WorldWideScience

Sample records for atmospheric superficial layer

  1. Micrometeorological studies for the characterization of the atmospheric superficial layer in the Valley of Mexico; Estudios micrometeorologicos para la caracterizacion de la capa atmosferica superficial en el Valle de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Saldana Flores, Ricardo; Salcido Gonzalez, Victor A.; Borja Diaz, Marco Antonio R.; Morales Reyes, Maria Flor [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    This work establishes the principal aspects related to two micrometeorological campaigns carried out in the Valley of Mexico, the first one from May 19 to 27, 1992 in the vicinity of the Valle de Mexico thermoelectric central and the second from September 13 to 21, 1993 in a site nearby the recreational lake of the Texcoco Plan. The first campaign of measurements encompassed the monitoring at ground level (at a height of 10 meters) of the following parameters: -wind orthogonal components; -temperature; -relative humidity; -Global radiation; - Net radiation; -Atmospheric pressure. Also, simultaneously five daily radio soundings were performed through a captive balloon and free soundings, up to an approximate height of 2500 meters. During the second campaign the same measurements as in the first campaign were carried out, except the radio soundings with the captive balloon, incorporating a turbulence ultrasonic sensor with which, among other parameters, were obtained: -Mean velocities of the wind orthogonal components; -Mean temperature; -Covariance of the wind component z and temperature; -Friction velocity; -Monin-Obukov length; -Vertical heat flow; -Wind mean velocity; -Wind mean direction. [Espanol] En el presente trabajo se anotan los principales aspectos relativos a dos campanas micrometeorologicas realizadas en el Valle de Mexico, la primera del 19 al 27 de mayo de 1992 en las inmediaciones de la central termoelectrica Valle de Mexico y la segunda del 13 al 21 de septiembre de 1993, en un sitio cercano al lago recreativo del Plan Texcoco. La primera campana de mediciones abarco el monitoreo en superficie (a 10 m de altura) de los siguientes parametros: - Componentes ortogonales del viento. - Temperatura. - Humedad relativa. - Radiacion global. - Radiacion neta. - Presion atmosferica. Asimismo, se llevaron a cabo simultaneamente cinco radiosondeos diarios a traves de un globo cautivo y de sondas libres, hasta una altura aproximada de 2500 metros. Durante la

  2. Biochemical composition of the superficial layer of articular cartilage.

    Science.gov (United States)

    Crockett, R; Grubelnik, A; Roos, S; Dora, C; Born, W; Troxler, H

    2007-09-15

    To gain more information on the mechanism of lubrication in articular joints, the superficial layer of bovine articular cartilage was mechanically removed in a sheet of ice that formed on freezing the cartilage. Freeze-dried samples contained low concentrations of chondroitin sulphate and protein. Analysis of the protein by SDS PAGE showed that the composition of the sample was comparable to that of synovial fluid (SF). Attenuated total reflection infrared (ATR-IR) spectroscopy of the dried residue indicated that the sample contained mostly hyaluronan. Moreover, ATR-IR spectroscopy of the upper layer of the superficial layer, adsorbed onto silicon, showed the presence of phospholipids. A gel could be formed by mixing hyaluronan and phosphatidylcholine in water with mechanical properties similar to those of the superficial layer on cartilage. Much like the superficial layer of natural cartilage, the surface of this gel became hydrophobic on drying out. Thus, it is proposed that the superficial layer forms from hyaluronan and phospholipids, which associate by hydrophobic interactions between the alkyl chains of the phospholipids and the hydrophobic faces of the disaccharide units in hyaluronan. This layer is permeable to material from the SF and the cartilage, as shown by the presence of SF proteins and chondroitin sulphate. As the cartilage dries out after removal from the joint, the phospholipids migrate towards the surface of the superficial layer to reduce the surface tension. It is also proposed that the highly efficient lubrication in articular joints can, at least in part, be attributed to the ability of the superficial layer to adsorb and hold water on the cartilage surface, thus creating a highly viscous boundary protection.

  3. Turbulent Characterization of atmospheric surface layer over non-homogeneous terrain; Caracterizacion turbulenta de la capa superficial atmosferica en un terreno no homogeneo

    Energy Technology Data Exchange (ETDEWEB)

    Artinano Rodriguez de Torres, B.

    1989-07-01

    About 15000 wind and temperature profiles from a 100 m tower located in CEDER (Soria, Spain) have been analyzed. Using profiles in close neutral conditions, two main parameters of surface layer were obtained. Results show a great dependence of these parameters (Z{sub 0} roughness length and u friction velocity) on flow conditions and terrain (tinctures. Difficulty finding neutral conditions in this type of terrain (gently rolling and scattered bush) and in this latitude , is also remarkable. (Author) 91 refs.

  4. A graphene superficial layer for the advanced electroforming process

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-06-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties.Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil

  5. Effect of Superficial Atmospheric Corrosion Upon the Internal Stresses in Structural Steel Elements

    OpenAIRE

    Monel Leiba; Budescu, M.; Elena Axinte; Elena-Carmen Teleman

    2006-01-01

    A research program is presented showing the stress status determined by the corrosion phenomenon inside a specimen of a structural steel element. Several stains are studied their diameters ranging from 1~mm to 6~mm and thickness of the corroded layer under 0.5~mm. The physical modeling is the result of testing in laboratory the phenomenon of superficial atmospheric corrosion and the numerical modeling was developed under a FEM program, ALGOR. A number of 3,200 finite elements of BRICK type we...

  6. A graphene superficial layer for the advanced electroforming process.

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-07-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties. PMID:26949072

  7. The specificationof nano-structure superficial layers in some of the pathogen bacteria

    Directory of Open Access Journals (Sweden)

    Shilla Jalalpoor

    2010-11-01

    Full Text Available Background: The superficial layer is a part of the cellular envelop that is seen in bacteria and archaea. This superficial layer is a single layer structure composed of subordinate proteins or glycoproteins. The superficial layer is the outer most cellular structure that is in the exchange and reaction around environment with bacteria. This structure has very diversity in bacteria different types.Materials and Method: The related articles to superficial layer were extracted of these articles: Pubmed, Elsevier Science, and Yahoo, from 1995 to 2010 years. For this purpose keywords were searched including superficial layer, pathogenesis, pathogen bacteria,Results: There is consensus in the case of the superficial layer and about the existence of this superficial structure lead to increased pathogenesis in bacteria, in all of the research articles.Conclusion: S-layers in pathogen bacteria with bacteria protection against bacteriophages and phagocytosis, resistance against low pH, adhesion, stabilisation of the membrane and providing adhesion sites for exoproteins caused pathogenesis, infection resistant and antibiotic resistant in host.The result of this study shows the prevalence of considerable S-layer in pathogen bacteria and this matter identified the bacteria generator importance of this structure in the laboratory

  8. Tension characteristics of the iliotibial tract and role of its superficial layer.

    Science.gov (United States)

    Matsumoto, H; Seedhom, B

    1995-04-01

    Change in tension along the iliotibial tract by sectioning its superficial layer was analyzed using 5 fresh whole cadavers, and the role of the superficial layer was investigated. Tibial attachment of the iliotibial tract (Gerdy's tubercle) was detached and pulled gradually in a distal direction with respect to the femur. Tension along the iliotibial tract by the distal movement of Gerdy's tubercle (stretching the iliotibial tract) was measured first when the whole iliotibial tract was intact, and then when the superficial layer was sectioned at different levels. When the superficial layer was sectioned above the greater trochanter, no significant change in tension was observed from that observed when the whole iliotibial tract was intact. When the superficial layer was sectioned at the middle of the thigh, the tension at Gerdy's tubercle was significantly reduced. It was concluded that not only Kaplan's fibers, those attached to the distal end of the femur and Gerdy's tubercle, but also the superficial layer of the iliotibial tract had an important role in producing tension at Gerdy's tubercle.

  9. Effect of Superficial Atmospheric Corrosion Upon the Internal Stresses in Structural Steel Elements

    Directory of Open Access Journals (Sweden)

    Monel Leiba

    2006-01-01

    Full Text Available A research program is presented showing the stress status determined by the corrosion phenomenon inside a specimen of a structural steel element. Several stains are studied their diameters ranging from 1~mm to 6~mm and thickness of the corroded layer under 0.5~mm. The physical modeling is the result of testing in laboratory the phenomenon of superficial atmospheric corrosion and the numerical modeling was developed under a FEM program, ALGOR. A number of 3,200 finite elements of BRICK type were created and the evolution of normal and tangential stresses was scrutinized under the process of loosing elementary material transformed into scrap. Stresses in the damaged sphere were graphically put into evidence and determined with accuracy due to the performances of the program, showing the local perturbations and the pattern of stress concentrators. The studies showed the importance of reproducing with both physical and mathematical methods the intricate mechanism and sometimes unpredictable effects of corrosion phenomenon upon the structural steel elements.

  10. Multilayer modelling of stainless steel with a nanocrystallised superficial layer

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J. [Laboratoire Energetique Mecanique Electromagnetisme (LEME), EA4416, Universite Paris Ouest, 92410 Ville d' Avray (France); Waltz, L., E-mail: laurent.waltz@univ-montp2.fr [Laboratoire de Mecanique et Genie Civil de Montpellier (LMGC), University of Montpellier II, Place Eugene Bataillon, 34000 Montpellier (France); Montay, G.; Retraint, D.; Roos, A.; Francois, M. [Institut Charles Delaunay - LASMIS, UMR CNRS 6279, University of Technology of Troyes, 10010 Troyes (France)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer SMAT has been used for nanocrystallisation of an austenitic stainless steel. Black-Right-Pointing-Pointer The mechanical response of the nano-phase has been obtained by an indirect method. Black-Right-Pointing-Pointer Minimisation of a stress formulated objective function. Black-Right-Pointing-Pointer The model predicts the strain at which diffuse necking occurs. - Abstract: In order to obtain the macroscopic mechanical response of a 316L stainless steel, nanocrystallised by Surface Mechanical Attrition Treatment (SMAT), a multilayer model is proposed. The constitutive behaviour of each layer is determined from tensile tests or by an inverse method and its thickness is evaluated from Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and local hardness measurements. The consistency of the model is verified by its ability to predict the strain at which diffuse necking occurs.

  11. Superficially projecting principal neurons in layer V of medial entorhinal cortex in the rat receive excitatory retrosplenial input.

    Science.gov (United States)

    Czajkowski, Rafał; Sugar, Jørgen; Zhang, Sheng-Jia; Couey, Jonathan J; Ye, Jing; Witter, Menno P

    2013-10-01

    Principal cells in layer V of the medial entorhinal cortex (MEC) have a nodal position in the cortical-hippocampal network. They are the main recipients of hippocampal output and receive inputs from several cortical areas, including a prominent one from the retrosplenial cortex (RSC), likely targeting basal dendrites of layer V neurons. The latter project to extrahippocampal structures but also relay information to the superficial layers of MEC, closing the hippocampal-entorhinal loop. In the rat, we electrophysiologically and morphologically characterized RSC input into MEC and conclude that RSC provides an excitatory input to layer V pyramidal cells. Ultrastructural analyses of anterogradely labeled RSC projections showed that RSC axons in layer V of MEC form predominantly asymmetrical, likely excitatory, synapses on dendritic spines (90%) or shafts (8%), with 2% symmetrical, likely inhibitory, synapses on shafts and spines. The overall excitatory nature of the RSC input was confirmed by an optogenetic approach. Patterned laser stimulation of channelrhodopsin-expressing presynaptic RSC axons evoked exclusively EPSPs in recorded postsynaptic layer V cells. All responding layer V pyramidal cells had an axon extending toward the white matter. Half of these neurons also sent an axon to superficial layers. Confocal imaging of RSC synapses onto MEC layer V neurons shown to project superficially by way of retrogradely labeling from superficial layers confirmed that proximal dendrites of superficially projecting cells are among the targets of inputs from RSC. The excitatory RSC input thus interacts with both entorhinal-cortical and entorhinal-hippocampal circuits.

  12. Spatial distributions of hemoglobin signals from superficial layers in the forehead during a verbal-fluency task

    Science.gov (United States)

    Kohno, Satoru; Hoshi, Yoko

    2016-06-01

    Functional near-infrared spectroscopy (fNIRS) signals originate in hemoglobin changes in both the superficial layer of the head and the brain. Under the assumption that the changes in the blood flow in the scalp are spatially homogeneous in the region of interest, a variety of methods for reducing the superficial signals has been proposed. To clarify the spatial distributions of the superficial signals, the superficial signals from the forehead during a verbal-fluency task were investigated by using ten source-detector pairs separated by 5 mm, whereas fNIRS signals were also detected from two source-detector pairs separated by 30 mm. The fNIRS signals strongly correlated with the superficial signals at some channels on the forehead. Hierarchical cluster analysis was performed on the temporal cross-correlation coefficients for two channels of both the NIRS signals, and the analysis results demonstrate spatially heterogeneous distributions and network structures of the superficial signals from within the forehead. The results also show that the assumption stated above is invalid for homogeneous superficial signals from any region of interest of 15-mm diameter or larger on the forehead. They also suggest that the spatially heterogeneous distributions may be attributable to vascular networks, including supraorbital, supratrochlear, and superficial temporal vessels.

  13. Surface Layer Properties after Successive EDM or EDA and Then Superficial Roto-Peen Machining

    Directory of Open Access Journals (Sweden)

    Agnieszka Dmowska

    2012-01-01

    Full Text Available The paper presents the results of the influence of basic electrical discharge machining EDM parameters and electrical discharge alloying EDA parameters on surface layer properties and on selected performance properties of machine parts after such machining but also the influence of superficial cold-work treatment applied after the EDM of EDA on modification of these properties. The investigations included texture of the surface, metallographic microstructure, microhardness distribution, fatigue strength, and resistance to abrasive wear. It was proved that the application of the roto-peen after the EDM and the EDA resulted in lowering roughness height up to 70%, the elevation of surface layer microhardness by 300–700 μHV, and wear resistance uplifting by 300%.

  14. Study of the superficial ozone concentrations in the atmosphere of Comunidad de Madrid using passive samplers

    Directory of Open Access Journals (Sweden)

    D. Galán Madruga

    2001-06-01

    Full Text Available The ozone is a secondary atmospheric pollutant which is generated for photochemical reactions of volatil organic compounds (VOC’s and nitrogen oxides (NOx. In Spain the ozone is a big problem as a consequence of the solar radiation to reach high levels. Exposure over a period of time to elevated ozone concentrations can cause damage in the public health and alterations in the vegetation.The aim of this study is to carry out the development and validation of a measurement method to let asses the superficial ozone levels in the Comunidad de Madrid, by identifing the zones more significants, where to measure with UV photometric monitors (automatics methods this pollutant and where the health and the vegetation can be affected. To such effect, passive samplers are used, which have glass fiber filters coated with a solution of sodium nitrite, potassium carbonate, glycerol and water. The nitrite ion in the presence of ozone is oxidized to nitrato ion, which it is extrated with ultrapure water and analyzed for ion chromatography, by seen proportional to the concentration existing in the sampling point.The results of validation from field tests indicate a excellent correlation between the passive and the automatic method.The higher superficial ozone concentrations are placed in rural zones, distanced of emission focus of primary pollutants (nitrogen oxides and volatil organic compounds... principally in direction soutwest and northwest of the Comunidad of Madrid.

  15. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling;

    2011-01-01

    atmosphere. To date, this region of the atmosphere has been studied directly, by instrumented lander spacecraft, and from orbital remote sensing, though not to the extent that is necessary to fully constrain its character and behavior. Current data strongly suggest that as for the Earth's PBL, classical...

  16. Cyclic testing of porcelain laminiate veneers on superficial enamel and dentin: Pressed vs. conventional layered porcelain

    Science.gov (United States)

    Tawde, Shweta

    Statement of Problem: Clinicians are inclined towards more aggressive teeth preparations to accommodate the thickness of the veneering material. The principle of conservative tooth preparation is compromised. Purpose: By using a conservative approach to treatment with porcelain veneers, long-lasting, esthetic and functional results may be achieved. Sacrificing as little tooth structure as possible and conserving the supporting tissues will facilitate prospective patients. Materials and Methods: Forty extracted human maxillary and mandibular canines were selected. The teeth were divided into one of two groups (pressable and stackable) and further subdivided according to tooth substrate (all-enamel or mixed enamel-dentin exposure). Twenty canine teeth were allotted to the pressable veneer group and 20 were allotted to the stackable veneer group. Of the 20 teeth in the pressable group, all were pressed with a lithium disilicate ceramic system (IPS e.max Press), 10 with labial tooth reduction of 0.3-0.5 mm maintaining superficial enamel (PEN) and the remaining 10 teeth with labial veneer reduction of 0.8-1.0 mm exposing superficial dentin (PDN). Of the 20 teeth in the stackable group, all were stacked/ layered with conventional feldspathic porcelain (Fortune; Williams/ Ivoclar); with labial veneer reduction of 0.3-0.5 mm maintaining superficial enamel (SEN) and the remaining 10 teeth with labial veneer reduction of 0.8-1.0 mm exposing superficial dentin (SDN). Silicon putty matrix was fabricated prior to teeth preparation to estimate the teeth reduction. The prepared facial reduction was limited to the incisal edge. No incisal or palatal/lingual reduction was performed. Impressions of the prepared teeth were taken in medium/light-bodied PVS. Master casts were made in Resin Rock. The stackable group specimens were made with fabricating refractory dies and after following the recommended steps of laboratory procedure, stackable veneers were processed. The pressable group

  17. Physiological properties of neurons in superficial layers of superior colliculus of rabbits

    Institute of Scientific and Technical Information of China (English)

    刘剑; 罗茀荪

    1996-01-01

    Neurons in superficial layers of the superior colliculus of the rabbit are classified into three types by their electrophysiological properties. Among them, two types belong to projecting neurons which send axons to the thalamic pulvinar (N=52) and dorsal lateral geniculate nucleus (N = 54) respectively. All other neurons are pooled into the third type (N=99). Projecting neurons of both types receive monosynaptic visual inputs via optic tract fibers of similar conduction velocity, indicating that in the superior colliculus of the rabbit, there is no difference in conduction velocity between the two pathways. They also receive trisynaptic inhibitory inputs, most likely via recurrent inhibitory circuits. The third type of neurons receives disynaptic optic and trisynaptic inhibitory inputs. The function of neurons of the third type is studied.

  18. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar re

  19. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities.

    Science.gov (United States)

    Chen, Wei-Hsin; Lu, Ke-Miao; Liu, Shih-Hsien; Tsai, Chi-Ming; Lee, Wen-Jhy; Lin, Ta-Chang

    2013-10-01

    The reaction characteristics of four biomass materials (i.e. oil palm fiber, coconut fiber, eucalyptus, and Cryptomeria japonica) with non-oxidative and oxidative torrefaction at various superficial velocities are investigated where nitrogen and air are used as carrier gases. Three torrefaction temperatures of 250, 300, and 350 °C are considered. At a given temperature, the solid yield of biomass is not affected by N2 superficial velocity, revealing that the thermal degradation is controlled by heat and mass transfer in biomass. Increasing air superficial velocity decreases the solid yield, especially in oil palm fiber and coconut fiber, implying that the torrefaction reaction of biomass is dominated by surface oxidation. There exists an upper limit of air superficial velocity in the decrement of solid yield, suggesting that beyond this limit the thermal degradation of biomass is no longer governed by surface oxidation, but rather is controlled by internal mass transport.

  20. Superficial layer MHD effect and full-cover free surface flow characterization

    International Nuclear Information System (INIS)

    Up to now, no realistic liquid metal (LM) free surface flow has been successfully used in magnetic confinement fusion devices because of MHD instability and unavoidable rivulet flow of the free surface. Recently, after performing a guidable free curve-surface flow investigation theoretically and experimentally, seeking for other way to get a full-cover free surface flow is in implementing. The superficial layer MHD effect, rivulet flow enhancement effect by magnetic field and thin film flow rivulet effect are experimentally observed. Compared with the experimental results and the characteristic parameters of the free surface flow, new variables of surface cover ratio and rivulet flow index are introduced to characterize the flowing characteristic of the full-cover free surface flow under magnetic field. According to the analysis rule, there are different unique conditions to meet full-cover free surface flow for different liquid metal under a magnetic field. Meanwhile, one inherent full-cover free surface flow is addressed for alternative application to liquid metal plasma facing component system. The experiments were carried out at Liquid Metal Experimental Loop Upgrade (LMEL-U) facility in Southwestern Institute of Physics, China. The free surface flow was measured 58 mm in width and 900 mm in length. The flowing angle is 60 degree to gravity direction in order to differentiate the effect of MHD from gravity for the flow under a gradient magnetic field. The average velocity of the free surface flow is from 0.4 to 4.34 m/s. The magnetic field is from 0 to 1.851 Tesla. To seek for the best free surface flow, the thickness of free surface flow was designed from 1 mm to several millimeter. Due to a limitation by the current liquid metal fluid diagnosis technology, the free surface flow is recorded by normal and super high speed camera. (author)

  1. Temperature structure in the atmospheric boundary layer

    Science.gov (United States)

    Smedman, Ann-Sofi

    2010-05-01

    Temperature structure in the atmospheric boundary layer It is well established from experimental and theoretical studies that the temperature structure in the atmospheric boundary layer is depends on stability. During free convection conditions the flow is dominated by circular thermals but when stratification is becoming slightly unstable longitudinal roll structures that extend vertically throughout the entire boundary layer will be present. In close to neutral conditions on the unstable side (the UVCN regime) when the Obukhov length is much greater than the surface layer depth, it is observed that the structure of the surface layer turbulence does not accord with standard similarity theory. In particular the efficiency of the turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with the standard model. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the structure of the whole boundary layer (i.e. are non-local), indicating that a large-scale transport process is at work. At the same time, co-spectral analysis shows how the large scale eddy motions that determine the heat transport process near the surface are typically 1/5 of the surface layer depth. All these features are found to be similar in measurements at two marine sites, in the Baltic Sea and in Lake Ontario respectively and at several flat land sites ( around Uppsala and at the Island of Gotland), indicating that they are determined by the dynamics of the whole boundary layer rather than being simply dependent on the surface boundary conditions. The observed structures can also be interpreted as possible manifestations of a bifurcation of the large scale eddy structure towards a state in which there are quasi-steady longitudinal rolls and, on a smaller scale, unsteady detached eddies. Our interpretation of the results from the measurements is that, in the UVCN regime, the latter

  2. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  3. Characteristics of the Martian atmosphere surface layer

    Science.gov (United States)

    Clow, G. D.; Haberle, R. M.

    1991-01-01

    Researchers extend elements of various terrestrial boundary layer models to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface layer. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed. Parameterizations for specific heat and and binary diffusivity were also determined. The Prandtl and Schmidt numbers derived from these thermophysical properties were found to range from 0.78 - 1.0 and 0.47 - 0.70, respectively, for Mars. Brutsaert's model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the researchers modified the definition of the Monin-Obukhov length to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. This length scale was then utilized with similarity theory turbulent flux profiles with the same form as those used by Businger et al. and others. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  4. Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution

    OpenAIRE

    Stefan Georgiev Dragoev; Alexandar Stoyanov Staykov; Kiril Petrov Vassilev; Dessislav Kostadinov Balev; Dessislava Borislavova Vlahova-Vangelova

    2014-01-01

    The improvement of quality and the shelf life of veal by combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions was studied. The control samples C, air packaged only, D, air packaged sprayed by 0.02% dihydroquercetin solution, MAP, modified atmosphere packaging only, BMAP, modified atmosphere packaging sprayed by 0.02% butylated hydroxytoluene solution, and DMAP, modified atmosphere packaging sprayed by 0.02% dihydroquercetin s...

  5. Turbulent transport in the atmospheric surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)

    2012-04-15

    In the modelling of transport and accumulation of the radioactive isotope carbon-14 (C-14) in the case of a potential release from a future repository of radioactive waste, it is important to describe the transport of the isotope in the atmosphere. This report aims to describe the turbulent transport within the lower part of the atmosphere; the inertial surface layer and the roughness sublayer. Transport in the inertial surface layer is dependent on several factors, whereof some can be neglected under certain circumstances. Under steady state conditions, fully developed turbulent conditions, in flat and horizontal homogeneous areas, it is possible to apply an eddy diffusivity approach for estimating vertical transport of C. The eddy diffusivity model assumes that there is proportionality between the vertical gradient and the transport of C. The eddy diffusivity is depending on the atmospheric turbulence, which is affected by the interaction between mean wind and friction of the ground surface and of the sensible heat flux in the atmosphere. In this report, it is described how eddy diffusivity of the inertial surface layer can be estimated from 3-d wind measurements and measurements of sensible heat fluxes. It is also described how to estimate the eddy diffusivity in the inertial surface layer from profile measurements of temperature and wind speed. Close to the canopy, wind and C profiles are influenced by effects of the surface roughness; this section of the atmosphere is called the roughness sublayer. Its height is up to {approx}3 times the height of the plant canopy. When the mean wind interacts with the canopy, turbulence is not only produced by shear stress and buoyancy, it is additionally created by wakes, which are formed behind the plants. Turbulence is higher than it would be over a flat surface, and the turbulent transport is hereby more efficient. Above the plant canopy, but still within the roughness sublayer, a function that compensates for the effect

  6. Simulation of atmospheric turbulence layers with phase screens by JAVA

    Science.gov (United States)

    Zhang, Xiaofang; Chen, Wenqin; Yu, Xin; Yan, Jixiang

    2008-03-01

    In multiconjugate Adaptive Optics (MCAO), the phase screens are used to simulate atmospheric turbulence layers to study the optimal turbulence delamination and the determination of layer boundary position. In this paper, the method of power spectrum inversion and sub-harmonic compensation were used to simulate atmospheric turbulence layers and results can be shown by grey map. The simulation results showed that, with the increase of turbulence layers, the RMS of adaptive system decreased, but the amplitude diminished. So the atmospheric turbulence can be split into 2-3 layers and be modeled by phase screens. Otherwise, a small simulation atmospheric turbulence delamination system was realized by JAVA.

  7. Microstructure controlling of Ti/N particles dissipated energy to superficial layer of titanium nitride film

    Institute of Scientific and Technical Information of China (English)

    MA Zhongquan; ZHANG Qin

    2004-01-01

    The titanium nitride (TiNx) thin film with a controllable surface structure was fabricated by the dc-reactive magnetron sputtering technique, and the variation of microstructure in the surface layer with the energy of condensed adatom was investigated through X-ray diffraction (XRD) pattern and transmission electron microscope (TEM). It was found that the lattice parameters and the full width at half maximum (fwhm) of XRD peak on the top layers in the preferred orientation of (111) and (002) were closely correlated to the impacting induced phase composition, compressive strain, crystallite size and the fault density of the thin films. In the theory, a new means was used to model the atomistic process of per condensed adatom. The average energy at least in the minimum energy state of the incorporate adatom on TiN surface layer was statistically formulized through a careful consideration of dynamical process, which properly interpreted the experimental observations.

  8. Comparative morphology of three types of projection-identified pyramidal neurons in the superficial layers of cat visual cortex.

    Science.gov (United States)

    Matsubara, J A; Chase, R; Thejomayen, M

    1996-02-26

    The morphology and dendritic organization of corticocortical neurons in the superficial layers of area 18 that project to area 17 were studied by intracellular injection of lucifer yellow in the fixed-slice preparation. This corticocortical population contains primarily standard pyramidal cells, but occasional nonpyramidal, modified, fusiform, star, and inverted pyramidal cells were also seen. All cell types were present throughout layer 2 and in the upper and middle parts of layer 3. Standard pyramidal cells were found exclusively in lower layer 3. The mean somatic area of the area 17 projecting neurons was 251 microns 2. The width of basal dendritic fields was correlated to cell size for standard pyramidal cells but not for the other cell types. Next, the morphology and dendritic organization of the area 17 projecting neurons were compared to the pyramidal cells of the local horizontal patch networks and of the callosal system. The depth profile of the area 17 projecting and callosal pyramidal groups was virtually identical, peaking at 400 microns from the pial surface, whereas the local patch pyramidal group peaked at 281 microns. The local patch, area 17 projecting, and callosal pyramidal cells displayed increasingly larger mean somatic areas and basilar dendritic field width measurements. The number of basal dendritic branch points was greatest for callosal cells, and it was indistinguishable between local patch and area 17 projecting neurons. In the tangential plane, circular dendritic fields were observed on all callosal cells, but they were found on only approximately half of the local patch and area 17 projecting neurons. The remaining local patch and area 17 projecting neurons displayed mediolaterally and anteroposteriorly elongated basal dendritic fields, respectively. PMID:8866848

  9. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  10. Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution

    Directory of Open Access Journals (Sweden)

    Stefan Georgiev Dragoev

    2014-01-01

    Full Text Available The improvement of quality and the shelf life of veal by combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions was studied. The control samples C, air packaged only, D, air packaged sprayed by 0.02% dihydroquercetin solution, MAP, modified atmosphere packaging only, BMAP, modified atmosphere packaging sprayed by 0.02% butylated hydroxytoluene solution, and DMAP, modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution, were measured. The best results were obtained in modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution. Comparisons with control samples were expressed as reduction in acid value with 27.72%, peroxide value with 64.74%, 2-thiobarbituric acid reactive substances (TBARS with 65.71%, and the pH with 6.18%. The acid and peroxide values, TBARS, and pH were decreased linearly in response when applying the combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions (P0.05. According to results obtained it was concluded that 80%O2/20%CO2 modified atmosphere packaged veal stored at 0±0.5°C after 0.02% dihydroquercetin solution treatment can preserve its quality and shelf life to 15 d postmortem.

  11. Convection and Chemistry in the Atmospheric Boundary Layer

    OpenAIRE

    A. C. Petersen

    1999-01-01

    The earth’s troposphere is the lowest layer of the atmosphere and has a thickness of about 10 km. It is the layer that contains most of the mass (80%) of the atmosphere. All weather phenomena that we experience have their origin in the troposphere. It is the stage for some well-known environmental problems: climate change, ozone smog, and acidification. These problems are related to the trace amount of gases that are emitted into the troposphere from anthropogenic sources. Alth...

  12. Inhomogeneities in molecular layers of Mira atmospheres

    CERN Document Server

    Wittkowski, M; Ireland, M; Karovicova, I; Ohnaka, K; Scholz, M; van Wyk, F; Whitelock, P; Wood, P R; Zijlstra, A A

    2011-01-01

    We obtained K-band spectro-interferometric observations of the Miras R Cnc, X Hya, W Vel, and RW Vel with a spectral resolution of 1500 using the VLTI/AMBER instrument. We obtained concurrent JHKL photometry using the the Mk II instrument at the SAAO. Our sources have wavelength-dependent visibility values that are consistent with earlier low-resolution AMBER observations of S Ori and with the predictions of dynamic model atmosphere series based on self-excited pulsation models. The wavelength-dependent UD diameters show a minimum near the near-continuum bandpass at 2.25 um. They increase by up to 30% toward the H2O band at 2.0 um and by up to 70% at the CO bandheads. The dynamic model atmosphere series show a consistent wavelength-dependence, and their parameters such as the visual phase, effective temperature, and distances are consistent with independent estimates. The closure phases have significantly wavelength-dependent non-zero values indicating deviations from point symmetry. For example, the R Cnc cl...

  13. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important to the atmo......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface-layer. Physical processes like the Coriolis force, buoyancy forces and heat transport, that are important...... to the atmospheric boundary-layer, are mostly ignored so far. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include atmospheric stability and the Coriolis effect. Within the present work a RANS model framework is developed and implemented...

  14. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  15. Numerical simulation of turbulent atmospheric boundary layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Bennes, L.; Bodnar, T.; Kozel, K.; Sladek, I. [Czech Technical Univ., Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, P. [Universite Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques de l' Environment Terrestre

    2001-07-01

    The work deals with the numerical solution of viscous turbulent steady flows in the atmospheric boundary layer including pollution propagation. For its description we use two different mathematical models: - a model based on the Reynolds averaged Navier-Stokes equations for incompressible flows - a model based on a system of boundary layer equations. These systems are completed by two transport equations for the concentration of passive pollutants and the potential temperature in conservative form, respectively, and by an algebraic turbulence model. (orig.)

  16. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes.

    Science.gov (United States)

    Kosaka, Kentaro; Kubota, Yoshitaka; Adachi, Naoki; Akita, Shinsuke; Sasahara, Yoshitaro; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2016-08-01

    Human subcutaneous fat tissue consists of two layers, superficial adipose tissue (SAT) and deep adipose tissue (DAT). Some recent reports suggest that a disproportionate accumulation of DAT is related to obesity-associated metabolic complications. However, the differences in adipocyte function between SAT and DAT are unclear. To clarify the differences in human adipocyte characteristics between SAT and DAT, human ceiling culture-derived proliferative adipocytes (ccdPAs) were primary cultured from SAT and DAT of three lean female patients. Differences in adipogenic differentiation potential and sensitivity to exogenous adipogenic factors were examined. Epigenetic modification of the CpG island DNA methylation levels of genes related to adipogenesis was measured. In histological analyses, the mean adipocyte size in SAT was significantly larger than that in DAT (8,741 ± 416 vs. 7,732 ± 213 μm(2), P SAT showed significantly greater adipogenesis than did those of DAT. Sensitivity to partial adipogenic stimulation was significantly different between ccdPAs of SAT and DAT. Peroxisome proliferator-activated receptor-γ (PPAR-γ) protein expression and leptin protein secretion from ccdPAs were significantly higher in SAT than DAT. DNA methylation levels of PPAR-γ were significantly lower in ccdPAs of SAT than DAT. Adipocyte size was larger in SAT than DAT in vivo. This is consistent with the findings of an in vitro study that, compared with ccdPAs in DAT, ccdPAs in SAT have higher adipogenic potential and lower DNA methylation levels of PPAR-γ. PMID:27251439

  17. LES model intercomparisons for the stable atmospheric boundary layer

    NARCIS (Netherlands)

    Moene, A.F.; Baas, P.; Bosveld, F.C.; Basu, S.

    2011-01-01

    Model intercomparisons are one possible method to gain confidence in Large-Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer. This paper discusses the setup and some results of two intercomparison cases focussing on the stably stratified nocturnal boundary-

  18. STUDIES ON RETRIEVAL OF THE TURBULIVITY OF ATMOSPHERIC BOUNDARY LAYER

    Institute of Scientific and Technical Information of China (English)

    WANG Ting-fang; HUANG Si-xun; XIANG Jie

    2006-01-01

    The variational adjoint method was applied to retrieving the turbulivity of the atmospheric Ekman boundary layer along with the regularization principle. The validity of the method was verified by using the idealized data, and then the turbulivity profile and the geostrophic wind profile were retrieved through it for real observational wind filed data.

  19. Atmospheric Boundary Layer Characteristics during BOBMEX-Pilot Experiment

    Indian Academy of Sciences (India)

    G S Bhat; S Ameenulla; M Venkataramana; K Sengupta

    2000-06-01

    The atmospheric boundary layer characteristics observed during the BOBMEX-Pilot experiment are reported. Surface meteorological data were acquired continuously through an automatic weather monitoring system and manually every three hours. High resolution radiosondes were launched to obtain the vertical thermal structure of the atmosphere. The study area was convectively active, the SSTs were high, surface air was warm and moist, and the surface air moist static energy was among the highest observed over the tropical oceans. The mean sea air temperature difference was about 1.25°C and the sea skin temperature was cooler than bucket SST by 0.5°C. The atmospheric mixed layer was shallow, fluctuated in response to synoptic conditions from 100 m to 900 m with a mean around 500 m.

  20. Study of the superficial ozone concentrations in the atmosphere of Comunidad de Madrid using passive samplers Estudio de las concentraciones de ozono superficial en la atmósfera de la Comunidad de Madrid usando muestreadores pasivos

    Directory of Open Access Journals (Sweden)

    E. Díaz Ramiro

    2001-06-01

    Full Text Available The ozone is a secondary atmospheric pollutant which is generated for photochemical reactions of volatil organic compounds (VOC’s and nitrogen oxides (NOx. In Spain the ozone is a big problem as a consequence of the solar radiation to reach high levels. Exposure over a period of time to elevated ozone concentrations can cause damage in the public health and alterations in the vegetation.The aim of this study is to carry out the development and validation of a measurement method to let asses the superficial ozone levels in the Comunidad de Madrid, by identifing the zones more significants, where to measure with UV photometric monitors (automatics methods this pollutant and where the health and the vegetation can be affected. To such effect, passive samplers are used, which have glass fiber filters coated with a solution of sodium nitrite, potassium carbonate, glycerol and water. The nitrite ion in the presence of ozone is oxidized to nitrato ion, which it is extrated with ultrapure water and analyzed for ion chromatography, by seen proportional to the concentration existing in the sampling point.The results of validation from field tests indicate a excellent correlation between the passive and the automatic method.The higher superficial ozone concentrations are placed in rural zones, distanced of emission focus of primary pollutants (nitrogen oxides and volatil organic compounds... principally in direction soutwest and northwest of the Comunidad of Madrid.El ozono es un contaminante atmosférico secundario formado por reacciones fotoquímicas de compuestos orgánicos volátiles (COV y óxidos de nitrógeno (NOx. En España, el ozono es un gran problema como consecuencia de los altos niveles alcanzados por la radiación solar. Exposiciones periódicas a concentraciones elevadas de ozono, pueden causar daños en la salud pública y alteraciones en la vegetación.El objetivo del presente estudio es desarrollar y validar un método de medida que

  1. A Persistent Meteoric Ion Layer in the Martian Atmosphere

    Science.gov (United States)

    Crismani, Matteo; Schneider, Nicholas M.; Jain, Sonal Kumar; Plane, John; Deigo Carrillo Sanchez, Juan; Deighan, Justin; Stevens, Michael H.; Evans, Scott; Chaffin, Michael S.; Jacosky, Bruce; IUVS Team

    2016-10-01

    We report on a persistent metal ion layer at Mars produced by meteoric ablation in the upper atmosphere, observed by the Imaging Ultraviolet Spectrograph (IUVS) on MAVEN. The response of the Martian atmosphere to meteoroid influx constrains cometary activity, dust dynamics, ionospheric production at Mars and meteoric smoke may represent a site of nucleation for high altitude clouds. Using observations that span more than an Earth year, we find this layer is global and steady state, contrary to previous observations, but in accordance with predictions. IUVS observations cover a range of observation conditions, which allows us to determine the variability of the Mg+ layer seasonally and geographically. Mars has passed through several predicted meteor showers, though the fluences of these events have hitherto been unconstrained. Analysis of these events will determine whether Mars' atmosphere responds to such events dramatically, as was the case with comet Siding Spring, or more similarly to Earth. Mg is also detected, but the ratio of Mg to Mg+ is less than predicted, indicative of undetermined chemical processes in the Martian atmosphere.

  2. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid......Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM...

  3. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  4. Albedo muons in upper layers of the atmosphere

    International Nuclear Information System (INIS)

    The albedo muon fluxes are calculated in the energy range 50≤E≤1000 MeV in the upper atmospheric layers. It is shown that the anisotropy degree of albedo muon flux in the stratosphere increases with the muon energy increase, and according to the absolute values the albedo muon flux becomes comparable with the direct albedo proton fluxes at energies > 200 MeV. 8 refs.; 2 figs

  5. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    at the Høvsøre site in Denmark, which is a flat farmland area with a nearly homogeneous easterly upstream sector. Therefore, within that sector, the turning of the wind is caused by a combination of atmospheric stability, Coriolis, roughness, horizontal pressure gradient and baroclinity effects. Atmospheric......Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... stability was measured using sonic anemometers placed at different heights on the mast. Horizontal pressure gradients and baroclinity are derived from outputs of a numerical weather prediction model and are used to estimate the geostrophic wind. It is found, for these specific and relatively short periods...

  6. Coupled groundwater-atmosphere modeling: effects on atmospheric boundary layer development

    Science.gov (United States)

    Chow, F. K.; Maxwell, R. M.; Kollet, S. J.; Daniels, M. H.; Rihani, J. F.

    2007-12-01

    Newly-developed coupled land-atmosphere models which incorporate both subsurface and atmospheric moisture dynamics have the potential to change our understanding of the hydrologic cycle. This presentation describes the effects of coupled groundwater-atmosphere modeling on simulations of the atmospheric boundary layer. Both field observations and simulations indicate strong sensitivity of atmospheric dynamics to land-surface conditions, in particular surface soil moisture. Simulations of atmospheric flow in Owens Valley (California) and in the Riviera Valley (Switzerland) show strong sensitivity to land-surface conditions, thus motivating the need for more accurate representations of soil moisture. In addition to influences from weather and seasonal changes, soil moisture dynamics respond to diurnal heat fluxes on the land surface. Using our new fully-coupled groundwater-atmosphere model, we have demonstrated correlations of soil moisture and land-surface heat fluxes with groundwater fluctuations on short, diurnal time scales. By explicitly calculating groundwater dynamics for our domain of interest, we are able to produce realistic time- and space-varying soil moisture distributions that naturally correspond to variations in topography and surface evaporation. Simulations in idealized and real watersheds are shown to illustrate these effects. The observed variations in surface moisture distribution have large impacts on the moisture and temperature structure in the atmosphere, leading to changes in boundary layer depth and convective motions as compared to standard soil moisture representations. Our coupled model framework will allow detailed investigation of the complex cycle of land-atmosphere processes affecting moisture distributions in the subsurface and the atmosphere.

  7. Titan atmospheric composition by hypervelocity shock layer analysis

    Science.gov (United States)

    Nelson, H. F.; Park, Chul; Whiting, Ellis E.

    1989-01-01

    The Cassini Mission, a NASA/ESA cooperative project which includes a deployment of probe into the atmosphere of Titan, is described, with particular attention given to the shock radiometer experiment planned for the Titan probe for the analysis of Titan's atmosphere. Results from a shock layer analysis are presented, demonstrating that the mole fractions of the major species (N2, CH4, and, possibly Ar) in the Titan atmosphere can be successfully determined by the Titan-probe radiometer, by measuring the intensity of the CN(violet) radiation emitted in the shock layer during the high velocity portion of the probe entry between 200 and 400 km altitude. It is shown that the sensitivity of the CN(violet) radiation makes it possible to determine the mole fractions of N2, CH4, and Ar to about 0.015, 0.003, and 0.01, respectively, i.e., much better than the present uncertainties in the composition of Titan atmosphere.

  8. The height of the atmospheric boundary layer during unstable conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E.

    2005-11-01

    The height of the convective atmospheric boundary layer, also called the mixed-layer, is one of the fundamental parameters that characterise the structure of the atmosphere near the ground. It has many theoretical and practical applications such as the prediction of air pollution concentrations, surface temperature and the scaling of turbulence. However, as pointed out by Builtjes (2001) in a review paper on Major Twentieth Century Milestones in Air Pollution Modelling and Its Application, the weakest point in meteorology data is still the determination of the height of the mixed-layer, the so-called mixing height. A simple applied model for the height of the mixed-layer over homogeneous terrain is suggested in chapter 2. It is based on a parameterised budget for the turbulent kinetic energy. In the model basically three terms - the spin-up term and the production of mechanical and convective turbulent kinetic energy - control the growth of the mixed layer. The interplay between the three terms is related to the meteorological conditions and the height of the mixed layer. A stable layer, the so-called entrainment zone, which is confined between the mixed layer and the free air above, caps the mixed layer. A parameterisation of the depth of the entrainment zone is also suggested, and used to devise a combined model for the height of the mixed layer and the entrainment zone. Another important aspect of the mixed layer development exists in coastal areas where an internal boundary layer forms downwind from the coastline. A model for the growth of the internal boundary layer is developed in analogy with the model for mixed layer development over homogeneous terrain. The strength of this model is that it can operate on a very fine spatial resolution with minor computer resources. Chapter 3 deals with the validation of the models. It is based in parts on data from the literature, and on own measurements. For the validation of the formation of the internal boundary layer

  9. Radiative instabilities of atmospheric jets and boundary layers

    International Nuclear Information System (INIS)

    Complex flows occur in the atmosphere and they can be source of internal gravity waves. We focus here on the sources associated with radiative and shear (or Kelvin-Helmholtz) instabilities. Stability studies of shear layers in a stably stratified fluid concern mainly cases where shear and stratification are aligned along the same direction. In these cases, Miles (1961) and Howard (1961) found a necessary condition for stability based on the Richardson number: Ri ≥ 1/4. In this thesis, we show that this condition is not necessary when shear and stratification are not aligned: we demonstrate that a two-dimensional planar Bickley jet can be unstable for all Richardson numbers. Although the most unstable mode remains 2D, we show there exists an infinite family of 3D unstable modes exhibiting a radiative structure. A WKBJ theory is found to provide the main characteristics of these modes. We also study an inviscid and stratified boundary layer over an inclined wall with non-Boussinesq and compressible effects. We show that this flow is unstable as soon as the wall is not horizontal for all Froude numbers and that strongly stratified 3D perturbations behave exactly like compressible 2D perturbations. Applications of the results to the jet stream and the atmospheric boundary layer are proposed. (author)

  10. Segregation in the Atmospheric Boundary Layer - A Discussion

    Science.gov (United States)

    Dlugi, Ralph; Berger, Martina; Zelger, Michael; Hofzumahaus, Andreas; Rohrer, Franz; Holland, Frank; Lu, Keding; Tsokankunku, Anywhere; Sörgel, Matthias; Kramm, Gerhard; Mölders, Nicole

    2016-04-01

    Segregation is a well known topic in technical chemistry and means an incomplete mixing of the reactants. Incomplete mixing reduces the rate of reaction which is of utmost importance in technical chemistry but has been payed less attention in atmospheric chemistry. Different observational and modelling studies on chemical reactions in the turbulent and convective atmospheric boundary layer are analysed for the influences of segregation in the systems NO ‑ NO2 ‑ O3 and OH + V OCs (with main focus on isoprene). Also some estimates on reactions like HO2 + NO (an important recycling mechanism for OH) will be given. Especially, different terms of the intensity of segregation IS (correlation coefficients, standard deviations of mixing ratios) are compared and are related to characteristics of the flow regimes, such as mixing conditions and Damköhler numbers. Also influences of fluctuations of actinic fluxes are discussed which influence the mostly photo chemically driven reactions that were investigated.

  11. Atmospheric corrosion evaluation of galvanised steel by thin layer activation

    International Nuclear Information System (INIS)

    The release of certain metals, such as zinc, from outdoor constructions due to atmospheric corrosion is of some concern. For risk assessments the evaluation of the amount of released metal is of importance. Various methods can be used to study the release of metals. These include those using radiotracers, such as thin layer activation (TLA). To verify the reliability of TLA with respect to conventional techniques in the evaluation of atmospheric corrosion, galvanised steel was exposed to a mild marine environment. The amount of zinc in the corrosion products, released through artificial leaching, at different time intervals was evaluated by TLA and atomic absorption spectroscopy (AAS). A good correlation between the results was found indicating the feasibility of TLA for these release studies

  12. A wavenumber-frequency spectral model for atmospheric boundary layers

    International Nuclear Information System (INIS)

    Motivated by the need to characterize power fluctuations in wind farms, we study spatio-temporal correlations of a neutral atmospheric boundary layer in terms of the joint wavenumber-frequency spectrum of the streamwise velocity fluctuations. To this end, we perform a theoretical analysis of a simple advection model featuring the advection of small- scale velocity fluctuations by the mean flow and large-scale velocity fluctuations. The model is compared to data from large-eddy simulations (LES). We find that the model captures the trends observed in LES, specifically a Doppler shift of frequencies due to the mean flow as well as a Doppler broadening due to random sweeping effects

  13. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  14. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  15. SURFACE TENSION OF SERUM : VIII. FURTHER EVIDENCE INDICATING THE EXISTENCE OF A SUPERFICIAL POLARIZED LAYER OF MOLECULES AT CERTAIN DILUTIONS.

    Science.gov (United States)

    du Noüy, P L

    1924-04-30

    The assumption has been made in preceding papers that, at a given concentration of 1:10,000, in the vessels used in our experiments, a monomolecular oriented layer was formed. Such a layer might be supposed to prevent the free escape of water molecules from the surface into the air, at least to a certain extent. In order to check this assumption, the rate of evaporation of solutions of serum at different concentrations was measured. It was found that, under the conditions of the experiments, in a progression of dilutions from 10(-1) to 10(-6), the slowest evaporation took place at a concentration of 1:10,000. In a few cases (less than 20 per cent), evaporation was slower at a different concentration, but always within the same range (between 10(-3) and 10(-5)), not far from 10(-4).

  16. Regional atmospheric budgets of reduced nitrogen over the British isles assessed using a multi-layer atmospheric transport model

    NARCIS (Netherlands)

    Fournier, N.; Tang, Y.S.; Dragosits, U.; Kluizenaar, Y.de; Sutton, M.A.

    2005-01-01

    Atmospheric budgets of reduced nitrogen for the major political regions of the British Isles are investigated with a multi-layer atmospheric transport model. The model is validated against measurements of NH3 concentration and is developed to provide atmospheric budgets for defined subdomains of the

  17. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  18. Coherent structures in the Es layer and neutral middle atmosphere

    Science.gov (United States)

    Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina

    2015-12-01

    The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.

  19. Measurements of pollution in the lower layers of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P.; Sylvestre-Baron, M.; Pleyber, G.; Perilhon, P.; Faivre- Pierret, R.; Closson, A.; Nicotra, C.

    1973-06-01

    The measurement of the meteorological parameters and the sampling of pollutants in the lower levels of the atmosphere were made by the use of captive balloons. A 550 m/sup 3/ airship filled with hydrogen was used with apparatus distributed along the anchor cable up to a height of 1,200 m. The meteorological probes used to measure the pressure, temperature, humidity, and wind velocity and to transmit them to the ground are described. The apparatus for air sampling and the chemical analytical methods are described. The results obtained are reported. This experiment made it possible to prove the relations existing between temperature inversion regions and pollution levels. The results show that under the temperature emission layers the profiles for the diffusion of SO/sub 2/, Cl/ sub 2/, and organic pollutants are sharply different. (tr-auth)

  20. Aeroelectric structures and turbulence in the atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    S. V. Anisimov

    2013-10-01

    Full Text Available Complex electrical measurements with the use of sodar data show that electric field pulsation analysis is useful for electrodynamics/turbulence monitoring under different conditions. In particular, the number of aeroelectric structures (AES generated per hour is a convenient measure of the turbulence intensity. During convectively unstable periods, as many as 5–10 AES form per hour. Under stable conditions, AES occasionally form as well, indicating the appearance of occasional mixing events reflected in the electric field perturbations. AES magnitudes under stable conditions are relatively small, except in special cases such as high humidity and fog. The analysis of electric field (EF spectra gives additional useful information on the parameters of the atmospheric boundary layer and its turbulence. A rather sharp change in the spectrum slope takes place in the vicinity of 0.02 Hz under stable conditions. The characteristic slope of the spectrum and its change are reproduced in a simple model of EF formation.

