbig, C.; Heimann, M.; Flatt, J. E.; Zeeman, M. J.; Wolf, B.

    2016-12-01

    The exchange of carbon between biosphere and atmosphere is a topic of high interest, particularly because the magnitude of biospheric climate feedback is uncertain. Soil chambers and eddy covariance systems, the traditional tools for the measurement of exchange fluxes, are subject to inherent limitations: chambers cover only small areas of typically less than on square meter, and eddy covariance is not applicable under very low wind conditions. Complementary methods can help to deal with these limitations and provide more confidence in up-scaling. During the ScaleX 2016 campaign an ecosystem was studied with a combination of multiple measurement approaches, including soil chambers, an eddy covariance station, a weather station, quasi-continuous CO2 measurements on a 10 m tower, multiple UAS with different sensors and remote sensing of temperature, humidity and wind profiles. The campaign took place at Fendt in Southern Germany on a flat valley floor covered by grass. We deployed COCAP, a compact carbon dioxide analyser for airborne platforms developed at the Max Planck Institute for Biogeochemistry in Jena, on a commercial multicopter (DJI S1000). COCAP measures carbon dioxide dry air mole fraction to an accuracy of 2 ppm as well as ambient pressure, temperature and relative humidity. At a total mass of 1 kg it contains a GPS receiver, on-board data logging capabilities and a radio transmitter which allows for real-time data visualisation on a ground station computer. In consecutive vertical profile measurements at night-time, reaching up to a maximum height of 150 m, we see a strong build-up of CO2 close to the ground which we attribute to exchange fluxes from the surface into the atmosphere that are trapped below a nocturnal inversion. We estimate these fluxes from the change in observed column amount of CO2 over time and compare our results to other methods. Challenges in the measurement and data analysis as well as the influence of wind, rotor downwash and

  7. Temperature profile and pressure data from CTD casts in the TOGA area of the Pacific Ocean from NOAA Ship DISCOVERER from 1992-09-06 to 1992-12-08 (NODC Accession 9400195)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD casts from NOAA Ship DISCOVERER in the TOGA area of the Pacific Ocean from 06 September 1992 to 08...

  8. Oceanographic water temperature and salinity profiles from CTD casts collected aboard the Navigation Response Team 6 in the Pacific Ocean from 2004-10-07 to 2005-07-19 (NODC Accession 0002666)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the Northeast Pacific Ocean from the NAVIGATION RESPONSE TEAM 6 from 07 October 2004 to 19 July 2005. Data...

  9. Temperature profile and water depth collected from BT and XBT casts in the Northwest Atlantic Ocean from SEDCO BP 471 from 03 November 1985 to 23 December 1985 (NODC Accession 8600138)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the SEDCO BP 471 in the Northwest Atlantic Ocean. Data were collected from 03...

  10. Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Hair Johnathan

    2016-01-01

    Full Text Available First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center’s (LaRC High Spectral Resolution Lidar (HSRL-1 during the 17 July – 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR. This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm from approximately 9km altitude. In addition, for the first time HSRL seawater backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua satellite ocean retrievals.

  11. Temperature profile and water depth data collected from USS McInerney from expendable bathythermographs (XBT) in the Red Sea from 07 December 1992 to 28 December 1992 (NODC Accession 9300017)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS McInerney in the Red Sea. Data were collected from 07 December 1992 to 28...

  12. Constraining the Structure of Hot Jupiter Atmospheres Using a Hybrid Version of the NEMESIS Retrieval Algorithm

    Science.gov (United States)

    Badhan, Mahmuda A.; Mandell, Avi M.; Hesman, Brigette; Nixon, Conor; Deming, Drake; Irwin, Patrick; Barstow, Joanna; Garland, Ryan

    2015-11-01

    Understanding the formation environments and evolution scenarios of planets in nearby planetary systems requires robust measures for constraining their atmospheric physical properties. Here we have utilized a combination of two different parameter retrieval approaches, Optimal Estimation and Markov Chain Monte Carlo, as part of the well-validated NEMESIS atmospheric retrieval code, to infer a range of temperature profiles and molecular abundances of H2O, CO2, CH4 and CO from available dayside thermal emission observations of several hot-Jupiter candidates. In order to keep the number of parameters low and henceforth retrieve more plausible profile shapes, we have used a parametrized form of the temperature profile based upon an analytic radiative equilibrium derivation in Guillot et al. 2010 (Line et al. 2012, 2014). We show retrieval results on published spectroscopic and photometric data from both the Hubble Space Telescope and Spitzer missions, and compare them with simulations from the upcoming JWST mission. In addition, since NEMESIS utilizes correlated distribution of absorption coefficients (k-distribution) amongst atmospheric layers to compute these models, updates to spectroscopic databases can impact retrievals quite significantly for such high-temperature atmospheres. As high-temperature line databases are continually being improved, we also compare retrievals between old and newer databases.

  13. Temperature profiles from XBT casts from the JENNIE & JACKIE as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1978-07-31 to 1978-08-02 (NODC Accession 7800655)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the JENNIE & JACKIE from 31 July 1978 to 02 August 1978. Data were collected by the National Marine...

  14. Temperature profile and nutrients data collected using bottle casts from the NATHANIEL B. PALMER in the Ross Sea and Southern Oceans from 16 December 1995 to 13 January 1996 (NODC Accession 0000889)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts in the Ross Sea and Southern Oceans from the NATHANIEL B. PALMER. Data were collected from...

  15. Temperature profiles from XBT casts from the MARINE EVANGELINE as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1981-08-25 to 1981-08-26 (NODC Accession 8100678)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the MARINE EVANGELINE from 25 August 1981 to 26 August 1981. Data were collected by the National Marine...

  16. Temperature, salinity, and nutrients profiles from bottle and CTD casts from a world-wide distribution from the OCEANIA and other platforms from 01 January 1928 to 31 December 1999 (NODC Accession 0000204)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and nutrients profiles were collected from bottle and CTD casts from the OCEANIA from 01 January 1928 to 31 December 1999. Data were collected...

  17. Land-Atmosphere Feedback Experiment (LAFE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wulfmeyer, Volker [University of Hohenheim; Turner, David [NOAA National Severe Storms Laboratory

    2016-07-01

    The Land-Atmosphere Feedback Experiment (LAFE; pronounced “la-fey”) deploys several state-of-the-art scanning lidar and remote sensing systems to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site. These instruments will augment the ARM instrument suite in order to collect a data set for studying feedback processes between the land surface and the atmosphere. The novel synergy of remote-sensing systems will be applied for simultaneous measurements of land-surface fluxes and horizontal and vertical transport processes in the atmospheric convective boundary layer (CBL). The impact of spatial inhomogeneities of the soil-vegetation continuum on land-surface-atmosphere (LSA) feedback will be studied using the scanning capability of the instrumentation. The time period of the observations is August 2017, because large differences in surface fluxes between different fields and bare soil can be observed, e.g., pastures versus fields where the wheat has already been harvested. The remote sensing system synergy will consist of three components: 1) The SGP water vapor and temperature Raman lidar (SRL), the SGP Doppler lidar (SDL), and the National Center for Atmospheric Research (NCAR) water vapor differential absorption lidar (DIAL) (NDIAL) mainly in vertical staring modes to measure mean profiles and gradients of moisture, temperature, and horizontal wind. They will also measure profiles of higher-order turbulent moments in the water vapor and wind fields and profiles of the latent heat flux. 2) A novel scanning lidar system synergy consisting of the National Oceanic and Atmospheric Administration (NOAA) High-Resolution Doppler lidar (HRDL), the University of Hohenheim (UHOH) water-vapor differential absorption lidar (UDIAL), and the UHOH temperature Raman lidar (URL). These systems will perform coordinated range-height indicator (RHI) scans from just above the canopy level to the

  18. HIGH-TEMPERATURE PHOTOCHEMISTRY IN THE ATMOSPHERE OF HD 189733b

    International Nuclear Information System (INIS)

    Line, M. R.; Yung, Y. L.; Liang, M. C.

