WorldWideScience

Sample records for atmospheric sulfur budget

  1. The contribution of aircraft emissions to the atmospheric sulfur budget

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Sausen, R.; Hein, R. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-01-01

    An atmospheric general circulation model including the atmospheric sulfur cycle has been used to investigate the impact of aircraft sulfur emissions on the global sulfur budget of the atmosphere. The relative contribution from aircraft sulfur to the atmospheric sulfate burden is larger than the ratio between aircraft emissions and surface emissions due to the calculated long turn-over time of aircraft sulfate (about 12 days). However, in terms of the sulfate mass balance, aircraft emissions are small, contributing about 1% of the total sulfate mass north of 40 deg C where the aircraft emissions are largest. Despite this small contribution to sulfate mass, the aircraft emissions could potentially significantly enhance the background number concentration of aerosol particles. Based on the model calculations the increased stratospheric background aerosol mass observed during the last decades can not be explained by increased aircraft sulfur emissions 50 refs, 9 figs, 4 tabs

  2. Closing the Dimethyl Sulfide Budget in the Tropical Marine Boundary Layer during the Pacific Atmospheric Sulfur Experiment

    Directory of Open Access Journals (Sweden)

    S. A. Conley

    2009-08-01

    Full Text Available Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR C-130 near Christmas Island (2° N, 157° W during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE. In order to tightly constrain the scalar budget of DMS, fluxes were measured at various levels in the marine boundary layer (MBL from near the surface (30 m to the top of the mixed layer (500 m providing greater accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well known diurnal cycle, ranging from 50 pptv in the daytime to 110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data from within the MBL to estimate the mean gradients and trends. With this technique we consider the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for 7.3 ppt hr−1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt/hr. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g. reactive halogens. The observed ocean flux of DMS averaged 3.1 (±1.5μmol m−2 d−1, and generally decreased throughout the sunlit hours. The average entrainment flux at the top of the MBL was 2.5 μmol m−2 d−1; therefore the flux divergence term in the budget equation only contributed an average increase of 1.3 ppt hr−1 to the mean MBL mole fraction. Over the entire mission, the horizontal advection contribution to the overall budget was 0.2 ppt hr−1, indicating a mean atmospheric DMS gradient nearly

  3. Closing the dimethyl sulfide budget in the tropical marine boundary layer during the Pacific Atmospheric Sulfur Experiment

    Directory of Open Access Journals (Sweden)

    A. Bandy

    2009-11-01

    Full Text Available Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR C-130 near Christmas Island (2° N, 157° W during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE. In order to tightly constrain the scalar budget of DMS, vertical eddy fluxes were measured at various levels in the marine boundary layer (MBL from ~30 m to the top of the mixed layer (~500 m providing improved accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well-known diurnal cycle, ranging from 50–95 pptv in the daytime to 90–110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data within the MBL to estimate the mean gradients and trends. With this technique we can use the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for ~7.4 ppt hr −1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt hr−1. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g., reactive halogens. The observed ocean flux of DMS averaged 3.1 (±1.5 μmol m−2 d−1, and generally decreased throughout the sunlit hours. Over the entire mission, the horizontal advection contribution to the overall budget was merely -0.1 ppt hr−1, indicating a mean atmospheric DMS gradient nearly perpendicular to the east-southeasterly trade winds and the chlorophyll gradient in the equatorial upwelling ocean. Nonetheless, horizontal advection was a significant term in the budget of any given flight, ranging from −1

  4. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  5. Sulfur hexafluoride - A powerful new atmospheric tracer

    OpenAIRE

    Maiss, Manfred; Steele, Paul; Francey, Roger; Fraser, Paul; Langenfelds, Ray; Trivett, Neil; Levin, Ingeborg

    1996-01-01

    Long-term observations of the atmospheric trace gas sulfur hexafluoride (SF6) at four background monitoring stations, Neumayer, Antarctica (1986-1994), Cape Grim, Tasmania (1978-1994), Izana, Canary Islands (1991-1994) and Alert, Canada (1993-1994) are presented. These data sets are supplemented by two meridional profiles collected over the Atlantic Ocean (1990 and 1993) and occasional observations at the regional site Fraserdale, Canada (1994). The analytical system and the method of SF6 cal...

  6. Total Sulfur Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such...

  7. Atmospheric nitrogen budget in Sahelian dry savannas

    Directory of Open Access Journals (Sweden)

    C. Delon

    2009-06-01

    Full Text Available The atmospheric nitrogen budget depends on emission and deposition fluxes both as reduced and oxidized nitrogen compounds. In this study, a first attempt at estimating the Sahel nitrogen budget for the year 2006 is made, through measurements and simulations at three stations from the IDAF network situated in dry savanna ecosystems. Dry deposition fluxes are estimated from measurements of NO2, HNO3 and NH3 gaseous concentrations, and wet deposition fluxes are calculated from NH4+ and NO3 concentrations in samples of rain. Emission fluxes are estimated including biogenic emission of NO from soils (an Artificial Neural Network module has been inserted into the ISBA-SURFEX surface model, emission of NOx and NH3 from domestic fires and biomass burning, and volatilization of NH3 from animal excreta.

    This study uses original and unique data from remote and hardly-ever-explored regions. The monthly evolution of oxidized N compounds shows that deposition increases at the beginning of the rainy season because of large emissions of biogenic NO (pulse events. Emission of oxidized compounds is dominated by biogenic emission from soils (domestic fires and biomass burning account for 27% at the most, depending on the station, whereas emission of NH3 is dominated by the process of volatilization. Deposition fluxes are dominated by gaseous dry deposition processes (58% of the total, for both oxidized and reduced compounds. The average deposition flux in dry savanna ecosystems ranges from 8.6 to 10.9 kgN ha−1 yr−1, with 30% attributed to oxidized compounds, and the other 70% attributed to NHx. The average emission flux ranges from 7.8 to 9.7 kgN ha−1 yr−1, dominated by NH3 volatilization (67% and biogenic emission from soils (24%. The annual budget is then

  8. Atmospheric nitrogen budget in Sahelian dry savannas

    Directory of Open Access Journals (Sweden)

    C. Delon

    2010-03-01

    Full Text Available The atmospheric nitrogen budget depends on emission and deposition fluxes both as reduced and oxidized nitrogen compounds. In this study, a first attempt at estimating the Sahel nitrogen budget for the year 2006 is made, through measurements and simulations at three stations from the IDAF network situated in dry savanna ecosystems. Dry deposition fluxes are estimated from measurements of NO2, HNO3 and NH3 gaseous concentrations and from simulated dry deposition velocities, and wet deposition fluxes are calculated from NH4+ and NO3 concentrations in samples of rain. Emission fluxes are estimated including biogenic emission of NO from soils (an Artificial Neural Network module has been inserted into the ISBA-SURFEX surface model, emission of NOx and NH3 from domestic fires and biomass burning, and volatilization of NH3 from animal excreta. Uncertainties are calculated for each contribution of the budget.

    This study uses original and unique data from remote and hardly-ever-explored regions.The monthly evolution of oxidized N compounds shows that emission and deposition increase at the beginning of the rainy season because of large emissions of biogenic NO (pulse events. Emission of oxidized compounds is dominated by biogenic emission from soils (domestic fires and biomass burning of oxidized compounds account for 0 to 13% at the most at the annual scale, depending on the station, whereas emission of NH3 is dominated by the process of volatilization from soils. At the annual scale, the average gaseous dry deposition accounts for 47% of the total estimated deposition flux, for both oxidized and reduced compounds. The average estimated wet plus dry deposition flux in dry savanna ecosystems is 7.5±1.8 kgN ha−1 yr−1, with approximately 30% attributed to oxidized compounds, and the rest attributed

  9. Sulfur Chemistry in the Early and Present Atmosphere of Mars

    Science.gov (United States)

    Levine, Joel S.; Summers, M. E.

    2011-01-01

    Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.

  10. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  11. The global atmospheric budget of ethanol revisited

    Directory of Open Access Journals (Sweden)

    W. V. Kirstine

    2012-01-01

    Full Text Available Ethanol is an important biogenic volatile organic compound, which is increasingly used as a fuel for motor vehicles; therefore, an improved understanding of its atmospheric cycle is important. In this paper we use three sets of observational data, measured emissions of ethanol from living plants, measured concentrations of ethanol in the atmosphere and measured hydroxyl concentrations in the atmosphere (by methyl chloroform titration, to make two independent estimates related to the rate of cycling of ethanol through the atmosphere. In the first estimate, simple calculations give the emission rate of ethanol from living plants as 26 (range, 10–38 Tg yr−1. This contributes significantly to the total global ethanol source of 42 (range, 25–56 Tg yr−1. In the second estimate, the total losses of ethanol from the global atmosphere are 70 (range, 50–90 Tg yr−1, with about three-quarters of the ethanol removed by reaction with hydroxyl radicals in the gaseous and aqueous phases of the atmosphere, and the remainder lost through wet and dry deposition to land. These values of both the source of ethanol from living plants and the removal of atmospheric ethanol via oxidation by hydroxyl radicals (derived entirely from observations are significantly larger than those in recent literature. We suggest that a revision of the estimate of global ethanol emissions from plants to the atmosphere to a value comparable with this analysis is warranted.

  12. Seasonal variation of the atmospheric energy budget on Mars

    Science.gov (United States)

    Tabataba-Vakili, F.; Read, P. L.; Lewis, S. R.; Montabone, L.; Ruan, T.; Valeanu, A.; Wang, Y.; Young, R. M. B.

    2014-04-01

    We compute a detailed Lorenz energy budget [1] to improve our understanding of the dynamical circulation of the martian atmosphere. Results suggest that the circulation of the martian atmosphere is is governed mostly by baroclinic instability, except during a 2 to 3 month long period around the northern hemisphere winter solstice when barotropic and baroclinic instabilites coincide. The difference between diurnally averaged quantities and the full energy budget also indicate a major role for diurnal tides in enabling a direct transfer of energy from diurnal heating to eddy potential and kinetic energy.

  13. Atmospheric Sulfur Deposition on Farmland in East China

    Institute of Scientific and Technical Information of China (English)

    WANG Ti-Jian; YANG Hao-Ming; GAO Li-Jie; ZHANG Yan; HU Zheng-Yi; XU Cheng-Kai

    2005-01-01

    Atmospheric sulfur deposition onto typical farmland in East China was investigated using both field measurements and numerical modeling. The field measurements were conducted at the Experiment Station of Red Soil Ecology, Chinese Academy of Sciences, 10 km from Yingtan, Jiangxi Province, East China, between November 1998 and October 1999, and at the Changshu Ecological Experiment Station, Chinese Academy of Sciences, in a rapidly developing region of Jiangsu Province, East China, between April 2001 and March 2002. The regional acid deposition model system (RegADMS), in which the dry deposition velocities of SO2 and sulfate aerosols (SO42-) were estimated using a big-leaf resistance analogy model, was applied to simulate air sulfur deposition over East China and sulfur deposition onto lands of different use types in East China. The wet scavenging coefficients were parameterized in terms of precipitation rate, and the effect of sub-grid processes due to inhomogeneous land use on dry deposition velocity was also included. Results of the field measurements showed that over 83% of the total sulfur deposition at the Yingtan site was dry deposition, while at the Changshu site42% was dry deposition. The total sulfur deposition was much larger at the Yingtan site than at the Changshu site, which suggested contrasting air pollution and meteorological situations. The modeling results revealed that the total annual sulfur deposition over East China was 1.88 Mt, of which 72.8% was deposited onto farmland, and dry deposition accounted for 43% of the total sulfur deposited. The modeling results were generally in agreement with those from the observations.Overall, this study suggested that atmospheric sulfur deposition played an important role in the soil sulfur balance, which could have a significant effect on agricultural ecosystems in the study region.

  14. Entropy budget of the earth,atmosphere and ocean system

    Institute of Scientific and Technical Information of China (English)

    GAN Zijun; YAN Youfangand; QI Yiquan

    2004-01-01

    The energy budget in the system of the earth, atmosphere and ocean conforms to the first law of thermodynamics, namely the law of conservation of energy, and it is balanced when the system is in a steady-state condition. However, the entropy budget following the second law of thermodynamics is unbalanced. In this paper, we deduce the expressions of entropy flux and re-estimate the earth, atmosphere and ocean annual mean entropy budget with the updated climatologically global mean energy budget and the climatologically air-sea flux data. The calculated results show that the earth system obtains a net influx of negative entropy (-1179.3 mWm-2K-1) from its surroundings, and the atmosphere and the ocean systems obtain a net input of negative entropy at about -537.4 mWm-2K-1 and -555.6 mWm-2K-1, respectively. Calculations of the entropy budget can provide some guidance for further understanding the spatial-temporal change of the local entropy flux, and the entropy production resulting from all kinds of irreversible processes inside these systems.

  15. Quantifying the global atmospheric power budget

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Sheil, Douglas; Nobre, Antonio Donato; Li, Bai-Lian

    2016-01-01

    Starting from the definition of mechanical work for an ideal gas, we present a novel derivation linking global wind power to measurable atmospheric parameters. The resulting expression distinguishes three components: the kinetic power associated with horizontal motion, the kinetic power associated with vertical motion and the gravitational power of precipitation. We discuss the caveats associated with integration of material derivatives in the presence of phase transitions and how these affect published analyses of global atmospheric power. Using the MERRA database for the years 2009-2015 (three hourly data on the 1.25$^{\\rm o} \\times$ 1.25$^{\\rm o}$ grid at 42 pressure levels) we estimate total atmospheric power at 3.1 W m$^{-2}$ and kinetic power at 2.6 W m$^{-2}$. The difference between the two (0.5 W m$^{-2}$) is about half the independently estimated gravitational power of precipitation (1 W m$^{-2}$). We explain how this discrepancy arises from the limited spatial and temporal resolution of the database...

  16. Effects of Irrigation in India on the Atmospheric Water Budget

    NARCIS (Netherlands)

    Tuinenburg, O.A.; Hutjes, R.W.A.; Stacke, T.; Wiltshire, A.; Lucas-Picher, P.

    2014-01-01

    The effect of large-scale irrigation in India on the moisture budget of the atmosphere was investigated using three regional climate models and one global climate model, all of which performed an irrigated run and a natural run without irrigation. Using a common irrigation map, year-round irrigation

  17. Analysis of regional budgets of sulfur species modeled for the COSAM exercise

    International Nuclear Information System (INIS)

    The COSAM intercomparison exercise (comparison of large-scale sulfur models) was organized to compare and evaluate the performance of global sulfur cycle models. Eleven models participated, and from these models the simulated surface concentrations, vertical profiles and budget terms were submitted. This study focuses on simulated budget terms for the sources and sinks of SO2 and sulfate in three polluted regions in the Northern Hemisphere, i.e., eastern North America, Europe, and Southeast Asia. Qualitatively, features of the sulfur cycle are modelled quite consistently between models, such as the relative importance of dry deposition as a removal mechanism for SO2, the importance of aqueous phase oxidation over gas phase oxidation for SO2, and the importance of wet over dry deposition for removal of sulfate aerosol. Quantitatively, however, models may show large differences, especially for cloud-related processes, i.e., aqueous phase oxidation of SO2 and sulfate wet deposition. In some cases a specific behavior can be related to the treatment of oxidants for aqueous phase SO2 oxidation, or the vertical resolution applied in models. Generally, however, the differences between models appear to be related to simulated cloud (micro-)physics and distributions, whereas differences in vertical transport efficiencies related to convection play an additional role. The estimated sulfur column burdens, lifetimes and export budgets vary between models by about a factor of 2 or 3. It can be expected that uncertainties in related effects which are derived from global sulfur model calculations, such as direct and indirect climate forcing estimates by sulfate aerosol, are at least of similar magnitude

  18. The Abundance of Atomic Sulfur in the Atmosphere of Io

    CERN Document Server

    Feaga, L M; Feldman, P D; Feaga, Lori M.; Grath, Melissa A. Mc; Feldman, Paul D.

    2002-01-01

    Observations with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope have been used to constrain the atomic sulfur column density in Io's atmosphere. The SI 1479 dipole allowed and forbidden transition multiplets have been resolved for the first time at Io, enabling the study of both optically thick and thin transitions from a single atomic species. The allowed transitions contribute 62 +/- 8% and the forbidden transitions 38 +/- 8%, on average, to the total signal of the SI 1479 multiplets. Using the optically thick and thin transitions of SI 1479 observed near the limbs of Io, we derive a tangential atmospheric sulfur column abundance of 3.6*10^12 cm^-2 < N_s < 1.7*10^13 cm^-2, which is independent of electron temperature and density. A low density SO_2 atmosphere, N_so2 ~ 5-10*10^15 cm^-2, consistent with that inferred from other recent observations, is most consistent with these bounds.

  19. Observational constraints on the global atmospheric budget of ethanol

    Directory of Open Access Journals (Sweden)

    V. Naik

    2010-06-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2 with itself and with the methyl peroxy radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  20. Atmospheric sulfur and nitrogen in West Java

    International Nuclear Information System (INIS)

    Wet-only rainwater composition on a weekly basis was determined at four sites in West Java, Indonesia, from June 1991 to June 1992. Three sites were near the extreme western end of Java, surrounding a coal-fired power station at Suralaya. The fourth site was ∼ 100 km to the east in the Indonesian capital, Jakarta. Over the 12 months study period wet deposition of sulfate at the three western sites varied between 32-46 meq m-2 while nitrate varied between 10-14 meq m-2. Wet deposition at the Jakarta site was systematically higher, at 56 meq m-2 for sulfate and 20 meq m-2 for nitrate. Since sulfate and nitrate wet deposition fluxes in the nearby and relatively unpopulated regions of typical Australia are both only ∼ 5 meq m-2 anthropogenic emissions of S and N apparently cause significant atmospheric acidification in Java. It is possible that total acid deposition fluxes (of S and N) in parts of Java are comparable with those responsible for environmental degradation in acid-sensitive parts of Europe and North America. 19 refs., 3 tabs

  1. Observational constraints on the global atmospheric budget of ethanol

    Directory of Open Access Journals (Sweden)

    V. Naik

    2010-01-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxide radical (C2H5O2 with itself and with the methyl peroxide radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition to land (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions estimated at a factor of three may contribute to the 50% model underestimate of observations in the North American boundary layer. Furthermore, current levels of ethanol measured in remote atmospheres are an order of magnitude larger than those explained by surface sources or by in-situ atmospheric production from observed precursor hydrocarbons in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and other VOCs are a critical step towards assessing the impacts of increasing use of ethanol as a

  2. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES.

    Science.gov (United States)

    Zeng, Jianrong; Zhang, Guilin; Bao, Liangman; Long, Shilei; Tan, Mingguang; Li, Yan; Ma, Chenyan; Zhao, Yidong

    2013-03-01

    Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology. A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs), which were sampled from 5 local fields in Shanghai, China. Annual SO2 concentration, SO4(2-) concentration in atmospheric particulate, SO4(2-) and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs. Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg. The mainly detected sulfur states and their corresponding compounds were +6 (sulfate, include inorganic sulfate and organic sulfate), +5.2 (sulfonate), +2.2 (suloxides), +0.6 (thiols and thiothers), +0.2 (organic sulfides). Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977, which suggested that sulfur accumulated in CTLs as sulfate form. Reduced sulfur compounds (organic sulfides, thiols, thioethers, sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg. The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination. From urban to suburb place, sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced, but a dramatic increase presented near the seashore, where the marine sulfate emission and maritime activity pollution were significant. The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment. PMID:23923435

  3. Processes linking the hydrological cycle and the atmospheric radiative budget

    Science.gov (United States)

    Fueglistaler, Stephan; Dinh, Tra

    2016-04-01

    We study the response of the strength of the global hydrological cycle to changes in carbon dioxide (CO2) using the HiRAM General Circulation Model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), with the objective to better connect the well-known energetic constraints to physical processes. We find that idealized model setups using a global slab ocean and annual mean insolation give similar scalings as coupled atmosphere-ocean models with realistic land and topography. Using the surface temperatures from the slab ocean runs, we analyse the response in the atmospheric state and hydrological cycle separately for a change in CO2 (but fixed surface temperature), and for a change in surface temperature (but fixed CO2). The former perturbation is also referred to as the "fast" response, whereas the latter is commonly used to diagnose a model's climate sensitivity. As expected from the perspective of the atmospheric radiative budget, an increase in CO2 at fixed surface temperature decreases the strength of the hydrological cycle, and an increase in surface temperature increases the strength of the hydrological cycle. However, the physical processes that connect the atmospheric radiative energy budget to the sensible and latent heat fluxes at the surface remain not well understood. The responses to the two perturbations are linearly additive, and we find that the experiment with fixed surface temperature and changes in CO2 is of great relevance to understanding the total response. This result points to the importance of local radiative heating rate changes rather than just the net atmospheric radiative loss of energy. Although larger in magnitude, the response to changes in surface temperature is dominated by the temperature dependence of the water vapor pressure, but in both cases changes in near-surface relative humidity are very important.

  4. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES

    Institute of Scientific and Technical Information of China (English)

    Jianrong Zeng; Guilin Zhang; Liangman Bao; Shilei Long; Mingguang Tan; Yan Li; Chenyan Ma

    2013-01-01

    Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmentalbiology.A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy wasestablished to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs),which were sampled from 5 localfields in Shanghai,China.Annual SO2 concentration,SO42-concentration in atmospheric particulate,SO42-and sulfur concentrationin soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs.Totalsulfur concentration in mature camphor tree leaves was 766-1704 mg/kg.The mainly detected sulfur states and their correspondingcompounds were +6 (sulfate,include inorganic sulfate and organic sulfate),+5.2 (sulfonate),+2.2 (suloxides),+0.6 (thiols andthiothers),+0.2 (organic sulfides).Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlationcoefficient up to 0.977,which suggested that sulfur accumulated in CTLs as sulfate form.Reduced sulfur compounds (organic sulfides,thiols,thioethers,sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced levelaround 526 mg/kg.The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulateinstead of soil contamination.From urban to suburb place,sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced,but a dramatic increase presented near the seashore,where the marine sulfate emission and maritime activity pollution were significant.The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmosphericsulfur pollution in local environment.

  5. Atmospheric Sulfur Hexafluoride: Measurements and Emission Estimates from 1970 - 2008

    Science.gov (United States)

    Rigby, M. L.; Prinn, R. G.; Muhle, J.; Miller, B. R.; Dlugokencky, E. J.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Leist, M.; Weiss, R. F.; Harth, C. M.; O'Doherty, S. J.; Greally, B. R.; Simmonds, P. G.; Derek, N.; Vollmer, M. K.; Kim, J.; Kim, K.; Porter, L. W.

    2009-12-01

    We present an air history of atmospheric sulfur hexafluoride (SF6) from the early 1970s through 2008. During this period, concentrations of this extremely potent and long-lived greenhouse gas have increased by more than an order of magnitude, and its growth has accelerated in recent years. In this study, historical concentrations are determined from archived air samples measured on the Advanced Global Atmospheric Gases Experiment (AGAGE) ‘Medusa’ gas chromatography/mass spectrometry system. These data are combined with modern high-frequency measurements from the AGAGE and National Oceanic and Atmospheric Administration (NOAA) in situ networks and ˜weekly samples from the NOAA flask network, to produce a unique time series with increasing global coverage spanning almost four decades. Using the three-dimensional chemical transport Model for Ozone and Related Tracers (MOZART v4.5) and a discrete Kalman filter, we derive estimates of the annual emission strength of SF6 on hemispheric scales from 1970 - 2004 and on continental scales from 2004 - 2008. Our emission estimates are compared to the recently compiled Emissions Database for Global Atmospheric Research (EDGAR v4), and emissions reported under the United Nations Framework Convention on Climate Change (UNFCCC). The cause of the recent growth rate increase is also investigated, indicating that the origin of the required emissions rise is likely to be South-East Asia.

  6. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes

    International Nuclear Information System (INIS)

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  7. Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere

    DEFF Research Database (Denmark)

    Petaja, Tuukka; Sipila, Mikko; Paasonen, Pauli;

    2011-01-01

    Sulfuric acid is a key compound in atmospheric nucleation. Here we report on the observation of a close-to-collision-limited sulfuric acid dimer formation in atmospherically relevant laboratory conditions in the absence of measurable quantities of ammonia or organics. The observed dimer formation...

  8. Atmospheric Sulfur Hexafluoride: Sources, Sinks and Greenhouse Warming

    Science.gov (United States)

    Sze, Nien Dak; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    Model calculations using estimated reaction rates of sulfur hexafluoride (SF6) with OH and 0('D) indicate that the atmospheric lifetime due to these processes may be very long (25,000 years). An upper limit for the UV cross section would suggest a photolysis lifetime much longer than 1000 years. The possibility of other removal mechanisms are discussed. The estimated lifetimes are consistent with other estimated values based on recent laboratory measurements. There appears to be no known natural source of SF6. An estimate of the current production rate of SF6 is about 5 kt/yr. Based on historical emission rates, we calculated a present-day atmospheric concentrations for SF6 of about 2.5 parts per trillion by volume (pptv) and compared the results with available atmospheric measurements. It is difficult to estimate the atmospheric lifetime of SF6 based on mass balance of the emission rate and observed abundance. There are large uncertainties concerning what portion of the SF6 is released to the atmosphere. Even if the emission rate were precisely known, it would be difficult to distinguish among lifetimes longer than 100 years since the current abundance of SF6 is due to emission in the past three decades. More information on the measured trends over the past decade and observed vertical and latitudinal distributions of SF6 in the lower stratosphere will help to narrow the uncertainty in the lifetime. Based on laboratory-measured IR absorption cross section for SF6, we showed that SF6 is about 3 times more effective as a greenhouse gas compared to CFC 11 on a per molecule basis. However, its effect on atmospheric warming will be minimal because of its very small concentration. We estimated the future concentration of SF6 at 2010 to be 8 and 10 pptv based on two projected emission scenarios. The corresponding equilibrium warming of 0.0035 C and 0.0043 C is to be compared with the estimated warming due to CO2 increase of about 0.8 C in the same period.

  9. Sulfur isotopic signatures in rainwater and moss Haplocladium microphyllum indicating atmospheric sulfur sources in Nanchang City (SE China)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Huayun, E-mail: xiaohuayun@vip.skleg.cn; Zhu Renguo; Lin Bina; Liu Congqiang

    2011-05-01

    Sulfur source identification previously reported has been based on sulfur isotopic ratios in either rainwater or mosses. The {delta}{sup 34}S values of rainwater sulfate and the epilithic moss Haplocladium microphyllum in Nanchang region (China) were determined for comparisons and used to delineate atmospheric sulfur sources. At the urban and rural sites, similar mean {delta}{sup 34}S values were observed between rainwater sulfate (+ 1.6 per mille and - 0.2 per mille , respectively) and epilithic mosses (+ 1.7 per mille and + 0.6 per mille , respectively), suggesting that mosses acquire {delta}{sup 34}S values similar to those found for rainwater sulfate. This has further demonstrated that moss {delta}{sup 34}S signatures hold valuable source-specific information as rainwater {delta}{sup 34}S values do. The {delta}{sup 34}S values of both rainwater sulfate and epilithic mosses indicated that atmospheric sulfur in Nanchang region was mainly associated with coal combustion. The lower {delta}{sup 34}S values at the rural site can be explained by higher contribution of local coals (lower {delta}{sup 34}S values relative to those of north Chinese coals) and biogenic sulfur. - Research Highlights: {yields} Mosses acquire {delta}{sup 34}S values similar to those found for rainwater sulfate. {yields} Moss {delta}{sup 34}S signatures hold valuable source-specific information. {yields} Atmospheric S in Nanchang region was mainly associated with coal combustion.

  10. Sulfur, Chlorine, and Flourine Degassing and Atmospheric Loading by the 1783 - 1784 AD Laki (Skaftar Fires) Eruption in Iceland

    Science.gov (United States)

    Thordarson, T.; Self, S.; Hulsebosch, T.; Oskarsson, N.; McPhie, Jocelyn (Editor)

    1996-01-01

    The 1783-1784 Laki tholeiitic basalt fissure eruption in Iceland was one of the greatest atmospheric pollution events of the past 250 years, with widespread effects in the northern hemisphere. The degassing history and volatile budget of this event are determined by measurements of pre-eruption and residual contents of sulfur, chlorine, and fluorine in the products of all phases of the eruption. In fissure eruptions such as Laki, degassing occurs in two stages: by explosive activity or lava fountaining at the vents, and from the lava as it flows away from the vents. Using the measured sulfur concentrations in glass inclusions in phenocrysts and in groundmass glasses of quenched eruption products, we calculate that the total accumulative atmospheric mass loading of sulfur dioxide was 122 Mt over a period of 8 months. This volatile release is sufficient to have generated approximately 250 Mt of H2SO4 aerosols, an amount which agrees with an independent estimate of the Laki aerosol yield based on atmospheric turbidity measurements. Most of this volatile mass (approximately 60 wt.%) was released during the first 1.5 months of activity. The measured chlorine and fluorine concentrations in the samples indicate that the atmospheric loading of hydrochloric acid and hydrofluoric acid was approximately 7.0 and 15.0 Mt, respectively. Furthermore, approximately 75% of the volatile mass dissolved by the Laki magma was released at the vents and carried by eruption columns to altitudes between 6 and 13 km. The high degree of degassing at the vents is attributed to development of a separated two-phase flow in the upper magma conduit, and implies that high-discharge basaltic eruptions such as Laki are able to loft huge quantities of gas to altitudes where the resulting aerosols can reside for months, or even 1-2 years. The atmospheric volatile contribution due to subsequent degassing of the Laki lava flow is only 18 wt.% of the total dissolved in the magma, and these emissions were

  11. Assessment of atmospheric sulfur with the epilithic moss Haplocladium microphyllum: Evidences from tissue sulfur and delta{sup 34}S analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xueyan, E-mail: liuxueyan@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guanshui Road 46, Guiyang 550002, Guizhou Province (China); Xiao Huayun, E-mail: xiaohuayun@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guanshui Road 46, Guiyang 550002, Guizhou Province (China); Liu Congqiang, E-mail: liucongqiang@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guanshui Road 46, Guiyang 550002, Guizhou Province (China); Xiao Hongwei; Wang Yanli [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guanshui Road 46, Guiyang 550002, Guizhou Province (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-07-15

    The application of geochemical signals in mosses is more and more popular to investigate the deposition of atmospheric pollutants, but it is unclear whether records of atmospheric sulfur in mosses differ between their diverse habitats. This study aimed to investigate the influence of growing condition on tissue sulfur and delta{sup 34}S of Haplocladium microphyllum. Epilithic and terricolous mosses in open fields, mosses under different canopy conditions were considered. We found that tissue sulfur and delta{sup 34}S of mosses under different habitats were not consistent and could not be compared for atmospheric sulfur research with each other even collected at the same site, moss sulfur and delta{sup 34}S records would be distorted by subsoil and upper canopies in different degrees, which possibly mislead the interpretation of atmospheric sulfur level and sources. Consequently, mosses on open rocks can be used reliably to assess atmospheric-derived sulfur in view of their identical sulfur and delta{sup 34}S evidences. - Mosses on open rocky surfaces are reliable bioindicators of atmospheric sulfur deposition.

  12. Identifying the change in atmospheric sulfur sources in China using isotopic ratios in mosses

    Science.gov (United States)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2009-08-01

    A considerable number of studies on rainwater sulfur isotopic ratios (δ34Srain) have been conducted to trace sulfur sources at a large number of sites in the past. If longitudinal studies on the isotope composition of precipitation sulfate were conducted, it is possible to relate that to changes in sulfur emissions. But direct measurement needs considerable labor and time. So, in this study, sulfur isotopic ratios in rainwater and mosses were analyzed at Guiyang and Nanchang to evaluate the possibility of using mosses as a substitute for rainwater. We found that present moss sulfur isotopic ratios were comparable to those of present rainwater. Additionally, we investigated the changes of atmospheric sulfur sources and sulfur concentrations using an isotopic graphic analysis at five industrial cities, two forested areas, and two remote areas in China. Mosses in industrial cities show a wide range of δ34S values, with the highest occurring at Chongqing (+3.9‰) and the lowest at Guiyang (-3.1‰). But as compared to those in forested and remote areas, δ34S values of mosses in all the five industrial cities are lower. On the basis of isotopic comparisons between past rainwater (reported in the literature) and present mosses, in the plot of δ34Smoss versus δ34Srain, six zones indicating different atmospheric sulfur change are separated by the 1:1 line and δ34S values of potential sulfur sources. Our results indicate that atmospheric sulfur pollution in most of the industrial cities decreased, while at the two forested areas, no significant changes were observed, and a new anxiousness coming from new energy sources (e.g., oil) appeared in some cities. Studies on the change of ambient SO2 concentrations support these results.

  13. Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition

    NARCIS (Netherlands)

    Hagens, M.; Hunter, K.A.; Liss, P.S.; Middelburg, J.J.

    2014-01-01

    Seawater acidification can be induced both by absorption of atmospheric carbon dioxide (CO2) and by atmospheric deposition of sulfur and nitrogen oxides and ammonia. Their relative significance, interplay, and dependency on water column biogeochemistry are not well understood. Using a simple biogeoc

  14. Atmospheric Sulfur Deposition for a Red Soil Broadleaf Forest in Southern China

    Institute of Scientific and Technical Information of China (English)

    XU Cheng-Kai; HU Zheng-Yi; CAI Zu-Cong; WANG Ti-Jian; HE Yuan-Qiu; CAO Zhi-Hong

    2004-01-01

    A two-year study in a typical red soil region of Southern China was conducted to determine 1) the dry deposition velocity (Vd) for SO2 and particulate SO2 4- above a broadleaf forest, and 2) atmospheric sulfur fluxes so as to estimate the contribution of various fractions in the total. Using a resistance model based on continuous hourly meteorological data, atmospheric dry sulfur deposition in a forest was estimated according to Vd and concentrations of both atmospheric SO2 and particulate SO24-. Meanwhile, wet S deposition was estimated based on rainfall and sulfate concentrations in the rainwater. Results showed that about 99% of the dry sulfur deposition flux in the forest resulted from SO2 dry deposition.In addition, the observed dry S deposition was greater in 2002 than in 2000 because of a higher average concentration of SO2 in 2002 than in 2000 and not because of the average dry deposition velocity which was lower for SO2 in 2002. Also,dry SO2 deposition was the dominant fraction of deposited atmospheric sulfur in forests, contributing over 69% of the total annual sulfur deposition. Thus, dry SO2 deposition should be considered when estimating sulfur balance in forest ecological systems.

  15. The Role of Sulfuric Acid in Atmospheric Nucleation

    Czech Academy of Sciences Publication Activity Database

    Sipilä, M.; Berndt, T.; Petäjä, T.; Brus, David; Vanhanen, J.; Stratmann, F.; Patokoski, J.; Mauldin, III, R.L.; Hyvärinen, A.-P.; Lihavainen, H.; Kulmala, M.

    2010-01-01

    Roč. 327, č. 5970 (2010), s. 1243-1246. ISSN 0036-8075 Grant ostatní: EUCAARI(XE) 036833-2 Institutional research plan: CEZ:AV0Z40720504 Keywords : nucleation * sulfuric acid * climate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 31.364, year: 2010

  16. Sulfur isotopic composition and source identification of atmospheric environment in central Zhejiang,China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sulfur dioxide and sulfate aerosols in the atmosphere are significant factors leading to acidification of the atmospheric environment and worsening the pollution of acid deposition. Because of the "fingerprint" characteristics of the stable sulfur isotopic composition, sulfur isotope has been widely adopted in environmental researches concerning sulfur cycle and source identification. In this study, the atmospheric environment of Jinhua City, central Zhejiang Province, was continuously monitored, and the sulfur isotopic composition of SO2 and sulfate aerosols in the atmosphere was analyzed. The results indicate that the variation of δ34S values for SO2 ranges from 1.0‰ to 7.5‰, and annual average is 4.7‰±2.3‰, whereas that of sulfate aerosols ranges from 6.4‰ to 9.8‰,and annual average is 8.1‰±1.0‰. The δ 34S values for SO2 have significant seasonal variations, which are 7.0‰ in winter and 3.3‰ in summer. These variations cannot be attributed to a single factor, and we suggest a temperature-dependent isotope equilibrium fractionation and elevated biogenic sulfur emissions of isotopically light S in summer may be the main controlling mechanisms. Furthermore, we also discuss the δ 34S model of atmospheric SO2 oxidation to form sulfate, and suggest that heterogeneous oxidation dominates in the oxidation reactions of atmospheric SO2 in the central Zhejiang Province. We further suggest that the relative humidity in the atmosphere plays an important role in the oxidation mechanism of atmospheric SO2.

  17. Homogenous nucleation of sulfuric acid and water at atmospherically relevant conditions

    OpenAIRE

    Brus, D.; K. Neitola; T. Petäjä; Vanhanen, J.; A.-P. Hyvärinen; Sipilä, M.; Paasonen, P.; Lihavainen, H.; M. Kulmala

    2010-01-01

    In this study the homogeneous nucleation rates of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ioniza...