  1. NOAA Climate Data Record (CDR) of Upper Atmospheric Temperature 4 Layer Microwave, Version 3.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 4 Layer Upper Atmosphere Temperature (UAT) Climate Data Record (CDR) dataset is a monthly analysis of the tropospheric and stratospheric data using temperature...

  2. On steel superficial hardening by concentrated electron beam in the air

    International Nuclear Information System (INIS)

    Possibilities of steel superficial hardening by a concentrated electron beam are studied. Experiments have been conducted since 1985 using the EhLV-6 accelerator with concentrated emission of the beam into atmosphere. Regimes ensuring the hardening and certain characteristic properties of the hardened layer are described

  3. Probing Below the Visible Cloud Layers in Jupiter's Atmosphere

    Science.gov (United States)

    de Pater, Imke; Sault, Robert J.; Butler, Bryan J.; DeBoer, David R.; Wong, Michael H.

    2016-10-01

    Visible and near-infrared images of the giant planets reveal a multitude of clouds, ranging in size from tiny, hardly visible, features to giant storm systems, such as Jupiter's Great Red Spot and Oval BA. At radio wavelengths we can probe altitudes in Jupiter's atmosphere below these visible cloud layers. We used the upgraded Very Large Array to map this unexplored region down to ~10 bar. We will present full radio maps at frequencies between 4 and ~35 GHz, with typical spatial resolutions of order 1000-2000 km. We will also show spectra and radiative transfer calculations of individual features, such as the Great Red Spot, Oval BA, hot spots and ammonia-rich "plumes". Our maps are complementary to observations planned for Juno's microwave radiometer (MWR). MWR's field-of-view is tiny, ~1000 km at the highest frequencies at perijove, and is limited to extremely narrow swaths of longitude; as such, our VLA maps will provide regional and global context at wavelengths overlapping with Juno MWR. Several maps at 8-12 GHz, at a spatial resolution of ~1000 km, will be taken during Juno perijove passes.Our analysis to date, based on 4-18 GHz maps, reveal a dynamically active planet at pressures up ammonia gas from Jupiter's deep atmosphere in "plumes", at concentrations similar to that measured by the Galileo Probe. At higher altitudes, the ammonia gas in these plumes will condense out, and as such could be responsible for the spectroscopically identified fresh ammonia ice clouds detected by the Galileo spacecraft at these latitudes.

  4. NMDA receptor blockade alters the intracellular distribution of neuronal nitric oxide synthase in the superficial layers of the rat superior colliculus

    Directory of Open Access Journals (Sweden)

    R.E. de Bittencourt-Navarrete

    2009-02-01

    Full Text Available Nitric oxide (NO is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

  5. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall

  6. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-09-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  7. Diurnal Variation of Air Temperature in the Atmospheric Surface Layer

    Directory of Open Access Journals (Sweden)

    Tanja Likso

    2006-12-01

    Full Text Available In order to illustrate the nature of the diurnal temperature variations in the atmospheric surface layer in all seasons a set of hourly observations at the Zagreb-Maksimir Observatory (Croatia, measured at three different levels (5 cm, 50 cm and 2 m above ground during the year 2005, was used. An approximate method for calculating air temperature at 5 cm, using the air temperature at 2 m, is presented. For this purpose, hourly data (screen height temperature, cloudiness, air pressure at barometer level and wind speed at 2 m collected at the Zagreb-Maksimir Observatory during the summer season of 2005 have been used. Th is method is based on the Monin-Obukhov similarity theory. Estimated values have been compared with observations. The results obtained are the most accurate for cloudy weather, and the least accurate in the case of clear sky. A systematic error of this approach was discovered using a clustering procedure and is briefly discussed.

  8. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  9. Hierarchical similarity in the atmospheric boundary layer turbulence

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; LI Xin; JIANG Weimei; LI Min

    2005-01-01

    The S-L (She and Leveque) scaling law, also named the hierarchical similarity theory, has been extensively tested for the turbulence made in the laboratory, but seldom been tested for the turbulence in the atmospheric boundary layer (ABL). In this paper,the S-L scaling law is applied to the turbulence in the ABL observed under unstably stratified conditions and over different types of underlying surfaces. The results of analyses show that over this type of homogeneous and flat underlying surface, such as the underlying surface in HUBEX (Huaihe River Basin Energy and Water Cycle Experiment), vertical speed and temperature fields well satisfy the S-L scaling law. For the turbulence over the homogeneous but rather rough underlying surface of forest and under unstably stratified conditions in PFRD (Park Falls Ranger District of the Chequamegon National Forest, Wisconsin, USA), the analyses show that the vertical speed and temperature fields sometimes conform sometimes do not conform to the S-L scaling law. However, at a time, either both of the vertical speed and temperature fields conform to the S-L scaling law, or both of them do not. Horizontal speed fields in both of the field experiments do not satisfy the S-L scaling law. The new explanation of the above-mentioned phenomena is given.

  10. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    Science.gov (United States)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-09-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with

  11. Atmospheric Boundary Layer, Integrating Air Chemistry and Land Interactions

    NARCIS (Netherlands)

    Vilà-Guerau De Arellano, J.; Heerwaarden, van C.C.; Stratum, van B.J.H.; Dries, van den C.L.A.M.

    2015-01-01

    This textbook provides an introduction to the interactions between the atmosphere and the land for advanced undergraduate and graduate students and a reference text for researchers in atmospheric physics and chemistry, hydrology, and plant physiology. The combination of the book, which provides the

  12. Three-Dimensional Motion Estimation of Atmospheric Layers From Image Sequences

    OpenAIRE

    Héas, Patrick; Memin, Etienne

    2008-01-01

    International audience In this paper, we address the problem of estimating three-dimensional motions of a stratified atmosphere from satellite image sequences. The analysis of three-dimensional atmospheric fluid flows associated with incomplete observation of atmospheric layers due to the sparsity of cloud systems is very difficult. This makes the estimation of dense atmospheric motion field from satellite images sequences very difficult. The recovery of the vertical component of fluid mot...

  13. Peripapillary Retinal Nerve Fiber Layer Thickness Corresponds to Drusen Location and Extent of Visual Field Defects in Superficial and Buried Optic Disc Drusen

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Wegener, Marianne; Sander, Birgit A;

    2016-01-01

    (P = 0.002) than eyes with buried ODD. There was a correlation between mean peripapillary RNFL thinning and visual field defects as measured by perimetric mean deviation (R-0.66; P = 0.0001). The most frequent visual field abnormalities were arcuate and partial arcuate defects. CONCLUSIONS...... of patients with ODD and to compare the peripapillary RNFL thickness to the extent of visual field defects and anatomic location (superficial or buried) of ODD. METHODS: Retrospective, cross sectional study. RESULTS: A total of 149 eyes of 84 ODD patients were evaluated. Sixty-five percent were female and 76......% had bilateral ODD. Of 149 eyes, 109 had superficial ODD and 40 had buried ODD. Peripapillary RNFL thinning was seen in 83.6% of eyes, where optical coherence tomography was performed (n = 61). Eyes with superficial ODD had greater mean peripapillary RNFL thinning (P ≤ 0.0001) and visual field defects...

  14. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey;

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...... transport, are mostly ignored. In order to decrease the uncertainty of wind resource assessment, the present work focuses on atmospheric flows that include stability and Coriolis effects. The influence of these effects on the whole atmospheric boundary-layer are examined using a Reynolds-averaged Navier...

  15. Fluxes and Mixing Processes in the Marine Atmospheric Boundary Layer

    OpenAIRE

    Nilsson, Erik Olof

    2013-01-01

    Atmospheric models are strongly dependent on the turbulent exchange of momentum, sensible heat and moisture (latent heat) at the surface. Oceans cover about 70% of the Earth’s surface and understanding the processes that control air-sea exchange is of great importance in order to predict weather and climate. In the atmosphere, for instance, hurricane development, cyclone intensity and track depend on these processes. Ocean waves constitute an obvious example of air-sea interaction and can cau...

  16. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  17. On the modeling of electrical boundary layer (electrode layer) and derivation of atmospheric electrical profiles, eddy diffusion coeffcient and scales of electrode layer

    Indian Academy of Sciences (India)

    Madhuri N Kulkarni

    2010-02-01

    Electrode layer or electrical boundary layer is one of the charge generators in the global atmospheric electric circuit. In spite of this we find very few model studies and few measurements of it in the literature. Using a new technique it is shown that in this layer, the space charge density varies exponentially in vertical. A new experimental method based on the surface measurements is discussed to determine all the characteristic scales and an average electrical and meteorological state of an electrode layer. The results obtained are in good agreement with the previous studies. So, it is suggested that an exponential space charge density profile will no longer be an assumption in the case of electrode layer studies. The profiles of atmospheric electric field and electrical conductivity are also derived and a new term named as electrode layer constant is introduced.

  18. Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system

    NARCIS (Netherlands)

    McHenry, Matthew J.; Strother, James A.; van Netten, Sietse M.

    2008-01-01

    A great diversity of aquatic animals detects water flow with ciliated mechanoreceptors on the body's surface. In order to understand how these receptors mechanically filter signals, we developed a theoretical model of the superficial neuromast in the fish lateral line system. The cupula of the neuro

  19. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    Science.gov (United States)

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  20. Height of convective layer in planetary atmospheres with condensable and non-condensable greenhouse substances

    OpenAIRE

    Makarieva, A. M.; V. G. Gorshkov; Pujol, T.

    2003-01-01

    Convection reduces greenhouse effect by transporting a certain amount of non-radiative dynamic energy to the upper atmosphere, where this energy dissipates and radiates into space without interaction with greenhouse substances in the lower atmosphere. In this paper we show that the height of the convective layer zc is finite and independent of atmospheric optical thickness τs at large values of the latter. We derive an analytical formula for z...

  1. Spatial atmospheric ALD of functional layers for CIGS Solar Cells

    NARCIS (Netherlands)

    Illiberi, A.; Frijters, C.; Balder, J.E.; Poodt, P.W.G.; Roozeboom, F.

    2015-01-01

    Spatial Atmosperic Atomic Layer Depositon combines the advantages of temporal ALD, i.e. excellent control of film composition and uniformity over large area substrates, with high growth rages (up tot nm/s). In this paper we present a short overview of our research acctivity carried out on S-ALD of f

  2. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert;

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  3. Wind farm performance in conventionally neutral atmospheric boundary layers with varying inversion strengths

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2014-06-01

    In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.

  4. Current status and challenges in optical turbulence simulations in various layers of the Earth's atmosphere

    Science.gov (United States)

    He, Ping; Nunalee, Christopher G.; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    In this study, we present a brief review on the existing approaches for optical turbulence estimation in various layers of the Earth's atmosphere. The advantages and disadvantages of these approaches are also discussed. An alternative approach, based on mesoscale modeling with parameterized turbulence, is proposed and tested for the simulation of refractive index structure parameter (C2n ) in the atmospheric boundary layer. The impacts of a few atmospheric flow phenomena (e.g., low-level jets, island wake vortices, gravity waves) on optical turbulence are discussed. Consideration of diverse geographic settings (e.g., flat terrain, coastal region, ocean islands) makes this study distinct.

  5. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation: Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svendby, T.M.; Myhre, C.L.; Stebel, K.; Edvardsen, K; Orsolini, Y.; Dahlback, A.

    2012-07-01

    This is an annual report describing the activities and main results of the monitoring programme: Monitoring of the atmospheric ozone layer and natural ultraviolet radiation for 2011. 2011 was a year with generally low ozone values above Norway. A clear decrease in the ozone layer above Norway during the period 1979-1997 stopped after 1998 and the ozone layer above Norway seems now to have stabilized.(Author)

  6. Simulation of a 5MW wind turbine in an atmospheric boundary layer

    International Nuclear Information System (INIS)

    This article presents detached eddy simulation (DES) results of a 5MW wind turbine in an unsteady atmospheric boundary layer. The evaluation performed in this article focuses on turbine blade loads as well as on the influence of atmospheric turbulence and tower on blade loads. Therefore, the turbulence transport of the atmospheric boundary layer to the turbine position is analyzed. To determine the influence of atmospheric turbulence on wind turbines the blade load spectrum is evaluated and compared to wind turbine simulation results with uniform inflow. Moreover, the influences of different frequency regimes and the tower on the blade loads are discussed. Finally, the normal force coefficient spectrum is analyzed at three different radial positions and the influence of tower and atmospheric turbulence is shown

  7. Some aspects of atmospheric dispersion in the stratified atmospheric boundary layer over homogeneous terrain

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik

    1999-01-01

    the Gaussian plume model concept with the spread parameters described in terms of the Pasquill stability classification or Monin-Obukhov similarity relationships are used. Other model types are Lagrangian particle models which also are parameterized in terms of Monin-Obukhov similarity relationships....... The applied models describe adequately the dispersion process in a weakly stable atmosphere, but fail during very stable atmospheric conditions. This suggests that Monin-Obukhov similarity theory is an adequate tool for the parameterization of the input parameters to atmospheric dispersion models...... during weakly stable conditions, but that more detailed parameterisations including other physical processes than those covered by the Monin-Obukhov theory should be developed for the very stable atmosphere....

  8. Histologia da camada superficial da lâmina própria da prega vocal ao se aplicar retalho pediculado de mucosa: estudo experimental em cães Vocal fold superficial layer of lamina propria histology after the position of mucosa pediculated flap: canine experimental study

    Directory of Open Access Journals (Sweden)

    David Greco Varela

    2005-06-01

    Full Text Available Os resultados conseguidos até hoje para a correção de sulcos vocais e lesões cicatriciais não são universalmente aceitos. A Técnica do Retalho Pediculado de Mucosa de Prega Vocal consiste na colocação de um retalho de mucosa de prega vocal com pedículo anterior na camada superficial da lâmina própria, abaixo da borda livre. OBJETIVO: Descrever os achados histológicos pós-operatórios ocorridos na camada superficial da lâmina própria de cães ao se aplicar a técnica em questão, tomando-se como parâmetro a variação dos colágenos total, tipo I, tipo III e número de núcleos celulares. FORMA DE ESTUDO: experimental. MATERIAL E MÉTODO: Foram utilizados 15 cães. Numa das pregas foi realizada a intervenção e a contralateral foi deixada como controle. Cada grupo de três cães foi sacrificado em 10, 30, 90, 180 e 360 dias após a cirurgia. As colorações utilizadas foram: H.E. e Syrius Red. RESULTADOS: Os níveis de colágeno total e tipo I apresentaram uma tendência a aumento nos grupos de intervenção nos 90º e 180º dias de pós-operatório, contudo só houve significância estatística no 180º dia (pMany techniques were applied to treat patients with sulcus vocalis and scarred vocal folds. Their results were not good enough. In the Technique of Vocal Fold Pediculated Mucosa Flap, an anterior pediculated flap of vocal fold is positioned on the superficial layer of the lamina propria, below the free margin. AIM: To describe histological postoperative findings on the superficial layer of lamina propria during the application of the technique Vocal Fold Pediculated Mucosa Flap. The following parameters were compared between tested and control groups: total, type I and type III collagen and number of cellular nucleus. STUDY DESIGN: experimental. MATERIAL AND METHOD: Fifteen dogs were used. One vocal fold was submitted to the intervention and the other was left as control. Each group of three dogs was sacrificed on 10, 30

  9. Rocket dust storms and detached layers in the Martian atmosphere

    CERN Document Server

    Spiga, Aymeric; Madeleine, Jean-Baptiste; Määttänen, Anni; Forget, François

    2012-01-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling with radiatively-active transported dust to predict the evolution of a local dust storm monitored by OMEGA on board Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, in lieu of latent heating in moist convection on Earth. We propose to use the terminology "rocket dust storm", or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30 to 50 km). Combined to horizontal transport by large-scale winds, rocket dust storms form detached layers of dust reminiscent of those observed with instruments on board Mars Global Surveyor and Mars Reconnaissance Orbite...

  10. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain

    OpenAIRE

    Wood, Curtis Ron; Chapman, Jason W.; Reynolds, Donald R.; Barlow, Janet Fraser; Alan D. Smith; Woiwod, Ian P.

    2006-01-01

    Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favou...

  11. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob;

    This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling...... by an actuator line model. As a consequence, part of the research also targets the performance of the actuator line model when generating wind turbine wakes in the atmospheric boundary layer. Highlights of the conducted research: 1. A description is given for using the dynamic wake meandering model....... 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind turbine wake turbulence by comparison to field data and wind tunnel experiments. 3. A two-dimensional eddy viscosity...

  12. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    Directory of Open Access Journals (Sweden)

    J. Lauros

    2010-08-01

    Full Text Available We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere.

    Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.

  13. Dual Nature of Heat Flux in Stable Atmospheric Surface Layer

    Science.gov (United States)

    Srivastava, P.; Sharan, M.

    2015-12-01

    The behavior of heat flux (H) with respect to the stability parameter (ζ) in stable surface layer (SSL) is analyzed with in the framework of Monin-Obukhov similarity (MOS) theory. The analytical expressions of H are obtained as functions of wind speed (U) and wind shear (dU/dz) using the linear similarity functions and accordingly two cases, (i) U = δ (constant) and (ii) dU/dz = δ are considered. The mathematical analysis shows that the magnitude of H increases with ζ till it attains a maximum value at ζ =ζc and then starts decreasing with increasing stability suggesting the dual characteristic of heat flux with stability parameter. The point of maximum heat flux is found to be dependent on the roughness length (z0) as well as the height above the surface. An attempt has been made to analyze the sensitivity of this dual characteristic of H with ζ using the non-linear similarity functions. The analysis shows that the dual nature of H persists in the case of linear as well as non-linear similarity functions. However, the point of extremum appears to be dependent on the nature of the similarity functions. Turbulent data over a tropical site Ranchi (India) is analyzed to validate the observed nature of H with the theoretical nature as predicted by MOS. The analysis of observational data reveals the non-existence of any preferred stability state in SSL as speculated by Wang and Bras (2010, 2011) and supports the conclusions of Malhi 1995, Derbyshire 1999, van de Wiel et al. 2007, Basu et al. 2008, and van de Wiel et al. 2011. Thus, the non-uniqueness of MOS equations does not appear to be a mathematical artifact and it is consistent with the observations as far as the nature of heat flux with respect to stability parameter in SSL is concerned.

  14. The Aggregate behavior of branch points--measuring the number and velocity of atmospheric turbulence layers.

    Science.gov (United States)

    Oesch, Denis W; Sanchez, Darryl J; Matson, Charles L

    2010-10-11

    Optical waves propagating through atmospheric turbulence develop spatial and temporal variations in their phase. For sufficiently strong turbulence, these phase differences can lead to interference in the propagating wave and the formation of branch points; positions of zero amplitude. Under the assumption of a layered turbulence model, we show that these branch points can be used to estimate the number and velocities of atmospheric layers. We describe how to carry out this estimation process and demonstrate its robustness in the presence of sensor noise.

  15. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    OpenAIRE

    Chima C. Ngumah; Jude N. Ogbulie; Justina C. Orji; Ekperechi S. Amadi

    2013-01-01

    This study investigated the effects of initiating anaerobic digestion (AD) of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 0C and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD...

  16. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  17. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  18. Anode layer in a high-current arc in atmospheric pressure nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian A [ESAB Welding and Cutting Products and Francis Marion University, Florence, SC 29501 (United States)

    2005-11-21

    An anode layer in a high-current atmospheric nitrogen arc was modelled. Calculations were made in a one-dimensional approximation at current densities in the range 500-3000 A cm{sup -2}. Two-temperature approximation was used. We calculated the distributions of both electron and heavy particle temperatures, the concentrations of charged and neutral particles and the electric field inside the anode layer. It was shown that for the conditions that exist in the anode layer of a high-current atmospheric pressure arc in nitrogen (a) the concentration of the molecular ions is negligible and (b) the concentration of atoms exceeds the concentration of molecules everywhere in the anode layer except in a narrow region close to the anode. Calculation showed that the electric field decreases towards the anode, and then close to the anode it rises again. Contrary to the situation in argon, the present calculations showed that in nitrogen the electric field in the anode layer is always accelerating. However, the average electric field in the anode layer is weaker than in the adjacent arc column (the so-called negative anode layer voltage). The voltage drop in the Langmuir sheath is also negative. It is shown that the main difference in anode layer voltages between an arc in nitrogen and an arc in argon is due to the high reactive thermal conductivity in nitrogen.

  19. Implementation of a boundary layer heat flux parameterization into the Regional Atmospheric Modeling System (RAMS

    Directory of Open Access Journals (Sweden)

    E. L. McGrath-Spangler

    2008-07-01

    Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the boundary layer. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the lower layer through the insertion of energy and mass. This alters the surface energy budget by changing the Bowen ratio and thereby altering the vegetative response and the surface boundary conditions. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. A parameterization to include the effects of boundary layer entrainment was introduced into a coupled ecosystem-atmosphere model (SiB-RAMS. The parameterization is based on a downward heat flux at the top of the boundary layer that is proportional to the heat flux at the surface. Results with the parameterization show that the boundary layer simulated is deeper, warmer, and drier than when the parameterization is turned off. These results alter the vegetative stress factors thereby changing the carbon flux from the surface. The combination of this and the deeper boundary layer change the concentration of carbon dioxide in the boundary layer.

  20. Internal boundary-layer height formulae — A comparison with atmospheric data

    Science.gov (United States)

    Walmsley, John L.

    1989-04-01

    The height of the internal boundary layer (IBL) downwind of a step change in surface roughness is computed using formulae of Elliott (1958), Jackson (1976) and Panofsky and Dutton (1984). The results are compared with neutral-stratification atmospheric data extracted from the set of wind-tunnel and atmospheric data summarized by Jackson (1976) as well as neutral-stratification data presented by Peterson et al. (1979) and new data measured at Cherrywood, Ontario. It is found that the Panofsky-Dutton formulation gives the least root-mean-square (RMS) absolute errors for atmospheric applications.

  1. Thermal inertia index of the ocean layer of interaction with the atmosphere

    Science.gov (United States)

    Sherstyukov, Boris

    2013-04-01

    The ocean is one of the most important components of the climate system and one of the factors of long-term variations of climate. Huge heat capacity of the ocean are always determined by the dominance of the ocean in interaction between ocean and atmosphere. For global atmosphere the ocean can be both a source and sewer of heat. The atmosphere is in contact only with the surface of the ocean, but thermal interaction takes place with the top mixed layer of the ocean that ranges from a few hundred meters to 1.5-2 km. The depth of this layer depends on the characteristics of domestic ocean processes at each place and from time. Mixed layer depth of Ocean determines the volume layer and its thermal capacity. The ocean could take away heat from the atmosphere and can give it away. If the depth of the upper mixed layer of the oceans depends the thermal inertia, the depth of this layer can be a factor of long-term changes of climate. Modified inertia must also affect the amplitude and phase lag of seasonal temperature changes. It is very important to assess changes in ocean mixed layer depth at each location for compare with climate changes. The change of the top ocean layer depth of ocean interaction with atmosphere can be measured by changes in lag of seasonal temperature changes. The report proposes an index of inertia (depth of layer) of the thermal interaction of the ocean with the atmosphere: I=T2-T1 , were T2 - the average temperature of the ocean surface in the second half of the year (July to December), T1 is the average temperature of the ocean surface in the first half of the year (January-June). The increase of index shows increased inertia of seasonal change that indirectly reflects the increase in depth of the top layer of the ocean involved into interaction with the atmosphere. Analysis of the index changes has shown that in the 20th century was reduced the layer depth of the ocean interacting with the atmosphere. This may mean that in recent decades was

  2. Impact of Different Aerosols on the Evolution of the Atmospheric Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height.

  3. The Zodiacal Cloud Model applied to the Martian atmosphere. Diurnal variations in Meteoric ion layers

    Science.gov (United States)

    Diego Carrillo-Sánchez, Juan; Plane, John M. C.; Withers, Paul; Fallows, Kathryn; Nesvorný, David; Pokorný, Petr; Feng, Wuhu

    2016-04-01

    Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. However, the background metal layers produced by the influx of sporadic meteors have not yet been detected at Mars (contrary to the permanent metal layers identified in the Earth's atmosphere). The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFC) and Halley-Type Comets (HTC) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. These vertical profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the formation of the sporadic ion layers observed below 100 km with a plasma density exceeding 104 cm-3 requires the combination of the three different influx sources considered by the ZDC model, with a significant asteroidal contribution. Finally, we explore the changes of the neutral and ionized Mg and Fe layers over a diurnal cycle.

  4. Pulmonary deposition of urban atmospheric aerosol. Assessments of the mass, number and surface of the deposited particles; Deposizione polmonare dell'aerosol atmosferico urbano in termini di massa, numero e superficie delle particelle

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, A.; Berico, M.; Castellani, C.M. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1998-07-01

    Pulmonary deposition of urban atmospheric aerosol has been calculated by means of the data derived from March 1995 measurement campaign of urban aerosol. The human respiratory tract model of the International Commission on Radiological Protection (n. 66) developed for radiation protection purposes has been used. The number and surface of the deposited particles, as well as the mass, have been also evaluated. [Italian] I dati relativi alla campagna di misure effettuata nel marzo 1995 sono stati rielaborati al fine di valutare la deposizione polmonare dell'aerosol atmosferico in area urbana. Le valutazioni di deposizione nel tratto respiratorio umano sono state condotte mediante l'utilizzo del modello del tratto respiratorio umano presentato per fini radioprotezionistici dalla International Commission on Radiological Protection (n. 66). Sono state effettuate valutazioni di deposizione in massa e in termini di numero e superficie delle particelle.

  5. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  6. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as

  7. Equipment for atmospheric, spatial atomic layer deposition in roll-to-roll processes

    NARCIS (Netherlands)

    Knaapen, R.; Poodt, P.; Olieslagers, R.; Lankhorst, A.; Boer, M. van den; Berg, D. van den; Asten, A. van; Roozeboom, F.

    2012-01-01

    A novel type of reactor has been designed for atmospheric atomic layer deposition (ALD) on flexible substrates. In the reactor, a flexible substrate slowly advances around a fast rotating drum. Gas bearing technology is used to prevent physical contact between the flexible substrate and the drum, an

  8. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.; Moriarty, P.J.

    2010-08-01

    This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).

  9. A METHOD FOR DETERMINING TURBULENT TRANSFER IN THE ATMOSPHERIC SURFACE LAYER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Derivation of bulk transport coefficients helps solving land surface processes. A similarity-based method for determining the turbulent transfer (including the flux exchange, the vertical distribution of wind and potential temperature) in the atmospheric surface layer is presented. Comparisons with iterative schemes (Businger, 1971) are given to demonstrate the advantages of the calculation methods.

  10. [Analysis on concentration variety characteristics of atmospheric ozone under the boundary layer in Beijing].

    Science.gov (United States)

    Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian

    2007-11-01

    Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.

  11. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Heerwaarden, van C.C.; Lelieveld, J.

    2012-01-01

    Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms and in modulating Earth’s reflectivity and climate1. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cy

  12. Atmospheric spatial atomic layer deposition of in-doped ZnO

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Roozeboom, F.; Poodt, P.

    2014-01-01

    Indium-doped zinc oxide (ZnO:In) has been grown by spatial atomic layer deposition at atmospheric pressure (spatial-ALD). Trimethyl indium (TMIn), diethyl zinc (DEZ) and deionized water have been used as In, Zn and O precursor, respectively. The metal content of the films is controlled in the range

  13. Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors

    NARCIS (Netherlands)

    Illiberi, A.; Cobb, B.; Sharma, A.; Grehl, T.; Brongersma, H.; Roozeboom, F.; Gelinck, G.; Poodt, P.

    2015-01-01

    We have investigated the nucleation and growth of InGaZnO thin films by spatial atmospheric atomic layer deposition. Diethyl zinc (DEZ), trimethyl indium (TMIn), triethyl gallium (TEGa), and water were used as Zn, In, Ga and oxygen precursors, respectively. The vaporized metal precursors have been c

  14. Layering Principles from One Approach to Isentropic Analysis and Modeling of the Atmosphere

    Science.gov (United States)

    Fulker, D. W.

    2015-12-01

    , so this suggestion is speculative. Suggested principle: Layers are 2-D only superficially, so the OGC standard for representing them may be Web Coverage Service (WCS over netCDF). WCS embraces features as well as coverages and can represent higher dimensions. A WCS profile specific to layers may be required for true reusability.

  15. [Study on the infrared spectra and raman spectra of steel rusty layer with atmospheric corrosion].

    Science.gov (United States)

    Yang, Xiao-mei

    2006-12-01

    In the present study two methods, infrared and Raman spectral analyses, were used to measure the rusty layer of samples with atmospheric corrosion from Qingdao. The main component rust phase of the rusty layer was observed, showing that the relative content of the rust phase varies with the change in corrosion time. The main component rust phases of the rusty layer were found to be alpha-Fe2O3 , gamma-FeOOH, alpha-FeOOH, delta-FeOOH and Fe3O4, with the relative content of each rust phase of A3 (1) rusty layer sample exhibiting the following relation: gamma-FeOOH> alpha-FeOOH>delta-FeOOH, and the relative contents of other rusty layer samples were found to follow the relation: gamma-FeOOH> delta-FeOOH>alpha-FeOOH. PMID:17361722

  16. Efficiency of eddy mixing in a stable stratified atmospheric boundary layer

    Science.gov (United States)

    Kurbatskiy, A. F.; Kurbatskaya, L. I.

    2011-12-01

    Based on a mesoscale RANS model of turbulence, the behavior of turbulent eddy mixing parameters is found to agree with the latest data of laboratory and atmospheric measurements. Some problems of the description of turbulent eddy mixing in the atmospheric boundary layer are studied. When the flow transforms to an extremely stable state, in particular, it is found the flux Richardson number Ri f can change nonmonotonically: it increases with increasing gradient Richardson number Rig until the state of saturation is reached at Ri g ≃ 1 and then decreases. The behavior of the coefficients of eddy diffusion of momentum and heat agrees with the concept of momentum (but not heat) transfer by internal waves propagating in an extremely stable atmospheric boundary layer.

  17. Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO.

    Science.gov (United States)

    Ievskaya, Yulia; Hoye, Robert L Z; Sadhanala, Aditya; Musselman, Kevin P; MacManus-Driscoll, Judith L

    2016-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature and deposition time, as well as on the Cu2O substrate exposure to oxidizing agents prior to and during the ZnO deposition. Superficial Cu2O to CuO oxidation was identified as a limiting factor to heterojunction quality due to recombination at the ZnO/Cu2O interface. Optimization of AP-SALD conditions as well as keeping Cu2O away from air and moisture in order to minimize Cu2O surface oxidation led to improved device performance. A three-fold increase in the open-circuit voltage (up to 0.65 V) and a two-fold increase in the short-circuit current density produced solar cells with a record 2.2% power conversion efficiency (PCE). This PCE is the highest reported for a Zn1-xMgxO/Cu2O heterojunction formed outside vacuum, which highlights atmospheric pressure spatial ALD as a promising technique for inexpensive and scalable fabrication of Cu2O-based photovoltaics. PMID:27500923

  18. Sea ice edge position impact on the atmospheric boundary layer temperature structure

    Science.gov (United States)

    Khavina, Elena; Repina, Irina

    2016-04-01

    Processes happening in the Arctic region nowadays strongly influence global climate system; the polar amplification effect can be considered one of the main indicators of ongoing changes. Dramatic increase in amount of ice-free areas in the Arctic Ocean, which took place in 2000s, is one of the most significant examples of climate system dynamic in polar region. High amplitude of changes in Arctic climate, both observed and predicted, and existing inaccuracies of climate and weather forecasting models, enforce the development of a more accurate one. It is essential to understand the physics of the interaction between atmosphere and ocean in the Northern Polar area (particularly in boundary layer of the atmosphere) to improve the models. Ice conditions have a great influence on the atmospheric boundary layer in the Arctic. Sea ice inhibits the heat exchange between atmosphere and ocean water during the polar winter, while the heat exchange above the ice-free areas increases rapidly. Due to those significant temperature fluctuations, turbulence of heat fluxes grows greatly. The most intensive interaction takes place at marginal ice zones, especially in case of the cold outbreak - intrusion of cooled air mass from the ice to free water area. Still, thermal structure and dynamic of the atmosphere boundary layer are not researched and described thoroughly enough. Single radio sounding observations from the planes being done, bur they do not provide high-resolution data which is necessary for study. This research is based on continuous atmosphere boundary layer temperature and sea ice observation collected in the Arctic Ocean during the two NABOS expeditions in August and September in 2013 and 2015, as well as on ice conditions satellite data (NASA TEAM 2 and VASIA 2 data processing). Atmosphere temperature data has been obtained with Meteorological Temperature Profiler MTP-5 (ATTEX, Russia). It is a passive radiometer, which provides continuous data of atmospheric

  19. LABLE: A multi-institutional, student-led, atmospheric boundary layer experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P.; Bonin, T. A.; Newman, J. F.; Turner, D. D.; Chilson, P. B.; Wainwright, C. E.; Blumberg, W. G.; Mishra, S.; Carney, M.; Jacobsen, E. P.; Wharton, Sonia; Newsom, Rob K.

    2015-10-23

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

  20. Power Absorption of High Frequency Electromagnetic Waves in a Partially Ionized Plasma Layer in Atmosphere Conditions

    Institute of Scientific and Technical Information of China (English)

    郭斌; 王晓钢

    2005-01-01

    We have studied the absorption, reflection, and transmission of electromagnetic waves in an unmagnetized uniform plasma layer covering a metal surface in atmosphere conditions.Instead of the absorption of the electromagnetic wave propagating only once in previous work on the plasma layer, a general formula of total power absorption by the plasma layer with an infinite time of reflections between the atmosphere-plasma interface and the metal surface has been derived for the first time. Effects of plasma parameters, especially the dependence of the fraction of positive ions, negative ions and electrons in plasmas on the power absorption processes are discussed. The results show that the existence of negative ions significantly reduces the power absorption of the electromagnetic wave. Absorptions of electromagnetic waves are calculated.

  1. Contribution of the Atmospheric Dynamics to the Sporadic Sodium Layer Formation

    Institute of Scientific and Technical Information of China (English)

    杨国韬; 王嘉珉; 刘炳模; 程学武; 万卫星; 龚顺生

    2002-01-01

    We report on a sporadic sodium layer (SSL) event observed by our Na fluorescence lidar at Wuhan, China (31°N, 114°E) on 16 March 1999, and we reveal some special behaviour. From careful analysis of various sodium content variations of the layer during the development of this SSL event, it is found that besides the sodium injection mechanism as expected, another mechanism which we call atmospheric dynamics also made a noticeable contribution to this SSL formation. Computer simulations confirmed that under the combined action ora suitable sodium injection and a bi-direction vertical wind field, an SSL profile can be reproduced with a pronounced SSL peak on a normal sodium layer, as we observed in this event. From these results, it is emphasized that atmospheric dynamics is important for SSL formation.

  2. Characterization of Rust Layer Formed on Low Alloy Steel Exposed in Marine Atmosphere

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The iron rust phases formed on Iow alloy steels containing different quantities of Cr element have been characterizedusing EPMA, Raman spectroscopy, TEM, optical microscopy etc. The ion selective properties of synthesized rust filmswith the same phase constituent as the atmospheric corrosion products were investigated using self-made apparatus.The results showed that corrosion loss of steels exposed in marine atmosphere decreased rapidly as the Cr contentof the steel was increased. Cr-containing steels were covered by a uniform compacted rust layer composed of fineparticles with an average diameter of several nanometers. Inner rust layer of Cr-containing steel (2 mass fraction)was composed of α-CrxFel-xOOH, with Cr content of about 5 mass fraction. Such rust layer showed cation selectiveproperty, and could depress the penetration of Cl- to contact substrate steel directly.

  3. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  4. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    Science.gov (United States)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  5. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere

    Science.gov (United States)

    Vila-Guerau Arellano, J.; Vanheerwaarden, C.; Lelieveld, J.

    2013-12-01

    We will present and discuss a conceptual modelling framework that can facilitate the understanding of the interactions between land processes and atmospheric boundary layer dynamics/chemistry at diurnal scales. This framework has been successful applied to the interpretation of field experiments, but also to identify the non-linear relations that occur at larger spatial and temporal scales. We will then discuss in depth the link between shallow cumulus and vegetation exchange of water and carbon dioxide. Cumulus clouds in the atmospheric boundary layer play a key role in the hydrologic cycle, in the onset of severe weather by thunderstorms, and in modulating the Earth's reflectivity and climate. How these clouds respond to climate change, in particular over land, and how they interact with the carbon cycle is poorly understood. It is expected that as a consequence of rising atmospheric CO2 the plant stomata will close leading to lower latent heat fluxes and higher sensible heat fluxes. During the presentation, we will show that this causes a decline in boundary layer cloud formation in middle latitudes. This could be partly counteracted by the greater ability of a warmer atmosphere to take up water and by a growth in biomass due to CO2 fertilization. Our results are based on a new soil-water-atmosphere-plant model supported by comprehensive observational evidence, from which we identify the dominant atmospheric responses to plant physiological processes. They emphasize the intricate connection between biological and physical aspects of the climate system and the relevance of short-term and small-scale processes in establishing this connection

  6. Complex measurements of aerosol and ion characteristics in the atmospheric boundary layer

    Science.gov (United States)

    Kikas, Iu. E.; Kolomiets, S. M.; Kornienko, V. I.; Mirme, A. A.; Sal'm, Ia. I.; Sergeev, I. Ia.; Tammet, Kh. F.

    Results of a comprehensive study of the characteristics of atmospheric ions and aerosols in the boundary layer during the summer season are reported. A study is also made of the kinetics of aerosol formation under conditions of high artificial ionization of the air by alpha and UV radiation. A high degree of correlation is shown to exist between atmospheric concentrations of medium ions and fine (less than 0.01 micron) aerosol. The results obtained support the radiation-chemical mechanism of aerosol formation.

  7. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming;

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...... boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd....

  8. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    Science.gov (United States)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  9. Modelagem da infiltração em solos com encrostamento superficial. Parte I: modelo GAML para solos estratificados Modelling of the soil water infiltration in crusting soil. Part I: GAML model for layered soils

    Directory of Open Access Journals (Sweden)

    João H. Zonta

    2012-05-01

    Full Text Available RESUMO Neste trabalho a meta foi avaliar o modelo de Green-Ampt-Mein-Larson (GAML e GAML modificado por Moore (1981 na simulação da infiltração de água em solos com encrostamento superficial. Os ensaios de infiltração foram realizados em Cambissolo sem cobertura, com quatro perfis de precipitação aos quais foram aplicadas três precipitações sucessivas para cada perfil, espaçadas 24 h. Para a inclusão da camada de encrostamento superficial no modelo de GAML, o valor da condutividade hidráulica na zona de transmissão (Kt foi igual à taxa de infiltração estável (Tie obtida em solo nu; no modelo de GAML modificado por Moore (1981, foram propostas uma camada de crosta com espessura de 5 mm e condutividade hidráulica da crosta saturada (Kc determinada a partir dos dados experimentais e igual a 10 e 25% da condutividade hidráulica do solo saturado (K0. Nas segunda e terceira precipitações as combinações que não consideraram o encrostamento superficial não apresentaram bons resultados, superestimando a taxa de infiltração ao longo do tempo. Para o modelo de GAML os melhores resultados foram obtidos com uso de Kt = Tie determinada em solo nu, enquanto no modelo GAML se obtive, para solos estratificados,valor de Kc = 10 e 25% de K0.ABSTRACT The aim of this study was to evaluate the Green-Ampt-Mein-Larson (GAML model and GAML model modified by Moore (1981 for layered soils, in the simulation of water infiltration process in crusting soil. The infiltration tests were performed on a Cambisol without coverage and three successive precipitations were applied at intervals of 24 h. For the inclusion of the soil crust layer in the input parameters of the GAML model, the value of hydraulic conductivity in the transmission zone (Kt was equal to stable infiltration rate (Tie obtained in bare soil, and in the GAML model for layered soils, a surface layer (crust were proposed with a thickness of 5 mm and soil crust saturated hydraulic

  10. DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-01-01

    This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar + O2 and Ar + N2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100 sccm) and for different modification times (0.5-7 min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar + O2 plasma for 1 min under 70 cm(3)/min O2 flow rate (71.077° ± 3.578) showed a 18.83% decrease compare to unmodified samples' CA value (84.463° ± 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar + O2 (1 min 70 sccm) and Ar + N2 (40 s 70 sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar + O2 and Ar + N2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar + O2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds. PMID:26494511

  11. Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers.

    Directory of Open Access Journals (Sweden)

    Stuart David Greenhill

    Full Text Available The entorhinal cortex (EC controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2 and V (L5. Here, we add comparative studies in layer III (L3. Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles.

  12. Numerical study of the anode boundary layer in atmospheric pressure arc discharges

    Science.gov (United States)

    Semenov, I. L.; Krivtsun, I. V.; Reisgen, U.

    2016-03-01

    The anode boundary layer in atmospheric pressure arc discharges is studied numerically on the basis of the hydrodynamic (diffusion) equations for plasma components. The governing equations are formulated in a unified manner without the assumptions of thermal equilibrium, ionization equilibrium or quasi-neutrality. For comparison, a quasi-neutral model of the anode layer is also considered. The numerical computations are performed for an argon arc at typical values of the current density in anode layers (500-2000 A cm-2). The results of numerical modelling show that the common collisionless model of the sheath fails to describe the sheath region for the problem under consideration. For this reason, a detailed analysis of the anode sheath is performed using the results of unified modelling. In addition, the distributions of plasma parameters in the anode layer are analysed and the basic characteristics of the layer (anode voltage drop, sheath voltage drop, anode layer thickness, sheath thickness, heat flux to the anode) are calculated. Our results are found to be in good agreement with the existing theoretical predictions and experimental data. The dependence of the anode layer characteristics on the current density is also discussed.

  13. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    This paper reports on aluminum oxide (Al2O3) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O2 plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al2O3 films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10−5 gm−2d−1

  14. Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory

    DEFF Research Database (Denmark)

    Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.

    1992-01-01

    A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon......A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another......-surface values of heat, water vapor and momentum fluxes. The internal structure of the PBL is considered self-similar. This allows one to represent the interaction between the air flow and the underlying surface by means of universal heat/mass transfer and resistance laws. Numerical experiments on the diurnal...

  15. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Lukas, E-mail: lhoffmann@uni-wuppertal.de; Theirich, Detlef; Hasselmann, Tim; Räupke, André; Schlamm, Daniel; Riedl, Thomas, E-mail: t.riedl@uni-wuppertal.de [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal (Germany)

    2016-01-15

    This paper reports on aluminum oxide (Al{sub 2}O{sub 3}) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O{sub 2} plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al{sub 2}O{sub 3} films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10{sup −5} gm{sup −2}d{sup −1}.

  16. Experimental Study of the EM Transmission Properties of the Marine Atmospheric Boundary Layer

    Science.gov (United States)

    Hristov, T.; Friehe, C.; Anderson, K.

    2003-04-01

    The propagation of electro-magnetic signals over the ocean is primarily affected by atmospheric refraction and scattering from the rough ocean surface. Wave-guides (also known as refractive ducts) occurring in the first tens of meters above the sea surface have been modeled extensively, as they influence communications. However, discrepancies between models and measurements have been detected. Here we study experimentally the structure of the atmospheric refractive index and the ocean surface statistics, pertinent to EM signals scattering. The structure and the dynamics the marine atmospheric boundary layer is profoundly affected by the ocean surface waves, which deform the mean wind flow streamlines. In the presence of gradients of the atmospheric humidity and temperature, the deformation of the streamlines displaces the sheared profiles of these quantities and leads to wave-induced fluctuations of the atmospheric refractive index. As a result, radio and optical signals propagating over the ocean encounter a semi-periodic refractive structure, which along with the turbulence can degrade signal's energy. The wave-induced fluctuations of the refractive index are unique to the oceanic environment. Their structure function does not follow the power 2/3 scaling law, valid for turbulent fluctuations, and thus their influence should be studied separately. We analyze data of atmospheric turbulence, humidity, temperature, and sea surface temperature and waves from the Rough Evaporation Duct experiment, conducted in part from the instrument platform FLIP in the open ocean North of Oahu, Hawaii.

  17. Characteristics of aerosol at a lower atmospheric layer in DRAGON field campaign

    Science.gov (United States)

    KUJI, M.; Azuma, Y.; Kitakoga, S.; Sano, I.; Holben, B. N.

    2013-12-01

    Air pollution arises severely over East Asia with the rapid economic development nowadays. Monitoring the atmospheric environment, as one of the purposes, an intensive field campaign, Distributed Regional Aerosol Gridded Observation Networks (DRAGON), was carried out in the spring of year 2012, led by National Aeronautics and Space Administration (NASA). At that time, atmospheric phenomena such as Yellow sand and haze events were observed at Nara in the western part of Japan, as one of the DRAGON observation sites. The atmospheric events were characterized with the AErosol RObotic NETwork (AERONET) data. As a result of the data analysis, it was found that more light-absorbing and smaller particles dominated at the lower than upper atmospheric layer for the Kosa event in particular. A backward trajectory analysis suggested that the Yellow sand event traveled over the East Asian industrial cities, which could lead to a mixture of sand and air pollutants with moderate particle size and light-absorptivity. In addition, visibility observation was evaluated quantitatively with AERONET data in the DRAGON campaign since eye observation was inherently semi-quantitative. The extinction coefficient estimated from visibility was compared to that from AERONET. As a result, it was found that the extinction coefficients were generally consistent to each other. But there were some discrepancies, which could be caused with the atmospheric phenomena or aerosol types. It is confirmed that visibility is strongly influenced with aerosols in the case of severe atmospheric phenomena in particular.

  18. WAVELET TRANSFORM METHOD FOR DERIVING ATMOSPHERIC BOUNDARY LAYER HEIGHT FROM LIDAR SIGNALS

    Directory of Open Access Journals (Sweden)

    RAJITHA PALETI

    2013-04-01

    Full Text Available Wavelet method of determining the atmospheric boundary layer (ABL height from lidar signals is presented in this paper. The wavelet covariance transform (WCT method employed determines the significant gradient in the measured lidar signals. Using this method, the accuracy of ABL height detection enhances with increased dilation length. The developed wavelet algorithm is coded in MATLAB software and has a provision to alter the dilation length in real-time for a given translation estimate.

  19. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

    OpenAIRE

    Savarino, Joel; Morin, Samuel; Erbland, Joseph,; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.

    2013-01-01

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemi...

  20. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    Science.gov (United States)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  1. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    Science.gov (United States)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  2. Flux-Profile Relationship for Dust Concentration in the Stratified Atmospheric Surface Layer

    Science.gov (United States)

    Freire, L. S.; Chamecki, M.; Gillies, J. A.

    2016-08-01

    Flux-profile relationships are usually obtained under the assumption that the mean field of interest is in equilibrium with the associated surface fluxes. In this study, the existence of an equilibrium state for dust concentration in the atmospheric surface layer above sources and sinks is evaluated using large-eddy simulation. Results show that for steady-state turbulence and negligible horizontal advection, an equilibrium mean vertical profile of dust concentration is reached after one boundary-layer eddy turnover time. This is true for cases over a source or sink, under different atmospheric stabilities, and for particles with negligible or significant settling velocity. A new model relating the net surface flux to the vertical concentration profile that accounts for both atmospheric stability and particle settling velocity is proposed. The model compares well with the simulation results for all particle sizes and atmospheric stability conditions evaluated, and it can be used to estimate the concentration profile based on the surface flux, and also to estimate the surface flux by fitting the vertical concentration profile. The resulting equation can be considered as an extension of Monin-Obukhov similarity theory to the concentration of settling particles, such as mineral dust, sea-salt, pollen and other suspended aerosols.

  3. Investigating the Source, Transport, and Isotope Composition of Water in the Atmospheric Boundary Layer

    Science.gov (United States)

    Griffis, T. J.; Schultz, N. M.; Lee, X.

    2011-12-01

    The isotope composition of water (liquid and vapor phases) can provide important insights regarding the source of water used by plants, the origins of atmospheric water vapor, and the sources of carbon dioxide. In recent years there have been significant advances in the ability to quantify the isotope composition of water and water vapor using optical isotope techniques. We have used and helped develop some of these techniques to determine the isotope composition of soil and plant waters, to measure the isoflux of water vapor between the land surface and atmosphere, and to examine the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. In this presentation we will discuss three related issues: 1) Identification and correction of spectral contamination in soil and plant water samples using optical techniques; 2) The benefits and practical limitations of quantifying the isotope composition of evapotranspiration using the eddy covariance approach; and 3) The scientific value and feasibility of tracking the long-term (seasonal and interannual) behavior of the isotope composition of water vapor and deuterium excess in the atmospheric boundary layer. A few short stories will be provided from experiments conducted in the lab, at the field scale, and from a very tall tower at the University of Minnesota from 2008 to 2011.

  4. On the parametrization of the planetary boundary layer of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D. [Bulgarian Academy of Sciences, Geophysical Inst., Sofia (Bulgaria); Syrakov, D.; Kolarova, M. [Bulgarian Academy of Sciences, National Inst. of Meteorology and Hydrology, Sofia (United Kingdom)

    1997-10-01

    The investigation of the dynamic processes in the planetary boundary layer presents a definite theoretical challenge and plays a growing role for the solution of a number of practical tasks. The improvement of large-scale atmospheric weather forecast depends, to a certain degree, on the proper inclusion of the planetary boundary layer dynamics in the numerical models. The modeling of the transport and the diffusion of air pollutants is connected with estimation of the different processes in the Planetary Boundary Layer (PBL) and needs also a proper PBL parametrization. For the solution of these practical tasks the following PBL models;(i) a baroclinic PBL model with its barotropic version, and (ii) a convective PBL model were developed. Both models are one dimensional and are based on the similarity theory and the resistance lows extended for the whole PBL. Two different PBL parametrizations under stable and under convective conditions are proposed, on the basis of which the turbulent surface heat and momentum fluxes are estimated using generalized similarity theory. By the proposed parametrizations the internal parameters are calculated from the synoptic scale parameters as geostrophyc wind, potential temperature and humidity given at two levels (ground level and at 850 hPa) and from them - the PBL profiles. The models consists of two layers: a surface layer (SL) with a variable height and a second (Ekman layer) over it with a constant with height turbulent exchange coefficient. (au) 14 refs.