    2010-01-01

    Recent infrared spectroscopy of hot exoplanets is beginning to reveal their atmospheric composition. Deep within the planetary atmosphere, the composition is controlled by thermochemical equilibrium. Photochemistry becomes important higher in the atmosphere, at levels above ∼1 bar. These two chemistries compete between ∼1 and 10 bars in hot-Jupiter-like atmospheres, depending on the strength of the eddy mixing and temperature. HD 189733b provides an excellent laboratory in which to study the consequences of chemistry of hot atmospheres. The recent spectra of HD 189733b contain signatures of CH 4 , CO 2 , CO, and H 2 O. Here we identify the primary chemical pathways that govern the abundances of CH 4 , CO 2 , CO, and H 2 O in the cases of thermochemical equilibrium chemistry, photochemistry, and their combination. Our results suggest that the disequilibrium mechanisms can significantly enhance the abundances of these species above their thermochemical equilibrium value, so some caution must be taken when assuming that an atmosphere is in strict thermochemical equilibrium.

  19. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations

    Science.gov (United States)

    Koskinen, T. T.; Guerlet, S.

    2018-06-01

    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  20. A data-driven approach for retrieving temperatures and abundances in brown dwarf atmospheres

    OpenAIRE

    Line, MR; Fortney, JJ; Marley, MS; Sorahana, S

    2014-01-01

    © 2014. The American Astronomical Society. All rights reserved. Brown dwarf spectra contain a wealth of information about their molecular abundances, temperature structure, and gravity. We present a new data driven retrieval approach, previously used in planetary atmosphere studies, to extract the molecular abundances and temperature structure from brown dwarf spectra. The approach makes few a priori physical assumptions about the state of the atmosphere. The feasibility of the approach is fi...

  1. Temperature profile and pressure data from CTD casts in the TOGA area of the Pacific Ocean from NOAA Ship DISCOVERER from 1994-05-11 to 1994-11-19 (NODC Accession 9600136)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD casts from NOAA Ship DISCOVERER in the TOGA area of the Pacific Ocean from 11 May 1994 to 19 November...

  2. Temperature profile and other data collected using CTD from NOAA Ship RESEARCHER and VIRGINIA KEY in the Gulf of Mexico from 1978-06-12 to 1978-12-19 (NODC Accession 7900250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER and VIRGINIA KEY in the Gulf of Mexico from 12 June 1978 to 19 December...

  3. Temperature profile data collected using XBT and BT casts in a World-wide distribution from NOAA Ship RESEARCHER and other platforms from 1970-09-30 to 1979-08-05 (NODC Accession 8300089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in a World-wide distribution from 30 September 1970 to...

  4. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the Northwest Atlantic Ocean from 01 December 1987 to 05 January 1988 (NODC Accession 8800015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC HARRIOT LANE in the Northwest Atlantic Ocean. Data were collected from...

  5. Temperature profile and water depth data collected from USCGC HARRIET LANE using BT and XBT casts in the Northwest Atlantic Ocean from 21 July 1988 to 18 August 1988 (NODC Accession 8800256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC HARRIET LANE in the Northwest Atlantic Ocean. Data were collected from...

  6. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the Northwest Atlantic Ocean from 09 March 1988 to 10 March 1988 (NODC Accession 8800094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC Harriot Lane in the Northwest Atlantic Ocean. Data were collected from...

  7. Temperature profiles from XBT casts from the LASH ATLANTICO as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1978-04-30 to 1978-05-01 (NCEI Accession 7800512)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the LASH ATLANTICO from 30 April 1978 to 01 May 1978. Data were collected by the National Marine Fisheries...

  8. Temperature profiles from XBT casts from the CARIBOU REEFER as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1978-05-22 to 1978-05-23 (NCEI Accession 7800456)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the CARIBOU REEFER from 22 May 1978 to 23 May 1978. Data were collected by the National Marine Fisheries...

  9. Temperature profiles from XBT casts from the DELTA ARGENTINA as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1972-11-14 to 1973-01-02 (NODC Accession 7300035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DELTA ARGENTINA and other platforms from 14 November 1972 to 02 January 1973. Data were collected by the...

  10. Temperature and ice layer trends in the summer middle atmosphere

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  11. Delayed XBT data collected by Royal Australian Navy and submitted to NODC for the Global Temperature-Salinity Profile Program (GTSPP), dates range from January 18, 2011 to October 02, 2011 (NODC Accession 0086909)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts in the Arafura Sea, Bass Strait, Coral Sea, Great Australian Bight, Gulf of Thailand, Indian ocean, South China...

  12. Temperature profile and other data collected from XBT casts in Indian Ocean and N / S Pacific Ocean from ICEBIRD and other platforms from 02 January 1993 to 01 January 1994 (NODC Accession 9400207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using XBT casts from ICEBIRD and other platforms in Indian Ocean and North / South Pacific Ocean. Data were...

  13. Optimization of the temperature profiles due to a nitrogen jet impinging on a TLD detector

    International Nuclear Information System (INIS)

    Cohen, I.; Bar-Kohany, T.; German, U.; Ziskind, G.

    2014-01-01

    A study was conducted to simulate the temperature profiles during readout in a typical, commercial thermo-luminescence dosimeter (TLD) chip and to optimize the readout conditions. The study makes use of a previously developed numerical model which calculates the crystal's temperature profile evolution inside a TLD crystal compound. The calculated profiles were implemented in the Randall-Wilkins equation to obtain the estimated glow curve. A number of jet temperature profiles were investigated in order to optimize the readout process. - Highlights: • The temperature profiles in a TLD chip compound were simulated. • Some non-routine heating profiles are proposed. • A better efficiency and shorter time can be obtained with these profiles. • The resulting glow curves were evaluated as well

  14. Temperature profile data from moored buoy in the Gulf of Alaska as part of the Trans-Alaska Pipeline System project, from 1989-06-10 to 1989-10-25 (NODC Accession 9900193)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using moored buoy in the Gulf of Alaska from June 10, 1989 to October 25, 1989. Data were submitted by Dr. Chirk Chu from the...

  15. Influence of cookies composition on temperature profiles and qualitative parameters during baking

    Directory of Open Access Journals (Sweden)

    Ž. Kožul

    2014-01-01

    Full Text Available During baking of bakery products temperature of baking, temperature profiles, moisture content, volume and colour changes are strongly coupled. The objective of this paper was to study the influence of the cookies composition on temperature profiles and quality parameters (width and thickness, colour formation and textural properties: hardness, fracturability and work of breaking force during baking process. Composition of cookies differs due to flour type and initial moisture content. Cookies were baked at 205 °C and temperature was measured in the centre of samples which were 7 mm thick with a 60 mm diameter. The results of temperature profiles of the cookies during baking have shown the same trend for all of the 18 samples. Samples with the higher initial water content have lower values of total colour difference and also significantly affect textural properties.