  18. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    Science.gov (United States)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  19. Indicating atmospheric sulfur by means of S-isotope in leaves of the plane, osmanthus and camphor trees

    International Nuclear Information System (INIS)

    Foliar δ34S values of three soil-growing plant species (Platanus Orientalis L., Osmanthus fragrans L. and Cinnamomum camphora) have been analyzed to indicate atmospheric sulfur. The foliar δ34S values of the three plant species averaged −3.11 ± 1.94‰, similar to those of both soil sulfur (−3.73 ± 1.04‰) and rainwater sulfate (−3.07 ± 2.74‰). This may indicate that little isotopic fractionation had taken place in the process of sulfur uptake by root or leaves. The δ34S values changed little in the transition from mature leaves to old/senescing leaves for both the plane tree and the osmanthus tree, suggestive of little isotope effect during sulfur redistribution in plant tissues. Significantly linear correlation between δ34S values of leaves and rainwater sulfate for the plane and osmanthus trees allowed the tracing of temporal variations of atmospheric sulfur by means of foliar sulfur isotope, while foliage δ34S values of the camphor is not an effective indicator of atmospheric sulfur. - Highlights: ► The δ34S values in plant leaves were similar to the average of rainwater. ► Little isotope effect was found during sulfur uptake by plant leaves. ► The foliage δ34S values are useful to indicate atmospheric sulfur. - Using foliage sulfur isotopes of soil growing plants to indicate atmospheric sulfur.

  20. Laboratory measurements and modeling of molecular photoabsorption in the ultraviolet for planetary atmospheres applications: diatomic sulfur and sulfur monoxide

    Science.gov (United States)

    Stark, Glenn

    2016-07-01

    Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S _{2}) and sulfur monoxide (SO) are in progress. S _{2}: Interpretations of atmospheric (Io, Jupiter, cometary comae) S _{2} absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S _{2} from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S _{2} vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S _{2} were completed using the NIST VUV-FTS at Gaithersburg, Maryland. These measurements are currently being incorporated into a coupled-channel model of the absorption spectrum of S _{2} to quantify the contributions from individual band features and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature. SO: There has been a long-standing need for high-resolution cross sections of sulfur monoxide radicals in the ultraviolet and vacuum ultraviolet regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and most recently for understanding sulfur isotope effects in the ancient (pre-O _{2}) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO _{2} as a parent molecule. Photoabsorption measurements were recently recorded on the DESIRS beamline of the SOLEIL synchrotron, taking advantage of the high-resolution VUV-FTS on that beamline. A number of

  1. Microseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methane

    OpenAIRE

    Etiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Klusman, R. W.; Dept. of Chemistry and Geochemistry, Colorado School of Mines, Golden, Co., 80401, United States

    2010-01-01

    Drylands are considered a net sink for atmospheric methane and a main item of the global inventories of the greenhouse gas budget. It is outlined here, however, that a significant portion of drylands occur over sedimentary basins hosting natural gas and oil reservoirs, where gas migration to the surface takes place, producing positive fluxes of methane into the atmosphere. New field surveys, in different hydrocarbonprone basins, confirm that microseepage, enhanced by faults and fr...

  2. On the Δ17O budget of atmospheric O2

    Science.gov (United States)

    Young, Edward D.; Yeung, Laurence Y.; Kohl, Issaku E.

    2014-06-01

    We modeled the Δ17O of atmospheric O2 using 27 ordinary differential equations comprising a box model composed of the stratosphere, troposphere, geosphere, hydrosphere and biosphere. Results show that 57% of the deficit in 17O in O2 relative to a reference water fractionation line is the result of kinetic isotope fractionation attending the Dole effect, 33% balances the positive Δ17O of O(1D) in the stratosphere, and 10% is from evapotranspiration. The predicted Δ‧17O O2 relative to waters is -0.410‰ as measured at the δ18O of air. The value for Δ‧17O O2 varies at fixed δ18O with the concentration of atmospheric CO2, gross primary production, and net primary production as well as with reaction rates in the stratosphere. Our model prediction is consistent with our measurements of the oxygen isotopic composition of air O2 compared with rocks if rocks define a fractionation line with an intercept in δ‧17O = 103ln(δ17O/103 + 1) vs. δ‧18O = 103ln(δ18O/103 + 1) space less than SMOW but more positive than some recent measurements imply. The predicted Δ17O is less negative than that obtained from recent measurements of O2 directly against SMOW. Underestimation of Δ‧17O O2 can only be ameliorated if the integrated (bulk) Δ‧17O for stratospheric CO2 is significantly greater than measurements currently allow. Our results underscore the need for high-precision comparisons of the 17O/16O and 18O/16O ratios of atmospheric O2, VSMOW, and rocks.

  3. Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth

    Science.gov (United States)

    Vakkari, Ville; Tiitta, Petri; Jaars, Kerneels; Croteau, Philip; Beukes, Johan Paul; Josipovic, Miroslav; Kerminen, Veli-Matti; Kulmala, Markku; Venter, Andrew D.; Zyl, Pieter G.; Worsnop, Douglas R.; Laakso, Lauri

    2015-12-01

    Aerosol particles formed in the atmosphere are important to the Earth's climate system due to their ability to affect cloud properties. At present, little is known about the atmospheric chemistry responsible for the growth of newly formed aerosol particles to climate-relevant sizes. Here combining detailed aerosol measurements with a theoretical framework we found that depending on the gaseous precursors and size of the newly formed particles, the growth was dominated by either sulfuric acid accompanied by ammonium or organic compounds originating in either biogenic emissions or savannah fires. The contribution of sulfuric acid was larger during the early phases of the growth, but in clean conditions organic compounds dominated the growth from 1.5 nm up to climatically relevant sizes. Furthermore, our analysis indicates that in polluted environments the contribution of sulfuric acid to the growth may have been underestimated by up to a factor of 10.

  4. 40 CFR Appendix A to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Science.gov (United States)

    2010-07-01

    ... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec... of Sulfur Dioxide in the Atmosphere (Pararosaniline Method) A Appendix A to Part 50 Protection of... Sulfur Dioxide in the Atmosphere (Pararosaniline Method) Link to an amendment published at 75 FR...

  5. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    Science.gov (United States)

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules. PMID:27128188

  6. Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us?

    Directory of Open Access Journals (Sweden)

    K. R. Lassey

    2006-06-01

    Full Text Available Little is known about how the methane source inventory and sinks have evolved over recent centuries. New and detailed records of methane mixing ratio and isotopic composition (12CH4, 13CH4 and 14CH4 from analyses of air trapped in polar ice and firn can enhance this knowledge. We use existing bottom-up constructions of the source history, including ''EDGAR''-based constructions, to assemble a model of the evolving global budget for methane and for its carbon isotope composition through the 20th century. By matching such budgets to atmospheric data, we examine the constraints imposed by isotope information on those budget evolutions. Balancing both 12CH4 and 13CH4 budgets requires participation by a highly-fractionating atmospheric sink such as active chlorine (removing at least 10 Tg yr-1, which has been proposed independently. Examining a companion budget evolution for 14CH4 exposes uncertainties in inferring the fossil-methane source from atmospheric 14CH4 data. Specifically, methane evolution during the nuclear era is sensitive to the cycling dynamics of ''bomb 14C'' (originating from atmospheric weapons tests through the biosphere. In addition, since ca 1970, direct production and release of 14CH4 from nuclear-power facilities is influential but poorly quantified. Atmospheric 14CH4 determinations in the nuclear era have the potential to better characterize biospheric carbon cycling and to better quantify the ill-determined nuclear-power source.

  7. Homogenous Nucleation of Sulfuric Acid and Water at Close to Atmospherically Relevant Conditions

    Czech Academy of Sciences Publication Activity Database

    Brus, David; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-01-01

    Roč. 11, č. 11 (2011), s. 5277-5287. ISSN 1680-7316 Grant ostatní: GA FCE(FI) 1118615 Institutional research plan: CEZ:AV0Z40720504 Keywords : homogeneous nucleation rates * atmospheric measurements * sulfuric acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.520, year: 2011

  8. Contribution of natural terrestrial sources to the atmospheric chloroform budget

    Science.gov (United States)

    Rhew, R. C.; Abel, T.; Pan, D.; Whelan, M.

    2008-12-01

    Chloroform (trichloromethane, CHCl3) is the second largest carrier of natural chlorine in the troposphere after methyl chloride, contributing to the reactive chlorine burden in the troposphere and to ozone destruction in the stratosphere. Our understanding of the biogeochemical cycling of atmospheric CHCl3 has undergone major adjustments recently, including the quantification of the total atmospheric burden of this compound, the estimated global source and sink strengths, and the relative contributions of anthropogenic versus natural contributions. Numerous natural terrestrial sources have been identified, including temperate peatlands, Arctic tundra, termite mounds, salt marshes, grasslands, forests and woodlands. However, the wide variability of fluxes within each ecosystem has complicated efforts to quantify the overall terrestrial source. In addition, the environmental and biogeochemical controls remain largely unknown. We shall present a comparison of recent CHCl3 flux measurements that cover a range of biome types and climatic conditions. To address within-biome variability, flux measurements from the Arctic tundra and temperate grasslands will be compared to common environmental parameters (e.g., temperature, soil moisture, solar insolation) and other trace gas fluxes (CH3Cl, CH4, CCl4). The generally poor correlations demonstrate that the variability of CHCl3 emissions may be affected by site-specific parameters that are not currently measured or by drastic changes in hydrologic conditions. Similar patterns are observed in laboratory incubations of tundra peat and grassland soils. We explore the possibility that the humification of plant material, which has been shown to produce organochlorine compounds through the chlorination of organic matter, may contribute to CHCl3 emissions. If this link exists, then CHCl3 production could potentially act as a proxy for organic matter degradation and carbon sequestration, essential biogeochemical and ecosystem

  9. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars II. Sulfur and Phosphorus

    CERN Document Server

    Visscher, C

    2005-01-01

    We use thermochemical equilibrium and kinetic calculations to model sulfur and phosphorus chemistry in the atmospheres of giant planets, brown dwarfs, low-mass stars, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. Our results are independent of any particular model atmosphere and the behavior of different gases can be used to constrain atmospheric structure and metallicity. Hydrogen sulfide is the dominant sulfur gas in substellar atmospheres and approximately represents the atmospheric sulfur inventory. Depending on the prevailing S and C chemistry, the abundance of minor sulfur gases may constrain atmospheric temperatures or metallicity. Disequilibrium abundances of PH3 are expected in the observable atmospheres of substellar objects, and PH3 is representative of the total P abundance in giant planets and T dwarfs. A number of other phosphorus gases become relatively abunda...

  10. Conversion of Sulfur-Dioxide in the Atmosphere

    DEFF Research Database (Denmark)

    Flyger, H.; Fenger, J.

    1976-01-01

    Pertinent, previous studies of the oxidation of SO2 in the atmosphere are briefly reviewed. A project dealing with the conversion in the plume from an oil-fired power station is described in greater detail. Measurements were performed from an aircraft and included continuous registration of NOx, SO...

  11. Atmospheric peroxyacetyl nitrate (PAN: a global budget and source attribution

    Directory of Open Access Journals (Sweden)

    E. V. Fischer

    2013-10-01

    Full Text Available Peroxyacetyl nitrate (PAN formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs, is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2. PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source, methylglyoxal (30%, acetone (7%, and a suite of other isoprene and terpene oxidation products (19%. A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37% and alkanes (14%. Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.

  12. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution

    Science.gov (United States)

    Fischer, E. V.; Jacob, D. J.; Yantosca, R. M.; Sulprizio, M. P.; Millet, D. B.; Mao, J.; Paulot, F.; Singh, H. B.; Roiger, A.; Ries, L.; Talbot, R. W.; Dzepina, K.; Pandey Deolal, S.

    2014-03-01

    Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.

  13. Contribution of anthropogenic and natural sources to atmospheric sulfur in parts of the United States

    Science.gov (United States)

    Rice, Harbert; Nochumson, D. H.; Hidy, G. M.

    This paper presents an estimate of the contributions to atmospheric sulfur of natural vs anthropogenic processes in areas of the United States. The areas were selected on the basis of population density, industrialization and potential for different kinds of geographically unique natural emissions. The sulfur emissions were estimated in part from land use practice and from geochemical arguments relating sulfur to biological carbon cycling. The natural or quasi-natural processes considered include sulfur gas production in freshwater sediments and intertidal mudflats, soil processes and vegetation. Agricultural activities and acid mine drainage were also taken into account as a perturbation to the available natural sulfur resources. The emissions appear to be heavily influenced by contributions from sulfate reduction in freshwater sediments and intertidal mudflats, and acid mine drainage. The anthropogenic emissions were calculated from the U.S. Environmental Protection Agency's inventories in the late 1960s. The natural vs man-derived sulfur were compared for 2° longitude by 2° latitude sectors in New England, the mid-Atlantic States, the Atlantic Coastal South, the Midwest, and the arid Southwest. In the sample regions where the anthropogenic emissions exceed 50-100 × 10 3 tonne S y -1 over a 2 × 2° sector, or ≳ 15-30 kg(S) ha -1 y -1, they tend to dominate the biogenic emissions. This appears to be the case for industrialized Ohio, Illinois, and New England. If 10% of the available biogenic sulfur is released to the atmosphere, natural or quasi-natural emissions may be a significant contributor in air over Minnesota and Wisconsin, Florida, and perhaps the rural areas of Virginia and remote parts of Arizona and Utah.

  14. Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us?

    Directory of Open Access Journals (Sweden)

    K. R. Lassey

    2007-01-01

    Full Text Available Little is known about how the methane source inventory and sinks have evolved over recent centuries. New and detailed records of methane mixing ratio and isotopic composition (12CH4, 13CH4 and 14CH4 from analyses of air trapped in polar ice and firn can enhance this knowledge. We use existing bottom-up constructions of the source history, including "EDGAR"-based constructions, as inputs to a model of the evolving global budget for methane and for its carbon isotope composition through the 20th century. By matching such budgets to atmospheric data, we examine the constraints imposed by isotope information on those budget evolutions. Reconciling both 12CH4 and 13CH4 budgets with EDGAR-based source histories requires a combination of: a greater proportion of emissions from biomass burning and/or of fossil methane than EDGAR constructions suggest; a greater contribution from natural such emissions than is commonly supposed; and/or a significant role for active chlorine or other highly-fractionating tropospheric sink as has been independently proposed. Examining a companion budget evolution for 14CH4 exposes uncertainties in inferring the fossil-methane source from atmospheric 14CH4 data. Specifically, methane evolution during the nuclear era is sensitive to the cycling dynamics of "bomb 14C" (originating from atmospheric weapons tests through the biosphere. In addition, since ca. 1970, direct production and release of 14CH4 from nuclear-power facilities is influential but poorly quantified. Atmospheric 14CH4 determinations in the nuclear era have the potential to better characterize both biospheric carbon cycling, from photosynthesis to methane synthesis, and the nuclear-power source.

  15. Atmospheric sulfur hexafluoride - Sources, sinks and greenhouse warming

    Science.gov (United States)

    Ko, Malcolm K. W.; Sze, Nien D.; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    An estimate is obtained of worldwide production of SF6, from which a global emission rate is derived and extrapolated for the next 20 years. The atmospheric lifetime of SF6 is then estimated based on a known mechanism (e.g., photolysis and atmospheric oxidation) and/or on the mass balance method. Finally, the radiative forcing of SF6 is calculated based on recent laboratory IR absorption data, and the expected warming over the time period 1950-2010 is computed for several emission scenarios. Calculations showed that SF6 is 3 times more effective as a greenhouse gas compared to CFC 11 on a per-molecule basis. However, based on projected emission scenarios, the expected warming from SF6 through 2010 is small (0.004 C), compared to the warming from CO2 and other trace gases (0.8 C).

  16. Satellite observations of global atmospheric energy budgets: annual means and decadal records

    Science.gov (United States)

    Lin, B.; Stackhouse, P.; Minnis, P.; Wielicki, B.; Schlosser, C. A.; Rodell, M.; Hu, Y.; Sun, W.; Fan, T. A.; Hinkelman, L.

    2008-05-01

    The global atmospheric energy budget can tell us a lot about the earth's climate system, and is critical for general circulations of the atmosphere. This study uses satellite data sets of the radiation at the top of atmosphere (TOA) and surface from ERBE, CERES and ISCCP and the latent and sensible heat over oceans from SSM/I to assess the global energy budgets. Over land, surface radiation estimates are used to constrain GLDAS model assimilated results and to force the radiation, turbulent heat, and land surface heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Because of satellite data availability of broadband observations for radiation and microwave measurements for turbulent fluxes, this study considers the atmospheric energy budgets during 1988 and 2005. Global annual means of the TOA net radiation are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 W/m2, respectively. The estimated atmospheric and surface heat imbalances are about ­ 8 ~ 9 W/m2, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget: the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. For long term energy budgets, TOA radiation measurements show a clear relationship with the changes in the ocean heat storage. Although most oceanic latent and sensible heat data sets have significant unrealistic long-term variations, some satellite global observations of marine latent heat fluxes from evaporation and precipitation measurements exhibit potential correlations with sea surface

  17. Geological Sulfur Isotopes Indicate Elevated OCS in the Archean Atmosphere, Solving the Faint Young Sun Paradox

    DEFF Research Database (Denmark)

    Ueno, Yuichiro; Johnson, Matthew Stanley; Danielache, Sebastian Oscar;

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological re......-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation....

  18. The 210Pb budget of the North Sea. Atmospheric input versus sediment flux

    International Nuclear Information System (INIS)

    Atmospheric deposition is one of the main sources of 210Pb in the North Sea water. Annual variations of this flux are large in the Netherlands. Translated to the North Sea area the atmospheric deposition is 42 Bq.m-2.y-1. In the 210Pb budget of the North Sea, supply by rivers, as artificial supply by power plants and fertilizer plants, does not play a great role. Fishery activities is not a good scavenger in the total 210Pb budget. From measurements of 36 box-cores in the North Sea the average 210Pb flux to the sediment is estimated 150 Bq.m-2.y-1. Fluxes to the sediment smaller than 10% of the atmospheric flux, occur in the sandy areas of the Southern Bight and Dogger Bank. Large fluxes, up to 50 times the atmospheric deposition, occur mainly in the fine grained deposition areas of the Skagerrak and the Norwegian Trench. The net lateral flux accounts for 1/3 part of the flux to the sediment: the North Sea is a true sink for 210Pb. The radon flux from the sediment supplies 1/3 of the 210Pb flux to the sediment. Based on the 210Pb budget total mass accumulation in the North Sea is 1100 x 109 kg.y-1, this is an order of magnitude higher than figures obtained from transport of suspended matter and from 210Pb sedimentation rates. (author)

  19. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  20. Impact of atmospheric sulfur deposition on sulfur metabolism in plants : H2S as sulfur source for sulfur deprived Brassica oleracea L.

    NARCIS (Netherlands)

    De Kok, L.J.; Stuiver, C.E.E.; Rubinigg, M.; Westerman, S.; Grill, D.

    1997-01-01

    Brassica oleracea L. was rather insensitive to atmospheric H2S: growth was only negatively affected at greater than or equal to 0.4 mu l l(-1). Shoots formed a sink for H2S and the uptake rate showed saturation kinetics with respect to the atmospheric concentration. The H2S uptake rate was high in c

  1. Neutral molecular cluster formation of sulfuric acid dimethylamine observed in real time under atmospheric conditions

    OpenAIRE

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Duplissy, Jonathan; Ehrhart, Sebastian

    2015-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Res...

  2. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    Science.gov (United States)

    Ryder, J.; Polcher, J.; Peylin, P.; Ottlé, C.; Chen, Y.; van Gorsel, E.; Haverd, V.; McGrath, M. J.; Naudts, K.; Otto, J.; Valade, A.; Luyssaert, S.

    2016-01-01

    In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has been based on a big-leaf approach, with averaging schemes that represent in-canopy processes. Furthermore, to be stable, that is to say, over large time steps and without large iterations, a surface layer model should be capable of implicit coupling to the atmospheric model. Surface models with large time steps, however, have difficulties in reproducing consistently the energy balance in field observations. Here we outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy). This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multi-layer long-wave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare-soil flux within the canopy space. Significantly, it avoids iterations over the height of the canopy and so maintains implicit coupling to the atmospheric model LMDz (Laboratoire de Météorologie Dynamique Zoomed model). As a first test, the model is evaluated against data from both an intensive measurement campaign and longer-term eddy-covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of energy and water fluxes, as well as the vertical gradients of temperature and of sensible heat fluxes.

  3. Nitrogen budget of Lago Maggiore: the relative importance of atmospheric deposition and catchment sources

    Directory of Open Access Journals (Sweden)

    Gabriele TARTARI

    2001-02-01

    Full Text Available Hydrological and chemical data of 1996 and 1997 are used to evaluate the relative contributions of atmospheric deposition and urban/industrial wastewaters to the nitrogen budget of Lago Maggiore. The atmospheric load of nitrogen was about 80% of the total input to the lake, with negligible variations in dry (1997 and wet (1996 years. A comparison of the two study years with the yearly N budgets evaluated from 1978 to 1998, showed that the N load was higher with increasing amounts of precipitation/water inflow. Soils and vegetation act as N sinks; the % retention varies between 40-60% for the forested catchments with low population density in the central-northern part of the basin, to values close to zero or even negative in the south, indicating a net leaching from the soils. The Traaen & Stoddard (1995 approach revealed that all the catchments of the major inflowing rivers were oversaturated with nitrogen. The long-term trend of nitrogen concentrations in Lago Maggiore (1955-99 is analogous to the trend for atmospheric deposition (1975-99, which is related to emissions of nitrogen oxides and ammonia in the atmosphere. The relationships between the present N load and in-lake concentrations are discussed using a budget model, which is also used to infer the pristine load of N. The close relationships between N trends in lakes Maggiore, Como and Iseo, and the geographical and anthropogenic features common to their catchments, suggest that the results obtained for Lago Maggiore can be extended to a wider area.

  4. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783 1784 AD Laki (Skaftár Fires) eruption in Iceland

    Science.gov (United States)

    Thordarson, T.; Self, S.; Óskarsson, N.; Hulsebosch, T.

    1996-09-01

    The 1783 1784 Laki tholeiitic basalt fissure eruption in Iceland was one of the greatest atmospheric pollution events of the past 250 years, with widespread effects in the northern hemisphere. The degassing history and volatile budget of this event are determined by measurements of pre-eruption and residual contents of sulfur, chlorine, and fluorine in the products of all phases of the eruption. In fissure eruptions such as Laki, degassing occurs in two stages: by explosive activity or lava fountaining at the vents, and from the lava as it flows away from the vents. Using the measured sulfur concentrations in glass inclusions in phenocrysts and in groundmass glasses of quenched eruption products, we calculate that the total accumulative atmospheric mass loading of sulfur dioxide was 122 Mt over a period of 8 months. This volatile release is sufficient to have generated ˜250 Mt of H2SO4 aerosols, an amount which agrees with an independent estimate of the Laki aerosol yield based on atmospheric turbidity measurements. Most of this volatile mass (˜60 wt.%) was released during the first 1.5 months of activity. The measured chlorine and fluorine concentrations in the samples indicate that the atmospheric loading of hydrochloric acid and hydrofluoric acid was ˜7.0 and 15.0 Mt, respectively. Furthermore, ˜75% of the volatile mass dissolved by the Laki magma was released at the vents and carried by eruption columns to altitudes between 6 and 13 km. The high degree of degassing at the vents is attributed to development of a separated two-phase flow in the upper magma conduit, and implies that high-discharge basaltic eruptions such as Laki are able to loft huge quantities of gas to altitudes where the resulting aerosols can reside for months or even 1 2 years. The atmospheric volatile contribution due to subsequent degassing of the Laki lava flow is only 18 wt.% of the total dissolved in the magma, and these emissions were confined to the lowest regions of the

  5. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  6. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    Science.gov (United States)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  7. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    Science.gov (United States)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  8. Precipitation recycling in West Africa - regional modeling, evaporation tagging and atmospheric water budget analysis

    Science.gov (United States)

    Arnault, Joel; Kunstmann, Harald; Knoche, Hans-Richard

    2015-04-01

    Many numerical studies have shown that the West African monsoon is highly sensitive to the state of the land surface. It is however questionable to which extend a local change of land surface properties would affect the local climate, especially with respect to precipitation. This issue is traditionally addressed with the concept of precipitation recycling, defined as the contribution of local surface evaporation to local precipitation. For this study the West African monsoon has been simulated with the Weather Research and Forecasting (WRF) model using explicit convection, for the domain (1°S-21°N, 18°W-14°E) at a spatial resolution of 10 km, for the period January-October 2013, and using ERA-Interim reanalyses as driving data. This WRF configuration has been selected for its ability to simulate monthly precipitation amounts and daily histograms close to TRMM (Tropical Rainfall Measuring Mission) data. In order to investigate precipitation recycling in this WRF simulation, surface evaporation tagging has been implemented in the WRF source code as well as the budget of total and tagged atmospheric water. Surface evaporation tagging consists in duplicating all water species and the respective prognostic equations in the source code. Then, tagged water species are set to zero at the lateral boundaries of the simulated domain (no inflow of tagged water vapor), and tagged surface evaporation is considered only in a specified region. All the source terms of the prognostic equations of total and tagged water species are finally saved in the outputs for the budget analysis. This allows quantifying the respective contribution of total and tagged atmospheric water to atmospheric precipitation processes. The WRF simulation with surface evaporation tagging and budgets has been conducted two times, first with a 100 km2 tagged region (11-12°N, 1-2°W), and second with a 1000 km2 tagged region (7-16°N, 6°W -3°E). In this presentation we will investigate hydro-atmospheric

  9. Investigation on the formation and measurement of sulfur-containing aerosols in the atmosphere (Part B)

    International Nuclear Information System (INIS)

    A gas chromatographic method was developed for the routine determination of sulfur-containing acids in the atmosphere, based on the methylation of the acids. The developed analytical method was tested on the premise of the Kernforschungszentrum in Karlsruhe during the years 1979 and 1980. An additional campaign was carried out in Frankfurt/Main. With a Winkler impactor placed in front of the sampler it was shown that the contribution of acid sulfates to particles with size smaller than 0.3 μm is rather large. (orig./HP)

  10. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    Science.gov (United States)

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  11. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  12. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  13. Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions

    CERN Document Server

    Kürten, Andreas; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even tho...

  14. Decreased atmospheric sulfur deposition across the southeastern U.S.: when will watersheds release stored sulfate?

    Science.gov (United States)

    Rice, Karen C.; Scanlon, Todd S.; Lynch, Jason A.; Cosby, Bernard J.

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States (U.S.). Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in stream-water SO42- concentrations have been observed in unglaciated watersheds. We calculated SO42- mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO42-, unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO42- over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO42- correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO42- retention to release anticipates more widespread reductions in stream-water SO42- concentrations in this region.

  15. NATO Advanced Research Workshop on The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere

    CERN Document Server

    Charlson, Robert; Andreae, Meinrat; Rodhe, Henning

    1985-01-01

    Viewed from space, the Earth appears as a globe without a beginning or an end. Encompassing the globe is the atmosphere with its three phases-­ gaseous, liquid, and solid--moving in directions influenced by sunlight, gravity, and rotation. The chemical compositions of these phases are determined by biogeochemical cycles. Over the past hundred years, the processes governing the rates and reactions in the atmospheric biogeochemical cycles have typically been studied in regions where scientists lived. Hence, as time has gone by, the advances in our knowledge of atmospheric chemical cycles in remote areas have lagged substantially behind those for more populated areas. Not only are the data less abundant, they are also scattered. Therefore, we felt a workshop would be an excellent mechanism to assess the state­ of-knowledge of the atmospheric cycles of sulfur and nitrogen in remote areas and to make recommendations for future research. Thus, a NATO Advanced Research Workshop '~he Biogeochemical Cycling of Sulfu...

  16. Importance of secondary sources in the atmospheric budgets of formic and acetic acids

    Directory of Open Access Journals (Sweden)

    F. Paulot

    2010-10-01

    Full Text Available We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ~1200 and ~1400 Gmol/yr, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

  17. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    Science.gov (United States)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  18. Continental scale atmospheric and terrestrial water budget modeling and comparison to GRACE

    Science.gov (United States)

    Fersch, B.; Kunstmann, H.; Sneeuw, N.; Devaraju, B.

    2009-04-01

    2008, correlations between monthly GRACE derived and regionally modeled water storage changes are shown for the mentioned areas. Also, the uncertainty bounds of the atmospheric moisture flux computations that arise from different atmospheric driving data (NCEP Reanalysis, ECMWF Operational Analysis, ECMWF ERA-INTERIM) are estimated. Also, the effects of different sea surface temperature data and nudging towards global datasets will be depicted. Furthermore, the estimated water budgets are compared to weekly GRACE solutions that have become available in late 2008 by GFZ Potsdam.

  19. Theoretical and global scale model studies of the atmospheric sulfur/aerosol system

    Science.gov (United States)

    Kasibhatla, Prasad

    1996-01-01

    The primary focus during the third-phase of our on-going multi-year research effort has been on 3 activities. These are: (1) a global-scale model study of the anthropogenic component of the tropospheric sulfur cycle; (2) process-scale model studies of the factors influencing the distribution of aerosols in the remote marine atmosphere; and (3) an investigation of the mechanism of the OH-initiated oxidation of DMS in the remote marine boundary layer. In this paper, we describe in more detail our research activities in each of these areas. A major portion of our activities during the fourth and final phase of this project will involve the preparation and submission of manuscripts describing the results from our model studies of marine boundary-layer aerosols and DMS-oxidation mechanisms.

  20. Regional emission and loss budgets of atmospheric methane (2002-2012)

    Science.gov (United States)

    Saeki, T.; Patra, P. K.; Dlugokencky, E. J.; Ishijima, K.; Umezawa, T.; Ito, A.; Aoki, S.; Morimoto, S.; Kort, E. A.; Crotwell, A. M.; Ravi Kumar, K.; Nakazawa, T.

    2015-12-01

    Methane (CH4) plays important roles in atmospheric chemistry and short-term forcing of climate. Clear understanding of atmospheric CH4's budget of emissions and losses is required to aid sustainable development of Earth's future environment. We used an atmospheric chemistry-transport model (JAMSTEC's ACTM) for simulating atmospheric CH4. An inverse modeling system has been developed for estimating CH4 emissions (7 ensemble cases) from 53 land regions for 2002-2012 using measurements at 39 sites. Global net CH4 emissions varied between 505-509 and 524-545 Tg/yr during 2002-2004 and 2010-2012, respectively (ranges based on 6 inversion cases), with a step like increase in 2007 in agreement with atmospheric measurement. The inversion system did not account for interannual variations in radicals reacting with CH4 in atmosphere. Our results suggest that the recent update of EDGAR inventory (version 4.2FT2010) overestimated global total emissions by at least 25 Tg/yr in 2010. Increase in CH4 emission since 2004 originated in the tropical and southern hemisphere regions, with timing consistent with an increase of non-dairy cattle stocks by ~10% in 2012 from 1056 million heads in 2002, leading to ~10 Tg/yr increase in emissions from enteric fermentation. All 7 inversions robustly estimated the interannual variations in emissions, but poorly constrained the seasonal cycle amplitude or phase consistently for all regions due to sparse observational network. Forward simulation results using both the a priori and a posteriori emissions are compared with independent aircraft measurements for validation. By doing that we are able to reject the upper limit (545 Tg/yr) of global total emissions as 14 Tg/yr too high during 2008-2012, which allows us to further conclude that CH4 emission increase rate over the East Asia (China mainly) region was 7-8 Tg/yr between the 2002-2006 and 2008-2012 periods, contrary to 1-17 Tg/yr in the a priori emissions.

  1. Changes in Atmospheric Sulfur Dioxide (SO2) over the English Channel - 1.5 Years of Measurements from the Penlee Point Atmospheric Observatory

    Science.gov (United States)

    Yang, Mingxi; Bell, Thomas; Hopkins, Frances; Smyth, Timothy

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near near the Plymouth Sound. International Maritime Organization regulation came into force in January 2015 to reduce sulfur emissions tenfold in Sulfur Emission Control Areas such as the English Channel. We observed a three-fold reduction from 2014 to 2015 in the estimated ship-emitted SO2 during southeasterly winds. Dimethylsulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from ~1/3 in 2014 to ~1/2 in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  2. A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion

    Directory of Open Access Journals (Sweden)

    C. Yver

    2010-11-01

    Full Text Available This paper presents an analysis of the recent tropospheric molecular hydrogen (H2 budget with a particular focus on soil uptake and surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, soil uptake distinct from surface emissions and finally, soil uptake, biomass burning, anthropogenic emissions and N2 fixation-related emissions separately were inverted in several scenarios. The various inversions generate an estimate for each term of the H2 budget. The net H2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere varies between −8 and 8 Tg yr−1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on soil uptake measurements. Our estimate of global H2 soil uptake is −59 ± 4.0 Tg yr−1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions considering their respective uncertainties. To constrain a more robust partition of H2 sources and sinks would need additional constraints, such as isotopic measurements.

  3. A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion

    Directory of Open Access Journals (Sweden)

    C. E. Yver

    2011-04-01

    Full Text Available This paper presents an analysis of the recent tropospheric molecular hydrogen (H2 budget with a particular focus on soil uptake and European surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, then deposition velocity and surface emissions and finally, deposition velocity, biomass burning, anthropogenic and N2 fixation-related emissions were simultaneously inverted in several scenarios. These scenarios have focused on the sensibility of the soil uptake value to different spatio-temporal distributions. The range of variations of these diverse inversion sets generate an estimate of the uncertainty for each term of the H2 budget. The net H2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere varies between −8 and +8 Tg yr−1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on bottom-up and top-down estimations. Our estimate of global H2 soil uptake is −59±9 Tg yr−1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions within the range of their respective uncertainties. Additional constraints, such as isotopic measurements would be needed to infer a more robust partition of H2 sources and sinks.

  4. Bidirectional Interaction of Alanine with Sulfuric Acid in the Presence of Water and the Atmospheric Implication.

    Science.gov (United States)

    Wang, Chun-Yu; Ma, Yan; Chen, Jiao; Jiang, Shuai; Liu, Yi-Rong; Wen, Hui; Feng, Ya-Juan; Hong, Yu; Huang, Teng; Huang, Wei

    2016-04-21

    Amino acids are recognized as important components of atmospheric aerosols, which impact on the Earth's climate directly and indirectly. However, much remains unknown about the initial events of nucleation. In this work, the interaction of alanine [NH2CH(CH3)COOH or Ala], one of the most abundant amino acids in the atmosphere, with sulfuric acid (SA) and water (W) has been investigated at the M06-2X/6-311++G(3df, 3pd) level of theory. We have studied thermodynamics of the hydrated (Ala)(SA) core system with up to four water molecules. We found that Ala, with one amino group and one carboxyl group, can interact with H2SO4 and H2O in two directions and that it has a high cluster stabilizing effect similar to that of ammonia, which is one of the key nucleation precursor. The corresponding Gibbs free energies of the (Ala)(SA)(W)n (n = 0-4) clusters formation at 298.15 K predicted that Ala can contribute to the stabilization of small binary clusters. Our results showed that the hydrate distribution is temperature-dependent and that a higher humidity and temperature can contribute to the formation of hydrated clusters. PMID:26997115

  5. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  6. Ahead of his time: Jacob Lipman's 1930 estimate of atmospheric sulfur deposition for the conterminous United States

    Science.gov (United States)

    Landa, Edward R.; Shanley, James B.

    2015-01-01

    A 1936 New Jersey Agricultural Experiment Station Bulletin provided an early quantitative assessment of atmospheric deposition of sulfur for the United States that has been compared in this study with more recent assessments. In the early 20th century, anthropogenic sulfur additions from the atmosphere to the soil by the combustion of fossil fuels were viewed as part of the requisite nutrient supply of crops. Jacob G. Lipman, the founding editor of Soil Science, and his team at Rutgers University, made an inventory of such additions to soils of the conterminous United States during the economic depression of the 1930s as part of a federally funded project looking at nutrient balances in soils. Lipman's team gathered data compiled by the US Bureau of Mines on coal and other fuel consumption by state and calculated the corresponding amounts of sulfur emitted. Their work pioneered a method of assessment that became the norm in the 1970s to 1980s—when acid rain emerged as a national issue. Lipman's estimate of atmospheric sulfur deposition in the 1930 is in reasonable agreement with recent historic reconstructions.