  5. The vertical structure of the atmospheric boundary layer over the central Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    BIAN Lingen; MA Yongfeng; LU Changgui; LIN Xiang

    2013-01-01

    The tropopause height and the atmospheric boundary layer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by China’s fourth arctic scientific expedition team over the central Arctic Ocean (86◦-88◦N, 144◦-170◦W ) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between-52.2 and-54.1◦C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low-and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (80◦-85◦N). The PBL height and the inversion layer thickness are much lower than those at 87◦-88◦N, but the inversion temperature is more intense, meaning a strong ice-atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.

  6. Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes

    Science.gov (United States)

    Jacob, Chinthaka; Anderson, William

    2016-06-01

    Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where n > 1 . This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with ≈ 25 H streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.

  7. 腺苷对大鼠内嗅皮层浅层主要神经元放电的影响%Effects of adenosine on electric discharge of principal neurons in superficial layers of entorhinal cortex of rats

    Institute of Scientific and Technical Information of China (English)

    樊双义; 李志方; 孙彬彬; 张鹏

    2011-01-01

    目的 探讨腺苷对大鼠内嗅皮层浅层星形神经元和锥体神经元兴奋性的调节作用.方法 制备大鼠内嗅皮层脑片,在红外干涉相差显微镜下,初步观察内嗅皮层浅层星形神经元和锥体神经元的形态学特点及其定位;在膜片钳全细胞记录模式下,记录这两类神经元的电生理学特点;观察腺苷对这两类神经元放电的影响,检测与其相互作用的腺苷受体类型.结果 腺苷能够明显抑制星形神经元和锥体神经元放电,而这种抑制效应在两类神经元间无统计学差异(P>0.05);腺苷A1受体拮抗剂DPCPX能够阻断腺苷诱发的抑制效应,但腺苷A2受体拮抗剂DMPX不能发挥阻断作用.结论腺苷能够通过A1受体抑制内嗅皮层浅层星形神经元和锥体神经元放电.%Objective To explore the regulatory effects of exogenous adenosine on the excitability of stellate neurons and pyramidal neurons in the superficial layers of rats' entorhinal cortex (EC) by using whole-cell patch-clamp recording technique. Methods Sample of superficial layers of entorhinal cortex (EC) was prepared. The morphology and location of stellate neurons and pyramidal neurons were visually identified using infrared differential interference contrast microscope. Following giga-seal formation and subsequent rupture of an electrically isolated patch of membrane for whole-cell configuration, the electrophysiological features of stellate neurons and pyramidal neurons were recorded, and the effects of adenosine (l00μmol/L) on the excitability of these 2 types of neurons were examined. Meanwhile, the adenosine receptors interacting with these neurons were identified. Results Under voltage clamp, adenosine obviously inhibited the firing activity of stellate neurons and pyramidal neurons, though exhibiting no difference between the two types of neurons (P >0.05). The inhibitory effect was blocked by DPCPX (3μmol/L), a selective Al receptor antagonist, but not by

  8. Effects of artificial sea film slick upon the atmospheric boundary layer structure

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Malinovsky, Vladimir; Chechin, Dmitriy

    2010-05-01

    Organic surface-active compounds accumulate at the ocean-atmosphere boundary, influencing several air-sea interaction processes. In coastal areas with high biological activity this accumulation frequently becomes visible as mirrorlike patches ("slicks") on the sea surface. The artificial surface films of oleyl alcohol and vegetable oil were produced in the Black Sea coastal zone (one site was located near Gelendjik and another was near Crimea coast) to investigate its influence on energy and gas exchange between atmosphere and sea surface under different meteorological conditions. The atmospheric turbulence measurements during the passage of an artificial sea slick are compared with similar measurements without a sea slick. The effects of the slick are modifications of roughness length z0, and a possible increase in mean wind speed. In the mean, during the passage of the slick, the roughness length decreased while the mean wind speed appeared to increase. For the spectral comparison we compared the wind field over the sea during the time the film slick was in the vicinity of the measurement site with the wind field observed after the slick had passed. The cross-spectral density was computed between horizontal velocity and vertical velocity (Reynolds stress) and between atmospheric temperature and vertical velocity (heat flux). The introduction of the sea film slick, with its damping and suppression of capillary waves, appears to completely destroy the atmospheric turbulence generation. When a slick is present, the U-W phase angle and Reynolds stress spectrum for the atmosphere appear to be completely unaffected by undulating sea surface directly below the sensors. Spectral and wavelet analysis of the atmospheric surface layer characteristics showed a significant correlation between the processes on the sea surface and the atmospheric boundary layer. An intensification of change processes in the vicinity of the windward slick boundary are detected. It may be

  9. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Chima C. Ngumah

    2013-12-01

    Full Text Available This study investigated the effects of initiating anaerobic digestion (AD of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 0C and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD, while the other was not inoculated. The bioreactors initiated at sub-atmospheric pressure, ambient atmospheric pressure without inoculum, and ambient atmospheric pressure with inoculum showed the following for biogas and biomethane yields respectively: 16.8 cm3 g-1 VS and 15.46 cm3 g 1 VS, 25.10 cm3 g-1 VS and 12.85 cm3 g-1 VS, 21.44 cm3 g-1 VS and 14.88 cm3 g 1 VS. In the same order, after AD, the following values were recorded for volatile solids and total viable counts (prokaryotes and fungi in the digestates: 40.33% and 23.22 x 106 cfu mL-1, 43.42% and 22.17 x 106 cfu mL-1, 41.11% and 13.3 x 106 cfu mL-1. The feedstock showed values of 83.93% and 3.98 x 106 cfu mL-1 for volatile solids and total viable count respectively. There was a slight difference in the volatile solids of the digestates of the three bioreactors after AD. The pH recorded for the feedstock slurry before AD was 7.9 at 30oC, while after AD, the digestates from all the three bioreactors showed the same pH of 5.9 at 29 0C. Statistical analysis using ANOVA showed no significant difference in biogas yields of the feedstock for the three bioreactors (A, B, C. ANOVA showed no significant difference for biomethane yields in the bioreactors initiated at sub-atmospheric pressure and for those initiated at ambient atmospheric pressure with inoculums. However, it showed significant difference in the bioreactor initiated at sub-atmospheric pressure and that initiated at ambient atmospheric

  10. Model Simulations of the Arctic Atmospheric Boundary Layer from the SHEBA Year

    Energy Technology Data Exchange (ETDEWEB)

    Tjernstroem, Michael; Zagar, Mark; Svensson, Gunilla [Stockholm Univ. (Sweden). Dept. of Meteorology

    2004-06-01

    We present Arctic atmospheric boundary-layer modeling with a regional model COAMPSTM, for the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Model results are compared to soundings, near-surface measurements and forecasts from the ECMWF model. The near-surface temperature is often too high in winter, except in shorter periods when the boundary layer was cloud-capped and well-mixed due to cloud-top cooling. Temperatures are slightly too high also during the summer melt season. Effects are too high boundary-layer moisture and formation of too dense stratocumulus, generating a too deep well-mixed boundary layer with a cold bias at the simulated boundary-layer top. Errors in temperature and therefore moisture are responsible for large errors in heat flux, in particular in solar radiation, by forming these clouds. We conclude that the main problems lie in the surface energy balance and the treatment of the heat conduction through the ice and snow and in how low-level clouds are treated.

  11. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    Science.gov (United States)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  12. Preliminary analysis of the Nocturnal Atmospheric Boundary Layer during the experimental campaign CIBA 2008

    Science.gov (United States)

    Yagüe, C.; Maqueda, G.; Ramos, D.; Sastre, M.; Viana, S.; Serrano, E.; Morales, G.; Ayarzagüena, B.; Viñas, C.; Sánchez, E.

    2009-04-01

    An Atmospheric Boundary Layer campaign was developed in Spain along June 2008 at the CIBA (Research Centre for the Lower Atmosphere) site which is placed on a fairly homogeneous terrain in the centre of an extensive plateau (41°49' N, 4°56' W). Different instrumentation at several levels was available on a new 10m meteorological mast, including temperature and humidity sensors, wind vanes and cup anemometers, as well as one sonic anemometer. Besides, two quartz-based microbarometers were installed at 50 and 100m on the main permanent 100m tower placed at CIBA. Three additional microbarometers were deployed on the surface on a triangular array of approximately 200 m side, and a tethered balloon was used in order to record vertical profiles of temperature, wind and humidity up to 1000m. Finally, a GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was deployed at 1.5m. This work will show some preliminary results from the campaign CIBA 2008, analysing the main physical processes present in the atmospheric Nocturnal Boundary Layer (NBL), the different stability periods observed and the corresponding turbulent parameters, as well as the coherent structures detected. The pressure perturbations measured from the surface and tower levels make possible to study the main wave parameters from wavelet transform, and compared the structures detected by the microbarometers with those detected in the wind and particles records.

  13. SUPERFICIAL CERVICAL PLEXUS BLOCK

    Directory of Open Access Journals (Sweden)

    Komang Mega Puspadisari

    2014-01-01

    Full Text Available Superficial cervical plexus block is one of the regional anesthesia in  neck were limited to thesuperficial fascia. Anesthesia is used to relieve pain caused either during or after the surgery iscompleted. This technique can be done by landmark or with ultrasound guiding. The midpointof posterior border of the Sternocleidomastoid was identified and the prosedure done on thatplace or on the level of cartilage cricoid.

  14. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    Science.gov (United States)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  15. Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics

    Science.gov (United States)

    Wu, Ka Ling; Porté-Agel, Fernando

    2016-04-01

    Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.

  16. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    Science.gov (United States)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-08-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  17. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    Science.gov (United States)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  18. Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations

    Directory of Open Access Journals (Sweden)

    Songhua Wu

    2013-11-01

    Full Text Available A lidar detects atmospheric parameters by transmitting laser pulse to the atmosphere and receiving the backscattering signals from molecules and aerosol particles. Because of the small backscattering cross section, a lidar usually uses the high sensitive photomultiplier and avalanche photodiode as detector and uses photon counting technology for collection of weak backscatter signals. Photon Counting enables the capturing of extremely weak lidar return from long distance, throughout dark background, by a long time accumulation. Because of the strong solar background, the signal-to-noise ratio of lidar during daytime could be greatly restricted, especially for the lidar operating at visible wavelengths where solar background is prominent. Narrow band-pass filters must therefore be installed in order to isolate solar background noise at wavelengths close to that of the lidar receiving channel, whereas the background light in superposition with signal spectrum, limits an effective margin for signal-to-noise ratio (SNR improvement. This work describes a lidar prototype operating at the Fraunhofer lines, the invisible band of solar spectrum, to achieve photon counting under intense solar background. The photon counting lidar prototype in Fraunhofer lines devised was used to observe the atmospheric boundary layer. The SNR was improved 2-3 times by operating the lidar at the wavelength in solar dark lines. The aerosol extinctions illustrate the vertical structures of aerosol in the atmospheric boundary over Qingdao suburban during summer 2011.

  19. Creation of an artificial ionized layer in the atmosphere by microwave nanosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A.L.; Ivanov, O.A.; Litvak, A.G. [Russian Academy of Science, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1995-12-31

    The paper reviews recent results of IAP microwave discharge group in investigation of a pulse-periodical nanosecond microwave discharges in converging wave beams. Performed experiments are the laboratory modeling of plasma chemical kinetics in an artificial ionized layer (AIL) created in the atmosphere by microwave beams using a ground-based transmitters. The interest to the AIL is explained by the variety of tasks which can be solved with its help. At present there are suggestions to use AIL for: distant radio- and television communication, generation of ozone, diagnostics of atmosphere, clearing of atmosphere from pollution. For the first time the possibility of using a nanosecond microwave discharge in wave beams to replenish the ozone decrease in the region of local ``ozone holes`` has been demonstrated experimentally. The regimes of effective ozone generation with low expenditure of energy have been defined. The efficiency of chlorofluorocarbons (freon) destruction has been defined with the help of AIL in troposphere at the heights of 10--20 km on the basis of laboratory measurements of plasma decay rate of a nanosecond microwave discharge. It has been experimentally shown that if the concentration of the atmosphere freon surpasses the threshold value then it is destroyed quickly in the processes of dissociative attachment of electrons.

  20. Recent progress in acoustic travel-time tomography of the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    Vladimir E. Ostashev

    2009-05-01

    Full Text Available Acoustic tomography of the atmospheric surface layer (ASL is based on measurements of the travel times of sound propagation between sources and receivers which constitute a tomography array. Then, the temperature and wind velocity fields inside the tomographic volume or area are reconstructed using different inverse algorithms. Improved knowledge of these fields is important in many practical applications. Tomography has certain advantages in comparison with currently used instrumentation for measurement of the temperature and wind velocity. In this paper, a short historical overview of acoustic tomography of the atmosphere is presented. The main emphasis is on recent progress in acoustic tomography of the ASL. The tomography arrays that have been used so far are discussed. Inverse algorithms for reconstruction of the temperature and wind velocity fields from the travel times are reviewed. Some results in numerical simulations of acoustic tomography of the ASL and reconstruction of the turbulence fields in tomography experiments are presented and discussed.

  1. Modelling of CO{sub 2} exchange between grassland ecosystems and the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, B.O.M.; Goudriaan, J. [Dept. of Theoretical Production Ecology, Wageningen Agricultural Univ. (Netherlands)

    1995-11-01

    To calculate and analyse diurnal and seasonal patterns of CO{sub 2} exchange between grassland ecosystems and the atmospheric boundary layer, a dynamic simulation model was developed. It distinguishes between a vegetational component, based on crop growth model SUCROS, and a soil component, based on soil organic matter model MOSOM, and calculates CO{sub 2} exchange as a function of half-hourly values of air and soil temperature, shortwave irradiance and atmospheric CO{sub 2}. As compared to measured CO{sub 2} fluxes in a grassland ecosystem in Cabauw, The Netherlands, measurements and preliminary model calculations agreed better for nighttime fluxes than for daytime fluxes. This discrepancy suggests incorrect model assumptions. The CO{sub 2} emission from cattle and manure, not yet included in the simulation model, is estimated to be approximately one tenth of the maximum daytime CO{sub 2} flux in July. 5 figs., 15 refs.

  2. Snow modeling within a multi-layer soil-vegetation-atmosphere model

    Science.gov (United States)

    McGowan, L. E.; Paw U, K. T.; Pyles, D. R.

    2014-12-01

    Estimates of snow depth, extent, and melt in the Sierra Nevada Mountain Range are critical to estimating the amount of water that will be available for crops during the growing season within California's Central Valley. Numerical simulations utilizing a fourth order turbulent closure transport scheme in a multi-layer soil-vegetation-atmosphere model, Advanced Canopy-Atmosphere-Soil algorithm (ACASA), were used to explore snow model improvements in the physics-based parameterization for the Sierra Nevada Range. A set of alterations were made separately to the existing snowpack model within ACASA focusing on improvements to snow cover simulations on complex terrain slopes and over varying canopy cover. Three winter seasons were simulated; a climatological average, dry, and wet winter. The simulated output from the models are compared to observations to determine which model alterations made the largest improvements to snow simulations.

  3. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness

    International Nuclear Information System (INIS)

    Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al2O3 films were grown on a moving polymer web substrate at 100 °C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13 nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/s and a vertical gap height of 0.5 mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD

  4. CONCENTRATION OF HARMFUL SUBSTANCES REDUCING IN SURFACE LAYER OF ATMOSPHERE AT RHEOSTAT LOCOMOTIVE TESTS

    Directory of Open Access Journals (Sweden)

    E. A. Bondar

    2010-06-01

    Full Text Available It is shown that at present an acceptable way of reducing the concentration of harmful substances in the surface layer of the atmosphere at rheostat tests of locomotives is their dispersion in a large volume of air. Channels, installed above an exhaust pipe of diesel locomotive with a break at the gas flow, work as ejectors. We have solved jointly the equation of aerodynamic characteristics of the ejector device and the equation of diffusion of gases; as a result the calculated dependence for determining the necessary height of ejector device has been obtained.

  5. CVD diamond deposition under atmospheric conditions on steel with a silicon intermediate layer

    OpenAIRE

    Prieske, Markus

    2016-01-01

    In order to realize dry metal forming, the requirements of the surface layer, e.g. to load-bearing capacity and tribological properties are increasing. Therefore, the feasibility of chemical vapour deposition (CVD) of diamond onto tool steel 1.2379 under atmospheric conditions without a vacuum chamber is investigated, so that there is no limit according to the size of the tool. For the deposition of CVD diamond coatings, a laser-based plasma CVD process combined with a physical vapour dep-osi...

  6. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    Science.gov (United States)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Modulation of the diurnal variations in the convective activities associated with day-by-day changes of surface flux and soil moisture was observed in the beginning of the monsoon season on the central Tibetan plateau (Sugimoto et al., 2008) which indicates the importance of land-atmosphere interactions in determining convective activities over the Tibetan plateau. Detailed interaction processes need to be studied by experiments designed to evaluate a set of hypotheses on mechanisms and linkages of these interactions. A possible function of vegetation to increase precipitation in cases of Tibetan High type was suggested by Yamada and Uyeda (2006). Use of satellite derived plateau scale soil moisture (Wen et al., 2003) enables the verification of these hypotheses (e.g. Trier et al. 2004). To evaluate these feedbacks, the mesoscale WRF model will be used because several numerical experiments are being conducted to improve the soil physical parameterization in the Noah land surface scheme in WRF so that the extreme conditions on the Tibetan plateau could be adequately represented (Van der Velde et al., 2009) such that the impacts on the structure of the atmospheric boundary layer can be assessed and improved. The Tibetan Observational Research Platform (TORP) operated by the Institute of Tibetan Plateau (Ma et al., 2008) will be fully utilized to study the characteristics of the plateau climate and different aspects of the WRF model will be evaluated using this extensive observation platform (e.g. Su et al., 2012). Recently, advanced studies on energy budget have been done by combining field and satellite measurements over the Tibetan Plateau (e.g. Ma et al., 2005). Such studies, however, were based on a single satellite observation and for a few days over an annual cycle, which are insufficient to reveal the relation between the land surface energy budget and the Asian monsoon over the Tibetan plateau. Time series analysis of satellite observations will provide the

  7. Validation of the simpleFoam (RANS) solver for the atmospheric boundary layer in complex terrain

    OpenAIRE

    Peralta C.; Nugusse H.; Kokilavani S.P.; Schmidt J.; Stoevesandt B.

    2014-01-01

    We validate the simpleFoam (RANS) solver in OpenFOAM (version 2.1.1) for simulating neutral atmospheric boundary layer flows in complex terrain. Initial and boundary conditions are given using Richards and Hoxey proposal [1]. In order to obtain stable simulation of the ABL, modified wall functions are used to set the near-wall boundary conditions, following Blocken et al remedial measures [2]. A structured grid is generated with the new library terrainBlockMesher [3,4], based on OpenFOAM's bl...

  8. Atmospheric Boundary Layer Height Evolution with Lidar in Buenos Aires from 2008 to 2011

    Science.gov (United States)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    The analysis of the atmospheric boundary layer top height evolution is obtained from 2008 to 2011 in Buenos Aires using the multiwavelength lidar located at CEILAP (CITEDEF-CONICET) (34°33' S; 58°30' W; 17 m asl). Algorithms recognition based on covariance wavelet transform are applied to obtain seasonal statistics. This method is being evaluated for use in the Lidar Network in Argentina and it is being deployed in Patagonia region currently. The technique operates in real time in both low and high aerosol loads and with almost no human supervision.

  9. Wind instability of a foam layer sandwiched between the atmosphere and the ocean

    CERN Document Server

    Shtemler, Yuri M; Mond, Michael

    2007-01-01

    Kelvin-Helmholtz instability of short gravity waves is examined in order to explain the recent findings of the decrease in momentum transfer from hurricane winds to sea waves. A three-fluid configuration of a foam layer between the atmosphere and the ocean is suggested to provide signifficant stabilization of the system and shifting the marginal critical wavelength to the shortwave part of the spectrum. It is conjectured that such stabilization leads to the observed drag reduction. The high contrasts in three fluid densities provide a universal mechanism for stabilizing surface perturbations.

  10. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth

    Science.gov (United States)

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  11. Scaling of the asymptotic entropy jump in the superadiabatic layers of stellar atmospheres

    CERN Document Server

    Magic, Zazralt

    2016-01-01

    Stellar structure calculations are able to predict precisely the properties of stars during their evolution. However, convection is still modelled by the mixing length theory; therefore, the upper boundary conditions near the optical surface do not agree with asteroseismic observations. We want to improve how the outer boundary conditions are determined in stellar structure calculations. We study realistic 3D stellar atmosphere models to find alternative properties. We find that the asymptotic entropy run of the superadiabatic convective surface layers exhibit a distinct universal stratification when normalised by the entropy minimum and jump. The normalised entropy can be represented by a 5th order polynomial very accurately, and a 3rd order polynomial also yields accurate coefficients. This generic entropy stratification or the solar stratification, when scaled by the entropy jump and minimum, can be used to improve the modelling of superadiabatic surface layers in stellar structure calculations. Furthermor...

  12. The Oblique Incident Effects of Electromagnetic Wave in Atmospheric Pressure Plasma Layers

    Institute of Scientific and Technical Information of China (English)

    HE Yong; JIANG Zhonghe; HU Xiwei; LIU Minghai

    2008-01-01

    The propagating behaviours, i.e. phase shift, transmissivity, reflectivity and absorptivity, of an electromagnetic (EM) wave in a two-dimensional atmospheric pressure plasma layer are described by the numerical solutions of integral-differential Maxwell's equations through a generalized finite-difference-time-domain (FDTD) algorithm. These propagating behaviours are found to be strongly affected by five factors: two EM wave characteristics relevan.t to the oblique incident and three dimensionless factors. The two EM wave factors are the polarization mode (TM mode or TE mode) and its incident angle. The three dimensionless factors are: the ratio of the maximum electron density to the critical density n0/ncr, the ratio of the plasma layer width to the wave length d/λ, and the ratio of the collision frequency between electrons and neutrals to the incident wave frequency ve0/f.

  13. LOLAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude-resolution

    CERN Document Server

    Avila, R; Wilson, R W; Chun, M; Butterley, T; Carrasco, E

    2008-01-01

    We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude-resolution. Using a 20000-separation double- star, we have obtained turbulence profiles with unprecedented 12-m resolution. The system incorporates necessary novel algorithms for autoguiding, autofocus and image stabilisation. The results presented here were obtained at Mauna Kea Observatory. They show LOLAS capabilities but cannot be considered as representative of the site. A forthcoming paper will be devoted to the site characterisation. The instrument was built as part of the ...

  14. Atmospheric Plasma Deposition of SiO2 Films for Adhesion Promoting Layers on Titanium

    Directory of Open Access Journals (Sweden)

    Liliana Kotte

    2014-12-01

    Full Text Available This paper evaluates the deposition of silica layers at atmospheric pressure as a pretreatment for the structural bonding of titanium (Ti6Al4V, Ti15V3Cr3Sn3Al in comparison to an anodizing process (NaTESi process. The SiO2 film was deposited using the LARGE plasma source, a linearly extended DC arc plasma source and applying hexamethyldisiloxane (HMDSO as a precursor. The morphology of the surface was analyzed by means of SEM, while the characterization of the chemical composition of deposited plasma layers was done by XPS and FTIR. The long-term durability of bonded samples was evaluated by means of a wedge test in hot/wet condition. The almost stoichiometric SiO2 film features a good long-term stability and a high bonding strength compared to the films produced with the wet-chemical NaTESi process.

  15. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    Science.gov (United States)

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  16. Application of Atmospheric Plasma-Sprayed Ferrite Layers for Particle Accelerators

    CERN Document Server

    Caspers, F; Federmann, S; Taborelli, M; Schulz, C; Bobzin, K; Wu, J

    2013-01-01

    A common problem in all kinds of cavity-like structures in particle accelerators is the occurrence of RF-resonances. Typically, ferrite plates attached to the walls of such structures as diagnostic devices, kickers or collimators, are used to dampen those undesired modes. However, the heat transfer rate from these plates to the walls is rather limited. Brazing ferrite plates to the walls is not possible in most cases due to the different thermal expansion coefficients. To overcome those limitations, atmospheric plasma spraying techniques have been investigated. Ferrite layers with a thickness from 50 μm to about 300 μm can be deposited on metallic surfaces like stainless steel exhibiting good thermal contact and still reasonable absorption properties. In this paper the technological aspects of plasma deposition are discussed and results of specifically developed RF loss measurement procedures for such thin magnetically lossy layers on metal are presented.

  17. Atmospheric boundary layer top height in South Africa: measurements with lidar and radiosonde compared to three atmospheric models

    Directory of Open Access Journals (Sweden)

    K. Korhonen

    2013-07-01

    Full Text Available Atmospheric lidar measurements were carried out at Elandsfontein measurement station, on the eastern Highveld approximately 150 km east of Johannesburg in South Africa (SA throughout 2010. The height of the planetary boundary layer (PBL top was continuously measured using a~Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended. High atmospheric variability together with a large surface temperature range and significant seasonal changes in precipitation were observed, which had an impact on the vertical mixing of particulate matter (PM, and hence, on the PBL evolution. The results were compared to radio soundings, CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization space-borne lidar measurements and three atmospheric models that followed different approaches to determine the PBL top height. These models included two weather forecast models operated by ECMWF (European Centre for Medium-range Weather Forecasts and SAWS (South African Weather Service and one mesoscale prognostic meteorological and air pollution regulatory model TAPM (The Air Pollution Model. The ground-based lidar used in this study was operational for 4935 h during 2010 (49% of the time. The PBL top height was detected 86% of the total measurement time (42% of the total time. Large seasonal and diurnal variations were observed between the different methods utilised. Comparison of lidar measurements to the models indicated that the ECMWF model agreed the best with mean absolute difference of 15.4%, while the second best correlation was with the SAWS model with corresponding difference of 20.1%. TAPM was found to have a tendency to underestimate the PBL top height. The wind speeds in SAWS operated and TAPM models were strongly underestimated which probably led to underestimation of the vertical wind and turbulence and thus underestimation of the PBL top height. High variation was found when lidar measurements were compared to radiosonde measurements. This could be partially due

  18. Estimating the atmospheric boundary layer height over sloped, forested terrain from surface spectral analysis during BEARPEX

    Directory of Open Access Journals (Sweden)

    W. Choi

    2010-11-01

    Full Text Available In this study the atmospheric boundary layer (ABL height (zi over complex, forested terrain is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment. The zi values estimated with this technique showed very good agreement with observations obtained from balloon tether sonde (2007 and rawinsonde (2009 measurements under unstable conditions (z/L < 0 at the coniferous forest in the California Sierra Nevada. The behavior of the nocturnal boundary layer height (h and power spectra of lateral winds and temperature under stable conditions (z/L > 0 is also presented. The nocturnal boundary layer height is found to be fairly well predicted by a recent interpolation formula proposed by Zilitinkevich et al. (2007, although it was observed to only vary from 60–80 m during the experiment. Finally, significant directional wind shear was observed during both day and night with winds backing from the prevailing west-southwesterlies in the ABL (anabatic cross-valley circulation to consistent southerlies in a layer ~1 km thick just above the ABL before veering to the prevailing westerlies further aloft. We show that this is consistent with the forcing of a thermal wind driven by the regional temperature gradient directed due east in the lower troposphere.

  19. EOSTAR : an electro-optical sensor performance model for predicting atmospheric refraction, turbulence, and transmission in the marine surface layer

    NARCIS (Netherlands)

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van; Doss-Hammel, S.M.; Tsintikidis, D.

    2003-01-01

    A first version of the integrated model EOSTAR (Electro-Optical Signal Transmission and Ranging) to predict the performance of electro-optical (EO) sensor systems in the marine atmospheric surface layer has been developed. The model allows the user to define camera systems, atmospheric conditions an

  20. Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The modeling and prediction of the stable boundary layer over land is a persistent, problematic feature in weather. climate, and air quality topics. Here, the performance of a state-of-the-art single-column boundary layer model is evaluated with observations from the 1999 Cooperative Atmosphere-Surf

  1. Influence of the atmospheric species water, oxygen, nitrogen and carbon dioxide on the degradation of aluminum doped zinc oxide layers

    NARCIS (Netherlands)

    Theelen, M.; Dasgupta, S.; Vroon, Z.; Kniknie, B.; Barreau, N.; Berkum, J. van; Zeman, M.

    2014-01-01

    Aluminum doped zinc oxide (ZnO:Al) layers were exposed to the atmospheric gases carbon dioxide (CO2), oxygen (O2), nitrogen (N 2) and air as well as liquid H2O purged with these gases, in order to investigate the chemical degradation behavior of these layers. The samples were analyzed by electrical,

  2. Curvas y superficies

    Directory of Open Access Journals (Sweden)

    Roy Sánchez Gutiérrez

    2012-09-01

    Full Text Available El desarrollo de la tecnología ha evolucionado en todos los campos del conocimiento. Las matemáticas han contribuido enormemente a estos cambios; la visualización, la experimentación numérica y gráfica han cambiado aspectos fundamentales de la manera en que enseñamos el razonamiento conceptual; sin embargo, seguimos creyendo que la esencia de las matemáticas es el enfoque a la comprensión conceptual de los temas básicos y fundamentales. Los conceptos matemáticos de curvas y superficies describen a las cosas reales del mundo que habitamos. Estos elementos matemáticos pueden explicarnos las formas de las cosas que nos rodean: [2]; las hélices, espirales, cónicas, cilindros, esferas, tetraedros, cubos, tubos, rectas, planos, etc. una colección de figuras geométricas que resaltan por su belleza y por su similitud con muchos objetos que nos rodean. Nuestro objetivo es la construcción de las curvas y superficies con el apoyo de Matlab [11] para obtener la gráfica de esa colección de figuras geométricas y de otros. El uso de parametrización tanto en curvas como en superficies es básico por la facilidad con que trabaja Matlab para efectuar los cálculos y luego para su representación gráfica. Queremos mostrar la forma de obtener la gráfica de estas curvas y superficies especiales que son comunes e importantes. Las definiciones formales se encuentran en el apéndice o en la bibliografía que citamos. La disponibilidad de la tecnología no hace menos importante comprender con claridad los conceptos que sustentan las imágenes que aparecen en la pantalla, sino que aumenta su importancia. Cuando se usa con propiedad las computadoras, son herramientas poderosas para descubrir y comprender temas que antes eran difíciles de visualizar.

  3. Flow around new wind fence with multi-scale fractal structure in an atmospheric boundary layer

    Science.gov (United States)

    McClure, Sarah; Lee, Sang-Joon; Zhang, Wei

    2015-11-01

    Understanding and controlling atmospheric boundary-layer flows with engineered structures, such as porous wind fences or windbreaks, has been of great interest to the fluid mechanics and wind engineering community. Previous studies found that the regular mono-scale grid fence of 50% porosity and a bottom gap of 10% of the fence height are considered to be optimal over a flat surface. Significant differences in turbulent flow structure have recently been noted behind multi-scale fractal wind fences, even with the same porosity. In this study, wind-tunnel tests on the turbulent flow and the turbulence kinetic energy transport of 1D and 2D multi-scale fractal fences under atmospheric boundary-layer were conducted. Velocity fields around the fractal fences were systematically measured using Particle Image Velocimetry to uncover effects of key parameters on turbulent flows around the fences at a Reynolds number of approximately 3.6x104 based on the free-stream speed and fence height. The turbulent flow structures induced by specific 1D/2D multi-scale fractal wind fences were compared to those of a conventional grid fence. The present results would contribute to the design of new-generation wind fences to reduce snow/sand deposition on critical infrastructure such as roads and bridges.

  4. A Method for Deriving the Boundary Layer Mixing Height from MODIS Atmospheric Profile Data

    Directory of Open Access Journals (Sweden)

    Xueliang Feng

    2015-09-01

    Full Text Available The planetary boundary layer is the medium of energy, moisture, momentum and pollutant exchange between the surface and the atmosphere. In this paper, a method to derive the boundary layer mixing height (MH was introduced and applied over the Heihe river basin. Atmospheric profiles from the MODerate Resolution Imaging Sepctroradiometer (MODIS instrument onboard the NASA-Aqua satellite were used for the high spatial resolution of this method. A gap-filling method was used to replace missing MODIS data. In situ MH data were also calculated from HIWATER (Heihe Watershed Allied Telemetry Experimental Research and WATER (Watershed Allied Telemetry Experimental Research observational radiosonde sounding data from 2008 and 2012 using the Richardson number method combined with a subjective method. The MH occurs where there is an abrupt decrease in the MR (water vapor mixing ratio. The minimum vertical gradient of the MR is used to determine the MH. The method has an average RMSE of 370 m under clear skies and convective conditions. The seasonal variation in the MH at the Gaoya radiosonde station is also presented. The study demonstrates that remote sensing methodologies can successfully estimate the MH without the help of field measurements.

  5. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  6. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    Science.gov (United States)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2016-02-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface.

  7. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  8. Laboratory Simulations of Local Winds in the Atmospheric Boundary Layer via Image Analysis

    Directory of Open Access Journals (Sweden)

    Monica Moroni

    2015-01-01

    Full Text Available In the atmospheric boundary layer, under high pressure conditions and negligible geostrophic winds, problems associated with pollution are the most critical. In this situation local winds play a major role in the evaluation of the atmospheric dynamics at small scales and in dispersion processes. These winds originate as a result of nonuniform heating of the soil, either when it is homogeneous or in discontinuous terrain in the presence of sea and/or slopes. Depending on the source of the thermal gradient, local winds are classified into convective boundary layer, sea and land breezes, urban heat islands, and slope currents. Local winds have been analyzed by (i simple analytical models; (ii numerical models; (iii field measurements; (iv laboratory measurements through which it is impossible to completely create the necessary similarities, but the parameters that determine the phenomenon can be controlled and each single wind can be separately analyzed. The present paper presents a summary of laboratory simulations of local winds neglecting synoptic winds and the effects of Coriolis force. Image analysis techniques appear suitable to fully describe both the individual phenomenon and the superposition of more than one local wind. Results do agree with other laboratory studies and numerical experiments.

  9. Evaluation of ozone content in different atmospheric layers using ground-based Fourier transform spectrometry

    Science.gov (United States)

    Virolainen, Ya. A.; Timofeev, Yu. M.; Poberovskii, A. V.; Eremenko, M.; Dufour, G.

    2015-03-01

    For the first time in Russia, using ground-based measurements of direct solar infrared radiation, we derived data on ozone content in different layers of the atmosphere. The measurements were conducted with the help of a Bruker IFS-125HR Fourier spectrometer in 2009-2012 in Petergof, which is 30 km west of the center of St. Petersburg. The errors in determining the ozone content by this method in the troposphere (0-12 km), in the stratosphere (12-50 km), in the layers of 10-20 and 20-50 km, and in the layers of 12-18, 18-25, and 25-50 km were ~4, 3, 3-5, and 4-7% (taking into account the instrumental and methodological errors, as well as the errors in specifying the temperature profile), respectively. The seasonal variation of tropospheric ozone content in the layer of 12-18 km is characterized by a clearly expressed maximum in March and a minimum in November, with amplitudes of 30 and 40%, respectively. For the layer of 18-25 km, the maximum and minimum are reached in the winter-spring period and late summer, respectively; the amplitude of the seasonal variation is ~20%. The amplitude of the annual variation in ozone content in the layer of 25-50 km is around 30%, with a maximum close to the summer solstice and a minimum close to the winter solstice. Over the three years of observations, the growth in the ozone content in this layer was ~10% per year of its value averaged over the time period. Comparisons of ground-based measurements with satellite measurements (by the IASI instrument) of tropospheric ozone revealed a discrepancy of (3.4 ± 17)% for both ensembles. The correlation between the two ensembles is 0.76-0.84 (depending on the season). Comparisons between ground-based and satellite measurements (by the MLS instrument) of stratospheric ozone revealed no systematic discrepancies of the two ensembles. The rms errors were 13, 6, and 5% for the layers of 10-20, 20-50, and 10-50 km, respectively; the coefficients of correlations between the two types of

  10. An analytical model for dispersion of material in the atmospheric planetary boundary layer in presence of precipitation

    International Nuclear Information System (INIS)

    An analytical model for the dispersion of particulates and finely divided material released into the atmosphere near the ground is presented. The possible precipitation when the particles are dense enough and large enough to have deposition velocity, is taken into consideration. The model is derived analytically in the mixing layer or Ekman boundary layer where the mixing process is a direct consequence of turbulent and convective motions generated in the boundary layer. (author)

  11. An analytical model for radioactive pollutant release simulation in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Weymar, Guilherme J.; Vilhena, Marco T.; Bodmann, Bardo E.J., E-mail: guicefetrs@gmail.com, E-mail: mtmbvilhena@gmail.com, E-mail: bejbodmann@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Buske, Daniela; Quadros, Regis, E-mail: danielabuske@gmail.com, E-mail: quadros99@gmail.com [Universidade Federal de Pelotas (UFPel), Capao do Leao, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica

    2013-07-01

    Simulations of emission of radioactive substances in the atmosphere from the Brazilian nuclear power plant Angra 1 are a necessary tool for control and elaboration of emergency plans as a preventive action for possible accidents. In the present work we present an analytical solution for radioactive pollutant dispersion in the atmosphere, solving the time-dependent three-dimensional advection-diffusion equation. The experiment here used as a reference in the simulations consisted of the controlled releases of radioactive tritiated water vapor from the meteorological tower close to the power plant at Itaorna Beach. The wind profile was determined using experimental meteorological data and the micrometeorological parameters were calculated from empirical equations obtained in the literature. We report on a novel analytical formulation for the concentration of products of a radioactive chain released in the atmospheric boundary layer and solve the set of coupled equations for each chain radionuclide by the GILTT solution, assuming the decay of all progenitors radionuclide for each equation as source term. Further we report on numerical simulations, as an explicit but fictitious example and consider three radionuclides in the radioactive chain of Uranium 235. (author)

  12. Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    CERN Document Server

    Lascaux, Franck; Fini, Luca

    2015-01-01

    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model p...

  13. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  14. Momentum Transfer Between an Atmospheric and an Oceanic Layer at the Synoptic and the Mesoscale: An Idealized Numerical Study

    Science.gov (United States)

    Moulin, A.; Wirth, A.

    2016-09-01

    We consider air-sea interaction at the (atmospheric) synoptic and the mesoscale due to momentum transfer only. Two superposed one-layer fine-resolution shallow-water models are numerically integrated, where the upper layer represents the atmosphere and the lower layer the ocean. The frictional force between the two layers is implemented using a quadratic drag law and experiments with different values of the surface drag coefficient are performed. The actual energy loss of the atmosphere and the energy gain by the ocean, due to the interfacial shear, is determined and compared to estimates based on average speeds. The correlation between the vorticity in the atmosphere and the ocean is determined. Results differ from previous investigations where the exchange of momentum was considered at basin scale. It is shown that the ocean has a passive role, absorbing kinetic energy at nearly all times and locations, results showing that the energy input to the ocean increases almost quadratically with the value of the drag coefficient. Due to the feeble velocities in the ocean, the energy transfer depends only weakly on the oceanic velocity. The ocean dynamics leave nevertheless their imprint on atmospheric dynamics, leading to a quenched disordered state of the atmosphere-ocean system for the highest value of the drag coefficient considered. This finding questions the ergodic hypothesis for the idealized configuration studied here. The ergodic hypothesis is at the basis of a large number of experimental, observational and numerical results in ocean, atmosphere and climate dynamics.

  15. Momentum Transfer Between an Atmospheric and an Oceanic Layer at the Synoptic and the Mesoscale: An Idealized Numerical Study

    Science.gov (United States)

    Moulin, A.; Wirth, A.

    2016-04-01

    We consider air-sea interaction at the (atmospheric) synoptic and the mesoscale due to momentum transfer only. Two superposed one-layer fine-resolution shallow-water models are numerically integrated, where the upper layer represents the atmosphere and the lower layer the ocean. The frictional force between the two layers is implemented using a quadratic drag law and experiments with different values of the surface drag coefficient are performed. The actual energy loss of the atmosphere and the energy gain by the ocean, due to the interfacial shear, is determined and compared to estimates based on average speeds. The correlation between the vorticity in the atmosphere and the ocean is determined. Results differ from previous investigations where the exchange of momentum was considered at basin scale. It is shown that the ocean has a passive role, absorbing kinetic energy at nearly all times and locations, results showing that the energy input to the ocean increases almost quadratically with the value of the drag coefficient. Due to the feeble velocities in the ocean, the energy transfer depends only weakly on the oceanic velocity. The ocean dynamics leave nevertheless their imprint on atmospheric dynamics, leading to a quenched disordered state of the atmosphere-ocean system for the highest value of the drag coefficient considered. This finding questions the ergodic hypothesis for the idealized configuration studied here. The ergodic hypothesis is at the basis of a large number of experimental, observational and numerical results in ocean, atmosphere and climate dynamics.

  16. Global transport and localized layering of metallic ions in the upper atmospherer

    Directory of Open Access Journals (Sweden)

    L. N. Carter

    Full Text Available A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/ downward di.usion along geomagnetic field lines, localized transport and layer formation through de- scending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes a.ecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ion's life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the forma- tion of dense ion layers in the 90±250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.

    Key words. Ionosphere (ion chemistry and composition; ionosphere-atmosphere interactions.

  17. Superficial veterinary mycoses.

    Science.gov (United States)

    Bond, Ross

    2010-03-01

    Dermatophytes are significant pathogens in animal health due to their zoonotic potential, the economic consequences of infection in farm animal and fur production systems, and the distressing lesions they cause in small domestic pets. Malassezia spp are normal commensal and occasional pathogens of the skin of many veterinary species. Malassezia pachydermatis is a very common cause of otitis and pruritic dermatitis in dogs but is of less importance in other veterinary species. Dermatophytosis, and Malassezia otitis and dermatitis, represent the superficial mycoses of greatest significance in companion and farm animal health. Although the dermatophytes and Malassezia spp both exist in the stratum corneum of mammalian skin, there are important differences in the epidemiology, pathogenesis, and clinical consequences of infection. Dermatophytes are significant due to their zoonotic potential, the economic consequences of infection in farm animal and fur production systems, and the concern for owners of pets with inflammatory skin disease that is sometimes severe. Malassezia spp are normal commensals and occasional pathogens of the skin for many veterinary species, and M pachydermatis is a very common cause of otitis and pruritic dermatitis in dogs. This chapter will focus on the epidemiologic, clinical, diagnostic, and therapeutic aspects of dermatophytosis and Malassezia dermatitis in veterinary species. There are generally only sporadic reports of other superficial mycoses, such as candidiasis, piedra, and Rhodotorula dermatitis in veterinary medicine, and these are not included here. PMID:20347667

  18. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    Science.gov (United States)

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  19. Superficial microcirculation flow measurement using polarized light

    Science.gov (United States)

    Wu, Jiwei; Morgan, S. P.; Xiao, Yunshi

    2008-12-01

    Depth discrimination of polarized light is used in investigating laser Doppler measurement of the superficial microcirculation in tissue. Using polarization Monte Carlo simulation, temporal point spread function and power spectral distribution of backscattered polarization remaining light firstly are used to prove polarized light to be valid in measuring moving blood cell perfusion and mean flow velocity. Then simulation of layered medium model demonstrate that relationships between blood flow perfusion and mean frequency shift are linear to medium flowing velocity, and the Doppler shift information in polarization remaining light mainly comes from lower layer medium up to about 14 times of mean free path (MFP) of medium investigated and can be considered that Doppler effects come only from lower layer of the medium. Simulations in three-layer tissue model show that moving blood cell perfusion and mean blood cell moving velocity calculated from polarization remaining are much more sensitive to lower layer flow velocity variation, and more irrelevant to deeper layer flow rate fluctuations, that further confirms Doppler measurement from polarization remaining light to be effective for superficial microcirculation in tissue. Factors affecting Laser Doppler measurement like medium absorption, percentage of moving particles in blood detector size are discussed.

  20. Observational description of the atmospheric and oceanic boundary layers over the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Marcelo Dourado

    2001-01-01

    Full Text Available Time evolution of atmospheric and oceanic boundary layers are described for an upwelling region in the Atlantic Ocean located in Cabo Frio, Brazil (23°00'S, 42°08'W. The observations were obtained during a field campaign carried out by the "Instituto de Estudos do Mar Almirante Paulo Moreira", on board of the oceanographic ship Antares of the Brazilian Navy, between July 7 and 10 of 1992. The analysis shown here was based on 19 simultaneous vertical soundings of atmosphere and ocean, carried out consecutively every 4 hours. The period of observation was characterized by a passage of a cold front that penetrated in Cabo Frio on July 6. During the cold front passage the vertical extension of atmospheric (and oceanic mixed layer varied from 200 m (and 13 m to 1000 m (and 59 m. These changes occurred in the first day of observation and were followed by an increase of 1.2°C in the oceanic mixed layer temperature and by a decrease of 6 K and 6 g/kg in the virtual potential temperature and specific humidity of the atmospheric mixed layer. The short time scale variations in the ocean can be explained in terms of the substitution of cold upwelling water by warm downwelling water regime, as the surface winds shift from pre-frontal NE to post-frontal SSW during the cold front passage in Cabo Frio. The large vertical extent of the atmospheric mixed layer can be explained in terms of an intensification of the thermal mixing induced by the warming of the oceanic upper layers combined with the cooling of the lower atmospheric layers during the cold front passage. An intensification of the mechanical mixing, observed during the cold front passage, may also be contributing to the observed variations in the vertical extent of both layers.A evolução temporal das camadas limites atmosféricas e oceânicas são descritas para a região de ressurgência do Oceano Atlântico localizada em Cabo Frio. As observações foram obtidas durante a campanha de medidas

  1. Laboratory Study on Urban Heat Island Effect on the Acid Corrosion of Concrete in Superficial Soil Layers%城市热岛效应下浅层土中混凝土的酸腐蚀试验研究

    Institute of Scientific and Technical Information of China (English)

    卢毅; 施斌; 刘瑾; 顾凯; 唐朝生; 高磊

    2011-01-01

    This research was conducted to evaluate the concrete acid corrosion in the superficial soil layers of urban area at the higher ground temperature owing to the urban heat island effect. The compressive strength properties of concrete specimens, which were held in the situation of temperature 5 ℃, 20 ℃ and 40 ℃, acid concentration 0%, 5% and 10%, and erosion time 30 d and 90 d were studied. And the mechanism of concrete acid corrosion and the urban heat island effect on the concrete strength in superficial soil layers for Nanjing area was analyzed. The test results indicate that the coefficient of corrosion of concrete specimens increases with the increasing of the temperature; and the temperature has an increasingly powerful influence on the coefficient of corrosion with higher acid concentration. Under the situation of sulfuric acid concentration 10 % and immersing time 30 d, the coefficient of corrosion of concrete specimen reaches 45.21% at the temperature 40 ℃, which was almost twice of the corrosion coefficient at temperature 5 ℃.In other words, the coefficient of corrosion increases 0. 64% with the rising 1 ℃ of the environment temperature. The research achievement has a clear meaning to reduce the urban heat island effect in geotechnical engineering.%针对城市热岛效应引起城区浅层土地温场升高这一观测结果,采用室内快速模拟试验方法,对城区酸性土壤腐蚀混凝土材料的温度效应开展了试验研究.试验研究了在温度为5℃、20℃和40℃条件下,混凝土试样在酸浓度分别为0%、5%和10%的沙土介质中放置30 d、90 d后的抗压强度变化规律,并对混凝土试样在腐蚀过程中的腐蚀系数变化规律和微观机理进行了分析;最后,对南京城区热岛效应环境下浅层土中混凝土材料酸腐蚀的强度变化规律进行了分析.试验结果表明,在同一腐蚀浓度下,混凝土试样抗压强度的下降速度随着温度的升高而不断

  2. An Experimental Study of the Statistical Scaling of Turbulent Surface Pressure in the Atmospheric Boundary Layer

    Science.gov (United States)

    Lyons, G. W.; Murray, N. E.

    2015-12-01

    Turbulence in the atmospheric boundary layer (ABL) produces fluctuations in the static pressure. The instantaneous pressure at a point depends on an integral over the entire flow; therefore, the effects from turbulence far aloft may be felt at the earth's surface. The statistics of fluctuating pressure at the surface have been studied extensively in the context of wall-bounded engineering-type flows. At best, these neutral flows are a special case of the thermally-stratified ABL, but relatively few experimental studies have considered pressure at the ground under various stability conditions. Here the scaling of pressure statistics at the surface, particularly the spectral density, is reported over a range of convective and stable conditions for both inner and outer turbulence parameters. Measurements of turbulent surface pressure were made using low-frequency microphones buried flush to the ground in a field near Laramie, Wyoming. Simultaneous measurements from three near-surface sonic anemometers and a 50-meter wind tower give estimates of the mean surface-layer parameters. The normalization of the pressure spectrum with the inner scales collapses the spectra along the high-frequency viscous power-law band. The wall shear stress, Obukhov length, L, and horizontal integral scale, λ, are identified as outer scaling parameters for the surface pressure spectrum from an integral solution employing a Monin-Obukhov-similar profile and a simple model of inhomogeneous surface-layer turbulence. Normalization with the outer scales collapses the spectra at low frequencies. Spectral scaling also reveals trends with λ/L in the low-frequency region for both convective and stable boundary layers.

  3. Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions

    Institute of Scientific and Technical Information of China (English)

    刘树华; 乐旭; 胡非; 刘辉志

    2004-01-01

    This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts:atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity,turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results.This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.