  16. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    Science.gov (United States)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  17. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  18. Temperature profile data collected using XBT and BT casts in a world-wide distribution from NOAA Ship RESEARCHER and other platforms from 1982-08-18 to 1982-12-21 (NODC Accession 8300007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in a world-wide distribution from 18 August 1982 to 21...

  19. Temperature profiles from XBT casts from the DELTA SUD as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1978-10-14 to 1978-11-21 (NODC Accession 7900155)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DELTA SUD from 14 October 1978 to 21 November 1978. Data were collected by the Delta Steamship Co. as...

  20. Temperature profile and chemical data from CTD casts in the North Atlantic Ocean and Gulf of Mexico from NOAA Ship RESEARCHER from 1976-10-08 to 1977-10-30 (NODC Accession 8000168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and chemical data were collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean and Gulf of Mexico from 08 October 1976 to...

  1. Temperature profiles from XBT casts from the AMERICAN TRADE as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1972-01-27 to 1972-02-10 (NODC Accession 7300788)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the AMERICAN TRADE from 27 January 1972 to 10 Februay 1972. Data were collected by Moore McCormack Lines Inc....

  2. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  3. Temperature profile and other data collected using CTD casts in the TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1984-11-13 to 1986-12-01 (NODC Accession 8700194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER and other platforms in the TOGA Area - Pacific Ocean from 13 November...

  4. Temperature, salinity, and nutrient profiles, wave, and meteorological data from three cruises in the Northwest Pacific, the Southwest Pacific, and the Philippine Sea from 1965-11-30 to 1980-08-11 (NODC Accession 0000122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, meteorological, and nutrient profiles data were collected using bottle casts from the OSHORO MARU and RYOFU MARU in Philippines Sea and Pacific Ocean...

  5. Current status of quantitative rotational spectroscopy for atmospheric research

    Science.gov (United States)

    Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois

    2004-01-01

    Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.

  6. Oceanographic water temperature profiles from XBTs aboard multiple platforms as part of the GTSPP and SOT SOOP in the Southern Ocean and adjoining seas from 2016-02-10 to 2016-12-03 (NCEI Accession 0157632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic water temperature profiles collected from XBTs aboard the platforms Maersk Jalan, Shengking, L'Astrolabe, and Siangtan in the South Pacific Ocean,...

  7. Temperature profile and water depth collected from XIANG YANG HONG 05 in the South China Sea using BT and XBT casts from 16 November 1986 to 03 December 1986 (NODC Accession 8700009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth were collected using BT and XBT casts from the XIANG YANG HONG 05 in the South China Sea. Data were collected from 16 November...

  8. Temperature profiles from XBT casts from the DELTA SUD as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1975-02-09 to 1975-03-16 (NODC Accession 7500643)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DELTA SUD from 09 February 1975 to 16 March 1975. Data were collected by the Delta Steamship Co. as part...

  9. Characterization and evolution of distant planetary atmospheres using stellar occultations

    Science.gov (United States)

    Young, L. A.

    2008-09-01

    Ground-based or near-Earth (e.g., HST) stellar occultations of every atmosphere in our solar system has been observed: Venus, Mars, Jupiter, Saturn, Titan, Uranus, Neptune, Triton, and Pluto [1]. These observations probe the atmospheres at roughly 0.1 to 100 microbar. I will talk about three aspects of stellar occultations: one-dimensional vertical profiles of the atmosphere, two- or three-dimensional atmospheric states, and the time evolution of atmosphere. In all three, I will draw on recent observations, with an emphasis on Pluto. Occultations are particularly important for the study of Pluto's atmosphere, which is impossible to study with imaging, and extremely difficult to study with spectroscopy. It was discovered by stellar occultation in 1988 [2]. No subsequent Pluto occultations were observed until two events in 2002 [3]. Pluto is now crossing the galactic plane, and there have been several additional occultations observed since 2006. These include a high signal-to-noise observation from the Anglo Australian Observatory in 2006 [4] (Fig 1), densely spaced visible and infrared observations of Pluto's upper atmosphere from telescopes in the US and Mexico in March, 2007 [5] (Fig. 2), and a dualwavelength central flash observation from Mt. John in July, 2007 [6] (Fig 3). The flux from a star occulted by an atmosphere diminishes primarily due to the increase in refraction with depth in the atmosphere, defocusing the starlight, although absorption and tangential focusing can also contribute. Because the atmospheric density, to first order, follows an exponential, it is feasible to derive a characteristic pressure and temperature from isothermal fits to even low-quality occultation light curves. Higher quality light curves allow fits with more flexible models, or light curve inversions that derive temperatures limited by the resolution of the data. These allow the derivation of one-dimensional profiles of temperature and pressure vs. altitude, which are critical

  10. Temperature profile data collected using BT and XBT casts in a World-wide distribution from NOAA Ship MALCOLM BALDRIGE and other platforms from 1989-03-10 to 1990-08-01 (NODC Accession 9000239)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship MALCOLM BALDRDIGE and other platforms in a World-wide distribution from 10 March 1989...

  11. Temperature profile and pressure data from CTD casts from the MALCOLM BALRDIGE and other platforms from the TOGA area of Pacific Ocean from 1993-02-28 to 1997-06-27 (NODC Accession 9700222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD casts in the TOGA area of the Pacific Ocean from NOAA Ship MALCOLM BALDRIGE and other platforms from...

  12. Temperature profiles from XBT casts from NOAA Ship ALBATROSS IV as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1984-04-17 to 1984-06-02 (NODC Accession 8400111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from NOAA Ship ALBATROSS IV from 17 April 1984 to 02 June 1984. Data were collected by the National Marine...

  13. Ion temperature profiles along a hydrogen diagnostic beam in a TORE SUPRA tokamak plasma

    International Nuclear Information System (INIS)

    Romannikov, A.; Petrov, Yu.; Platts, P.; Khess, V.; Khutter, T.; Farzhon, Zh.; Moro, F.

    2002-01-01

    By means of corpuscular diagnostics one studies temperature of ions along a diagnostic hydrogen beam. Paper presents comparison of temperature of plasma (deuterium) basic ions measures by means of the active corpuscular diagnostics with temperature of C + carbon ions along a beam. One studies behavior peculiarities of T i ion temperature profiles for TORE-SUPRA different modes, such as: formation of plane and even hollow T i profiles for ohmic modes, variation of T i profiles under operation of an ergodic diverter, difference of temperature of basic ions measured by means of the active corpuscular diagnostics from C +5 temperature. Paper offers clear explanation of these peculiarities [ru

  14. Delayed XBT data collected by the Royal Australian Navy and submitted to NODC for the Global Temperature-Salinity Profile Program (GTSPP), dates range from September 15 2009 to October 25 2010 (NODC Accession 0085726)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts in the Great Australian Bight, Gulf of Thailand, Indian ocean, South China Sea, and Tasman Sea. Data were...

  15. Temperature profiles from XBT casts from the SANTA CRUZ as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-05-17 to 1974-06-12 (NODC Accession 7400570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ from 17 May 1974 to 12 June 1974. Data were collected by Grace Prudential Lines as part of the...

  16. Temperature profiles from XBT casts from the DELTA SUD as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1979-07-14 to 1979-08-20 (NODC Accession 8000421)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DELTA SUD from 14 July 1979 to 20 August 1979. Data were collected by the Delta Steamship Co. as part of...

  17. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  18. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the Indian Ocean and other seas from 17 May 1988 to 01 June 1988 (NODC Accession 8800181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in Arabian Sea, Indian Ocean, Gulf of Oman, Laccadive Sea, and...