  7. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer

    International Nuclear Information System (INIS)

    The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 m tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation from linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE)

  8. Atmospheric sulfur hexafluoride in-situ measurements at the Shangdianzi regional background station in China.

    Science.gov (United States)

    Yao, Bo; Zhou, Lingxi; Xia, Lingjun; Zhang, Gen; Guo, Lifeng; Liu, Zhao; Fang, Shuangxi

    2014-12-01

    We present in-situ measurements of atmospheric sulfur hexafluoride (SF6) conducted by an automated gas chromatograph-electron capture detector system and a gas chromatography/mass spectrometry system at a regional background site, Shangdianzi, in China, from June 2009 to May 2011, using the System for Observation of Greenhouse gases in Europe and Asia and Advanced Global Atmospheric Gases Experiment (AGAGE) techniques. The mean background and polluted mixing ratios for SF6 during the study period were 7.22 × 10⁻¹² (mol/mol, hereinafter) and 8.66 × 10⁻¹², respectively. The averaged SF6 background mixing ratios at Shangdianzi were consistent with those obtained at other AGAGE stations located at similar latitudes (Trinidad Head and Mace Head), but larger than AGAGE stations in the Southern Hemisphere (Cape Grim and Cape Matatula). SF6 background mixing ratios increased rapidly during our study period, with a positive growth rate at 0.30 × 10⁻¹² year⁻¹. The peak to peak amplitude of the seasonal cycle for SF6 background conditions was 0.07 × 10⁻¹², while the seasonal fluctuation of polluted conditions was 2.16 × 10⁻¹². During the study period, peak values of SF6 mixing ratios occurred in autumn when local surface horizontal winds originated from W/WSW/SW/SWS/S sectors, while lower levels of SF6 mixing ratios appeared as winds originated from N/NNE/NE/ENE/E sectors. PMID:25499493

  9. Atmospheric sulfur hexafluoride in-situ measurements at the Shangdianzi regional background station in China

    Institute of Scientific and Technical Information of China (English)

    Bo Yao; Lingxi Zhou; Lingjun Xia; Gen Zhang; Lifeng Guo; Zhao Liu; Shuangxi Fang

    2014-01-01

    We present in-situ measurements of atmospheric sulfur hexafluoride (SF6) conducted by an automated gas chromatograph-electron capture detector system and a gas chromatography/mass spectrometry system at a regional background site,Shangdianzi,in China,from June 2009 to May 2011,using the System for Observation of Greenhouse gases in Europe and Asia and Advanced Global Atmospheric Gases Experiment (AGAGE)techniques.The mean background and polluted mixing ratios for SF6 during the study period were 7.22 × 10-12 (mol/mol,hereinafter) and 8.66 × 10-12,respectively.The averaged SF6 background mixing ratios at Shangdianzi were consistent with those obtained at other AGAGE stations located at similar latitudes (Trinidad Head and Mace Head),but larger than AGAGE stations in the Southern Hemisphere (Cape Grim and Cape Matatula).SF6 background mixing ratios increased rapidly during our study period,with a positive growth rate at 0.30 × 10-12 year-1.The peak to peak amplitude of the seasonal cycle for SF6 background conditions was 0.07 × 10-12,while the seasonal fluctuation of polluted conditions was 2.16 × 10-12.During the study period,peak values of SF6 mixing ratios occurred in autumn when local surface horizontal winds originated from W/WSW/SW/SWS/S sectors,while lower levels of SF6 mixing ratios appeared as winds originated from N/ NNE/NE/ENE/E sectors.

  10. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  11. SURFRAD-A National Surface Radiation Budget Network for Atmospheric Research.

    Science.gov (United States)

    Augustine, John A.; Deluisi, John J.; Long, Charles N.

    2000-10-01

    A surface radiation budget observing network (SURFRAD) has been established for the United States to support satellite retrieval validation, modeling, and climate, hydrology, and weather research. The primary measurements are the downwelling and upwelling components of broadband solar and thermal infrared irradiance. A hallmark of the network is the measurement and computation of ancillary parameters important to the transmission of radiation. SURFRAD commenced operation in 1995. Presently, it is made up of six stations in diverse climates, including the moist subtropical environment of the U.S. southeast, the cool and dry northern plains, and the hot and arid desert southwest. Network operation involves a rigorous regimen of frequent calibration, quality assurance, and data quality control. An efficient supporting infrastructure has been created to gather, check, and disseminate the basic data expeditiously. Quality controlled daily processed data files from each station are usually available via the Internet within a day of real time. Data from SURFRAD have been used to validate measurements from NASA's Earth Observing System series of satellites, satellite-based retrievals of surface erythematogenic radiation, the national ultraviolet index, and real-time National Environmental Satellite, Data, and Information Service (NESDIS) products. It has also been used for carbon sequestration studies, to check radiative transfer codes in various physical models, for basic research and instruction at universities, climate research, and for many other applications. Two stations now have atmospheric energy flux and soil heat flux instrumentation, making them full surface energy balance sites. It is hoped that eventually all SURFRAD stations will have this capability.

  12. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic

    Science.gov (United States)

    Berner, Robert A.

    2005-07-01

    The results of a theoretical isotope mass balance model are presented for the time dependence of burial and weathering-plus-degassing fluxes within the combined long-term carbon and sulfur cycles. Averaged data for oceanic δ 13C and δ 34S were entered for every million years from 270 to 240 Ma (middle Permian to middle Triassic) to study general trends across the Permian-Triassic boundary. Results show a drop in the rate of global organic matter burial during the late Permian and a predominance of low values during the early-to-middle Triassic. This overall decrease with time is ascribed mainly to epochs of conversion of high biomass forests to low biomass herbaceous vegetation resulting in a decrease in the production of terrestrially derived organic debris. Additional contributions to lessened terrestrial carbon burial were increased aridity and a drop in sea level during the late Permian which led to smaller areas of low-lying coastal wetlands suitable for coal and peat deposition. Mirroring the drop in organic matter deposition was an increase in the burial of sedimentary pyrite, and a dramatic increase in the calculated global mean ratio of pyrite-S to organic-C. High S/C values resulted from an increase of deposition in marine euxinic basins combined with a decrease in the burial of low-pyrite associated terrestrial organic matter. The prediction of increased oceanic anoxia during the late Permian and early Triassic agrees with independent studies of the composition of sedimentary rocks. Weathering plus burial fluxes for organic carbon and pyrite sulfur were used to calculate changes in atmospheric oxygen. The striking result is a continuous drop in O 2 concentration from ˜30% to ˜13% over a twenty million year period. This drop was brought about mainly by a decrease in the burial of terrestrially derived organic matter. but with a possible contribution from the weathering of older organic matter on land. It must have exerted a considerable influence on

  13. Early Mars volcanic sulfur storage in the cryosphere and formation of transient SO2-rich atmospheres during the Hesperian

    CERN Document Server

    Schmidt, F; Tian, F; Dartois, E; Herri, J -M; Mousis, O

    2016-01-01

    In a previous paper (Chassefi\\`ere et al., Icarus 223, 878-891, 2013), we have shown that most volcanic sulfur released to early Mars atmosphere could have been trapped in the cryosphere under the form of CO2-SO2 clathrates. Huge amounts of sulfur, up to the equivalent of a ~1 bar atmosphere of SO2, would have been stored in the Noachian cryosphere, then massively released to the atmosphere during Hesperian due to rapidly decreasing CO2 pressure. It would have resulted in the formation of the large sulfate deposits observed mainly in Hesperian terrains, whereas no or little sulfates are found at the Noachian. In the present paper, we first clarify some aspects of our previous work. We discuss the possibility of a smaller cooling effect of sulfur particles, or even of a net warming effect. We point out the fact that CO2-SO2 clathrates formed through a progressive enrichment of a preexisting reservoir of CO2 clathrates and discuss processes potentially involved in the slow formation of a SO2-rich upper cryosphe...

  14. Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer

    Science.gov (United States)

    Casso-Torralba, P.; de Arellano, J. V. -G.; Bosveld, F.; Soler, M.R.; Vermeulen, A.; Werner, C.; Moors, E.

    2008-01-01

    The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 in tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation ftom linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with, traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE). Copyright 2008 by the American Geophysical Union.

  15. Scale decomposition of atmospheric water budget over West Africa during the monsoon 2006 from NCEP/GFS analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bielli, Soline [Universite du Quebec a Montreal rate at OURANOS, Canadian Network for Regional Climate Modelling and Diagnostics, Montreal, QC (Canada); Laboratoire de Meteorologie Dynamique, Paris Cedex 05 (France); Roca, Remy [Laboratoire de Meteorologie Dynamique, Paris Cedex 05 (France)

    2010-07-15

    NCEP/GFS analysis is used to investigate the scale dependence and the interplay between the terms of the atmospheric water budget over West Africa using a dedicated decomposition methodology. The focus is on a 2-month period within the active monsoon period of 2006. Results show that the dominant scales of seasonal mean precipitation and moisture flux divergence over West Africa during the monsoon period are large scales (greater than 1,400 km) except over topography, where mean values of small scales (smaller than 900 km) are strong. Correlations between moisture flux divergences in monsoon and African Easterly Jet layers and precipitation indicate that precipitation is strongly correlated to moisture flux divergence via both large-scale and small-scale processes, but the correlation signal is quite different depending on the region and vertical layer considered. The analysis of the scales associated with the rainfall and the local evaporation over 3 different regions shows that positive correlation exists over the ocean between precipitation and evaporation especially at large scale. Over the continent south of the Sahel, the correlation is negative and driven by large scale. Over the northern part of Sahel, positive correlation is found, only at small scales during the active monsoon period. Lag correlation reveals that the maximum evaporation over the Sahel occurs 1-3 days after the maximum precipitation with maximum contribution from small-scale processes during the first day. This study shows that NCEP/GFS reproduces well the known atmospheric water budget features. It also reveals a new scale dependence of the relative role of each term of the atmospheric water budget. This indicates that such scale decomposition approach is helpful to clarify the functioning of the water cycle embedded in the monsoon system. (orig.)

  16. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Matthias, E-mail: matthias.mueller@ptb.de [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Choudhury, Soumyadip [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Gruber, Katharina [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Cruz, Valene B. [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Fuchsbichler, Bernd [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Jacob, Timo [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Koller, Stefan [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Stamm, Manfred [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Ionov, Leonid [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2014-04-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si{sub 3}N{sub 4} windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one

  17. Estimating Sulfur hexafluoride (SF6) emissions in China using atmospheric observations and inverse modeling

    Science.gov (United States)

    Fang, X.; Thompson, R.; Saito, T.; Yokouchi, Y.; Li, S.; Kim, J.; Kim, K.; Park, S.; Graziosi, F.; Stohl, A.

    2013-12-01

    With a global warming potential of around 22800 over a 100-year time horizon, sulfur hexafluoride (SF6) is one of the greenhouse gases regulated under the Kyoto Protocol. Global SF6 emissions have been increasing since circa the year 2000. The reason for this increase has been inferred to be due to rapidly increasing emissions in developing countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change, notably China. In this study, SF6 emissions during the period 2006-2012 for China and other East Asian countries were determined using in-situ atmospheric measurements and inverse modeling. We performed various inversion sensitivity tests, which show the largest uncertainties in the a posteriori Chinese emissions are associated with the a priori emissions used and their uncertainty, the station network, as well as the meteorological input data. The overall relative uncertainty of the a posteriori emissions in China is estimated to be 17% in 2008. Based on sensitivity tests, we employed the optimal parameters in our inversion setup and performed yearly inversions for the study period. Inversion results show that the total a posteriori SF6 emissions from China increased from 1420 × 245 Mg/yr in 2006 to 2741 × 472 Mg/yr in 2009 and stabilized thereafter. The rapid increase in emissions reflected a fast increase in SF6 consumption in China, a result also found in bottom-up estimates. The a posteriori emission map shows high emissions concentrated in populated parts of China. During the period 2006-2012, emissions in northwestern and northern China peaked around the year 2009, while emissions in eastern, central and northeastern China grew gradually during almost the whole period. Fluctuating emissions are observed for southwestern China. These regional differences should be caused by changes of provincial SF6 usage and by shifts of usage among different sectors. Fig. 1. Footprint emission sensitivity

  18. Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere

    OpenAIRE

    Liang, Jinyou; Horowitz, Larry W.; Jacob, Daniel James; Wang, Yuhang; Fiore, Arlene M.; Logan, Jennifer A.; Gardner, Geraldine M.; Munger, J. William

    1998-01-01

    A three-dimensional, continental-scale photochemical model is used to investigate seasonal budgets of O3 and NOy species (including NOx and its oxidation products) in the boundary layer over the United States and to estimate the export of these species from the U.S. boundary layer to the global atmosphere. Model results are evaluated with year-round observations for O3, CO, and NOy species at nonurban sites. A seasonal transition from NOx to hydrocarbon-limited conditions for O3 production ov...

  19. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    Science.gov (United States)

    Bao, H.; Reheis, M.C.

    2003-01-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (??34S and ??18O) are 5.8 ?? 1.4 (CDT) and 11.2 ?? 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (?? 17O), with an average value of 1.0 ?? 0.6???. Except for a weak positive correlation between ??18O and ??17O values (r2 ??? 0.4), no correlation exists for ??18O versus ??34S, ?? 17O versus ??34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive ?? 17O values (up to 4.23???) are found in samples from sites in the vicinity of large cities or major highways, and near-zero ?? 17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ???4.8??? lower for ??18O, ???2.1??? higher for ??34S , and ???0.3??? lower for ?? 17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  20. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    Science.gov (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between ‑1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  1. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    Science.gov (United States)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  2. Regional source identification of atmospheric aerosols in Beijing based on sulfur isotopic compositions

    Science.gov (United States)

    Lianfang, Wei; Pingqing, Fu; Xiaokun, Han; Qingjun, Guo; Yele, Sun; Zifa, Wang

    2016-04-01

    65 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months representing the four seasons between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate aerosols were analyzed systematically. The "fingerprint" characteristics of the stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 and potential source contribution function (PSCF), were employed for identifying potential regional sources. Results obviously exhibited the distinctive seasonality for various aerosol speciation associated with PM2.5 in Beijing with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species. Elevated chloride associated with higher concentration of organics were found in autumn and winter, due to enhanced coal combustion emissions. The δ34S values of Beijing aerosol samples ranged from 2.94‰ to 10.2‰ with an average value of 6.18±1.87‰ indicating that the major sulfur source is direct fossil fuel burning-related emissions. Owning to a temperature-dependent fractionation and elevated biogenic sources of isotopically light sulfur in summer, the δ34S values had significant seasonal variations with a winter maximum ( 8.6‰)and a summer minimum ( 5.0‰). The results of trajectory clustering and the PSCF method demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios ( 4.83‰) were associated with air masses from the south, southeast or east, whereas lower sulfate concentrations with higher δ34S values ( 6.69‰) when the air masses were mainly from north or northwest. These results suggested two main different kinds of regional coal combustion sources contributed to the pollution in Beijing.

  3. Sulfuric acid vapor in the atmosphere of Venus as observed by the Venus Express Radio Science experiment VeRa

    Science.gov (United States)

    Oschlisniok, Janusz; Pätzold, Martin; Häusler, Bernd; Tellmann, Silvia; Bird, Mike; Andert, Tom

    2016-04-01

    The cloud deck within Venus' atmosphere, which covers the entire planet between approx. 50 and 70 km altitude, consists mostly of liquid and gaseous sulfuric acid. The gaseous part increases strongly just below the main clouds and builds an approx. 15 km thick haze layer of H2SO4. This region is responsible for a strong absorption of radio waves as seen in VeRa radio science observations. The amount of the absorption, which is used to derive the abundance of gaseous sulfuric acid, depends on the signal frequency. VeRa probed the atmosphere of Venus between 2006 and 2015 with radio signals at 13 cm (S-band) and 3.6 cm (X-band) wavelengths. We present H2SO4 profiles derived from S-band and X-band absorption during the first occultation season in 2006. The comparison of the H2SO4 profiles derived from both frequency bands provides a reliable picture of the H2SO4 abundance. Distinct differences in the S- and X-band profiles may give a clue to increased SO2 abundances. The derived VeRa results shall be compared with results provided by other experiments onboard Venus Express as well as with previous missions.

  4. Implementation of an atmospheric sulfur scheme in the HIRLAM regional weather forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, Annica [Stockholm Univ. (Sweden). Dept. of Meteorology

    2000-02-01

    Sulfur chemistry has been implemented into the regional weather forecast model HIRLAM in order to simulate sulfur fields during specific weather situations. The model calculates concentrations of sulfur dioxide in air (SO{sub 2}(a)), sulfate in air (SO{sub 4}(a)), sulfate in cloud water (SO{sub 4}(aq)) and hydrogen peroxide (H{sub 2}O{sub 2}). Modeled concentrations of SO{sub 2}(a), SO{sub 4}(a) and SO{sub 4}(aq) in rain water are compared with observations for two weather situations, one winter case with an extensive stratiform cloud cover and one summer case with mostly convective clouds. A comparison of the weather forecast parameters precipitation, relative humidity, geopotential and temperature with observations is also performed. The results show that the model generally overpredicts the SO{sub 2}(a) concentration and underpredicts the SO{sub 4}(a) concentration. The agreement between modeled and observed SO{sub 4}(aq) in rain water is poor. Calculated turnover times are approximately 1 day for SO{sub 2}(a) and 2-2.5 days for SO{sub 4}(a). For SO{sub 2}(a) this is in accordance with earlier simulated global turnover times, but for SO{sub 4}(a) it is substantially lower. Several sensitivity simulations show that the fractional mean bias and root mean square error decreases, mainly for SO{sub 4}(a) and SO{sub 4}(aq), if an additional oxidant for converting SO{sub 2}(a) to SO{sub 4}(a) is included in the model. All weather forecast parameters, except precipitation, agree better with observations than the sulfur variables do. Wet scavenging is responsible for about half of the deposited sulfur and in addition, a major part of the sulfate production occurs through in-cloud oxidation. Hence, the distribution of clouds and precipitation must be better simulated by the weather forecast model in order to improve the agreement between observed and simulated sulfur concentrations.

  5. Long-lived halocarbon trends and budgets from atmospheric chemistry modelling constrained with measurements in polar firn

    Directory of Open Access Journals (Sweden)

    P. Martinerie

    2009-01-01

    Full Text Available The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6 are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are insignificant. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.

  6. Reactions of SIV species with organic compounds: formation mechanisms of organo-sulfur derivatives in atmospheric aerosols

    Science.gov (United States)

    Passananti, Monica; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; George, Christian

    2015-04-01

    Secondary organic aerosol (SOA) have an important impact on climate, air quality and human health. However the chemical reactions involved in their formation and growth are not fully understood or well-constrained in climate models. It is well known that inorganic sulfur (mainly in oxidation states (+IV) and (+VI)) plays a key role in aerosol formation, for instance sulfuric acid is known to be a good nucleating gas. In addition, acid-catalyzed heterogeneous reactions of organic compounds has shown to produce new particles, with a clear enhancement in the presence of ozone (Iinuma 2013). Organosulfates have been detected in tropospheric particles and aqueous phases, which suggests they are products of secondary organic aerosol formation process (Tolocka 2012). Originally, the production of organosulfates was explained by the esterification reaction of alcohols, but this reaction in atmosphere is kinetically negligible. Other formation pathways have been suggested such as hydrolysis of peroxides and reaction of organic matter with sulfite and sulfate radical anions (SO3-, SO4-) (Nozière 2010), but it remains unclear if these can completely explain atmospheric organo-sulfur aerosol loading. To better understand the formation of organo-sulfur compounds, we started to investigate the reactivity of SIV species (SO2 and SO32-) with respect to specific functional groups (organic acids and double bonds) on atmospherically relevant carboxylic acids and alkenes. The experiments were carried out in the homogeneous aqueous phase and at the solid-gas interface. A custom built coated-wall flow tube reactor was developed to control relativity humidity, SO2 concentration, temperature and gas flow rate. Homogeneous and heterogeneous reaction kinetics were measured and resulting products were identified using liquid chromatography coupled with an orbitrap mass spectrometer (LC-HR-MS). The experiments were performed with and without the presence of ozone in order to evaluate any

  7. Study of Grain Growth of CZTS Nanoparticles Annealed in Sulfur Atmosphere

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole;

    2014-01-01

    The kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), is very promising as absorber material in future thin filmsolar cells. The elements are abundant, the material has a high absorption coefficient, and the pure sulfideCZTS is non-toxic. These properties make CZTS a potential candidate also for large......-scale applications. Here,solution processing allows for comparatively fast and inexpensive fabrication and solution processing alsoholds the record efficiency in the kesterite family, however for the selenized compound. The current challenges are, (1) that the high carbon content in nanoparticle thin films is one...... in selenium) shows the best results, however sulfurization (annealing in sulfur) has the advantage of leading to a non-toxic material. In this work, nanocrystals of CZTS with a targeted Cu-poor/Zn-rich composition are synthesized through a hot-injection method with oleylamine as the solvent. The nanocrystal...

  8. Atmospheric sulfur and climate changes: a modelling study at mid and high-southern latitudes; Soufre atmospherique et changements climatiques: une etude de modelisation pour les moyennes et hautes latitudes Sud

    Energy Technology Data Exchange (ETDEWEB)

    Castebrunet, H

    2007-09-15

    The mid and high-southern latitudes are still marginally affected by anthropogenic sulfur emissions. They are the only regions in the world where the natural cycle of the atmospheric sulfur may still be observed. Sulfur aerosols are well-known for their radiative impact, and thus interact with climate. Climate can in turn affect atmospheric sulfur sources, distribution and chemistry. Antarctic ice cores provide information on the evolution of climate and sulfur deposition at the surface of the ice sheet at glacial-interglacial time scales. The aim of this thesis is to develop and use modeling towards a better understanding of the atmospheric sulfur cycle in antarctic and sub-antarctic regions. Ice core data are used to validate model results under glacial climate conditions. An Atmospheric General Circulation Model (AGCM) coupled to a sulfur chemistry module is used: the LMD-ZTSulfur model, version 4. An update of both the physical and chemical parts of the model. The model was first performed. The impact of there changes on modelled sulfur cycle are evaluated for modern climate. Further, boundary conditions are adapted to simulate the atmospheric circulation and sulfur cycle at the Last Glacial Maximum, approximately 20,000 years ago. In the model, sulfur is found to be highly sensitive to antarctic sea-ice coverage, which is still poorly known during the ice age. An original dataset of ice-age sea-ice coverage was developed. Its impact on the oceanic emissions of dimethyl sulfide, main precursor of sulfur aerosols at high-southern latitudes, is discussed. Using the same oceanic sulfur reservoirs as for present day climate, the model broadly reproduces the glacial deposits of sulfur aerosols on the Antarctic plateau, suggesting little impact of climate on oceanic sulfur production in the Antarctic region. Sensitivity tests were carried out to draw an up-to-date status of major uncertainties and difficulties facing future progress in understanding atmospheric

  9. Earth-atmosphere radiation budget analyses derived from noaa satellite data, June 1974-February 1978. Volume II

    International Nuclear Information System (INIS)

    Earth-atmosphere radiation budget data as determined from the Scanning Radiometers (SR) aboard NOAA operational satellites are presented in analyzed maps and profiles for the period June 1974 through February 1978. Monthly, seasonal, and annual averages are presented in two separate volumes. Volume 1 contains analyzed mapped fields and Volume 2 contains meridional profiles of zonal averages. The quantities displayed are albedo, absorbed solar radiation, outgoing longwave radiation, and net radiation. The profiles are based on zonal means at every 2.5 degrees latitude for the entire latitude circle and for three longitudinal sectors: 0 degrees-117.5 degrees E, 120 degrees E-122.5 degrees W, and 120.0 degrees W-2.5 degrees W. Albedo, absorbed solar radiation, and outgoing longwave radiation are displayed in profile form

  10. A new formulation of the atmospheric spectral energy budget, with application to two high-resolution general circulation models

    CERN Document Server

    Augier, Pierre

    2012-01-01

    A new formulation of the spectral energy budget of kinetic and available potential energies of the atmosphere is derived, with spherical harmonics as base functions. Compared to previous formulations, there are three main improvements: (i) the topography is taken into account, (ii) the exact three-dimensional advection terms are considered and (iii) the vertical flux is separated from the energy transfer between different spherical harmonics. Using this formulation, results from two different high resolution GCMs are analyzed: the AFES T639L24 and the ECMWF IFS T1279L91. The spectral fluxes show that the AFES, which reproduces realistic horizontal spectra with a $k^{-5/3}$ inertial range at the mesoscales, simulates a strong downscale energy cascade. % In contrast, neither the $k^{-5/3}$ vertically integrated spectra nor the downscale energy cascade are produced by the ECMWF IFS.

  11. A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI

    Science.gov (United States)

    Khan, M. A. H.; Cooke, M. C.; Utembe, S. R.; Archibald, A. T.; Maxwell, P.; Morris, W. C.; Xiao, P.; Derwent, R. G.; Jenkin, M. E.; Percival, C. J.; Walsh, R. C.; Young, T. D. S.; Simmonds, P. G.; Nickless, G.; O'Doherty, S.; Shallcross, D. E.

    2015-07-01

    The impact of including a more detailed VOC oxidation scheme (CRI v2-R5) with a multi-generational approach for simulating tropospheric acetone is investigated using a 3-D global model, STOCHEM-CRI. The CRI v2-R5 mechanism contains photochemical production of acetone from monoterpenes which account for 64% (46.8 Tg/yr) of the global acetone sources in STOCHEM-CRI. Both photolysis and oxidation by OH in the troposphere contributes equally (42%, each) and dry deposition contributes 16% of the atmospheric sinks of acetone. The tropospheric life-time and the global burden of acetone are found to be 18 days and 3.5 Tg, respectively, these values being close to those reported in the study of Jacob et al. (2002). A dataset of aircraft campaign measurements are used to evaluate the inclusion of acetone formation from monoterpenes in the CRI v2-R5 mechanism used in STOCHEM-CRI. The overall comparison between measurements and models show that the parameterised approach in STOCHEM-NAM (no acetone formation from monoterpenes) underpredicts the mixing ratios of acetone in the atmosphere. However, using a detailed monoterpene oxidation mechanism forming acetone has brought the STOCHEM-CRI into closer agreement with measurements with an improvement in the vertical simulation of acetone. The annual mean surface distribution of acetone simulated by the STOCHEM-CRI shows a peak over forested regions where there are large biogenic emissions and high levels of photochemical activity. Year-long observations of acetone and methanol at the Mace Head research station in Ireland are compared with the simulated acetone and methanol produced by the STOCHEM-CRI and found to produce good overall agreement between model and measurements. The seasonal variation of model and measured acetone levels at Mace Head, California, New Hampshire and Minnesota show peaks in summer and dips in winter, suggesting that photochemical production may have the strongest effect on its seasonal trend.

  12. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    OpenAIRE

    Schobesberger, S.; Junninen, H.; BIANCHI, F.; Lonn, G.; M. Ehn; Lehtipalo, K.; Dommen, J; S. Ehrhart; Ortega, I.K.; A. Franchin; Nieminen, T.; Riccobono, F.; Hutterli, M.; J. Duplissy; Almeida, J

    2013-01-01

    The formation of nanoparticles by condensable vapors in the atmosphere influences radiative forcing and therefore climate. We explored the detailed mechanism of particle formation, in particular the role of oxidized organic molecules that arise from the oxidation of monoterpenes, a class of volatile organic compounds emitted from plants. We mimicked atmospheric conditions in a well-controlled laboratory setup and found that these oxidized organics form initial clusters directly with single su...

  13. Effects of increased deposition of atmospheric nitrogen on an upland moor: Nitrogen budgets and nutrient accumulation

    International Nuclear Information System (INIS)

    This study was designed to investigate the effect of long-term (11 years) ammonium nitrate additions on standing mass, nutrient content (% and kg ha-1), and the proportion of the added N retained within the different compartments of the system. The results showed that more than 90% of all N in the system was found in the soil, particularly in the organic (Oh) horizon. Added N increased the standing mass of vegetation and litter and the N content (kg N ha-1) of almost all measured plant, litter and soil compartments. Green tissue P and K content (kg ha-1) were increased, and N:P ratios were increased to levels indicative of P limitation. At the lowest treatment, most of the additional N was found in plant/litter compartments, but at higher treatments, there were steep increases in the amount of additional N in the underlying organic and mineral (Eag) horizons. The budget revealed that the proportion of added N found in the system as a whole increased from 60%, 80% and up to 90% in response to the 40, 80 and 120 kg N ha-1 year-1 treatments, respectively. - Additions of 40 kg N ha-1 over 11 years accumulated mainly in plant and litter compartments; higher additions accumulated mainly in the organic and mineral horizons

  14. Wind structure and variability in the middle atmosphere during the November 1980 energy budget campaign

    Science.gov (United States)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1985-01-01

    Between November 6 and December 1, 1980 series of rocket observations were obtained from two sites in northern Scandinavia (68 deg N) as part of the Energy Budget Campaign, revealing the presence of significant vertical and temporal changes in the wind structure. These changes coincided with different geomagnetic conditions, i.e. quiet and enhanced. Large amounts of rocket data were gathered from high latitudes over such a short interval of time. Prior to November 16 the meridional wind component above 60 km was found to be positive (southerly), while the magnitude of the zonal wind component incresed with altitude. After November 16 the meridional component became negative (northerly) and the magnitude of the zonal wind component was noted to decrease with altitude. Time-sections of the perturbations of the zonal wind show the presence of vertically propagating waves, which suggest gravity wave activity. These waves increase in length from 1 km near 30 km to over 12 km near 80 km. The observational techniques employed Andoya (69 deg N), Norway, and Esrange (67.9 deg N), Sweden, consisted of chaff foil, instrumented rigid spheres, chemical trails, inflatable spheres and parachutes.

  15. Deriving an atmospheric budget of total organic bromine using airborne in situ measurements from the western Pacific area during SHIVA

    Science.gov (United States)

    Sala, S.; Bönisch, H.; Keber, T.; Oram, D. E.; Mills, G.; Engel, A.

    2014-07-01

    During the recent SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) project an extensive data set of all halogen species relevant for the atmospheric budget of total organic bromine was collected in the western Pacific region using the Falcon aircraft operated by the German Aerospace agency DLR (Deutsches Zentrum für Luft- und Raumfahrt) covering a vertical range from the planetary boundary layer up to the ceiling altitude of the aircraft of 13 km. In total, more than 700 measurements were performed with the newly developed fully automated in situ instrument GHOST-MS (Gas chromatograph for the Observation of Tracers - coupled with a Mass Spectrometer) by the Goethe University of Frankfurt (GUF) and with the onboard whole-air sampler WASP with subsequent ground-based state-of-the-art GC / MS analysis by the University of East Anglia (UEA). Both instruments yield good agreement for all major (CHBr3 and CH2Br2) and minor (CH2BrCl, CHBrCl2 and CHBr2Cl) VSLS (very short-lived substances), at least at the level of their 2σ measurement uncertainties. In contrast to the suggestion that the western Pacific could be a region of strongly increased atmospheric VSLS abundance (Pyle et al., 2011), we found only in the upper troposphere a slightly enhanced amount of total organic bromine from VSLS relative to the levels reported in Montzka and Reimann et al. (2011) for other tropical regions. From the SHIVA observations in the upper troposphere, a budget for total organic bromine, including four halons (H-1301, H-1211, H-1202, H-2402), CH3Br and the VSLS, is derived for the level of zero radiative heating (LZRH), the input region for the tropical tropopause layer (TTL) and thus also for the stratosphere. With the exception of the two minor VSLS CHBrCl2 and CHBr2Cl, excellent agreement with the values reported in Montzka and Reimann et al. (2011) is found, while being slightly higher than previous studies from our group based on balloon-borne measurements.

  16. On the marine atmospheric boundary layer characteristics over Bay of Bengal and Arabian Sea during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)

    Indian Academy of Sciences (India)

    Denny P Alappattu; D Bala Subrahamanyam; P K Kunhikrishnan; K M Somayaji; G S Bhat; R Venkatesan; C B S Dutt; A Bagavath Singh; V K Soni; A S Tripathi

    2008-07-01

    Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made during this campaign. The latitudinal variation of the surface layer turbulent fluxes is also described in detail.

  17. Continuous-flow determination of aqueous sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry with gas-phase sample introduction

    Science.gov (United States)

    Nakahara, Taketoshi; Mori, Toshio; Morimoto, Satoru; Ishikawa, Hiroshi

    1995-06-01

    A simple continuous-flow generation of volatile hydrogen sulfide and sulfur dioxide by acidification of aqueous sulfide and sulfite ions, respectively, is described for the determination of low concentrations of sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry (MIP-AES) in the normal ultraviolet (UV) and vacuum ultraviolet (VUV) regions of the spectrum. For measuring spectral lines in the VUV region, the monochromator and the enclosed external optical path between the MIP source and the entrance slit of the monochromator have both been purged with nitrogen to minimize oxygen absorption below 190 nm. Sulfur atomic emission lines at 180.73, 182.04 and 217.05 nm have been selected as the analytical lines. Of the various acids examined, 1.0 M hydrochloric acid is the most favorable for both the generation of hydrogen sulfide from sulfide ions and sulfur dioxide from sulfite ions. Either generated hydrogen sulfide or sulfur dioxide is separated from the solution in a simple gas-liquid separator and swept into the helium stream of a microwave-induced plasma for analysis. The best attainable detection limits (3 σ criterion) for sulfur at 180.73 nm were 0.13 and 1.28 ng ml -1 for the generation of hydrogen sulfide and sulfur dioxide, respectively, with the corresponding background equivalent concentrations of 20.9 and 62.2 ng ml -1 in sulfur concentration. The typical analytical working graphs obtained under the optimized experimental conditions were rectilinear over approximately four orders of magnitude in sulfur concentration. The present method has been successfully applied to the recovery test of the sulfide spiked to waste water samples and to the determination of sulfite in some samples of commercially available wine.

  18. A re-examination on the mass budget of the Saturn's ring atmosphere and ionosphere at Equinox

    International Nuclear Information System (INIS)

    Complete text of publication follows. For a long time, the Saturnian ring system has been suggested to be immersed in a neutral atmosphere. The related source mechanisms are the constant bombardment of the icy particles by interplanetary meteoroid (BIM) and irradiation by solar UV photons (ISP). Both effects release neutral molecules either in the form of impact water vapor (from BIM) or gas emission in the form of H2O, O2 and H2 (from ISP). The existence of an oxygen exosphere and ionosphere in Saturn's main ring region has been confirmed by the SOI observations of the Cassini spacecraft. In addition, Cassini RPWS found that a large amount of the Enceladus-originated water-group plasma would be deposited on the outer edge of the A ring. These icy materials could be recycled to neutral oxygen molecules via grain-surface chemistry. In this work, we have examined the mass budget of the ring oxygen atmosphere of Saturn taking into account such an 'exogenic' source. The maximum O2 source rate from recycling of Enceladus-originated plasma is probably comparable to the one from photolytic decomposition of ices. In this case, the neutral O2 source rate would be independent of the solar insolation angle. Therefore, even at Saturn's equinox, the extended oxygen atmosphere still could be an important supplier of oxygen ions in the Saturnian magnetosphere. We have performed several studies for different recycling source rates from Enceladus. These predictions need further Cassini MIMI and CAPS observations to be verified in future.

  19. INTERMEDIATE-RANGE GRID MODEL FOR ATMOSPHERIC SULFUR DIOXIDE AND SULFATE CONCENTRATIONS AND DEPOSITIONS

    Science.gov (United States)

    A three-dimensional time-dependent grid type model for two chemically reacting species which undergo atmospheric transport, diffusion and wet and dry deposition over a region of several hundred km is presented. Accuracy and sensitivity of the model are discussed. The model is app...

  20. The isotopic record of Northern Hemisphere atmospheric carbon monoxide since 1950, implications for the CO budget

    Science.gov (United States)

    Wang, Z.; Chappellaz, J.; Martinerie, P.; Park, K.; Petrenko, V.; Witrant, E.; Blunier, T.; Brenninkmeijer, C. A. M.; Mak, J. E.

    2011-11-01

    We present a 60-yr record of atmospheric CO concentration and stable isotopic ratios at high northern latitude based on firn air samples collected in the frame of the North Greenland Eemian Ice Drilling (NEEM) project. Concentration, δ13C, and δ18O of CO from trapped gases in the firn were measured by gas chromatography coupled with isotope ratio mass spectrometry (gc-IRMS). Using models of trace gas transport in firn, the long-term trend of atmospheric CO and its stable isotopic composition at high northern latitudes since the 1950s were reconstructed. Our best firn air scenarios suggest that δ13C decreased slightly from -25.8‰ in 1950 to -26.4‰ in 2000, then dropped to -27.2‰ in 2008. δ18O decreased more regularly from 9.8‰ in 1950 to 7.1‰ in 2008. The best firn air scenarios also suggest that CO concentration increased gradually from 1950 and peaked likely in the late-1970s, followed by a gradual decrease by present day (Petrenko et al., 2011). An isotope mass balance model is applied to quantify the temporal evolution of CO source partitioning able to explain the combined mixing ratio and isotopic ratio changes. It suggests that a slight increase followed by a large reduction in CO derived from fossil fuel combustion occurred since 1950. The increase of CO concentration from 1950 to the mid-1970s is the result of a combined increase of multiple sources. The reduction of CO emission from fossil fuel combustion after the mid-1970s is the most plausible mechanism for the drop of CO concentration during this time. The mitigation policy for CO emission from vehicle exhaust such as application of catalytic converters and the growth of diesel engine vehicles market share are the main expected reasons for the CO source strength change from fossil fuel combustion.