  4. Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    Directory of Open Access Journals (Sweden)

    H. G. Ouwersloot

    2012-10-01

    Full Text Available We studied the atmospheric boundary layer (ABL dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale in chemistry-transport models and in the interpretation of observational data.

  5. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    Science.gov (United States)

    Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.

    1982-01-01

    Practical methods of computer screening cloud-contaminated pixels from data of various satellite systems are proposed. Examples are given of the location of clouds and representative landscape features in HCMM spectral space of reflectance (VIS) vs emission (IR). Methods of screening out cloud affected HCMM are discussed. The character of subvisible absorbing-emitting atmospheric layers (subvisible cirrus or SCi) in HCMM data is considered and radiosonde soundings are examined in relation to the presence of SCi. The statistical characteristics of multispectral meteorological satellite data in clear and SCi affected areas are discussed. Examples in TIROS-N and NOAA-7 data from several states and Mexico are presented. The VIS-IR cluster screening method for removing clouds is applied to a 262, 144 pixel HCMM scene from south Texas and northeast Mexico. The SCi that remain after cluster screening are sited out by applying a statistically determined IR limit.

  6. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  7. New expressions for the surface roughness length and displacement height in the atmospheric boundary layer

    Institute of Scientific and Technical Information of China (English)

    Lin Jian-Zhong; Li Hui-Jun; Zhang Kai

    2007-01-01

    An alternative model for the prediction of surface roughness length is developed. In the model a new factor is introduced to compensate for the effects of wake diffusion and interactions between the wake and roughness obstacles.The experiments are carried out by the use of the hot wire anemometry in the simulated atmospheric boundary layer in a wind tunnel. Based on the experimental data, a new expression for the zero-plane displacement height is proposed for the square arrays of roughness elements, which highlights the influence of free-stream speed on the roughness length. It appears that the displacement height increases with the wind speed while the surface roughness length decreases with Reynolds number increasing. It is shown that the calculation results based on the new expressions are in reasonable agreement with the experimental data.

  8. Numerical modelling of pollution dispersion in 3D atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Benes, L.; Bodnar, T.; Kozel, K. [Czech Technical Univ. of Prague (Czech Republic). Dept. of Technical Mathematics; Fraunie, Ph. [Univ. de Toulon et du Var, La Garde (France). Lab. de Sondages Electromagnetiques et Environnemental Terrestre

    2002-07-01

    The main goal of this work is to present the applicable models and numerical methods for solution of flow and pollution dispersion in 3D atmospheric boundary layer (ABL). Mathematical models are based on the system of Reynolds averaged Navier-Stokes equations and its simplifications. The sets of governing equations are completed by the transport equations for passive impurities and potential temperature. A simple algebraic turbulent closure model is used. The thermal stability phenomenon is taken into account. For each mathematical model a numerical scheme based on finite-difference or finite-volume discretization is proposed and discussed. Some results of numerical tests are presented for pollution dispersion from point sources and flows over simple geometries. (orig.)

  9. Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors.

    Science.gov (United States)

    Illiberi, A; Cobb, B; Sharma, A; Grehl, T; Brongersma, H; Roozeboom, F; Gelinck, G; Poodt, P

    2015-02-18

    We have investigated the nucleation and growth of InGaZnO thin films by spatial atmospheric atomic layer deposition. Diethyl zinc (DEZ), trimethyl indium (TMIn), triethyl gallium (TEGa), and water were used as Zn, In, Ga and oxygen precursors, respectively. The vaporized metal precursors have been coinjected in the reactor. The metal composition of InGaZnO has been controlled by varying the TMIn or TEGa flow to the reactor, for a given DEZ flow and exposure time. The morphology of the films changes from polycrystalline, for ZnO and In-doped ZnO, to amorphous for In-rich IZO and InGaZnO. The use of these films as the active channel in TFTs has been demonstrated and the influence of In and Ga cations on the electrical characteristics of the TFTs has been studied.

  10. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    Directory of Open Access Journals (Sweden)

    J. Ryder

    2014-12-01

    Full Text Available In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has long been based on a "big-leaf approach", with averaging schemes that represent in-canopy processes. Such models have difficulties in reproducing consistently the energy balance in field observations. We here outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems – CANopy. This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multilayer longwave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare soil flux within the canopy space. Significantly, it avoids iterations over the height of tha canopy and so maintains implicit coupling to the atmospheric model LMDz. As a first test, the model is evaluated against data from both an intensive measurement campaign and longer term eddy covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of fluxes, as well as the gradients of sensible heat fluxes. However, the model overestimates sensible heat flux against an underestimate of the radiation budget. Improved performance is expected through the implementation of a more detailed calculation of stand albedo and a more up-to-date stomatal conductance calculation.

  11. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    Science.gov (United States)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  12. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  13. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    International Nuclear Information System (INIS)

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core

  14. A coupled atmosphere and multi-layer land surface model for improving heavy rainfall simulation

    Directory of Open Access Journals (Sweden)

    M. Haggag

    2008-04-01

    Full Text Available A multi-layer land surface model (SOLVEG is dynamically coupled to the non-hydrostatic atmospheric model (MM5 in order to represent better spatial variations and changes in land surface characteristics compared with the land surface parameterization schemes included in the MM5. In this coupling, calculations of the atmosphere and land surface models are carried out as independent tasks of different processors; a model coupler controls these calculations and data exchanges among models using Message Passing Interface (MPI. This coupled model is applied to the record-breaking heavy rain events occurred in Kyushu Island, the southernmost of Japan's main islands, from 20 July to 25 July in 2006. The test computations are conducted by using both the developed coupled model and the original land surface parameterization of MM5. The result of these computations shows that SOLVEG reproduce higher ground temperature than land surface parameterization schemes in the MM5. This result indicates the feedback of land surface processes between MM5 and SOLVEG plays an important role in the computation. The most pronounced difference is in the rainfall simulation that shows the importance of coupling SOLVEG and MM5. The coupled model accurately reproduces the heavy rainfall events observed in Kyushu Island compared to the original MM5 from both the spatial and temporal point of view. This paper clearly shows that realistic simulation of rainfall event strongly depends on land-surface processes interacting with cloud development that depends on surface heat and moisture fluxes, which in turn are mainly determined by land surface vegetation and soil moisture storage. Soil temperature/moisture changes significantly affect the localized precipitation and modest improvement in the land surface representation can enhance the heavy rain simulation. MM5-SOLVEG coupling shows a clear image of land surface-atmosphere interactions and the dynamic feedback on

  15. On the '-1' scaling of air temperature spectra in atmospheric surface layer flows

    Science.gov (United States)

    Li, D.; Katul, G. G.; Gentine, P.

    2015-12-01

    The spectral properties of scalar turbulence at high wavenumbers have been extensively studied in turbulent flows, and existing theories explaining the k-5/3 scaling within the inertial subrange appear satisfactory at high Reynolds numbers. Equivalent theories for the low wavenumber range have been comparatively lacking because boundary conditions prohibit attainment of such universal behavior. A number of atmospheric surface layer (ASL) experiments reported a k-1 scaling in air temperature spectra ETT(k) at low wavenumbers but other experiments did not. Here, the occurrence of a k-1 scaling in ETT(k) in an idealized ASL flow across a wide range of atmospheric stability regimes is investigated theoretically and experimentally. Experiments reveal a k-1 scaling persisted across different atmospheric stability parameter values (ζ) ranging from mildly unstable to mildly stable conditions (-0.1budget models and upon using a Heisenberg eddy viscosity as a closure to the spectral flux transfer term, conditions promoting a k-1 scaling are identified. Existence of a k-1 scaling is shown to be primarily linked to an imbalance between the production and dissipation rates of half the temperature variance. The role of the imbalance between the production and dissipation rates of half the temperature variance in controlling the existence of a '-1' scaling suggests that the '-1' scaling in ETT(k) does not necessarily concur with the '-1' scaling in the spectra of longitudinal velocity Euu(k). This finding explains why some ASL experiments reported k-1 in Euu(k) but not ETT(k). It also differs from prior arguments derived from directional-dimensional analysis that lead to simultaneous k-1 scaling in Euu(k) and ETT(k) at low wavenumbers in a neutral ASL.

  16. Isolating Effects of Water Table Dynamics, Terrain, and Soil Moisture Heterogeneity on the Atmospheric Boundary Layer Using Coupled Models

    Science.gov (United States)

    Rihani, Jehan Fouad

    Previous observational and modeling studies have demonstrated the sensitivity of atmospheric processes to land surface and subsurface conditions. The extent of the connection between these processes, however, is not yet fully understood. A sufficient understanding is needed of the circumstances under which these coupled processes might play a more significant role and when they might be simplified into the decoupled systems so frequently modeled in practice. This work focuses on the effects of terrain and soil moisture heterogeneity in changing water table depth and energy fluxes at the land surface, and how this might impact the development and structure of the atmospheric boundary layer. A three-dimensional, variably saturated groundwater model coupled to a three dimensional mesoscale atmospheric model (PF.ARPS) is used here to study the two-way feedback between the subsurface, land-surface, and atmosphere for both idealized cases and a real watershed. This is done by addressing the following key questions: How do terrain, soil moisture heterogeneity, and subsurface properties affect the planetary boundary layer? What are the effects of water table depth on land surface fluxes and boundary layer development and depth? What times of the diurnal cycle and which locations within a watershed demonstrate stronger feedbacks between the subsurface and the atmosphere? These questions are first addressed for idealized simulations designed to illustrate subsurface-surface feedbacks on one hand, and land-atmosphere feedbacks on the other hand. The coupled hydrologic model is then used to simulate real conditions over the Little Washita watershed in Oklahoma with the goal of addressing the above questions for a real watershed, and exploring the two-way feedback between the atmospheric boundary layer and the water table. The coupled simulations are compared to non-coupled atmospheric simulations initialized with simplified and realistic soil moisture profiles. Effects of a

  17. Nonequilibrium Response of the Daytime Atmospheric Boundary Layer to Mesoscale Forcing

    Science.gov (United States)

    Brasseur, James; Jayaraman, Bajali; Haupt, Sue; Lee, Jared

    2015-11-01

    The essential turbulence structure of the daytime atmospheric boundary layer (ABL) is driven by interactions between shear and buoyancy. A relatively strong inversion layer ``lid'' typically confines the ABL turbulence, whose height grows during the day with increasing surface heat flux (Q0) to ~ 1-2 km before collapsing with Q0 towards the day's end. The 3D ``microscale'' ABL turbulence is forced largely in the horizontal by winds above the capping inversion at the ``mesoscale'' at the O(100) km scale. Whereas the ``canonical'' ABL is in equilibrium and quasi-stationary, quasi-2D weather dynamics at the mesoscale is typically nonstationary at sub-diurnal time scales. We study the consequences of nonstationarity in the quasi-2D mesoscale forcing in horizontal winds and solar heating on the dynamics of ABL turbulence and especially on the potential for significant deviations from the canonical equilibrium state. We apply high-fidelity LES of the dry cloudless ABL over Kansas in July forced at the mesoscale (WRF) with statistical homogeneity in the horizontal. We find significant deviations from equilibrium that appear in a variety of interesting ways. One of the more interesting results is that the changes in mesoscale wind direction at the diurnal time scale can destabilize the ABL and sometimes cause a transition in ABL eddy structure that are normally associated with increased surface heating. Supported by DOE. Computer resources by the Penn State ICS.

  18. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    International Nuclear Information System (INIS)

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation between the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization

  19. A Study On Atmospheric Boundary-Layer Characteristics At Anand, India Using Lsp Experimental Data Sets

    Science.gov (United States)

    Satyanarayana, A. N. V.; Lykossov, V. N.; Mohanty, U. C.

    An attempt is made to study the planetary boundary layer (PBL) characteristics during the winter period at Anand (22.4°N, 72.6°E), a semi-arid region, which is located in the western part of India. A one-dimensional turbulent kinetic energy (TKE) closure model is used for the study. The structure of the PBL,which consists of profiles of zonal and meridional components of wind,potential temperature and specific humidity, is simulated. A one-dimensional soil heat and moisture transport parameterization scheme is incorporated for the accurate representation of the energy exchange processes at the soil-atmosphere interface. The diurnal variation of fluxes of sensible heat, latent heat, shortwave radiation, net radiation and soil flux, soil temperature at different depths, Richardson number and TKE at the height of the constant flux layer is studied. The model predictions are compared with the available observations obtained from a special Land Surface Processes (LSP) experiment.

  20. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhang; He, Wenjie; Duan, Chenlong [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Shan, Bin [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation between the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.

  1. Scaling Anisotropy and Convective Instability of the Atmospheric Surface-Layer

    Science.gov (United States)

    Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2013-12-01

    In this study we use the scaling exponents, often called Hurst exponents, of the horizontal velocity and the temperature to classify the stability of the atmospheric surface-layer, including in the wake of a turbine. For this study we use two datasets for comparison. In the Growian experiment two 150m masts were constructed on coastal terrain with propeller anemometers positioned at the heights 10, 50, 75, 100, 125 and 150m measuring wind speed and direction. The measurements were taken at 2.5Hz over twenty-minutes with 300 measuring runs done in total. In addition, temperature was measured also at 2.5Hz over twenty minutes but only at the heights 10, 50, 100 and 150m. The second dataset consisted of three sonic anemometers positioned at 22, 23 and 43m on a single mast situated in a wind turbine test site in a mountainous part of Corsica France. The sonic anemometers measured three dimensional velocities and temperature at 10Hz over a period of six-months. The samples are separated into daily sub-samples, 180 in total. We find that the stability of the atmospheric surface-layer strongly depends on whether or not the temperature scales passively as the velocity. When the two scaling exponents remain of the same order, the scaling of both the velocity and temperature is consistent with surface-layer literature. However, when the scaling exponent of the temperature becomes larger than the scaling exponent of the velocity, the corresponding time-scales exhibit a strong, scaling anisotropy. To avoid shadow effects from masts, we are compelled to deal with samples whose `mean' velocity is near-perpendicular to the masts. The anisotropy of these samples turns out to be beyond a trivial component-wise anisotropy corresponding to pre-factors depending on the direction, i.e., the scaling exponents themselves (in particular the Hurst exponent) depend on the direction. We use a rotated frame of reference to better analyse this behaviour and put forward analytical expression of

  2. Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks

    Science.gov (United States)

    Rihani, Jehan F.; Chow, Fotini K.; Maxwell, Reed M.

    2015-06-01

    The effects of terrain, soil moisture heterogeneity, subsurface properties, and water table dynamics on the development and behavior of the atmospheric boundary layer are studied through a set of idealized numerical experiments. The mesoscale atmospheric model Advanced Regional Prediction System (ARPS) is used to isolate the effects of subsurface heterogeneity, terrain, and soil moisture initialization. The simulations are initialized with detailed soil moisture distributions obtained from offline spin-ups using a coupled surface-subsurface model (ParFlow-CLM). In these idealized simulations, we observe that terrain effects dominate the planetary boundary layer (PBL) development during early morning hours, while the soil moisture signature overcomes that of terrain during the afternoon. Water table and subsurface properties produce a similar effect as that of soil moisture as their signatures (reflected in soil moisture profiles, energy fluxes, and evaporation at the land surface) can also overcome that of terrain during afternoon hours. This is mostly clear for land surface energy fluxes and evaporation at the land surface. We also observe the coupling between water table depth and planetary boundary layer depth in our cases is strongest within wet-to-dry transition zones. This extends the findings of previous studies which demonstrate the subsurface connection to surface energy fluxes is strongest in such transition zones. We investigate how this connection extends into the atmosphere and can affect the structure and development of the convective boundary layer.

  3. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    Science.gov (United States)

    Venkateswara Rao, N.; ManasaMohana, P.; Jayaraman, A.; Rao, S. V. B.

    2016-04-01

    The close encounter of comet Siding Spring with Mars resulted in the formation of a dense transient ionization layer in the Martian upper atmosphere at altitudes between 80 and 120 km. Instruments on three spacecraft orbiting Mars detected the presence of this layer, as reported in previous publications. In this study, we reanalyzed the ionograms of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on Mars Express to get further insight about the recurrence of the layer. For this purpose, data from three periapsis passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used. We found that the transient ionization layer was sustained at least for 19 h on the nightside and 12 h on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit to orbit, it does not change much on the dayside. Some ionograms in all three orbits show two transient ionization layers that are separated by ~60 km in apparent altitude. These double layers occur preferentially in regions of strong vertical magnetic fields. The bottom layer of the double structure is probably an oblique echo due to reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of the transient ionization layer. Horizontal bifurcation of the original layer is considered as another plausible mechanism for explaining the double-layer structure.

  4. Observed covariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site in northern Wisconsin

    OpenAIRE

    C. Yi; Davis, K.; BAKWIN, P.; Denning, A.; Zhang, N.; Desai, A; Lin, J.; C. Gerbig

    2004-01-01

    Ecosystem CO2 exchange and atmosphere boundary layer (ABL) mixing are correlated diurnally and seasonally as they are both driven by solar insulation. Tracer transport models predict that these covariance signals produce a meridional gradient of annual mean CO2 concentration in the marine boundary layer that is half as strong as the signal produced by fossil fuel emissions. This rectifier effect is simulated by most global tracer transport models. However, observations to constrain the streng...

  5. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    Science.gov (United States)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  6. Imaging of the most frequent superficial soft-tissue sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Melanie; Taieb, Sophie; Ceugnart, Luc [Centre Oscar Lambret, Department of Radiology, Lille (France); Penel, Nicolas [Centre Oscar Lambret, Department of Oncology, Lille (France); Mortier, Laurent [Centre Hospitalier Universitaire de Lille, Department of Dermatology, Hopital Claude Huriez, Lille (France); Vanseymortier, Luc [Centre Oscar Lambret, Department of Surgery, Lille (France); Robin, Y.M. [Centre Oscar Lambret, Departement of Pathology, Lille (France); Gosset, Pierre [Groupement Hospitalier de l' Institut Catholique-Faculte Libre de Medecine de Lille, Department of Pathology, Hopital Saint-Philibert, Lomme (France); Cotten, Anne [Centre Hospitalier Universitaire de Lille, Department of Musculoskeletal Radiology, Centre Hopital Roger Salengro, Lille (France)

    2011-03-15

    Superficial soft-tissue sarcomas are malignant mesenchymal tumors located within the cutaneous and/or subcutaneous layers. Most superficial soft-tissue sarcomas are low-grade tumors; yet, the risk of local recurrence is high, and initial wide surgery is the main prognostic factor. Some of these superficial sarcomas may grow, following an infiltrative pattern, and their real extent may be underestimated clinically. Imaging techniques are useful to determine precisely the real margins of the tumor, especially in cases of clinically doubtful or recurrent or large superficial lesions. Imaging tools enable one to determine the relationship with the superficial fascia separating the subcutaneous layer from the underlying muscle. In our institution ultrasonographic examination is followed by magnetic resonance (MR) imaging when the size of the lesion exceeds 3-5 cm. Imaging assessment is performed prior to biopsy, enabling optimal surgical management. Imaging features of the main superficial sarcomas are detailed in the following article, according to their major locations: those arising in the epidermis and/or dermis, which are most often diagnosed by dermatologists, and the subcutaneous sarcomas. (orig.)

  7. THE SEMI-GEOSTROPHIC ADAPTATION PROCESS WITH TWO-LAYER BAROCLINIC MODEL IN LOW LATITUDE ATMOSPHERE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the adaptation process in low latitude atmosphere is discussed by means of a two-layer baroclinic model on the equator β plane, showing that the adaptation process in low latitude is mainly dominated by the internal inertial gravity waves. The initial ageostrophic energy is dispersed by the internal inertial gravity waves, and as a result, the geostrophic motion is obtained in zonal direction while the ageostrophic motion maintains in meridional direction, which can be called semi-geostrophic balance in barotropic model as well as semi-thermal-wind balance in baroclinic model. The vertical motion is determined both by the distribution of the initial vertical motion and that of the initial vertical motion tendency, but it is unrelated to the initial potential vorticity. Finally, the motion tends to be horizontal. The discussion of the physical mechanism of the semi-thermal-wind balance in low latitude atmosphere shows that the achievement of the semi-thermal-wind balance is due to the adjustment between the stream field and the temperature field through the horizontal convergence and divergence which is related to the vertical motion excited by the internal inertial gravity waves. The terminal adaptation state obtained shows that the adaptation direction between the mean temperature field and the shear flow field is determined by the ratio of the scale of the initial ageostrophic disturbance to the scale of one character scale related to the baroclinic Rossby radius of deformation. The shear stream field adapts to the mean temperature field when the ratio is greater than 1, and the mean temperature field adapts to the shear stream field when the ratio is smaller than 1.

  8. Deposition of multi-layer films of hexafluoropropene - ethylene composite polymer with jet-type plasma reactor at atmospheric pressure

    International Nuclear Information System (INIS)

    Multi-layer films of hexafluoropropene - ethylene composite polymer were deposited with a jet-type plasma reactor on poly (ethylene terephthalate) films, which were used as base films, at atmospheric pressure. The multi-layer films were made up by decreasing the flow rate of ethylene gas gradually and increasing that of hexafluoropropene gas simultaneously during the plasma-polymerization. Those films showed low enough peel force, whose value was near that of a Teflon sheet used as a control. Moreover, the bond strength between the multi-layer film and the base film became stronger than that between a plasma-polymerized hexatluoropropene film and the base film. (author)

  9. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    Science.gov (United States)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original

  10. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    Science.gov (United States)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry

  11. Effects on the atmospheric boundary layer of a solar eclipse in the Arctic

    Science.gov (United States)

    Sjöblom, Anna

    2010-05-01

    On 1 August 2008, a total solar eclipse took place in the Arctic and in Longyearbyen, the main settlement in the High Arctic archipelago of Svalbard (78° 13' N, 15° 37' E), the maximum solar coverage was 93%. The eclipse had a large impact on the atmospheric boundary layer and the local weather in general around Longyearbyen triggering a fog that lasted for three days. This fog grounded all air traffic to and from Svalbard and so in addition to the change in local weather, the eclipse also had economic and social consequences. Approximately 60% of Svalbard is covered with permanent ice and snow. Permafrost underlies most of the surface. In Longyearbyen, the midnight sun is present between 19 April and 23 August and so on the day of the eclipse the sun was about 30 degrees above the horizon at noon and 6 degrees above at midnight. A rare opportunity therefore occurred to study what happens when the sunlight is suddenly decreased after several months with no dark night. The maximum solar coverage at Longyearbyen took place at 10.41 Local Standard Time. The incoming shortwave radiation had then decreased from approximately 300 W m-2 before the start of the eclipse to 20 W m-2, i.e. less radiation than during a normal cloud free night at the same location at the same time of the year. Observations of turbulence and mean meteorological parameters were taken both over land and over a large fjord in the vicinity of Longyearbyen. In addition, cloud observations were recorded. Data have been analysed in detail from 31 July to 2 August, i.e., from one day before to one day after the eclipse. The simultaneous observations over land and over water showed that the atmospheric response was much faster and stronger over land than over water. Over land, the air temperature sank by 0.3-1.5°C, wind speed decreased, turbulent fluctuations were significantly reduced and the atmospheric stability changed from unstable to stable. Over the fjord, no clear minima in these parameters

  12. Retrieval of structure functions of air temperature and refractive index from large eddy simulations of the atmospheric boundary layer

    NARCIS (Netherlands)

    Wilson, C.; Eijk, A.M.J. van; Fedorovich, E.

    2013-01-01

    A methodology is presented to infer the refractive-index structure function parameter and the structure parameters for temperature and humidity from numerical simulations of the turbulent atmospheric convective boundary layer (CBL). The method employs spatial and temporal averaging of multiple reali

  13. Statistics of Absolute and Relative Dispersion in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study

    NARCIS (Netherlands)

    Dosio, A.; Vilà-Guerau de Arellano, J.

    2006-01-01

    The influence of the different scales of turbulent motion on plume dispersion in the atmospheric convective boundary layer (CBL) is studied by means of a large-eddy simulation (LES). In particular, the large-scale (meandering) and small-scale (relative diffusion) contributions are separated by analy

  14. Variance Method to Determine Turbulent Fluxes of Momentum And Sensible Heat in The Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Debruin, H.A.R.; Hartogensis, O.K.

    2005-01-01

    Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, ¿u and ¿T respectively, measured at a single level. An attractive aspect of this method is that it yi

  15. Estimation of the ozone formation rate in the atmospheric boundary layer over a background region of Western Siberia

    Science.gov (United States)

    Antokhin, P. N.; Antokhina, O. Y.; Belan, B. D.

    2015-11-01

    The ozone formation rate in the atmospheric boundary layer (ABL) and the ozone inflow from the free atmosphere have been studied experimentally. The obtained estimates are based on the data of airborne sounding carried out over a background region of Western Siberia. As a result, it is obtained that the rate of ozone inflow from the upper atmospheric layers is only 20% of the rate of photochemical formation of ozone inside ABL. The vertical profiles of ozone flows in ABL have been additionally calculated based on the k-theory with the approach proposed by Troen and Mahrt. It has been shown in the calculations that the maximum of the ozone concentration in ABL is formed due to photochemical reactions from precursor gases.

  16. Extreme events statistics in a two-layer quasi-geostrophic atmospheric model

    Science.gov (United States)

    Galfi, Vera Melinda; Bodai, Tamas; Lucarini, Valerio

    2016-04-01

    Extreme events statistics provides a theoretical framework to analyze and predict extreme events based on the convergence of the distribution of the extremes to some limiting distribution. In this work we analyze the convergence of the distribution of extreme events to the Generalized Extreme Value (GEV) distribution and to the Generalized Pareto Distribution (GPD), using a two-layer quasi-geostrophic atmospheric model, and compare our results with theoretical findings from the field of extreme value theory for dynamical systems. We study the behavior of the GEV shape parameter by increasing the block size and of the GPD shape parameter by increasing the threshold, and compare the inferred parameters with a theoretical shape parameter that depends only on the geometrical properties of the attractor. The main objective is to find out whether this theoretical shape parameter can be used to evaluate extreme event analysis based on model output. For this, we perform very long simulations. We run our system with two different levels of forcing determined by two different meridional temperature gradients, one inducing a medium level of chaos and the other one a high level of chaos. We analyze in both cases extremes of energy variables.

  17. Turbulence Generation in the Atmospheric Boundary Layer and Limitations of the Monin-Obukhov Similarity Theory

    Science.gov (United States)

    Sun, Jielun; Lenschow, Donald; LeMone, Margaret; Mahrt, Larry

    2015-04-01

    Turbulent fluxes from the Cooperative Atmosphere-Surface Exchange Study in 1999 (CASES-99) field experiment are further analyzed for both day- and nighttime as a follow-on to the investigation of the nighttime turbulence in Sun et al. (2012). The behavior of momentum and heat fluxes is investigated as functions of wind speed and the bulk temperature difference between observation heights and the surface. Vertical variations of momentum and heat flux at a given height z are correlated and are explained in terms of the energy and heat balance in a layer above the ground surface in which the surface heating/cooling and momentum sink need to be included. In addition, the surface also plays an important role in constraining the size of the dominant turbulent eddies, which is directly related to turbulence strength and the length scale of turbulence generation. The turbulence generation is not related to local vertical gradients especially under neutral condition as assumed in Monin-Obukhov similarity theory. Based on the observed relationships between momentum and heat fluxes, a new bulk formula for turbulence parameterization is developed to mainly examine the above-mentioned surface effects on vertical variation of turbulent momentum and heat fluxes. The new understanding of the observed relationships between these turbulent variables and mean variables explains the observed nighttime turbulence regime change observed in Sun et al. (2012) as well as the daytime momentum and heat flux variations with height up to the maximum observation height of 55 m.

  18. The Tturbulent Structure of the Atmospheric Boundary Layer over Small Northern Lakes

    Science.gov (United States)

    Repina, I.; Stepanenko, V.; Artamonov, A.; Barskov, K.; Polukhov, A.

    2015-12-01

    Wetland and freshwater ecosystems of the Northern Europe are an important natural source of atmospheric methane. Adequate calculation of gas emission from the northern territories requires calculation of balances of heat, moisture, and gases at the surface of water bodies on the sub-grid scale in the climate models. We carried out measurements in North Karelia on the lake Verkhneye (White Sea Biological Station of Moscow State University). The purpose of the study is evaluation of turbulent transport in the system "lake water- near-surface air - surrounding forest" in the winter season. We used an array of acoustic anemometers mounted at different distances from the lake shore. Measurements were taken at two heights in the center of the lake. It was revealed that the intensity of the turbulent transfer essentially depends on the height and location of sensors, and the wind direction. Stratification in the near-to-surface air probably does not play significant role. Besides, there is no constant-flux layer. The later makes Monin and Obukhov similarity theory (which is used in most of the parameterizations for calculating turbulent flows) inapplicable in this case. The work was sponsored by RFBR 14-05-91752, 14-05-91764, 15-35-20958.

  19. Validation of the simpleFoam (RANS solver for the atmospheric boundary layer in complex terrain

    Directory of Open Access Journals (Sweden)

    Peralta C.

    2014-01-01

    Full Text Available We validate the simpleFoam (RANS solver in OpenFOAM (version 2.1.1 for simulating neutral atmospheric boundary layer flows in complex terrain. Initial and boundary conditions are given using Richards and Hoxey proposal [1]. In order to obtain stable simulation of the ABL, modified wall functions are used to set the near-wall boundary conditions, following Blocken et al remedial measures [2]. A structured grid is generated with the new library terrainBlockMesher [3,4], based on OpenFOAM's blockMesh native mesher. The new tool is capable of adding orographic features and the forest canopy. Additionally, the mesh can be refined in regions with complex orography. We study both the classical benchmark case of Askervein hill [5] and the more recent Bolund island data set [6]. Our purpose is two-folded: to validate the performance of OpenFOAM steady state solvers, and the suitability of the new meshing tool to generate high quality structured meshes, which will be used in the future for performing more computationally intensive LES simulations in complex terrain.

  20. Scaling laws of turbulence intermittency in the atmospheric boundary layer: the role of stability

    Science.gov (United States)

    Paradisi, Paolo; Cesari, Rita; Allegrini, Paolo

    2015-09-01

    Bursting and intermittent behavior is a fundamental feature of turbulence, especially in the vicinity of solid obstacles. This is associated with the dynamics of turbulent energy production and dissipation, which can be described in terms of coherent motion structures. These structures are generated at random times and remain stable for long times, after which they become suddenly unstable and undergo a rapid decay event. This intermittent behavior is described as a birth-death point process of self-organization, i.e., a sequence of critical events. The Inter-Event Time (IET) distribution, associated with intermittent self-organization, is typically a power-law decay, whose power exponent is known as complexity index and characterizes the complexity of the system, i.e., the ability to develop self-organized, metastable motion structures. We use a method, based on diffusion scaling, for the estimation of system's complexity. The method is applied to turbulence velocity data in the atmospheric boundary layer. A neutral condition is compared with a stable one, finding that the complexity index is lower in the neutral case with respect to the stable one. As a consequence, the crucial birth-death events are more rare in the stable case, and this could be associated with a less efficient transport dynamics.

  1. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer

    CERN Document Server

    Xia, Haiyun; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2016-01-01

    For the first time, a versatile, eyesafe, compact and direct detection Doppler lidar is developed using upconversion single-photon detection method. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the system stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled Lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The so-called double-edge direct detection is implemented using a single-channel FPI and a single upconversion detector, incorporating time-division multiplexing method. The relative error of the system is lower than 0.1% over 9 weeks. To show the robust of the system, atmospheric wind and visibility over 48 hours are detected in the boundary layer. In the intercomparison experiments, lidar shows good agreement with the ultrasonic wind sensor (Vaisala windcap WMT52), with standard deviation of 1.04 ...

  2. Reduced-order FSI simulation of NREL 5 MW wind turbine in atmospheric boundary layer turbulence

    Science.gov (United States)

    Motta-Mena, Javier; Campbell, Robert; Lavely, Adam; Jha, Pankaj

    2015-11-01

    A partitioned fluid-structure interaction (FSI) solver based on an actuator-line method solver and a finite-element modal-dynamic structural solver is used to evaluate the effect of blade deformation in the presence of a day-time, moderately convective atmospheric boundary layer (ABL). The solver components were validated separately and the integrated solver was partially validated against FAST. An overview of the solver is provided in addition to results of the validation study. A finite element model of the NREL 5 MW rotor was developed for use in the present simulations. The effect of blade pitching moment and the inherent bend/twist coupling of the rotor blades are assessed for both uniform inflow and the ABL turbulence cases. The results suggest that blade twisting in response to pitching moment and the bend/twist coupling can have a significant impact on rotor out-of-plane bending moment and power generated for both the uniform inflow and the ABL turbulence cases.

  3. Simulations of Vertical Axis Wind Turbine Farms in the Atmospheric Boundary Layer

    Science.gov (United States)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie; Lohry, Mark; Martinelli, Luigi

    2014-11-01

    Wind power is an abundant and clean source of energy that is increasingly being tapped to reduce the environmental footprint of anthropogenic activities. The vertical axis wind turbine (VAWT) technology is now being revisited due to some important advantages over horizontal axis wind turbines (HAWTS) that are particularly important for farms deployed offshore or in complex terrain. In this talk, we will present the implementation and testing of an actuator line model (ALM) for VAWTs in a large eddy simulation (LES) code for the atmospheric boundary layer, with the aim of optimizing large VAWT wind farm configurations. The force coefficients needed for the ALM are here obtained from blade resolving RANS simulations of individual turbines for each configuration. Comparison to various experimental results show that the model can very successfully reproduce observed wake characteristic. The influence of VAWT design parameters such as solidity, height to radius ratio, and tip speed ratio (TSR) on these wake characteristics, particularly the velocity deficit profile, is then investigated.

  4. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    Science.gov (United States)

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature.

  5. Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    Directory of Open Access Journals (Sweden)

    H. G. Ouwersloot

    2012-06-01

    Full Text Available We studied the atmospheric boundary layer (ABL dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day characterized as a convective boundary layer to analyse the influence of the dynamics on the chemical evolution of the ABL, using a systematic analysis that can easily be extended to other periods during HUMPPA-COPEC-2010. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale in chemistry-transport models and in the interpretation of observational data.

  6. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Arellano, de J.V.G.

    2013-01-01

    In Ouwersloot and Vila-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10. 1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab mo

  7. Some new aspects of the transient ionization layer of comet Siding Spring origin in the Martian upper atmosphere

    Science.gov (United States)

    Mohana Manasa, P.; Jayaraman, Achuthan; Rao Narukull, Venkateswara; Vijaya Bhaskara Rao, Sarangam

    2016-07-01

    On 19 October 2014, comet Siding Spring passed near to the Mars and deposited a large amount of dust on the Martian upper atmosphere. This resulted in the formation of a dense transient ionization layer on Mars at altitudes between 80 and 120 km. Gurnett et al., [2014] reported the detection of this layer with Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard Mars Express spacecraft. In this study, we re-analyzed the ionograms obtained by this instrument to get further insight on the recurrence of the layer. Data from three orbital passes of MARSIS that took place 5 h, 12 h, and 19 h after peak dust deposition are used in this analysis. We found that the transient ionization layer sustained at least for 19 hours on the nightside and 12 hours on the dayside. While the peak density of the layer on the nightside gradually decreases from orbit-to-orbit, it does not change much on the dayside. Some ionograms in all the three orbits show two transient ionization layers that are separated by several kilometers in apparent altitude. We propose two mechanisms to explain this double layer structure. The first one assumes a horizontal bifurcation of the layer in which specular reflections from the two horizontal parts result in a double layer structure in ionograms. In the second mechanism, we assume specular reflections from ionization bulges (formed in regions of vertical magnetic fields) at altitudes of transient ionization layer give rise to oblique echoes that form the bottom layer of the double layer structure.

  8. Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2015-06-01

    Under conventionally neutral conditions, the boundary layer is frequently capped by an inversion layer, which counteracts vertical entrainment of kinetic energy. Very large wind farms are known to depend on vertical entrainment to transport energy from above the farm towards the turbines. In this study, large eddy simulations of an infinite wind-turbine array in a conventionally neutral atmospheric boundary layer are performed. By carefully selecting the initial potential-temperature profile, the influence of the height and the strength of a capping inversion on the power output of a wind farm is investigated. Results indicate that both the height and the strength have a significant effect on the boundary layer flow, and that the height of the neutral boundary layer is effectively controlled by the capping inversion. In addition, it is shown that the vertical entrainment rate decreases for increasing inversion strength or height. In our infinite wind-farm simulations, varying the inversion characteristics leads to differences in power extraction on the order of 13% ± 0.2% (for increasing the strength from 2.5 to 10 K), and 31% ± 0.4% (for increasing the height from 500 to 1500 m). A detailed analysis of the mean kinetic-energy equation is included, showing that the variation in power extraction originates from the work done by the driving pressure gradient related to the boundary layer height and the geostrophic angle, while entrainment of kinetic energy from the free atmosphere does not play a significant role. Also, the effect of inversion strength on power extraction is energetically not related to different amounts of energy entrained, but explained by a difference in boundary layer growth, leading to higher boundary layers for lower inversion strengths. We further present a simple analytical model that allows to obtain wind-farm power output and driving power for the fully developed regime as function of Rossby number and boundary layer height.

  9. Artificial periodic irregularities in the lower ionosphere, atmospheric waves and sporadic E-layer

    Science.gov (United States)

    Bakhmetieva, Nataliya V.; Egerev, M. N.; Tolmacheva, A. V.; Vyakhirev, V. D.

    2010-05-01

    The long-term researches have shown that artificial periodic irregularities (API) created in the ionosphere plasma are a good means for the ionosphere diagnostics. In the report we present the new applications of the API technique for experimental studies of the lower ionosphere, atmospheric waves and sporadic E-layers. The applications are based on the new so-called two-frequency method of the API creation for the ionosphere diagnostic. The main results of the ionosphere studies carried out in 2006-2009 by the API technique using SURA heating facility are presented. API are formed in the field of a powerful standing radio wave produced by interference of the incident wave and reflected one by the ionosphere (Belikovich et al., Ionospheric Research by Means of Artificial Periodic Irregularities- Katlenburg-Lindau, Germany. 2002. Copernicus GmbH. ISBN 3-936586-03-9). The spatial period of the irregular structure is equal to the standing wavelength or the one-half the power wavelength λ/2. Ionosphere diagnostic is carried out in the API relaxation stage by their sounding of probing radio pulses. The two frequency method bases upon the API creation and the scattering of the probe waves from API at two different frequencies that is having different spatial periods of the quasi periodic structure. In the E-region of the ionosphere API are formed as a result of the diffusion redistribution of the ionosphere plasma. Relaxation of the periodic structure is specified by the ambipolar diffusion process. The API relaxation time depends on the power wavelength and the ambipolar diffusion rate. It means that API having different spatial scales destroys with different time scales ?. The API spatial scale depends on the refractive index n that is determined by the electron density N. It is shown the ratio of API relaxation times ? at two frequencies f1 and f2, measured at the same heights, is connected with the frequencies ratio and the refractive index ratio. The measurement of

  10. Atmospheric controls on soil moisture-boundary layer interactions: Three-dimensional wind effects

    Science.gov (United States)

    Findell, Kirsten L.; Eltahir, Elfatih A. B.

    2003-04-01

    This paper expands the one-dimensionally based CTP-HIlow framework for describing atmospheric controls on soil moisture-boundary layer interactions [, 2003] to three dimensions by including low-level wind effects in the analysis. The framework is based on two measures of atmospheric thermodynamic properties: the convective triggering potential (CTP), a measure of the temperature lapse rate between approximately 1 and 3 km above the ground surface, and a low-level humidity index, HIlow. These two measures are used to distinguish between three types of early morning soundings: those favoring rainfall over dry soils, those favoring rainfall over wet soils, and those whose convective potential is unaffected by the partitioning of fluxes at the surface. The focus of this paper is the additional information gained by incorporating information about low-level winds into the CTP-HIlow framework. Three-dimensional simulations using MM5 and an analysis of observations from the FIFE experiment within this framework highlight the importance of the winds in determining the sensitivity of convection to fluxes from the land surface. A very important impact of the 3D winds is the potential for low-level backing or unidirectional winds with great shear to suppress convective potential. Because of this suppression of convection in certain wind conditions, far fewer simulations produced rain than would be anticipated based solely on the 1D framework of understanding. However, when the winds allowed, convection occurred in a manner consistent with the 1D-based expectations. Generally speaking, in the regime where dry soils were expected to have an advantage, convection was triggered over dry soils more often than over wet; in the regime where wet soils were expected to have an advantage, convection was more frequently triggered over wet soils than over dry. Additionally, when rainfall occurred in both simulations with wet soils and simulations with dry soils for a given day, rainfall

  11. Interactions of the land-surface with the atmospheric boundary layer

    NARCIS (Netherlands)

    Ek, M.B.

    2005-01-01

    We study daytime land-atmosphere interaction using a one-dimensional (column) coupled land-surface - atmospheric boundary-Iayer (ABL) model and data sets gathered at Cabauw (1978, central Netherlands) and during the Hydrological and Atmospheric Pilot Experiment - Modélisation du Bilan Hydrique (HAPE

  12. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015.

    Science.gov (United States)

    Burt, Stephen

    2016-09-28

    A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550762

  13. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  14. The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the Wangara experiment

    Directory of Open Access Journals (Sweden)

    S. Galmarini

    2007-06-01

    Full Text Available The diurnal atmospheric boundary layer evolution of the 222Rn decaying family is studied by using a state-of-the-art large-eddy simulation model. In particular, a diurnal cycle observed during the Wangara experiment is successfully simulated together with the effect of diurnal varying turbulent characteristics on radioactive compounds in a secular equilibrium. This study allows us to clearly analyze and identify the boundary layer processes driving the 222Rn and its progeny concentration behaviors. The activity disequilibrium observed in the nocturnal boundary layer is due to the proximity of the radon source and the trapping of fresh 222Rn close to the surface induced by the weak vertical transport. During the morning transition, the secular equilibrium is fast restored by the vigorous turbulent mixing. The evolution of 222Rn and its progeny concentration in the unsteady growing convective boundary layer depends on the strength of entrainment events.

  15. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga; Ikeda, Hiroshi; Sakai, Daisuke [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd. , 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa, 230-0045 (Japan); Yamamoto, Kiyoshi; Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa, 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2014-05-01

    Highlights: • Corona discharge formed an alkali depletion layer on a glass surface. • Introduction of hydrogen accelerated the depletion layer thickness. • Thickness was doubled compared with that in air. • Efficient formation of proton at an anode needle end was one cause. • Applied voltage across the glass plate in hydrogen was 2.7 times that in air. - Abstract: Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H{sub 2} atmosphere. One origin of such acceleration was the preferential generation of H{sup +} with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

  16. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    International Nuclear Information System (INIS)

    Highlights: • Corona discharge formed an alkali depletion layer on a glass surface. • Introduction of hydrogen accelerated the depletion layer thickness. • Thickness was doubled compared with that in air. • Efficient formation of proton at an anode needle end was one cause. • Applied voltage across the glass plate in hydrogen was 2.7 times that in air. - Abstract: Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air

  17. Large eddies modulating flux convergence and divergence in a disturbed unstable atmospheric surface layer

    Science.gov (United States)

    Gao, Zhongming; Liu, Heping; Russell, Eric S.; Huang, Jianping; Foken, Thomas; Oncley, Steven P.

    2016-02-01

    The effects of large eddies on turbulence structures and flux transport were studied using data collected over a flat cotton field during the Energy Balance Experiment 2000 in the San Joaquin Valley of California in August 2000. Flux convergence (FC; larger fluxes at 8.7 m than 2.7 m) and divergence (FD) in latent heat flux (LE) were observed in a disturbed, unstable atmospheric surface layer, and their magnitudes largely departed from the prediction of Monin-Obukhov similarity theory. From our wavelet analysis, it was identified that large eddies affected turbulence structures, scalar distribution, and flux transport differently at 8.7 m and 2.7 m under the FC and FD conditions. Using the ensemble empirical mode decomposition, time series data were decomposed into large eddies and small-scale background turbulence, the time-domain characteristics of large eddies were examined, and the flux contribution by large eddies was also determined quantitatively. The results suggest that large eddies over the frequency range of 0.002 Hz < f < 0.02 Hz (predominantly 300-400 m) enhanced the vertical velocity spectra more significantly at 8.7 m than 2.7 m, leading to an increased magnitude of the cospectra and thus LE at 8.7 m. In the FD case, however, these large eddies were not present and even suppressed in the vertical velocity spectra at 8.7 m. Consequently, the cospectra divergence over the low-frequency ranges primarily caused the LE divergence. This work implies that large eddies may either improve or degrade the surface energy balance closure by increasing or decreasing turbulent fluxes, respectively.

  18. Atmospheric mercury over the marine boundary layer observed during the third China Arctic Research Expedition

    Institute of Scientific and Technical Information of China (English)

    Hui Kang; Zhouqing Xie

    2011-01-01

    TGM measurements on board ships have proved to provide valuable complementary information to measurements by a ground based monitoring network.During the third China Arctic Research Expedition (from July 11 to September 24,2008),TGM concentrations over the marine boundary layer along the cruise path were in-situ measured using an automatic mercury vapor analyzer.Here we firstly reported the results in Japan Sea,North Western Pacific Ocean and Bering Sea,where there are rare reports.The value ranged between 0.30 and 6.02 ng/m3 with an average of (1.52 ± 0.68) ng/m3,being slightly lower than the background value of Northern Hemisphere (1.7 ng/m3).Notably TGM showed considerably spatial and temporal variation.Geographically,the average value of TGM in Bering Sea was higher than those observed in Japan Sea and North Western Pacific Ocean.In the north of Japan Sea TGM levels were found to be lower than 0.5 ng/m3 during forward cruise and displayed obviously diurnal cycle,indicating potential oxidation of gaseous mercury in the atmosphere.The pronounced episode was recorded as well.Enhanced levels of TGM were observed in the coastal regions of southern Japan Sea during backward cruise due primarily to air masses transported from the adjacent mainland reflecting the contribution from anthropogenic sources.When ship returned back and passed through Kamchatka Peninsula TGM increased by the potential contamination from volcano emissions.

  19. Characterization of wake turbulence in a wind turbine array submerged in atmospheric boundary layer flow

    Science.gov (United States)

    Jha, Pankaj Kumar

    Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence. A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed. Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability

  20. MOSE: optical turbulence and atmospherical parameters operational forecast at ESO ground-based sites. II: atmospherical parameters in the surface layer [0-30] m

    CERN Document Server

    Lascaux, Franck; Fini, Luca

    2013-01-01

    This article is the second of a series of articles aiming at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature, relative humidity) and the optical turbulence (Cn2 and the derived astro-climatic parameters like seeing, isoplanatic angle, wavefront coherence time...). This study is done in the framework of the MOSE project, and focused above the two ESO ground-bases sites of Cerro Paranal and Cerro Armazones. In this paper we present the results related to the Meso-Nh model ability in reconstructing the surface layer atmospherical parameters (wind speed intensity, wind direction and absolute temperature, [0-30] m a.g.l.). The model reconstruction of all the atmospherical parameters in the surface layer is very satisfactory. For the temperature, at all levels, the RMSE (Root Mean Square Error) is inferior to 1{\\deg}C. For the wind speed, it is ~2 m/s, and for the wind direction, it is in the ran...

  1. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    Science.gov (United States)

    Kawaguchi, Keiga; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2014-05-01

    Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

  2. Amniotic membrane transplant with superficial keratectomy in superficial corneal degenerations: Efficacy in a rural population of north India

    Directory of Open Access Journals (Sweden)

    Rao Aparna

    2008-01-01

    Full Text Available Aim: To evaluate the applicability and efficacy of superficial keratectomy with transplantation of preserved amniotic membrane in superficial corneal degenerations in a rural population of Northern India in terms of visual improvement and surface regularization. Settings: Peripheral referral center in rural north India. Materials and Methods: This was a prospective non-comparative interventional case series where 24 eyes of 20 farmers from peripheral rural areas (M:F = 19:1 with visually significant superficial degenerative disorders (15 eyes with climatic droplet keratopathy one of which was associated with Salzmann nodular degeneration and nine eyes with band-shaped keratopathy were subjected to amniotic membrane transplantation (single or multiple layer combined with superficial keratectomy. Subjective and objective outcomes after surgery were evaluated and analyzed and statistical significance of the outcomes in various disorders was evaluated. Results: Eighty-eight per cent (21 eyes had symptomatic relief from distressing preoperative symptoms while postoperative visual improvement by two or more lines was achieved in 23 eyes (96% over a mean follow-up period of 26.8 ± 10.2 months. The surface irregularity present preoperatively was relieved in 23 cases while postoperative decline of vision with visually significant scarring was seen in one case (4%, which was labeled as failure. Conclusions: Amniotic membrane transplant with superficial keratectomy helped achieve subjective comfort, visual rehabilitation and clinical regularization of the corneal surface in superficial corneal degenerations during the mean followup of 26.8 ± 10.2 months in rural setups.

  3. Mechanical Properties of Double-Layer and Graded Composite Coatings of YSZ Obtained by Atmospheric Plasma Spraying

    Science.gov (United States)

    Carpio, Pablo; Rayón, Emilio; Salvador, María Dolores; Lusvarghi, Luca; Sánchez, Enrique

    2016-04-01

    Double-layer and graded composite coatings of yttria-stabilized zirconia were sprayed on metallic substrates by atmospheric plasma spray. The coating architecture was built up by combining two different feedstocks: one micro- and one nanostructured. Microstructural features and mechanical properties (hardness and elastic modulus) of the coatings were determined by FE-SEM microscopy and nanoindentation technique, respectively. Additional adherence and scratch tests were carried out in order to assess the failure mechanisms occurring between the layers comprising the composites. Microstructural inspection of the coatings confirms the two-zone microstructure. This bimodal microstructure which is exclusive of the layer obtained from the nanostructured feedstock negatively affects the mechanical properties of the whole composite. Nanoindentation tests suitably reproduce the evolution of mechanical properties through coatings thickness on the basis of the position and/or amount of nanostructured feedstock used in the depositing layer. Adhesion and scratch tests show the negative effect on the coating adhesion of layer obtained from the nanostructured feedstock when this layer is deposited on the bond coat. Thus, the poor integrity of this layer results in lower normal stresses required to delaminate the coating in the adhesion test as well as minor critical load registered by using the scratch test.