  19. Temperature profile data from XBT casts from the KOFU MARU and other platforms in the North Pacific Ocean by the Japanese Hydrographic Office, 1990-01-01 to 1990-12-31 (NODC Accession 9200263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected using XBT casts from the KOFU MARU and other platforms in the North Pacific Ocean from January 1, 1990 to December 31, 1990. Data...

  20. Temperature profile data collected using BT and XBT casts in a World-wide distribution from NOAA Ship MALCOLM BALDRIGE and other platforms from 1988-02-03 to 1990-03-31 (NODC Accession 9000094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship MALCOLM BALDRIGE in a World-wide distribution from 03 February 1988 to 31 March 1990....

  1. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  2. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  3. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  4. Temperature profile and other data collected using CTD casts from NOAA Ship RESEARCHER and other platforms in the TOGA Area of Pacific Ocean from 1987-04-25 to 1988-12-03 (NODC Accession 8900298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER, NOAA Ship MALCOLM BALDRIGE, and NOAA Ship OCEANOGRAPHER in the TOGA area...

  5. Temperature profile data from XBT casts from the WASHINGTON STANDARD and other platforms as part of the International Decade of Ocean Exploration (IDOE) from 1968-10-18 to 1972-10-18 (NODC Accession 7300888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected from XBT casts from the WASHINGTON STANDARD and other platforms from 18 October 1968 to 18 October 1972. Data were collected...

  6. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  7. Temperature-controlled depth profiling in polymeric materials using cluster secondary ion mass spectrometry (SIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Christine M. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States)]. E-mail: christine.mahoney@nist.gov; Fahey, Albert J. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Gillen, Greg [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Xu Chang [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States); Batteas, James D. [National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8371, Gaithersburg, MD, 20899 (United States)

    2006-07-30

    Secondary ion mass spectrometry (SIMS) employing an SF{sub 5} {sup +} polyatomic primary ion source was used to depth profile through poly(methylmethacrylate) (PMMA), poly(lactic acid) (PLA) and polystyrene (PS) thin films at a series of temperatures from -125 deg. C to 150 deg. C. It was found that for PMMA, reduced temperature analysis produced depth profiles with increased secondary ion stability and reduced interfacial widths as compared to analysis at ambient temperature. Atomic force microscopy (AFM) images indicated that this improvement in interfacial width may be related to a decrease in sputter-induced topography. Depth profiling at higher temperatures was typically correlated with increased sputter rates. However, the improvements in interfacial widths and overall secondary ion stability were not as prevalent as was observed at low temperature. For PLA, improvements in signal intensities were observed at low temperatures, yet there was no significant change in secondary ion stability, interface widths or sputter rates. High temperatures yielded a significant decrease in secondary ion stability of the resulting profiles. PS films showed rapid degradation of characteristic secondary ion signals under all temperatures examined.

  8. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the Indian ocean and other seas from 07 January 1989 to 31 January 1989 (NODC Accession 8900034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the Indian Ocean, South China Sea, Burma Sea, and Malacca of...

  9. Temperature profile and water depth data collected from USS Merrill using BT and XBT casts in the Indian Ocean and other seas from 1988-03-01 to 1988-03-29 (NODC Accession 8800110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Arabian Sea, Gulf of Oman, and Indian Ocean. Data were...

  10. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the Indian Ocean and other seas from 05 April 1988 to 11 April 1988 (NODC Accession 8800140)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Indian Ocean, Arabian Sea, and Gulf of Oman. Data were...

  11. Phosphoproteome profiling for cold temperature perception.

    Science.gov (United States)

    Park, Seyeon; Jang, Mi

    2011-02-01

    Temperature sensation initiates from the activation of cellular receptors when the cell is exposed to a decrease in temperature. Here, we applied a phosphoproteome profiling approach to the human lung epithelial cell line BEAS-2B to elucidate cellular cold-responsive processes. The primary aim of this study was to determine which intracellular changes of phosphorylation are accompanied by cold sensation. Eighteen protein spots that exhibited differentially phosphorylated changes in cells were identified. Most of the proteins that were phosphorylated after 5 or 10 min were returned to control levels after 30 or 60 min. Identified proteins were mainly RNA-related (i.e., they were involved in RNA binding and splicing). Temperature (18 and 10°C) stimuli showed homologies that were detected for time course changes in phosphoproteome. The data indicated a time-shift between two temperatures. The phosphorylation of putative cold responsive markers, such as ribosomal protein large P0 and heterochromatin-associated proteins 1, were verified by Western blotting in cells transfected with TRPM8 or TRPA1. Copyright © 2010 Wiley-Liss, Inc.

  12. Temperature profile and other data collected using CTD casts in the North/South Pacific Ocean from NOAA Ship MALCOLM BALDRIGE and other platform from 16 February 1991 to 98 December 1991 (NODC Accession 9200156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship MALCOLM BALDRIGE and NOAA Ship DISCOVERER in the North/South Pacific Ocean from 16...

  13. Temperature profile and other data collected using CTD casts in the North/South Pacific Ocean from NOAA Ship MALCOLM BALDRIGE and other platform from 1990-02-23 to 1990-12-06 (NODC Accession 9200013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship MALCOLM BALDRIGE and NOAA Ship DISCOVERER in the North/South Pacific Ocean from 23...

  14. Temperature profile and water depth data collected from DALE and other platforms using BT and XBT casts in the North / South Pacific Ocean from 09 November 1979 to 25 November 1985 (NODC Accession 8900063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the DALE and other platforms in the North / South Pacific Ocean. Data were...

  15. Temperature profiles from XBT casts from the DECATUR and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1969-08-30 to 1983-03-31 (NODC Accession 8300047)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DECATUR and other platforms from 30 August 1969 to 31 March 1983. Data were collected by the National...

  16. Temperature profiles from XBT casts from the ACTIVE and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1979-02-01 to 1979-04-01 (NODC Accession 7900172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the ACTIVE and other platforms from 01 February 1979 to 01 April 1979. Data were collected by the National...

  17. Temperature profile data collected using XBTs from the AUSTRAL RAINBOW from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1976-10-20 to 1976-10-23 (NODC Accession 8100228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from AUSTRAL RAINBOW in the Pacific Ocean from October 20, 1976 to October 23, 1976....

  18. Temperature profile data collected using XBTs from the ASIA MARU from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1976-12-18 to 1976-12-27 (NODC Accession 8100251)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from QUEENS WAY BRIDGE in the Pacific Ocean from December 18, 1976 to December 27,...

  19. Physical, chemical, and temperature profile data were collected using bottle casts and other instruments from GASCOYNE and other platforms in the Pacific Ocean and Mediterranean Sea from 07 November 1959 to 01 July 1972 (NODC Accession 0000095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and temperature profile data were collected using bottle casts, plankton net, fluorometer, and meteorological sensors. Data were collected from...

  20. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    Science.gov (United States)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  1. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the Indian Ocean and other seas from 02 December 1988 to 28 December 1988 (NODC Accession 8900015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the Indian Ocean, Arabian Sea, Gulf of Oman, Gulf of Iran, and...

  2. Temperature profile data from CTD casts in the North Atlantic Ocean near Newfoundland by the Ukrainian Scientific Centre of the Ecology of Sea from 1972-10-13 to 1991-05-10 (NODC Accession 9900116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the North Atlantic Ocean from October 13, 1972 to May 10, 1991. Data were collected and submitted by Dr....