  1. Long-term global distribution of earth’s shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-05-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm−2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm−2, with ±5 Wm−2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm−2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm−2 and 0.6% over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm−2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative

  2. Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications

    Science.gov (United States)

    Merikanto, Joonas; Duplissy, Jonathan; Määttänen, Anni; Henschel, Henning; Donahue, Neil M.; Brus, David; Schobesberger, Siegfried; Kulmala, Markku; Vehkamäki, Hanna

    2016-02-01

    We derive a version of Classical Nucleation Theory normalized by quantum chemical results on sulfuric acid-water hydration to describe neutral and ion-induced particle formation in the binary sulfuric acid-water system. The theory is extended to treat the kinetic regime where the nucleation free energy barrier vanishes at high sulfuric acid concentrations or low temperatures. In the kinetic regime particle formation rates become proportional to sulfuric acid concentration to second power in the neutral system or first power in the ion-induced system. We derive simple general expressions for the prefactors in kinetic-type and activation-type particle formation calculations applicable also to more complex systems stabilized by other species. The theory predicts that the binary water-sulfuric acid system can produce strong new particle formation in the free troposphere both through barrier crossing and through kinetic pathways. At cold stratospheric and upper free tropospheric temperatures neutral formation dominates the binary particle formation rates. At midtropospheric temperatures the ion-induced pathway becomes the dominant mechanism. However, even the ion-induced binary mechanism does not produce significant particle formation in warm boundary layer conditions, as it requires temperatures below 0°C to take place at atmospheric concentrations. The theory successfully reproduces the characteristics of measured charged and neutral binary particle formation in CERN CLOUD3 and CLOUD5 experiments, as discussed in a companion paper.

  3. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    Science.gov (United States)

    Braendholt, Andreas; Steenberg Larsen, Klaus; Ibrom, Andreas; Pilegaard, Kim

    2016-04-01

    Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic effect of low atmospheric turbulence on continuous hourly Rs measurements with closed chambers throughout one year in a temperate Danish beech forest. Using friction velocity (u⋆) measured at the site above the canopy, we filtered out chamber flux data measured at low atmospheric turbulence. The non-filtered data showed a clear diurnal pattern of Rs across all seasons with highest fluxes during night time suggesting an implausible negative temperature sensitivity of Rs. When filtering out data at low turbulence, the annually averaged diurnal pattern changed, such that the highest Rs fluxes were seen during day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when including all data and it decreased with an increasing u⋆ filter threshold. Our results show that Rs was overestimated at low atmospheric turbulence throughout the year and that this overestimation considerably biased the diurnal pattern of Rs and led to an overestimation of the annual Rs budget. Thus we recommend that that any analysis of the diurnal pattern of Rs must consider overestimation of Rs at low atmospheric turbulence, to yield unbiased diurnal patterns. This is crucial when investigating temperature responses and potential links between CO2 production and Rs on a short time scale, but also for correct estimation of annual Rs budgets. Acknowledgements: This study was funded by the free Danish Ministry for Research, Innovation and higher Education, the free Danish Research

  4. Atmospheric sulfur cycling in the Southeastern Pacific – longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    M. Yang

    2011-01-01

    Full Text Available Dimethylsulfide (DMS emitted from the ocean is a biogenic precursor gas for sulfur dioxide (SO2 and non-sea-salt sulfate aerosols (SO42. During the VAMOS-Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx in 2008, multiple instrumented platforms were deployed in the Southeastern Pacific (SEP off the coast of Chile and Peru to study the linkage between aerosols and stratocumulus clouds. We present here observations from the NOAA Ship Ronald H. Brown and the NSF/NCAR C-130 aircraft along ~20° S from the coast (70° W to a remote marine region (85° W. While SO42− and SO2 concentrations were distinctly elevated above background levels in the coastal marine boundary layer (MBL due to anthropogenic influence (~800 and 80 pptv, respectively, their concentrations rapidly decreased offshore (~100and 25 pptv. Compared to the "mass" entrainment fluxes of SO42− and SO2 from the free troposphere (0.5 ± 0.3 and 0.3 ± 0.2 μmoles m−2 day−1, the sea-to-air DMS flux (3.8 ± 0.1 μmoles m−2 day−1 remained the predominant source of sulfur mass to the MBL. In-cloud oxidation was found to be the most important mechanism for SO2 removal and in situ SO42− production. Surface SO42− loading in the remote region displayed pronounced diel variability, increasing rapidly in the first few hours after sunset and then decaying for the rest of the time. We theorize that the increase in SO42− was due to nighttime recoupling of the MBL that mixed down cloud-processed air, while decoupling and sporadic precipitation scavenging were responsible for the daytime decline in SO42−.

  5. Estimating Effects of Atmospheric Deposition and Peat Decomposition Processes on Mercury and Sulfur Accumulation and Retention in Northern Peatlands, Minnesota

    Science.gov (United States)

    Furman, O.; Nater, E.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Kolka, R. K.

    2013-12-01

    Northern peatland ecosystems play an important role in mercury (Hg) and sulfur (S) co-cycling. Peatlands are sinks for total Hg and sources for methyl Hg through the activity of sulfate-reducing bacteria. These ecosystems are vulnerable to environmental change, and projected changes in climate for the north-central U.S. have the potential to affect Hg and S stores and cycling in the subsurface, which may stimulate the release of bioaccumulative methyl Hg to receiving water bodies. SPRUCE (Spruce and Peatland Responses under Climate and Environmental change experiment) is an interdisciplinary study of the effects of temperature and enriched carbon dioxide on the responses of northern peatland ecosystems at the Marcell Experimental Forest, Minnesota. In the first year of SPRUCE, we are investigating Hg and S accumulation rates in 12-m diameter experimental plots on a black spruce bog before peatland heating experiments start in 2014. Understanding Hg and S accumulation rates and their retention mechanisms in the subsurface are needed in order to reconstruct historical trends in Hg and S deposition, and predict peatland responses to climate change. In this study, we will attempt to separate the effects of atmospheric deposition vs peat humification on Hg and S retention. As such, peat cores were sampled from sixteen experimental SPRUCE plots in August 2012. These 'Time 0' peat subsamples have been analyzed for total Hg, methyl Hg and total S, and bulk density as a function of depth (50 cm), and showed lower variability. Changes in Hg and S over depth seem to be associated with the variation in humification of soil organic matter. These findings are critical to better conceptualization as well as parameterization of models that project how climate change will affect the accumulation, cycling, and export of toxic methylmercury from peatlands.

  6. Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface

    Science.gov (United States)

    Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.

    1987-01-01

    The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.

  7. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  8. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Science.gov (United States)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  9. Laboratory Measurments of the 3.7-20 cm Wavelength Opacity of Sulfur Dioxide and Carbon Dioxide under Simulated Conditions for the Deep Atmosphere of Venus

    Science.gov (United States)

    Steffes, Paul G.; Barisich, C.

    2012-10-01

    In the past two decades, multiple observations of Venus have been made at X band (3.6 cm) using the Jansky Very Large Array (VLA) and maps have been created of the 3.6 cm emission from Venus. Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler et al., Icarus 154, 2001), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Except for a single measurement campaign conducted at a single wavelength (3.2 cm) over 40 years ago (Ho et al., JGR 71, 1966), no measurements of the centimeter-wavelength properties of any Venus atmospheric constituent have been conducted under conditions characteristic of the deep atmosphere (pressures from 10-92 Bars and temperatures from 400-700 K). New measurements of the microwave properties of SO2 and CO2 at wavelengths from 3.7-20 cm are now being conducted under simulated conditions for the deep atmosphere of Venus, using a new high-pressure system. Initial results from this measurement campaign conducted at 430 K and at pressures up to 92 Bars will be presented. This work is supported by the NASA Planetary Atmospheres Program under Grant NNX11AD66G.

  10. Hydrogen Sulfide Sequestration and Storage in Geothermal System: New Mitigation Strategy to Reduce H2S from the Atmosphere and Detect its Mineralization with Multiple Sulfur Isotopic Systematics

    Science.gov (United States)

    Marieni, C.; Stefansson, A.; Gudbrandsson, S.; Gunnarsson, I.; Aradottir, E. S.; Gunnarsson Robin, J.; Ono, S.

    2015-12-01

    Hydrogen sulfide (H2S) is one of the major components in geothermal fluids and is commonly emitted into the atmosphere from geothermal power plants causing potential environmental problems. Among several mitigation methods proposed to reduce the H2S emissions, is H2S sequestration into geothermal systems. Reykjavík Energy is undertaking a pilot project at Hellisheidi geothermal system (SW Iceland) called Sulfix project where H2S is being injected into the geothermal reservoir for permanent sequestration into pyrite. The SulFix project started its operation in June 2014: the soluble geothermal gases are dissolved in geothermal waste water, and injected at 8 bars into the high temperature reservoir (>200˚C) at 750 m below the wellhead. The reactions involving sulfur in the geothermal reservoir may be traced using sulfur fluid chemistry and multiple sulfur isotope systematics (32S, 33S, 34S and 36S), including mixing between the reservoir geothermal fluid and the injection fluid, sulfide mineralization and oxidation of sulfide to sulfate. In this study we investigated the multiple sulfur isotope systematics upon sulfide mineralization under geothermal conditions. High temperature flow through experiments were carried out in basaltic glass at 200-250°C and ~5 mmol/kg H2S to study the fluid-rock interaction. The results indicate that the sulfide mineralization occurs rapidly under geothermal conditions, highlighting the leaching rate of iron from the basaltic glass as the mineralization rate determining factor. Moreover, the formation of sulfide may be traced using the δ34S-Δ33S relationship in the fluids and pyrite formation - for example to determine if non-reactive mixing between the injection fluids and reservoir fluids occurs at Hellisheidi. The experimental results have been further supported by geochemical modeling involving multiple sulfur isotope fractionation between aqueous sulfide species and rocks upon basalt dissolution and secondary pyrite formation.

  11. Oxidation of SO2 by stabilized Criegee intermediate (sCI radicals as a crucial source for atmospheric sulfuric acid concentrations

    Directory of Open Access Journals (Sweden)

    M. Boy

    2013-04-01

    Full Text Available The effect of increased reaction rates of stabilized Criegee intermediates (sCIs with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012 increases sulfuric acid by 30–40%. Increasing the rate coefficient for formaldehyde oxide (CH2OO with SO2 according to the values recommended by Welz et al. (2012 increases the H2SO4 yield by 3–6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO2 could contribute as much as 33–46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100 m. The recent findings that the reaction of sCI + SO2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.

  12. Sulfur Mustard

    Science.gov (United States)

    ... Matters What's New A - Z Index Facts About Sulfur Mustard What sulfur mustard is Sulfur mustard is a type of ... it is in liquid or solid form. Where sulfur mustard is found and how it is used ...

  13. Development of a gas-to-particle conversion model for use in three-dimensional global sulfur budget studies. Final report, 1 August 1991--30 June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kreidenweis, S.M.

    1993-08-01

    A fully-parameterized model for the formation and growth of aerosols via gas-to-particle conversion has been developed and tested. A particularly significant contribution is a new method for the prediction of numbers of particles nucleated using information on the vapor source rate, relative humidity, and preexisting aerosol alone, thus eliminating the need to solve a system of coupled ODEs. Preliminary tests indicate substantial reduction in computational costs, but it is recommended that the BIMODAM model be incorporated into a large-scale model of the sulfur cycle in order to more fully test its computational feasibility.

  14. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: Impact on the glucosinolate composition

    Directory of Open Access Journals (Sweden)

    Tahereh eAghajanzadeh

    2015-10-01

    Full Text Available The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and Brasscia rapa. Both species contained a number of aliphatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa, which could solely be attributed to the presence of high levels of sinigrin, which was absent in the latter species. Sulfate deprivation resulted in a strong decrease in the content and an altered composition of the glucosinolates of both species. Despite the differences in patterns in foliarly uptake and metabolism, their exposure hardly affected the glucosinolate composition of the shoot, both at sulfate-sufficient and sulfate-deprived conditions. This indicated that the glucosinolate composition in the shoot was hardly affected by differences in sulfur source (viz. sulfate, sulfite and sulfide. Upon sulfate deprivation, where foliarly absorbed H2S and SO2 were the sole sulfur source for growth, the glucosinolate composition of roots differed from sulfate-sufficient B. juncea and B. rapa, notably the fraction of the indolic glucosinolates was lower than that observed in sulfur-sufficient roots.

  15. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition

    Science.gov (United States)

    Aghajanzadeh, Tahereh; Kopriva, Stanislav; Hawkesford, Malcolm J.; Koprivova, Anna; De Kok, Luit J.

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and B. rapa. Both species contained a number of aliphatic, aromatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa, which could solely be attributed to the presence of high levels of sinigrin, which was absent in the latter species. Sulfate deprivation resulted in a strong decrease in the content and an altered composition of the glucosinolates of both species. Despite the differences in patterns in foliarly uptake and metabolism, their exposure hardly affected the glucosinolate composition of the shoot, both at sulfate-sufficient and sulfate-deprived conditions. This indicated that the glucosinolate composition in the shoot was hardly affected by differences in sulfur source (viz., sulfate, sulfite and sulfide). Upon sulfate deprivation, where foliarly absorbed H2S and SO2 were the sole sulfur source for growth, the glucosinolate composition of roots differed from sulfate-sufficient B. juncea and B. rapa, notably the fraction of the indolic glucosinolates was lower than that observed in sulfur-sufficient roots. PMID:26579170

  16. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    Science.gov (United States)

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  17. Atmospheric deposition impacts on nutrients and biological budgets of the Mediterranean Sea, results from the high resolution coupled model NEMOMED12/PISCES

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Desboeufs, Karine; Nabat, Pierre; Guieu, Cécile; Aumont, Olivier; Palmieri, Julien

    2016-04-01

    Atmospheric deposition is at present not included in regional oceanic biogeochemical models of the Mediterranean Sea, whereas, along with river inputs, it represents a significant source of nutrients at the basin scale, especially through intense desert dust events. Moreover, observations (e.g. DUNE campaign, Guieu et al. 2010) show that these events significantly modify the biogeochemistry of the oligotrophic Mediterranean Sea. We use a high resolution (1/12°) version of the 3D coupled model NEMOMED12/PISCES to investigate the effects of high resolution atmospheric dust deposition forcings on the biogeochemistry of the Mediterranean basin. The biogeochemical model PISCES represents the evolution of 24 prognostic tracers including five nutrients (nitrate, ammonium, phosphate, silicate and iron) and two phytoplankton and zooplanktons groups (Palmiéri, 2014). From decadal simulations (1982-2012) we evaluate the influence of natural dust and anthropogenic nitrogen deposition on the budget of nutrients in the basin and its impact on the biogeochemistry (primary production, plankton distributions...). Our results show that natural dust deposition accounts for 15% of global PO4 budget and that it influences primarily the southern part of the basin. Anthropogenic nitrogen accounts for 50% of bioavailable N supply for the northern part. Deposition events significantly affect biological production; primary productivity enhancement can be as high as 30% in the areas of high deposition, especially during the stratified period. Further developments of the model will include 0D and 1D modeling of bacteria in the frame of the PEACETIME project.

  18. The formation of acid rain in the atmosphere, adjacent to the TTP with the joint-condensing of sulfur dioxide and water vapor

    Science.gov (United States)

    Gvozdyakov, D. V.; Gubin, V. E.; Matveeva, A. A.

    2014-08-01

    Presents the results of mathematical simulation of the condensation process of sulphur dioxide and water vapor on the condensation nuclei surface under the action of natural factors. Numerical investigations were carried out for the summer at a moderate speed of the wind. The influence of the parameter of condensation on the speed of the process of sulfuric acid drops formation in the air space was analyzed. Time ranges, sufficient for the formation of the acid rain sedimentation in the atmosphere, adjacent to the areas of thermal power station work were established. It is shown that the speed of air masses movement effects on the process of acid anthropogenic admixtures dispersion in the atmosphere. Approbation of the obtained results was carried out by checking the difference scheme conservative and solution of test problems.

  19. Comparison of the impact of volcanic eruptions and aircraft emissions on the aerosol mass loading and sulfur budget in the stratosphere

    Science.gov (United States)

    Yue, Glenn K.; Poole, Lamont R.

    1992-01-01

    Data obtained by the Stratospheric Aerosol and Gas Experiment (SAGE) 1 and 2 were used to study the temporal variation of aerosol optical properties and to assess the mass loading of stratospheric aerosols from the eruption of volcanos Ruiz and Kelut. It was found that the yearly global average of optical depth at 1.0 micron for stratospheric background aerosols in 1979 was 1.16 x 10(exp -3) and in 1989 was 1.66 x 10(exp -3). The eruptions of volcanos Ruiz and Kelut ejected at least 5.6 x 10(exp 5) and 1.8 x 10(exp 5) tons of materials into the stratosphere, respectively. The amount of sulfur emitted per year from the projected subsonic and supersonic fleet is comparable to that contained in the background aerosol particles in midlatitudes from 35 deg N to 55 deg N.

  20. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  1. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere-ocean regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, C.; Somot, S.; Deque, M.; Sevault, F. [CNRM-GAME, Meteo-France, CNRS, Toulouse (France); Calmanti, S.; Carillo, A.; Dell' Aquilla, A.; Sannino, G. [ENEA, Rome (Italy); Elizalde, A.; Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Gualdi, S.; Oddo, P.; Scoccimarro, E. [INGV, Bologna (Italy); L' Heveder, B.; Li, L. [Laboratoire de Meteorologie Dynamique, Paris (France)

    2012-10-15

    Within the CIRCE project ''Climate change and Impact Research: the Mediterranean Environment'', an ensemble of high resolution coupled atmosphere-ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950-2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021-2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961-1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021-2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961-1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing

  2. Effects of elevated atmospheric CO2 and tropospheric O3 on tree branch growth and implications for hydrologic budgeting

    International Nuclear Information System (INIS)

    The forest hydrologic budget may be impacted by increasing CO2 and tropospheric O3. Efficient means to quantify such effects are beneficial. We hypothesized that changes in the balance of canopy interception, stem flow, and through-fall in the presence of elevated CO2 and O3 could be discerned using image analysis of leafless branches. We compared annual stem flow to the results of a computerized analysis of all branches from the 2002, 2004, and 2006 annual growth whorls of 97 ten-year-old trees from the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) experiment in Rhinelander, WI. We found significant effects of elevated CO2 and O3 on some branch metrics, and that the branch metrics were useful for predicting stem flow from birch, but not aspen. The results of this study should contribute to development of techniques for efficient characterization of effects on the forest hydrologic budget of increasing CO2 and tropospheric O3. - Canopy architecture and stem flow are affected by elevated CO2 and tropospheric O3.

  3. Budgeting Process

    Science.gov (United States)

    Hentschke, Guilbert C.; Shaughnessy, John

    1973-01-01

    Attempts to describe the budgeting process in school districts. Discusses general budget calendars and explains the process of constructing a Program Evaluation and Review Technique (PERT) chart of the budgeting process. Presents a detailed list of activities to be included in the budgeting process and a PERT chart indicating how these activities…

  4. A Case Study of the Impacts of Dust Aerosols on Surface Atmospheric Variables and Energy Budgets in a Semi-Arid Region of China

    Institute of Scientific and Technical Information of China (English)

    LING Xiao-Lu; GUO Wei-Dong; ZHANG Le; ZHANG Ren-Jian

    2010-01-01

    The authors present a case study investigatingthe impacts of dust aerosols on surface atmospheric variables and energy budgets in a semi-arid region of China.Enhanced observational meteorological data, radiative fluxes, near-surface heat fluxes, and concentrations of dust aerosols were collected from Tongyu station, one of the reference sites of the International Coordinated Energy and Water Cycle Observations Project (CEOP), during a typical dust storm event in June 2006. A comprehensive analysis of these data show that in this semi-arid area, higher wind velocities and a continuously reduced air pressure were identified during the dust storm period.Dust storm events are usually associated with low relative humidity weather conditions, which result in low latent heat flux values. Dust aerosols suspended in the air decrease the net radiation, mainly by reducing the direct solar radiation reaching the land surface. This reduction in net radiation results in a decrease in soil temperatures at a depth of 2 cm. The combination of increased air temperature and decreased soil temperature strengthens the energy exchange of the atmosphere-earth system, increasing the surface sensible heat flux. After the dust storm event,the atmosphere was dominated by higher pressures and was relatively wet and cold. Net radiation and latent heat flux show an evident increase, while the surface sensible heat flux shows a clear decrease.

  5. Large scale modeling of the transport, chemical transformation and mass budget of the sulfur emitted during the April 2007 eruption of Piton de la Fournaise

    Directory of Open Access Journals (Sweden)

    P. Tulet

    2011-05-01

    Full Text Available In April 2007, the Piton de la Fournaise volcano (Réunion island entered into its biggest eruption recorded in the last century. Due to the absence of a sensors network in the vicinity of the volcano, an estimation of degassing during the paroxysmal phase of the event has not been performed. Nevertheless, the SO2 plume and aerosols have been observed by the OMI and CALIOP space sensors, respectively. The mesoscale chemical model MesoNH-C simulates the observed bulk mass of SO2 and the general shape of the SO2 plume spreading over the Indian Ocean. Moreover, an analysis of the SO2 plume budget estimates a total SO2 release of 230 kt, among of which 60 kt have been transformed into H2SO4. 27 kt of SO2 and 21 kt of H2SO4 have been deposited at the surface by dry deposition. With this top down approach, the temporal evolution of the SO2 emission has been estimated during the most active period of the eruption. The peak of degassing was estimated at 1800 kg s−1 in the morning of 6~April. The temporal evolution of SO2 emission presented here can also be used for local studies.

  6. Toward an Improved Understanding of the Tropical Energy Budget Using TRMM-based Atmospheric Radiative Heating Products

    Science.gov (United States)

    L'Ecuyer, T.; McGarragh, G.; Ellis, T.; Stephens, G.; Olson, W.; Grecu, M.; Shie, C.; Jiang, X.; Waliser, D.; Li, J.; Tian, B.

    2008-05-01

    It is widely recognized that clouds and precipitation exert a profound influence on the propagation of radiation through the Earth's atmosphere. In fact, feedbacks between clouds, radiation, and precipitation represent one of the most important unresolved factors inhibiting our ability to predict the consequences of global climate change. Since its launch in late 1997, the Tropical Rainfall Measuring Mission (TRMM) has collected more than a decade of rainfall measurements that now form the gold standard of satellite-based precipitation estimates. Although not as widely advertised, the instruments aboard TRMM are also well-suited to the problem of characterizing the distribution of atmospheric heating in the tropics and a series of algorithms have recently been developed for estimating profiles of radiative and latent heating from these measurements. This presentation will describe a new multi-sensor tropical radiative heating product derived primarily from TRMM observations. Extensive evaluation of the products using a combination of ground and satellite-based observations is used to place the dataset in the context of existing techniques for quantifying atmospheric radiative heating. Highlights of several recent applications of the dataset will be presented that illustrate its utility for observation-based analysis of energy and water cycle variability on seasonal to inter-annual timescales and evaluating the representation of these processes in numerical models. Emphasis will be placed on the problem of understanding the impacts of clouds and precipitation on atmospheric heating on large spatial scales, one of the primary benefits of satellite observations like those provided by TRMM.

  7. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    The budget forms the legal basis of government spending. If a budget is not in place at the beginning of the fiscal year, planning as well as current spending are jeopardized and government shutdown may result. This paper develops a continuous-time war-of-attrition model of budgeting in a...... presidential style-democracy to explain the duration of budget negotiations. We build our model around budget baselines as reference points for loss averse negotiators. We derive three testable hypotheses: there are more late budgets, and they are more late, when fiscal circumstances change; when such changes...... are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988...

  8. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  9. Signatures of troposphere-stratosphere momentum coupling Implications for global atmospheric angular momentum and earth rotation budgets

    Science.gov (United States)

    Taylor, H. A.; Mayr, H. G.; Hartle, R. E.; Kramer, L.; Stirling, R.

    1984-01-01

    During January-August 1978, the global atmospheric angular momentum (M) exhibits distinct patterns of short term momentum interchange across latitudes. In the Northern Hemisphere winter-spring season, 30-50 day modulations of M are present in which momentum enhancements at mid-latitudes (20-30 deg) are closely matched by momentum depressions at high latitudes (50-60 deg). During the same interval there are no corresponding variations in M evident in the Southern Hemisphere. Conversely, during Southern Hemisphere fall-winter, similar anti-correlations in monthly scale momentum excursions are evident between mid and high latitudes. In the Northern Hemisphere, the winter-spring momentum signatures are detected throughout the atmosphere, from the lower troposphere to the stratosphere. During the Southern Hemisphere fall-winter, the modulation patterns are not evident at the higher altitudes. Structural details of the momentum signatures indicate that the coupling is sometimes effective on very short time scales, e.g., 1-2 days, or less. The evidence of distinct anti-correlation between large regions has interesting implications for studies of global atmospheric circulation, and also for studies of the excitation of variations in earth rotation in response to short term modulations of M.

  10. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: evaluation of historical and projected future changes

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2013-08-01

    Full Text Available We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice, the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N yr−1 from nitrogen oxide emissions, 60 Tg(N yr−1 from ammonia emissions, and 83 Tg(S yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000. However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in

  11. Cutback budgeting

    OpenAIRE

    Robert D. Behn

    1984-01-01

    The process of cutback budgeting that occurs in an era of retrenchment differs significantly from budgeting in circumstances of revenue growth. Negotiating an agreement on a set of decrements is far more complicated than allocating increments: No one wants to be the first to propose a cut in another constituency's budget, and any coalition formed in support of a given package of cuts is inherently unstable. Still, several conditions appear to facilitate cutback budgeting: an overarching issue...

  12. Capital budgeting

    OpenAIRE

    Dorel BERCEANU; Costel IONAŞCU

    2009-01-01

    This paper has like objective to present some aspects concerning capital budgeting. So, after a short introduction where we specify necessary conditions for a decision situation and we define investment decision and capital budgeting we made a large presentation of stages of capital budgeting process.

  13. Simulating the budget and distribution of Δ17O in CO2 with a global atmosphere-biosphere model

    Science.gov (United States)

    Peters, Wouter; Schneider, Linda; Hofmann, Magdalena E. G.; van der Velde, Ivar; Röckmann, Thomas

    2015-04-01

    The isotope ratios of 16O, 17O and 18O in CO2 are referred to as the triple-oxygen isotope composition of CO2, and have long held promise to better understand terrestrial carbon cycling. However, measurement precision as well as an incomplete understanding of fractionation during equilibrium exchange and diffusion of CO2 have been a challenge, especially for the estimation of gross primary production (GPP) and respiration from measured δ17O and δ18O isotope ratios in CO2. The excess-17O in CO2 (Δ17O), defined as the deviation of the δ17O and δ18O ratios from an expected mass-dependent fractionation line, is in principle easier to interpret as many processes that simultaneously affect δ17O and δ18O are not reflected in Δ17O. Two global box model simulations suggest that atmospheric Δ17O is therefore mostly determined by transport of relatively δ17O enriched CO2 from the stratosphere, and its equilibration in leaf-water back to an excess of close to zero, following diffusion as part of photosynthetic CO2 uptake by vegetation. This makes Δ17O an interesting tracer for photosynthesis at the global scale, and the first decadal time series have recently been published that indeed suggest strong GPP-driven variations in atmospheric Δ17O. In this study, we expand the modeling of Δ17O beyond the current two global box model results published by explicitly simulating the global atmospheric Δ17O distribution over a five year period. We specifically are interested whether regional gradients in Δ17O in areas with large GPP such as Amazonia leave an imprint on Δ17O that can be measured with the rapidly improving measurement precision (10-40 permeg currently). Therefore, we used the SIBCASA biosphere model at 1x1 degrees globally to simulate hourly fluxes of Δ17O into and out of C3 and C4 vegetation as well as soils. These fluxes were then fed into the TM5 atmospheric transport model at 6x4 degrees horizontal resolution to simulate the hourly spatial gradients in

  14. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model

    Directory of Open Access Journals (Sweden)

    F. Joos

    2011-01-01

    Full Text Available A Dynamic Global Vegetation model coupled to a simplified Earth system model is used to simulate the impact of anthropogenic land cover changes (ALCC on Holocene atmospheric CO2 and the contemporary carbon cycle. The model results suggest that early agricultural activities cannot explain the mid to late Holocene CO2 rise of 20 ppm measured on ice cores and that proposed upward revisions of Holocene ALCC imply a smaller contemporary terrestrial carbon sink. A set of illustrative scenarios is applied to test the robustness of these conclusions and to address the large discrepancies between published ALCC reconstructions. Simulated changes in atmospheric CO2 due to ALCC are less than 1 ppm before 1000 AD and 30 ppm at 2004 AD when the HYDE 3.1 ALCC reconstruction is prescribed for the past 12 000 years. Cumulative emissions of 69 GtC at 1850 and 233 GtC at 2004 AD are comparable to earlier estimates. CO2 changes due to ALCC exceed the simulated natural interannual variability only after 1000 AD. To consider evidence that land area used per person was higher before than during early industrialisation, agricultural areas from HYDE 3.1 were increased by a factor of two prior to 1700 AD (scenario H2. For the H2 scenario, the contemporary terrestrial carbon sink required to close the atmospheric CO2 budget is reduced by 0.5 GtC yr−1. Simulated CO2 remains small even in scenarios where average land use per person is increased beyond the range of published estimates. Even extreme assumptions for preindustrial land conversion and high per-capita land use do not result in simulated CO2 emissions that are sufficient to explain the magnitude and the timing of the late Holocene CO2 increase.

  15. CERES Top-of-Atmosphere Earth Radiation Budget Climate Data Record: Accounting for in-Orbit Changes in Instrument Calibration

    Directory of Open Access Journals (Sweden)

    Norman G. Loeb

    2016-02-01

    Full Text Available The Clouds and the Earth’s Radiant Energy System (CERES project provides observations of Earth’s radiation budget using measurements from CERES instruments onboard the Terra, Aqua and Suomi National Polar-orbiting Partnership (S-NPP satellites. As the objective is to create a long-term climate data record, it is necessary to periodically reprocess the data in order to incorporate the latest calibration changes and algorithm improvements. Here, we focus on the improvements and validation of CERES Terra and Aqua radiances in Edition 4, which are used to generate higher-level climate data products. Onboard sources indicate that the total (TOT channel response to longwave (LW radiation has increased relative to the start of the missions by 0.4% to 1%. In the shortwave (SW, the sensor response change ranges from −0.4% to 0.6%. To account for in-orbit changes in SW spectral response function (SRF, direct nadir radiance comparisons between instrument pairs on the same satellite are made and an improved wavelength dependent degradation model is used to adjust the SRF of the instrument operating in a rotating azimuth plane scan mode. After applying SRF corrections independently to CERES Terra and Aqua, monthly variations amongst these instruments are highly correlated and the standard deviation in the difference of monthly anomalies is 0.2 Wm−2 for ocean and 0.3 Wm−2 for land/desert. Additionally, trends in CERES Terra and Aqua monthly anomalies are consistent to 0.21 Wm−2 per decade for ocean and 0.31 Wm−2 per decade for land/desert. In the LW, adjustments to the TOT channel SRF are made to ensure that removal of the contribution from the SW portion of the TOT channel with SW channel radiance measurements during daytime is consistent throughout the mission. Accordingly, anomalies in day–night LW difference in Edition 4 are more consistent compared to Edition 3, particularly for the Aqua land/desert case.

  16. Comparative Aspects of Sulfur Mineralization in Sediments of a Eutrophic Lake Basin †

    OpenAIRE

    Gary M King; Klug, M. J.

    1982-01-01

    The net mineralization of organic sulfur compounds in surface sediments of Wintergreen Lake was estimated from a mass-balance budget of sulfur inputs and sediment sulfur concentrations. The net mineralization of organic sulfur inputs is 80% of total sulfur) in sediment. Although sediment sulfur is predominantly organic, sulfate reduction is the most significant process in terms of the quantities of sulfur transformed in surface sediments. Rates of sulfate reduction in these sediments average ...

  17. The isotopic record of Northern Hemisphere atmospheric carbon monoxide since 1950 and its implications for the CO budget

    Science.gov (United States)

    Wang, Z.; Chappellaz, J. A.; Martinerie, P.; Park, K.; Petrenko, V. V.; Blunier, T.; Brenninkmeijer, C. A.; Mak, J. E.

    2011-12-01

    We present a 60-year record of atmospheric CO concentration and isotopic ratios at high northern latitude based on firn air samples collected from the North Greenland Eemian Ice Drilling (NEEM) project. Concentration, δ13C, and δ18O of CO from trapped gases in the firn were measured by gas chromatography isotope ratio mass spectrometry (gc-IRMS). Based on firn diffusion models, we have reconstructed the long-term trend of atmospheric CO and its stable isotopic composition at high northern latitudes since the 1950s. CO concentration was around 140 ppbv in 1950 and increased gradually to around 160 ppbv in the mid-1970s. Since then, CO concentration gradually decreased to around 130 ppbv by present day. Our best firn air scenarios suggest that δ13C decreased slightly from -25.7% in 1950 to -26.4% in 2000, then dropped to -27.3% in 2008. δ18O decreased from 10% in 1950 to 7% in 2008. An isotope mass balance model is applied to quantify the temporal evolution of CO source partitioning able to explain the combined mixing ratio and isotopic ratio changes. It suggests that a slight increase followed by a large reduction in CO derived from fossil fuel combustion occurred since 1950. The increase of CO concentration from 1950 to the mid-1970s is the result of a combined increase of multiple sources. The reduction of CO emission from fossil fuel combustion after the mid-1970s is the main mechanism for the drop of CO concentration during this time. The mitigation policy for CO emission from vehicle exhaust such as application of catalytic converters and the growth of diesel engine vehicles market share are the main expected reasons for the CO source strength change from fossil fuel combustion.

  18. Budget Dynamics

    OpenAIRE

    Breunig, Christian; Mortensen, Peter B.

    2012-01-01

    Budget dynamics may sound as a contradiction in terms to scholars familiar with Wildavsky and colleagues' seminal work on public budgeting (Wildavsky 1964). As stated by Davis, Dempster, and Wildavsky (1966, 529): “This year’s budget is based on last year’s budget, with special attention given to a narrow range of increases or decreases.” For some years this simple model was considered something of an empirical law of public budgets. However, already in the 1970s several scholars started to q...

  19. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth's atmosphere.

    Science.gov (United States)

    Whitehill, Andrew R; Xie, Changjian; Hu, Xixi; Xie, Daiqian; Guo, Hua; Ono, Shuhei

    2013-10-29

    Signatures of mass-independent isotope fractionation (MIF) are found in the oxygen ((16)O,(17)O,(18)O) and sulfur ((32)S, (33)S, (34)S, (36)S) isotope systems and serve as important tracers of past and present atmospheric processes. These unique isotope signatures signify the breakdown of the traditional theory of isotope fractionation, but the physical chemistry of these isotope effects remains poorly understood. We report the production of large sulfur isotope MIF, with Δ(33)S up to 78‰ and Δ(36)S up to 110‰, from the broadband excitation of SO2 in the 250-350-nm absorption region. Acetylene is used to selectively trap the triplet-state SO2 ( (3)B1), which results from intersystem crossing from the excited singlet ( (1)A2/ (1)B1) states. The observed MIF signature differs considerably from that predicted by isotopologue-specific absorption cross-sections of SO2 and is insensitive to the wavelength region of excitation (above or below 300 nm), suggesting that the MIF originates not from the initial excitation of SO2 to the singlet states but from an isotope selective spin-orbit interaction between the singlet ( (1)A2/ (1)B1) and triplet ( (3)B1) manifolds. Calculations based on high-level potential energy surfaces of the multiple excited states show a considerable lifetime anomaly for (33)SO2 and (36)SO2 for the low vibrational levels of the (1)A2 state. These results demonstrate that the isotope selectivity of accidental near-resonance interactions between states is of critical importance in understanding the origin of MIF in photochemical systems. PMID:23836655

  20. Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia

    Directory of Open Access Journals (Sweden)

    T. Kurtén

    2008-07-01

    Full Text Available We have studied the structure and formation thermodynamics of dimer clusters containing H2SO4 or HSO4 together with ammonia and seven different amines possibly present in the atmosphere, using the high-level ab initio methods RI-MP2 and RI-CC2. As expected from e.g. proton affinity data, the binding of all studied amine-H2SO4 complexes is significantly stronger than that of NH3•H2SO4, while most amine-HSO4 complexes are only somewhat more strongly bound than NH3•HSO4. Further calculations on larger cluster structures containing dimethylamine or ammonia together with two H2SO4 molecules or one H2SO4 molecule and one HSO4 ion demonstrate that amines, unlike ammonia, significantly assist the growth of not only neutral but also ionic clusters along the H2SO4 co-ordinate. A sensitivity analysis indicates that the difference in complexation free energies for amine- and ammonia-containing clusters is large enough to overcome the mass-balance effect caused by the fact that the concentration of amines in the atmosphere is probably 2 or 3 orders of magnitude lower than that of ammonia. This implies that amines might be more important than ammonia in enhancing neutral and especially ion-induced sulfuric acid-water nucleation in the atmosphere.