  4. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research

    Science.gov (United States)

    Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur

    2012-10-01

    During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.

  5. Evaluation of the similarty functions Fm and Fh for the stable atmospheric boundary layer: range of validity

    OpenAIRE

    Viana, S.; Yague, Carlos; Maqueda, Gregorio; Redondo Apraiz, José Manuel

    2015-01-01

    Poster EGU Turbulent transfer is one of the most important processes in the Atmospheric Boundary Layer (ABL), showing many difficulties in stable situations (SBL): non stationary conditions, presence of internal gravity waves, intermittency, decoupling from the surface fluxes, etc. • The Monin-Obukhov (M-O) Theory is a suitable framework for presenting micrometeorological data, as well as for extrapolating and predicting certain micrometeorological information where direct measure...

  6. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2008-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transform...

  7. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transfo...

  8. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aer...

  9. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, Andreas; Hasselbach, Jan; Lauer, Peter; Baumann, Robert; Franke, Klaus; Gurk, Christian; Schlager, Hans; Weingartner, Ernest

    2008-01-01

    International audience Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airb...

  10. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    International audience Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by ai...

  11. Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model.

    Science.gov (United States)

    Zilberman, Arkadi; Golbraikh, Ephim; Kopeika, Norman S

    2008-12-01

    Turbulence properties of communication links (optical and microwave) in terms of log-amplitude variance are studied on the basis of a three-layer model of refractive index fluctuation spectrum in the free atmosphere. We suggest a model of turbulence spectra (Kolmogorov and non-Kolmogorov) changing with altitude on the basis of obtained experimental and theoretical data for turbulence profile in the troposphere and lower stratosphere.

  12. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    Science.gov (United States)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis

  13. Very-Large-Scale Motions in the Atmospheric Boundary Layer Educed by Snapshot Proper Orthogonal Decomposition

    Science.gov (United States)

    Shah, Stimit; Bou-Zeid, Elie

    2014-12-01

    Large-eddy simulations of the atmospheric boundary layer (ABL) under a wide range of stabilities are conducted to educe very-large-scale motions and then to study their dynamics and how they are influenced by buoyancy. Preliminary flow visualizations suggest that smaller-scale motions that resemble hairpins are embedded in much larger scale streamwise meandering rolls. Using simulations that represent more than 150 h of physical time, many snapshots in the -, - and -planes are then collected to perform snapshot proper orthogonal decomposition and further investigate the large structures. These analyses confirm that large streamwise rolls that share several features with the very-large-scale motions observed in laboratory studies arise as the dominant modes under most stabilities, but the effect of the surface kinematic buoyancy flux on the energy content of these dominant modes is very significant. The first two modes in the -plane in the neutral case contain up to 3 % of the total turbulent kinetic energy; they also have a vertical tilt angle in the -plane of about 0 to 30 due to the turning effect associated with the Coriolis force. Unstable cases also feature streamwise rolls, but in the convective ABL they are strengthened by rising plumes in between them, with two to four rolls spanning the whole domain in the first few modes; the Coriolis effect is much weaker in the unstable ABL. These rolls are no longer the dominant modes under stable conditions where the first mode is observed to contain sheet-like motions with high turbulent kinetic energy. Using these proper orthogonal decomposition modes, we are also able to extract the vertical velocity fields corresponding to individual modes and then to correlate them with the horizontal velocity or temperature fields to obtain the momentum and heat flux carried by individual modes. Structurally, the fluxes are explained by the topology of their corresponding modes. However, the fraction of the fluxes produced by

  14. Advances and limitations of atmospheric boundary layer observations with GPS occultation over Southeast Pacific Ocean

    Directory of Open Access Journals (Sweden)

    F. Xie

    2011-08-01

    Full Text Available The typical atmospheric boundary layer (ABL over the southeast (SE Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS radio occultation (RO measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1–2 km as observed from the radiosondes. Whereas, the ECMWF analyses systematically underestimate ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., −157 N-unit km−1 and becomes the so-called ducting condition, which results in systematic RO refractivity bias (or called N-bias inside the ABL. Simulation study using refractivity profiles based on radiosondes reveals that the N-biases are significant and the magnitudes of biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding −110 N-unit km−1 at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very sharp refractivity gradient and the large RO bending angle due to ducting allow reliable detection of ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show the deepening of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows systematically higher ABL heights overall and reveals different

  15. Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean

    Directory of Open Access Journals (Sweden)

    F. Xie

    2012-01-01

    Full Text Available The typical atmospheric boundary layer (ABL over the southeast (SE Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS radio occultation (RO measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1–2 km as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., −157 N-unit km−1 and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The $N$-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding −110 N-unit km−1 at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL

  16. Influence of the nucleation layer annealing atmosphere on the resistivity of GaN grown by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Graphical abstract: LT-PL spectra of GaN samples A, B and C with sheet resistance of 1.1 × 104 Ω/sq, 5.5 × 104 Ω/sq and 1.0 × 108 Ω/sq, respectively. - Highlights: • HR-GaN was fabricated by optimizing the nucleation layer annealing (NL) atmosphere. • The morphology of NLs annealed in different atmosphere has been investigated. • The resistance of GaN increased with density of edge type threading dislocations. • The PL results indicate that the HR-GaN is achieved due to the compensation of acceptor states. - Abstract: High-resistance (HR) GaN with sheet resistance of 1.0 × 108 Ω/sq was grown on sapphire substrates using metal organic chemical vapor deposition. Sheet resistance of the GaN film increases 4 orders of magnitude by changing the nucleation layer (NL) annealing atmosphere from H2 to N2. It is observed that the morphology of the NLs strongly depends on the annealing atmosphere. The analysis results based on high-resolution X-ray diffraction (HR-XRD) and etch pit density (EPD) measurements demonstrate that the density of edge-type threading dislocations increases with the proportion of the N2 in the annealing atmosphere. Photoluminescence (PL) spectra is employed to analyze the optical properties of GaN films. The XRD and PL results indicate the primary compensating mechanism is due to acceptor levels introduced by the increase in edge-type threading dislocations density. It is concluded that the annealing atmosphere of the NL controls sizes and densities of the nucleation islands, which affect electrical properties of GaN epitaxial films through changing the ratio of edge to screw/mixed-type threading dislocations

  17. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    Science.gov (United States)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  18. ATMOSPHERIC BOUNDARY LAYER CONCEPT MODEL OF THE PEARL RIVER DELTA AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    FAN Shao-jia; WANG An-Yu; FAN Qi; LIU Ji; WANG Bao-min; TA Na

    2007-01-01

    Based on the geographical circumstance, climate and the boundary layer meteorology features of the Pearl River Delta, a boundary layer concept model of the Pearl River Delta was built. The concept model consists of four fundamental factors that affect the boundary layer meteorology of the Pearl River Delta and can convincingly explain the reason of the air quality change in the Pearl River Delta. The model can be used to the diffusion capability analysis, the air pollution potential forecasting or haze forecasting, etc.

  19. Radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer and its feedback on the haze formation

    Science.gov (United States)

    Wei, Chao; Su, Hang; Cheng, Yafang

    2016-04-01

    Planetary boundary layer (PBL) plays a key role in air pollution dispersion and influences day-to-day air quality. Some studies suggest that high aerosol loadings during severe haze events may modify PBL dynamics by radiative effects and hence enhance the development of haze. This study mainly investigates the radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer by conducting simulations with Weather Research and Forecasting single-column model (WRF-SCM). We find that high aerosol loading in PBL depressed boundary layer height (PBLH). But the magnitude of the changes of PBLH after adding aerosol loadings in our simulations are small and can't explain extreme high aerosol concentrations observed. We also investigate the impacts of the initial temperature and moisture profiles on the evolution of PBL. Our studies show that the impact of the vertical profile of moisture is comparable with aerosol effects.

  20. Analysis of the correlations between atmospheric boundary-layer and free-tropospheric temperatures in the tropics

    Science.gov (United States)

    Wu, Wei; Dessler, Andrew E.; North, Gerald R.

    2006-10-01

    We investigate the vertical correlations between temperature variations at 925 hPa, in the atmospheric boundary layer, and temperature variations in the free troposphere and lower stratosphere in the Tropics in daily and monthly averaged satellite and radiosonde measurements and in six General Circulation Models (GCMs). The results show generally positive correlations between the boundary layer temperatures and temperatures in the rest of the troposphere, with negative correlations occurring around the tropopause and in the lower stratosphere. In typically non-convective regions, the variations at the surface show little connection to mid and upper tropospheric temperature variations. In the convective Western Pacific, the correlations are low in the mid troposphere and much larger around 200 hPa. GCMs generally capture the temperature correlations, although as a group they tend to overpredict the coupling between the boundary layer and the rest of the troposphere. The basic correlation patterns of monthly temperature are found similar to the daily results.

  1. Superficial parotidectomy via facelift incision

    NARCIS (Netherlands)

    P.J.F.M. Lohuis; M.L. Tan; K. Bonte; M.W.M. van den Brekel; A.J.M. Balm; H.B. Vermeersch

    2009-01-01

    The stigma of a visually prominent facial scar following parotid surgery can be distressing to a young patient. The surgical technique of parotidectomy via a facelift incision is described and evaluated. Thirty patients with a benign lesion of the parotid gland underwent a partial superficial paroti

  2. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  3. Influence of deposition atmosphere on photocatalytic activity of TiO2/SiOx double-layers prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    TiO2/SiOx double-layers have been prepared at room temperature by RF magnetron sputtering. The TiO2 top-layer was deposited in an Ar atmosphere, while the SiOx bottom-layer was deposited in an Ar/O2 atmosphere. Samples were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and photoluminescence techniques. The photocatalytic activity of the samples was evaluated by the photodegradation of methylene blue; the results showed that the photocatalytic activity of the TiO2/SiOx double-layers was superior to that of the TiO2 single-layers. The presence of the SiOx bottom-layer improved the photocatalytic activity of the TiO2 layer because it may act as a trap for electrons generated in the TiO2 layer thus preventing electron-hole recombinations.

  4. Characteristics of layers, waves and turbulence in the atmosphere and ionosphere as estimated by GPS space radio-holography

    Science.gov (United States)

    Pavelyev, Alexander; Gubenko, Vladimir; Matyugov, Stanislav; Pavelyev, Alexey

    The spatial, seasonal and geographical distrubutions of the intensity of layers, turbulence and internal waves at different altitudes in the atmosphere and ionosphere of the Earth are presented. The results have been obtained on the base of locality principle using a new phase acceleration-intensity method for analysis of the GPS radio occultation signals. This methodology has been applied to mesearements of the inclination and altitude of ionospheric layers. Obtained information has been used for estimation of the front orientation, internal frequency and phase speed of the internal waves in the ionosphere and neutral atmosphere. A new index of the ionospheric activity as measured from the phase of radio waves passed through the ionosphere is introduced and its high correlation with S4 scintillation index is established. This correlation indicates the significant influence of ionospheric layers on variations of characteristics of radio waves in transionospheric communication links. Specially for the troposphere the geographical distribution of the weak total absorption (about of 1-2 db) of the radio waves at GPS frequencies in the Earth atmosphere corresponding to influence of the oxygen and water vapor in the troposphere is measured with accuracy better than 0.1 db. Obtained results expanded the applicable domain of the GPS space radio-holography for global investigation of the natural processes in the atmosphere and ionosphere as function of solar activity and space weather effects. The new phase acceleration-intensity method is also a basic tool which can be applied for data analysis of future planetary radio occultation missions

  5. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    Science.gov (United States)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  6. The horizontal transport of pollutants from a slope wind layer into the valley core as a function of atmospheric stability

    Science.gov (United States)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian

    2016-04-01

    Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most

  7. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  8. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    Science.gov (United States)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  9. Variability of Atmospheric Boundary Layer height over the tropical oceans - A study using atmospheric refractivity profiles from multi campaign in-situ and satellite radio occultation data.

    Science.gov (United States)

    Santosh, M.

    2016-07-01

    Atmospheric Boundary Layer (ABL) over the tropical oceans controls and regulates the influx of water vapour into the free atmosphere due to evaporation. The availability of in situ data for determining the ABL characteristics over tropical oceans are limited to different ship based campaigns and hence restricted in spatial and temporal coverage. For ABL studies the Radio Occultation (RO) based satellite data over tropical oceans have good temporal and spatial coverage but limited in temporal and spatial resolution. Atmospheric refractivity profiles are extensively used in many studies to determine the ABL height from both platforms. The present study attempts to use the advantages in both in-situ and satellite (RO) based data to quantify the variability in the ABL height over the tropical oceans. All studies done so far to identify the ABL height from RO derived refractivity profiles rely extensively on the detection of the minimum refractivity gradient (MRG) below ~6 km along with additional threshold criteria. This leads to an over estimation of ABL heights especially in presence of strong subsidence inversion caused by local/ mesoscale/ synoptic scale processes where the MRG lies significantly above the ABL. The present study attempts to quantify this over estimation using atmospheric refractivity profiles derived from thermo-dynamical parameters from radiosonde ascents over the tropical ocean, suggests an improved method of ABL detection and quantifies the variability so deduced. Over 1000 radiosonde ascents from four ship cruises conducted during DYNAMO 2011 field campaign over the tropical Indian Ocean are used for the purpose. ABL heights determined from radiosonde data using traditional methods (using virtual potential temperature and specific humidity) are compared with those identified from simulated atmospheric refractivity profiles from same data (using prevalent methods for RO) to quantify the over estimation. A new method of ABL detection from

  10. Simulation of CO2 dispersion in the atmospheric boundary layer using a mesoscale model

    Science.gov (United States)

    Granvold, P. W.; Chow, F. K.; Oldenburg, C. M.

    2007-12-01

    The consequences of unexpected releases of CO2 from underground carbon sequestration sites must be understood before large-scale carbon capture and storage projects are implemented. Carbon dioxide gas can migrate through faults, fractures, or abandoned wells that penetrate the subsurface storage site and provide a pathway to the ground surface. Though such leakage is typically slow and in small amounts, CO2 can accumulate at the ground surface because it is denser than the surrounding atmosphere. Such accumulation presents health risks for humans and animals in the vicinity, and can cause damage to crops, trees, and other vegetation. Because atmospheric dispersion of CO2 is driven by gravity and ambient wind conditions, the danger from CO2 is greatest in regions with topographic depressions where the dense gas can pool, or under stably- stratified background atmospheric conditions which further inhibit mixing and dilution of the gas. We are developing a simulation tool for predictions of CO2 releases from underground storage sites in a mesoscale atmospheric model. The model solves the compressible fluid flow equations, and has been modified to account for transport of dense gases. Example simulations from sources of different release strengths over various topography and background atmospheric conditions illustrate the behavior of the model and its utility for risk assessment and certification of carbon sequestration sites.

  11. EM Propagation in Marine Atmospheric Boundary Layer: Analysis of RED Experiment Data

    Science.gov (United States)

    Hristov, T.; Friehe, C. A.

    2002-05-01

    The pattern of propagation for EM signals over the ocean is a combined result of the atmospheric refraction and scattering from the rough ocean surface. Here we study experimentally the structure of the atmospheric refractive index and the ocean surface statistics, pertinent to scattering. We are also interested in fluctuations of the refractive index induced by the ocean surface waves, which along with the turbulence contribute to the random refraction. However, these fluctuations exhibit behavior different from turbulence (e.g. their structure function does not follow the 2/3 scaling valid for the turbulent fluctuations) and require to be studied separately. We analyze data of atmospheric turbulence, humidity, temperature, and sea surface temperature and waves from the Rough Evaporation Duct experiment, conducted in part from the instrument platform FLIP in the open ocean north of Oahu, Hawaii.

  12. Diurnal Variations of Air Pollution and Atmospheric Boundary Layer Structure in Beijing During Winter 2000/2001

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li; XU Xiangde; DING Guoan; ZHOU Mingyu; CHENG Xinghong

    2005-01-01

    The diurnal variations of gaseous pollutants and the dynamical and thermodynamic structures of the atmospheric boundary layer (ABL) in the Beijing area from January to March 2001 are analyzed in this study using data from the Beijing City Air Pollution Observation Field Experiment (BECAPEX). A heavy pollution day (22 February) and a good air quality day (24 February) are selected and individually analyzed and compared to reveal the relationships between gaseous pollutants and the diurnal variations of the ABL. The results show that gaseous pollutant concentrations exhibit a double-peak-double-valley-type diurnal variation and have similar trends but with different magnitudes at different sites in Beijing. The diurnal variation of the gaseous pollutant concentrations is closely related to (with a 1-2 hour delay of)changes in the atmospheric stability and the mean kinetic energy in the ABL.

  13. A sensitivity study of atmospheric reflectance to aerosol layer height based on multi-angular polarimetric measurements

    Science.gov (United States)

    Qie, Lili; Li, Donghui; Li, Zhengqiang; Zhang, Ying; Hou, Weizhen; Chen, Xingfeng

    2015-10-01

    The reflected Solar radiance at top of atmosphere (TOA) are, to some degree, sensitive to the vertical distribution of absorbing aerosols, especially at short wavelengths (i.e. blue and UV bands). If properly exploited, it may enable the extraction of basic information on aerosol vertical distribution. In recent years, rapid development of the advanced spectral multi-angle polarimetric satellite observation technology and aerosol inversion algorithm makes the extraction of more aerosol information possible. In this study, we perform a sensitivity analysis of the reflection function at TOA to the aerosol layer height, to explore the potential for aerosol height retrievals by using multi-angle total and polarized reflectance passive observations at short wavelength. Employing a vector doubling-adding method radiative transfer code RT3, a series of numerical experiments were conducted considering different aerosol model, optical depth (AOD), single-scattering albedo (SSA), and scale height (H), also the wavelength, solar-viewing geometry, etc. The sensitivity of both intensity and polarization signals to the aerosol layer height as well as the interacted impactions with SSA and AOD are analyzed. It's found that the sensitivity of the atmospheric reflection function to aerosol scale height increase with aerosol loading (i.e. AOD) and aerosol absorption (i.e. SSA), and decrease with wavelength. The scalar reflectance is sensitive to aerosol absorption while the polarized reflectance is more influenced by the altitude. Then the aerosol H and SSA may be derived simultaneously assuming that the total and polarized radiances in UV bands deconvolve the relative influences of height and absorption. Aerosol layer height, Atmospheric reflection function, Sensitivity, Ultraviolet (UV) band.

  14. A laboratory study of heterogeneous reactions relevant to the atmospheric boundary layer: soot as a reactive substrate

    OpenAIRE

    Stadler, Dominik; Rossi, Michel,

    2005-01-01

    The present work deals with two subjects. The interaction of NO2 and HONO with different types of soot are examined in the first part whereas in the second part an experimental set-up is presented which has been built in order to measure the kinetics of the degradation of organic compounds by OH radicals. Both soot particles as well as NO2 are mainly produced by fossil fuel and biomass burning. The two species are therefore ubiquitous in the atmospheric boundary layer where they may react wit...

  15. A laboratory study of heterogeneous reactions relevant to the atmospheric boundary layer: soot as a reactive substrate

    OpenAIRE

    Stadler, Dominik

    2000-01-01

    The present work deals with two subjects. The interaction of NO2 and HONO with different types of soot are examined in the first part whereas in the second part an experimental set-up is presented which has been built in order to measure the kinetics of the degradation of organic compounds by OH radicals. Both soot particles as well as NO2 are mainly produced by fossil fuel and biomass burning. The two species are therefore ubiquitous in the atmospheric boundary layer where they may react wit...

  16. Flowing atmospheric pressure afterglow combined with laser ablation for direct analysis of compounds separated by thin-layer chromatography

    OpenAIRE

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2015-01-01

    A thin-layer chromatography-mass spectrometry (TLC-MS) setup for characterization of low molecular weight compounds separated on standard TLC plates has been constructed. This new approach successfully combines TLC separation, laser ablation, and ionization using flowing atmospheric pressure afterglow (FAPA) source. For the laser ablation, a low-priced 445-nm continuous-wave diode laser pointer, with a power of 1 W, was used. The combination of the simple, low-budget laser pointer and the FAP...

  17. Observations and applications of the horizontal perturbation wind field within convective structures of the marine atmospheric surface layer

    Science.gov (United States)

    Sikora, Todd D.; Young, George S.

    1994-03-01

    Studies involving radar remote sensing or modeling of the ocean/Marine Atmospheric Surface Layer (MASL) interface demand a thorough description of how coherent convective structures couple the two mediums together. The current analysis provides this information for the small-scale variability caused by boundary-layer convection. NCAR Electra 50 m above mean sea level (MSL) turbulence data from Project FIRE (First ISSCP [International Satellite Cloud Climatology Program] Regional Experiment) are conditionally sampled and composited to produce horizontal planviews of the typical perturbation horizontal wind field within these convective updrafts and downdrafts. Applications of these observational results, as well as similarly derived flux data from Sikora and Young (1993), to the above mentioned studies, are then discussed.

  18. Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India

    Science.gov (United States)

    Chandra, Sagarika; Dwivedi, Arun K.; Kumar, Manoj

    2014-08-01

    In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature (𝜃 v ) profile for the determination of mixed layer heights (MLH) and the mean value of turbulent flow depth (TFD) obtained from the vertical profile of Bulk Richardson Number (R i B ) have been used in this study. One-year data have been used for the study. There is large seasonal variability in MLH with a peak in the summer and winter whereas the TFD remained steady throughout the year. Results from the present study indicate that the magnitudes of TFD are often larger than the MLH.

  19. Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India

    Indian Academy of Sciences (India)

    Sagarika Chandra; Arun K Dwivedi; Manoj Kumar

    2014-08-01

    In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature (v) profile for the determination of mixed layer heights (MLH) and the mean value of turbulent flow depth (TFD) obtained from the vertical profile of Bulk Richardson Number () have been used in this study. Oneyear data have been used for the study. There is large seasonal variability in MLH with a peak in the summer and winter whereas the TFD remained steady throughout the year. Results from the present study indicate that the magnitudes of TFD are often larger than the MLH.

  20. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    Science.gov (United States)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  1. A Simple Model for the Vertical Transport of Reactive Species in the Convective Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Kristensen, Leif; Lenschow, Donald H.; Gurarie, David;

    2010-01-01

    We have developed a simple, steady-state, one-dimensional second-order closure model to obtain continuous profiles of turbulent fluxes and mean concentrations of non-conserved scalars in a convective boundary layer without shear. As a basic tool we first set up a model for conserved species...... with standard parameterizations. This leads to formulations for profiles of the turbulent diffusivity and the ratio of temperature-scalar covariance to the flux of the passive scalar. The model is then extended to solving, in terms of profiles of mean concentrations and fluxes, the NO x –O3 triad problem...... layer, the problem reduces to solving two differential equations for the concentration and the flux of NO2. The boundary conditions are the three surface fluxes and the fluxes at the top of the boundary layer, the last obtained from the entrainment velocity, and the concentration differences between...

  2. Description of the atmospheric circulation in the boundary layer over a tropical island: Case study of Guadeloupe Archipelago

    Science.gov (United States)

    Plocoste, Thomas; Dorville, Jean-François; Jacoby-Koaly, Sandra; Roussas, André

    2016-04-01

    Over past two decades the use of atmospheric sounding methods as Sodars, Lidar equipped drones increased sharply. Compare to weather balloon, these modern methods allow measure of profile at constant heights during long period. There are few studies using this type of equipment in tropical climates and lesser on small island. Wind regime on island of diameter less than 50 km are mostly considered as oceanic. Many author consider that thermal effect are negligible in land. But recent observations and simulations show importance of the thermal circulation at small- and meso- scales particularly in atmospheric pollution process. Up to 2009 no wind profile data were available continuously to study atmospheric circulation in Guadeloupe Archipelago (GA) which is one of the islands of the Lesser Antilles Arc. In first approximation wind was evaluated based on measures done at the most upwind island of the GA for many application as wind power and atmospheric pollution. From 2009 to 2012 a measurement campaign of the Atmospheric Boundary Layer (ABL) have been performed by the University of Antilles (UA) in GA. To assess effects of dynamic of ABL on air quality in sub urban area, particularly during the sunset and sunrise, UA monitored two sites with a weather station and a doppler sodar (REMTECH PAO). Both sites are close to the sea with one in a coastal area and the other in an open landfill surrounded by densely populated building and a mangrove swamp. Thermal and chemical measurements with a portable mass spectrometer were made in the vicinity of the landfill and showed the existence of urban heat islands. This study presents the first Doppler Sodar long measurements campaign in GA. Statistical analysis of the three year of doppler sodar data (i.e. wind components and its fluctuations) allow to identified and characterized the complex circulations on the two sites in the ABL between 25 and 500m above the sea level. Orographic and thermal effects due to urban area were

  3. Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Unger, Andre J.A.

    2004-03-29

    Geologic carbon dioxide (CO{sub 2}) sequestration is being considered as a way to offset fossil-fuel-related CO{sub 2} emissions to reduce the rate of increase of atmospheric CO{sub 2} concentrations. The accumulation of vast quantities of injected carbon dioxide (CO{sub 2}) in geologic sequestration sites may entail health and environmental risks from potential leakage and seepage of CO{sub 2} into the near-surface environment. We are developing and applying a coupled subsurface and atmospheric surface-layer modeling capability built within the framework of the integral finite difference reservoir simulator TOUGH2. The overall purpose of modeling studies is to predict CO{sub 2} concentration distributions under a variety of seepage scenarios and geologic, hydrologic, and atmospheric conditions. These concentration distributions will provide the basis for determining above-ground and near-surface instrumentation needs for carbon sequestration monitoring and verification, as well as for assessing health, safety, and environmental risks. A key feature of CO{sub 2} is its large density ({rho} = 1.8 kg m{sup -3}) relative to air ({rho} = 1.2 kg m{sup -3}), a property that may allow small leaks to cause concentrations in air above the occupational exposure limit of 4 percent in low-lying and enclosed areas such as valleys and basements where dilution rates are low. The approach we take to coupled modeling involves development of T2CA, a TOUGH2 module for modeling the multicomponent transport of water, brine, CO{sub 2}, gas tracer, and air in the subsurface. For the atmospheric surface-layer advection and dispersion, we use a logarithmic vertical velocity profile to specify constant time-averaged ambient winds, and atmospheric dispersion approaches to model mixing due to eddies and turbulence. Initial simulations with the coupled model suggest that atmospheric dispersion quickly dilutes diffuse CO{sub 2} seepage fluxes to negligible concentrations, and that rainfall

  4. Lidar-Observed Stress Vectors and Veer in the Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, Edward G.

    2013-01-01

    the Coriolis force is negligible, this is supposedly a good approximation. High-resolution large-eddy simulation data show that this is indeed the case even beyond the surface layer. In contrast, through analysis of WindCube lidar measurements supported by sonic measurements, the study shows that it is only...

  5. Modelization of a large wind farm, considering the modification of the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, A.; Gomez-Elvira, R. [Univ. Politecnica de Madrid, Mecanica de Fluidos, E.T.S.I. Industriales, Madrid (Spain); Frandsen, S.; Larsen, S.E. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A method is presented to adapt existing models of wind farms to very large ones that may affect the whole planetary boundary layer. An internal boundary layer is considered that starts developing at the leading edge of the farm until it reaches, sufficiently far downstream, the top of the planetary boundary layer, and a new equilibrium region is reached. The wind farm is simulated by an artificial roughness that is function of the turbine spacing, drag and height. From this model the flow conditions are calculated at a certain reference height and then are used as boundary conditions for a numerical code used to model a wind farm. Three-dimensional effects are considered by applying appropriate conditions at the sides of the farm. Calculations are carried out to estimate the energy production in large wind farms, and it is found that additional losses due to modification of the planetary boundary layer may be of importance for wind farms of size larger than about 100 km. (au)

  6. Stable atmospheric boundary-layer experiment in Spain (SABLES 98): A report

    DEFF Research Database (Denmark)

    Cuxart, J.; Yague, C.; Morales, G.;

    2000-01-01

    boundary layer (SBL). Instrumentation deployed on two meteorological masts (of heights 10 m and 100 m) included five sonic anemometers, 15 thermocouples, five cup anemometers and three propeller anemometers, humidity sensors and radiometers. A Sensitron mini-sodar and a tethered balloon were also operated...

  7. Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure

    NARCIS (Netherlands)

    Goulas, A.; Van Ommen, J.R.

    2013-01-01

    We report the fabrication of platinum nanoclusters with a narrow size distribution on TiO2 nanoparticles using atomic layer deposition. With MeCpPtMe3 and ozone as reactants, the deposition can be carried out at a relatively low temperature of 250 degrees C. Our approach of working with suspended na

  8. Experimental and theoretical study of the atmospheric boundary layer over the paris area

    International Nuclear Information System (INIS)

    This thesis studied the urban boundary layer dynamic behaviour over the Paris area by comparing urban (Paris) and suburban (Palaiseau) dynamic data such as lidars, sodars, sonic anemometers. All the data were obtained during the ECLAP experiment, specifically performed to characterize the differences between a city and its near environment. (author)

  9. The profile of upwelling 11-micron radiance through the atmospheric boundary layer overlying the ocean

    Science.gov (United States)

    Hagen, Denise E.

    1988-01-01

    Measurements of the gradient of 11-micron radiance from the ocean surface were made with spaceborne AVHRR and with radiometers carried on research vessels in California and east Florida waters. The results obtained for the radiance gradient at a variety of atmospheric conditions are in good agreement with radiative transfer calculations, suggesting that there was no significant error in the water vapor absorption parameters used in the calculations. The results confirm earlier predictions that, for a typical viewing factor (i.e., zenith angle 60 deg) and for mid-latitude standard water vapor conditions, the 11-micron radiant flux measured by a spaceborne sensor will be dominated by the atmospheric contribution to the total outgoing radiation in this 'window' region.

  10. Extended self-similarity of atmospheric boundary layer wind fields in mesoscale regime: Is it real?

    CERN Document Server

    Kiliyanpilakkil, V P

    2015-01-01

    In this letter, we study the scaling properties of multi-year observed and atmospheric model-generated wind time series. We have found that the extended self-similarity holds for the observed series, and remarkably, the scaling exponents corresponding to the meoscale range closely match the well-accepted inertial-range turbulence values. However, the scaling results from the simulated time series are significantly different.

  11. On the marine atmospheric boundary layer characteristics over Bay of Bengal and Arabian Sea during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)

    Indian Academy of Sciences (India)

    Denny P Alappattu; D Bala Subrahamanyam; P K Kunhikrishnan; K M Somayaji; G S Bhat; R Venkatesan; C B S Dutt; A Bagavath Singh; V K Soni; A S Tripathi

    2008-07-01

    Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made during this campaign. The latitudinal variation of the surface layer turbulent fluxes is also described in detail.

  12. DIFFUSION IN THE VICINITY OF STANDARD-DESIGN NUCLEAR POWER PLANTS-I. WIND-TUNNEL EVALUATION OF DIFFUSIVE CHARACTERISTICS OF A SIMULATED SUBURBAN NEUTRAL ATMOSPHERIC BOUNDARY LAYER

    Science.gov (United States)

    A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...

  13. Towards the fourth GEWEX atmospheric boundary layer model intercomparison study (GABLS4): exploration of very stable conditions over an Antarctic ice shelf

    NARCIS (Netherlands)

    Vihma, T.; Kilpeläinen, T.; Rontu, L.; Anderson, P.S.; Orr, A.; Phillips, T.; Finkele, K.; Rodrigo, I.; Holtslag, A.A.M.; Svensson, G.

    2012-01-01

    Numerical weather prediction and climate models continue to have large errors for stable boundary layers (SBL). To understand and to improve on this, so far three atmospheric boundary layer model inter-comparison studies have been organised within the Global Energy and Water Cycle Experiment (GEWEX)

  14. The relationship between ozone formation and air temperature in the atmospheric surface layer

    Science.gov (United States)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  15. Influence of annealing in H atmosphere on the electrical properties of Al2O3 layers grown on p-type Si by the atomic layer deposition technique

    Science.gov (United States)

    Kolkovsky, Vl.; Stübner, R.; Langa, S.; Wende, U.; Kaiser, B.; Conrad, H.; Schenk, H.

    2016-09-01

    In the present study the electrical properties of 100 nm and 400 nm alumina films grown by the atomic layer deposition technique on p-type Si before and after a post-deposition annealing at 440 °C and after a dc H plasma treatment at different temperatures are investigated. We show that the density of interface states is below 2 × 1010 cm-2 in these samples and this value is significantly lower compared to that reported previously in thinner alumina layers (below 50 nm). The effective minority carrier lifetime τg,eff and the effective surface recombination velocity seff in untreated p-type Si samples with 100 nm and 400 nm aluminum oxide is comparable with those obtained after thermal oxidation of 90 nm SiO2. Both, a post-deposition annealing in forming gas (nitrogen/hydrogen) at elevated temperatures and a dc H-plasma treatment at temperatures close to room temperature lead to the introduction of negatively charged defects in alumina films. The results obtained in samples annealed in different atmospheres at different temperatures or subjected to a dc H plasma treatment allow us to correlate these centers with H-related defects. By comparing with theory we tentatively assign them to negatively charged interstitial H atoms.

  16. Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow

    CERN Document Server

    Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

    2013-01-01

    The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

  17. Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer

    Directory of Open Access Journals (Sweden)

    M. Ampferer

    2010-03-01

    Full Text Available It is well known that lithospheric electromagnetic emissions are generated before earthquakes occurrence. In our study, we consider the physical penetration mechanism of the electric field from the Earth's surface, through the atmosphere-ionosphere layers, and until its detection in space by satellites. A simplified approach is investigated using the electric conductivity equation, i.e., ∇ˆσ·∇Φ=0 in the case of a vertical inclination of the geomagnetic field lines. Particular interest is given to the conductivity profile near the ground and the electric field distribution at the Earth's surface. Our results are discussed and compared to the models of Pulinets et al. (2003 and Denisenko et al. (2008. It is shown that the near ground atmospheric layer with low conductivity decreases the electric field penetration into the ionosphere. The model calculations have demonstrated that the electric field of lithospheric origin is too weak to be observed at satellite altitudes.

  18. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  19. Development of a measurement platformon a light airplane and analysis of airborne measurementsin the atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    D. Zardi

    2003-06-01

    Full Text Available In the present paper we provide an overview of a long term research project aimed at setting up a suitable platform for measurements in the atmospheric boundary layer on a light airplane along with some preliminary results obtained from fi eld campaigns at selected sites. Measurements of air pressure, temperature and relative humidity have been performed in various Alpine valleys up to a height of about 2500 m a.m.s.l. By means of GPS resources and specifi c post-processing procedures careful positioning of measurement points within the explored domain has been achieved. The analysis of collected data allowed detailed investigation of atmospheric vertical structures and dynamics typical of valley environment, such as morning transition from ground based inversion to fully developed well mixed convective boundary layer. Based on data collected along fl ights, 3D fi elds of the explored variables have been detected and identifi ed through application of geostatistical techniques (Kriging. The adopted procedures allowed evaluation of the intrinsic statistical structure of the spatial distribution of measured quantities and the estimate of the values of the same variable at unexplored locations by suitable weighted average of data recorded at close locations. Results thus obtained are presented and discussed.

  20. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast

    Science.gov (United States)

    Archer, Cristina L.; Colle, Brian A.; Veron, Dana L.; Veron, Fabrice; Sienkiewicz, Matthew J.

    2016-08-01

    The marine boundary layer of the northeastern U.S. is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003-2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013-2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with new instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s-1 all year round, highest winds in winter (10.1 m s-1) and lowest in summer (7.1 m s-1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not.

  1. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Science.gov (United States)

    Zhang, G.; Leclerc, M. Y.; Karipot, A.

    2010-11-01

    The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm) and for temperature (Φh). It uses three different stability parameters, i.e., h/L(h) at tree top, local z/L(z), and the local bulk Richardson number (Ri), within a tall forest canopy in nighttime stable (indicated by h/L(h) > 0) conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  2. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    Directory of Open Access Journals (Sweden)

    Anjaneyulu Yerramilli

    2008-12-01

    Full Text Available Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  3. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  4. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  5. Turbulent Characterization of atmospheric surface layer over non-homogeneous terrain

    International Nuclear Information System (INIS)

    About 15000 wind and temperature profiles from a 100 m tower located in CEDER (Soria, Spain) have been analyzed. Using profiles in close neutral conditions, two main parameters of surface layer were obtained. Results show a great dependence of these parameters (Z0 roughness length and u friction velocity) on flow conditions and terrain (tinctures. Difficulty finding neutral conditions in this type of terrain (gently rolling and scattered bush) and in this latitude , is also remarkable. (Author) 91 refs

  6. Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer

    OpenAIRE

    Sproson, David; Sahlée, Erik

    2014-01-01

    Coastal upwelling, with a strong sea-surface temperature (SST) signal, is extremely common in the Baltic Sea during the summer months. Although the spatial scale of upwelling is small, its high frequency of occurrence in the semi-enclosed basin may allow the SST signature to have significant feedback onto the lower atmosphere. In this paper, we develop a method to remove the signature of upwelling from SST fields, and use these modified SST fields as the lower boundary condition of an atmosph...

  7. Superficial urinary bladder tumors treatment results: A 10-year experience

    OpenAIRE

    Stanković Jablan; Dinić Ljubomir; Pavlović Svetlana

    2007-01-01

    Background/Aim. The most common urinary bladder tumors are superficial tumors. Due to their tension to relapse and progress towards deeper layers after surgical therapy, an adequate therapy significantly contributed to the improvement of the results of urinary bladder tumors treatment. Staging and gradus of the tumor, presence of the carcinoma in situ (CIS) or relapses significantly influenced the choice of the therapy. The aim of this study was to ascertain the effectiveness of the intravesi...

  8. UAS and DTS: Using Drones and Fiber Optics to Measure High Resolution Temperature of the Atmospheric Boundary Layer

    Science.gov (United States)

    Predosa, R. A.; Darricau, B.; Higgins, C. W.

    2015-12-01

    The atmospheric boundary layer (ABL) is the lowest part of the atmosphere that directly interacts with the planet's surface. The development of the ABL plays a vital role, as it affects the transport of atmospheric constituents such as air pollutants, water vapor, and greenhouse gases. Measurements of the processes in the ABL have been difficult due to the limitations in the spatial and temporal resolutions of the equipment as well as the height of the traditional flux tower. Recent advances in the unmanned aerial vehicle (UAV) and distributed temperature sensing (DTS) technologies have provided us with new tools to study the complex processes in ABL. We conducted a series of pioneering experiments in Eastern Oregon using a platform that combines UAV and DTS to collect data during morning and evening transitions in the ABL. The major components of this platform consists of a quad-copter, a DTS computer unit, and a set of customized fiber optic cables. A total of 75 flights were completed to investigate: (1) the capability of a duplexed fiber optic cable to reduce noise in the high spatial and temporal temperature measurements taken during the morning transition; (2) the possibility of using fiber optic cable as "wet bulb" thermometer to calculate relative humidity in the ABL at high spatial and temporal resolution. The preliminary results showed that using a fiber optic cable in a duplexed configuration with the UAV-DTS platform can effectively reduce noise level during the morning transition data collection. The customized "wet bulb" fiber optic cable is capable of providing information for the calculation of relative humidity in the ABL at unprecedented spatial and temporal resolutions. From this study, the UAV-DTS platform demonstrated great potential in collecting temperature data in the ABL and with the development of atmospheric sensor technologies, it will have more applications in the future.

  9. Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak

    Science.gov (United States)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1988-01-01

    The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

  10. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres

    CERN Document Server

    Sander, Andreas; Hainich, Rainer; Gímenez-García, Angel; Todt, Helge; Hamann, Wolf-Rainer

    2015-01-01

    CONTEXT: Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. AIMS: We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. METHODS: We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using...

  12. On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres

    Science.gov (United States)

    Sander, A.; Shenar, T.; Hainich, R.; Gímenez-García, A.; Todt, H.; Hamann, W.-R.

    2015-05-01

    Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims: We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods: We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results: Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates.

  13. Spatial and Temporal Variability of CO2 and CH4 Concentrations in the Atmospheric Surface Layer over West Siberia

    Science.gov (United States)

    Belan, Boris D.; Machida, Toshinobu; Sasakawa, Motoki; Davydov, Denis K.; Fofonov, Alexander V.; Krasnov, Oleg A.; Maksyutov, Shamil; Arshinov, Mikhail Yu.

    2015-04-01

    The investigation of greenhouse gas behavior in the atmosphere plays a key role in predicting the global changes of Earth's climate. In this connection, of particular importance is the study of the distribution of sources/sinks of trace gases in the atmospheric surface layer over the different regions of the globe. In order to fill a gap in the data on greenhouse gas concentrations in Russia, National Institute for Environmental Studies (NIES, Japan) and Institute of Atmospheric Optics (IAO SB RAS, Russia) established a network for GHG monitoring (JR-STATION, Japan-Russia Siberian Tall Tower Inland Observation Network). Gas analyzers and meteorological sensors were mounted at radio relay towers located in different regions of West Siberia. The checking equipment was placed in containers at the tower base. In the containers, the climatic parameters optimal for gas analyzer operation were maintained. The work on the network development started in 2001. Since at each of the sites the measurement duration could be different, in this paper we present the data of the greenhouse gas monitoring for eight sites which give the primary idea on the spatial distribution and temporal dynamics of CO2 and CH4 in the atmospheric surface layer over West Siberia. The analysis of the data showed that the average increase in concentration of carbon dioxide by results of our measurements in this territory increases within 1.95 - 2.53 ppm/year, depending on the area. The analysis of long-term data testifies about existence of growth of concentration of methane within 3.2 - 7.2 ppb / year. The presence of a distributed network of the sites operating in the monitoring regime makes it possible not only to investigate the temporal dynamics of CO2 and CH4 at each site and to determine the spatial differences between the concentrations by comparing the data, but also to plot the distribution charts for different moments of time. This work was supported by the Global Environment Research

  14. Observations of the atmospheric boundary layer height under marine upstream flow conditions at a coastal site

    DEFF Research Database (Denmark)

    Peña, Alfredo; Gryning, Sven-Erik; Hahmann, Andrea N.

    2013-01-01

    and an aerosol lidar reveal similar BLHs, but their agreement depends on the presence of clouds and the instrument signal, among others. BLHs derived by a threshold on the carrier-to-noise profiles of a wind lidar agree well with those derived by using a threshold on the backscatter profile of the ceilometer......We investigate several lidar-type instruments and methodologies for boundary layer height (BLH) estimation during 2 days at a coastal site for winds that experience marine upstream flow conditions. Wavelet and profile fitting procedures on the aerosol backscatter signals from a ceilometer...... and are used as reference for a 10 day BLH intercomparison. Furthermore, the BLHs from the aerosol analysis are comparable to those derived from wind speed and direction profiles from combined mast/wind lidar measurements. The BLH derived from simulations performed with the Weather Research and Forecasting...

  15. Thermal structure of the venus atmosphere in the middle cloud layer.

    Science.gov (United States)

    Linkin, V M; Kerzhanovich, V V; Lipatov, A N; Shurupov, A A; Seiff, A; Ragent, B; Young, R E; Ingersoll, A P; Crisp, D; Elson, L S; Preston, R A; Blamont, J E

    1986-03-21

    Thermal structure measurements obtained by the two VEGA balloons show the Venus middle cloud layer to be generally adiabatic. Temperatures measured by the two balloons at locations roughly symmetric about the equator differed by about 6.5 kelvins at a given pressure. The VEGA-2 temperatures were about 2.5 kelvins cooler and those of VEGA-1 about 4 kelvins warmer than temperatures measured by the Pioneer Venus Large Probe at these levels. Data taken by the VEGA-2 lander as it passed through the middle cloud agreed with those of the VEGA-2 balloon. Study of individual frames of the balloon data suggests the presence of multiple discrete air masses that are internally adiabatic but lie on slightly different adiabats. These adiabats, for a given balloon, can differ in temperature by as much as 1 kelvin at a given pressure. PMID:17748084

  16. Scaling Of Turbulence In The Atmospheric Surface-Layer: Which Anisotropy?

    International Nuclear Information System (INIS)

    This paper aims to provide an insight into the fundamental relationships between large and small scale wind velocity fluctuations within the boundary layer through careful analysis of measuring mast wind velocities. The measuring mast was in a wind farm on top of a mountain (with steep inclines of about 30°) on an island surrounded by the sea which meant the horizontal mean flow fluctuations were dominated by buoyancy forces and vertical shears at large scales (above 500m). Thus using a variety of methods including spectral, integrated spectral, integrated cospectral and multifractal analysis we were able to clearly dispel the relevance of 2D turbulence and give on the contrary some credence to the multifractal anisotropic model.

  17. Standard deviation of vertical two-point longitudinal velocity differences in the atmospheric boundary layer.

    Science.gov (United States)

    Fichtl, G. H.

    1971-01-01

    Statistical estimates of wind shear in the planetary boundary layer are important in the design of V/STOL aircraft, and for the design of the Space Shuttle. The data analyzed in this study consist of eleven sets of longitudinal turbulent velocity fluctuation time histories digitized at 0.2 sec intervals with approximately 18,000 data points per time history. The longitudinal velocity fluctuations were calculated with horizontal wind and direction data collected at the 18-, 30-, 60-, 90-, 120-, and 150-m levels. The data obtained confirm the result that Eulerian time spectra transformed to wave-number spectra with Taylor's frozen eddy hypothesis possess inertial-like behavior at wave-numbers well out of the inertial subrange.

  18. Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Carlé, Jon Eggert; Cruys-Bagger, N.;

    2005-01-01

    Large area polymer photovoltaic cells based on poly[(2-methoxy-5-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) and [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) were prepared. The lifetimes of the photovoltaic cells were studied in terms of the atmosphere, handling, electrode treatment......-life was found to depend on the presence of oxygen. We also discuss our findings of the short lifetimes for organic photovoltaics under AM1.5 illumination in the context of future applications. (c) 2004 Elsevier B.V. All rights reserved....... and depended on the presence of oxygen. By employing different barrier layers, we found the first half-life to be linked to the aluminium polymer interface and ascribe it to a photochemical reaction between the organic material and the reactive aluminium at the interface. The second and longer half...

  19. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    International Nuclear Information System (INIS)

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics

  20. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Science.gov (United States)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dpemissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  1. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment

    Science.gov (United States)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2015-03-01

    The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.

  2. 手掌部浅血管神经层与屈肌支持带关系的观测%Observation on the Relationship between the Layer of Superficial Vessels and Nerves and Flexor Retinaculum in Palm of Hand

    Institute of Scientific and Technical Information of China (English)

    杨开明; 王勇; 杨新文

    2000-01-01

    目的:为腕管松解术及掌中间隙引流术提供解剖学基础。方法:18例(男12、女6)36侧成人固定上肢标本上对手掌部屈肌支持带、正中神经、尺神经在腕掌部分支点和掌浅弓最高点与屈肌支持带下缘的距离以及尺动脉终末支与正中神经间距观测。结果:正中神经掌部分支点距屈肌支持带下缘9±3mm。尺神经掌部分支点距屈肌支持带下缘5±2mm。正中神经干与尺动脉终末支间距为10±2mm。结论:在手掌部掌长肌腱与第三指蹼尺侧缘连线尺侧1.0cm,腕横韧带下缘远侧2.5cm内确有无血管、神经的相对安全区。%Objective: To provide the anatomy basis for the carpal canal released and the middle palamar space drainaged. Methods: We observed the support points of the flexor retinacultm, median nerve and ulnar nerve in palm of hand, the distance between the top of superficial plamar arch and the low edge of flexor retinaculum, and the distance between the ulnar artery endness branch and median nerve in 18 cases of adult specimens (male 12,female 6) Results: The distance between median nerve ramis point in palm of hand and the low edge of flexor retinaculum was 9.0 ±+ 3.0 mm. The distance between ulnar nerve ramis point in palm of hand and the low edge of flexor retinaculum was 5.0±+ 2.0. The distance between median nerve trunk and ulnar artery endness branch was 10.0 + 2.0. Conclusions: There is a security related territory where is situated between long palmar muscle tendon and lunar interior of the third digit about 1.0 crm, distal 2.5 cm of flexor retinaculum lacking of vessels and nerves in the palm of hand.

  3. Activity of radon (222Rn) in the lower atmospheric surface layer of a typical rural site in south India

    Science.gov (United States)

    Kumar, K. Charan; Prasad, T. Rajendra; Ratnam, M. Venkat; Nagaraja, Kamsali

    2016-09-01

    Analysis of one year measurements of in situ radon (222Rn) and its progenies along with surface air temperature, relative humidity and pressure near to the Earth's surface has been carried out for the first time at the National Atmospheric Research Laboratory (NARL, 13.5∘N and 79.2∘E) located in a rural site in Gadanki, south India. The dataset was analysed to understand the behaviour of radon in relation to the surface air temperature and relative humidity at a rural site. It was observed that over a period of the 24 hours in a day, the activity of radon and its progenies reaches a peak in the morning hours followed by a remarkable decrease in the afternoon hours. Relatively, a higher concentration of radon was observed at NARL during fair weather days, and this can be attributed to the presence of rocky hills and dense vegetation surrounding the site. The high negative correlation between surface air temperature and activity of radon (R = - 0.70, on an annual scale) suggests that dynamical removal of radon due to increased vertical mixing is one of the most important controlling processes of the radon accumulation in the atmospheric surface layer. The annual averaged activity of radon was found to be 12.01±0.66 Bq m-3 and 4.25±0.18 Bq m-3 for its progenies, in the study period.

  4. Observations of high rates of NO2 – HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Prinn

    2009-01-01

    Full Text Available Nitrous acid (HONO plays a significant role in the atmosphere, especially in the polluted troposphere. Its photolysis after sunrise is an important source of hydroxyl free radicals (OH. Measurements of nitrous acid and other pollutants were carried out in the Kathmandu urban atmosphere during January–February 2003, contributing to the sparse knowledge of nitrous acid in South Asia. The results showed average nocturnal levels of HONO (1.7±0.8 ppbv, NO2 (17.9±10.2 ppbv, and PM10 (0.18±0.11 mg m−3 in urban air in Kathmandu. Surprisingly high ratios of chemically formed secondary [HONO] to [NO2] (up to 30% were found, which indicates unexpectedly efficient chemical conversion of NO2 to HONO in Kathmandu. The ratios of [HONO]/[NO2] at nights are much higher than previously reported values from measurements in urban air in Europe, North America and Asia. The influence of aerosol plumes, relative humidity, aerosol surface and ground reactive surface, temperature on NO2-HONO chemical conversion were discussed. The high humidity, strong and low inversion layer at night, and serious aerosol pollution burden may explain the particularly efficient conversion of NO2 to HONO.