  3. Temperature profile data collected using XBT and BT casts in the TOGA Area of Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1979-02-28 to 1991-07-27 (NODC Accession 9300170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the TOGA Area of Pacific Ocean from 28 February 1979...

  4. Temperature profile data from CTD casts in the North Atlantic Ocean near Newfoundland by the Ukrainian Scientific Centre of the Ecology of Sea from 1982-07-21 to 1982-07-28 (NODC Accession 9900122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the North Atlantic Ocean from July 21, 1982 to July 28, 1982. Data were collected and submitted by Dr....

  5. Temperature profiles from XBT casts from the CIUDAD DE SALAMANCA and other platforms as part of the International Decade of Ocean Exploration (IDOE) from 1966-06-02 to 1974-08-29 (NODC Accession 7500613)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the CIUDAD DE SALAMANCA and other platforms from 02 June 1966 to 29 August 1974. Data were collected by the...

  6. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  7. Theoretical UV absorption spectra of hydrodynamically escaping O2/CO2-rich exoplanetary atmospheres

    International Nuclear Information System (INIS)

    Gronoff, G.; Mertens, C. J.; Norman, R. B.; Maggiolo, R.; Wedlund, C. Simon; Bell, J.; Bernard, D.; Parkinson, C. J.; Vidal-Madjar, A.

    2014-01-01

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O 2 - and/or CO 2 -rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O 2 and CO 2 molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  8. Temperature profile data collected using XBTs from the JAPAN ACE from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1976-11-24 to 1976-12-04 (NODC Accession 8100260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from JAPAN ACE in the Pacific Ocean from November 24, 1976 to December 4, 1976. Data...

  9. Temperature profile data collected using XBTs from the HARUNA MARU from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1977-01-23 to 1977-02-03 (NODC Accession 8100367)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from HARUNA MARU in the Pacific Ocean from January 23, 1977 to February 3, 1977. Data...

  10. Temperature profile data collected using XBTs from the PRESIDENT MCKINLEY from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1977-05-19 to 1977-05-29 (NODC Accession 8100323)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from PRESIDENT MCKINLEY in the Pacific Ocean from May 19, 1977 to May 29, 1977. Data...

  11. Temperature profile and water depth data collected from AUSTRALIA STAR and other platforms using XBT casts in the TOGA Area - Atlantic and Pacific Ocean from 05 October 1989 to 21 December 1992 (NODC Accession 9400035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using XBT casts from the AUSTRALIA STAR and other platforms in the TOGA Area - Atlantic and Pacific Ocean,...

  12. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  13. A model for atmospheric brightness temperatures observed by the special sensor microwave imager (SSM/I)

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    A closed-form mathematical model for the atmospheric contribution to microwave the absorption and emission at the SSM/I frequencies is developed in order to improve quantitative interpretation of microwave imagery from the Special Sensor Microwave Imager (SSM/I). The model is intended to accurately predict upwelling and downwelling atmospheric brightness temperatures at SSM/I frequencies, as functions of eight input parameters: the zenith (nadir) angle, the integrated water vapor and vapor scale height, the integrated cloud water and cloud height, the effective surface temperature, atmospheric lapse rate, and surface pressure. It is shown that the model accurately reproduces clear-sky brightness temperatures computed by explicit integration of a large number of radiosonde soundings representing all maritime climate zones and seasons.

  14. Correlation between the season, temperature and atmospheric pressure with incidence and pathogenesis of acute appendicitis.

    Science.gov (United States)

    Karanikolić, Aleksandar; Karanikolić, Vesna; Djordjević, Lidija; Pešić, Ivan

    2016-01-01

    There is very little literature data on the correlation between the seasons, temperature and atmospheric pressure, and pathogenesis of acute appendicitis (AA). The aim of this research is to investigate the association between the seasons, changes in atmospheric temperature and pressure, and patients’ age and severity of the clinical form of AA in the city of Niš This study included 395 patients diagnosed with AA, who, during the two-year period, from July 1st 2011 to June 30th 2013, were hospitalized and operated on at the Department of General Surgery, Clinical Center in Niš, Serbia. The increased average daily values of barometric pressure by 1 millibar on the day when the event took place was associated (p atmospheric temperature and pressure.

  15. Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air

    Science.gov (United States)

    Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.

    1993-01-01

    Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.

  16. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    Science.gov (United States)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  17. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period

  18. On the fluctuations of density and temperature in outer space atmosphere obtained from orbital shift of TAIYO

    International Nuclear Information System (INIS)

    Kato, Yoshio; Onishi, Nobuto; Shimizu, Osamu; Enmi, Sachiko; Hirao, Kunio.

    1976-01-01

    The temperature and density in outer space atmosphere were obtained from the change of the orbital period of the artificial satellite TAIYO which was launched on February 24, 1975, from Kagoshima. An equation to calculate atmospheric density with the characteristic values of the satellite is presented in the first part together with the observed variation of the orbital elements of TAIYO. The weekly changes of temperature and density in outer space atmosphere at the altitude of 250 km, which is the perigee of the satellite, from April 1975 to May 1976 were obtained. The relations between outer space temperature and sigma KP, F10.7, and the position of the perigee were also obtained. The outer space temperature as a function of local time is presented, and it is observed that the temperature change in relation to the local time agrees with the atmospheric model, and that the ratio of maximum or minimum temperature within a day becomes nearly 1.3. It is commented that more data will be available for the further detailed analysis because TAIYO is still orbiting normally. (Aoki, K.)

  19. Temperature profile data collected using BT and XBT casts in the Gulf of Mexico and TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER from 1985-10-20 to 1985-12-14 (NODC Accession 8700105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the Gulf of Mexico and TOGA Area - Pacific Ocean from 30 October 1985 to...

  20. Temperature profile data collected using BT and XBT casts from NOAA Ship RESEARCHER and NOAA Ship DISCOVERER in the TOGA Area - Pacific Ocean from 1984-10-10 to 1985-06-19 (NODC Accession 8800073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 10 October 1984 to 19 June 1985. Data...

  1. Temperature profile data from CTD casts in the North Atlantic Ocean near Newfoundland by the Ukrainian Scientific Centre of the Ecology of Sea from 1983-04-21 to 1991-05-01 (NODC Accession 9900123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the North Atlantic Ocean from April 21, 1983 to May 1, 1991. Data were collected and submitted by Dr. Yuri...

  2. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the Northwest Atlantic Ocean and Caribbean Sea from 30 April 1988 to 31 May 1988 (NODC Accession 8800173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC HARRIOT LANE in the Northwest Atlantic Ocean and Caribbean Sea. Data...

  3. Temperature profile and chemical data collected using XBT and CTD casts from NOAA Ship MALCOLM BALDRIGE and other platforms in a World-wide distribution from 1991-09-17 to 1995-03-23 (NODC Accession 9500074)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and chemical data were collected using XBT and CTD casts in a World-wide distribution from NOAA Ship MALCOLM BALDRIGE and other platforms from 17...

  4. Temperature profile and chemical data collected using BT and XBT casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean and Caribbean Sea from 1987-04-07 to 1987-09-30 (NODC Accession 8700382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and chemical data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean and Caribbean Sea from 07...

  5. Temperature profile data collected using XBTs from the KASHU MARU from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1976-10-18 to 1977-06-09 (NODC Accession 8100137)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from KASHU MARU in the Pacific Ocean from October 18, 1976 to July 9, 1977. Data were...