  1. Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia

    Directory of Open Access Journals (Sweden)

    T. Kurtén

    2008-04-01

    Full Text Available We have studied the structure and formation thermodynamics of dimer clusters containing H2SO4 or HSO4 together with ammonia and seven different amines possibly present in the atmosphere, using the high-level ab initio methods RI-MP2 and RI-CC2. As expected from e.g. proton affinity data, the binding of all studied amine – H2SO4 complexes is significantly stronger than that of NH3•H2SO4, while most amine – HSO4 complexes are only somewhat more strongly bound than NH3•HSO4. Further calculations on larger cluster structures containing dimethylamine or ammonia together with two H2SO4 molecules or one H2SO4 molecule and one HSO4 ion demonstrate that amines, unlike ammonia, significantly assist the growth of not only neutral but also ionic clusters along the H2SO4 co-ordinate. A sensitivity analysis indicates that the difference in complexation free energies for amine- and ammonia-containing clusters is large enough to overcome the mass-balance effect caused by the fact that the concentration of amines in the atmosphere is probably 2 or 3 orders of magnitude lower than that of ammonia. This implies that amines might be more important than ammonia in enhancing neutral and especially ion-induced sulfuric acid-water nucleation in the atmosphere.

  2. Elemental Analysis of Solid Aerosols Using AAS Technique And Estimation of their Effect on Atmospheric Radiation Budget

    International Nuclear Information System (INIS)

    Atomic absorption spectroscopy (AAS) because of its selectivity, sensitivity, reproducibility and wide dynamic concentration range was used to find out the metal constituents and concentration for 6 metals in the atmosphere of Faisalabad. The aerosol samples were collected using air volume sampler on watmann filter paper for 24 hrs per day from June 2011 to June 2012. The maximum elemental constituents and concentration for Zn, Cu, Cr, Ni, Pb and Cd in mg/kg were found to be 127.88, 1955.77, 880.99, 2075.22, 2760.44, and 802.68 respectively. The comparison of results reported in literature with the obtained results showed some differences in concentrations which could be explained on the basis of climatological and meteorological set up of the area under exploration. An attempt has been made to investigate the properties of identified trace metals in terms of their radiative absorption coefficient and the global warming effect checked by analyzing TEM micrographs. The results obtained showed complex behavior and neutral trend as a whole. (author)

  3. Combustion's impact on the global atmosphere

    OpenAIRE

    Prather, Michael J.; Logan, Jennifer A.

    1994-01-01

    The combustion of a hydrocarbon fuel removes molecular oxygen (O2) from the atmosphere and releasesequivalent amounts of water (H2O) and carbon dioxide (CO2), almost always with trace amounts of numerous other compounds including hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H8, C6H6, CH3CHO, etc.), carbon monoxide (CO), nitrogen oxides (NO, N2O) and reduced nitrogen (NH3 and HCN), sulfur gases (SO2, OCS, CS2) halocarbons (CH3Cl and CH3Br), and particles. A review of the atmospheric budgets of these...

  4. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    Science.gov (United States)

    Guth, A. L.; Bluth, G. J.; Carn, S. A.

    2002-05-01

    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  5. Crisis Budgeting

    OpenAIRE

    Allen Schick

    2009-01-01

    Budgeting is fundamentally altered, if only temporarily, by pressures that overwhelm established policies and practices. This article discusses conventional and non-conventional responses to crisis, and how crisis impacts on the budget process. Just as crisis has mobilised governments to take global actions that spill beyond national boundaries, the aftermath of crisis will spur them to harmonise and integrate budget policies that affect the international financial system.

  6. GEWEX Surface Radiation Budget (SRB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NASA/GEWEX Surface Radiation Budget (SRB) Release-3.0 data sets contains global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of...

  7. Atmospheric Corrosion of Steel A3 Deposited with Ammonium Sulfate and in the Presence of Sulfur Dioxide

    Institute of Scientific and Technical Information of China (English)

    Ye WAN; Chuanwei YAN; Chunan CAO Jun TAN; Jun TAN

    2003-01-01

    A laboratory study of the atmospheric corrosion of carbon steel deposited with (NH4)2SO4 in the presence of SO2 isreported. The different levels of (NH4)2SO4 (0, 15, 30, 45, 60μg.cm-2) were added on the surface of the samplesbefore the exposure. The corrosion was investigated by a combination of gravimetry, Fourier transform infraredspectroscope and scanning electron microscopy. A detailed knowledge about the corrosion products was acquired,both quantitatively and qualitatively. The results show that the metal loss increased and the increasing tendency ofcorrosion rates slowed down with the increasing exposure time. The phase constituents of the corrosion products aremainly c-FeO(OH), γ-FeO(OH), and δ-FeO(OH).

  8. Annual budget

    International Nuclear Information System (INIS)

    This paper reports that all businesses, including individuals, should have a budget - that is, an estimation of income and expense over an annual cycle. For companies, the budget is generally prepared and approved about one quarter before the start of the company's fiscal year and is updated and revised each quarter during the year. Although budgeting is a task dreaded by most exploration managers, it is usually the vehicle by which drilling prospects, the heart of any exploration program, are sold to the final decision makers. The budgeting process should be viewed as an opportunity rather than as a chore to be completed as quickly as possible

  9. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA

    Science.gov (United States)

    Clow, David W.; Roop, Heidi A.; Nanus, Leora; Fenn, Mark E.; Sexstone, Graham A.

    2015-01-01

    Lakes and streams in Class 1 wilderness areas in the western United States (U.S.) are at risk from atmospheric deposition of nitrogen (N) and sulfur (S), and protection of these resources is mandated under the Federal Clean Air Act and amendments. Assessment of critical loads, which are the maximum exposure to pollution an area can receive without adverse effects on sensitive ecosystems, requires accurate deposition estimates. However, deposition is difficult and expensive to measure in high-elevation wilderness, and spatial patterns in N and S deposition in these areas remain poorly quantified. In this study, ion-exchange resin (IER) collectors were used to measure dissolved inorganic N (DIN) and S deposition during June 2006-September 2007 at approximately 20 alpine/subalpine sites spanning the Continental Divide in Rocky Mountain National Park. Results indicated good agreement between deposition estimated from IER collectors and commonly used wet + dry methods during summer, but poor agreement during winter. Snowpack sampling was found to be a more accurate way of quantifying DIN and S deposition during winter. Summer DIN deposition was significantly greater on the east side of the park than on the west side (25-50%; p ≤ 0.03), consistent with transport of pollutants to the park from urban and agricultural areas to the east. Sources of atmospheric nitrate (NO3-) were examined using N isotopes. The average δ15N of NO3- from IER collectors was 3.5‰ higher during winter than during summer (p < 0.001), indicating a seasonal shift in the relative importance of regional NOx sources, such as coal combustion and vehicular sources of atmospheric NO3-. There were no significant differences in δ15N of NO3- between east and west sides of the park during summer or winter (p = 0.83), indicating that the two areas may have similar sources of atmospheric NO3-. Results from this study indicate that a combination of IER collectors and snowpack sampling can be used to

  10. Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Directory of Open Access Journals (Sweden)

    U. Kuhn

    2007-01-01

    Full Text Available We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001, a tower-based surface layer gradient (SLG technique was applied simultaneously with a relaxed eddy accumulation (REA system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL were used to estimate fluxes on a regional scale by application of the mixed layer gradient (MLG technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m−2 h−1 for isoprene, 0.20 mg C m−2 h−1 for α-pinene, and 0.39 mg C m−2 h−1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM.

    In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK and methacrolein (MACR suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR/isoprene. The estimated range of OH concentrations during the daytime was 3–8×106 molecules cm−3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models

  11. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  12. Participatory Budgeting

    OpenAIRE

    Innovation for Development and South-South Cooperation, IDEASS

    2007-01-01

    This book provides an overview of the principles underlying participatory budgeting. It analyzes the merits and demerits of participatory budgeting practices around the world with a view to guiding policy makers and practitioners on improving such practices in the interest of inclusive governance. This publication includes five regional surveys, and seven country case studies can be found ...

  13. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    Science.gov (United States)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-07-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  14. Open Budget

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Government initiatives to publicize budgetary information allow for greater public supervision In an unprecedented move,four ministries under the Central Government recently posted their 2010 budgets on their official websites.

  15. BEYOND BUDGETING

    Directory of Open Access Journals (Sweden)

    Edo Cvrkalj

    2015-12-01

    Full Text Available Traditional budgeting principles, with strictly defined business goals, have been, since 1998, slowly growing into more sophisticated and organization-adjusted alternative budgeting concepts. One of those alternative concepts is the “Beyond budgeting” model with an implemented performance effects measuring process. In order for the model to be practicable, budget planning and control has to be reoriented to the “bottom up” planning and control approach. In today’s modern business surroundings one has to take both present and future opportunities and threats into consideration, by valorizing them in a budget which would allow a company to realize a whole pallet of advantages over the traditional budgeting principles which are presented later in the article. It is essential to emphasize the importance of successfully implementing the new budgeting principles within an organization. If the implementation has been lacking and done without a higher goal in mind, it is easily possible that the process has been implemented without coordination, planning and control framework within the organization itself. Further in the article we present an overview of managerial techniques and instruments within the “Beyond budgeting” model such as balanced scorecard, rolling forecast, dashboard, KPI and other supporting instruments. Lastly we define seven steps for implementing the “Beyond budgeting” model and offer a comparison of “Beyond budgeting” model against traditional budgeting principles which lists twelve reasons why “Beyond budgeting” is better suited to modern and market-oriented organizations. Each company faces those challenges in their own characteristic way but implementing new dynamic planning models will soon become essential for surviving in the market.

  16. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  17. Are the clouds of Venus sulfuric acid.

    Science.gov (United States)

    Young, A. T.

    1973-01-01

    It is shown that strong aqueous sulfuric acid solutions have the right refractive index and freeze at Venusian cloud temperature, explain the dryness of the Venusian stratosphere, are consistent with some features of the Venusian IR spectrum, and do not absorb in highly reflecting areas of Venus. It is also indicated that such solutions should be produced by reactions between known atmospheric constituents and most sulfur-bearing rock at the Venusian surface temperature, and require only small amounts of sulfur consistent with its cosmic abundance and with the amounts of other volatile elements present in the atmosphere. It is believed therefore that the clouds of Venus consist of sulfuric acid solutions.

  18. Local Budgeting

    OpenAIRE

    Shah, Anwar

    2007-01-01

    This publication, Local Budgeting, provides a comprehensive guide for local administrators who are involved in designing and implementing budgetary institutions and who wish to improve efficiency and equity in service delivery and to strengthen internal and external accountability. It details principles and practices to improve fiscal management. It reviews techniques available in developi...

  19. Maintenance Budgeting.

    Science.gov (United States)

    Smith, J. McCree

    Three methods for the preparation of maintenance budgets are discussed--(1) a traditional method, inconclusive and obsolete, based on gross square footage, (2) the formula approach method based on building classification (wood-frame, masonry-wood, masonry-concrete) with maintenance cost factors for each type plus custodial service rates by type of…

  20. Budgeting in Bulgaria

    OpenAIRE

    Ian Hawkesworth; Richard Emery; Joachim Wehner; Kristin Saenger

    2009-01-01

    Bulgaria’s budget management has seen a series of structural and procedural reforms, including in budget execution, treasury functions, internal audit, and programme and medium-term budgeting. This article discusses the use of modern budgeting techniques in Bulgaria such as top-down budgeting, multi-year budgeting perspectives and the use of performance information in the budget process, and makes recommendations for budget formulation, the role of Parliament, budget execution and management ...

  1. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings

    OpenAIRE

    Aghajanzadeh, Tahereh; Hawkesford, Malcolm J.; de Kok, Luit J.

    2014-01-01

    Brassica juncea seedlings contained a twofold higher glucosinolate content than B. rapa and these secondary sulfur compounds accounted for up to 30% of the organic sulfur fraction. The glucosinolate content was not affected by H2S and SO2 exposure, demonstrating that these sulfur compounds did not form a sink for excessive atmospheric supplied sulfur. Upon sulfate deprivation, the foliarly absorbed H2S and SO2 replaced sulfate as the sulfur source for growth of B. juncea and B. rapa seedlings...

  2. NEW CONSTRAINT ON ESTIMATION OF THE ANTHROPOGENIC CO_2 BUDGET : RELATIONSHIP BETWEEN CONCENTRATION AND δ^<13>C OF ATMOSPHERIC CO_2 DETERMINED FROM ICE CORE ANALYSIS

    OpenAIRE

    カトウ, キクオ; コマキ, カオリ; Kikuo, Kato; Kaori, KOMAKI

    1997-01-01

    Studies on ice cores from Antarctica and Greenland revealed variations in the concentration and δ^C of ancient atmospheric CO_2. Since the Industrial Revolution, addition of anthropogenic CO_2 to the atmosphere has caused a significant increase in atmospheric CO_2,accompanied by a decrease in δ^C of atmospheric CO_2. The relationship between them shows that the δ^C value of CO_2 which remained in the atmosphere is significantly larger than -25‰ of that originated from coal burning and defores...

  3. Sulfur dioxide and particulates as atmospheric pollution vectors. El dioxide de Azufre la materia particulada como vectores de la contaminacion atmosferica

    Energy Technology Data Exchange (ETDEWEB)

    Cabeza, J.M.

    1993-01-01

    Samples taken from 1 st January 1990 till 31st December 1991 at different locations in Spain are presented. From these results and using priority lists and indexes suggested in the literature, the main conclusion is that sulfur dioxide and particulates are not a danger for the public health in the city of Aviles (one of the most contaminated cities in Spain). (Author)

  4. Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing gamma-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S

    NARCIS (Netherlands)

    Herschbach, C; van der Zalm, E; Schneider, A; Jouanin, L; De Kok, LJ; Rennenberg, H

    2000-01-01

    This study with poplar (Populus tremula x Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated a

  5. INTERMEDIATE-RANGE GRID MODEL AND USER'S GUIDE FOR ATMOSPHERIC SULFUR DIOXIDE AND SULFATE CONCENTRATIONS AND DEPOSITIONS - WISCONSIN POWER PLANT IMPACT STUDY

    Science.gov (United States)

    The UWATM-SOX computer model was developed to address the acid rain problem on a mesoscale. It predicts sulfur dioxide (SO2) and sulfate (SO4) ambient air concentrations and ground level dry and wet (rain or snow) depositions given certain emission and meteorological input data. ...

  6. Impact of biomass burning on the atmosphere

    International Nuclear Information System (INIS)

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet's atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate

  7. Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations

    OpenAIRE

    M. Boy; Mogensen, D.; Smolander, S.; Zhou, L; Nieminen, T.; Paasonen, P.; Plass-Dülmer, C.; Sipilä, M.; T. Petäjä; Mauldin, L.; Berresheim, H.; M. Kulmala

    2013-01-01

    The effect of increased reaction rates of stabilized Criegee intermediates (sCIs) with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calc...

  8. Budgeting in Thailand

    OpenAIRE

    Jón R. Blöndal; Sang-In Kim

    2005-01-01

    Thailand has a sophisticated budget formulation process which has delivered solid fiscal results over time. This article discusses aspects of the budget process, including strategic performance budgeting, central development planning, the steps in the budget preparation timetable, and the roles of the spending ministries, the Bureau of the Budget and the Central Fund.

  9. Budgeting for School Media Centers.

    Science.gov (United States)

    Drott, M. Carl

    1978-01-01

    Describes various forms of budgets and discusses concepts in budgeting useful to supervisors of school media centers: line item budgets, capital budgets, creating budgets, the budget calendar, innovations, PPBS (Planning, Programing, Budgeting System), zero-based budgeting, cost-benefit analysis, benefits, benefit guidelines, and budgeting for the…

  10. Polar ices chemistry: a past atmosphere reflection

    International Nuclear Information System (INIS)

    The chemical composition of polar ice impurities and the interpretation of these data in terms of chemical composition of past atmosphere is presented. This study concerns essentially the soluble mineral compounds (Na+, NH+4, K+, Ca++, Mg++, H+, F-, Cl-, NO-3 and SO-4) and organic compounds (methane sulfonate: CH3SO-3, light carboxylates and formaldehyde: HCHO). Ice cores dating methods and difficulties encountered during trace analyses are also described. The establishment and significance of the ionic budget of polar precipitations are discussed. Temporal and spatial variations of this budget between Antarctica and Greenland regions for the last complete climatic cycle are interpreted in terms of chemical composition of past atmosphere. In particular, changes in atmospheric aerosol load from marine and continental origins in response to great climate changes in the past are presented. It is shown that natural phenomenons (volcanic eruptions and biogenic emissions from the ocean) and anthropic emissions have strongly disturbed the sulfur atmospheric cycle. Record of organic acids concentration suggests that continental biosphere emissions (forest fires and vegetation emissions) were also strongly influenced by climatic conditions in the past. (J.S.). 41 refs., 4 figs

  11. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are stabil

  12. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  13. Refining of atmospheric transport model entries by the globally observed passive tracer distributions of 85krypton and sulfur hexafluoride (SF6)

    OpenAIRE

    Levin, Ingeborg; Hesshaimer, Vago

    1996-01-01

    Our high precision data base of the global distribution of SF6 in the troposphere [Maiss et al., 1996] is used in a two-dimensional atmospheric transport model (2D-HD model) to study the behaviour of this new tracer in comparison to the classical global atmospheric transport tracer 85Krypton. The 2D-HD model grid has been deduced from the 3D Hamburg TM2 model with the same resolution in the vertical and meridional direction, and was designed to run on any standard personal computer. The same ...

  14. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They...... utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in...... other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the...

  15. On the potential of ICOS atmospheric CO2 measurement network for the estimation of the biogenic CO2 budget of Europe

    Directory of Open Access Journals (Sweden)

    N. Kadygrov

    2015-05-01

    Full Text Available We present a performance assessment of the European Integrated Carbon Observing System (ICOS atmospheric network for constraining European biogenic CO2 fluxes (hereafter Net Ecosystem Exchange, NEE. The performance of the network is assessed in terms of uncertainty in the fluxes using a state-of-the-art mesoscale atmospheric inversion system assimilating hourly averages of atmospheric data to solve for NEE at 6 h and 0.5° resolution. The performance of the ICOS atmospheric network is also assessed in terms of uncertainty reduction compared to typical uncertainties in the flux estimates from ecosystem models that are used as prior information by the inversion. The uncertainty in inverted fluxes is computed for two typical periods representative of summer and winter conditions in July and in December 2007, respectively. These computations are based on a robust Observing System Simulation Experiments framework. We analyze the uncertainty in two-week mean NEE as a function of the spatial scale, with a focus on the model native grid scale (0.5°, the country scale and the European scale (including western Russia and Turkey. Several network configurations, going from 23 to 66 sites, and different configurations of the prior uncertainties and atmospheric model transport errors are tested in order to assess and compare the improvements that can be expected in the future from (1 the extension of the network, (2 improved prior information or (3 improved transport models. Assimilating data from 23 sites (a network comparable to present day capability with the estimate of errors from the present prior information and transport models, the uncertainty reduction on two-week mean NEE should range between 20 and 50% for 0.5° resolution grid cells in the best sampled area encompassing eastern France and western Germany. At the European scale, the prior uncertainty in two-week mean NEE is reduced by 50% (66%, down to ∼ 43 Tg C month-1 (resp. 26 Tg C month-1

  16. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: Impact on the glucosinolate composition

    NARCIS (Netherlands)

    Aghajanzadeh, T.; Kopriva, S; Hawkesford, M.J.; Koprivova, A.; De Kok, L.J.

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and Brasscia rapa. Both species contained a number of aliphatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold h

  17. Budgeting and Budgetary Institutions

    OpenAIRE

    Shah, Anwar

    2007-01-01

    Budgetary institutions have historically played a critical role in a gradual movement toward responsive, responsible, and accountable public governance in industrial countries. This paper includes the following headings: overview; a primer on budgeting and budgetary institutions; the budget and its coverage; capital budgets -- theory and practice; budget methods and practices; a primer on ...

  18. Connecting Evaluation and Budgeting

    OpenAIRE

    Robinson, Marc

    2014-01-01

    This paper discusses how evaluation is an essential tool for good budgeting and a core element of any well-designed government wide performance budgeting system. It is organized into 5 sections: (1) Evaluation and performance budgeting- the principle outlines the role which evaluation should, in principle, play in supporting good budgeting. It identifies the key ways performance informatio...

  19. Greenhouse effect, atmospheric solar absorption and the earth's radiation budget: from the Arrhenius-Langley era to the 1990s

    International Nuclear Information System (INIS)

    In his 1896 paper, Svante Arrhenius laid the foundation for the modern theory of the greenhouse effect and climate change. The paper is required reading for anyone attempting to model the greenhouse effect of the atmosphere and to estimate the resulting temperature change. Arrhenius demonstrates how to build a radiation and an energy balance model directly from observations. Arrhenius was fortunate to have access to Langley's data, which are some of the best radiometric observations ever undertaken from the surface. The successes of Arrhenius' model are many, even when judged by modern-day data and computer simulations: the suggestion of the diffusivity factor including its correct numerical value; the remarkably accurate simulation of the total emissivity of the atmosphere which seem to agree within 5% of modern-day values; the logarithmic dependence of the CO2 radiative heating effect; and others documented in the text. We uncover two aspects of the model which, most likely, were not recognized by earlier studies: First, Arrhenius included the water vapor feedback by introducing the fixed relative humidity assumption, which amplified the surface warming in his model by about 30%. Second, his model overestimated the surface warming, primarily because the radiation model overestimates the opacity of the CO2 bands in the 6 to 8 mu m region. In constructing his model, Arrhenius had to account for the magnitude of the solar radiation absorbed within the atmosphere-a topic that is currently pursued with renewed vigor. The second part of the paper addresses this topic, including the controversy that surrounds it. Observed values of solar absorption, since the 1950s, have almost always exceeded theoretical and model values. The magnitude of this excess absorption, i.e., observed-theoretical absorption, on climatologically relevant time and spatial scales was quantified recently (1990s) by six independent studies, to be about 25 W m-2 or larger. We review some

  20. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    OpenAIRE

    S. Eckhardt; A. J. Prata; Seibert, P.; K. Stebel; Stohl, A.

    2008-01-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude – thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes t...

  1. Large scale modeling of the transport, the chemical transformation and the mass budget of the sulfur emitted during the eruption of April 2007 by the Piton de la Fournaise

    Directory of Open Access Journals (Sweden)

    P. Tulet

    2010-09-01

    Full Text Available During April 2007, the Piton de la Fournaise volcano, La Réunion island, entered in its bigger eruption registered at least one century. Due to the absence of rapid captor in the vicinity of the volcano, the estimation of the degassing during the paroxysmal phase of the event has not been estimated. A modeling study that uses the mesoscale chemical model MesoNH-C, the spatial observation from the OMI sensor and the CALIOP spacelidar, have simulated the global mass of SO2 observed and the general shape of the SO2 plume spreading over the Indian ocean. Moreover, an analysis of the budget of the SO2 plume have permitted to estimate the total SO2 release to 159 Kt, the transformation in H2SO4 at 46.9 Kt and the surface dry deposition to 22 Kt and 17.9 Kt of SO2 and H2SO4 respectively. Then, this top down approach has retrieved an estimation of the temporal evolution of the SO2 emission during the most active period of the eruption, where the peak of degassing is estimated to 2000 kg s−1 in the morning of the 6 April. This temporal evolution of SO2 emission, given here, can also be used for more local studies.

  2. FY 1996 Congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The FY 1996 budget presentation is organized by the Department`s major business lines. An accompanying chart displays the request for new budget authority. The report compares the budget request for FY 1996 with the appropriated FY 1995 funding levels displayed on a comparable basis. The FY 1996 budget represents the first year of a five year plan in which the Department will reduce its spending by $15.8 billion in budget authority and by $14.1 billion in outlays. FY 1996 is a transition year as the Department embarks on its multiyear effort to do more with less. The Budget Highlights are presented by business line; however, the fifth business line, Economic Productivity, which is described in the Policy Overview section, cuts across multiple organizational missions, funding levels and activities and is therefore included in the discussion of the other four business lines.

  3. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China?

    Science.gov (United States)

    Qiao, Xue; Du, Jie; Lugli, Stefano; Ren, Jinhai; Xiao, Weiyang; Chen, Pan; Tang, Ya

    2016-08-15

    Massive deposition of calcium carbonate in ambient temperature waters (tufa) can form magnificent tufa landscapes, many of which are designated as protected areas. However, tufa landscapes in many areas are threatened by both local anthropogenic activities and climate change. This study, for the first time, posed the question whether the tufa landscape degradation (characterized by tufa degradation and increased biomass of green algae) in Jiuzhaigou National Nature Reserve of China is partially caused by regional air pollution and climate warming. The results indicate that wet deposition (including rain and snow) polluted by anthropogenic SO2, NOx, and NH3 emissions dissolves exposed tufa and may considerably reduce tufa deposition rate and even cause tufa dissolution within shallow waters. These effects of wet deposition on tufa enhanced as pH of wet deposition decreased from 8.01 to 5.06. Annual Volume Weighted Mean concentration of reactive nitrogen (including NH4(+) and NO3(-)) in wet deposition (26.1μmolL(-1)) was 1.8 times of the corresponding value of runoff (14.8μmolL(-1)) and exceeded China's national standard of total nitrogen in runoff for nature reserves (14.3μmolL(-1)), indicating a direct nitrogen fertilization effect of wet deposition on green algae. As water temperature is the major limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5cm) of runoff (depthalgae (p<0.05), climate warming in this region would favor algal growth. In sum, this study suggests that climate warming and enhanced sulfur and nitrogen deposition have contributed to the current degradation of tufa landscape in Jiuzhaigou, but in order to quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa landscape evolution. PMID:27110983

  4. The carbon budget of the North Sea

    Directory of Open Access Journals (Sweden)

    A. Vieira Borges

    2004-08-01

    Full Text Available A carbon budget has been established for the North Sea, a shelf sea of the NW European continental shelf. The air-sea exchange of CO2 has been assessed as closing term of the budget. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The dominant carbon sink is the final export to the North Atlantic Ocean. The North Sea acts as a sink for organic carbon. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.

  5. Bounds on the thermodynamical properties of the fluid envelope of a planet based upon its radiative budget at the top of the atmosphere

    CERN Document Server

    Lucarini, Valerio

    2010-01-01

    In this paper we exploit two equivalent formulations of the average rate of material entropy production in a planetary system to propose an approximate splitting between contributions due from vertical processes and those due eminently to horizontal processes. We derive an estimate of the lower bound to the intensity of the Lorenz energy cycle, or of the total dissipation of the kinetic energy, based purely upon 2D radiative fields at the top of the atmosphere of the planet. Bounds on the efficiency of the planetary system are also provided, and provide insight on a previous intuition on the possibility of defining a baroclinic heat engine extracting work from the meridional heat flux. Specific results are derived for Earth-like conditions but the approach can be used to analyse general planetary systems. The possibility of providing constraints to the 3D dynamics of the fluid envelope based only upon 2D observations of radiative fluxes seems promising for the observational study of extra-solar planets and ma...

  6. Modelling water fluxes in a pine wood soil-vegetation-atmosphere system. Comparison of a water budget and water flow model using different parameter data sources

    International Nuclear Information System (INIS)

    For modelling complex hydrological problems, realistic models and accurate hydraulic properties are needed. A mechanistic model (HYDRUS-1D) and a compartment model are evaluated for simulating the water balance in a soil-vegetation-atmosphere system using time series of measured water content at several depths in two lysimeters in a podzol soil with Scots Pine vegetation. 10 calibration scenarios are used to investigate the impact of the model type and the number of horizons in the profile on the calibration accuracy. Main results are: (i) with a large number of soil layers, both models describe accurately the water contents at all depths, (II) the number of soil layers is the major factor that controls the quality of the calibration. The compartment model is as an abstracted model and the mechanistic model is our reference model. Drainage values are the considered output. Drainage values simulated by the abstracted model were close to those of the reference model when averaged over a sufficiently long period (about 9 months). This result suggests that drainage values obtained with an abstracted model are reliably when averaged over sufficiently long periods; the abstracted model needs less computational time without an important loss of accuracy.

  7. Modelling water fluxes in a pine wood soil-vegetation-atmosphere system. Comparison of a water budget and water flow model using different parameter data sources

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, S.; Jacques, D.; Mallants, D.

    2010-02-15

    For modelling complex hydrological problems, realistic models and accurate hydraulic properties are needed. A mechanistic model (HYDRUS-1D) and a compartment model are evaluated for simulating the water balance in a soil-vegetation-atmosphere system using time series of measured water content at several depths in two lysimeters in a podzol soil with Scots Pine vegetation. 10 calibration scenarios are used to investigate the impact of the model type and the number of horizons in the profile on the calibration accuracy. Main results are: (i) with a large number of soil layers, both models describe accurately the water contents at all depths, (II) the number of soil layers is the major factor that controls the quality of the calibration. The compartment model is as an abstracted model and the mechanistic model is our reference model. Drainage values are the considered output. Drainage values simulated by the abstracted model were close to those of the reference model when averaged over a sufficiently long period (about 9 months). This result suggests that drainage values obtained with an abstracted model are reliably when averaged over sufficiently long periods; the abstracted model needs less computational time without an important loss of accuracy.

  8. Canopy uptake of atmospheric N deposition at a conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange

    Energy Technology Data Exchange (ETDEWEB)

    Sievering, H. E-mail: Herman.Sievering@cudenver.edu; Tomaszewski, T.; Torizzo, J. [Dept. of Geography and Environmental Science, Univ. of Colorado-Denver, Denver, CO 80217 (United States)

    2007-07-15

    Global carbon cycle assessments of anthropogenic nitrogen (N) deposition influences on carbon sequestration often assume enhanced sequestration results. This assumption was evaluated at a Rocky Mountains spruce-fir forest. Forest canopy N uptake (CNU) of atmospheric N deposition was estimated by combining event wet and throughfall N fluxes with gradient measured HNO{sub 3} and NH{sub 3} as well as inferred (NO{sub x} and particulate N) dry fluxes. Approximately 80% of the growing-season 3 kg N/ha total deposition is retained in canopy foliage and branches. This CNU constitutes {approx}1/3 of canopy growing season new N supply at this conifer forest site. Daytime net ecosystem exchange (NEE) significantly (P = 0.006) and negatively (CO{sub 2} uptake) correlated with CNU. Multiple regression indicates {approx}20% of daytime NEE may be attributed to CNU (P < 0.02); more than soil water content. A wet deposition N-amendment study (Tomaszewski and Sievering), at canopy spruce branches, increased their growing-season CNU by 40-50% above ambient. Fluorometry and gas exchange results show N-amended spruce branches had greater photosynthetic efficiency and higher carboxylation rates than control and untreated branches. N-amended branches had 25% less photoinhibition, with a 5-9% greater proportion of foliar-N-in-Rubisco. The combined results provide, partly, a mechanistic explanation for the NEE dependence on CNU.

  9. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition

    OpenAIRE

    Aghajanzadeh, Tahereh; Kopriva, Stanislav; Malcolm J Hawkesford; Koprivova, Anna; De Kok, Luit J.

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and B. rapa. Both species contained a number of aliphatic, aromatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa, which could solely be attributed to the presence of high levels of sinigrin, which was absent in the latter species. Sulfate deprivation resulted in a strong...

  10. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings

    OpenAIRE

    Luit J. eDe Kok

    2014-01-01

    Brassica juncea seedlings contained a two-fold higher glucosinolate content than Brassica rapa and these secondary sulfur compounds accounted for up to 30 % of the organic sulfur fraction. The glucosinolate content was not affected by H2S and SO2 exposure, demonstrating that these sulfur compounds did not form a sink for excessive atmospheric supplied sulfur. Upon sulfate deprivation, the foliarly absorbed H2S and SO2 replaced sulfate as the sulfur source for growth of B. juncea and B. rapa s...

  11. The composition, seasonal variation, and potential sources of the atmospheric wet sulfur (S) and nitrogen (N) deposition in the southwest of China.

    Science.gov (United States)

    Liu, Lei; Zhang, Xiuying; Lu, Xuehe

    2016-04-01

    The composition, seasonal variation, and potential sources of sulfate (S) and nitrogen (N) deposition in precipitation in the southwest of China from 2003 to 2013 were investigated. The results showed that the concentration of SO4 (2-), NO3 (-), and NH4 (+) in rainwater were 10.57-1360, 7.16-523.71, and 7.54-1020 μeq l(-1), with an annual volume-weighted mean (VWM) concentration of 103.99, 46.73, and 97.30 μeq l(-1), respectively. The annual wet deposition of SO4 (2-), NO3 (-), and NH4 (+) was 21.66, 8.16, and 17.49 kg S (N) ha(-1), respectively. The temporal variations of the ions showed that the abrupt decreasing breakpoints were in 2008 for SO4 (2-) and in 2009 for NO3 (-) and NH4 (+), and increasing trends were observed after 2010 for the three ions. These trends reflected the effect of economy recession and the policy of controlling SO2 and NOx emissions. The acid rain type of precipitation was shifted from sulfur to a mixed one. The ions of SO4 (2-), NO3 (-), and NH4 (+) presented high values in winter and spring and low values in autumn and summer. A highly positive linear correlation between SO4 (2-) and NO3 (-) (R (2) = 0.71), SO4 (2-) and NH4 (+) (R (2) = 0.74), and NO3 (-) and NH4 (+) (R (2) = 0.84) existed while a strong negative correlation was found between the three main ionic concentrations and precipitation. The SO4 (2-) was mainly from fossil fuel combustion (60.53 %), aged sea salt (19.03 %), agriculture (11.38 %), crust (6.66 %), and biomass burning (2.40 %); the NO3 (-) was mainly from fossil fuel combustion (75.41 %), biomass burning (9.67 %), aged sea salt (7.97 %), and agriculture (6.96 %); and the NH4 (+) was mainly from agriculture (86.38 %), fossil fuel combustion (10.52 %), and aged sea salt (3.09 %). PMID:26620861

  12. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.

    2000-07-01

    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  13. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  14. Solubility of Sulfur Dioxide in Sulfuric Acid

    Science.gov (United States)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  15. 2017 Budget Outlays

    Data.gov (United States)

    Executive Office of the President — This dataset includes three data files that contain an extract of the Office of Management and Budget (OMB) budget database. These files can be used to reproduce...

  16. 2017 Budget Receipts

    Data.gov (United States)

    Executive Office of the President — This dataset includes three data files that contain an extract of the Office of Management and Budget (OMB) budget database. These files can be used to reproduce...

  17. 2017 Budget Budauth

    Data.gov (United States)

    Executive Office of the President — This dataset includes three data files that contain an extract of the Office of Management and Budget (OMB) budget database. These files can be used to reproduce...

  18. Fiscal Year 2015 Budget

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes the Fiscal Year 2015 Council-approved operating budget for Montgomery County. The dataset does not include revenues and detailed agency budget...

  19. Beyond Zero Based Budgeting.

    Science.gov (United States)

    Ogden, Daniel M., Jr.

    1978-01-01

    Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)

  20. Budgeting in Lithuania

    OpenAIRE

    Ian Hawkesworth; Richard Emery; Joachim Wehner; Jannick Saegert

    2010-01-01

    This report covers the budget process in Lithuania. It discusses the four phases in separate sections: budget preparation, legislative approval, budget execution, and accounting and audit. Each section ends with a list of recommendations. The new strategic planning process should strengthen the policy focus of the budget at the level of the line ministries and could be accompanied by a more robust medium.term fiscal framework. All public.private partnerships (PPPs) should be subject to approv...

  1. Budgeting in Hungary

    OpenAIRE

    Dirk-Jan Kraan; Daniel Bergvall; Ian Hawkesworth; Philipp Krause

    2006-01-01

    This review of the Hungarian budget process was carried out in May 2006. The review covers budget formulation, budget execution, parliamentary approval, accounting and auditing, and sub-national financing. Hungary has modernised its budget process over the last ten years, first as part of the pre-accession programme and then, since EU accession in 2004, in connection with the Convergence Programme 2005-08. Nevertheless, there remain some shortcomings which include the focus on the actual (non...

  2. MICROCOMPUTER BUDGET MANAGEMENT SYSTEM

    OpenAIRE

    McGrann, James M.; Kent D. Olson; Powell, Timothy A.; Nelson, Ted R.

    1986-01-01

    The enterprise budget, whole farm cash flow, and income statement are fundamental tools of farm and ranch management. The "Microcomputer Budget Management System" (MBMS) is a microcomputer software package that facilitates the storage and use of information for crop and livestock budgeting. It performs the calculations for several enterprise budgeting formats and for preparation of whole farm resource use reports and financial statements. The MBMS also includes internal machinery and irrigati...

  3. Performance Budgeting in Turkey

    OpenAIRE

    Sevil Çatak; Canan Çilingir

    2010-01-01

    The effective and efficient use of public resources has vital importance for Turkey. To serve this purpose, public financial management was reformed and a performance budgeting system was launched in Turkey. This article assesses the current situation of the implementation of the performance budgeting system in Turkey from the perspective of public administrations under the general budget. It examines all stages of the performance budgeting process (strategic planning, performance programming...

  4. Budgeting and Beyond

    DEFF Research Database (Denmark)

    Rohde, Carsten

    Budgets and budget control has been known since the early 19th century1. However the use of budget control was until the beginning of the 1920ies in US primarily related to governmental units and states and to a minor extent to business units in practice. At that time James McKinsey describes...