  5. The Role of Large-Coherent-Eddy Transport in the Atmospheric Surface Layer Based on CASES-99 Observations

    Science.gov (United States)

    Sun, Jielun; Lenschow, Donald H.; LeMone, Margaret A.; Mahrt, Larry

    2016-07-01

    The analysis of momentum and heat fluxes from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99) field experiment is extended throughout the diurnal cycle following the investigation of nighttime turbulence by Sun et al. (J Atmos Sci 69:338-351, 2012). Based on the observations, limitations of Monin-Obukhov similarity theory (MOST) are examined in detail. The analysis suggests that strong turbulent mixing is dominated by relatively large coherent eddies that are not related to local vertical gradients as assumed in MOST. The HOckey-Stick Transition (HOST) hypothesis is developed to explain the generation of observed large coherent eddies over a finite depth and the contribution of these eddies to vertical variations of turbulence intensity and atmospheric stratification throughout the diurnal cycle. The HOST hypothesis emphasizes the connection between dominant turbulent eddies and turbulence generation scales, and the coupling between the turbulence kinetic energy and the turbulence potential energy within the turbulence generation layer in determining turbulence intensity. For turbulence generation directly influenced by the surface, the HOST hypothesis recognizes the role of the surface both in the vertical variation of momentum and heat fluxes and its boundary effect on the size of the dominant turbulence eddies.

  6. Activity of radon ($^{222}$Rn) in the lower atmospheric surface layer of a typical rural site in south India

    Indian Academy of Sciences (India)

    K Charan Kumar; T Rajendra Prasad; M Venkat Ratnam; Nagaraja Kamsali

    2016-10-01

    Analysis of one year measurements of in situ radon ($^{222}$Rn) and its progenies along with surface air temperature, relative humidity and pressure near to the Earth’s surface has been carried out for the first time at the National Atmospheric Research Laboratory (NARL, 13.5◦N and 79.2◦E) located in a rural site in Gadanki, south India. The dataset was analysed to understand the behaviour of radon inrelation to the surface air temperature and relative humidity at a rural site. It was observed that over a period of the 24 hours in a day, the activity of radon and its progenies reaches a peak in the morning hours followed by a remarkable decrease in the afternoon hours. Relatively, a higher concentration of radon was observed at NARL during fair weather days, and this can be attributed to the presence ofrocky hills and dense vegetation surrounding the site. The high negative correlation between surface air temperature and activity of radon (R = – 0.70, on an annual scale) suggests that dynamical removal of radon due to increased vertical mixing is one of the most important controlling processes of the radon accumulation in the atmospheric surface layer. The annual averaged activity of radon was found to be12.01±0.66 Bq m$^{−3}$ and 4.25±0.18 Bq m$^{−3}$ for its progenies, in the study period.

  7. Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.

    Science.gov (United States)

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2014-04-01

    High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.

  8. Superficial siderosis of the central nervous system due to brachial plexus injury: a case report

    International Nuclear Information System (INIS)

    Superficial siderosis can be caused by hemosiderin deposition o the leptomeninges and subpial layers of the neuro-axis due to recurrent subarachnoid haemorrhage. Probable intrathecal bleeding sites must be investigated. In ut t 50% of the patients the bleeding source may be identified and the progression of the disease can be interrupted. In this study, the authors present a case of superficial siderosis of the central nervous system developed two decades after a traumatic lesion of the brachial plexus.(author)

  9. A Numerical Study of Sea Breeze and Spatiotemporal Variation in the Coastal Atmospheric Boundary Layer at Hainan Island, China

    Science.gov (United States)

    Huang, Qian-Qian; Cai, Xu-Hui; Song, Yu; Kang, Ling

    2016-06-01

    Numerical simulations of sea breezes and the coastal atmospheric boundary layer (ABL) at Hainan Island, China during summer and winter are discussed. The different behaviour of sea breezes and the ABL on the leeward and windward sides of the island are examined, and it is found that offshore flows are more likely to create a strong sea-breeze signature, whereas the process of sea-breeze development under onshore flows is difficult to capture. At the location where the sea-breeze signal is remarkable, the height of the coastal ABL displays an abnormal decrease, corresponding to a transitional point from a continental ABL to a thermal internal boundary layer (TIBL) formed under sea-breeze conditions. This is corroborated by the sudden increase in the water vapour mixing ratio and/or wind speed, indicating the arrival of the sea breeze. Regarding the spatial distribution, the TIBL height decreases abruptly just ahead of the sea-breeze front, and above the cold air mass. When the sea-breeze front occurs with a raised head, a cold air mass is separated from the sea-breeze flow and penetrates inland. This separation is attributed to the interaction between the sea breeze and valley breeze, while the dry airflow entraining to the sea-breeze flow may also partially contribute to this air mass separation.

  10. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2010-06-01

    Full Text Available The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (φm and for temperature (φh using three different stability parameters, i.e., h/L(h at tree top, local z/L(z, and local bulk Richardson number (Ri, within a tall forest canopy in nighttime stable (indicated by h/L(h>0 conditions. Results suggest that the in-canopy φm can be described using the local Richardson number Ri. φm is found to increase linearly with Ri in the upper canopy layer for |Ri|<1. When local |Ri|>1, |φm| decreases with |Ri|, a result consistent for all levels of measurements within the canopy. When both local φh and local Ri are positive, i.e., local downward turbulent heat flux is consistent with local temperature gradient, local φh increases with local Ri when Ri<1 but does not change with Ri (or much more scattered when Ri>1. The relationship between local φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  11. Study on the atmospheric boundary layer and its influence on regional air quality over the Pearl River delta

    Directory of Open Access Journals (Sweden)

    M. Wu

    2013-03-01

    Full Text Available To study the structure of atmospheric boundary layer (ABL and its influence on regional air quality over the Pearl River delta (PRD, two ABL intensive observations were conducted at Panyu (urban station and Xinken (non-urban station, near estuary of PRD during October 2004 and July 2006, respectively. Based on the ABL intensive observation data analysis, the typical weather condition type associated with poor air quality over PRD could be summarized into two kinds: the warmed period before cold front (WPBCF and the subsidence period controlled by tropical cyclone (SPCTC. Two typical polluted cases (affected by WPBCF and SPCTC, respectively and one clean (not-polluted case were chosen for detail analysis. It was found that the continuously low or calm ground wind would lead to pollutant accumulation. The local circulation, such as sea–land breezes and heat–island circulation, played an important role in these polluted cases. The recirculation was significant in polluted cases; steady transport occurred in the clean case. Ventilation index (VI was quite different between polluted cases and the clean case: in WPBCF cases, the peak VI was from 184 to 3555 m2 s−1; on SPCTC days, the peak VI was from 1066 to 4363 m2 s−1; on the clean day, the peak VI was 10 885 m2 s−1 and much larger than all polluted cases. The 24-h average VI on polluted days was from 169 to 2858 m2 s−1 and also much smaller than that of the clean day. VI is a good reference index for pollution judgment. The peak mixing heights were smaller than 700 m in WPBCF cases, and were smaller than 800 m in SPCTC cases. During WPBCF polluted case, only surface inversion layer appeared. In the period of land breeze, surface inversion layer height was about 50 m, but in the period of sea breeze, surface inversion layer height would increase, and reach the maximum height, which was about 600 m. During SPCTC polluted case, there were several inversion layers that appeared at different

  12. Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2010-11-01

    Full Text Available The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm and for temperature (Φh. It uses three different stability parameters, i.e., h/L(h at tree top, local z/L(z, and the local bulk Richardson number (Ri, within a tall forest canopy in nighttime stable (indicated by h/L(h > 0 conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| < 1. When local |Ri| > 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri < 1. However, Φh does not change with Ri (or much more scattered when Ri > 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.

  13. Closing the Dimethyl Sulfide Budget in the Tropical Marine Boundary Layer during the Pacific Atmospheric Sulfur Experiment

    Directory of Open Access Journals (Sweden)

    S. A. Conley

    2009-08-01

    Full Text Available Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR C-130 near Christmas Island (2° N, 157° W during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE. In order to tightly constrain the scalar budget of DMS, fluxes were measured at various levels in the marine boundary layer (MBL from near the surface (30 m to the top of the mixed layer (500 m providing greater accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well known diurnal cycle, ranging from 50 pptv in the daytime to 110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data from within the MBL to estimate the mean gradients and trends. With this technique we consider the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for 7.3 ppt hr−1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt/hr. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g. reactive halogens. The observed ocean flux of DMS averaged 3.1 (±1.5μmol m−2 d−1, and generally decreased throughout the sunlit hours. The average entrainment flux at the top of the MBL was 2.5 μmol m−2 d−1; therefore the flux divergence term in the budget equation only contributed an average increase of 1.3 ppt hr−1 to the mean MBL mole fraction. Over the entire mission, the horizontal advection contribution to the overall budget was 0.2 ppt hr−1, indicating a mean atmospheric DMS gradient nearly

  14. Exploring atmospheric boundary layer characteristics in a severe SO2 episode in the north-eastern Adriatic

    Directory of Open Access Journals (Sweden)

    Z. B. Klaić

    2009-07-01

    Full Text Available Stable atmospheric conditions are often connected with the occurrence of high pollution episodes especially in urban or industrial areas. In this work we investigate a severe SO2 episode observed on 3–5 February 2002 in a coastal industrial town of Rijeka, Croatia, where very high daily mean concentrations (up to 353.5 μg m−3 were measured. The episode occurred under high air pressure conditions, which were accompanied with a fog and low wind speeds. Three air quality models (50-km EMEP model, 10-km EMEP4HR model and 1-km CAMx model were used to simulate SO2 concentrations fields and to evaluate the relative contribution of distant and local pollution sources to observed concentrations. Results suggest that the episode was caused predominately by local sources. Furthermore, using three-dimensional, higher-order turbulence closure mesoscale meteorological model (WRF, the wind regimes and thermo-dynamical structure of the lower troposphere above the greater Rijeka area (GRA were examined in detail. Modelled atmospheric fields suggest several factors whose simultaneous acting was responsible for elevated SO2 concentrations. Established small scale wind directions supported the transport of air from nearby industrial areas with major pollution sources towards Rijeka. This transport was associated with strong, ground-based temperature inversion and correspondingly, very low mixing layer (at most up to about 140 m. Additionally, the surface winds in Rijeka were light or almost calm thus, preventing ventilation of polluted air. Finally, a vertical circulation cell formed between the mainland and a nearby island, supported the air subsidence and the increase of static stability.

  15. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2007-10-01

    Full Text Available Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel−1 by number for non-volatile particles and 174±43 mg (kg fuel−1 by mass for Black Carbon (BC. Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  16. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2008-05-01

    Full Text Available Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel−1 by number for non-volatile particles and 174±43 mg (kg fuel−1 by mass for Black Carbon (BC. Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  17. Atmospheric boundary layer characteristics over the Pearl River Delta, China during summer 2006: measurement and model results

    Directory of Open Access Journals (Sweden)

    S. J. Fan

    2011-02-01

    Full Text Available Atmospheric conditions are often connected with the occurrence of high pollution episodes especially in urban areas. As part of the PRIDE-PRD2006 intensive campaign, atmospheric boundary layer (ABL measurements were carried out at Qingyuan, Panyu and Xinken in the Pearl River Delta (PRD from 1 July to 30 July of 2006. It was found that in summer, the surface winds in PRD are more controlled by the south, and there usually is vertical wind shear at the height of 800 m or so, therefore, PRD is often influenced by the tropical cyclone/typhoon. The subsidence and precipitation from a tropical cyclone will affect the air quality of PRD. Under the subsidence, the wind speed in ABL and the height of ABL will decrease and result in high level concentrations. When the background wind speed is small or calm, the wind profile at Panyu and Xinken change dramatically with height, which is perhaps caused by the local circulations, such as the sea land breeze. For more understanding about the ABL of PRD, the simulations by the WRF mesoscale model were used to analyse the ABL characteristics in PRD. From three kinds of weather condition simulations (subsidence days, rainy days and sunny days by WRF model, it was found that the simulated temperature, wind fields in these three cases were moderately consistent with the measurements. The results show that the diurnal variation of ABL in subsidence days and sunny days are obvious, but the diurnal variation of ABL on rainy days is not obvious. The ABL is obviously affected by the local circulation and the features of ABL are different in various stations. A simulation focus on high pollution episode during the subsidence days from 12–15 July 2006, occurred under high pressure conditions, accompanied by a tropical cyclone "Bilis". Comparing the simulated vertical wind fields and temperature structure with the ABL measurements at Xinken, Panyu and Qingyuan station, it was found that, the modelled and measured

  18. Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment

    NARCIS (Netherlands)

    Svensson, G.; Holtslag, A.A.M.; Kumar, V.; Mauritsen, T.; Steeneveld, G.J.; Angevine, W.M.; Bazile, E.; Beljaars, A.; Bruijn, de E.I.F.; Cheng, A.

    2011-01-01

    We present the main results from the second model intercomparison within the GEWEX (Global Energy andWater cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today’s numerical weather prediction and climate models for operational and r

  19. Implementation of non-local boundary layer schemes in the Regional Atmospheric Modeling System and its impact on simulated mesoscale circulations

    NARCIS (Netherlands)

    Gómez, I.; Ronda, R.J.; Caselles, V.; Estrela, M.J.

    2016-01-01

    This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU)

  20. Passive Effluent Diffusion in a Convective Atmospheric Boundary Layer: An Airborne Approach to Locating Sources and Estimating Their Emission Rates

    Science.gov (United States)

    Suard, Maxime

    We studied the near field dispersion of natural gas plumes leaking from transmission lines and diffusing in a convective Atmospheric Boundary Layer (ABL), with the intent of providing an aerial system of leak detection and pinpointing, as well as quantitative leak rate estimation. We used high frequency measurements of methane and ethane concentrations on a fixed wing aircraft using high rate spectroscopic gas concentration measurements. We looked for characteristics of the effluent concentration field which can be related to the distance from the effluent source, and developed an empirical approach to effluent source position estimation from airborne effluent concentration measurements. From a mass-balance approach we developed a practical method of effluent leak rate estimation based on airborne effluent concentration measurements. Since gathering experimental data was costly and time-expensive, Large Eddy Simulation (LES) results were also investigated. Results showed that analysis of effluent concentration variability is likely to provide information about the position of the effluent source. The developed leak rate estimation method provided encouraging results showing that such an approach is able to yield relatively accurate leak rate estimates. LES results proved to be very useful as they helped to provide guidelines for experiments as well as to deepen our understanding of the diffusion dynamics of turbulent effluent plumes.

  1. Influence of the voltage waveform during nanocomposite layer deposition by aerosol-assisted atmospheric pressure Townsend discharge

    Science.gov (United States)

    Profili, J.; Levasseur, O.; Naudé, N.; Chaneac, C.; Stafford, L.; Gherardi, N.

    2016-08-01

    This work examines the growth dynamics of TiO2-SiO2 nanocomposite coatings in plane-to-plane Dielectric Barrier Discharges (DBDs) at atmospheric pressure operated in a Townsend regime using nebulized TiO2 colloidal suspension in hexamethyldisiloxane as the growth precursors. For low-frequency (LF) sinusoidal voltages applied to the DBD cell, with voltage amplitudes lower than the one required for discharge breakdown, Scanning Electron Microscopy of silicon substrates placed on the bottom DBD electrode reveals significant deposition of TiO2 nanoparticles (NPs) close to the discharge entrance. On the other hand, at higher frequencies (HF), the number of TiO2 NPs deposited strongly decreases due to their "trapping" in the oscillating voltage and their transport along the gas flow lines. Based on these findings, a combined LF-HF voltage waveform is proposed and used to achieve significant and spatially uniform deposition of TiO2 NPs across the whole substrate surface. For higher voltage amplitudes, in the presence of hexamethyldisiloxane and nitrous oxide for plasma-enhanced chemical vapor deposition of inorganic layers, it is found that TiO2 NPs become fully embedded into a silica-like matrix. Similar Raman spectra are obtained for as-prepared TiO2 NPs and for nanocomposite TiO2-SiO2 coating, suggesting that plasma exposure does not significantly alter the crystalline structure of the TiO2 NPs injected into the discharge.

  2. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    Science.gov (United States)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  3. Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA

    Directory of Open Access Journals (Sweden)

    N. Wildmann

    2013-08-01

    Full Text Available Two types of temperature sensors are designed and tested: a thermocouple and a fine wire resistance thermometer. The intention of this study is to figure out which kind of measurement principle is in general more suited for atmospheric boundary layer meteorology with small remotely piloted aircraft (RPA. The sensors are calibrated in a NIST traceable climate chamber and validated in flight against tower measurements, radiosondes and remote sensing. The sensors have a measurement range of at least −10–50 °C, an absolute RMS error of less than ±0.2 K which is stable over the lifetime of the sensors, and a resolution of about 0.01 K. Both devices are tested for typical errors like radiation error and adiabatic heating, as well as for their dynamic response. Spectral resolutions of up to approximately 10 Hz can be obtained with both sensors, which makes them suitable for turbulence measurement. Their low cost of less than 100 EUR in pure hardware is a major advantage for research with small RPA.

  4. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region.

    Science.gov (United States)

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Wang, Dongdong

    2015-01-01

    The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late.

  5. Chemical relations between atmospheric aerosols, deposition and stone decay layers on historic buildings at the mediterranean coast

    Science.gov (United States)

    Torfs, K.; Van Grieken, R.

    To evaluate the effects of the environment on weathering of historical buildings in the Mediterranean Basin, an elaborate study has been carried out at four monuments, with specific interest directed on the action of air pollution and marine salts. The composition of the atmosphere around the monuments has been investigated by monitoring the aerosols and the total deposition. These results are combined with the stone decay phenomena to interpret the deterioration at the respective monuments. In Eleusis, Greece, a highly industrialized area, high concentrations of heavy metals and sulphate are found in the aerosols and deposition and in the decay layers of the stone, while the marine influence is obscured, in spite of its location close to the sea. In Malta and in Cadiz (Spain), the influence of the sea dominates in the stone weathering process. In Bari (Italy), next to the effects of marine aerosols on the stone decay inside and outside the building, high concentrations of sulphate are observed on the outside stones. The aerosols and depositions reflect a relatively small influence of anthropogenic derived elements; this points out the action of gaseous SO 2 on the stones.

  6. Tedlar bag sampling technique for vertical profiling of carbon dioxide through the atmospheric boundary layer with high precision and accuracy.

    Science.gov (United States)

    Schulz, Kristen; Jensen, Michael L; Balsley, Ben B; Davis, Kenneth; Birks, John W

    2004-07-01

    Carbon dioxide is the most important greenhouse gas other than water vapor, and its modulation by the biosphere is of fundamental importance to our understanding of global climate change. We have developed a new technique for vertical profiling of CO2 and meteorological parameters through the atmospheric boundary layer and well into the free troposphere. Vertical profiling of CO2 mixing ratios allows estimates of landscape-scale fluxes characteristic of approximately100 km2 of an ecosystem. The method makes use of a powered parachute as a platform and a new Tedlar bag air sampling technique. Air samples are returned to the ground where measurements of CO2 mixing ratios are made with high precision (< or =0.1%) and accuracy (< or =0.1%) using a conventional nondispersive infrared analyzer. Laboratory studies are described that characterize the accuracy and precision of the bag sampling technique and that measure the diffusion coefficient of CO2 through the Tedlar bag wall. The technique has been applied in field studies in the proximity of two AmeriFlux sites, and results are compared with tower measurements of CO2. PMID:15296321

  7. Flowing atmospheric pressure afterglow combined with laser ablation for direct analysis of compounds separated by thin-layer chromatography.

    Science.gov (United States)

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2016-01-01

    A thin-layer chromatography-mass spectrometry (TLC-MS) setup for characterization of low molecular weight compounds separated on standard TLC plates has been constructed. This new approach successfully combines TLC separation, laser ablation, and ionization using flowing atmospheric pressure afterglow (FAPA) source. For the laser ablation, a low-priced 445-nm continuous-wave diode laser pointer, with a power of 1 W, was used. The combination of the simple, low-budget laser pointer and the FAPA ion source has made this experimental arrangement broadly available, also for small laboratories. The approach was successfully applied for the characterization of low molecular weight compounds separated on TLC plates, such as a mixture of pyrazole derivatives, alkaloids (nicotine and sparteine), and an extract from a drug tablet consisting of paracetamol, propyphenazone, and caffeine. The laser pointer used was capable of ablating organic compounds without the need of application of any additional substances (matrices, staining, etc.) on the TLC spots. The detection limit of the proposed method was estimated to be 35 ng/cm(2) of a pyrazole derivative.

  8. Flowing atmospheric pressure afterglow combined with laser ablation for direct analysis of compounds separated by thin-layer chromatography.

    Science.gov (United States)

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2016-01-01

    A thin-layer chromatography-mass spectrometry (TLC-MS) setup for characterization of low molecular weight compounds separated on standard TLC plates has been constructed. This new approach successfully combines TLC separation, laser ablation, and ionization using flowing atmospheric pressure afterglow (FAPA) source. For the laser ablation, a low-priced 445-nm continuous-wave diode laser pointer, with a power of 1 W, was used. The combination of the simple, low-budget laser pointer and the FAPA ion source has made this experimental arrangement broadly available, also for small laboratories. The approach was successfully applied for the characterization of low molecular weight compounds separated on TLC plates, such as a mixture of pyrazole derivatives, alkaloids (nicotine and sparteine), and an extract from a drug tablet consisting of paracetamol, propyphenazone, and caffeine. The laser pointer used was capable of ablating organic compounds without the need of application of any additional substances (matrices, staining, etc.) on the TLC spots. The detection limit of the proposed method was estimated to be 35 ng/cm(2) of a pyrazole derivative. PMID:26563110

  9. DETERMINATION OF SUPERFICIAL ABSORBED DOSE FROM EXTERNAL EXPOSURE OF WEAKLY PENETRATING RADIATIONS

    Institute of Scientific and Technical Information of China (English)

    陈丽姝

    1994-01-01

    The methods of determining the superficial absorbed dose distributions in a water phantom by means of the experiments and available theories have been reported.The distributions of beta dose were measured by an extrapolation ionization chamber at definite depthes corresponding to some superficial organs and tissues such as the radiosensitive layer of the skin,cornea,sclera,anterior chamber and lens of eyeball.The ratios among superficial absorbed dose D(0.07) and average absorbed doses at the depthes 1,2,3,4,5 and 6mm are also obtained with Cross's methods.They can be used for confining the deterministic effects of some superficial tissues and organs such as the skin and the components of eyeball for weakly penetrating radiations.

  10. Evaluation of the atmospheric boundary layer schemes in the mesoscale models WRF and RAMS using scintillometry and in situ observations at Cabauw

    Science.gov (United States)

    Steeneveld, Gj; Tolk, Lf

    2009-09-01

    Limited area models are widely used for high resolution weather forecasting and atmospheric research. These models also provide the meteorological input for air quality forecasting and for inverse modeling studies, e.g. for identification of CO2 sources and sinks. The success of these applications depends on the accuracy of the provided meteorology, especially in the atmospheric boundary layer and close to the surface. We evaluate the atmospheric boundary layer schemes in the mesoscale models WRF and RAMS for two contrasting apparent golden days (i.e. calm and windy) in The Netherlands, for both grassland and forest sites. The windy case is exclusive because of a large humidity jump between the boundary layer and the free atmosphere, and is therefore particularly interesting to study the representation of entrainment. Also, the influence of different boundary conditions will be assessed. The model intercomparison reveals that radiation components are estimated reasonably well by both models. Both models forecast the latent heat flux correctly, but relatively large differences occur for sensible heat flux and boundary layer height. Observations of the PBL potential temperature and humidity suggest other optimal settings for the energy flux model than the surface flux observations. Standard RAMS energy fluxes return a cold bias in the PBL. WRF and RAMS with increased Bowen ratios, capture the atmospheric temperature correctly but overestimate the Bowen ratio. The uncertainty in the surface energy fluxes is reflected in height of the PBL, which also differs substantially between the two models. Note that our model results appear insensitive to the choice of the initial and boundary conditions (ECMWF or NCEP). Thus, we find that the observed surface sensible heat flux cannot explain the boundary layer growth and energy content during the day. Therefore, a further discussion of both the observed and modeled terms of the heat budget equation is required to understand the

  11. RAMS sensitivity to mesh resolution in large eddy simulation of the neutral and convective atmospheric boundary layer

    Science.gov (United States)

    Ercolani, Giulia; Gorlé, Catherine; Corbari, Chiara; Mancini, Marco

    2014-05-01

    Large Eddy Simulation (LES) is a computational fluid dynamic technique that has been extensively used to reproduce turbulence in the Atmospheric Boundary Layer (ABL). Most LES applications to ABL modelling deal with idealized regimes, particularly suited for the verification of simulation results and consisting in homogeneous surface properties, prescribed fluxes at the surface and periodic lateral boundary conditions. In recent years interest has grown around the possibility of using LES as a tool to study ABL turbulence in more realistic situations, i.e. avoiding periodic lateral boundary conditions and coupling LES with a land surface model that dynamically computes heat and moisture fluxes at the surface. One appealing alternative to periodic lateral boundary conditions seems to be grid nesting, that should make LES a suitable tool to reproduce real meteorological flows over complex terrain at the microscale. In this framework Numerical Weather Prediction Limited Area Models (NWP-LAMs) appear to be particularly suitable to perform LES of the ABL in realistic conditions because of both i) their capability of nesting, ii) the presence of one or more land surface model coupled with the equations of motion. The use of NWP-LAMs at the microscale is increasing, but the fact that NWP-LAMs are built to work at the mesoscale has to be taken into account. Consequently the evaluation of their performances at the microscale in idealized regimes should be the first step for their use in more complex simulations. The Regional Atmospheric Modelling System (RAMS) is one of the most popular and used NWP-LAMs, and its performances in LES of a ABL in both real and idealized conditions have been evaluated in several studies. This work aims at assessing the impact of mesh resolution on the performances of RAMS-LES in the two opposite idealized regimes of neutral and convective atmospheric boundary layer, for which the turbulent statistics and flow structures are well known. For

  12. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, K A [Univ. of California, Berkeley, CA (United States)

    2010-05-12

    use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

  13. Superficial urinary bladder tumors treatment results: A 10-year experience

    Directory of Open Access Journals (Sweden)

    Stanković Jablan

    2007-01-01

    Full Text Available Background/Aim. The most common urinary bladder tumors are superficial tumors. Due to their tension to relapse and progress towards deeper layers after surgical therapy, an adequate therapy significantly contributed to the improvement of the results of urinary bladder tumors treatment. Staging and gradus of the tumor, presence of the carcinoma in situ (CIS or relapses significantly influenced the choice of the therapy. The aim of this study was to ascertain the effectiveness of the intravesicelly applied BCG (Bacille Colmette - Guerin vaccine or chemiotherapy in the prevention of the relapses and further progression of superficial urinary bladder tumors. Methods. All of the diagnosed superficial tumors of bladder were removed by transurethral resection (TUR. After receiving the patohistological finding they were subjected to adjuvant therapy, immune BCG vaccine or chemiotherapy (epirubicin, doxorubicin, mitomycin-C. The third group did not accept adjuvant therapy, but had regularly scheduled cystoscopic controls. The appearance of relapses, progression of stage and grades of the tumor, as well as possible unwanted effects of adjuvant therapy were registered. Results. The applied immunotherapy (BCG influenced decreased tumor relapses (7% and statistically important difference between patients who had taken adjuvant chemotherapy (relapses 18.4% and those without this therapy was acknowledged. Grades of tumor did not show statistically significant difference on tumor relapse. A significantly longer period of time in the appearance of tumor relapse after BCG (29.33 months, had significant importance comparing to chemio (9.44 months or non-taken adjuvant therapy (9.84 months. Very small number of unwanted effects suggested an obligatory undertaking adjuvant therapy after TUR of superficial tumors. Conclusion. A significant decrease of relapses as well as avoidance of further progression of urinary bladder tumors, has introduced adjuvant therapy in

  14. Treatment of superficial mycoses: review - part II*

    OpenAIRE

    Dias, Maria Fernanda Reis Gavazzoni; Bernardes-Filho, Fred; Quaresma-Santos, Maria Victória Pinto; Amorim, Adriana Gutstein da Fonseca; Schechtman, Regina Casz; Azulay, David Rubem

    2013-01-01

    Superficial fungal infections of the hair, skin and nails are a major cause of morbidity in the world. Choosing the right treatment is not always simple because of the possibility of drug interactions and side effects. The first part of the article discusses the main treatments for superficial mycoses - keratophytoses, dermatophytosis, candidiasis, with a practical approach to the most commonly-used topical and systemic drugs , referring also to their dosage and duration of use. Promising new...

  15. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  16. Contrasting atmospheric boundary layer chemistry of methylhydroperoxide (CH3OOH and hydrogen peroxide (H2O2 above polar snow

    Directory of Open Access Journals (Sweden)

    D. K. Friel

    2009-05-01

    Full Text Available Atmospheric hydroperoxides (ROOH were measured at Summit, Greenland (72.97° N, 38.77° W in summer 2003 (SUM03 and spring 2004 (SUM04 and South Pole in December 2003 (SP03. The two dominant hydroperoxides were H2O2 and CH3OOH (from here on MHP with average (±1σ mixing ratios of 1448 (±688 pptv, 204 (±162 and 278 (±67 for H2O2 and 578 (±377 pptv, 139 (±101 pptv and 138 (±89 pptv for MHP, respectively. In early spring, MHP dominated the ROOH budget and showed night time maxima and daytime minima, out of phase with the diurnal cycle of H2O2, suggesting that the organic peroxide is controlled by photochemistry, while H2O2 is largely influenced by temperature driven exchange between the atmosphere and snow. Highly constrained photochemical box model runs yielded median ratios between modeled and observed MHP of 52%, 148% and 3% for SUM03, SUM04 and SP03, respectively. At Summit firn air measurements and model calculations suggest a daytime sink of MHP in the upper snow pack, which decreases in strength through the spring season into the summer. Up to 50% of the estimated sink rates of 1–5×1011 molecules m−3 s−1 equivalent to 24–96 pptv h−1 can be explained by photolysis and reaction with the OH radical in firn air and in the quasi-liquid layer on snow grains. Rapid processing of MHP in surface snow is expected to contribute significantly to a photochemical snow pack source of formaldehyde (CH2O. Conversely, summer levels of MHP at South Pole are inconsistent with the prevailing high NO concentrations, and cannot be explained currently by known photochemical precursors or transport, thus suggesting a missing source. Simultaneous measurements of H2O2, MHP and CH2O allow to constrain the NO background today and potentially also in the past using ice cores, although it seems less likely that MHP is preserved in firn and ice.

  17. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: measurement and model results

    Directory of Open Access Journals (Sweden)

    S. J. Fan

    2011-07-01

    Full Text Available As part of the PRIDE-PRD2006 intensive campaign, atmospheric boundary layer (ABL measurements were performed in Qingyuan, Panyu, and Xinken over the Pearl River Delta (PRD on 1–30 July 2006. During the summer, the surface winds over the PRD are generally controlled by the south, usually with vertical wind shear at a height of approximately 800 m. Subsidence and precipitation from a tropical cyclone affects the air quality of the PRD. Under subsidence, wind speed in the ABL and the height of the ABL decrease and result in high-level concentrations. When the background wind speed is small or calm, the wind profile in Panyu and Xinken changes dramatically with height, which is perhaps caused by local circulation, such as sea-land breezes. To better understand the ABL of the PRD, simulations that used the Weather Research and Forecasting (WRF mesoscale model were utilized to analyze the ABL characteristics over the PRD. Based on three types of weather condition simulations (i.e., subsidence days, rainy days, and sunny days, the WRF model revealed that the simulated temperature and wind fields in these three cases were moderately consistent with the measurements. The results showed that diurnal variations of the ABL height on subsidence days and sunny days were obvious, but diurnal variations of the ABL height on rainy days were not apparent. The ABL is obviously affected by local circulation, and the ABL features are different at various stations. A simulation focused on a high pollution episode during the subsidence days on 12–15 July 2006, occurred under high-pressure conditions, accompanied by the tropical cyclone "Bilis". A comparison of the simulated vertical wind fields and temperature structure with the ABL measurements at Xinken, Panyu, and Qingyuan stations found that the modeled and measured atmospheric fields revealed two different types of ABL characteristics over the PRD. When the surface winds over the PRD were light or nearly calm

  18. Contrasting atmospheric boundary layer chemistry of methylhydroperoxide (CH3OOH and hydrogen peroxide (H2O2 above polar snow

    Directory of Open Access Journals (Sweden)

    D. K. Friel

    2009-01-01

    Full Text Available Atmospheric hydroperoxides (ROOH were measured at Summit, Greenland (72.97° N, 38.77° W in summer 2003 (SUM03 and spring 2004 (SUM04 and South Pole in December 2003 (SP03. The two dominant hydroperoxides were H2O2 and CH3OOH (from here on MHP with average(±1σ mixing ratios of 1448(±688 pptv, 204(±162 and 278(±67 for H2O2 and 578(±377 pptv, 139(±101 pptv and 138(±89 pptv for MHP, respectively. In early spring, MHP dominated the ROOH budget and showed night time maxima and daytime minima, out of phase with the diurnal cycle of H2O2, suggesting that the organic peroxide is controlled by photochemistry, while H2O2 is largely influenced by temperature driven exchange between the atmosphere and snow. Highly constrained photochemical box model runs yielded median ratios between modeled and observed MHP of 52%, 148% and 3% for SUM03, SUM04 and SP03, respectively. At Summit firn air measurements and model calculations suggest a daytime sink of MHP in the upper snow pack, which decreases in strength through the spring season into the summer. Up to 50% of the estimated sink rates of 1–5×1011 molecules m−3 s−1 equivalent to 24–96 pptv h−1 can be explained by photolysis and reaction with the OH radical in firn air and in the quasi-liquid layer on snow grains. Rapid processing of MHP in surface snow is expected to contribute significantly to a photochemical snow pack source of formaldehyde (CH2O. Conversely, summer levels of MHP at South Pole are inconsistent with the prevailing high NO concentrations, and cannot be explained currently by known photochemical precursors or transport, thus suggesting a missing source. Simultaneous measurements of H2O2, MHP and CH2O allow to constrain the NO background today and potentially also in the past using ice cores, although it seems less likely that MHP is preserved in firn and ice.

  19. Gross anatomy of superficial fascia and future localised fat deposit areas of the abdomen in foetus

    Directory of Open Access Journals (Sweden)

    Pramod Kumar

    2013-01-01

    Full Text Available Background: The development and popularity of body contouring procedures such as liposuction and abdominoplasty has renewed interest in the anatomy of the superficial fascia and subcutaneous fat deposits of the abdomen. The study of anatomy of fascia and fetal adipose tissue was proposed as it may be of value in understanding the possible programing of prevention of obesity. Objectives: The present study was undertaken to understand the gross anatomy of superficial fascia of abdomen and to study the gross anatomy of future localized fat deposits (LFDs area of abdomen in fetus. Materials and Methods: Four fetus (two male & two female of four month of intrauterine life were dissected. Attachments & layers of superficial fascia and future subcutaneous fat deposit area of upper and lower abdomen were noted. Results: Superficial fascia of the abdomen was multi layered in mid line and number of layers reduced laterally as in adult. The future abdominal LFD (localized fat deposits area in fetus shows brownish-white blubbary tissue without well-defined adult fat lobules. Conclusion: The attachment and gross anatomy of superficial fascia of the fetus was similar to that in adults. The future LFD areas showed brownish white blubbary tissue with ill-defined fat lobules.

  20. Atmospheric spatial atomic layer deposition of Zn(O,S) buffer layer for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Frijters, C.H.; Poodt, P.; Illeberi, A.

    2016-01-01

    Zinc oxysulfide has been grown by spatial atomic layer deposition (S-ALD) and successfully applied as buffer layer in Cu(In, Ga)Se2 (CIGS) solar cells. S-ALD combines high deposition rates (up to nm/s) with the advantages of conventional ALD, i.e. excellent control of film composition and superior u

  1. Impact of atmospheric forcing on heat content variability in the sub-surface layer in the Japan/East Sea, 1948-2009

    Science.gov (United States)

    Stepanov, Dmitry; Gusev, Anatoly; Diansky, Nikolay

    2016-04-01

    Based on numerical simulations the study investigates impact of atmospheric forcing on heat content variability of the sub-surface layer in Japan/East Sea (JES), 1948-2009. We developed a model configuration based on a INMOM model and atmospheric forcing extracted from the CORE phase II experiment dataset 1948-2009, which enables to assess impact of only atmospheric forcing on heat content variability of the sub-surface layer of the JES. An analysis of kinetic energy (KE) and total heat content (THC) in the JES obtained from our numerical simulations showed that the simulated circulation of the JES is being quasi-steady state. It was found that the year-mean KE variations obtained from our numerical simulations are similar those extracted from the SODA reanalysis. Comparison of the simulated THC and that extracted from the SODA reanalysis showed significant consistence between them. An analysis of numerical simulations showed that the simulated circulation structure is very similar that obtained from the PALACE floats in the intermediate and abyssal layers in the JES. Using empirical orthogonal function analysis we studied spatial-temporal variability of the heat content of the sub-surface layer in the JES. Based on comparison of the simulated heat content variations with those obtained from natural observations an assessment of the atmospheric forcing impact on the heat content variability was obtained. Using singular value decomposition analysis we considered relationships between the heat content variability and wind stress curl as well as sensible heat flux in winter. It was established the major role of sensible heat flux in decadal variability of the heat content of the sub-surface layer in the JES. The research was supported by the Russian Foundation for Basic Research (grant N 14-05-00255) and the Council on the Russian Federation President Grants (grant N MK-3241.2015.5)

  2. Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice in winter

    Directory of Open Access Journals (Sweden)

    Marius O. Jonassen

    2015-10-01

    Full Text Available The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO, a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO's high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice.

  3. The Impact of Upstream Flow on the Atmospheric Boundary Layer in a Valley on a Mountainous Island

    Science.gov (United States)

    Adler, Bianca; Kalthoff, Norbert

    2016-03-01

    Comprehensive measurements on the mountainous island of Corsica were used to investigate how the mountain atmospheric boundary layer (mountain ABL) in a valley downstream of the main mountain ridge was influenced by the upstream flow. The data used were mainly collected with the mobile observation platform KITcube during the first special observation period of the Hydrological cycle in the Mediterranean Experiment (HyMeX) in 2012 and were based on various in situ, remote sensing and aircraft measurements. Two days in autumn 2012 were analyzed in detail. On these days the mountain ABL evolution was a result of convection and thermally-driven circulations as well as terrain-induced dynamically-driven flows. During periods when dynamically-driven flows were dominant, warm and dry air from aloft with a large-scale westerly wind component was transported downwards into the valley. On one day, these flows controlled the mountain ABL characteristics in a large section of the valley for several hours, while on the other day their impact was observed in a smaller section of the valley for about 1 h only. To explain the observations we considered a theoretical concept based on uniform upstream stratification and wind speed, and calculated the non-dimensional mountain height and the horizontal aspect ratio of the barrier to relate the existing conditions to diagnosed regimes of stratified flow past a ridge. On both days, wave breaking, flow splitting and lee vortices were likely to occur. Besides the upstream conditions, a reduction of stability in the valley seemed to be important for the downward transport to reach the ground. The spatio-temporal structure of such a mountain ABL over complex terrain, which was affected by various interacting flows, differed a lot from that of the classical ABL over homogeneous, flat terrain and it is stressed that the traditional ABL definitions need to be revised when applying them to complex terrain.

  4. Effect of superficial oxides on corrosion of steel reinforcement embedded in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Mendoza, J. (Univ. Autonoma de Campeche (Mexico). Programa de Corrosion del Golfo de Mexico); Flores, J.M. (Inst. Mexicano del Petroleo, Mexico City (Mexico)); Castillo, U.C.

    1994-11-01

    The effect of superficial coverage with different iron oxides on the general corrosion resistance of steel embedded in concrete was investigated. Electrochemical corrosion rate and potential measurements were made of rebars that had a bare surface (polished), an atmospherically rusted (hematite [Fe[sub 2]O[sub 3

  5. Large-eddy simulation of the atmospheric boundary layer: Influence of unsteady forcing, baroclinicity, inversion strength and stability on the wind profile

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard

    above the atmospheric surface layer. Continuous and detailed measurements of mean winds and turbulence above the surface layer are expensive and difficult to obtain. Computational fluid dynamics modelling of the atmospheric flow can be an attractive alternative or supplement to field experiments...... of using LES more directly in applications such as short-term forecasting of the turbulent flow at e.g. wind farm sites is also considered. Two case studies based on measurements from the rural site of Høvsøre, Denmark and a suburban site in Hamburg, Germany demonstrate the need for accurate specification...... facilitate the formation of a super-geostrophic jet near the top of the ABL. It is considered to be a rare phenomena in the real-world ABL, and is not accounted for by the analytical models of the wind shear included in this study. It is furthermore shown that the considered wind profile model can...

  6. Description and implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

    Science.gov (United States)

    Janssen, R. H. H.; Pozzer, A.

    2015-03-01

    We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. This submodel is embedded in a new MESSy base model (VERTICO), which represents a single atmospheric column. With the implementation of MXL in MESSy, MXL can be used in combination with other MESSy submodels that represent processes related to atmospheric chemistry. For instance, the coupling of MXL with more advanced modules for gas-phase chemistry (such as the Mainz Isoprene Mechanism 2 (MIM2)), emissions, dry deposition and organic aerosol formation than in previous versions of the MXL code is possible. Since MXL is now integrated in the MESSy framework, it can take advantage of future developments of this framework, such as the inclusion of new process submodels. The coupling of MXL with submodels that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL) yields a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

  7. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  8. The use of kite observations to study air-sea interaction-controlled atmospheric surface layer profiles during the red experiment

    OpenAIRE

    DAVIDSON, KENNETH L.; Guest, Peter S.; Mabey, Deborah L.; Frederickson, Paul A.; Anderson, Kenneth D.

    2003-01-01

    The Roughness and Evaporation Duct (RED) experiment was designed to relate the effect of atmospheric boundary layer (ABL) features as well as ocean surface roughness to near-surface high frequency electromagnetic propagation. For this, ABL and ocean surface data, as well as propagation data, were collected at mid-path locations in August and September 2001 off the windward coast of Oahu, Hawaii. The Naval Postgraduate School (NPS) and SPAWAR Systems Center, San Diego (SSC-SD) performed collab...

  9. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  10. Ångström coefficient as an indicator of the atmospheric aerosol type for a well-mixed atmospheric boundary layer : Part 1: Model development

    NARCIS (Netherlands)

    Kuśmierczyk-Michulec, J.T.

    2009-01-01

    The physical and optical properties of an atmospheric aerosol mixture depend on a number of factors. The relative humidity influences the size of hydroscopic particles and the effective radius of an aerosol mixture. In consequence, values of the aerosol extinction, the aerosol optical thickness and

  11. Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere

    Science.gov (United States)

    Chunchuzov, I.; Kulichkov, S.; Perepelkin, V.; Popov, O.; Firstov, P.; Assink, J. D.; Marchetti, E.

    2015-09-01

    The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30-52 km) and MLT (90-140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine-scale wind-layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90-102 km) can contain extremely high vertical gradients of the wind velocity, up to 10 m/s per 100 m. The effect of a fine-scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a -3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.

  12. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2016-05-01

    Full Text Available In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs. Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES. To do this, we use a previously-validated LES framework in which an actuator line model (ALM is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as N c / R , where N is the number of blades, c is the chord length and R is the rotor radius and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the

  13. An evaluation and parameterization of stably stratified turbulence: Insights on the atmospheric boundary layer and implications for wind energy

    Science.gov (United States)

    Wilson, Jordan M.

    This research focuses on the dynamics of turbulent mixing under stably stratified flow conditions. Velocity fluctuations and instabilities are suppressed by buoyancy forces limiting mixing as stability increases and turbulence decreases until the flow relaminarizes. Theories that ubiquitously assume turbulence collapse above a critical value of the gradient Richardson number (e.g. Ri > Ric) are common in meteorological and oceanographic communities. However, most theories were developed from results of small-scale laboratory and numerical experiments with energetic levels several orders of magnitude less than geophysical flows. Geophysical flows exhibit strong turbulence that enhances the transport of momentum and scalars. The mixing length for the turbulent momentum field, L M, serves as a key parameter in assessing large-scale, energy-containing motions. For a stably stratified turbulent shear flow, the shear production of turbulent kinetic energy, P, is here considered to be of greater relevance than the dissipation rate of turbulent kinetic energy, epsilon. Thus, the turbulent Reynolds number can be recast as Re ≡ k2/(nuP) where k is the turbulent kinetic energy, allowing for a new perspective on flow energetics. Using an ensemble data set of high quality direct numerical simulation (DNS) results, large-eddy simulation (LES) results, laboratory experiments, and observational field data of the stable atmospheric boundary layer (SABL), the dichotomy of data becomes apparent. High mixing rates persist to strong stability (e.g. Ri ≈ 10) in the SABL whereas numerical and laboratory results confirm turbulence collapse for Ri ˜ O(1). While this behavior has been alluded to in literature, this direct comparison of data elucidates the disparity in universal theories of stably stratified turbulence. From this theoretical perspective, a Reynolds-averaged framework is employed to develop and evaluate parameterizations of turbulent mixing based on the competing forces

  14. The role of ozone atmosphere-snow gas exchange on polar, boundaru-layer tropospheric ozone - a review sensitivity analysis

    NARCIS (Netherlands)

    Helmig, D.; Ganzeveld, L.N.; Butler, T.; Oltmans, S.

    2007-01-01

    Recent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone depositio

  15. Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika

    Science.gov (United States)

    Verburg, Piet; Antenucci, Jason P.

    2010-06-01

    Energy fluxes across the surface of lakes regulate heat storage and affect the water balance. Sensible and latent heat fluxes are affected by atmospheric stability, especially for large lakes. We examined the effect of atmospheric stability on the heat fluxes on seasonal time scales at Lake Tanganyika, East Africa, by estimating hourly sensible and latent heat fluxes and net radiation using thermistor chains and meteorological stations. The atmosphere was almost always unstable, in contrast to the atmosphere above North American Great Lakes which is unstable in winter and stable in summer. Persistent atmospheric instability resulted in a 13% and 18% increase in the annual mean heat loss by latent and sensible heat fluxes, respectively, relative to conditions of neutral stability. The persistent unstable atmosphere is caused by a higher water surface temperature compared with air temperature, which we argue is the case in general in (sub)tropical lakes. Low humidity further enhanced the frequency of unstable conditions and enhanced the exchange of heat and vapor from the lake to the atmosphere. The estimated heat fluxes were sensitive to the temporal scale of data inputs and to the local values of parameters such as air density. To our knowledge this is the first paper that demonstrates and quantifies the effect of atmospheric stability on latent and sensible heat fluxes from a lake on an annual basis, using data collected from the lake surface.

  16. The implementation of a MiXed Layer model (MXL, v1.0) for the dynamics of the atmospheric boundary layer in the Modular Earth Submodel System (MESSy)

    Science.gov (United States)

    Janssen, R. H. H.; Pozzer, A.

    2014-10-01

    We present a new submodel for the Modular Earth Submodel System (MESSy): the MiXed Layer (MXL) model for the diurnal dynamics of the convective boundary layer, including explicit representations of entrainment and surface fluxes. Through the MESSy interface, MXL is coupled with modules that represent other processes relevant to chemistry in the atmospheric boundary layer (ABL). In combination, these provide a computationally inexpensive tool that is ideally suited for the analysis of field data, for evaluating new parametrizations for 3-D models, and for performing systematic sensitivity analyses. A case study for the DOMINO campaign in Southern Spain is shown to demonstrate the use and performance of MXL/MESSy in reproducing and analysing field observations.

  17. Superficial Temporal Artery Pseudoaneurysm: A Case Report

    Science.gov (United States)

    Younus, Syed Muneeb; Imran, Muhammad; Qazi, Rabia

    2015-01-01

    Pseudoaneurysms of the superficial temporal artery are an uncommon vascular lesion of the external carotid system and most often the result of blunt head trauma. The frequency of pseudoaneurysms of the superficial temporal artery developing after craniotomy is exceedingly low and only a few cases have been reported. We present a case of pseudoaneurysm of this type in a 45-year-old male who underwent craniotomy for excision of meningioma. One month postoperatively, the craniotomy flap exhibited an enormous diffuse pulsate swelling. The suspected diagnosis of pseudoaneurysm arising from superficial temporal artery was confirmed on angiography. Surgical excision was done and no recurrences of the tumor or aneurysm were noted on subsequent follow up. PMID:26501064

  18. Observations of the atmospheric surface layer parameters over a semi arid region during the solar eclipse of August 11th, 1999

    Indian Academy of Sciences (India)

    Praveena Krishnan; P K Kunhikrishnan; S Muraleedharan Nair; Sudha Ravindran; Radhika Ramachandran; D B Subrahamanyam; M Venkata Ramana

    2004-09-01

    This paper discusses the observations of the Atmospheric Surface Layer (ASL) parameters during the solar eclipse of August 11th, 1999. Intensive surface layer experiments were conducted at Ahmedabad (23° 21′N, 72° 36′E), the western part of India, which was close to the totality path. This rare event provided by nature is utilised to document the surface layer effects during the eclipse period using measurements of high frequency fluctuations of temperature, tri-axial wind components as well as mean parameters such as temperature, humidity, wind speed and subsoil temperature. Analysis showed that during the eclipse period, the turbulence parameters were affected leading to the suppression of the turbulence process, the main dynamic process in the atmospheric boundary layer, while the mean parameters showed variations within the natural variability of the observational period. The spectra of the wind components and temperature indicated decrease in spectral power by one order in magnitude during the eclipse period. The rate of dissipation of turbulent kinetic energy is found to decrease by more than one order during the eclipse period. The stability parameter showed a change from unstable to stable condition during the period of eclipse and back to unstable condition by the end of eclipse.