  6. Temperature profiles from XBT casts from the AMERICAN ARGO and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1975-01-25 to 1975-03-15 (NODC Accession 7500203)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the AMERICAN ARGO and other platforms from 25 January 1975 to 15 March 1975. Data were collected by the...

  7. Temperature profile data collected using XBTs from the HIEI MARU from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1977-07-16 to 1977-07-23 (NODC Accession 8100176)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from HIEI MARU in the Pacific Ocean from July 16, 1977 to July 23, 1977. Data were...

  8. Temperature profile and nutrients data collected using bottle casts from the POLAR DUKE and NATHANIEL B. PALMER in the Ross Sea and Southern Oceans from 08 April 1997 to 05 May 1997 (NODC Accession 0000897)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts in the Ross Sea and Southern Oceans from the POLAR DUKE and NATHANIEL B. PALMER. Data were...

  9. Temperature profile and nutrients data collected using bottle casts from the POLAR DUKE and NATHANIEL B. PALMER in the Ross Sea and Southern Oceans from 10 November 1997 to 12 December 1997 (NODC Accession 0000898)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts in the Ross Sea and Southern Oceans from the POLAR DUKE and NATHANIEL B. PALMER. Data were...

  10. Temperature profile data collected using XBTs from the ASIA MARU from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1977-01-08 to 1977-01-17 (NODC Accession 8100280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from ASIA MARU in the Pacific Ocean from January 8, 1977 to January 17, 1977. Data were...

  11. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1976-08-14 to 1977-01-21 (NODC Accession 7700124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 14 August 1976 to 21 January 1977. Data were collected by Grace...

  12. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1975-06-22 to 1975-09-17 (NODC Accession 7500932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 22 June 1975 to 17 September 1975. Data were collected by Grace...

  13. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1975-10-17 to 1975-12-28 (NODC Accession 7600103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 17 October 1975 to 28 December 1975. Data were collected by Grace...

  14. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1975-08-16 to 1975-10-23 (NODC Accession 7501041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 16 August 1975 to 23 October 1975. Data were collected by Grace...

  15. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-07-06 to 1974-09-30 (NODC Accession 7400712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 06 July 1974 to 30 September 1974. Data were collected by Grace...

  16. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1975-12-02 to 1976-06-30 (NODC Accession 7601553)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 02 December 1975 to 30 June 1976. Data were collected by Grace...

  17. Temperature profile and other data collected using BT, XBT, and other instruments from NOAA Ship RESEARCHER and other platforms in the Gulf of Mexico from 1982-08-18 to 1985-04-06 (NODC Accession 8900211)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using XBT, BT, and other instruments from NOAA Ship RESEARCHER and other platforms in the Gulf of Mexico from 18...

  18. Temperature profiles collected by Commonwealth Scientific Industrial Research Organization (CSIRO) from Fish Tag data from the Coral Sea, Tasman Sea, and the Indian Oceans from 15 November 2008 to 26 July 2009 (NODC Accession 0067650)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from Fish Tag data from the biologging group at CSIRO, from the Coral Sea, Tasman Sea, and the Indian Oceans from 15 November...

  19. Temperature profiles from XBT casts from the DELTA ECUADOR and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1978-09-30 to 1978-10-05 (NODC Accession 7800858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DELTA ECUADOR and other platforms from 30 September 1978 to 05 October 1978. Data were collected by the...

  20. Delayed XBT data collected by the Defense Oceanographic Data Center (DODC) and submitted to NODC for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 08/11/2008 - 12/05/2009 (NODC Accession 0068678)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts in the Indian and Pacific Oceans. Data were collected from 11 August 2008 to 05 December 2009 by the Royal...

  1. Temperature profile data collected using XBTs from the AMERICA MARU from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1977-07-06 to 1977-07-14 (NODC Accession 8100352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from AMERICA MARU in the Pacific Ocean from July 6, 1977 to July 14, 1977. Data were...

  2. Temperature profile data collected using XBTs from the HIEI MARU from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1977-04-15 to 1977-04-23 (NODC Accession 8100190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from HIEI MARU in the Pacific Ocean from April 15, 1977 to April 23, 1977. Data were...

  3. Temperature profile and other data collected using CTD casts in the TOGA Area - Pacific Ocean from NOAA Ship MALCOLM BALDRIGE and NOAA Ship DISCOVERER from 1989-05-13 to 1989-12-08 (NODC Accession 9100142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship MALCOLM BALDRDIGE and NOAA Ship DISCOVERER in the TOGA Area - Pacific Ocean from 13...

  4. Delayed CTD and XBT data assembled and submitted by the Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 06/08/1979 - 05/25/2010 (NODC Accession 0065272)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles for the world oceans and submits these data to the Global Temperature and...

  5. Analysis of the feasibility of an experiment to measure carbon monoxide in the atmosphere. [using remote platform interferometry

    Science.gov (United States)

    Bortner, M. H.; Alyea, F. N.; Grenda, R. N.; Liebling, G. R.; Levy, G. M.

    1973-01-01

    The feasibility of measuring atmospheric carbon monoxide from a remote platform using the correlation interferometry technique was considered. It has been determined that CO data can be obtained with an accuracy of 10 percent using this technique on the first overtone band of CO at 2.3 mu. That band has been found to be much more suitable than the stronger fundamental band at 4.6 mu. Calculations for both wavelengths are presented which illustrate the effects of atmospheric temperature profiles, inversion layers, ground temperature and emissivity, CO profile, reflectivity, and atmospheric pressure. The applicable radiative transfer theory on which these calculations are based is described together with the principles of the technique.

  6. Self-organized profile relaxation by ion temperature gradient instability in toroidal plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tajima, T.; LeBrun, M.J.; Gray, M.G.; Kim, J.Y.; Horton, W.

    1993-02-01

    Toroidal effects on the ion-temperature gradient mode are found to dictate the temperature evolution and the subsequent relaxed profile realization according to our toroidal particle simulation. Both in the strongly unstable fluid regime as well as in the near-marginal kinetic regime we observe that the plasma maintains an exponential temperature profile and forces the heat flux to be radially independent. The self-organized critical relaxed state is sustained slightly above the marginal stability, where the weak wave growth balances the wave decorrelation

  7. Investigation of Cloud Properties and Atmospheric Profiles with Modis

    Science.gov (United States)

    Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; Laporte, Dan; Wolf, Walter

    1997-01-01

    A major milestone was accomplished with the delivery of all five University of Wisconsin MODIS Level 2 science production software packages to the Science Data Support Team (SDST) for integration. These deliveries were the culmination of months of design and testing, with most of the work focused on tasks peripheral to the actual science contained in the code. LTW hosted a MODIS infrared calibration workshop in September. Considerable progress has been made by MCST, with help from LTW, in refining the calibration algorithm, and in identifying and characterization outstanding problems. Work continues on characterizing the effects of non-blackbody earth surfaces on atmospheric profile retrievals and modeling radiative transfer through cirrus clouds.

  8. Temperature profiles of time dependent tokamak plasmas from the parallel Ohm's law

    International Nuclear Information System (INIS)

    Micozzi, P.; Roccella, M.