  5. Zero Base Budgeting.

    Science.gov (United States)

    Sarndal, Anne G.

    1979-01-01

    Traditional budgeting starts with the previous year's budget, but zero base budgeting demands that each activity be justified from "scratch," and establishes a number of increments for each unit, in order of priority. Given the set of increments and the money available, management can determine what activities to finance. (Author)

  6. School District Budgeting.

    Science.gov (United States)

    Hartman, William T.

    This book is devoted exclusively to the budgeting process in school districts, unlike the more common generic budgeting texts. As such, it allows an in-depth treatment of both conceptual and practical aspects of budgeting in a single volume. By default, school business officials have had to rely on the state education accounting manual as their…

  7. Budgeting in Austria

    OpenAIRE

    Jón R. Blöndal; Daniel Bergvall

    2007-01-01

    This article discusses budgeting institutions, processes and practices at the federal level in Austria. Separate sections are devoted to the budget formulation process, the role of parliament, and various aspects of budget implementation and government management issues. Each section highlights the government’s reform agenda and current practices, and analyses the two vis-à-vis OECD best practices.

  8. Performance Budgeting in Korea

    OpenAIRE

    John M. Kim; Nowook Park

    2007-01-01

    Korea is in the initial stages of implementing performance-based budgeting. The system was introduced as part of a comprehensive fiscal reform package in the late 1990s. This article discusses the background, framework and implementation of performance budgeting and its impact in the budget process.

  9. Library Budget Primer.

    Science.gov (United States)

    Warner, Alice Sizer

    1993-01-01

    Discusses the advantages and disadvantages of six types of budgets commonly used by many different kinds of libraries. The budget types covered are lump-sum; formula; line or line-item; program; performance or function; and zero-based. Accompanying figures demonstrate the differences between four of the budget types. (three references) (KRN)

  10. Plant sulfur nutrition: From Sachs to Big Data.

    Science.gov (United States)

    Kopriva, Stanislav

    2015-01-01

    Together with water and carbon dioxide plants require 14 essential mineral nutrients to finish their life cycle. The research in plant nutrition can be traced back to Julius Sachs, who was the first to experimentally prove the essentiality of mineral nutrients for plants. Among those elements Sachs showed to be essential is sulfur. Plant sulfur nutrition has been not as extensively studied as the nutrition of nitrogen and phosphate, probably because sulfur was not limiting for agriculture. However, with the reduction of atmospheric sulfur dioxide emissions sulfur deficiency has become common. The research in sulfur nutrition has changed over the years from using yeast and algae as experimental material to adopting Arabidopsis as the plant model as well as from simple biochemical measurements of individual parameters to system biology. Here the evolution of sulfur research from the times of Sachs to the current Big Data is outlined. PMID:26305261

  11. Plant sulfur nutrition: From Sachs to Big Data

    Science.gov (United States)

    Kopriva, Stanislav

    2015-01-01

    Together with water and carbon dioxide plants require 14 essential mineral nutrients to finish their life cycle. The research in plant nutrition can be traced back to Julius Sachs, who was the first to experimentally prove the essentiality of mineral nutrients for plants. Among those elements Sachs showed to be essential is sulfur. Plant sulfur nutrition has been not as extensively studied as the nutrition of nitrogen and phosphate, probably because sulfur was not limiting for agriculture. However, with the reduction of atmospheric sulfur dioxide emissions sulfur deficiency has become common. The research in sulfur nutrition has changed over the years from using yeast and algae as experimental material to adopting Arabidopsis as the plant model as well as from simple biochemical measurements of individual parameters to system biology. Here the evolution of sulfur research from the times of Sachs to the current Big Data is outlined. PMID:26305261

  12. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings

    Directory of Open Access Journals (Sweden)

    Luit J. eDe Kok

    2014-12-01

    Full Text Available Brassica juncea seedlings contained a two-fold higher glucosinolate content than Brassica rapa and these secondary sulfur compounds accounted for up to 30 % of the organic sulfur fraction. The glucosinolate content was not affected by H2S and SO2 exposure, demonstrating that these sulfur compounds did not form a sink for excessive atmospheric supplied sulfur. Upon sulfate deprivation, the foliarly absorbed H2S and SO2 replaced sulfate as the sulfur source for growth of B. juncea and B. rapa seedlings. The glucosinolate content was decreased in sulfate-deprived plants, though its proportion of organic sulfur fraction was higher than that of sulfate-sufficient plants, both in absence and presence of H2S and SO2. The significance of myrosinase in the in situ turnover in these secondary sulfur compounds needs to be questioned, since there was no direct co-regulation between the content of glucosinolates and the transcript level and activity of myrosinase. Evidently, glucosinolates cannot be considered as sulfur storage compounds upon exposure to excessive atmospheric sulfur and are unlikely to be involved in the re-distribution of sulfur in B. juncea and B. rapa seedlings upon sulfate deprivation.

  13. Sulfuric acid on Europa and the radiolytic sulfur cycle

    Science.gov (United States)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  14. Global carbon budget 2014

    Science.gov (United States)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each

  15. Global Carbon Budget 2015

    Science.gov (United States)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global

  16. Isotope ratio as a tracer for investigation of anthropogenic sulfur sources

    International Nuclear Information System (INIS)

    This paper presents studies concerned possibility of application of sulfur isotope ratio to investigate the sulfur pollution, coming from coal combustion process. The samples of hard coal and lignite, slag and ashes were taken from power station Kaweczyn and Belchatow to determine sulfur isotope ratio changes in the products of coal combustion process. Additionally, sulfur from outlet gas was absorbed to determine sulfur isotope fractionation in desulfurization process. Sulfate from outlet gases are enriched in light isotope 32S in comparison to coal which was used in power plants. Fractionation of sulfur isotopes between inlet and outlet gases was observed. The stable sulfur compositions of sulfur compounds in industrial origin, present in atmosphere, biosphere, hydrosphere, groundwater, soil ets., may differ from those for natural sources. Sulfur isotope ratio can be treated as an environmental tracer, and may be applied to study the sulfur pollution distribution from coal combustion process, in the environment. (author)

  17. Selected budgeting issues in Chile: Performance budgeting, medium-term budgeting, budget flexibility

    OpenAIRE

    Ian Hawkesworth; Oscar Huerta Melchor; Marc Robinson

    2012-01-01

    The Chilean government is exploring several important areas of public sector reform. This article discusses performance budgeting (including spending reviews, efficiency reviews, and the Chilean performance management system), mediumterm budgeting (especially the use of forward estimates and fiscal rules), and flexibility and efficiency in budget execution. Chile’s situation as of May 2012 was analysed in the light of OECD country best practices at the annual meeting of the OECD network on pe...

  18. Public budgets: New challenges

    OpenAIRE

    Attila, György

    2010-01-01

    Budgeting is passing through changes all over the world in order to find more efficient ways to guide public money usage. The last half of century gave us multiple examples of how to improve budgetary performance, but there are a lot to do in next decades to accomplish this goal. The challenges regarding public budgeting are: using accrual based budgeting, use performance information to determine the allocations for each agency, and strengthening the budgetary transparency.

  19. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H2S AND SO2 PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    International Nuclear Information System (INIS)

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H2S and SO2 are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H2, N2, and CO2 atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H2-dominated atmospheres for a wide range of particle diameters (0.1-1 μm), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N2 and CO2, optically thick haze, composed of elemental sulfur aerosols (S8) or sulfuric acid aerosols (H2SO4), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H2S and SO2 by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation space telescopes.

  20. Budgeting Approaches in Community Colleges

    Science.gov (United States)

    Palmer, James C.

    2014-01-01

    Several budgeting approaches have been initiated as alternatives to the traditional, incremental process. These include formula budgeting; zero-base budgeting; planning, programming, and budgeting systems; and responsibility center budgeting. Each is premised on assumptions about how organizations might best make resource allocation decisions.…

  1. Sulfuric acid in the Venus clouds.

    Science.gov (United States)

    Sill, G. T.

    1972-01-01

    The extremely dry nature of the Venus upper atmosphere appears to demand the presence of an efficient desiccating agent as the chief constituent of the clouds of Venus. On the basis of polarization measures it is to be expected that this substance is present as spherical droplets, 1 to 2 microns in diameter, with a refractive index n of 1.46 plus or minus 0.02 at 3500A in the observed region of the atmosphere, with T about equal to 235 K. This substance must have ultraviolet, visible, and infrared reflection properties not inconsistent with the observed spectrum of Venus. Sulfuric acid, of about 86% by weight composition, roughly fulfills the first of these properties. The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine produced by the photolytic decomposition of hydrogen bromide.

  2. Performance Budgeting in Denmark

    OpenAIRE

    Rikke Ginnerup; Thomas Broeng Jørgensen; Anders Møller Jacobsen; Niels Refslund

    2007-01-01

    This article describes the development and current content of the performance management system in the Danish central government. Since the 1980s, innovations have included results-based management, performance contracts, activity-based budgeting, accrual accounting and budgeting, and the use of evaluations and reports.

  3. Budgeting for fiscal space

    OpenAIRE

    Allen Schick

    2009-01-01

    Fiscal space refers to the financial resources available to a government for policy initiatives through the budget and related decisions. This article reviews the factors that contribute to the shrinkage of fiscal space, considers methods for protecting or enlarging it, and reflects on how budgeting may be recast into a process for explicitly allocating scarce fiscal space.

  4. Learning From Low Budgets

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chinese filmmakers turn small-budget productions into box-office successes Organizers of China’s upcoming film festivals are finally giving recognition to the little guys—low budget films—to encourage a generation of young,talented directors.

  5. Preparing the operating budget.

    Science.gov (United States)

    Williams, R B

    1983-12-01

    The process of preparing a hospital pharmacy budget is presented. The desired characteristics of a budget and the process by which it is developed and approved are described. Fixed, flexible, and zero-based budget types are explained, as are the major components of a well-developed budget: expense, workload, productivity, revenue, and capital equipment and other expenditures. Specific methods for projecting expenses and revenues, based on historical data, are presented along with a discussion of variables that must be considered in order to achieve an accurate and useful budget. The current shift in emphasis away from revenue capture toward critical analysis of pharmacy costs underscores the importance of budgetary analysis for hospital pharmacy managers. PMID:6660233

  6. Budget 2011: A budget lacking in ambition

    OpenAIRE

    Dolphin, Tony

    2011-01-01

    Growth is key to the government’s plans for the recovery. Tony Dolphin, Senior Economist at the Institute for Public Policy Research looks at this year’s budget and finds that while it may promote growth now, a broader strategy may be needed in the long term.

  7. Carbon dioxide and the radiation budget

    International Nuclear Information System (INIS)

    This chapter addresses the radiative forcing of the Earth-atmosphere system caused by an increase in carbon dioxide (CO2) levels that can lead to climate change. The importance of the Earth's radiation budget is described, and the radiative properties of CO2 and other radiatively important gases are presented. Methods of computing gaseous absorption and their accuracy are discussed. Components of the radiation budget (solar and longwave) are described along with the effect of variations in CO2 concentration. Because aerosols and clouds also have important radiative properties, the effects of changes in aerosol and cloud amounts are also discussed. The purpose of this chapter is to provide an overview of the radiative effects of CO2 and other atmospheric constituents that are important in determining the potential climatic effects of changes in atmospheric composition

  8. ISOLATION AND CHARACTERIZATION OF BACTERIA FOR REMOVAL OF SULFUR IN ORGANIC COMPOUNDS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    1. IntroductionThe presence of sulfur in fossil fuels contributesto corrosion of production and refining equipments,when burning these high-sulfur fuels, it will releasesulfur oxides into the atmosphere, which leading tothe formation of acid rain.Various processes have been developed for theremoval of sulfur compounds from fossil fuel.Inorganic sulfur can be reduced through physicalbeneficiation techniques, but organically boundsulfur is difficult to be removed by these ways 1142].Biological desulfurization...

  9. Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    International Nuclear Information System (INIS)

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO42-. It can monitor the sulfur pollution in atmosphere. (authors)

  10. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  11. The charging of neutral dimethylamine and dimethylamine–sulfuric acid clusters using protonated acetone

    OpenAIRE

    Ruusuvuori, K.; P. Hietala; O. Kupiainen-Määttä; Jokinen, T; Junninen, H.; Sipilä, M.; Kurtén, T.; Vehkamäki, H.

    2015-01-01

    Sulfuric acid is generally considered one of the most important substances taking part in atmospheric particle formation. However, in typical atmospheric conditions in the lower troposphere, sulfuric acid and water alone are unable to form particles. It has been suggested that strong bases may stabilize sulfuric acid clusters so that particle formation may occur. More to the point, amines – strong organic bases – have become the subject of interest as possible cause for such...

  12. Budgeting in Norway

    OpenAIRE

    Barry Anderson; Teresa Curristine; Olaf Merk

    2006-01-01

    Norway is a prosperous country with a healthy economy and a very high standard of living. Norway provides a truly unique example of long-term budgetary planning through its successful management of oil assets by means of the Government Pension Fund – Global. This article examines the annual budget process which is an important factor in the health of Norway’s public finances. The cabinet has a central role in formulating the budget via the annual budget conferences. Parliament has a strong fo...

  13. The capital budgeting manual

    OpenAIRE

    Segelod, Esbjörn

    1995-01-01

    There has been very many postal surveys of capital budgeting practice, but almost no studies of the written routines that fix the practice of those groups that use a capital budgeting manual. This article fills this vacuum by describing and analysing the capital budgeting manuals used by major Swedish groups, most of whom are multinationals. Changes in the manuals during the last 30 years are studied using hvo earlier Swedish studies of manuals from the 60’s and 70’s. Comparisons are made wit...

  14. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  15. FY 1997 congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This is an overview of the 1997 budget request for the US DOE. The topics of the overview include a policy overview, the budget by business line, business lines by organization, crosswalk from business line to appropriation, summary by appropriation, energy supply research and development, uranium supply and enrichment activities, uranium enrichment decontamination and decommissioning fund, general science and research, weapons activities, defense environmental restoration and waste management, defense nuclear waste disposal, departmental administration, Office of the Inspector General, power marketing administrations, Federal Energy Regulatory commission, nuclear waste disposal fund, fossil energy research and development, naval petroleum and oil shale reserves, energy conservation, economic regulation, strategic petroleum reserve, energy information administration, clean coal technology and a Department of Energy Field Facilities map.

  16. Budget Automation System

    Data.gov (United States)

    U.S. Environmental Protection Agency — BAS is the central Agency system used to integrate strategic planning, annual planning, budgeting and financial management. BAS contains resource (dollars and FTE),...

  17. Sulfur-oxidizing bacteria in environmental technology.

    Science.gov (United States)

    Pokorna, Dana; Zabranska, Jana

    2015-11-01

    Hydrogen sulfide is widely known as the most undesirable component of biogas that caused not only serious sensoric and toxic problems, but also corrosion of concrete and steel structures. Many agricultural and industrial waste used in biogas production, may contain a large amount of substances that serve as direct precursors to the formation of sulfide sulfur-sources of hydrogen sulfide in the biogas. Biological desulfurization methods are currently promoted to abiotic methods because they are less expensive and do not produce undesirable materials which must be disposed of. The final products of oxidation of sulfides are no longer hazardous. Biological removal of sulfide from a liquid or gaseous phase is based on the activity of sulfur-oxidizing bacteria. They need an oxidizing agent such as an acceptor of electrons released during the oxidation of sulfides-atmospheric oxygen or oxidized forms of nitrogen. Different genera of sulfur-oxidizing bacteria and their technological application are discussed. PMID:25701621

  18. Cyclical budget balance measurement

    OpenAIRE

    C. AUDENIS; C. PROST

    2000-01-01

    Government balances are often adjusted for changes in economic activity in order to draw a clearer picture of the underlying fiscal situation and to use this as a guide to fiscal policy analysis. International organisations estimate the cyclical component of economic activity by the current level of the output gap. Using elasticities of tax and public expenditures to GDP, they compute the cyclical part of budget balance. The structural budget balance is defined as the remainder. Our approach ...

  19. Gender budget pilot project

    OpenAIRE

    Barry, Ursula; Pillinger, Jane; Quinn, Sheila; Cashman, Aileen

    2004-01-01

    This Report presents the findings of the first Irish research project on gender budgeting. It explores recent international and Irish experiences of strategies towards greater gender equality and develops a template for applying a gender budget approach in selected local development organisations. The research was funded by the Gender Equality Unit of the Department of Justice, Equality and Law Reform who have responsibility for promoting and monitoring gender mainstreaming in the Irish Natio...

  20. Intertemporal State Budgeting

    OpenAIRE

    Bruce Baker; Daniel Besendorfer; Kotlikoff, Laurence J.

    2002-01-01

    This study presents intertemporal budgeting as of 1999 for all 50 U.S.states. Intertemporal state budgeting compares the present value of a state's projected receipts with the present value of its projected expenditures (exclusive of interest payments)plus the current value of its net debt (liabilities minus assets). Our projections start with the 1999 U.S.Census Bureau's State Government Finances survey of receipts,expenditures,and debt.We group these highly detailed data into a framework th...

  1. Learning From Low Budgets

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2011-01-01

    Organizers of China's upcoming film festivals are finally giving recognition to the little guys-low budget films-to encourage a generation of young,talented directors.Several nominees were announced on September 10 to compete for the Small-and Medium-Budget Film Prize of the annual Golden Rooster and Hundred Flowers Film Festival,which will kick off on October 19.

  2. An Aerosol Condensation Model for Sulfur Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide

  3. Metagenome and Metatranscriptome Revealed a Highly Active Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin

    OpenAIRE

    Ying eHe; Xiaoyuan eFeng; Jing eFang; Yu eZhang; Xiang eXiao

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an int...

  4. Congress trims NSF budget

    Science.gov (United States)

    Maggs, William Ward

    The last-minute spending bill adopted by Congress just before its 1987 holiday recess provides $1,717 billion for the National Science Foundation (NSF) for fiscal year (FY) 1988. The approved figure is more than 9% lower than the request in President Reagan's budget plan. In addition, wording in the House version of the bill that mandated protection of ocean science and women and minorities programs did not appear in the final product that was approved by Congress and signed into law.In absolute terms, NSF's budget will be 6% more than in 1987, far less than expected by the agency and the White House, which had proposed a doubling of NSF's budget over the next several years. The Research and Related Activities section of the budget, out of which comes the bulk of NSF's support of basic research, was funded at $1,453 billion, $200 million less than its $1,653 billion request, and the Antarctic Research section received $124.8 million of $143 million in the President's budget. Science Education, on the other hand, was budgeted for $139.2 million, $25 million more than requested.

  5. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  6. BUDGET AND PUBLIC DEBT

    Directory of Open Access Journals (Sweden)

    Morar Ioan Dan

    2014-12-01

    Full Text Available The issue of public budgeting is an important issue for public policy of the state, for the simple reason that no money from the state budget can not promote public policy. Budgetary policy is official government Doctrine vision mirror and also represents a starting point for other public policies, which in turn are financed by the public budget. Fiscal policy instruments at its disposal handles the public sector in its structure, and the private sector. Tools such as grant, budgetary allocation, tax, welfare under various forms, direct investments and not least the state aid is used by the state through their budgetary policies to directly and indirectly infuence sector, and the private. Fiscal policies can be grouped according to the structure of the public sector in these components, namely fiscal policy, budgeting and resource allocation policies for financing the budget deficit. An important issue is the financing of the budget deficit budgetary policies. There are two funding possibilities, namely, the higher taxes or more axles site and enter the second call to public loans. Both options involve extra effort from taxpayers in the current fiscal year when they pay higher taxes or a future period when public loans will be repaid. We know that by virtue of "fiscal pact" structural deficits of the member countries of the EU are limited by the European Commission, according to the macro structural stability and budget of each Member State. This problem tempers to some extent the governments of the Member States budgetary appetite, but does not solve the problem of chronic budget deficits. Another issue addressed in this paper is related to the public debt, the absolute amount of its relative level of public datoriri, about the size of GDP, public debt financing and its repayment sources. Sources of public debt issuance and monetary impact on the budget and monetary stability are variables that must underpin the justification of budgetary

  7. The Nitrogen Budget of Earth

    CERN Document Server

    Johnson, Ben

    2015-01-01

    We comprehensively compile and review N content in geologic materials to calculate a new N budget for Earth. Using analyses of rocks and minerals in conjunction with N-Ar geochemistry demonstrates that the Bulk Silicate Earth (BSE) contains \\sim7\\pm4 times present atmospheric N (4\\times10^18 kg N, PAN), with 27\\pm16\\times10^18 kg N. Comparison to chondritic composition, after subtracting N sequestered into the core, yields a consistent result, with BSE N between 17\\pm13\\times10^18 kg to 31\\pm24\\times10^18 kg N. In the chondritic comparison we calculate a N mass in Earth's core (180\\pm110 to 300\\pm180\\times10^18 kg) and discuss the Moon as a proxy for the early mantle. Significantly, we find the majority of the planetary budget of N is in the solid Earth. The N estimate herein precludes the need for a "missing N" reservoir. Nitrogen-Ar systematics in mantle rocks and basalts identify two mantle reservoirs: MORB-source like (MSL) and high-N. High-N mantle is composed of young, N-rich material subducted from the...

  8. Sulfur 'Concrete' for Lunar Applications - Environmental Considerations

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. For the purpose of this Technical Memorandum, it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, bricks. With this stipulation, it is then noted that the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. The work presented here evaluates two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar simulant as an aggregate addition. One set was subjected to extended periods in high vacuum to evaluate sublimation issues, and the other was cycled between room and liquid nitrogen temperatures to investigate their subsequent mechanical integrity. Results are presented from both investigations, discussed, and put into the context of the lunar environment.

  9. The carbon budget of California

    International Nuclear Information System (INIS)

    The carbon budget of a region can be defined as the sum of annual fluxes of carbon dioxide (CO2) and methane (CH4) greenhouse gases (GHGs) into and out of the regional surface coverage area. According to the state government's recent inventory, California's carbon budget is presently dominated by 115 MMTCE per year in fossil fuel emissions of CO2 (>85% of total annual GHG emissions) to meet energy and transportation requirements. Other notable (non-ecosystem) sources of carbon GHG emissions in 2004 were from cement- and lime-making industries (7%), livestock-based agriculture (5%), and waste treatment activities (2%). The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover (including those from the Moderate Resolution Imaging Spectroradiometer, MODIS) was used to estimate net ecosystem fluxes and vegetation biomass production over the period 1990-2004. California's annual NPP for all ecosystems in the early 2000s (estimated by CASA at 120 MMTCE per year) was roughly equivalent to its annual fossil fuel emission rates for carbon. However, since natural ecosystems can accumulate only a small fraction of this annual NPP total in long-term storage pools, the net ecosystem sink flux for atmospheric carbon across the state was estimated at a maximum rate of about 24 MMTCE per year under favorable precipitation conditions. Under less favorable precipitation conditions, such as those experienced during the early 1990s, ecosystems statewide were estimated to have lost nearly 15 MMTCE per year to the atmosphere. Considering the large amounts of carbon estimated by CASA to be stored in forests, shrublands, and rangelands across the state, the importance of protection of the natural NPP capacity of California ecosystems cannot be overemphasized.

  10. The Carbon Budget of California

    Science.gov (United States)

    Potter, C. S.

    2009-12-01

    The carbon budget of a region can be defined as the sum of annual fluxes of carbon dioxide and methane greenhouse gases (GHGs) into and out of the regional surface coverage area. According to the state government’s recent inventory, California's carbon budget is presently dominated by fossil fuel emissions of CO2 (at >85% of total annual GHG emissions) to meet energy and transportation requirements. Other notable (non-ecosystem) sources of carbon GHG emissions in 2004 were from cement- and lime-making industries, livestock-based agriculture, and waste treatment activities. The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover (including those from the Moderate Resolution Imaging Spectroradiometer - MODIS) has been used to estimate net ecosystem fluxes and vegetation biomass production over the period 1990-2004. California's annual NPP for all ecosystems in the early 2000s, estimated by CASA at 120 million metric tons of carbon equivalent (MMTCE) per year, was roughly equal to its annual fossil fuel emission rates for carbon. However, since natural ecosystems can accumulate only a small fraction of this annual NPP total in long-term storage pools, the net ecosystem sink flux for atmospheric carbon across the state was estimated at a maximum rate of between 15-24 MMTCE per year under favorable precipitation conditions. Under less favorable precipitation conditions, such as those experienced during the early 1990s, ecosystems statewide were estimated to have lost nearly 15 MMTCE per year to the atmosphere. Considering the large amounts of carbon stored in standing biomass of forests, shrublands, and rangelands across the state, the implications of changing climate and land use practices on ecosystems must be factored into the state’s planning to reduce overall GHG emissions.

  11. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  12. Heterogeneous atmospheric chemistry

    Science.gov (United States)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  13. Understanding the Recent Methane Budget

    Science.gov (United States)

    Bruhwiler, L.; Dlugokencky, E. J.; Masarie, K.

    2010-12-01

    Anthropogenic sources are thought to account for roughly 2/3 of the global atmospheric methane budget, with natural sources making up the other 1/3. Emissions from wetlands are the largest contribution from natural sources while agriculture (rice and ruminants) and waste dominate anthropogenic emissions. Fugitive emissions from fossil fuel extraction are thought to make up about 20% of the global atmospheric methane budget. It is generally recognized that observed inter-annual variability in global network observations can be attributed to natural sources such as wetlands and biomass burning, while longer-term trends likely indicate changes in anthropogenic sources. Exceptions include an abrupt decrease in fossil fuel emissions in the early 1990s associated with political changes in the Former Soviet Union, and long-term trends in emissions from the Arctic due to a warming climate. The growth rate of global average atmospheric methane since the 1980s shows a steady decline until recent years when it started to increase again. Superimposed on these trends are episodes of higher growth rates. The cause of the recent increase is not currently well-understood, although climate-driven increases in wetland emissions likely played an important role, especially in the tropics. Recent increases in anthropogenic emissions, especially from rapidly expanding Asian economies cannot be ruled out. In addition, trends in the photochemical lifetime of methane must also be considered. In this paper we use both traditional data analysis of observations of methane and related species, and a state-of-the-art ensemble data assimilation system (CarbonTracker-CH4) to attribute methane variability and trends to anthropogenic and natural source processes. We pay particular attention to the Arctic, where some recent years have been the warmest on record, and to the tropics and the potential role of ENSO in driving variability of wetland emissions. Finally, we explore whether a signal in

  14. Separation of sulfur isotopes

    Science.gov (United States)

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  15. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  16. Verification of uncertainty budgets

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Madsen, B.S.

    2005-01-01

    , because their influence requires samples taken at long intervals, e.g., the acquisition of a new calibrant. It is therefore recommended to include verification of the uncertainty budget in the continuous QA/QC monitoring; this will eventually lead to a test also for such rarely occurring effects....... full range of matrices and concentrations for which the budget is assumed to be valid. In this way the assumptions made in the uncertainty budget can be experimentally verified, both as regards sources of variability that are assumed negligible, and dominant uncertainty components. Agreement between...... observed and expected variability is tested by means of the T-test, which follows a chi-square distribution with a number of degrees of freedom determined by the number of replicates. Significant deviations between predicted and observed variability may be caused by a variety of effects, and examples will...

  17. Sulfur isotope homogeneity of oceanic DMSP and DMS

    OpenAIRE

    Amrani, Alon; Said-Ahmad, Ward; Shaked, Yeala; Kiene, Ronald P.

    2013-01-01

    Oceanic emissions of volatile dimethyl sulfide (DMS) represent the largest natural source of biogenic sulfur to the global atmosphere, where it mediates aerosol dynamics and may affect climate. Sulfur isotope ratios (34S/32S) offer a way to estimate oceanic DMS contribution to aerosols. We used a unique method for the analysis of 34S/32S of DMS and its precursor, dimethylsulfoniopropionate (DMSP), in a range of marine environments. Surface water collected from six different ocean provinces re...

  18. A NOTE ON PREVENTION AND CONTROL OF SULFUR OXIDE POLLUTION

    Directory of Open Access Journals (Sweden)

    DEBOJYOTI MITRA,

    2010-08-01

    Full Text Available Traditionally, measures designed to reduce localized ground-level concentrations of sulfur oxides (SOx used highlevel dispersion. Although these measures reduced localized health impacts, it is now realized that sulfur compounds travel long distances in the upper atmosphere and can cause damage far from the original source. Therefore the objective must be to reduce total emissions. This paper addresses the necessary preventive measures and techniques of SOx pollution control.

  19. Sedimentation of sulfuric acid in acid tars from current production

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, T.L.; Frolov, A.F.; Aminov, A.N.; Novosel' tsev, S.P.

    1987-09-01

    Acid tars obtained in treating T-750, KhF-12, and I-8A oils were investigated for purposes of recovering sulfuric acid and asphalt binders from the compositions and of determining the effects of storage time on the recovery. The consumption and sedimentation levels of sulfuric acid during storage for different periods and at different temperatures were assessed. The characteristics of an asphalt binder obtained by neutralizing acid tar with a paste consisting of asphalts from deasphalting operations and slaked lime, followed by oxidation of the mixture with atmospheric air, were determined. The sulfuric acid recovered in the settling process could be burned in order to purify it of organic contaminants.

  20. Effects of atmospheric fallouts of sulfur and nitrogen on soils and fresh waters in France; Effets des depots atmospheriques de soufre et d'azote sur les sols et les eaux douces en France

    Energy Technology Data Exchange (ETDEWEB)

    Le Gall, A.Ch.

    2004-11-15

    The sulfur oxides, nitrogen oxides, the ammonia and the chlorine emitted in the environment by human activities contribute to the soils and waters acidity. After a presentation of the acidification and the eutrophication, the author describes and qualifies the mechanisms. In a second part she discusses the mathematical models of the acidification and the eutrophication, the biological criteria and the uncertainties. The last part presents the french situation and general recommendations on land restoration. (A.L.B.)

  1. Public Budget Database - Budget Authority and offsetting receipts 1976-Current

    Data.gov (United States)

    Executive Office of the President — This file contains historical budget authority and offsetting receipts for 1976 through the current budget year, as well as four years of projections. It can be...

  2. Integrated Budget Office Toolbox

    Science.gov (United States)

    Rushing, Douglas A.; Blakeley, Chris; Chapman, Gerry; Robertson, Bill; Horton, Allison; Besser, Thomas; McCarthy, Debbie

    2010-01-01

    The Integrated Budget Office Toolbox (IBOT) combines budgeting, resource allocation, organizational funding, and reporting features in an automated, integrated tool that provides data from a single source for Johnson Space Center (JSC) personnel. Using a common interface, concurrent users can utilize the data without compromising its integrity. IBOT tracks planning changes and updates throughout the year using both phasing and POP-related (program-operating-plan-related) budget information for the current year, and up to six years out. Separating lump-sum funds received from HQ (Headquarters) into separate labor, travel, procurement, Center G&A (general & administrative), and servicepool categories, IBOT creates a script that significantly reduces manual input time. IBOT also manages the movement of travel and procurement funds down to the organizational level and, using its integrated funds management feature, helps better track funding at lower levels. Third-party software is used to create integrated reports in IBOT that can be generated for plans, actuals, funds received, and other combinations of data that are currently maintained in the centralized format. Based on Microsoft SQL, IBOT incorporates generic budget processes, is transportable, and is economical to deploy and support.

  3. Budgeting Academic Space

    Science.gov (United States)

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  4. European Union Budget Politics

    DEFF Research Database (Denmark)

    Citi, Manuele

    2015-01-01

    The marginal involvement of the European Union (EU) in redistributive policies and its limited fiscal resources have led to a notable lack of attention by EU scholars towards the EU budget and its dynamics. Yet the nature of the budgetary data and their high usability for statistical analysis mak...

  5. TQM and Budgeting.

    Science.gov (United States)

    Kisha, George M.; Graham, J. Kenneth

    1994-01-01

    A New York State school district opted to use total quality management techniques to improve the district's performance and gain public support. After defining four key measures and establishing standards of excellence for each, the district concerned itself with the first measure, proposing an affordable tax rate increase. The proposed budget was…

  6. Marbling on a Budget.

    Science.gov (United States)

    Gruber, Donald

    2001-01-01

    Provides historical information on the art technique called marbling. Includes floating paints on water and transferring the patterns formed in the water to paper. Discusses how teachers can teach this technique with materials that fit their budgets. Describes the process in detail. (CMK)

  7. Zero-Based Budgeting.

    Science.gov (United States)

    Wichowski, Chester

    1979-01-01

    The zero-based budgeting approach is designed to achieve the greatest benefit with the fewest undesirable consequences. Seven basic steps make up the zero-based decision-making process: (1) identifying program goals, (2) classifying goals, (3) identifying resources, (4) reviewing consequences, (5) developing decision packages, (6) implementing a…

  8. AGF program budget 1992

    International Nuclear Information System (INIS)

    The program budget of the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) describes its research and development objectives and the progress of work in the major research establishments involved and states the medium-term annual financial and personnel effort. (orig.)

  9. AGF program budget 1991

    International Nuclear Information System (INIS)

    The present program budget of the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) describes its research and development objectives and the progress of work in the major research establishments involved and states the medium-term annual financial and personnel effort. (orig.)

  10. Changes and removal of different sulfur forms after chemical desulfurization by peroxyacetic acid on microwave treated coals

    OpenAIRE

    MESROGHLI, Shahin; Yperman, Jan; Jorjani, E.; Vandewijngaarden, Jens; REGGERS, Guy; Carleer, Robert; Noaparast, M.

    2015-01-01

    High sulfur coal sample from C1 seam in Tabas mine (Iran) was studied. The effect of microwave pre-irradiation followed by a peroxyacetic acid (PAA) desulfurization on sulfur forms was investigated by atmospheric pressure-temperature-programmed reduction (AP-TPR) method. Implementing microwave irradiation at 300 W for 2 min resulted in a maximum total sulfur and organic sulfur reduction by PAA of about 63% and 49%, respectively. Pyrite reduction in the microwave treated - PAA desulfurized sam...

  11. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  12. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2013-01-01

    reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly...... on interpretations of the isotope record of seawater sulfates and sedimentary pyrites. The isotope record, however, does not give a complete picture of the ancient sulfur cycle. This is because, in standard isotope mass balance models, there are more variables than constraints. Typically, in...... interpretations of the isotope record and in the absence of better information, one assumes that the isotopic composition of the input sulfate to the oceans has remained constant through time. It is argued here that this assumption has a constraint over the last 390 Ma from the isotopic composition of sulfur in...

  13. Performance Budgeting and Accrual Budgeting: Decision rules or Analytic Tools?

    OpenAIRE

    Allen Schick

    2007-01-01

    Performance budgeting and accrual budgeting are analytic tools that provide information and insights which are not available through conventional approaches. But neither innovation is ready for widespread application as a decision rule in the budget process. This article urges fuller understanding of these innovations and their implications, and more systematic use of performance and accrual information for policy makers

  14. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    International Nuclear Information System (INIS)

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ34S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ34S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ34S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem

  15. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R., E-mail: cbern@usgs.gov [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Chadwick, Oliver A. [Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Kendall, Carol [U.S. Geological Survey, Menlo Park, CA (United States); Pribil, Michael J. [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ{sup 34}S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ{sup 34}S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ{sup 34}S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  16. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  17. Accrual Budgeting and Fiscal Policy

    OpenAIRE

    Marc Robinson

    2009-01-01

    Can an accrual budgeting system-a system in which budgetary spending authorizations to line ministries are formulated in accrual terms-serve the needs of good fiscal policy? If so, how must such a system be designed? What are the practical challenges which may arise in implementing sound fiscal policy under a budgeting system which is significantly more complex than traditional cash budgeting? These are the primary questions addressed in this paper. Because any budgeting system must support t...

  18. Budgeting in an open system

    OpenAIRE

    Nowak, Wojciech A.

    2004-01-01

    Budgeting is broadly used as a tool for organizational management. And this is a reason for continuous looking for budgeting essence. In the paper the systems approach is applied to investigating the nature of budgeting. The systemic aspect of an organization and the systems approach to management were taken into account. Budgeting is seen as the process of prediction and communication of systemic attributes of an organization. It seems that the results reached point to the systems approach a...

  19. Cu{sub 2}ZnSnS{sub 4} solar cells fabricated by short-term sulfurization of sputtered Sn/Zn/Cu precursors under an H{sub 2}S atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Emrani, Amin, E-mail: amin.emrani@gmail.com; Rajbhandari, Pravakar P.; Dhakal, Tara P.; Westgate, Charles R.