  19. Superficial siderosis of the central nervous system due to brachial plexus injury: a case report; Siderose superficial do sistema nervoso central por lesao do plexo braquial: relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Setogutti, Enio Tadashi; Cassuriaga, Jefferson; Valduga, Simone Gianella [Fundacao Universitaria de Cardiologia, Porto Alegre, RS (Brazil). Instituto de Cardiologia. Setor de Ressonancia Magnetica]. E-mails: pesquisa@cardiologia.org.br; editoracao-pc@cardiologia.org.br; Lorenzzoni, Pablo Longhi; Severgnini, Giancarlo Muraro [Fundacao Universitaria de Cardiologia, Porto Alegre, RS (Brazil). Instituto de Cardiologia; Feldman, Carlos Jader [Fundacao Universitaria de Cardiologia, Porto Alegre, RS (Brazil). Instituto de Cardiologia. Setor de Radiologia

    2005-10-15

    Superficial siderosis can be caused by hemosiderin deposition o the leptomeninges and subpial layers of the neuro-axis due to recurrent subarachnoid haemorrhage. Probable intrathecal bleeding sites must be investigated. In ut t 50% of the patients the bleeding source may be identified and the progression of the disease can be interrupted. In this study, the authors present a case of superficial siderosis of the central nervous system developed two decades after a traumatic lesion of the brachial plexus.(author)

  20. Etizolam-induced superficial erythema annulare centrifugum.

    Science.gov (United States)

    Kuroda, K; Yabunami, H; Hisanaga, Y

    2002-01-01

    Erythema annulare centrifugum (EAC) is characterized by slowly enlarging annular erythematous lesions. Although the origin is not clear in most cases, EAC has been associated with infections, medications, and in rare cases, underlying malignancy. We describe a patient who developed annular erythematous lesions after etizolam administration. The eruptions were typical of the superficial form of EAC, both clinically and histopathologically. The lesions disappeared shortly after discontinuation of the medication. Patch testing with etizolam gave positive results. To our knowledge this is the first reported case of etizolam-induced superficial EAC. PMID:11952667

  1. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  2. Deuterium retention in the carbon co-deposition layers deposited by magnetron sputtering in D2/He atmosphere

    International Nuclear Information System (INIS)

    Carbon was deposited on Si and W substrates using a D2/He plasma in a radio frequency magnetron sputtering system. The deposited layers were examined with ion beam analysis (IBA), Raman spectra analysis (RS) and scanning electron microscopy (SEM). The growth rate of the layers deposited at 2.5 Pa total pressure and 300 K decreased with increasing He fraction in the D2/He gas mixture. The deuterium concentration in the layers deposited on the Si substrate increased from 14% to 28% when the flow rate of the He gas relative to the D2 gas was varied from 0.125 to 0.5, but the deuterium concentration in the layers on a W substrate decreased from 24% to 14%. Deuterium or helium retention and the layer thickness all significantly decreased when the substrate temperature was increased from 423 K to 773 K. Raman analysis showed that the deposited layers were amorphous deuterated-carbon layers (named a-C: D layer) and the extent of bond disorder increased dramatically with the increasing helium content in the film. Blisters and bubbles occurred in the films for high helium content in the films, and surface cracking and exfoliation were also observed

  3. Superficial composition in binary solid solutions A(B): Drastic effect of pure element surface tensions

    Science.gov (United States)

    Rolland, A.; Aufray, B.

    1985-10-01

    This paper deals with a comparative study of surface segragation of Pb and Ni respectively from Ag(Pb)(111) and Ag(Ni)(111) solid solutions. A high level of segregation of the solute is observed for both systems characterized by very low solute solubility. However, the superficial composition strongly depends on the relative surface tensions of the pure elements: the solute atoms are strictly on superficial sites when γ solute is smaller than γ solvent; in contrast uppermost layer consists purely of solvent when γ solute is greater than γ solvent. Two schematic distributions in close proximity to the surface are proposed in the last case.

  4. Clinico-mycological profile of superficial mycoses

    Directory of Open Access Journals (Sweden)

    Mishra M

    1998-01-01

    Full Text Available Clinico-mycological study of 2743 clinically diagnosed cases of superficial mycoses attending skin and VD OPD of VSS Medical College during the year 1995 - 96 was conducted. Male predominance was observed. Highest incidence of tinea versicolor was found. T. rubrum was the commonest fungus isolated.

  5. Clinico-mycological profile of superficial mycoses

    OpenAIRE

    Mishra M; Mishra S; Singh P; Mishra B.

    1998-01-01

    Clinico-mycological study of 2743 clinically diagnosed cases of superficial mycoses attending skin and VD OPD of VSS Medical College during the year 1995 - 96 was conducted. Male predominance was observed. Highest incidence of tinea versicolor was found. T. rubrum was the commonest fungus isolated.

  6. Ångström coefficient as an indicator of the atmospheric aerosol type for a well-mixed atmospheric boundary layer: Part 1: Model development

    Directory of Open Access Journals (Sweden)

    Jolanta Kuśmierczyk-Michulec

    2009-03-01

    Full Text Available The physical and optical properties of an atmospheric aerosol mixture depend on a number of factors. The relative humidity influences the size of hydroscopic particles and the effective radius of an aerosol mixture. In consequence, values of the aerosol extinction, the aerosol optical thickness and the Ångström coefficient are modified. A similar effect is observed when the aerosol composition changes. A higher content of small aerosol particles causes the effective radius of an aerosol mixture to decrease and the Ångström coefficient to increase. Both effects are analysed in this paper. The parameters of the size distribution and the type of components used to represent natural atmospheric aerosol mixtures are based on experimental data. The main components are sea-salts (SSA, anthropogenic salts (WS, e.g. NH4HSO4, NH4NO3, (NH42 SO4, organic carbon (OC and black carbon (BC. The aerosol optical thickness is modelled using the external mixing approach. The influence of relative humidity on the optical and physical properties of the following aerosol mixtures is investigated: (SSA & WS, (SSA & OC, (SSA & BC, (SSA, WS & OC and (WS, OC & BC. It is demonstrated that the Ängström coefficient can be used as a rough indicator of the aerosol type.

  7. Superficial Urothelial Cancer in the Prostatic Urethra

    Directory of Open Access Journals (Sweden)

    Ziya Kirkali

    2006-01-01

    Full Text Available Transitional cell carcinoma (TCC is a multifocal disease of the urinary tract that can also involve the prostatic urethra (PU. The exact incidence of superficial involvement of the PU in patients with bladder TCC is not well known. Bladder TCC may involve the prostate in 12—40% of the patients and the degree of involvement can include urethral mucosa, ducts, acini, and stroma of the gland, which has been shown to affect the outcome. Risk factors for superficial urothelial cancer in the PU are high-grade, multifocal bladder TCC and presence of carcinoma in situ (CIS in the bladder. While visible tumors are easy to detect and resect, controversy still exists regarding the optimal technique to identify prostatic involvement by TCC. Prostatic urethral sampling by a transurethral resection biopsy or a cold-cup biopsy, particularly in the high-risk group of bladder cancer patients, has been recommended for detecting prostatic urethral involvement. Management of superficial prostatic involvement by TCC is also unclear. Currently, there is increasing recognition of the value of conservative treatment options with intravesical agents when there is superficial involvement of the PU. Particularly, intravesical bacillus Calmette-Guèrin (BCG seems to be an effective treatment alternative in the management of superficial involvement of the PU by TCC. Close follow-up by cystoscopy and PU biopsy at 3-month intervals, particularly in intermediate and high-risk patients who respond to intravesical therapy and in whom cystectomy is appropriate, is recommended in order to detect persistent tumor, recurrences, or progression.

  8. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    Science.gov (United States)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  9. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...... and vertical extent of the jet and leads to better agreement between analytical and simulated wind-speed profiles. Over a range of different inversion strengths and surface heat fluxes, we also find good agreement between the performed simulations and models of the equilibrium boundary-layer height......, and of the budget of turbulent kinetic energy integrated across the boundary layer....

  10. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    International Nuclear Information System (INIS)

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle concentration

  11. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (z{sub i}), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime z{sub i} from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the z{sub i} and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle

  12. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis.

    Science.gov (United States)

    Shook, David R; Majer, Christina; Keller, Ray

    2004-06-01

    The mesoderm, comprising the tissues that come to lie entirely in the deep layer, originates in both the superficial epithelial and the deep mesenchymal layers of the early amphibian embryo. Here, we characterize the mechanisms by which the superficial component of the presumptive mesoderm ingresses into the underlying deep mesenchymal layer in Xenopus tropicalis and extend our previous findings for Xenopus laevis. Fate mapping the superficial epithelium of pregastrula stage embryos demonstrates ingression of surface cells into both paraxial and axial mesoderm (including hypochord), in similar patterns and amounts in both species. Superficial presumptive notochord lies medially, flanked by presumptive hypochord and both overlie the deep region of the presumptive notochord. These tissues are flanked laterally by superficial presumptive somitic mesoderm, the anterior tip of which also appears to overlay the presumptive deep notochord. Time-lapse recordings show that presumptive somitic and notochordal cells move out of the roof of the gastrocoel and into the deep region during neurulation, whereas hypochordal cells ingress after neurulation. Scanning electron microscopy at the stage and position where ingression occurs suggests that superficial presumptive somitic cells in X. laevis ingress into the deep region as bottle cells whereas those in X. tropicalis ingress by "relamination" (e.g., [Dev. Biol. 174 (1996) 92]). In both species, the superficially derived presumptive somitic cells come to lie in the medial region of the presumptive somites during neurulation. By the early tailbud stages, these cells lie at the horizontal myoseptum of the somites. The morphogenic pathway of these cells strongly resembles that of the primary slow muscle pioneer cells of the zebrafish. We present a revised fate map of Xenopus, and we discuss the conservation of superficial mesoderm within amphibians and across the chordates and its implications for the role of this tissue in

  13. Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage.

    Science.gov (United States)

    Ruggiero, Leonardo; Zimmerman, Brandon K; Park, Miri; Han, Lin; Wang, Liyun; Burris, David L; Lu, X Lucas

    2015-11-01

    In temporomandibular joints (TMJs), the cartilage on the condylar head displays a unique ultrastructure with a dense layer of type I collagen in the superficial zone, different from hyaline cartilage in other joints. This study aims to elucidate the roles of this fibrous zone in the mechanical behaviors, particularly lubrication, of TMJ under physiological loading regimes. Mechanical tests on porcine condylar cartilage demonstrated that the superficial and middle-deep zones exhibit tension-compression nonlinearity. The tensile and compressive moduli of the superficial zone are 30.73 ± 12.97 and 0.028 ± 0.016 MPa, respectively, while those for the middle-deep zone are 2.43 ± 1.75 and 0.14 ± 0.09 MPa. A nonlinear finite element model of condylar cartilage was built to simulate sliding of a spherical probe over the articular surface. The presence of the superficial zone significantly promoted interstitial fluid pressurization (IFP) inside the loaded cartilage and reduced the friction force on the surface, compared to the case without the superficial zone. Finite element simulations showed that IFP depends on sliding speed but not normal load, which matches the experimental results. This study revealed the presence of the fibrous zone can significantly reduce the deformation of condylar cartilage under compression and the friction force on its surface during sliding.

  14. Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage.

    Science.gov (United States)

    Ruggiero, Leonardo; Zimmerman, Brandon K; Park, Miri; Han, Lin; Wang, Liyun; Burris, David L; Lu, X Lucas

    2015-11-01

    In temporomandibular joints (TMJs), the cartilage on the condylar head displays a unique ultrastructure with a dense layer of type I collagen in the superficial zone, different from hyaline cartilage in other joints. This study aims to elucidate the roles of this fibrous zone in the mechanical behaviors, particularly lubrication, of TMJ under physiological loading regimes. Mechanical tests on porcine condylar cartilage demonstrated that the superficial and middle-deep zones exhibit tension-compression nonlinearity. The tensile and compressive moduli of the superficial zone are 30.73 ± 12.97 and 0.028 ± 0.016 MPa, respectively, while those for the middle-deep zone are 2.43 ± 1.75 and 0.14 ± 0.09 MPa. A nonlinear finite element model of condylar cartilage was built to simulate sliding of a spherical probe over the articular surface. The presence of the superficial zone significantly promoted interstitial fluid pressurization (IFP) inside the loaded cartilage and reduced the friction force on the surface, compared to the case without the superficial zone. Finite element simulations showed that IFP depends on sliding speed but not normal load, which matches the experimental results. This study revealed the presence of the fibrous zone can significantly reduce the deformation of condylar cartilage under compression and the friction force on its surface during sliding. PMID:25893511

  15. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    International Nuclear Information System (INIS)

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess Plateau

  16. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Ming, E-mail: xhu@ou.edu [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States); Ma, ZhiQiang, E-mail: zqma@ium.cn [Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089 (China); Lin, Weili [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Zhang, Hongliang; Hu, Jianlin [Department of Civil and Environmental Engineering, University of California, Davis, CA 95616 (United States); Wang, Ying; Xu, Xiaobin [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Fuentes, Jose D. [Department of Meteorology, Pennsylvania State University, University Park, PA 16802 (United States); Xue, Ming [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States)

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O{sub 3} pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess

  17. Detecting spectrally localized components of lunar tide-frequency in time-series of the electric field vertical component of the earth atmosphere boundary layer

    CERN Document Server

    Isakevich, V V; Isakevich, D V

    2016-01-01

    Using the signal eigenvectors and components analyser (Grunskaya L.V., Isakevich V.V., Isakevich D.V. the RF Utility Model Patent 116242 of 30.09.2011) made it possible to detect non-coherent complex-period components localized at lunar tide frequencies in the time-series of the electric field vertical component of the Earth atmosphere boundary layer. The detected components are unobservable by means of spectral analysis quadrature scheme. The probability of the detected effects being pseudo-estimates is not more than 0.00025

  18. Variability of the Structure Parameters of Temperature and Humidity Observed in the Atmospheric Surface Layer Under Unstable Conditions

    NARCIS (Netherlands)

    Braam, M.; Moene, A.F.; Beyrich, F.

    2014-01-01

    The structure parameters of temperature and humidity are important in scintillometry as they determine the structure parameter of the refractive index of air, the primary atmospheric variable obtained with scintillometers. In this study, we investigate the variability of the logarithm of the Monin-O

  19. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model.

    Science.gov (United States)

    Qing, Chun; Wu, Xiaoqing; Huang, Honghua; Tian, Qiguo; Zhu, Wenyue; Rao, Ruizhong; Li, Xuebin

    2016-09-01

    Since systematic direct measurements of refractive index structure constant ( Cn2) for many climates and seasons are not available, an indirect approach is developed in which Cn2 is estimated from the mesoscale atmospheric model outputs. In previous work, we have presented an approach that a state-of-the-art mesoscale atmospheric model called Weather Research and Forecasting (WRF) model coupled with Monin-Obukhov Similarity (MOS) theory which can be used to estimate surface layer Cn2 over the ocean. Here this paper is focused on surface layer Cn2 over snow and sea ice, which is the extending of estimating surface layer Cn2 utilizing WRF model for ground-based optical application requirements. This powerful approach is validated against the corresponding 9-day Cn2 data from a field campaign of the 30th Chinese National Antarctic Research Expedition (CHINARE). We employ several statistical operators to assess how this approach performs. Besides, we present an independent analysis of this approach performance using the contingency tables. Such a method permits us to provide supplementary key information with respect to statistical operators. These methods make our analysis more robust and permit us to confirm the excellent performances of this approach. The reasonably good agreement in trend and magnitude is found between estimated values and measurements overall, and the estimated Cn2 values are even better than the ones obtained by this approach over the ocean surface layer. The encouraging performance of this approach has a concrete practical implementation of ground-based optical applications over snow and sea ice. PMID:27607648

  20. Thermodynamic structure of the Atmospheric Boundary Layer over the Arabian Sea and the Indian Ocean during pre-INDOEX and INDOEX-FFP campaigns

    Directory of Open Access Journals (Sweden)

    M. V. Ramana

    2004-09-01

    Full Text Available Spatial and temporal variability of the Marine Atmospheric Boundary Layer (MABL height for the Indian Ocean Experiment (INDOEX study period are examined using the data collected through Cross-chained LORAN (Long-Range Aid to Navigation Atmospheric Sounding System (CLASS launchings during the Northern Hemispheric winter monsoon period. This paper reports the results of the analyses of the data collected during the pre-INDOEX (1997 and the INDOEX-First Field Phase (FFP; 1998 in the latitude range 14°N to 20°S over the Arabian Sea and the Indian Ocean. Mixed layer heights are derived from thermodynamic profiles and they indicated the variability of heights ranging from 400m to 1100m during daytime depending upon the location. Mixed layer heights over the Indian Ocean are slightly higher during the INDOEX-FFP than the pre-INDOEX due to anomalous conditions prevailing during the INDOEX-FFP. The trade wind inversion height varied from 2.3km to 4.5km during the pre-INDOEX and from 0.4km to 2.5km during the INDOEX-FFP. Elevated plumes of polluted air (lofted aerosol plumes above the marine boundary layer are observed from thermodynamic profiles of the lower troposphere during the INDOEX-FFP. These elevated plumes are examined using 5-day back trajectory analysis and show that one group of air mass travelled a long way from Saudi Arabia and Iran/Iraq through India before reaching the location of measurement, while the other air mass originates from India and the Bay of Bengal.

  1. Friction velocity u* and roughness length z0 of atmospheric surface boundary layer in sparse-tree land

    Institute of Scientific and Technical Information of China (English)

    Guan Dexin; Zhu Tingyao; Han Shijie

    1999-01-01

    Sparse-tree land is one of the typical lands and can be considered as one typical rough surface in boundary layer meteorology. Many lands can be classified into the kind surface in the view of scale and distribution feature of the roughness elements such as agroforest, scatter planted or growing trees, savanna and so on. The structure of surface boundary layer in sparse-tree land is analyzed and the parameters, friction velocity u* and roughness length z0 are deduced based on energy balance law and other physical hypothesis. The models agree well with data of wind tunnel experiments and field measurements.

  2. Results of Experimental and Theoretical Studies of the Atmospheric Turbulence, Internal Gravity Waves and Sporadic-E Layers by Resonant Scattering of Radio Waves on Artificial Periodic Irregularities

    Science.gov (United States)

    Bakhmetieva, Nataliya V.; Grigoriev; Tolmacheva, Ariadna V.

    Artificial periodic irregularities (API) formed by the powerful standing radio waves in the ionospheric plasma give the good chance for the lower ionosphere comprehensive studies. In this paper we present some applications of the API technique for experimental studies of sporadic E-layers (E _{s}), internal gravity waves and turbulent events in the lower ionosphere. API are formed in the field of the standing radio wave produced by interference of the incident wave and reflected one from the ionosphere (in more details about the API technique one can see in the book Belikovich et al., Ionospheric Research by Means of Artificial Periodic Irregularities - Katlenburg-Lindau, Germany. 2002. Copernicus GmbH. ISBN 3-936586-03-9). The spatial period of the irregular structure is equal to the standing wavelength Lambda or one-half the powerful wavelength lambda/2. API diagnostics are carried out at the API relaxation or decay stage by their sounding of probing radio pulses. Based on the measurement of an amplitude and a phase of the API scattered signal their relaxation time and regular vertical plasma velocity are measured. In the E-region of the ionosphere API are formed as a result of the diffusion redistribution of the non-uniformly heated plasma. The relaxation of the periodic structure is specified by the ambipolar diffusion process. The diffusion time is tau=(K (2) D _{a}) (-1) where K=2pi/Lambda and D _{a} is the ambipolar diffusion rate. The atmospheric turbulence causes reduction of the API relaxation time in comparison the diffusion time. Determination of the turbulent velocity is based on this fact. The vertical plasma velocity is determined by measuring the phase of the scattered signal. Atmospheric waves having the periods from 5-10 minutes to 5-6 hours give the contribution to temporal variations of the velocity. Parameters and effects of atmospheric waves and the turbulence on the API relaxation process are presented. Determination of the masses of the

  3. Momentum and buoyancy transfer in atmospheric turbulent boundary layer over wavy water surface – Part 2: Wind–wave spectra

    Directory of Open Access Journals (Sweden)

    Yu. I. Troitskaya

    2013-10-01

    Full Text Available Drag and mass exchange coefficients are calculated within a self-consistent problem for the wave-induced air perturbations and mean velocity and density fields using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. This second part of the report is devoted to specification of the model elements: turbulent transfer coefficients and wave number-frequency spectra. It is shown that the theory agrees with laboratory and field experimental data well when turbulent mass and momentum transfer coefficients do not depend on the wave parameters. Among several model spectra better agreement of the theoretically calculated drag coefficients with TOGA (Tropical Ocean Global Atmosphere COARE (Coupled Ocean–Atmosphere Response Experiment data is achieved for the Hwang spectrum (Hwang, 2005 with the high frequency part completed by the Romeiser spectrum (Romeiser et al., 1997.

  4. Librational response of a deformed 3-layer Titan perturbed by non-keplerian orbit and atmospheric couplings

    CERN Document Server

    Richard, Andy; Charnay, Benjamin

    2014-01-01

    The analyses of Titan's gravity field obtained by Cassini space mission suggest the presence of an internal ocean beneath its icy surface. The characterization of the geophysical parameters of the icy shell and the ocean is important to constrain the evolution models of Titan. The knowledge of the librations, that are periodic oscillations around a uniform rotational motion, can bring piece of information on the interior parameters. The objective of this paper is to study the librational response in longitude from an analytical approach for Titan composed of a deep atmosphere, an elastic icy shell, an internal ocean, and an elastic rocky core perturbed by the gravitational interactions with Saturn. We start from the librational equations developed for a rigid satellite in synchronous spin-orbit resonance. We introduce explicitly the atmospheric torque acting on the surface computed from the Titan IPSL GCM (Institut Pierre Simon Laplace General Circulation Model) and the periodic deformations of elastic solid ...

  5. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    Science.gov (United States)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  6. Coupled Ocean Atmosphere Mesoscale Prediction System modeled surface layer refractivity in the Roughness and Evaporation Duct experiment 2001

    OpenAIRE

    Newton, D. Adam

    2003-01-01

    Approved for public release, distribution is unlimited A study of the performance of the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) was performed based on collected METOC properties affecting radar propagation during the Roughness and Evaporation Duct (RED) experiment conducted off the windward coast of Oahu, HI. The measured refractivity influencing parameters (SST, air temperature, humidity, and wind speed) were compared to COAMPS predicted values. Using the NPS bulk e...

  7. Isolating Effects of Water Table Dynamics, Terrain, and Soil Moisture Heterogeneity on the Atmospheric Boundary Layer Using Coupled Models

    OpenAIRE

    Rihani, Jehan

    2010-01-01

    Previous observational and modeling studies have demonstrated the sensitivity of atmospheric processes to land surface and subsurface conditions. The extent of the connection between these processes, however, is not yet fully understood. A sufficient understanding is needed of the circumstances under which these coupled processes might play a more significant role and when they might be simplified into the decoupled systems so frequently modeled in practice. This work focuses on the effects o...

  8. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    Science.gov (United States)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  9. Diurnal and seasonal CO{sub 2} fluxes between grassland ecosystems and the atmosphere boundary layer in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, B.O.M.; Goudriaan, J. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands)

    1994-12-31

    To analyse the diurnal and seasonal patterns of atmospheric-biospheric CO2 exchange in Dutch pasture - as causal factor in short-term fluctuations in atmospheric CO2 - a sequence of experimental and theoretical research was carried out. Eddy correlation and aerodynamic gradient exchange field studies (executed by ECN and KNMI, in Zegveld and Cabauw, both Netherlands, in pasture on peat and clay on peat, respectively) were used for a statistical analysis to identify the major environmental factors governing CO2 exchange and determine the quantitative relationship between those factors and the CO2 exchange. For night-time periods both linear and exponential relationships were found between either air or soil temperature and (respiratory) CO2 flux. For day-time periods both inverse exponential and hyperbolic relationships were found between shortwave irradiance and CO2 flux. The latter applied to both net and gross (photosynthetic) CO2 flux, without and with adding calculated respiratory CO2 flux, respectively. The experimental results are subsequently applied in and along a model study for a more exact analysis and quantification of the CO2 exchange. The used dynamic simulation model distinguishes between a vegetational (based on the crop growth model SUCROS) and soil (based on exponential decay of soil organic matter fractions) component, and calculates CO2 exchange as a function of air temperature, irradiance, atmospheric CO2, precipitation, wind speed and air humidity, on both a diurnal and daily basis. 21 figs., 31 refs.

  10. Effects of Initial Drivers and Land Use on WRF Modeling for Near-Surface Fields and Atmospheric Boundary Layer over the Northeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Junhua Yang

    2016-01-01

    Full Text Available To improve the simulation performance of mesoscale models in the northeastern Tibetan Plateau, two reanalysis initial datasets (NCEP FNL and ERA-Interim and two MODIS (Moderate-Resolution Imaging Spectroradiometer land-use datasets (from 2001 and 2010 are used in WRF (Weather Research and Forecasting modeling. The model can reproduce the variations of 2 m temperature (T2 and 2 m relative humidity (RH2, but T2 is overestimated and RH2 is underestimated in the control experiment. After using the new initial drive and land use data, the simulation precision in T2 is improved by the correction of overestimated net energy flux at surface and the RH2 is improved due to the lower T2 and larger soil moisture. Due to systematic bias in WRF modeling for wind speed, we design another experiment that includes the Jimenez subgrid-scale orography scheme, which reduces the frequency of low wind speed and increases the frequency of high wind speed and that is more consistent with the observation. Meanwhile, the new drive and land-use data lead to lower boundary layer height and influence the potential temperature and wind speed in both the lower atmosphere and the upper layer, while the impact on water vapor mixing ratio is primarily concentrated in the lower atmosphere.

  11. Double Compressions of Atmospheric Depth by Geopotential Tendency, Vorticity, and Atmospheric Boundary Layer Affected Abrupt High Particulate Matter Concentrations at a Coastal City for a Yellow Dust Period in October

    Directory of Open Access Journals (Sweden)

    Hyo Choi

    2014-01-01

    Full Text Available Using GRIMM-aerosol sampler, NOAA-HYSPLIT model, and 3D-WRF-3.3 model, the transportation of dusts from Gobi Desert toward Gangneung city, Korea was investigated from 09:00 LST October 27 to 04:00 LST October 28, 2003. Maximum PM10 (PM2.5, PM1 concentration was detected with 3.8 (3.4, 14.1 times higher magnitude than one in non-Yellow Dust period. The combination of dusts transported from the desert under westerly wind with particulate matters and gases from vehicles on the road of the city caused high PM concentrations near the ground surface at 09:00 LST and their maxima at 17:00 LST near sunset with further pollutants from heating boilers in the resident area. Positive geopotential tendency at the 500 hPa level of the city (∂Φ/∂t; m day−1 corresponding to negative vorticity of -4×10-5 sec−1 (-2.5×10-5 sec−1 at 0900 LST (21:00 LST; at night was +83 m day−1 (+30 m day−1 and it caused atmospheric depth between 500 hPa level and the ground surface to be vertically expanded. However, its net reduction to −53 m/12 hrs until 21:00 LST indicated synoptic-scale atmospheric layer to be vertical shrunken, resulting in the increase of PM concentrations at 17:00 LST. Simultaneously, much shallower microscale stable nocturnal surface inversion layer (NSIL than daytime thermal internal boundary layer induced particulate matters to be merged inside the NSIL, resulting in maximum PM concentrations at 17:00 LST.

  12. The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    Jesper Grønnegaard Pedersen

    2013-12-01

    Full Text Available Due to its fine-resolution requirement and subsequent computational demand, Large Eddy Simulation of the atmospheric boundary layer is limited in most cases to computational domains extending only a few kilometers in both the vertical and horizontal directions. Variations in the flow and in relevant atmospheric fields (e.g. temperature that occur at larger scales must be imposed through boundary conditions or as external forcing. In this work we study the influence of such variations on the wind profile in Large Eddy Simulations of daytime atmospheric boundary layers, by comparing observations with simulations that use progressively more realistic forcing relative to observed large-scale pressure gradients.Two case studies are presented. One is based on measurements from the rural site of Høvsøre in Denmark, and the other on measurements from a suburban site in Hamburg, Germany. The applied domain-scale pressure gradient and its height- and time-dependence are estimated from LIDAR measurements of the wind speed above the atmospheric boundary layer in the Høvsøre case, and from radio soundings and a network of ground-based pressure sensors in the Hamburg case.In the two case studies, LIDAR measurements of the wind speed up to heights between 900 and 1600 m and tower-based measurements up to 100 and 250 m are used to evaluate the performance of the variably-driven Large Eddy Simulations. We find in both case studies that including height- and time-variations in the applied pressure gradient has a significant influence on simulated wind speeds, and improves agreement with measured wind speeds, especially in the Høvsøre case. In the Hamburg case, an overly simplified specification of the height dependence of the forcing, as well as the influence of phenomena such as large-scale subsidence and advection, tend to reduce agreement with measurements, relative to the Høvsøre case. The Hamburg case illustrates that measurements of the surface

  13. Carrier transport mechanism on ZnO nanorods/p-Si heterojunction diodes with various atmospheres annealing hydrothermal seed-layer

    International Nuclear Information System (INIS)

    Annealing in various atmospheres (vacuum, N2, and O2) was employed for a hydrothermal seed-layer. The influence on ZnO nanorods (NRs) and carrier transport of ZnO NRs/p-Si heterojunction diodes (HJDs) was investigated. In this work, a hydrothermal method was employed to prepare a seed-layer on a Si substrate, and then annealing at 450 °C in various atmospheres was carried out to improve the subsequent growth of ZnO NRs according to the same method. Observations indicated that ZnO NRs with an O2-annealed seed-layer have a higher nucleation density and absorb fewer OH groups or O2− ions, and hence they have fewer defect-level centres. This leads to a very large rectification ratio of 1.9 × 105 in the ZnO NRs/p-Si HJDs because oxygen atoms compensate for the oxygen vacancy-related defects. More band-gap states are present at the ZnO/p-Si interface for the vacuum annealing sample, and this enables recombination-tunnelling transport with a rather large ideality factor of 7 at forward voltage less than 0.7 V. In contrast, diffusion–recombination transport was obtained in the N2- and O2-annealed samples with ideality factors as low as 2.4 and 2.2, respectively. - Highlights: ► Annealing in various atmospheres (vacuum, N2, and O2) for hydrothermal seed-layers. ► Carrier transport in ZnO nanorods (NRs)/p-Si heterojunction diodes (HJDs). ► Vacuum-annealed ZnO NRs/p-Si HJDs demonstrate recombination-tunnelling transport. ► N2- and O2-annealed ZnO NRs/p-Si HJDs reveal diffusion–recombination transport. ► Large rectification ratio of 1.9 × 105 in the O2-annealed ZnO NRs/p-Si HJDs.

  14. Conditions for the formation and atmospheric dispersion of a toxic, heavy gas layer during thermal metamorphism of coal and evaporite deposits by sill intrusion

    Science.gov (United States)

    Storey, Michael; Hankin, Robin K. S.

    2010-05-01

    There is compelling evidence for massive discharge of volatiles, including toxic species, into the atmosphere at the end of the Permian. It has been argued that most of the gases were produced during thermal metamorphism of coal and evaporite deposits in the East Siberia Tunguska basin following sill intrusion (Retallack and Jahren, 2008; Svensen et al., 2009). The release of the volatiles has been proposed as a major cause of environmental and extinction events at the end of the Permian, with venting of carbon gases and halocarbons to the atmosphere leading to global warming and atmospheric ozone depletion (Svensen et al., 2009) Here we consider the conditions required for the formation and dispersion of toxic, heavier than air, gas plumes, made up of a mixture of CO2, CH4, H2S and SO2 and formed during the thermal metamorphism of C- and S- rich sediments. Dispersion models and density considerations within a range of CO2/CH4 ratios and volatile fluxes and temperatures, for gas discharge by both seepage and from vents, allow the possibility that following sill emplacement much of the vast East Siberia Tunguska basin was - at least intermittently - covered by a heavy, toxic gas layer that was unfavorable for life. Dispersion scenarios for a heavy gas layer beyond the Siberian region during end-Permian times will be presented. REFERENCES G. J. Retallack and A. H. Jahren, Methane release from igneous intrusion of coal during Late Permian extinction events, Journal of Geology, volume 116, 1-20, 2008 H. Svensen et al., Siberian gas venting and the end-Permian environmental crisis, Earth and Planetary Science Letters, volume 277, 490-500, 2009

  15. Micromechanical and microstructural investigation of steel corrosion layers of variable age developed under impressed current method, atmospheric or saline conditions

    OpenAIRE

    Dehoux, A; Bouchelaghem, Fatiha; BERTHAUD, Y

    2015-01-01

    In this paper, we have gathered the conclusions of an experimental campaign dedicated to the microstructural characterization and the determination of the local elastic properties of various natural and artificial corrosion product layers. The results of micro-indentation testing and Raman spectroscopy coupled with a semi-quantitative analysis have been presented for the whole set of investigated materials, from early-age (2 weeks) corrosion products to 660 years-old massive corroded samples....

  16. Comparative study of smear layer removal by different etching modalities and Er:YAG laser irradiation on the root surface: a scanning electron microscopy study; Estudo comparativo, atraves de microscopia eletronica de varredura, da acao de diferentes substancias quimicas e do laser de Er:YAG, na remocao de smear layer, em superficies radiculares submetidas a raspagem e aplainamento

    Energy Technology Data Exchange (ETDEWEB)

    Theodoro, Leticia Helena

    2001-07-01

    The aim of this study was to compare the effects of citric acid, EDTA, citric acid with tetracycline, and Er:YAG laser to smear layer removal on the root surface after scaling with manual instruments by SEM. Thirty specimens (n=30) of root surface before scaling were divided into 6 groups (n=5). The Control Group (G1) was not treated; Group 2 (G2) was conditioned with citric acid gel 24%, pH1, during 2 minutes; Group 3 (G3) was conditioned with EDTA gel 24%, pH 7, during 2 minutes; Group 4 (G4) was conditioned with citric acid and tetracycline gel 50%, pH1 during 2 minutes; Group 5 (G5) was irradiated with Er:YAG laser (2.94 {mu}m), 47 mJ/10 Hz, focused, under water spray during 15 seconds and fluence of 0.58 J/cm{sup 2}; Group 6 (G6) was irradiated with Er:YAG laser (2.94{mu}m), 83 mJ/10 Hz, focused, under water spray during 15 seconds and fluence of 1.03 J/cm{sup 2}. The micrographic were analyzed by scores and following the statistical analysis with Kruskal Wallis (p<0.05) H=20,31. The G1 was significantly different of all groups (28.0); the G2 (13.4), G3 (11.7), and G4 (13.6) showed no difference in relation to G5 (20.3) and G6 (6.0), but the G6 was significantly different from G5. From the results, it can be conclude that: 1) there was intensity smear layer after scaling and root planing; 2) all treatments were effective to smear layer remove with significantly difference to G2, G3, G4, G5 and G6; G2, G3 and G4 were not statistically different from G5 and G6; 3) G6 was more effective in the smear layer remotion in relation to G5 and both presented irregular root surface. (author)

  17. The Asymptotical Analysis for the Problem of Modeling the Gas Admixture in the Surface Layer of the Atmosphere

    Directory of Open Access Journals (Sweden)

    M. A. Davydova

    2016-01-01

    Full Text Available In the present work the model boundary value problem for a stationary singularly perturbed reaction-diffusion-advection equation arising at the description of gas impurity transfer processes in an ecosystem ”forest – swamp” is considered. Application of a boundary functions method and an asymptotic method of differential inequalities allow to construct an asymptotics of the boundary layer type solution, to prove the existence of the solution with such an asymptotics and its asymptotic stability by Lyapunov as the stationary solution of the corresponding parabolic problem with the definition of local area of boundary layer type solution formation. The latter has a certain importance for applications, since it allows to reveal the solution describing one of the most probable conditions of the ecosystem. In the final part of the work sufficient conditions for existence of solutions with interior transitional layers (contrast structures are discussed.

  18. Atmospheric boundary layer structures associated with the Ora del Garda wind in the Alps as revealed from airborne and surface measurements

    Science.gov (United States)

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-10-01

    The paper investigates a coupled lake-breeze and valley-wind system, known as Ora del Garda. The latter typically originates on clear-sky days over the northern shore of Lake Garda in the Alps. After channelling into the nearby Sarca Valley and Lakes Valley, this airflow finally breaks out, through an elevated saddle, into the adjacent Adige Valley, where it strongly interacts with the local valley wind. Two flights of an instrumented motorglider explored, under different synoptic conditions, the thermal structure of the atmospheric boundary layer (ABL) associated with this wind at selected vertical sections-namely over the lake shore, at mid-valley, and at the junction with the Adige Valley. Data from airborne measurements, as well as from weather stations disseminated along the valley floor, provided the basis for mapping 3D fields of potential temperature over high-resolution grids by means of a Residual Kriging (RK) technique. This representation allowed the identification of site-specific ABL features associated with the Ora del Garda. In particular, a typical daytime coastal-breeze structure is detected in the lake shore region, where the advection of colder air tends to stabilize the atmosphere throughout the ABL depth. Mid-valley vertical profiles from both flights display shallow convective mixed layers, surmounted by deeper weakly stable layers. On the other hand, RK-gridded temperature maps show cross-valley thermal asymmetries, amenable to the complex topography and to the inhomogeneous surface coverage, as well as to a curvature of the valley axis. Finally, in the area where the upper Lakes Valley joins the Adige Valley, specific features associated with the complex interaction between the Ora del Garda and the local up-valley wind are found.

  19. Quantifying Aerial Concentrations of Maize Pollen in the Atmospheric Surface Layer Using Remote-Piloted Airplanes and Lagrangian Stochastic Modeling

    Science.gov (United States)

    Aylor, Donald E.; Boehm, Matthew T.; Shields, Elson J.

    2006-07-01

    The extensive adoption of genetically modified crops has led to a need to understand better the dispersal of pollen in the atmosphere because of the potential for unwanted movement of genetic traits via pollen flow in the environment. The aerial dispersal of maize pollen was studied by comparing the results of a Lagrangian stochastic (LS) model with pollen concentration measurements made over cornfields using a combination of tower-based rotorod samplers and airborne radio-controlled remote-piloted vehicles (RPVs) outfitted with remotely operated pollen samplers. The comparison between model and measurements was conducted in two steps. In the first step, the LS model was used in combination with the rotorod samplers to estimate the pollen release rate Q for each sampling period. In the second step, a modeled value for the concentration Cmodel, corresponding to each RPV measured value Cmeasure, was calculated by simulating the RPV flight path through the LS model pollen plume corresponding to the atmospheric conditions, field geometry, wind direction, and source strength. The geometric mean and geometric standard deviation of the ratio Cmodel/Cmeasure over all of the sampling periods, except those determined to be upwind of the field, were 1.42 and 4.53, respectively, and the lognormal distribution corresponding to these values was found to fit closely the PDF of Cmodel/Cmeasure. Model output was sensitive to the turbulence parameters, with a factor-of-100 difference in the average value of Cmodel over the range of values encountered during the experiment. In comparison with this large potential variability, it is concluded that the average factor of 1.4 between Cmodel and Cmeasure found here indicates that the LS model is capable of accurately predicting, on average, concentrations over a range of atmospheric conditions.

  20. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method

    International Nuclear Information System (INIS)

    Graphene films were successfully synthesized by atmospheric pressure chemical vapor deposition (APCVD) method. Methane (CH4) gas and copper (Cu) tapes were used as a carbon source and a catalyst, respectively. The CVD temperature and time were in the range of 800–1000 °C and 10 s to 45 min, respectively. The role of the CVD temperature and time on the growth of graphene films was investigated in detail via scanning electron microscopy (SEM) and Raman spectroscopy techniques. The results of SEM images and Raman spectra show that the quality of the graphene films was improved with increasing of CVD temperature due to the increase of catalytic activity. (paper)

  1. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen; Liu, Zirui; Wang, Lili; Wang, Pucai; Xia, Xiangao; Tao, Minghui; Zhu, Lingyun

    2016-04-01

    The feedback between aerosol and meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) is analyzed by conducting numerical experiments with and without the aerosol direct and indirect effects via a coupled meteorology and aerosol/chemistry model(WRF-Chem). The numerical experiments are performed for the period of 2-26 January 2013, during which a severe fog-haze event (10-15 January 2013) occurred, with the simulated maximum hourly surface PM2.5 concentration of ~600 μg m-3, minimum atmospheric visibility of ~0.3 km, and 10-100 hours of simulated hourly surface PM2.5 concentration above 300 μg m-3 over NCP. A comparison of model results with aerosol feedback against observations indicates that the model can reproduce the spatial and temporal characteristics of temperature, relative humidity (RH), wind, surface PM2.5 concentration, atmospheric visibility, and aerosol optical depth reasonably well. Analysis of model results with and without aerosol feedback shows that during the fog-haze event aerosols lead to a significant negative radiative forcing of ~20 to ~140 W m-2 at the surface and a large positive radiative forcing of 20-120 W m-2 in the atmosphere and induce significant changes in meteorological variables with maximum changes during 09:00-18:00 local time (LT) over urban Beijing and Tianjin and south Hebei: the temperature decreases by 0.8-2.8 °C at the surface and increases by 0.1-0.5 °C at around 925 hPa, while RH increases by about 4-12% at the surface and decreases by 1-6% at around 925 hPa. As a result, the aerosol-induced equivalent potential temperature profile change shows that the atmosphere is much more stable and thus the surface wind speed decreases by up to 0.3 m s-1 (10 %) and the atmosphere boundary layer height decreases by 40-200 m (5-30 %) during the daytime of this severe fog-haze event. Owing to this more stable atmosphere during 09:00-18:00, 10-15 January, compared to the surface PM2

  2. X-rays absorption study on medieval corrosion layers for the understanding of very long-term indoor atmospheric iron corrosion

    Science.gov (United States)

    Monnier, J.; Réguer, S.; Vantelon, D.; Dillmann, P.; Neff, D.; Guillot, I.

    2010-05-01

    The study and prediction of very long-term atmospheric corrosion behaviour of ferrous alloys is of great importance in different fields. First the conservation of metallic artefacts in museum and the corrosion diagnosis on ferrous reinforcement used in ancient monuments since medieval times needs reliable data to understand the mechanisms. Second, in the frame of the interim storage of nuclear waste in France, it is necessary to model the long-term corrosion of low alloy steel overcontainer. The nature of phases and elements constituting the corrosion layers can greatly influence the corrosion mechanisms. On the one hand, it is crucial to precisely determine the nature of microscopic phases that can be highly reactive. On the other hand, some elements as P and S could modify this reactivity. To clarify this point and complementary to other studies using Raman micro spectroscopy technique, X-rays Absorption Spectroscopy (XAS) under synchrotron radiation plays a crucial role. It allows one to precisely identify the reactive phases in the corrosion layers. Micro-XAS was required in order to refine the spatial variation, at micrometer scale, of the predominant Fe oxidation state and to characterise the corresponding corrosion products. Moreover, the role of minor elements on phase’s stability and the chemical form of these elements in the rust layer, especially phosphorus and sulphur, was investigated.

  3. X-rays absorption study on medieval corrosion layers for the understanding of very long-term indoor atmospheric iron corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Monnier, J. [SIS2M UMR 3299 CEA-CNRS, Laboratoire Archeomateriaux et Prevision de l' Alteration (LAPA), Gif/Yvette cedex (France); UMR 7182 CNRS and UPEC, Universite Paris-Est, Institut de Chimie et des Materiaux Paris-Est (ICMPE), Thiais (France); Reguer, S.; Vantelon, D. [Synchrotron SOLEIL, Gif-sur-Yvette (France); Dillmann, P. [SIS2M UMR 3299 CEA-CNRS, Laboratoire Archeomateriaux et Prevision de l' Alteration (LAPA), Gif/Yvette cedex (France); IRAMAT UMR 5060 CNRS, Gif sur Yvette (France); Neff, D. [SIS2M UMR 3299 CEA-CNRS, Laboratoire Archeomateriaux et Prevision de l' Alteration (LAPA), Gif/Yvette cedex (France); Guillot, I. [UMR 7182 CNRS and UPEC, Universite Paris-Est, Institut de Chimie et des Materiaux Paris-Est (ICMPE), Thiais (France)

    2010-05-15

    The study and prediction of very long-term atmospheric corrosion behaviour of ferrous alloys is of great importance in different fields. First the conservation of metallic artefacts in museum and the corrosion diagnosis on ferrous reinforcement used in ancient monuments since medieval times needs reliable data to understand the mechanisms. Second, in the frame of the interim storage of nuclear waste in France, it is necessary to model the long-term corrosion of low alloy steel overcontainer. The nature of phases and elements constituting the corrosion layers can greatly influence the corrosion mechanisms. On the one hand, it is crucial to precisely determine the nature of microscopic phases that can be highly reactive. On the other hand, some elements as P and S could modify this reactivity. To clarify this point and complementary to other studies using Raman micro spectroscopy technique, X-rays Absorption Spectroscopy (XAS) under synchrotron radiation plays a crucial role. It allows one to precisely identify the reactive phases in the corrosion layers. Micro-XAS was required in order to refine the spatial variation, at micrometer scale, of the predominant Fe oxidation state and to characterise the corresponding corrosion products. Moreover, the role of minor elements on phase's stability and the chemical form of these elements in the rust layer, especially phosphorus and sulphur, was investigated. (orig.)

  4. Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement LiDAR Measurements Affected by Partial Overlap

    OpenAIRE

    Sandip Pal

    2014-01-01

    There is compelling evidence that the incomplete laser beam receiver field-of-view overlap (i.e., partial overlap) of ground-based vertically-pointing aerosol LiDAR restricts the observational range for detecting aerosol layer boundaries to a certain height above the LiDAR. This height varies from one to few hundreds of meters, depending on the transceiver geometry. The range, or height of full overlap, is defined as the minimum distance at which the laser beam is completely imaged onto the ...

  5. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  6. Large-eddy simulation of the diurnal cycle of the atmospheric boundary layer and influence of the radiative forcing during the Wangara experiment.

    Science.gov (United States)

    Dall'Ozzo, Cédric; Carissimo, Bertrand; Milliez, Maya; Musson-Genon, Luc; Dupont, Eric

    2013-04-01

    The ability to simulate the whole diurnal cycle of the atmospheric boundary layer in order to study the complex turbulent structures remains a difficult topic. Consequently large-eddy simulations (LES) are performed with the open source CFD code Code_Saturne [Archambeau et al., 2004]. First the code is validated on an atmospheric convective case [Schmidt and Schumann, 1989] where different subgrid-scale (SGS) models are compared: two non-dynamical SGS models [Smagorinsky, 1963] [Nicoud and Ducros, 1999] and two dynamical SGS models [Germano et al., 1991 ; Lilly, 1992] [Wong and Lilly, 1994]. Then LES are performed to simulate the whole diurnal cycle of the Wangara experiment (Day 33-34). The results are compared to measurements , RANS "k-ɛ" model and other LES performed by [Basu et al., 2008] using a locally averaged scale-dependent dynamic (LASDD) SGS model. Thereafter the influence of the radiative forcing on the atmosphere is studied testing several SGS models. The results are especially discussed on nocturnal low level jet and potential temperature gradient in the stable boundary layer. References: [Archambeau et al., 2004] Archambeau F., Mehitoua N., Sakiz M. (2004). Code_Saturne: a finite volume code for the computation of turbulent incompressible flows. International Journal on Finite Volumes 1(1). [Basu et al., 2008] Basu S., Vinuesa J. F., and Swift A. (2008). Dynamic LES modeling of a diurnal cycle. Journal of Applied Meteorology and Climatology, 47 :1156-1174. [Germano et al., 1991] Germano M., Piomelli U., Moin P., and Cabot W. H. (1991). A dynamic subgrid-scale eddy-viscosity model. Physics of Fluids, A3 :1760-1765. [Lilly, 1992] Lilly D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, A 4 :633-635. [Schmidt and Schumann, 1989] Schmidt H. and Schumann U. (1989). Coherent structure of the convective boundary layer derived from lage-eddy simulation. Journal of Fluid Mechanics, 200 :511-562. [Smagorinsky

  7. Superficial tension: experimental model with simple materials

    OpenAIRE

    2012-01-01

    En este trabajo se presenta una propuesta didáctica basada en una actividad experimental utilizando materiales de muy bajo costo, orientada a lograr que los alumnos comprendan e interpreten el fenómeno de tensión superficial conjuntamente con la importancia de la modelización en ciencias. Tiene como objetivo principal de enseñanza acercar al alumno a la mecánica de los fluidos estáticos y las fuerzas intermoleculares, combinando contenidos científicos con cuestiones cercanas al es...

  8. Superficial siderosis of the CNS. MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Matsuo, Yoshiaki; Kato, Akira; Kudo, Sho [Saga Medical School, Nabeshima (Japan); Matsumoto, Shunichi

    1997-11-01

    Six cases of superficial siderosis of the CNS are reported here. There were 4 men and 2 women, whose ages ranged from 25 to 69 years. The clinical presentations included bilateral sensorineural hearing loss (6), cerebellar ataxia (4), and myelopathy (2). Typical hypointense rims were observed over the brain surface on T2-weighted images. Five of the 6 patients had atrophy of the superior cerebellar vermis. The spinal cord was involved in 5 of the 6 patients. On T1-weighted images, hyperintense rims were demonstrated over the brain surface in 3 of the 6 patients. This finding has not been previously reported. (author)

  9. Study of the effect of wind speed on evaporation from soil through integrated modeling of atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan; Illangasekare, Tissa

    2013-04-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change, the movement of green house gases such as possible leaking of sequestered CO2 and the accurate detection of buried objects such as landmines. Soil moisture distribution in the shallow subsurface becomes a critical factor in all these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary

  10. Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of Stability Conditions in the Atmospheric Boundary Layer

    Science.gov (United States)

    Salzano, Roberto; Pasini, Antonello; Casasanta, Giampietro; Cacciani, Marco; Perrino, Cinzia

    2016-09-01

    Determining the mixing height using a tracer can improve the information obtained using traditional techniques. Here we provide an improved box model based on radon progeny measurements, which considers the vertical entrainment of residual layers and the variability in the soil radon exhalation rate. The potential issues in using progeny instead of radon have been solved from both a theoretical and experimental perspective; furthermore, the instrumental efficiency and the counting scheme have been included in the model. The applicability range of the box model has been defined by comparing radon-derived estimates with sodar and lidar data. Three intervals have been analyzed ("near-stable", "transition" and "turbulent"), and different processes have been characterized. We describe a preliminary application case performed in Rome, Italy, while case studies will be required to determine the range limits that can be applied in any circumstances.