    1993-01-01

    Profile consistency based on the parallel component of Ohm's law has been used to obtain electron temperature profiles. A resistive neoclassical term and a term that accounts for the bootstrap current contributions have been considered in Ohm's law. A numerical code has been developed to find solutions according to the MHD equilibrium equations. For stationary plasmas, the temperature profiles, obtained by a procedure in which a pseudo-parabolic shape of (J φ /R) is assumed and the peak temperature known from experiments is used, are close to the experimental data for several very different machines (JET, TFTR, ASDEX, ALCATOR-C and FT). The main feature of the model is its capability to provide an easy parametrization of Ohm's law also in non-stationary cases, without going through the complication of a detailed solution of the magnetic field diffusion equation. A rule for estimating a maximum value of the current diffusion time inside the plasma volume in such situations is given. This rule accounts for both the temperature profiles and the stabilization times in some non-stationary pulses observed in JET. (author). 28 refs, 12 figs

  9. Temperature profile data collected using BT and XBT casts from NOAA Ship RESEARCHER and other platforms in the Bering Sea and other Sea areas from 1987-02-25 to 1987-07-27 (NODC Accession 8700280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the Bering Sea and other Sea areas from 25 February...

  10. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1977-03-08 to 1977-04-22 (NODC Accession 7700321)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 08 March 1977 to 22 April 1977. Data were collected by the National...

  11. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-03-08 to 1974-05-21 (NODC Accession 7400454)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 08 March 1974 to 21 May 1974. Data were collected by Grace Prudential...

  12. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1976-04-04 to 1976-05-13 (NODC Accession 7601166)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 04 April 1976 to 13 May 1976. Data were collected by Grace Prudential...

  13. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1978-05-31 to 1978-07-26 (NODC Accession 7800637)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 31 May 1978 to 26 July 1978. Data were collected by Grace Prudential...

  14. Temperature profiles from XBT casts from the SANTA CRUZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1977-05-22 to 1977-07-27 (NODC Accession 7700593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SANTA CRUZ and other platforms from 22 May 1977 to 27 July 1977. Data were collected by Grace Prudential...

  15. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the TOGA Area - Pacific Ocean and other areas from 03 November 1988 to 01 December 1988 (NODC Accession 8800327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the TOGA Area - Pacific Ocean, Bay of Bengal, Indian Ocean,...

  16. Temperature profiles from XBT casts from the DELTA SUD and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-11-18 to 1974-12-23 (NODC Accession 7500059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the DELTA SUD and other platforms from 18 November 1974 to 23 December 1974. Data were collected by the Delta...

  17. Oceanographic Station Data and temperature profiles from bottle and XBT casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1975-08-31 to 1975-09-19 (NODC Accession 7600375)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profiles were collected from bottle and XBT casts from the DOLPHIN from 31 August 1975 to 19 September 1975. Data were...

  18. Oceanographic Station Data and temperature profiles from bottle and XBT casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1975-04-17 to 1976-02-07 (NODC Accession 7600888)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profiles were collected from bottle and XBT casts from the DOLPHIN from 17 April 1975 to 07 February 1976. Data were...

  19. Oceanographic Station Data and temperature profiles from bottle and XBT casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1977-01-18 to 1977-05-22 (NODC Accession 7800595)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profiles were collected from bottle and XBT casts from the DOLPHIN from 18 January 1977 to 22 May 1977. Data were...

  20. Oceanographic Station Data and temperature profiles from XBT and bottle casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1975-12-03 to 1975-12-06 (NODC Accession 7600754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profiles were collected from XBT and bottle casts from the DOLPHIN from 03 December 1975 to 06 December 1975. Data were...

  1. Temperature profile and water depth data collected from USS JOHN RODGERS using BT and XBT casts in the NE/NW Atlantic Ocean and other seas from 03 August 1988 to 03 October 1988 (NODC Accession 8900041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS JOHN RODGERS in the Northeast / Northwest Atlantic Ocean, Ionian Sea,...

  2. Oceanographic Station Data and temperature profiles from XBT and bottle casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1976-08-28 to 1976-09-21 (NODC Accession 7700036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profiles were collected from XBT and bottle casts from the DOLPHIN from 28 August 1976 to 21 September 1976. Data were...

  3. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  4. Temperature profile and sound velocity data using CTD casts from the US Naval Oceanographic Office as part of the Master Oceanographic Observation Data Set (MOODS) project, from 1975-04-11 to 1998-08-31 (NODC Accession 9900220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and sound velocity data were collected using CTD, XCTD, and XBT casts in the Arctic Ocean, Mediterranean Sea - Eastern Basin, North Pacific...

  5. Effect of stress relief annealing temperature and atmosphere on the magnetic properties of silicon steel

    International Nuclear Information System (INIS)

    Paolinelli, Sebastiao C.; Cunha, Marco A. da

    2006-01-01

    Fully processed non-oriented silicon steel samples 0.50 mm thick were sheared and submitted to stress relief annealing under different conditions of temperature and atmosphere to investigate the effect of this treatment on the recovery of magnetic properties. Two different compositions were used, with different Si and Al contents. Temperature was varied in the range of 600-900 deg. C and four atmospheres were used: N 2 and N 2 +10%H 2 combined with dew points of -10 and 15 deg. C. The results showed that annealing atmosphere has very important effect on the magnetic properties and that the beneficial effect of stress relief annealing can be overcome by the detrimental effect of the atmosphere under certain conditions, due to oxidation and nitration

  6. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include...... weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly defined 2.6-2.8Ga metamorphic event that is coincident with the amalgamation of the “Kenorland supercontinent.”...

  7. Atmospheric Dynamics Leading to West European Summer Hot Temperatures Since 1851

    Directory of Open Access Journals (Sweden)

    M. Carmen Alvarez-Castro

    2018-01-01

    Full Text Available Summer hot temperatures have many impacts on health, economy (agriculture, energy, and transports, and ecosystems. In Western Europe, the recent summers of 2003 and 2015 were exceptionally warm. Many studies have shown that the genesis of the major heat events of the last decades was linked to anticyclonic atmospheric circulation and to spring precipitation deficit in Southern Europe. Such results were obtained for the second part of the 20th century and projections into the 21st century. In this paper, we challenge this vision by investigating the earlier part of the 20th century from an ensemble of 20CR reanalyses. We propose an innovative description of Western-European heat events applying the dynamical system theory. We argue that the atmospheric circulation patterns leading to the most intense heat events have changed during the last century. We also show that the increasing temperature trend during major heatwaves is encountered during episodes of Scandinavian Blocking, while other circulation patterns do not yield temperature trends during extremes.

  8. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  9. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor Pilot Plant

    International Nuclear Information System (INIS)

    Garn, Troy G.; Meikrantz, Dave H.; Greenhalgh, Mitchell R.; Law, Jack D.

    2008-01-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational tests were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50 C were tested. Ambient temperature testing shows that a small

  10. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  11. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling

    DEFF Research Database (Denmark)

    Allan, Mathew G; Hamilton, David P.; Trolle, Dennis

    2016-01-01

    Atmospheric correction of Landsat 7 thermal data was carried out for the purpose of retrieval of lake skin water temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. The effect of the atmosphere was modelled using four sources of atmospheric profile data as input to the MODera...

  12. Integrated modeling of temperature profiles in L-mode tokamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Tangri, V. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Voitsekhovitch, I. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-12-15

    Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.

  13. Delayed CTD and XBT data assembled and submitted by the Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 04-08-1929 to 08-18-2004 (NODC Accession 0001869)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles for the world oceans and submits these data to the Global Temperature and...

  14. Temperature profile data from XBT casts from a world-wide distribution from the SKOGAFOSS and other vessels as part of NOAA's Volunteer Observing Ships Program from 06 February 2002 to 10 April 2002 (NODC Accession 0000718)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the SKOGAFOSS and other platforms from a world-wide distribution from 06 February 2002 to 10 April 2002. Data...