    2015-02-27

    Synthesis of Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films by short-term sulfurization of sputtered Sn/Zn/Cu precursors under ambient H{sub 2}S is studied. The effect of the sulfurization processes on the film morphology, surface roughness, composition of the CZTS, and the crystallinity was investigated by using scanning electron microscopy, optical profiler, energy dispersive spectroscopy, and X-ray diffraction respectively. To further explore the CZTS layer, the following additional layers were deposited to complete the solar cells: CdS with chemical bath deposition; ZnO and Al{sub 2}O{sub 3}-doped ZnO with RF magnetron deposition; and, silver fingers as the front contact as the last layer. The optical and morphological properties of the CZTS films were investigated and compared. Subsequently, the electrical characteristics and the efficiencies of the regarding solar cells were analyzed. A maximum efficiency of 3.8% has been obtained for the fast sulfurization (30 min at 580 °C) and finally, the performance is compared with our best cell fabricated through the more common slow annealing. - Highlights: • Development of Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells using elemental metal sputtering • 112-oriented CZTS films with well-defined morphology obtained • Reported efficiency of 3.8% for a short-term annealing (less than 30 min) under ambient H{sub 2}S • A detailed comparison between the fast and the more common slow annealing is reported.

  20. Best Practice in Performance Budgeting

    OpenAIRE

    Marc Robinson

    2002-01-01

    This paper seeks to identify the best practice principles for performance budgeting. It describes and analyses the principle mechanisms by which performance budgeting systems attempt to link results and resources. These mechanisms are evaluated, drawing amongst other things upon analysis of the underlying relationship between results and resources. The potential scope for the integration of performance management and budgeting is considered.

  1. Theoretical Considerations On Local Budgets

    OpenAIRE

    Ionel Eduard Ionescu; Cristian Constantin Oprea

    2012-01-01

    This paper provides an overview of local budgets, or otherwise highlights the importance of these tools - local budgets, in the financial autonomy mechanism. Local communities know better than central authorities, their possibilities of obtaining financial resources and needs on expenses for providing local partner services. All these resources and needs are identified in local budgets.

  2. Study on the enrichment of Sulfur Hexafluoride in the tmosphere through polyimide hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Wang Weixian

    2016-01-01

    Full Text Available Sulfur hexafluoride is per molecule the strongest greenhouse gas know, the features have brought SF6 into the climatic impact discussion aimed at reduction of emissions. The separation effects of sulfur hexafluoride in the atmosphere are studied through polyimide hollow fiber membrane with different conditions on pressure drop, gas flow and temperature. The sulfur hexafluoride concentration increased with increased pressure drop of the membrane, increased temperature and decreased non-filtrate flow flux; the recovery of sulfur hexafluoride exceeds 93%, enrichment coefficient was 18.5; sulfur hexafluoride is not detected at the flux of the filtrate flow, which means sulfur hexafluoride is riddled by membrane. The results showed that polyimide hollow fiber membrane can effectively separate sulfur hexafluoride from mixed gas

  3. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  4. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  5. Study on the enrichment of Sulfur Hexafluoride in the tmosphere through polyimide hollow fiber membrane

    OpenAIRE

    Wang Weixian; Wang Yaoqin; Li Weiping; Yuan Yuan

    2016-01-01

    Sulfur hexafluoride is per molecule the strongest greenhouse gas know, the features have brought SF6 into the climatic impact discussion aimed at reduction of emissions. The separation effects of sulfur hexafluoride in the atmosphere are studied through polyimide hollow fiber membrane with different conditions on pressure drop, gas flow and temperature. The sulfur hexafluoride concentration increased with increased pressure drop of the membrane, increased temperature and decreased non-filtrat...

  6. Hvordan spres beyond budgeting?

    OpenAIRE

    Navekvien, Kristian Andreassen; Johnsen, Mathias Siljedal

    2011-01-01

    Budsjettet har de siste årene blitt kritisert for å være uegnet til flere av dets bruksområder. Som en reaksjon på denne kritikken har Beyond Budgeting fremstått som et alternativ til budsjettstyring. Denne utredningen søker å finne ut hvorfor og hvordan Beyond Budgeting sprer seg. Vi finner at diffusjonen både påvirkes av aktive tilbudssideaktører, og av bedrifter som etterspør en mer dynamisk måte å styre virksomheten på. Effekten av å være informert om budsjettkritikken synes å være adopsj...

  7. PMSI and budget allocation

    Directory of Open Access Journals (Sweden)

    Marty M

    2000-03-01

    Full Text Available The instauration of the PMSI and its subsequent use for partially allocating hospital budgets has raised a number of issues. The calculation of the cost of ISA points has uncovered great disparities among different health care facilities. This article studies the consequences of using diagnostic related groups (GHM in the ISA scale as a classification tool. Normally, differences in patient populations among facilities should be averaged out by the ISA scale classification. However, a study of the numerous correlations between the cost of an ISA point and various calculated indicators in these structures proves that the scale does not succeed in adjusting this cost as a function of the patient population requesting care. The findings indicate that certain types of patients are more “profitable” than others. We must be careful not to allow this new method for determining budgets to induce patient selection or to a diverted use of PMSI data.

  8. Hvordan spres Beyond Budgeting?

    OpenAIRE

    Navekvien, Kristian Andreassen; Johnsen, Mathias Siljedal

    2011-01-01

    Budsjettet har de siste årene blitt kritisert for å være uegnet til flere av dets bruksområder. Som en reaksjon på denne kritikken har Beyond Budgeting fremstått som et alternativ til budsjettstyring. Denne utredningen søker å finne ut hvorfor og hvordan Beyond Budgeting sprer seg. Vi finner at diffusjonen både påvirkes av aktive tilbudssideaktører, og av bedrifter som etterspør en mer dynamisk måte å styre virksomheten på. Effekten av å være informert om budsjettkritikken synes å være adopsj...

  9. Sulfur aerosol in the clouds of Venus

    Science.gov (United States)

    Krasnopolsky, Vladimir A.

    2016-08-01

    The photochemical model for the middle atmosphere of Venus (Krasnopolsky, V.A. [2012] Icarus, 218, 230-246) predicts sulfur aerosol as a product of the OCS photolysis at 55-60 km. The calculated mass loading is much smaller than that of the mode 1 particles in the upper cloud layer. The chemical kinetic model for the lower atmosphere (Krasnopolsky, V.A. [2013], Icarus, 225, 570-580) results in a constant mixing ratio of 20 ppm for OCS + XSX. This means the S8 mixing ratio of 2.5 ppm near the model upper boundary at 47 km. Using this abundance, the calculated profile of the sulfur aerosol has a bottom that coincides with the lower boundary of modes 2 and 3 and constitutes ∼10% of the total mass loading in the lower cloud layer. Sulfur aerosol cannot be the near UV absorber because its abundance is too low at the cloud tops and disagrees with the profile of the absorber observed by Venera 14.

  10. Intertemporal Budgeting and Efficiency

    OpenAIRE

    Shawna Grosskopf; Rolf Fare; Suthathip Yaisawarng

    1995-01-01

    This paper introduces an intertemporal variable cost indirect technology which permits technological change over time, as well as allowing for intertemporal financial flexibility. It characterizes firms or agencies which maximize outputs or services subject to a budget constraint. We define intertemporal Farrell-type output oriented technical efficiency under several different financial regimes, as well as efficiency gains from financial flexibility. An empirical illustration is included base...

  11. PMSI and budget allocation

    OpenAIRE

    Marty M; Toselli A; Vincke B

    2000-01-01

    The instauration of the PMSI and its subsequent use for partially allocating hospital budgets has raised a number of issues. The calculation of the cost of ISA points has uncovered great disparities among different health care facilities. This article studies the consequences of using diagnostic related groups (GHM) in the ISA scale as a classification tool. Normally, differences in patient populations among facilities should be averaged out by the ISA scale classification. However, a study...

  12. Programme budget 1981

    International Nuclear Information System (INIS)

    There are 11 main fields of KfK R + D activities which are connected with one or more of the research goals of a) assurance of nuclear fuel supply, b) nuclear waste management, c) safety of nuclear facilities, d) basic research and research on new technologies. The scientific and technical tasks connected with these goals in 1981 and on a medium-term basis as well as the financial requirements are presented in the programme budget. (orig.)

  13. The Incredible Shrinking Budget

    Science.gov (United States)

    T.H.E. Journal, 2013

    2013-01-01

    If district technology leaders had a nickel for every time they heard the phrase "the new normal," they'd have all the money they need to run their IT departments. In an effort to help readers think about their budgets in creative and practical ways, "T.H.E. Journal" and the Consortium for School Networking (CoSN) recently convened a panel of CTOs…

  14. Budgeting tool for Restaurant X

    OpenAIRE

    Nguyen, Uyen

    2014-01-01

    In order to improve profitability and advance a company’s commitment to organ-ize growth, details plans which are called budgets are required. A budgeting tool is a beneficial asset for a company because it helps the budgeting preparation process become easier and faster. Thus, the aim of this thesis is to create a budgeting tool for Restaurant X. This thesis is product-orientated. There are three tasks conducted in this thesis. First one is to cover all relevant theories about a budget. T...

  15. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  16. Sulfur Dioxide Pollution Monitor.

    Science.gov (United States)

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  17. Characterization of Sulfur Compounds in MTBE

    OpenAIRE

    Mingqing Wu; Chunyan Chang; Tao Li; Jian Zhou; Liping Zhao

    2015-01-01

    A study is carried out on chemical constitution of sulfur compounds in MTBE and their formation mechanisms. These sulfur compounds are classified into three types: common sulfur compounds, newly formed sulfur compounds, and high boiling sulfur compounds. Common sulfur compounds which include mercaptans, low molecule sulfides and disulfides, are directly from C4, one of the stocks for production of MTBE. The newly formed sulfur compounds, with one sulfur atom and five or more total carbon atom...

  18. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  19. Metagenome and Metatranscriptome Revealed a Highly Active and Intensive Sulfur Cycle in an Oil-Immersed Hydrothermal Chimney in Guaymas Basin

    OpenAIRE

    He, Ying; Feng, Xiaoyuan; Fang, Jing; Zhang, Yu; Xiao, Xiang

    2015-01-01

    The hydrothermal vent system is a typical chemosynthetic ecosystem in which microorganisms play essential roles in the geobiochemical cycling. Although it has been well-recognized that the inorganic sulfur compounds are abundant and actively converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent is poorly characterized due to the complexity of microbial sulfur cycling resulting from the numerous parties involved in the processes. In this study, we performed an int...

  20. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    International Nuclear Information System (INIS)

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc-1.

  1. Program Classification for Performance-Based Budgeting

    OpenAIRE

    Robinson, Marc

    2013-01-01

    This guide provides practical guidance on program classification, that is, on how to define programs and their constituent elements under a program budgeting system. Program budgeting is the most widespread form of performance budgeting as applied to the government budget as a whole. The defining characteristics of program budgeting are: (1) funds are allocated in the budget to results-bas...

  2. Measurements of radioactive and stable sulfur isotopes at Mt. Everest and its geochemical implications

    Science.gov (United States)

    Lin, M.; Thiemens, M. H.; Zhang, Q.; Li, C.; Kang, S.; Hsu, S. C.; Zhang, Z.; Su, L.

    2015-12-01

    The Himalayas were recently identified as a global hotspot for deep stratosphere-to-troposphere transport (STT) during spring [1]. Although STT transport in this region may play a vital role in tropospheric chemistry, the hydrological cycle and aquatic ecosystems in Asia, there is no direct measurement of a specific chemical stratospheric tracer to verify and evaluate its possible impact. Here, cosmogenic 35S tracer (half-life: ~87 days) produced in the stratosphere was measured for the first time in surface snow and river runoff samples collected at Mt. Everest in April 2013 using a low-noise liquid scintillation spectroscopy [2]. Strikingly, we find extraordinarily high concentrations of 35S in these samples (>10 times higher than the southern Tibetan Plateau), verifying the Himalayas as a gateway of springtime STT. In light of this, two studies were conducted: a) Measurements of 35SO2 and 35SO42- at the southern Tibetan Plateau reveals that the oxidative life time of SO2 is reduced to 2.1 days under the influence of aged stratospheric air masses from the Himalayas. A concept box model for estimating the influence of STT on surface O3 using 35S tracer is proposed. b) Quadruple stable sulfur isotopes in a sediment core (~250 years) from the Gokyo Lake (the world's highest freshwater lake) [3] near Mt. Everest are being measured to investigate the possible impact of STT on sulfur budget at the Himalayas. The absence of sulfide suggests that bacterial sulfate reduction may be negligible in this lake. Enrichment of uranium (EF ≈ 10) in 20th century samples highlights the impact of atmospheric deposition. S-isotope sulfate anomalies are not found (∆33S and ∆36S ≈ 0‰), implying that sulfate in this lake may be mainly contributed by eolian dust or derived from rock. This is also supported by the low enrichments of most trace elements (EF ≈ 1). Rare earth elements will be used to assist in identifying the potential sources and interpreting the variation of

  3. Effects of sulfur oxides on eicosanoids

    International Nuclear Information System (INIS)

    Ultrafine metal oxides and SO2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SOx layer. Ongoing work in this laboratory has examined the effects of sulfur oxides on pulmonary functions of guinea pigs. We have previously reported that 20 micrograms/m3 acidic sulfur oxide as a surface layer on ultrafine ZnO particles decreases lung volumes, decreases carbon monoxide diffusing capacity, and causes lung inflammation in guinea pigs after 4 daily 3-h exposures. It also produces bronchial hypersensitivity following a single 1-h exposure. The importance of this surface layer is demonstrated by our observation that 200 micrograms/m3 of sulfuric acid droplets of equivalent size are needed to produce the same degree of hypersensitivity. This study characterized the concentration-dependent effects of in vivo exposures to sulfur oxides on arachidonic acid metabolism in the guinea pig lung, and investigated the time course and the relation between eicosanoid composition and pulmonary functions. We focused specifically on four cyclooxygenase metabolites of arachidonic acid, that is, prostaglandins (PG) E1, F2 alpha, 6-keto prostaglandin F1 alpha, and thromboxane (Tx) B2, and two groups of sulfidopeptide leukotrienes (C4, D4, E4, and F4). Guinea pigs were exposed to ultrafine ZnO aerosol (count median diameter = 0.05 microns, sigma g = 1.80) with a layer of acidic sulfur oxide on the surface of the particles. Lung lavage was collected after exposures, and the levels of arachidonic acid metabolites were determined using radioimmunoassay (RIA). Concentration-dependent promotion of PGF2 alpha and concentration-dependent suppression of LtB4 were observed. The increased PGF2 alpha was associated with depressed vital capacity and diffusing capacity of the lungs measured in guinea pigs exposed to the same atmosphere described in a previous study

  4. Reduced sulfur in euxinic sediments of the Cariaco Basin : Sulfur isotope contraints on organic sulfur formation

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Werne, J.; Lyons, T.W.; Hollander, D.J.; Formolo, M.

    2003-01-01

    Reduced sulfur accumulation in Holocene and latest Pleistocene euxinic marine sediments from the Cariaco Basin, Venezuela, was investigated to constrain the timing and possible pathways of organic matter (OM) sulfurization. Data were collected for a diverse suite of sulfur species, including concent

  5. TRADITIONAL BUDGETING VERSUS BEYOND BUDGETING: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    CARDOS ILDIKO REKA

    2014-07-01

    Full Text Available Budgets are an important part of the business environment since 1920 and are considered to be the key drivers and evaluators of managerial performance; and the key elements for planning and control. Budgets are the most powerful tool for management control; they can play an essential role in the organization’s power politics because it can increase the power and authority of top management and limit the autonomy of lower-level managers. Besides its advantages traditional budgeting presents disadvantages also. In recent years criticism towards traditional budgeting has increased. The basis of this criticism is that traditional budgeting is a relic of the past; it prevents reactions to changes in the market, it cannot keep up with the changes and requirements of today’s business world and it isn’t useful for business management. In order to eliminate criticism researchers and practitioners have developed more systematic and alternative concepts of budgeting that suits better for the needs of the modern business environment. Beyond budgeting, better budgeting, rolling forecasts, activity-based budgeting are the main alternatives developed in the last years. From the mentioned alternatives this article examines only beyond budgeting. Our paper discusses how budgeting has evolved into its current state, before examining why this universal technique has come under such heavy criticism of late. The paper is a literature analysis, it contributes to the existing managerial accounting literature and it is structured as follows. In the first part the background and evolution of budgeting is presented, followed by the analysis of related theories in traditional budgeting, emphasizing both the advantages and disadvantages of traditional budgeting. The second part of the paper continues with the discussion about alternative budgeting methods highlighting pros and cons of alternative methods, especially beyond budgeting. In the third part conducted

  6. Greenhouse gas budget of agricultural systems: real possibility or dream?

    Science.gov (United States)

    Neftel, A.; Ammann, C.; Calanca, P.; Fuhrer, J.; Leifeld, J.; Jocher, M.; Volk, M.

    2003-04-01

    It is now widely accepted that emission of greenhouse gases (GHG) by human activities are causing an increase of global mean temperature. Model calculations have shown that the rate of increase might have a decisive influence on the stability of the climate. It is therefore crucial to slow down the increase of GHG concentrations in the atmosphere. Storage of carbon in the terrestrial biosphere is mentioned as one possibility in the Kyoto protocol. Mitigation options to decrease GHG emissions in agricultural systems as well as to increase carbon stock in agricultural soils are in discussion. The quantification and verification of the GHG budget is a prerequisite to establish a trade within the Kyoto protocol. On the scientific level this comes down to a greenhouse gas budget for agricultural systems. Comparability and interpretation of GHG budgets depends on an appropriate and consistent choice of the considered system, especially the system boundaries. In this presentation we discuss the feasibility of such a budget for a the smallest unit: the yearly budget of grassland system. Differences between GHG budget and carbon budget will be assessed.

  7. BUDGET AND BUDGET EXECUTION IN THE NORTHWEST REGION OF ROMANIA

    Directory of Open Access Journals (Sweden)

    IOAN BATRANCEA

    2013-07-01

    Full Text Available The budget is a tool multiannual financial forecasting both at micro and macro level. In this sense, regional and local government budget is a financial instrument that connects resources to use local funds in order to ensure the prosperity of the community concerned. Construction and especially budget execution highlights the effectiveness of local and regional government. Using a system of indicators correlated reveals income, expenditure and budgetary outturn.

  8. TRADITIONAL BUDGETING VERSUS BEYOND BUDGETING: A LITERATURE REVIEW

    OpenAIRE

    CARDOS ILDIKO REKA; PETE STEFAN; CARDOS VASILE DANIEL

    2014-01-01

    Budgets are an important part of the business environment since 1920 and are considered to be the key drivers and evaluators of managerial performance; and the key elements for planning and control. Budgets are the most powerful tool for management control; they can play an essential role in the organization’s power politics because it can increase the power and authority of top management and limit the autonomy of lower-level managers. Besides its advantages traditional budgeting presents di...

  9. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): applications to numerical weather forecasting and the CO2 budget in South America

    OpenAIRE

    Moreira, D. S.; Freitas, S.R.; J. P. Bonatti; L. M. Mercado; N. M. É. Rosário; K. M. Longo; Miller, J. B.; Gloor, M.; L. V. Gatti

    2013-01-01

    This article presents the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. This new numerical system is denominated JULES-CCATT-BRAMS. We demonstrate the performance of this new model system in relation to several meteorological variables and the CO2 mixing ratio over a large part of South America, focusing on the Amazon basin. The evaluation was conducted for two time periods, the wet (March) and dry (September) seasons of 2010. The model errors were calcul...

  10. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): applications to numerical weather forecasting and the CO2 budget in South America

    OpenAIRE

    Moreira, D. S.; Freitas, S.R.; J. P. Bonatti; L. M. Mercado; Rosário, N. M. É.; K. M. Longo; Miller, J. B.; Gloor, M.; L. V. Gatti

    2013-01-01

    This article presents the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. This new numerical system is denominated JULES-CCATT-BRAMS. We demonstrate the performance of this new model system in relation to several meteorological variables and the CO2 mixing ratio over a large part of South America, focusing on the Amazon basin. The evaluation was conducted for two time periods, the wet (March) and dry (September) seasons of 2010. The mod...

  11. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0: applications to numerical weather forecasting and the CO2 budget in South America

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2013-08-01

    Full Text Available This article presents the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. This new numerical system is denominated JULES-CCATT-BRAMS. We demonstrate the performance of this new model system in relation to several meteorological variables and the CO2 mixing ratio over a large part of South America, focusing on the Amazon basin. The evaluation was conducted for two time periods, the wet (March and dry (September seasons of 2010. The model errors were calculated in relation to meteorological observations at conventional stations in airports and automatic stations. In addition, CO2 mixing ratios in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with observations obtained with airborne instruments. The results of this study show that the JULES-CCATT-BRAMS modeling system provided a significant gain in performance for the considered atmospheric fields relative to those simulated by the LEAF (version 3 surface model originally employed by CCATT-BRAMS. In addition, the new system significantly increases the ability to simulate processes involving air–surface interactions, due to the ability of JULES to simulate photosynthesis, respiration and dynamic vegetation, among other processes. We also discuss a wide range of numerical studies involving coupled atmospheric, land surface and chemistry processes that could be done with the system introduced here. Thus, this work presents to the scientific community a free modeling tool, with good performance in comparison with observational data and reanalysis model data, at least for the region and time period discussed here. Therefore, in principle, this model is able to produce atmospheric hindcast/forecast simulations at different spatial resolutions for any time period and any region of the globe.

  12. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): applications to numerical weather forecasting and the CO2 budget in South America

    Science.gov (United States)

    Moreira, D. S.; Freitas, S. R.; Bonatti, J. P.; Mercado, L. M.; Rosário, N. M. É.; Longo, K. M.; Miller, J. B.; Gloor, M.; Gatti, L. V.

    2013-08-01

    This article presents the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. This new numerical system is denominated JULES-CCATT-BRAMS. We demonstrate the performance of this new model system in relation to several meteorological variables and the CO2 mixing ratio over a large part of South America, focusing on the Amazon basin. The evaluation was conducted for two time periods, the wet (March) and dry (September) seasons of 2010. The model errors were calculated in relation to meteorological observations at conventional stations in airports and automatic stations. In addition, CO2 mixing ratios in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with observations obtained with airborne instruments. The results of this study show that the JULES-CCATT-BRAMS modeling system provided a significant gain in performance for the considered atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally employed by CCATT-BRAMS. In addition, the new system significantly increases the ability to simulate processes involving air-surface interactions, due to the ability of JULES to simulate photosynthesis, respiration and dynamic vegetation, among other processes. We also discuss a wide range of numerical studies involving coupled atmospheric, land surface and chemistry processes that could be done with the system introduced here. Thus, this work presents to the scientific community a free modeling tool, with good performance in comparison with observational data and reanalysis model data, at least for the region and time period discussed here. Therefore, in principle, this model is able to produce atmospheric hindcast/forecast simulations at different spatial resolutions for any time period and any region of the globe.

  13. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0: applications to numerical weather forecasting and the CO2 budget in South America

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2013-01-01

    Full Text Available This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March and dry (September seasons of 2010. The statistics used to perform the evaluation included bias (BIAS and root mean squared error (RMSE. The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3 surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.

  14. Investigation of sulfur speciation in particles from small coal-burning boiler by XANES spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M.; Lin, J.; Liu, W.; Lu, W.Z.; Zhang, G.L.; Li, Y.; Ma, C.Y.; Zhao, Y.D.; He, W.; Hu, T.D. [Chinese Academy of Sciences, Shanghai (China). Shanghai Institute of Applied Physics

    2009-11-15

    Sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was employed to study the speciation of sulfur in raw coal, ash by-product and fine particulate matter from a small coal-burning boiler. By means of least square analysis of the XANES spectra, the major organic and inorganic sulfur forms were quantitatively determined. The results show that about 70% of the sulfur in raw coal is present as organic and a minor fraction of the sulfur occurs as other forms: 17% of pyrite and 13% of sulfate. While in bottom ash, fly ash, and PM2.5, the dominant form of sulfur is sulfate, with the percentage of 80,79 and 94, respectively. Moreover, a number of other reduced sulfur including thiophenic sulfur, element sulfur and pyrrhotite are also present. During coal combustion, most of organic sulfur and pyrite were oxidized and released into the atmosphere as SO{sub 2} gas, part of them was converted to sulfate existing in coal combustion by-products, and a small part of pyrite was probably reduced to elemental sulfur and pyrrhotite. The results may provide information for assessing the pollution caused by small boiler and developing new methods for the control of SO{sub 2} pollution.

  15. Investigation of sulfur speciation in particles from small coal-burning boiler by XANES spectroscopy

    International Nuclear Information System (INIS)

    Sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was employed to study the speciation of sulfur in raw coal, ash by-product and fine particulate matter from a small coal-burning boiler. By means of least square analysis of the XANES spectra, the major organic and inorganic sulfur forms were quantitatively determined. The results show that about 70% of the sulfur in raw coal is present as organic and a minor fraction of the sulfur occurs as other forms: 17% of pyrite and 13% of sulfate. While in bottom ash, fly ash, and PM2.5, the dominant form of sulfur is sulfate, with the percentage of 80,79 and 94, respectively. Moreover, a number of other reduced sulfur including thiophenic sulfur, element sulfur and pyrrhotite are also present. During coal combustion, most of organic sulfur and pyrite were oxidized and released into the atmosphere as SO2 gas, part of them was converted to sulfate existing in coal combustion by-products, and a small part of pyrite was probably reduced to elemental sulfur and pyrrhotite. The results may provide information for assessing the pollution caused by small boiler and developing new methods for the control of SO2 pollution. (authors)

  16. GEWEX Water and Energy Budget Study

    Science.gov (United States)

    Roads, J.; Bainto, E.; Masuda, K.; Rodell, Matthew; Rossow, W. B.

    2008-01-01

    Closing the global water and energy budgets has been an elusive Global Energy and Water-cycle Experiment (GEWEX) goal. It has been difficult to gather many of the needed global water and energy variables and processes, although, because of GEWEX, we now have globally gridded observational estimates for precipitation and radiation and many other relevant variables such as clouds and aerosols. Still, constrained models are required to fill in many of the process and variable gaps. At least there are now several atmospheric reanalyses ranging from the early National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and NCEP/Department of Energy (DOE) reanalyses to the more recent ERA40 and JRA-25 reanalyses. Atmospheric constraints include requirements that the models state variables remain close to in situ observations or observed satellite radiances. This is usually done by making short-term forecasts from an analyzed initial state; these short-term forecasts provide the next guess, which is corrected by comparison to available observations. While this analysis procedure is likely to result in useful global descriptions of atmospheric temperature, wind and humidity, there is no guarantee that relevant hydroclimate processes like precipitation, which we can observe and evaluate, and evaporation over land, which we cannot, have similar verisimilitude. Alternatively, the Global Land Data Assimilation System (GLDAS), drives uncoupled land surface models with precipitation, surface solar radiation, and surface meteorology (from bias-corrected reanalyses during the study period) to simulate terrestrial states and surface fluxes. Further constraints are made when a tuned water balance model is used to characterize the global runoff observational estimates. We use this disparate mix of observational estimates, reanalyses, GLDAS and calibrated water balance simulations to try to characterize and close global and terrestrial atmospheric

  17. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    Science.gov (United States)

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  18. Baseline budgeting for continuous improvement.

    Science.gov (United States)

    Kilty, G L

    1999-05-01

    This article is designed to introduce the techniques used to convert traditionally maintained department budgets to baseline budgets. This entails identifying key activities, evaluating for value-added, and implementing continuous improvement opportunities. Baseline Budgeting for Continuous Improvement was created as a result of a newly named company president's request to implement zero-based budgeting. The president was frustrated with the mind-set of the organization, namely, "Next year's budget should be 10 to 15 percent more than this year's spending." Zero-based budgeting was not the answer, but combining the principles of activity-based costing and the Just-in-Time philosophy of eliminating waste and continuous improvement did provide a solution to the problem. PMID:10387778

  19. Conference OKs science budgets

    Science.gov (United States)

    With the budget process all but complete for next fiscal year, the National Science Foundation and the National Aeronautics and Space Administration observers were saying that science had not done that badly in Congress, for an election year. NSF got half the budget increase it requested, NASA two-thirds. The Space Station did well, at the expense of environmental and social programs, which are funded by Congress from the same pot of money as NASA and NSF.A House-Senate conference finished work on a $59 billion appropriations bill for the Department of Housing and Urban Development and independent agencies, including EPA, NASA, and NSF, in early August. The House and Senate then quickly passed the measure before their recess; the President is expected to sign it soon. Included in the Fiscal Year 1989 spending bill are $1,885 billion for NSF, a 9.8% increase over FY 1988, and $10.7 billion for NASA, 18.5% more than the year before.

  20. The triple point of sulfur hexafluoride

    Science.gov (United States)

    Rourke, P. M. C.

    2016-04-01

    A cryogenic fixed point cell has been filled with high purity (99.999%) sulfur hexafluoride (SF6) and measured in an adiabatic closed-cycle cryostat system. Temperature measurements of the SF6 melting curve were performed using a capsule-type standard platinum resistance thermometer (CSPRT) calibrated over the International Temperature Scale of 1990 (ITS-90) subrange from the triple point of equilibrium hydrogen to the triple point of water. The measured temperatures were corrected by 0.37 mK for the effects of thermometer self-heating, and the liquidus-point temperature estimated by extrapolation to melted fraction F  =  1 of a simple linear regression versus melted fraction F in the range F  =  0.53 to 0.84. Based on this measurement, the temperature of the triple point of sulfur hexafluoride is shown to be 223.555 23(49) K (k  =  1) on the ITS-90. This value is in excellent agreement with the best prior measurements reported in the literature, but with considerably smaller uncertainty. An analysis of the detailed uncertainty budget of this measurement suggests that if the triple point of sulfur hexafluoride were to be included as a defining fixed point of the next revision of the International Temperature Scale, it could do so with a total realization uncertainty of approximately 0.43 mK, slightly larger than the realization uncertainties of the defining fixed points of the ITS-90. Since the combined standard uncertainty of this SF6 triple point temperature determination is dominated by chemical impurity effects, further research exploring gas purification techniques and the influence of specific impurity species on the SF6 triple point temperature may bring the realization uncertainty of SF6 as a fixed point material into the range of the defining fixed points of the ITS-90.

  1. Balancing local budgets in Romania

    OpenAIRE

    Attila GYÖRGY

    2014-01-01

    Local budgets in Romania are balanced with revenues transferred from state budget according to the criterions laid down in the Local Public Finance Act. These criterions are focusing on the financial capacity, population and surface, each local budget getting balancing amounts inversely with the administrative unit’s wellness and directly to size. The repartition algorithm is used for more than a decade, but periodically it was revised in order to be better folded to fiscal policy and economi...

  2. Collection assessment and acquisitions budgets

    CERN Document Server

    Lee, Sul H

    2013-01-01

    This invaluable new book contains timely information about the assessment of academic library collections and the relationship of collection assessment to acquisition budgets. The rising cost of information significantly influences academic libraries'abilities to acquire the necessary materials for students and faculty, and public libraries'abilities to acquire material for their clientele. Collection Assessment and Acquisitions Budgets examines different aspects of the relationship between the assessment of academic library collections and the management of library acquisition budgets. Librar

  3. A Budget for the People

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Redistributing income to improve people’s livelihoods becomes a priority of the central budget The government’s budget this year will top an unprecedented 10 trillion yuan ($1.52 trillion), an increase of 11.9 percent over that of 2010, according to the government’s annual budget report delivered to the Fourth Session of the 11th National People’s Congress on March 5.

  4. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling

    DEFF Research Database (Denmark)

    Pellerin, André; Bui, Thi Hao; Rough, Mikaella;

    2015-01-01

    The multiple sulfur isotope composition of porewater sulfate from the anoxic marine sapropel of Mangrove Lake, Bermuda was measured in order to establish how multiple sulfur isotopes are fractionated during reoxidative sulfur cycling. The porewater-sulfate d34S and D33S dataset exhibits the...... distinct isotopic signatures of microbial sulfate reduction and sulfur reoxidation. We reproduced the measurements with a simple diagenetic model that yielded fractionation factors for net sulfate removal of between 29.2 0/00 and 32.5 0/00. A new approach to isotopic modeling of the sulfate profiles......, informed by the chemistry of sulfur intermediate compounds in Mangrove Lake, reveals that sulfate reduction produces a relatively small intrinsic fractionation and that an active reoxidative sulfur cycle increases the fractionation of the measured values. Based on the model results, the reoxidative cycle...

  5. Operational budgeting using fuzzy goal programming

    OpenAIRE

    Saeed Mohammadi; Kamran Feizi; Ali Khatami Firouz Abadi

    2013-01-01

    Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate oper...

  6. Does budgeting have a future?

    OpenAIRE

    Allen Schick

    2002-01-01

    Budgeting is a work in progress. The process is never quite settled because those who manage it are never fully satisfied. To budget is to decide on the basis of inadequate information, often without secure knowledge of how past appropriations were used or of what was accomplished, or of the results that new allocations may produce. Most people involved in budgeting have experienced the frustration of having their preferences crowded out by the built-in cost of past actions. Budgeting is a de...

  7. Lunar Sulfur Capture System

    Science.gov (United States)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  8. Radiation budget is called to account

    International Nuclear Information System (INIS)

    Our atmosphere could absorb much more radiation from the Sun than previously thought - with far-reaching consequences for climate modelling and the evaporation and condensation of water. Earlier this year a group of some 70 scientists spent an intense week in the foothills of the Rocky Mountains in Colorado reviewing the current understanding of the radiation budget of the atmosphere. The meeting, the latest in the series of Chapman Conferences organized by the American Geophysical Union, focused on the so-called anomalous absorption of solar radiation in the atmosphere. Evidence gathered over the past 20 years has increasingly shown that the absorption of solar radiation predicted by models is significantly less than the absorption measured experimentally. Current models predict that, on a global average, the atmosphere absorbs about 65 W m-2, whereas observations from the top of the atmosphere and the Earth's surface show that the actual absorption is 95 W m-2. This mismatch of some 30 W m-2 corresponds to about 10% of the globally averaged incoming solar radiation, suggesting that some extra anomalous absorption needs to be added to the models. (U.K.)

  9. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    Science.gov (United States)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  10. BUDGETING FOR CITY AND COUNTY GOVERNMENTS: HOW PERFORMANCE-BASED BUDGETING COULD HAVE REDUCED BUDGET DEFICITS

    OpenAIRE

    L. W. Murray, Ph.D.; Alev M. Efendioglu, Ph.D.

    2011-01-01

    The recession of 2007-09 resulted in large budget deficits for municipal governments in the U.S. One of the major causes was the use of traditional line-item budgeting. Research has shown that line-item budgeting is particularly ineffective during times of fiscal turbulence and uncertainty as policy-makers tend to overestimate anticipated revenues during recessionary periods while underestimating the growth rate of expenses. Further complicating the budgetary process is the large, and grow...

  11. The Water Budget of a Simulated Hurricane

    Science.gov (United States)

    Braun, S.

    2005-01-01

    The Pennsylvania State University-National Center for Atmospheric Research mesoscale model MM5 is used to simulate Hurricane Bonnie at high resolution (2-km spacing) in order to examine budgets of water vapor, cloud condensate, and precipitation. Virtually all budget terms are derived directly from the model (except for the effects of storm motion). The water vapor budget reveals that a majority of the condensation in the eyewall occurs in convective hot towers, while outside of the eyewall most of the condensation occurs in weaker updrafts, indicative of a larger role of stratiform precipitation processes. The ocean source of water vapor in the eyewall region is only a very small fraction of that transported inward in the boundary layer inflow or that condensed in the updrafts. In contrast, in the outer regions, the ocean vapor source is larger owing to the larger area, counters the drying effect of low-level subsidence, and enhances the moisture transported in toward the eyewall. In this mature storm, cloud condensate is consumed as rapidly as it is produced. Cloud water peaks at the top of the boundary layer and within the melting layer, where cooling from melting enhances condensation. Unlike in squall lines, in the hurricane, very little condensate produced in the eyewall convection is transported outward into the surrounding precipitation area. Most of the mass ejected outward is likely in the form of small snow particles that seed the outer regions and enhance in situ stratiform precipitation development through additional growth by vapor deposition and aggregation. We examine artificial source terms for cloud and precipitation mass associated with setting to zero negative mixing ratios that arise from numerical advection errors. Although small at any given point and time, the cumulative effect of these terms contributes an amount of mass equivalent to 13% of the total condensation and 15-20% of the precipitation. Thus, these terms must be accounted for to

  12. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  13. Debating personal health budgets.

    Science.gov (United States)

    Alakeson, Vidhya; Boardman, Jed; Boland, Billy; Crimlisk, Helen; Harrison, Charlotte; Iliffe, Steve; Khan, Masood; O'Shea, Rory; Patterson, Janet

    2016-02-01

    Personal health budgets (PHBs) were piloted in the National Health Service (NHS) in England between 2009 and 2012 and were found to have greater positive effects on quality of life and psychological well-being for those with mental health problems than commissioned service, as well as reducing their use of unplanned care. The government intends to extend PHBs in England for long-term conditions, including mental health, from April 2015. Given the importance of engaging clinicians in the next phase of PHB development, we provide an overview of the approach, synthesise the evidence from the national pilot and debate some of the opportunities and challenges. Balancing individual choice and recovery with concerns for risk, equity and the sustainability of existing community services is the central tension underpinning this innovation in mental health service delivery. PMID:26958358

  14. The European Union Budget

    Directory of Open Access Journals (Sweden)

    Hrvoje Šimović

    2005-09-01

    Full Text Available This paper analyses the current budgetary system of the EU, its features and the differences in it from the budgets of nation states, particularly from the standpoint of budgetary revenue and expenditure. Below there is an analysis of the system of the redistribution of EU budgetary resources via the Structural Funds, leading to different net positions of the member states in the use of budgetary resources. The object of the system is to achieve the maximum economic and social cohesion within the EU. The article points out that processes of EU enlargement and the creation of a new “financial perspective” will lead to many problems in the fulfilment of these objectives.