  11. The Høvsøre Tall Wind-Profile Experiment: A Description of Wind Profile Observations in the Atmospheric Boundary Layer

    DEFF Research Database (Denmark)

    Peña, Alfredo; Floors, Rogier Ralph; Gryning, Sven-Erik

    2014-01-01

    for the analysis of vertical wind-speed profiles under a wide range of atmospheric stability, turbulence, and forcing conditions. One of the objectives of the campaign was to serve as a benchmark for flow over flat terrain models. The observations consist of combined wind lidar and sonic anemometer measurements...... at a meteorological mast. The sonic measurements cover the first 100mand the wind lidar measures above 100m every 50min the vertical. Results of the analysis of observations of the horizontal wind-speed components in the range 10–1200 m and surface turbulence fluxes are illustrated in detail, combined with forcing...... conditions derived from mesoscale model simulations. Ten different cases are presented. The observed wind profiles approach well the simulated gradient and geostrophic winds close to the simulated boundary-layer height during both barotropic and baroclinic conditions, respectively, except for a low-level jet...

  12. Electrochemical Behavior of CoNiCrAlY/ZrO2-Y2O3 Coated Layers with Atmospheric Pressure Plasma Technology in Seawater

    Science.gov (United States)

    Kim, Seong-Jong; Woo, Yong-Bin; Lee, Seung-Jun; Jeong, Jae-Yong

    2013-11-01

    Application of surface treatment has become common for protecting machine parts from oxidation, abrasion and corrosion induced by external environment. In particular, thermal spraying techniques are widely employed to improve wear, corrosion and thermal resistance. And compared to other methods they are simple and cost effective. However, the presence of porosity in the thermal spray coating can be highly detrimental because it provides access to penetration of corrosive matters, lowering corrosion resistance. Therefore, this research evaluate the electrochemical behavior under marine environment for aluminum-bronze alloy coated with MCrAlY and yttria-stabillized zirconia (YSZ) by atmospheric pressure plasma (APP) coating technology. Further application of carbon-based sealer removed voids and defects in the coating. The result reveled that, in case the voids and defects are completely removed, excellent corrosion resistance can be archived by application of good coating material along with formation of compact sealing layer.

  13. Micro-pattern formation of extracellular matrix (ECM) layers by atmospheric-pressure plasmas and cell culture on the patterned ECMs

    Science.gov (United States)

    Ando, Ayumi; Asano, Toshifumi; Urisu, Tsuneo; Hamaguchi, Satoshi

    2011-12-01

    A new patterning technique for the extracellular matrix (ECM) deposited on a Si substrate was developed with the use of a low-frequency atmospheric-pressure plasma and a metal stencil mask. The development of such a patterning technique for cell arrangement is a crucial step for the development of future cell chips. In this study, optimal process conditions for ECM patterning over the size of a typical single chip (about 1 cm2) were achieved and the obtained ECM patterns were directly observed by fluorescence labelling. It was also demonstrated that HEK293 cells (human embryo kidney cells) attach to and proliferate on the ECM layer patterned by this technique, arranging themselves on the Si substrate in the mask pattern.

  14. Detecting components spectrally localized at astrophysical process frequencies in time series of the electric field vertical component of the earth atmosphere boundary layer

    CERN Document Server

    Grunskaya, L V; Isakevich, D V; Sushkova, L T

    2016-01-01

    Signal eigenvectors and components analyser (RF Utility model patent 116242) was used to explore the time-series of the electric field vertical component Ez in the Earth atmosphere boundary layer. There have been detected non-coherent complex-periodic components localized at the frequencies of gravity-wave impact of binary stars and at the frequency of axion-photon interaction. These components cannot be detected by means of quadrature scheme of spectral analysis and have RMS values from 0.05 V/m to 0.5 V/m at binary stars gravity-wave impact frequencies and from 0.7 V/m to 2.7 V/m at axion-photon interaction frequency. It was also demonstrated that the axion-photon interaction frequency modulates the amplitude

  15. Two years observations on the diurnal evolution of coastal atmospheric boundary layer features over Thiruvananthapuram (8.5∘ N, 76.9∘ E), India

    Science.gov (United States)

    Anurose, T. J.; Subrahamanyam, D. Bala; Sunilkumar, S. V.

    2016-10-01

    The atmospheric boundary layer (ABL) over a given coastal station is influenced by the presence of mesoscale sea breeze circulation, together with the local and synoptic weather, which directly or indirectly modulate the vertical thickness of ABL (z ABL). Despite its importance in the characterization of lower tropospheric processes and atmospheric modeling studies, a reliable climatology on the temporal evolution of z ABL is not available over the tropics. Here, we investigate the challenges involved in determination of the ABL heights, and discuss an objective method to define the vertical structure of coastal ABL. The study presents a two year morphology on the diurnal evolution of the vertical thickness of sea breeze flow (z SBF) and z ABL in association with the altitudes of lifting condensation level (z LCL) over Thiruvananthapuram (8.5∘ N, 76.9∘ E), a representative coastal station on the western coastline of the Indian sub-continent. We make use of about 516 balloon-borne GPS sonde measurements in the present study, which were carried out as part of the tropical tropopause dynamics field experiment under the climate and weather of the sun-earth system (CAWSES)-India program. Results obtained from the present study reveal major differences in the temporal evolution of the ABL features in relation to the strength of sea breeze circulation and monsoonal wind flow during the winter and summer monsoon respectively. The diurnal evolution in z ABL is very prominent in the winter monsoon as against the summer monsoon, which is attributed to the impact of large-scale monsoonal flow over the surface layer meteorology. For a majority of the database, the z LCL altitudes are found to be higher than that of the z ABL, indicating a possible decoupling of the ABL with the low-level clouds.

  16. Experimental evaluation of a model for the influence of coherent wind lidars on their remote measurements of atmospheric boundary-layer turbulence

    Science.gov (United States)

    Sjöholm, Mikael; Kapp, Stefan; Kristensen, Leif; Mikkelsen, Torben

    2011-11-01

    Affordable coherent wind lidars based on modern telecom components have recently emerged on the wind energy market spurred by high demand of the industry for compact and accurate remote sensing wind and turbulence profilers. Today, hundreds of ground based wind lidars that achieve the range resolution by either focusing a continuous-wave laser beam or by gating a pulsed laser beam are used for measuring mean wind and turbulence profiles in the lower atmospheric boundary-layer. However, detailed understanding of the influence of the spatial filtering of the lidars on their precise assessment of turbulence is still a challenge. For assessment of the fine structure turbulence, and in particular for the easy and fast assessment of the dissipation rate of turbulent kinetic energy from measurements in the Kolmogorov inertial subrange, we havemodeled the atmospheric velocity structure functions and spectra obtainable from fixed-orientation along-beam wind measurements by these lidars. The dissipation rate retrieval model is experimentally evaluated with data obtained with a pulsed lidar pointing horizontally into horizontally homogeneous turbulence encountered at the top level of a 125 m tall meteorological tower, equipped with an in-situ turbulence measurement device (a three-dimensional sonic anemometer) for intercomparison. Our experimental study has revealed that the easily manageable analytical model accounts well for the observed fine structure turbulent spectra and their dependence on the pointing direction of the lidar beam relative to the mean wind direction. The results demonstrate that turbulence dissipation rates, and hence boundary-layer turbulence, can easily be obtained from wind lidar-based fine structure measurements.

  17. A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses.

    Directory of Open Access Journals (Sweden)

    Derry K Mercer

    Full Text Available Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20-25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide, inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones.

  18. Surface and optical properties of indium tin oxide layer deposition by RF magnetron sputtering in argon atmosphere

    Science.gov (United States)

    Yudar, H. Hakan; Korkmaz, Şadan; Özen, Soner; Şenay, Volkan; Pat, Suat

    2016-08-01

    This study focused on the characterization and properties of transparent and conductive indium tin oxide (ITO) thin films deposited in argon atmosphere. ITO thin films were coated onto glass substrates by radio frequency (RF) magnetron sputtering technique at 75 and 100 W RF powers. Structural characteristics of producing films were investigated through X-ray diffraction analysis. UV-Vis spectrophotometer and interferometer were used to determine transmittance, absorbance and reflectance values of samples. The surface morphology of the films was characterized by atomic force microscope. The calculated band gaps were 3.8 and 4.1 eV for the films at 75 and 100 W, respectively. The effect of RF power on crystallinity of prepared films was explored using mentioned analysis methods. The high RF power caused higher poly crystallinity in the produced samples. The thickness and refractive index values for all samples increased respect to an increment of RF power and were calculated as 20, 50 nm and 1.71, 1.86 for samples at 75 and 100 W, respectively. Finally, the estimated grain sizes for all prepared films decreased with increasing of 2 θ degrees, and the number of crystallite per unit volume was calculated. It was found that nearly all properties including sheet resistance and resistivity depend on the RF power.

  19. Bromide and other ions in the snow, firn air, and atmospheric boundary layer at Summit during GSHOX

    Directory of Open Access Journals (Sweden)

    J. E. Dibb

    2010-10-01

    Full Text Available Measurements of gas phase soluble bromide in the boundary layer and in firn air, and Br in aerosol and snow, were made at Summit, Greenland (72.5° N, 38.4° W, 3200 m a.s.l. as part of a larger investigation into the influence of Br chemistry on HOx cycling. The soluble bromide measurements confirm that photochemical activation of Br in the snow causes release of active Br to the overlying air despite trace concentrations of Br in the snow (means 15 and 8 nmol Br kg−1 of snow in 2007 and 2008, respectively. Mixing ratios of soluble bromide above the snow were also found to be very small (mean <1 ppt both years, with maxima of 3 and 4 ppt in 2007 and 2008, respectively, but these levels clearly oxidize and deposit long-lived gaseous elemental mercury and may perturb HOx partitioning. Concentrations of Br in surface snow tended to increase/decrease in parallel with the specific activities of the aerosol-associated radionuclides 7Be and 210Pb. Earlier work has shown that ventilation of the boundary layer causes simultaneous increases in 7Be and 210Pb at Summit, suggesting there is a pool of Br in the free troposphere above Summit in summer time. Speciation and the source of this free tropospheric Br are not well constrained, but we suggest it may be linked to extensive regions of active Br chemistry in the Arctic basin which are known to cause ozone and mercury depletion events shortly after polar sunrise. If this hypothesis is correct, it implies persistence of the free troposphere Br for several months after peak Br activation in March/April. Alternatively, there may be a ubiquitous pool of Br in the free troposphere, sustained by currently unknown sources and processes.

  20. Bromide and other ions in the snow, firn air, and atmospheric boundary layer at Summit during GSHOX

    Directory of Open Access Journals (Sweden)

    J. E. Dibb

    2010-05-01

    Full Text Available Measurements of gas phase soluble bromide in the boundary layer and in firn air, and Br in aerosol and snow, were made at Summit, Greenland (72.5° N, 38.4° W, 3200 m a.s.l. as part of a larger investigation into the influence of Br chemistry on HOx cycling. The soluble bromide measurements confirm that photochemical activation of Br in the snow causes release of active Br to the overlying air despite trace concentrations of Br in the snow (means 15 and 8 nmol Br kg−1 of snow in 2007 and 2008, respectively. Mixing ratios of soluble bromide above the snow were also found to be very small (mean <1 ppt both years, with maxima of 3 and 4 ppt in 2007 and 2008, respectively, but these levels clearly oxidize and deposit long-lived gaseous elemental mercury and may perturb HOx partitioning. Concentrations of Br in surface snow tended to increase/decrease in parallel with the specific activities of the aerosol-associated radionuclides 7Be and 210Pb. Earlier work has shown that ventilation of the boundary layer causes simultaneous increases in 7Be and 210Pb at Summit, suggesting there is a pool of Br in the free troposphere above Summit in summer time. Speciation and the source of this free tropospheric Br are not well constrained, but we suggest it may be linked to extensive regions of active Br chemistry in the Arctic basin which are known to cause ozone and mercury depletion events shortly after polar sunrise. If this hypothesis is correct, it implies persistence of the free troposphere Br for several months after peak Br activation in March/April. Alternatively, there may be a~ubiquitous pool of Br in the free troposphere, sustained by currently unknown sources and processes.

  1. The distribution of atmospheric black carbon in the marine boundary layer over the North Atlantic and the Russian Arctic Seas in July - October 2015

    Science.gov (United States)

    Shevchenko, Vladimir P.; Kopeikin, Vladimir M.; Evangeliou, Nikolaos; Novigatsky, Alexander N.; Pankratova, Natalia V.; Starodymova, Dina P.; Stohl, Andreas; Thompson, Rona

    2016-04-01

    Black carbon (BC) particles are highly efficient at absorbing visible light, which has a large potential impact on Arctic climate. However, measurement data on the distribution of BC in the atmosphere over the North Atlantic and the Russian Arctic Seas are scarce. We present measurement data on the distribution of atmospheric BC in the marine boundary layer of the North Atlantic and Baltic, North, Norwegian, Barents, White, Kara and Laptev Seas from research cruises during July 23 to October 6, 2015. During the 62nd and 63rd cruises of the RV "Akademik Mstislav Keldysh" air was filtered through Hahnemuhle fineart quarz-microfibre filters. The mass of BC on the filter was determined by measurement of the attenuation of a beam of light transmitted through the filter. Source areas were estimated by backwards trajectories of air masses calculated using NOAA's HYSPLIT model (http://www.arl.noaa.gov/ready.html) and FLEXPART model (http://www.flexpart.eu). During some parts of the cruises, air masses arrived from background areas of high latitudes, and the measured BC concentrations were low. During other parts of the cruise, air masses arrived from industrially developed areas with strong BC sources, and this led to substantially enhanced measured BC concentrations. Model-supported analyses are currently performed to use the measurement data for constraining the emission strength in these areas.

  2. A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign

    Science.gov (United States)

    Xia, Geng; Zhou, Liming; Freedman, Jeffrey M.; Roy, Somnath Baidya; Harris, Ronald A.; Cervarich, Matthew Charles

    2016-04-01

    Recent studies using satellite observations show that operational wind farms in west-central Texas increase local nighttime land surface temperature (LST) by 0.31-0.70 °C, but no noticeable impact is detected during daytime, and that the diurnal and seasonal variations in the magnitude of this warming are likely determined by those in the magnitude of wind speed. This paper further explores these findings by using the data from a year-long field campaign and nearby radiosonde observations to investigate how thermodynamic profiles and surface-atmosphere exchange processes work in tandem with the presence of wind farms to affect the local climate. Combined with satellite data analyses, we find that wind farm impacts on LST are predominantly determined by the relative ratio of turbulence kinetic energy (TKE) induced by the wind turbines compared to the background TKE. This ratio explains not only the day-night contrast of the wind farm impact and the warming magnitude of nighttime LST over the wind farms, but also most of the seasonal variations in the nighttime LST changes. These results indicate that the diurnal and seasonal variations in the turbine-induced turbulence relative to the background TKE play an essential role in determining those in the magnitude of LST changes over the wind farms. In addition, atmospheric stability determines the sign and strength of the net downward heat transport as well as the magnitude of the background TKE. The study highlights the need for better understanding of atmospheric boundary layer and wind farm interactions, and for better parameterizations of sub-grid scale turbulent mixing in numerical weather prediction and climate models.

  3. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

    Science.gov (United States)

    Piazza, Marie; Terray, Laurent; Boé, Julien; Maisonnave, Eric; Sanchez-Gomez, Emilia

    2016-03-01

    A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air-sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

  4. Influence of orographically induced transport process on the structure of the atmospheric boundary layer and on the distribution of trace gases; Einfluss orographisch induzierter Transportprozesse auf die Struktur der atmosphaerischen Grenzschicht und die Verteilung von Spurengasen

    Energy Technology Data Exchange (ETDEWEB)

    Kossmann, M.

    1998-04-01

    The influence of terrain on the structure of the atmospheric boundary-layer and the distribution of trace gases during periods of high atmospheric pressure was studied by means of meteorological and air-chemical data collected in September 1992 during the TRACT experiment in the transition area between the upper Rhine valley and the northern Black Forest. The emphasis was on the investigation of the development of the convective boundary layer, the formation of thermally induced circulation systems, and the orographic exchange between the atmospheric boundary layer and the free troposphere. Thanks to the extensive measurements, phenomena not yet described in literature could be verified by case studies, and processes that had only been established qualitatively could be quantified. (orig.)

  5. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    Science.gov (United States)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2016-08-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  6. Simulation of Surface Energy Fluxes and Snow Interception Using a Higher Order Closure Multi-Layer Soil-Vegetation-Atmospheric Model: The Effect of Canopy Shape and Structure

    Science.gov (United States)

    McGowan, L. E.; Dahlke, H. E.; Paw U, K. T.

    2015-12-01

    Snow cover is a critical driver of the Earth's surface energy budget, climate change, and water resources. Variations in snow cover not only affect the energy budget of the land surface but also represent a major water supply source. In California, US estimates of snow depth, extent, and melt in the Sierra Nevada are critical to estimating the amount of water available for both California agriculture and urban users. However, accurate estimates of snow cover and snow melt processes in forested area still remain a challenge. Canopy structure influences the vertical and spatiotemporal distribution of snow, and therefore ultimately determines the degree and extent by which snow alters both the surface energy balance and water availability in forested regions. In this study we use the Advanced Canopy-Atmosphere-Soil algorithm (ACASA), a multi-layer soil-vegetation-atmosphere numerical model, to simulate the effect of different snow-covered canopy structures on the energy budget, and temperature and other scalar profiles within different forest types in the Sierra Nevada, California. ACASA incorporates a higher order turbulence closure scheme which allows the detailed simulation of turbulent fluxes of heat and water vapor as well as the CO2 exchange of several layers within the canopy. As such ACASA can capture the counter gradient fluxes within canopies that may occur frequently, but are typically unaccounted for, in most snow hydrology models. Six different canopy types were modeled ranging from coniferous forests (e.g. most biomass near the ground) to top-heavy (e.g. most biomass near the top of the crown) deciduous forests to multi-layered forest canopies (e.g. mixture of young and mature trees). Preliminary results indicate that the canopy shape and structure associated with different canopy types fundamentally influence the vertical scalar profiles (including those of temperature, moisture, and wind speed) in the canopy and thus alter the interception and snow

  7. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    Science.gov (United States)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  8. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  9. Corneal endothelial changes in superficial epithelial keratopathy.

    Science.gov (United States)

    Brooks, A M; Grant, G; Gillies, W E

    1986-05-01

    A series of five cases is described in which superficial punctate keratopathy was associated with endothelial cell changes. The most striking change was the presence of dark areas or blebs, usually two to four cell diameters in extent. There was also distortion and crumpling of the corneal endothelium, mild pleomorphism and polymegathism of the endothelial cells, with a reduced cell count in some cases. These blebs have previously been reported in hard and soft contact lens wearers and are due to intercellular oedema with separation of endothelial cells from Descemet's membrane. Anoxia and interference with osmosis have been proposed as possible mechanisms for the production of these blebs, but our cases demonstrate that fine disruption of the corneal epithelium can affect the integrity of the corneal endothelium and may lead to significant damage over a long period of time. PMID:3801208

  10. Condiciones de la superficie deslizamiento con falla

    Directory of Open Access Journals (Sweden)

    María Cecilia Sierra B.

    2011-06-01

    Full Text Available Se modelan seis (6 taludes can diferentes ángulos de inclinación y peso unitario de 1.8 ton/m3, módulo de Young de 500 ton/m2 y relación de Poisson de 0.45. En cada uno de estos taludes se calculan los esfuerzos a través del talud y se determinan los puntos que están sometidos a mayores esfuerzos cortantes, correspondiendo estos a los estados de esfuerzos mas críticos, La ubicación de estos puntos es por donde comenzará y terminará la superficie de falla. Se obtiene un gráfico de diseño que permite obtener la pendiente máxima que debe tener un talud para que no se presente falla local en ningún punto.

  11. Andreas Vesalius' 500th Anniversary: Initiation of the Superficial Facial System and Superficial Musculoaponeurotic System Concepts.

    Science.gov (United States)

    Brinkman, Romy J; Hage, J Joris

    2016-02-01

    Because of their relevance for liposuction and rhytidectomies, respectively, the superficial fascial system (SFS) and superficial musculoaponeurotic system (SMAS) have been thoroughly studied over the past decennia. Although it is well known that the SMAS concept was introduced by Tessier in 1974, it remains unknown who first properly described the stratum membranosum of the SFS. In light of the 500th birthday of Andreas Vesalius (1515-1564), we searched his 1543 masterwork De Humani Corporis Fabrica Libri Septem and related work for references to these structures. We found ample reference to both structures as the membrana carnosa (or fleshy membrane) in his works and concluded that Vesalius recognized the extension, nature, and functions of the stratum membranosum of the SFS, as well as its more musculous differentiation as the SMAS in the head and neck area, and the dartos in the perineogenital area. In doing so, Vesalius recorded most details of the SFS and SMAS concepts avant la lettre. PMID:26761152

  12. Superficial circumflex iliac artery pure skin perforator-based superthin flap for hand and finger reconstruction.

    Science.gov (United States)

    Narushima, Mitsunaga; Iida, Takuya; Kaji, Nobuyuki; Yamamoto, Takumi; Yoshimatsu, Hidehiko; Hara, Hisako; Kikuchi, Kazuki; Araki, Jun; Yamashita, Shuji; Koshima, Isao

    2016-06-01

    For hand and finger reconstruction, thin and flexible skin coverage is ideally required. A free flap is one of the surgical options used for large defects. However, a flap containing the fat layer is bulky. Several debulking surgeries are often needed for aesthetic and functional purposes. To overcome this disadvantage, we herein report our experience of six cases of hand and finger reconstruction using a pure skin perforator (PSP) flap concept. A PSP flap is a thin skin flap that is vascularized by a perforator branch penetrating the dermis. The thickness of the PSP flap could be approximately ≤2 mm as needed. The superficial circumflex iliac artery and superficial inferior epigastric artery were used as a flap pedicle. Secondary defatting operations were not required. For the success of PSP flap elevation, we applied three techniques: the microdissection technique for vessel separation, thin flap elevation at the superficial fascial layer, and the temporary clamping method. Temporary clamping was applied for the main trunk of pedicle vessels during debulking to prevent unwanted bleeding, which allowed us to freely perform three-dimensional defatting. Using these three techniques, the PSP flap can be elevated and adjusted for complex contouring of the hand and finger. Although the use of the PSP flap requires further study, the PSP flap is an effective, superthin flap with the advantages of both skin graft and perforator flaps. PMID:27085610

  13. Coexistence of esophageal superficial carcinoma and multiple leiomyomas: A case report

    Institute of Scientific and Technical Information of China (English)

    Takeshi Iwaya; Go Wakabayashi; Chihaya Maesawa; Noriyuki Uesugi; Toshimoto Kimura; Kenichiro Ikeda; Yusuke Kimura; Shingo Mitomo; Kaoru Ishida; Nobuhiro Sato

    2006-01-01

    Leiomyomas are the most common benign tumors of the esophagus. They usually occur as a single lesion or as two or three nodules. Only two cases of esophageal multiple leiomyomas comprising more than 10 nodules have been reported previously. Moreover, there have been few reports of esophageal squamous cell carcinoma overlying submucosal tumors. We describe a 71-yearold man who was diagnosed as having a superficial esophageal cancer coexisting with two or three leiomyoma nodules. During surgery, 10 or more nodules that had not been evident preoperatively were palpable in the submucosal and muscular layers throughout the esophagus. As intramural metastasis of the esophageal cancer was suspected, we considered additional lymphadenectomy, but had to rule out this option because of the patient's severe anoxemia. Microscopic examination revealed that all the nodules were leiomyomas (20 lesions, up to 3 cm in diameter), and that invasion of the carcinoma cells was limited to the submucosal layer overlying a relatively large leiomyoma.This is the first report of superficial esophageal cancer coexisting with numerous solitary leiomyomas. Multiple minute leiomyomas are often misdiagnosed as intramural metastasis, and a leiomyoma at the base of a carcinoma lesion can also be misdiagnosed as tumor invasion.The present case shows that accurate diagnosis is required for the management of patients with coexisting superficial esophageal cancer and multiple leiomyomas.

  14. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  15. Efficacy and safety of butenafine in superficial dermatophytoses (tinea pedis, tinea cruris, tinea corporis).

    Science.gov (United States)

    Saple, D G; Amar, A K; Ravichandran, G; Korde, K M; Desai, A

    2001-05-01

    Superficial dermatophytoses of skin are very common infections seen in clinical practice. Besides topical imidazoles, triazoles and allylamines, topical butenafine (a benzylamine derivative) is a novel agent with broad antifungal activity. One hundred and eleven patients with tinea infections were enrolled in this multicentric, randomised, single-blind non-comparative study, which involved application of butenafine (1%) cream in tinea pedis (4 weeks) and tinea cruris and tinea corporis (2 weeks) cases. The results showed that butenafine causes rapid resolution of signs and symptoms (erythema itching, burning, crusting, scaling, etc), with good patient and physician acceptability of treatment. The broader spectrum fungicidal activity and better drug retention in superficial skin layers may be responsible for this beneficial effect. PMID:11676116

  16. Study of the effect of soil disturbance on vapor transport through integrated modeling of the atmospheric boundary layer and shallow subsurface

    Science.gov (United States)

    Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.

    2014-12-01

    Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the

  17. The structures of the atmospheric boundary layer in the Yellow Sea summer fog-a comparison study with the spring fog

    Science.gov (United States)

    Zhang, S.-P.; Ren, Z.-P.; Yang, Y.-Q.; Wang, X.-G.; Xu, X.-L.

    2010-07-01

    The Yellow Sea is a highly foggy area in spring-summer (April to July) seasons. A Yellow Sea fog case occurred on July 7-11, 2008 is investigated by the data from the sea buoy stations, high-resolution digital sounding instruments and other observations and from a three-dimensional mesoscale model (WRF). Espcially, the boundary layer structure are analyzed and simulated, and the comparison is made between the summer fog case and a spring fog case in May 2-3, 2008. The results are as follows (1) In summer fog, the marine atmospheric boundary layer (MABL) is less stable (almost no temperature inversion)than that in spring fog and the summer fog is thicker in elevation due to the development of turbulence and plenty of moisture supply advected by the East Asian summer monsoon in the low level of the MABL; whereas in spring fog the MABL is very stable with pronounced temperature inversion and the moisture is mainly transported by a shallow local anticyclone in the Yellow Sea surface and traped close to a very low level, thus leading to thin fog. (2) In summer, the southerly air column in the MABL is of similar physical features since it comes from the southern ocean, producing the less vertical gradient both in temperature and in humidity (no obvious dry layer). In contrast, in spring the southerly sea surface air is cooling gradualy as it passes the cold Yellow Sea, but the air at about 950 hPa is westerly from inland that is dry and warm by the increased solar radiation, thus forming temerature inversion and evident dry layer over the sea. (3) The surface air temperature (SAT) is obviously higher than the sea surface temperature (SST) in the process of the summer fog, and the SAT does not derease or even increase in the fog, which is related to the weaker long wave radiation at the fog top and the huge amount of latent heat; while in spring sea fog the SAT decreases rapidly and is even lower than the SST in the peak phase of the fog due to strong long wave radiation

  18. The effect of unsteady and baroclinic forcing on predicted wind profiles in Large Eddy Simulations: Two case studies of the daytime atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik;

    2013-01-01

    observations with simulations that use progressively more realistic forcing relative to observed large-scale pressure gradients. Two case studies are presented. One is based on measurements from the rural site of Høvsøre in Denmark, and the other on measurements from a suburban site in Hamburg, Germany....... The applied domain-scale pressure gradient and its height- and time-dependence are estimated from LIDAR measurements of the wind speed above the atmospheric boundary layer in the Høvsøre case, and from radio soundings and a network of ground-based pressure sensors in the Hamburg case. In the two case studies......, LIDAR measurements of the wind speed up to heights between 900 and 1600 m and tower-based measurements up to 100 and 250 m are used to evaluate the performance of the variably-driven Large Eddy Simulations. We find in both case studies that including height- and time-variations in the applied pressure...

  19. An ocean-land-atmosphere coupled model for tropical cyclone landfall processes: The multi-layer ocean model and its verification

    Institute of Scientific and Technical Information of China (English)

    DUAN Yihong; YU Runling; LI Yongping

    2006-01-01

    POM (Princeton ocean model) tentatively taken as the ocean part of an ocean-land-atmosphere coupled model is verified for the ultimate purpose of studying the landfall process of tropical cyclone (TC) in the western North Pacific. The POM is tested with monthly mean wind stress in the summer and given lateral boundary conditions. The results indicate that the equilibrium state of the ocean is in accordance with the climate mean, with the error in sea surface temperature (salinity) less than 0.5 ℃ (0.5). The simulated ocean currents are reasonable as well. Several numerical experiments are designed to verify the oceanic response to a stationary or moving TC. It is found that the results agree fairly well with the previous work, including both the drop magnitude and the distribution of sea temperature. Compared with the simple two-layer ocean model used by some other studies, the response of the ocean to a TC is more logical here. The model is also verified in a real case with a TC passing the neighborhood of a buoy station. It is shown that the established ocean model can basically reproduce the sea surface temperature change as observed.

  20. Anatomical study of superficial fascia and localized fat deposits of abdomen

    Directory of Open Access Journals (Sweden)

    Pramod Kumar

    2011-01-01

    Full Text Available Background: The development of liposuction and abdominoplasty has renewed interest in the anatomy of the localized fat deposits (LFD areas of the abdomen. This study aims at ascertaining the gross anatomy of superficial fascia and the localized fat deposits of abdomen. Materials and Methods: Eight adult cadavers (four males and four females were dissected. Attachments, number of layers of fascia and colour, shape and maximum size of the fat lobules in loin, and upper and lower abdomen were noted. Thickness of deep membranous layer of superficial fascia of upper abdomen and lower abdomen were measured by metal casing electronic digital calipers, with resolution being 10 μm. The independent sample t-test, ANOVA for comparison and Pearson coefficient for correlation were used. Results: Superficial fascia of the abdomen was multilayered in the midline and number of layers reduced laterally. The shape, size, color, and arrangement of fat lobules were different in different locations. The thickness of the fascia of the lower abdomen in males (mean 528.336 ± SE38.48 was significantly (P < 0.041 more than that in females. (Mean 390.822 ± SE36.24. Pearson correlation between thickness of the membranous layer of the upper and lower abdomen revealed moderately positive correlation (r=0.718; P<0.045. Conclusions: The LFD in the central region of the abdomen corresponds to the area of multilayered fascia with smaller fat lobules. The relatively thinner supporting fascia of the lower abdomen in females may be responsible for excessive bulges of the lower abdomen. The fat lobule anatomy at different sites under study was different.

  1. Superficial fibromatoses are genetically distinct from deep fibromatoses.

    Science.gov (United States)

    Montgomery, E; Lee, J H; Abraham, S C; Wu, T T

    2001-07-01

    Whereas deep fibromatoses (abdominal, extra-abdominal, mesenteric) display locally aggressive behavior, superficial fibromatoses typically remain small and less likely to recur despite essentially identical morphology. Somatic beta-catenin or APC gene mutations have been reported in < or =74% of sporadic deep fibromatoses and in virtually 100% of Gardner syndrome-associated fibromatoses, whereas genetic events in superficial fibromatoses remain less well characterized. We performed immunohistochemical staining for beta-catenin on 29 superficial fibromatoses (22 palmar, 5 plantar, 1 penile, and 1 infantile digital fibromatosis) and 5 deep fibromatoses. Mutations of beta-catenin and APC genes were analyzed in cases of superficial fibromatoses by direct DNA sequencing of the beta-catenin gene on Exon 3 encompassing the GSK-3 36 phosphorylation region and of the APC gene on the mutation cluster region. Nuclear accumulation of beta-catenin was present in 86% (25/29) of superficial fibromatosis cases ranging from 5 to 100% of nuclei (mean, 13%; median, 10%), though in a minority of nuclei in most examples. Deep fibromatoses had 60 to 100% nuclear staining in all five cases. No somatic mutations of beta-catenin or APC genes were identified in any of the superficial fibromatoses. In contrast to deep fibromatoses, superficial fibromatoses lack beta-catenin and APC gene mutations; the significance of focal nuclear beta-catenin accumulation is unclear. This difference may account inpart for their divergent clinical manifestations despite their morphologic resemblance to deep fibromatoses.

  2. UNILATERAL INCOMPLETE SUPERFICIAL PALMAR ARCH: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Subhankar Chakraborty

    2015-12-01

    Full Text Available The functional importance of hand is revealed by its rich vascularity contributed by superficial and deep palmar arches (SPA and DPA.Superficial palmar arch is located superficial to flexor tendons, and deep palmar arch deep to lumbrical muscles. Variations are found more often in SPA than DPA, later being more or less constant. During routine undergraduate dissection, we observed, unilateral incomplete SPA being formed by superficial palmar branches of ulnar and radial artery in the right hand of a male cadaver. These two arteries remained independent without anastomosis forming incomplete arch (SPA.The superficial branch of ulnar artery entered hand superficial to flexor retinaculum and supplied middle, ring and little finger by three branches. The superficial branch of radial artery via its two branches supplied index finger and thumb. Classical SPA formation was seen on left side. The presence of an incomplete SPA as in this case is a potential danger in RA harvesting for CABG.Variations in SPA play a pivotal role in microvascular surgical procedures of hand, RAinterventions and arterial graft applications.

  3. Prevalence of superficial siderosis following singular, acute aneurysmal subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Lummel, N.; Bochmann, K. [Ludwig-Maximilian-University, Department of Neuroradiology, Klinikum Grosshadern, Munich (Germany); Bernau, C. [Leibniz-Rechenzentrum, Munich (Germany); Thon, N. [Ludwig-Maximilian-University, Department of Neurosurgery, Klinikum Grosshadern, Munich (Germany); Linn, J. [Technical University, Department of Neuroradiology, Klinikum Dresden, Dresden (Germany)

    2015-04-01

    Superficial siderosis is presumably a consequence of recurrent bleeding into the subarachnoid space. The objective of this study was to assess the prevalence of superficial siderosis after singular, aneurysmal subarachnoid hemorrhage (SAH) in the long term. We retrospectively identified all patients who presented with a singular, acute, aneurysmal SAH at our institution between 2010 and 2013 and in whom a magnetic resonance imaging (MRI) including T2*-weighted imaging was available at least 4 months after the acute bleeding event. MRI scans were judged concerning the presence and distribution of superficial siderosis. Influence of clinical data, Fisher grade, localization, and cause of SAH as well as the impact of neurosurgical interventions on the occurrence of superficial siderosis was tested. Seventy-two patients with a total of 117 MRIs were included. Mean delay between SAH and the last available MRI was 47.4 months (range 4-129). SAH was Fisher grade 1 in 2 cases, 2 in 4 cases, 3 in 10 cases, and 4 in 56 cases. Superficial siderosis was detected in 39 patients (54.2 %). In all patients with more than one MRI scan, localization and distribution of superficial siderosis did not change over time. Older age (p = 0.02) and higher degree of SAH (p = 0.03) were significantly associated with the development of superficial siderosis. Superficial siderosis develops in approximately half of patients after singular, aneurysmal SAH and might be more common in patients with an older age and a greater amount of blood. However, additional factors must play a role in whether a patient is prone to develop superficial siderosis or not. (orig.)

  4. Superficial cervicovaginal myofibroblastoma: report of four cases and literature review

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-feng; WU Yu-yu; WANG Jian

    2010-01-01

    @@ In 2001, Laskin et al~1 firstly described a series of 14 seemly distinctive mesenchymal tumors that occurred exclusively in the superficial lamina propria of the vagina and cervix of middle to old-aged women. They proposed the term "superficial cervicovaginal myofibroblastoma (SCVM)" to highlight the unique features of this tumor: the superficial subepithelial location and myofibroblastic differentiation of the tumor cells. SCVM appears less well recognized with only three additional reports have been documented in the English literatures.~(2-4) In this study, we described four new cases of SCVM to further characterize the clinical and pathological features of this rare entity.

  5. Revisión sobre modelado de superficies complejas

    Directory of Open Access Journals (Sweden)

    Juan D. Osorio

    2004-01-01

    Full Text Available Este artículo presenta una revisión de las técnicas más empleadas para la obtención de modelos computacionales de superficies complejas. Estas representaciones están siendo utilizadas en diversas áreas de la industria mediante procedimientos de ingeniería reversa. Las tres principales categorías son las superficies funcionales (implícitas, paramétricas y las superficies complejas simplicial (mallas triangulares. Se realiza un paralelo entre estos métodos y se exponen las ventajas y las desventajas de cada una de estas representaciones.

  6. Antibody conjugate radioimmunotherapy of superficial bladder cancer

    Directory of Open Access Journals (Sweden)

    Alan Perkins

    2002-09-01

    Full Text Available The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C595 (IgG3 which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radioimmunoconjugates of the C595 antibody have been produced with high radiolabelling efficiency and immunoreactivity using Tc-99m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun.A administração de anticorpos conjugados para o tratamento do câncer está agora provando ser de valor clínico. Nós estamos atualmente realizando um programa de estudos clínicos usando o anticorpo monoclonal C595 (IgG3 que reage com a glicoproteína MUC1 que está aberrantemente expressa numa alta proporção de tumores de bexiga. Tem sido produzidos radioimunoconjugados do anticorpo C595, com alta eficiência de radiomarcação e a imunoreatividade, usando-se o Tc-99m e In-111, para o diagnóstico por imagem e estagiamento de doenças. Tem sido produzidos, também, radionuclídeos citotóxicos (Cu-67 e Re-188 para o tratamento de cânceres superficiais de bexiga. A fase terapêutica I/II já se iniciou, envolvendo a administração intravesical do anticorpo diretamente na bexiga.

  7. Trauma ocupacional por corpo estranho corneano superficial Occupational trauma due to superficial corneal foreign body

    Directory of Open Access Journals (Sweden)

    Vanessa Miroski Gerente

    2008-04-01

    Full Text Available OBJETIVO: Avaliar a epidemiologia do trauma ocular por corpo estranho superficial de córnea. MÉTODOS: Os pacientes atendidos no Pronto-Socorro da Universidade Federal de São Paulo entre abril e junho de 2005 que apresentaram corpo estranho superficial de córnea foram entrevistados. Foram avaliados: sexo, idade, profissão, registro legal do emprego, uso, disponibilidade e tipo de equipamentos de proteção utilizados e a fiscalização do seu uso. O conhecimento das complicações deste tipo de acidente também foi avaliado. Os resultados foram analisados com teste do qui quadrado ou teste de Fisher. RESULTADOS: Foram entrevistados 123 pacientes. Apenas 3 eram do sexo feminino e a idade média foi de 36 anos. A maioria destes traumas ocorreu no ambiente de trabalho (86,2% e 58,4% não possuíam registro legal do emprego. As profissões mais freqüentemente envolvidas foram serralheiro, pedreiro e metalúrgico. Em 79,8% dos locais de trabalho havia equipamentos de proteção e 85,3% dos pacientes eram orientados a usá-los. Em 52,4% dos locais sua utilização era fiscalizada, mas apenas 34,2% usavam no momento do trauma. A utilização foi mais freqüente (p=0,008 e fiscalização mais presente (p=0,0415 entre pacientes com registro legal de emprego. Questionados sobre os riscos, 68,9% dos pacientes tinham consciência das complicações graves deste tipo de acidente. CONCLUSÃO: A maioria dos pacientes tem conhecimento sobre a gravidade do trauma ocular e este tipo de lesão ocorre mesmo em locais com equipamentos de proteção disponíveis, alguns deles até durante o seu uso. Os dados sugerem que enfoque maior da prevenção deve ser na fiscalização e utilização de equipamentos adequados.PURPOSE: To evaluate the epidemiology of superficial corneal foreign body. METHODS: Patients who were seen at the Emergency Service of the Federal University of São Paulo, from April/05 to June/05, were screened and those with superficial corneal

  8. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality

    Science.gov (United States)

    Miao, Yucong; Hu, Xiao-Ming; Liu, Shuhua; Qian, Tingting; Xue, Ming; Zheng, Yijia; Wang, Shu

    2015-12-01

    The Beijing-Tianjin-Hebei (BTH) region experiences frequent heavy haze pollution in fall and winter. Pollution was often exacerbated by unfavorable atmospheric boundary layer (BL) conditions. The topography in this region impacts the BL processes in complex ways. Such impacts and implications on air quality are not yet clearly understood. The BL processes in all four seasons in BTH are thus investigated in this study using idealized simulations with the WRF-Chem model. Results suggest that seasonal variation of thermal conditions and synoptic patterns significantly modulates BL processes. In fall, with a relatively weak northwesterly synoptic forcing, thermal contrast between the mountains and the plain leads to a prominent mountain-plain breeze circulation (MPC). In the afternoon, the downward branch of the MPC, in addition to northwesterly warm advection, suppresses BL development over the western side of BTH. In the eastern coastal area, a sea-breeze circulation develops late in the morning and intensifies during the afternoon. In summer, southeasterly BL winds allow the see-breeze front to penetrate farther inland (˜150 km from the coast), and the MPC is less prominent. In spring and winter, with strong northwesterly synoptic winds, the sea-breeze circulation is confined in the coastal area, and the MPC is suppressed. The BL height is low in winter due to strong near-surface stability, while BL heights are large in spring due to strong mechanical forcing. The relatively low BL height in fall and winter may have exacerbated the air pollution, thus contributing to the frequent severe haze events in the BTH region.

  9. Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac

    Science.gov (United States)

    Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen

    2016-01-01

    Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.

  10. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    Science.gov (United States)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  11. Growth of ˜5 cm2V-1s-1 mobility, p-type Copper(I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225°C and below

    Science.gov (United States)

    Muñoz-Rojas, D.; Jordan, M.; Yeoh, C.; Marin, A. T.; Kursumovic, A.; Dunlop, L. A.; Iza, D. C.; Chen, A.; Wang, H.; MacManus Driscoll, J. L.

    2012-12-01

    Phase pure, dense Cu2O thin films were grown on glass and polymer substrates at 225°C by rapid atmospheric atomic layer deposition (AALD). Carrier mobilities of 5 cm2V-1s-1 and carrier concentrations of ˜1016 cm-3 were achieved in films of thickness 50 - 120 nm, over a >10 cm2 area. Growth rates were ˜1 nm.min-1 which is two orders of magnitude faster than conventional ALD.. The high mobilities achieved using the atmospheric, low temperature method represent a significant advance for flextronics and flexible solar cells which require growth on plastic substrates.

  12. Growth of ∼5 cm2V−1s−1 mobility, p-type Copper(I oxide (Cu2O films by fast atmospheric atomic layer deposition (AALD at 225°C and below

    Directory of Open Access Journals (Sweden)

    D. Muñoz-Rojas

    2012-12-01

    Full Text Available Phase pure, dense Cu2O thin films were grown on glass and polymer substrates at 225°C by rapid atmospheric atomic layer deposition (AALD. Carrier mobilities of 5 cm2V−1s−1 and carrier concentrations of ∼1016 cm−3 were achieved in films of thickness 50 - 120 nm, over a >10 cm2 area. Growth rates were ∼1 nm·min−1 which is two orders of magnitude faster than conventional ALD.. The high mobilities achieved using the atmospheric, low temperature method represent a significant advance for flextronics and flexible solar cells which require growth on plastic substrates.

  13. Interdigital foot infections: Corynebacterium minutissimum and agents of superficial mycoses

    OpenAIRE

    Fatma Mutlu Sariguzel; A. Nedret Koc; Gülhan Yagmur; Elife Berk

    2014-01-01

    Interdigital foot infections are mostly caused initially by dermatophytes, yeasts and less frequently by bacteria. Erythrasma caused by Corynebacterium minutissimum can be confused with superficial mycoses. The aim of the study was to determine the prevalence of the etiologic agents of superficial mycoses and the frequency of Corynebacterium minutissimum in interdigital foot infections. All the samples obtained from the 121 patients with interdigital foot infections were examined directly wit...

  14. Update on therapy for superficial mycoses: review article part I *

    OpenAIRE

    Dias, Maria Fernanda Reis Gavazzoni; Quaresma-Santos, Maria Victória Pinto; Bernardes-Filho, Fred; Amorim, Adriana Gutstein da Fonseca; Schechtman, Regina Casz; Azulay, David Rubem

    2013-01-01

    Superficial fungal infections of the hair, skin and nails are a major cause of morbidity in the world. Choosing the right treatment is not always simple because of the possibility of drug interactions and side effects. The first part of the article discusses the main treatments for superficial mycoses - keratophytoses, dermatophytosis, candidiasis, with a practical approach to the most commonly-used topical and systemic drugs , referring also to their dosage and duration of use. Promising new...

  15. Superficies in the form of the right to superpose

    OpenAIRE

    Simona CHIRICĂ; Cristiana MIC-SOARE

    2015-01-01

    The purpose of this paper is to present the current legal framework related to the superficies right in the form of the right to superpose, and especially to draw the attention and put certain question marks regarding the actuality or even the urgency of the need for regulation regarding the right to superpose. First, as a preliminary aspect, in order to emphasize the historical evolution of the superficies right, we will briefly present the development of this concept starting from the Roman...

  16. Superficial Radiation Therapy for the Treatment of Nonmelanoma Skin Cancers.

    Science.gov (United States)

    McGregor, Sean; Minni, John; Herold, David

    2015-12-01

    Superficial radiation therapy has become more widely available to dermatologists. With the advent of more portable machines, it has become more convenient for dermatology practices to employ in an office-based setting. The goal of this paper is to provide a deeper insight into the role of superficial radiation therapy in dermatology practice and to review the current literature surrounding its use in the treatment of both basal and squamous cell carcinomas.

  17. Lack of Methylene Blue Staining in Superficial Epithelia as a Possible Marker for Superficial Lateral Spread of Bile Duct Cancer

    Directory of Open Access Journals (Sweden)

    I. Maetani

    1996-01-01

    epithelia. The cancerous epithelia stained significantly less often than either the normal (p = 0.000005 or the metaplastic (p = 0.001 epithelia. Evaluation of methylene blue staining during PTCS revealed that this stain was absorbed by the cholangial epithelia, not superficially stuck to it. The difference in methylene blue staining properties between the cancerous and normal epithelia could be helpful to clarify the boundary of superficial lateral spread of bile duct cancer.

  18. Superficial mycoses at the Hospital do Servidor Público Municipal de São Paulo between 2005 and 2011*

    OpenAIRE

    Chiacchio, Nilton Di; Madeira, Celso Luiz; Humaire, Caio Rosa; Silva, Camila Simon; Fernandes, Lucia Helena Gomes; Reis, Ana Lucia Dos

    2014-01-01

    BACKGROUND Superficial mycoses are fungal infections limited to the outermost layers of the skin. Dermatophytic filamentous fungi and yeasts are the major causative agents of these mycoses. Dermatophytosis is one of the clinical conditions caused by fungal infections most commonly found in dermatological practice. Thus, knowledge of the ecology of dermatophytes provides a better understanding of the natural history of dermatophytosis. OBJECTIVE This study aimed to investigate epidemiological ...

  19. STUDY ON EFFECT OF ATMOSPHERIC PRESSURE ON VOLUMETRIC STRAIN OF INCLINED ROCK LAYER%岩层倾斜对体应变受气压影响研究

    Institute of Scientific and Technical Information of China (English)

    马京杰; 李海亮; 马相波

    2012-01-01

    On the basis of the measured data at station, when the rock layer is tilted, the interference coefficient of atmospheric pressure on volumetric strain increases significantly. By theoretical calculation, we have found that the relation of the surface inclination with coefficient of atmospheric pressure. When the interference of atmospheric pressure is removed, the earth tides observed by the volumetric strain instrument is improved significantly.%台站实测资料反映地表倾斜时,体应变气压干扰系数明显变大.通过理论计算,求出了地表倾斜度与体应变气压系数的关系,去除气压干扰后,体应变观测的固体潮汐明显改善.

  20. 森林近地层大气湍流特性观测分析%Observational Analysis on Turbulent Characteristics of the Atmospheric Surface Layer Above Forest

    Institute of Scientific and Technical Information of China (English)

    许俊卿; 陈蓓莹; 隋晓霞

    2014-01-01

    The measurement and observation for this study were carried out by using a three-dimensional (u,v,w)sonic anemometer (IAP-SA 485 )at the Forest Ecosystem Opened Research Station of Changbaishan Mountains.Some micrometeorological characteris-tics of wind speed,wind direction,atmospheric stability,and turbulent intensity,variance similarity,scalar fluxes in the near-sur-face layer were analyzed and compared on the basis of the observational data acquired by using the eddy correlation method in August and September 2003.The main results are as follows:(1)Atmospheric stability in August and September was basically concentrated in the vicinity of 0.(2)Turbulence was very active when wind speed was less than 2 m·s-1 and decreased rapidly with wind speed in-creasing.When the wind speed reached 3 m·s-1 ,the turbulence intensity deviated from 0 and got larger,and continued to increase untill a certain wind speed,then turbulence intensity didn’t change with wind speed basically.(3)The normalized variance of three-dimensional wind and z/L satisfied the similarity law under both unstable and stable stratification.Their universal functions also could be fitted according to the“law of 1/3 fractional power”.(4)The diurnal variations of surface fluxes were evident,and latent heat flux was leading in August and September.Latent heat flux in September was significantly less than that in August.Sensible heat flux var-ied little in August and September.%利用长白山森林生态系统定位研究站观测资料,及2003年8月和9月涡旋相关资料,分析和比较了该地区近地层包括风速、风向、大气稳定度在内的平均场特征,以及湍流强度、无量纲化风脉动方差相似性和地表通量变化特征。结果表明:(1)8月和9月稳定度都基本集中在0附近;(2)风速<2 m·s-1的环境中,湍流发展最为旺盛,随着风速的增大湍流强度先迅速减小,当风速增大到3 m· s-1后,湍流强度偏离0