  15. Temperature profile and other data from CTD Casts in the Gulf of Mexico and TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1982-03-26 to 1983-11-26 (NODC Accession 8500267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER and other platforms in the Gulf of Mexico and TOGA Area - Pacific Ocean...

  16. Temperature profile data collected using XBTs from the QUEENS WAY BRIDGE from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1977-07-02 to 1977-07-09 (NODC Accession 8100225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from QUEENS WAY BRIDGE in the Pacific Ocean from July 2, 1977 to July 9, 1977. Data...

  17. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  18. Wide angle Michelson Doppler imaging interferometer. [measuring atmospheric emissions

    Science.gov (United States)

    Shepherd, G. G.

    1980-01-01

    The optical system, stepping control, phase and modulation depth, array detector, and directions sensor are described for a specialized type of Michelson interferometer which works at sufficiently high resolution to measure the line widths and Doppler shifts of naturally occurring atmospheric emissions. With its imaging capability, the instrument can potentially supply this data independently for each element of the 100 x 100 detector array. The experiment seeks: (1) to obtain vertical profiles of atmospheric winds and temperatures as functions of latitude by observing near the limb; (2) to acquire exploratory wind and temperature data on smaller scale structures in airglow irregularities and in auroral forms; and (3) to collaborate with other Spacelab experiments, such as barium cloud releases, in providing wind and temperature data.

  19. Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1986-01-01

    Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)

  20. Exploring the Effects of Clouds on Hot Jupiter Atmospheres

    Science.gov (United States)

    Robinson, Jenna; Line, Michael

    2018-01-01

    Secondary eclipse spectroscopy of transiting exoplanets allows us to probe the atmospheric properties on the daysides of tidally locked planets. Specifically, eclipse spectra combined with atmospheric retrieval models permit constraints on the molecular abundances and vertical thermal profiles of the planetary dayside. Eclipse spectra from HST WFC3 are typically interpreted assuming that all of the near infrared light is due solely to the thermal emission of the planet. However, recent evidence suggests that reflected stellar light from clouds on the planetary daysides might contaminate the near-IR spectrum. Here, we aim to explore how reflected light from clouds within in a simplified cloud framework will alter the shape of the near infrared spectra and how they will influence our determinations of dayside temperatures and abundances. Specifically, we will use atmospheric retrieval tools to determine the biases in abundances and temperature profiles if reflected light is not taken into account. We will explore the influence of reflected light on interpretation of WFC3 spectra of the well-observed exoplanets, HD209458b and WASP-43b. We will then investigate how reflected light in the near-IR will influence our interpretation of JWST spectra.

  1. High-temperature controlled atmosphere for post-harvest control of Indian meal moth (Lepidoptera: Pyralidae) on preserved flowers.

    Science.gov (United States)

    Sauer, Jodi A; Shelton, Mark D

    2002-10-01

    High carbon dioxide atmospheres combined with high temperature were effective for controlling Indian meal moth, Plodia interpunctella (Hübner) pupae. Pupae were exposed to atmospheres of 60, 80, or 98% carbon dioxide (CO2) in nitrogen (N2), or 60 or 80% CO2 in air at temperatures of 26.7 degrees C or 32.2 degrees C and 60% RH. Controlled atmosphere treatments at 32.2 degrees C controlled pupae faster than the same treatments at the lower temperature. At both temperatures high CO2 concentration treatments combined with nitrogen killed pupae faster than high CO2 concentration treatments combined with air. Exposure to 80% carbon dioxide mixed with nitrogen was the most effective treatment causing 100% mortality in 12 h at 32.2 degrees C and 93.3% mortality in 18 h at 26.6 degrees C. High-temperature controlled atmosphere treatments had no adverse effects on quality of two preserved floral products, Limonium sinuatum (L.) and Gypsophila elegans (Bieb.), tested for 12, 18, and 24 h according to industry standards.

  2. Temperature profile and water depth data collected from USS HENRY B. WILSON using BT and XBT casts in the Indian Ocean and other seas from 22 October 1986 to 26 November 1986 (NODC Accession 8800183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS HENRY B. WILSON in the Indian Ocean, Gulf of Oman, Gulf of Iran, and...

  3. Oceanographic station, temperature profiles, meteorological, and other data from bottle and XBT from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1974-01-09 to 1974-01-12 (NODC Accession 7400287)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic station, temperature profiles, meteorological, and other data were collected from bottle and XBT casts from the DOLPHIN from 09 January 1974 to 12...

  4. Temperature profile data from XBT and BT casts in the North/South Pacific Ocean and North/South Atlantic Ocean from NOAA Ship RESEARCHER and other platforms from 1987-04-02 to 1987-11-24 (NODC Accession 8800007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and North/South...

  5. Temperature profile data collected using XBT from the CHAIN from the Atlantic Ocean during the International Decade of Ocean Exploration / Mid-Ocean Dynamics Experiment (IDOE/MODE) project, 1975-01-22 to 1975-02-02 (NODC Accession 7601423)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from CHAIN in the Atlantic Ocean from January 22, 1975 to February 2, 1975. Data were...

  6. Temperature profile and water depth data collected from USS ROBERT G. BRADLEY using BT and XBT casts in the NE/NW Atlantic Ocean and other seas from 03 May 1988 to 31 May 1988 (NODC Accession 8800213)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS ROBERT G. BRADLEY in the Northwest / Northeast Atlantic Ocean, Arabian...

  7. Oceanographic Station, temperature profiles, and other data from XBT and bottle casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1973-02-12 to 1973-03-23 (NODC Accession 7300813)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station,temperature profiles, and other data were collected from XBT and bottle casts from the DOLPHIN from 12 February 1973 to 23 March 1973. Data...

  8. Oceanographic Station, temperature profiles, and other data from XBT and bottle casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1975-01-17 to 1975-04-10 (NODC Accession 7500672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station, temperature profiles, and other data were collected from XBT and bottle casts from the DOLPHIN from 17 January 1975 to 10 April 1975. Data...

  9. Oceanographic Station, temperature profiles, and other data from bottle and XBT casts from the DOLPHIN as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) from 1974-08-13 to 1974-09-18 (NODC Accession 7400814)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station, temperature profiles, and other data were collected from bottle and XBT casts from the DOLPHIN from 13 August 1974 to 18 September 1974. Data...

  10. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  11. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  12. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  13. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    Science.gov (United States)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  14. Atmospheric QBO and ENSO indices with high vertical resolution from GNSS radio occultation temperature measurements

    Science.gov (United States)

    Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.

    2018-03-01

    We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.

  15. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  16. Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.; Nölscher, A.C.; Krol, M.C.; Ganzeveld, L.N.; Breitenberger, C.; Mammarella, I.; Williams, J.; Lelieveld, J.

    2012-01-01

    We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics

  17. Temperature profiles from XBT casts from the G.B. KELEZ and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) project from 1980-05-16 to 1980-05-18 (NODC Accession 8000385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the G.B. KELEZ and other platforms from 16 May 1980 to 18 May 1980. Data were collected by the National...

  18. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  19. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  20. Temperature profile data collected using XBTs from the RUHR EXPRESS and other platforms from the Pacific Ocean during the Thermal Structure Monitoring Program in the Pacific (TRANSPAC) project, 1984-11-16 to 1985-01-28 (NODC Accession 8500030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bathythermograph (BT/XBT) casts from RUHR EXPRESS and other platforms in the Pacific Ocean from November 16, 1984 to...