  15. Operational budgeting using fuzzy goal programming

    Directory of Open Access Journals (Sweden)

    Saeed Mohammadi

    2013-10-01

    Full Text Available Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate operational budget. The proposed model uses fuzzy triangular as well as interval number to estimate budgeting expenses. The proposed study of this paper is implemented for a real-world case study in province of Qom, Iran and the results are analyzed.

  16. Biological conversion of hydrogen sulfide into elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Clausen, E.C.; Gaddy, J.L. [Bioengineering Resources, Inc., Fayetteville, AR (United States)

    1996-12-31

    Currently, hydrogen sulfide is removed from process gas streams by a series of reactions at high temperature to produce elemental sulfur in Claus, Stretford or other processes. These physicochemical processes have high intrinsic capital and operating costs, often are restricted by contaminants, and do not effectively remove all the H{sub 2}S. As an alternative, the anaerobic, photosynthetic bacterium, Chlorobium thiosulfatophilum, has been demonstrated to convert hydrogen sulfide to elemental sulfur in a single step at atmospheric conditions. The autotrophic bacterium uses CO{sub 2} as the carbon source. Energy for cell metabolism is provided by incandescent light and the oxidation of H{sub 2}S. A bench scale study has been performed in a CSTR equipped with a sulfur separator. Optimum process conditions have been achieved to maximize cell growth and elemental sulfur production. Near total conversion of H{sub 2}S is achieved in a retention time of a few minutes. High concentrations of H{sub 2}S or organics do not affect the culture. Sulfur recovery by settling is very efficient and near theoretical yields of sulfur are achieved. Economic projections indicate that sour gas can be desulfurized for $0.08-0.12/MSCF. 13 refs.

  17. Motivation in Beyond Budgeting: A Motivational Paradox?

    DEFF Research Database (Denmark)

    Sandalgaard, Niels; Bukh, Per Nikolaj

    In this paper we discuss the role of motivation in relation to budgeting and we analyse how the Beyond Budgeting model functions compared with traditional budgeting. In the paper we focus on budget related motivation (and motivation in general) and conclude that the Beyond Budgeting model is a...... motivational paradox....

  18. Zero-Base Budgeting:; An Institutional Experience.

    Science.gov (United States)

    Alexander, Donald L.; Anderson, Roger C.

    Zero-base budgeting as it is used at Allegany College is described. Zero-based budgeting is defined as a budgeting and planning approach that requires the examination of every item in a budget request as if the request were being proposed for the first time. Budgets (decision packages) are first made up for decision units (i.e., a course for the…

  19. Rethinking the Ancient Sulfur Cycle

    Science.gov (United States)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  20. Service Increases Fueling Budget Growth

    Science.gov (United States)

    Cottrell, Terry

    2011-01-01

    Reactionary stances against pending budget cuts should be considered to be less favorable positioning for library leaders versus more proactive and anticipatory strategies. By changing the attitudinal and service posturing of library staff and services, libraries can show themselves as a more essential function to their colleges. Budget cuts…

  1. Education Takes Hit in Budgets

    Science.gov (United States)

    Cavanagh, Sean

    2011-01-01

    After months of arduous negotiation and partisan squabbling, states across the country have produced budgets for the new fiscal year that in many cases will bring deep cuts to state spending, including money for schools. The budget blueprints adopted by numerous states were postscripts to divisive legislative sessions that saw newly elected…

  2. Performance Budgeting in the Netherlands

    OpenAIRE

    Raphael Debets

    2007-01-01

    This article discusses the reforms introduced in the Netherlands since the 1980s to improve the transparency and efficiency of government programmes: programme budgeting, policy orientation, and interdepartmental policy reviews. The impact on the budget structure and process is described. An annex explains some typical characteristics of the Dutch budgetary process.

  3. Budgeting for Efficiency and Effectiveness

    Science.gov (United States)

    Pereus, Steven C.

    2012-01-01

    For most districts, budgeting has become a cost-cutting exercise designed to close the gap between revenues and expenses. During this process, decision makers inherently assume that existing operations are efficient and effective--an assumption that is rarely validated by facts. Cutting programs and services balances budgets but does not…

  4. Carbon budgets in symbiotic associations

    Energy Technology Data Exchange (ETDEWEB)

    Muscatine, L.; Falkowski, P.G.; Dubinsky, Z.

    1983-01-01

    Methods are described which permit the estimation of daily budgets for photosynthetically fixed carbon in any alga-invertebrate symbiosis. Included is a method for estimating total daily translocation which does not involve the use of C-14. A daily carbon budget for a shallow water symbiotic reef coral is presented.

  5. Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry

    Science.gov (United States)

    Hapke, B.; Nelson, R.

    1975-01-01

    The decrease in the reflectivity of Venus in the near-UV can be explained if the clouds contain particles of elemental sulfur in addition to sulfuric acid. The low-resolution McDonald-Pittsburgh spectrum can be fitted by two sulfur-containing, multiple-scattering cloud models: (1) a mixed cloud consisting of one particle of elemental sulfur of radius 10 microns for every 670 particles of sulfuric acid of radius 1 micron, and (2) a layered cloud of optical thickness tau = 1.0 consisting of one-micron particles of sulfuric acid overlying a thick cloud of elemental sulfur particles of radius 3.6 microns. Some of the sulfur is incompletely polymerized. The source of the sulfur is photo-dissociation of COS, although some may also be recycled from the lower atmosphere. The sulfur plays a crucial role in the planetary meteorology of Venus since it is responsible for the bulk of the absorption of solar energy.

  6. Mobilization of sulfur by green sulfur bacteria : physiological and molecular studies on Chlorobaculum parvum DSM 263

    OpenAIRE

    Donà, Clelia

    2011-01-01

    Green sulfur bacteria are photolithotrophs that use inorganic sulfur compounds as electron donors for photosynthesis. Elemental, solid sulfur is one of the electron donors used. Sulfur is produced by green sulfur bacteria during the oxidation of sulfide to sulfate, and during the oxidation of thiosulfate to sulfur and sulfate. Green sulfur bacteria have been known for long, and the genomes of 12 strains have been sequenced. Yet, it is not clear how green sulfur bacteria can access elemental s...

  7. NSF and NASA budgets increased

    Science.gov (United States)

    Bell, Peter M.

    Research budgets of several of the federal government agencies were increased significantly over the Reagan administration's requests in the House of Representative's appropriations bill H.R. 4034. These budgets had been removed from the Reagan administration's omnibus reconciliation bill, and thus there were worries expressed that certain research funding could be in jeopardy. The rationale was that because the requests were voted on individually on the floor of the House, many sections of the budgets would be subjected to extra scrutiny, which would lead to more cuts.The National Science Foundation (NSF) budget request had been cut and reordered by the Office of Management and Budget (OMB) by making sharp reductions in programs of the social sciences and in programs of science and engineering education. There were fears that these programs would be reinstated to the original request level, at the expense of the budgets of other research activities. These fears materialized, but only momentarily. Efforts to cut the research activities by the House Appropriations Committee were soundly defeated. The budget was supported, with additional increases to provide for the education programs, by a high margin, which included most Republican and Democratic members of the House of Representatives. The overall NSF budget, as passed, has a total appropriation of $1103.5 million, compared with the Administration's request of $1033.5 million (the Fiscal Year 1981 appropriation for the NSF was $1022.4 million). The House approved budget included increases of $44.9 million in research and $25.1 million in science and engineering education. Included in the research budget increase were recommendations by the House Appropriations Committee for support of the social sciences and for the international affairs programs. Also included in the recommendations was support of interdisciplinary research programs that cut across the directorates of the NSF.

  8. Sulfur isotope homogeneity of oceanic DMSP and DMS

    Science.gov (United States)

    Amrani, Alon; Said-Ahmad, Ward; Shaked, Yeala; Kiene, Ronald P.

    2013-01-01

    Oceanic emissions of volatile dimethyl sulfide (DMS) represent the largest natural source of biogenic sulfur to the global atmosphere, where it mediates aerosol dynamics. To constrain the contribution of oceanic DMS to aerosols we established the sulfur isotope ratios (34S/32S ratio, δ34S) of DMS and its precursor, dimethylsulfoniopropionate (DMSP), in a range of marine environments. In view of the low oceanic concentrations of DMS/P, we applied a unique method for the analysis of δ34S at the picomole level in individual compounds. Surface water DMSP collected from six different ocean provinces revealed a remarkable consistency in δ34S values ranging between +18.9 and +20.3‰. Sulfur isotope composition of DMS analyzed in freshly collected seawater was similar to δ34S of DMSP, showing that the in situ fractionation between these species is small (<+1‰). Based on volatilization experiments, emission of DMS to the atmosphere results in a relatively small fractionation (−0.5 ± 0.2‰) compared with the seawater DMS pool. Because δ34S values of oceanic DMS closely reflect that of DMSP, we conclude that the homogenous δ34S of DMSP at the ocean surface represents the δ34S of DMS emitted to the atmosphere, within +1‰. The δ34S of oceanic DMS flux to the atmosphere is thus relatively constant and distinct from anthropogenic sources of atmospheric sulfate, thereby enabling estimation of the DMS contribution to aerosols. PMID:24167289

  9. Diamine-sulfuric acid reactions are a potent source of new particle formation

    Science.gov (United States)

    Jen, Coty N.; Bachman, Ryan; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-01-01

    Atmospheric nucleation from sulfuric acid depends on the concentrations and the stabilizing effect of other trace gases, such as ammonia and amines. Diamines are an understudied class of atmospherically relevant compounds, and we examine how they affect sulfuric acid nucleation in both flow reactor experiments and the atmosphere. The number of particles produced from sulfuric acid and diamines in the flow reactor was equal to or greater than the number formed from monoamines, implying that diamines are more effective nucleating agents. Upper limits of diamine abundance were also monitored during three field campaigns: Lamont, OK (2013); Lewes, DE (2012); and Atlanta, GA (2009). Mixing ratios were measured as high as tens of parts per trillion by volume (GA and OK). Laboratory results suggest that diamines at these levels are important for atmospheric nucleation. Diamines likely participate in atmospheric nucleation and should be considered in nucleation measurements and models.

  10. Pleistocene sediment offloading and the global sulfur cycle

    Science.gov (United States)

    Markovic, S.; Paytan, A.; Wortmann, U. G.

    2015-05-01

    Quaternary sea level fluctuations have greatly affected the sediment budgets of the continental shelves. Previous studies suggested that this caused a considerable increase in the net loss of shelf sediments. Since sediment accumulation and erosion are closely tied to the formation and re-oxidation of pyrite, we use a high-resolution record of sulfur isotope ratios (34S / 32S) of marine sulfate to evaluate the implications of the so-called "shelf sediment offloading" on the global sulfur cycle. Modeling of our δ34S record suggests that erosion during sea level lowstands was only partly compensated by increased sedimentation during times of rising sea level and sea level highstands. Furthermore, our data suggests that shelf systems reached a new equilibrium state about 700 ka, which considerably slowed or terminated shelf sediment offloading.

  11. Obtaining Sulfur from Sulfur Hexafluoride and Studying the Sulfur Isotopes Properties by Using Vibrational Spectroscopy

    OpenAIRE

    Egorov, Nikolai Borisovich; Akimov, Dmitry Vasilievich; Zhuravlev, Nikolay

    2015-01-01

    Scheme of isotopically enriched SF[6] to elemental sulfur with orthorhombic modification conversion is offered. This scheme includes SF[6] reduction to Li2S by using lithium. The yield of isotopically enriched sulfur is not less than 97% with chemical purity not less than 99.9%. The results which show the dependence of the experimental frequencies in the vibrational spectra on the molecular weight of the sulfur isotope have been obtained.

  12. Hydrogen ion budget of an aggrading forested ecosystem

    OpenAIRE

    Driscoll, C T; Likens, G.E.

    2011-01-01

    A detailed hydrogen ion budget was developed for the Hubbard Brook Experimental Forest, in W. Thornton, New Hampshire, U.S.A. Hydrogen ion sources (2541 eq H+ ha-1 yr-1) were found to approximately balance hydrogen ion sinks (2428 eq H+ ha-1 yr-1). Atmospheric hydrogen ion inputs contributed 52% of the total hydrogen ion sources for the ecosystem. Based on this budget, projections of changes in precipitation hydrogen ion loading on water quality were made. Changes in H2SO4 precipitation input...

  13. BUDGETING FOR CITY AND COUNTY GOVERNMENTS: HOW PERFORMANCE-BASED BUDGETING COULD HAVE REDUCED BUDGET DEFICITS

    Directory of Open Access Journals (Sweden)

    L. W. Murray, Ph.D.

    2011-10-01

    Full Text Available The recession of 2007-09 resulted in large budget deficits for municipal governments in the U.S. One of the major causes was the use of traditional line-item budgeting. Research has shown that line-item budgeting is particularly ineffective during times of fiscal turbulence and uncertainty as policy-makers tend to overestimate anticipated revenues during recessionary periods while underestimating the growth rate of expenses. Further complicating the budgetary process is the large, and growing, amount of employee health care and pension unfunded liabilities. Municipal governments that employed performance-based budgeting, however, experienced budgetary deficits that were significantly smaller and whose duration was measurably shorter, suggesting that this process of budgeting provided significant advantages.

  14. Reforming the Budgeting Process in China

    OpenAIRE

    Shulian Deng; Jun Peng

    2011-01-01

    Despite many reforms implemented in China’s public financial management over the past ten years, China’s public budget still exhibits a glaring lack of accountability, most evident in the gap between the adopted budget and the final budget. This article examines the role played by public budgeting in ensuring good governance, and establishes a framework for how the legislature ensures accountability in the public budgeting process. The existing problems in the Chinese public budgeting process...

  15. Traditional budgeting during financial crisis

    Directory of Open Access Journals (Sweden)

    Marie Anne Lorain

    2015-10-01

    Full Text Available This study examines the evolution of budgeting practices in the extremely difficult Spanish economic environment. In order to analyse if companies are still maintaining their budgeting process and if, right now, they are facing more difficulties in forecasting accurate indicators, two similar web surveys were addressed over two periods of time, firstly in 2008 at the beginning of the financial crisis, and secondly in 2013 after five years of a downward trend. In addition, in-depth interviews were conducted to investigate how companies brought more flexibility to their budgeting process in order to cope with environmental uncertainty. The survey indicates that 97% of respondents are still using a traditional budgeting process being this result similar to the one found in 2008. However, 2013 showed that the reliance on forecasted information is being increasingly questioned. Furthermore the study revealed that the respondents are bringing more flexibility to their processes, being able to modify the objectives once the budget is approved and to obtain new resources outside the budgeting process. This paper contributes to revealing information about difficulties in setting reliable objectives in a turbulent environment and provides data about the evolution of budgeting practices over five years during an austere economic crisis.

  16. Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US

    Science.gov (United States)

    Fisher, Jenny A.; Jacob, Daniel J.; Travis, Katherine R.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher Chan; Yu, Karen; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Mao, Jingqiu; Wennberg, Paul O.; Crounse, John D.; Teng, Alex P.; Nguyen, Tran B.; St. Clair, Jason M.; Cohen, Ronald C.; Romer, Paul; Nault, Benjamin A.; Wooldridge, Paul J.; Jimenez, Jose L.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Shepson, Paul B.; Xiong, Fulizi; Blake, Donald R.; Goldstein, Allen H.; Misztal, Pawel K.; Hanisco, Thomas F.; Wolfe, Glenn M.; Ryerson, Thomas B.; Wisthaler, Armin; Mikoviny, Tomas

    2016-05-01

    Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ~ 25 x 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50 % of observed RONO2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60 % of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NOx and 15 % by dry deposition. RONO2 production accounts for 20 % of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.

  17. Atmospheric Measurements of Neutral Nucleating Clusters (Invited)

    Science.gov (United States)

    Zhao, J.; Eisele, F. L.; Smith, J. N.; Chen, M.; Jiang, J.; Kuang, C.; McMurry, P. H.

    2010-12-01

    Nanoparticles produced by nucleation can subsequently grow to cloud condensation nuclei (CCN) within one or two days and hence affect cloud formation, precipitation, and atmospheric radiation budgets. As an intermediate stage between molecules and nanoparticles, neutral molecular clusters are believed to play an important role in processes that lead to boundary layer nucleation. Therefore, knowledge of chemical composition, concentrations, thermodynamic properties, and evolution of neutral molecular clusters is essential to better elucidate the nucleation mechanism and to reduce the uncertainty in nucleation rates used in global climate models. Here we present laboratory and field measurements from a recently developed chemical ionization mass spectrometer (the Cluster-CIMS) designed to measure atmospheric neutral clusters (Zhao et al., 2010). The sensitivity of the Cluster-CIMS was significantly improved by using a unique conical octopole device in the first vacuum stage for transmitting and focusing ions, which was further confirmed by ion trajectory simulations using SIMION. The ion cluster formation in the atmospheric-pressure inlet was controlled by two processes: neutral ionization and ion-induced clustering (IIC), which can be differentiated from the time independency of the intensity ratio between the cluster and monomer ions. Two methods were employed to separate neutral clusters from the ion-induced clustering. The concentrations and distribution of the neutral nucleating clusters containing up to 4 H2SO4 are estimated from the above methods at three measurement sites in the US (NCAR foothill laboratory, Manitou Forest Observatory, and Atlanta). Typically, the molecular cluster concentrations are well correlated with the concentrations of nanoparticles measured simultaneously during the nucleation event periods. The Cluster-CIMS was employed to measure clusters containing both sulfuric acid and amines in summer 2010 at NCAR foothill laboratory

  18. Interaction between atmospheric hydrogen sulfide deposition and pedospheric sulfate nutrition in Brassica oleracea L.

    NARCIS (Netherlands)

    De Kok, LJ; Westerman, S; Stuiver, CEE; Weidner, W; Stulen, I.; Grill, D

    2002-01-01

    Brassica oleracea L. is able to utilize H2S as sulfur source for growth and it can replace pedospheric sulfate as sulfur source. The foliage forms an active sink for atmospheric H2S, which is directly metabolized into cysteine and subsequently into other organic sulfur compounds. H2S exposure result

  19. Chemical ionization mass spectrometry (CIMS) may not measure all gas-phase sulfuric acid if base molecules are present

    OpenAIRE

    Kurtén, T.; T. Petäjä; Smith,J; Ortega, I.K.; Sipilä, M.; Junninen, H.; M. Ehn; Vehkamäki, H.; Mauldin, L.; Worsnop, D.R.; M. Kulmala

    2010-01-01

    The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS) based on nitrate reagent ions. Using computed proton affinities and reaction thermodynamics for the relevant charging reactions, we show that in the presence of strong bases such as amines, which tend to cluster with the sulfuric acid molecules, a significant fraction of the total gas-phase sulfuric acid may not be measured by a CIMS instrument. If this is the c...

  20. NASA budget increases for 1994

    Science.gov (United States)

    Leath, Audrey T.

    The fiscal year 1994 budget request for NASA is $15.3 billion, an increase of $934.6 million, or 6.5%, above the 1993 appropriation of $14.3 billion. Within this first budget request developed under NASA Administrator Daniel Goldin, the emphasis has changed and some details remain unresolved. At the agency's budget briefing, Goldin echoed Clinton's mantra for change and increased investment in new technologies. Saying that NASA was “too much into human space flight,” Goldin has proposed increased funding for technology development at the expense of the space station. He has also made reductions in some existing programs and increased funding for others.

  1. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Science.gov (United States)

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ34S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ34S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ34S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  2. Photochemistry in Terrestrial Exoplanet Atmospheres II: H2S and SO2 Photochemistry in Anoxic Atmospheres

    CERN Document Server

    Hu, Renyu; Bains, William

    2013-01-01

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H2S and SO2) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H2S and SO2 are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H2, N2, and CO2 atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of element...

  3. Congress smiles on research budgets

    CERN Multimedia

    Reichhardt, T

    1998-01-01

    Congress has agreed to match or exceed most of the funding requests for the major science agencies requested by President Clinton in February. Many of them will receive their largest budget increases for years (11 paragraphs).

  4. A Guide to Participatory Budgeting

    OpenAIRE

    Wampler, Brian

    2000-01-01

    Participatory Budgeting (PB) programs are innovative policymaking processes. Citizens are directly involved in making policy decisions. Forums are held throughout the year so that citizens have the opportunity to allocate resources, prioritize broad social policies, and monitor public spending.

  5. Successful budgeting for small business

    OpenAIRE

    Cheng, Yafang

    2006-01-01

    The most important rule for financial management in small companies, although it is general rule for all sizes of company, is not to run out of cash. Being a financial manager for a small company, it is more serious to manage company's budget because the smaller enterprise faces greater challenge in raising cash. The following subjects are areas to be covered in addressing the issue of budgeting in a small business: -the current academic views and literature reviews on the subject o...

  6. Gender-Responsive Government Budgeting

    OpenAIRE

    Feridoun Sarraf

    2003-01-01

    This paper examines the concept of gender-responsive government budgeting, promoted in recent years by women's nongovernmental organizations, academia, and multilateral organizations, and the extent of its implementation by national governments in both advanced and developing countries. Owing to recently developed analytical and technical tools, government budget management systems in some countries can help promote gender equality-to the extent of government involvement in gender-sensitive s...

  7. Voting behavior and budget stability

    OpenAIRE

    Cristina Vicente; Ana-María Ríos; María-Dolores Guillamón

    2013-01-01

    The aim of this paper is to analyze how the implementation of the Budgetary Stability Law has affectedPolitical Budget Cycles generated by Spanish local governments. Specifically, we study whether the evolutionof debt, budget deficit, capital spending and current spending over the electoral cycle has changed after theintroduction of this law. We use a sample of 132 Spanish municipalities with more than 50,000 inhabitants(including the provincial capitals) during the period 1995‑2009. Our resu...

  8. Budget variance analysis using RVUs.

    Science.gov (United States)

    Berlin, M F; Budzynski, M R

    1998-01-01

    This article details the use of the variance analysis as management tool to evaluate the financial health of the practice. A common financial tool for administrators has been a simple calculation measuring the difference between actual financials vs. budget financials. Standard cost accounting provides a methodology known as variance analysis to better understand the actual vs. budgeted financial streams. The standard variance analysis has been modified by applying relative value units (RVUs) as standards for the practice. PMID:10387247

  9. US physics suffers budget setbacks

    CERN Multimedia

    Gwynne, Peter

    2007-01-01

    "The US has slashed funding for the International Linear Collider (ILC) by 75% as the budget for 2008 has been finally agreed between the Republican Bush Administration and Democratic Cngress. The new budget legislation, which US president George W. Bush is expected to signe by 31 December, will see up to 200 scientists at the Fermi National Accelerator Laboratory (Fermilag) lose their jobs." (2 pages)

  10. Chemisorption of sulfur on (100)Mo: growth of surface and volume sulfides, absolute calibration, thermodesorption of sulfur

    International Nuclear Information System (INIS)

    Physico-chemical processes following the chemisorption of sulfur on (100)Mo, that is: growth of the surface and volume sulfides, their thermo-stability, variation of emission and catalytic properties of the surface are studied using high resolution (δ E/E ≤ 0.1%) EOS with recording of spectra directly from the specimen highly heated up to T = 2000 K. The work of yield and bound energy of sulfur atom depending on the level of Mo surface population by S atoms are determined. It is shown that Mo exposure in H2S atmosphere under T = 300-2000 K does not result in accumulation of S atoms within the specimen volume. The absolute concentration of sulfur atoms in the surface sulfide is determined and it is shown that its stoichiometry is MoS. 31 refs., 5 figs

  11. Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M.; Zhang, G.L.; Zhang, Y.X.; Li, Y.; Lin, J.; Liu, W.; Cao, Q.C.; Zhao, Y.D.; Ma, C.Y.; Han, Y. [Chinese Academy of Sciences, Shanghai (China). Shanghai Institute of Applied Physics

    2009-11-15

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO{sub 4}2{sup -}. It can monitor the sulfur pollution in atmosphere.

  12. Sulfur meter speeds coal blending

    International Nuclear Information System (INIS)

    The sulfur content has become the most important criterion that industry looks at when purchasing coal. The exact amount of sulfur in coal being processed by a preparation plant must be known and, if possible, controlled by blending coal streams of various sulfur contents. Present techniques, however, of measuring the sulfur in coal involve laborious and time-consuming sampling and chemical analysis (12 to 24 hr), and the results usually are not available until the following day. By then, the coal barges or trains are already on the way to their destinations. A new nuclear sulfur meter is expected to overcome these difficulties and help lead to true automation in coal preparation plants. Initially developed by the Bureau of Mines' Morgantown Energy Research Center (MERC) at Morgantown, W. Va., and completed after reorganization of the center by the US Energy Research and Development Administration (ERDA), the meter can scan coal to produce a reading within 2 min to an accuracy of 0.04 percent sulfur. The meter is expected to soon result in an element-ash-moisture-Btu meter that would rapidly detect the sulfur, sodium, potassium, and overall mineral content of the coal, as well as its ash and Btu content

  13. Zeolites for the selective adsorption of sulfur hexafluoride.

    Science.gov (United States)

    Matito-Martos, I; Álvarez-Ossorio, J; Gutiérrez-Sevillano, J J; Doblaré, M; Martin-Calvo, A; Calero, S

    2015-07-21

    Molecular simulations have been used to investigate at the molecular level the suitability of zeolites with different topology on the adsorption, diffusion and separation of a nitrogen-sulfur hexafluoride mixture containing the latter at low concentration. This mixture represents the best alternative for the sulfur hexafluoride in industry since it reduces the use of this powerful greenhouse gas. A variety of zeolites are tested with the aim to identify the best structure for the recycling of sulfur hexafluoride in order to avoid its emission to the atmosphere and to overcome the experimental difficulties of its handling. Even though all zeolites show preferential adsorption of sulfur hexafluoride, we identified local structural features that reduce the affinity for sulfur hexafluoride in zeolites such as MOR and EON, providing exclusive adsorption sites for nitrogen. Structures such as ASV and FER were initially considered as good candidates based on their adsorption features. However, they were further discarded based on their diffusion properties. Regarding operation conditions for separation, the range of pressure that spans from 3 × 10(2) to 3 × 10(3) kPa was identified as the optimal to obtain the highest adsorption loading and the largest SF6/N2 selectivity. Based on these findings, zeolites BEC, ITR, IWW, and SFG were selected as the most promising materials for this particular separation. PMID:26099734

  14. Application of an online ion chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur

    Science.gov (United States)

    In North America, the dry component of total nitrogen and sulfur deposition remains uncertain due to a lack of measurements of sufficient chemical speciation and temporal extent to develop complete annual mass budgets or of sufficient process level detail to improve current air-s...

  15. Atmospheric Wet Nitrogen and Sulfur Depositions of Fuzhou, Jian′ou and Wuyishan in Fujian%福州、建瓯和武夷山大气氮/硫湿沉降特征分析

    Institute of Scientific and Technical Information of China (English)

    李爱萍; 黄广华; 高人; 马红亮; 章伟; 陈仕东; 杨智杰; 林捷; 郑群瑞

    2015-01-01

    Rainfall samples were collected in 2013 by automatic samplers of rainfall and settling parti- cle ( ASP-B, China) for Fuzhou, Jian′ou and Wuyishan in Fujian province, meanwhile pH values,ρ( NH4+ -N) , ρ ( ( NO3- -N) , ρ ( TN) , ρ ( SO2-4 -S) were analyzed, and atmospheric nitrogen and sulphur deposition fluxes and change patterns were investigated. In the three areas, the total rain-fall is respectively 1 188. 0 mm, 1 451. 1 mm and 2 423. 4 mm, with their average as 1 687. 5 mm;the yearly averaged rainwater pH values are 5. 80, 5. 37 and 5. 27. Neutral rainfall (5. 6福州>建瓯. 三地氮湿沉降以无机氮沉降为主, 且NH4+ -N较多. 硫沉降总量占氮、 硫沉降总量的百分比分别为63. 67%, 69. 31%, 75. 77%, 表明大气湿沉降是以SO2-4 -S为主.三地大气湿沉降NH4+ -N、 NO3- -N、 TN沉降通量的月变化趋势基本相似, 均在3、 4月份出现峰值, 三地大气SO2-4 -S沉降通量月变化差异较大, 峰值分别出现在6月、 4月、 5月, 可能与降雨强度和频次对氮、 硫沉降浓度的影响有关.

  16. 13 CFR 130.460 - Budget justification.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Budget justification. 130.460... CENTERS § 130.460 Budget justification. The SBDC Director, as a part of the renewal application, or the... submit to the SBA Project Officer the budget justification for the upcoming budget period. The...

  17. The prevalence of Beyond Budgeting in Denmark

    DEFF Research Database (Denmark)

    Sandalgaard, Niels

      The annual budget has been criticised in recent years. The critics claim, among other things, that the annual budget is not suitable for today's business environment, that annual budgets stimulate dysfunctional behaviour and furthermore that the use of budgets is too costly. This paper examines...

  18. Energy, atmospheric chemistry, and global climate

    Science.gov (United States)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  19. 46 CFR 148.04-20 - Sulfur.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur. 148.04-20 Section 148.04-20 Shipping COAST GUARD... Special Additional Requirements for Certain Material § 148.04-20 Sulfur. (a) When sulfur is loaded in a deep hold with general cargo in the 'tween deck hold above the sulfur, a dust proof wooden...

  20. Features of Budget Execution in Public Institutions’ Budgets Entirely Funded by Public and Local Budgets; Case Study in an Educational Institution

    OpenAIRE

    Popa Ionela

    2012-01-01

    Budgeting, a set of steps taken by state competent bodies in order to materialize the financial policy applied by governmental authority, takes place in the following stages: setting out the budget statement, approving the budget, budget execution, budget execution completion, controlling and approving budget execution completion. Budget execution is described in specialized literature especially as a stage in the budgeting process in the components of the national public budget (public budge...

  1. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  2. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  3. Effect of Diesel Sulfur on the Regeneration of Catalyst based Diesel Particulate Filters

    Directory of Open Access Journals (Sweden)

    Pruthviraj S Balekai

    2013-08-01

    Full Text Available Diesel particulate filters are used in diesel engines to clean the particulate matter, which is released into the atmosphere. These particulate filters have a mechanism, which is affected by diesel sulfur level. My study refers to the effect with which the sulfur in diesel affects the regeneration rate of the diesel particulate filters. Two filters with different coatings were taken. Diesel Sulfur with different concentrations was tested. It was observed that there was linear relation between sulfur level and balance point temperature. Also, it was observed that this was the cause for not using full-blend biodiesel, as the emission standards could not be met due to high sulfur levels in the biodiesel.

  4. pH variation mechanism of high sulfur-containing bauxite

    Institute of Scientific and Technical Information of China (English)

    陈兴华; 胡岳华; 李旺兴; 陈湘清; 曹学锋

    2015-01-01

    In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite (FeS2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.

  5. Toxicology of sulfur in ruminants: review

    Energy Technology Data Exchange (ETDEWEB)

    Kandylis, K.

    1984-10-01

    This review deals with the toxicology of sulfur in ruminants including toxicity, neurotoxic effects, and mechanism of toxic action of hydrogen sulfide, clinical signs, and treatment. It will report effects of excessive intake of sulfur by ruminants on feed intake, animal performance, ruminal digestion and motility, rumination, and other physiological functions. Poisoning of animals with sulfur from industrial emissions (sulfur dioxide) also is discussed. Excessive quantities of dietary sulfur (above .3 to .4%) as sulfate or elemental sulfur may cause toxic effects and in extreme cases can be fatal. The means is discussed whereby consumption of excessive amounts of sulfur leads to toxic effects. 53 references, 1 table.

  6. A Review of Capital Budgeting Practices

    OpenAIRE

    Davina F. Jacobs

    2008-01-01

    A key challenge in government budgeting is to define an appropriate balance between current and capital expenditures. Budgeting for government capital investment also remains not well-integrated into the formal budget preparation process in many countries. This paper aims to provide an overview of past and current budgeting practices for public investment. The study will also provide a comparison between the budget practices between low-income countries and developed countries and make a seri...

  7. Gender Equality From A Gender Budgeting Perspective

    OpenAIRE

    2012-01-01

    Gender budgeting, which is also known as gender responsive budgeting , tracks how budgets respond to gender equality and women’s rights requirement. This entails investing in and making available mechanisms, guidelines and indicators that enable gender equality advocates to track progress, benefit incidence and show how supposedly gender neutral budgets impact on men and women. The aim of this discussion is to highlight the importance of gender budgeting in addressing gender disparities while...

  8. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  9. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  10. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  11. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the...

  12. Sulfur dioxide scrubbing system

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstrom, D.A.; Cornell, C.F.

    1976-11-02

    Sulfur dioxide is scrubbed from stack gases in an absorption device by a sodium-based aqueous scrubbing solution, a portion of which is subsequently and continuously regenerated outside the absorption apparatus by a causticizing reaction with slaked lime. The causticized solution is routed through a settling device wherefrom a portion of the aqueous sediment is returned to the causticizing zone to provide seed crystals which encourage the formation of larger sized solid particles; also, a portion of the aqueous sediment from the settling device is continuously mechanically dewatered and then removed from the system. The liquid effluent solution from the settling device is passed to a solids-contacting and reaction device for mixing with sodium carbonate in order to reduce the calcium ion concentration and the solids content of the solution. The underflow of the solids-contacting device is conveyed back to the causticizing zone and the clarified overflow, i.e., the regenerated scrubbing liquor, is conveyed to the absorption apparatus.

  13. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO2) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  14. Martian meso/micro-scale winds and surface energy budget

    OpenAIRE

    Spiga, A.; Forget, F.; Madeleine, J.-B.; Montabone, L.; Millour, E.; Lewis, S. R.; Hinson, D. P.

    2011-01-01

    Regional, diurnal and seasonal variations of surface temperature are particularly large on Mars. This is mostly due to the Martian surface remaining close to radiative equilibrium. Contrary to most terrestrial locations, contributions of sensible heat flux (i.e. conduction/convection exchanges between atmosphere and surface) to the surface energy budget [hereinafter SEB] are negligible on Mars owing to lowatmospheric density and heat capacity (e.g. Figure 2 in Savijärvi and Kauhanen, 2008)...

  15. Transporters in plant sulfur metabolism

    OpenAIRE

    Gigolashvili, Tamara; Kopriva, Stanislav

    2014-01-01

    Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the tra...

  16. Plant sulfur and Big Data.

    Science.gov (United States)

    Kopriva, Stanislav; Calderwood, Alexander; Weckopp, Silke C; Koprivova, Anna

    2015-12-01

    Sulfur is an essential mineral nutrient for plants, therefore, the pathways of its uptake and assimilation have been extensively studied. Great progress has been made in elucidation of the individual genes and enzymes and their regulation. Sulfur assimilation has been intensively investigated by -omics technologies and has been target of several genome wide genetic approaches. This brought a significant step in our understanding of the regulation of the pathway and its integration in cellular metabolism. However, the large amount of information derived from other experiments not directly targeting sulfur has also brought new and exciting insights into processes affecting sulfur homeostasis. In this review we will integrate the findings of the targeted experiments with those that brought unintentional progress in sulfur research, and will discuss how to synthesize the large amount of information available in various repositories into a meaningful dissection of the regulation of a specific metabolic pathway. We then speculate how this might be used to further advance knowledge on control of sulfur metabolism and what are the main questions to be answered. PMID:26706053

  17. DMS cycle in the ocean-atmosphere system and its response to anthropogenic perturbations

    OpenAIRE

    Kloster, Silvia

    2006-01-01

    Dimethylsulfide (DMS) is the main biogenic sulfur compound in the atmosphere. DMS is mainly produced by the marine biosphere and plays an important role in the atmospheric sulfur cycle. It has been proposed that DMS is linked to the global climate through a negative biogeochemical feedback cycle stabilizing the Earth against global warming. This so-called CLAW hypothesis initiated extensive research and improved the understanding of many aspects of the biogeochemical sulfur cycle. However, th...

  18. Growth of Sulfuric Acid Nanoparticles at Wet and Dry Conditions

    OpenAIRE

    Škrabalová, L. (Lenka); Brus, D.; V. Ždímal; Lihavainen, H.

    2012-01-01

    Aerosol particles influence global radiative balance and climate directly through scattering and absorbing solar radiation and indirectly by acting as condensation cloud nuclei. The atmospheric nucleation is often followed by a rapid growth of freshly formed particles. The initial growth of aerosol is the crucial process determining the fraction of nucleated particles growing into cloud condensation nuclei sizes (~ 50 nm and larger). Many recent studies have suggested that the sulfuric acid ...

  19. Observations of Exoplanet Atmospheres

    CERN Document Server

    Crossfield, Ian J M

    2015-01-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics & circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly-imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  20. Atmospheric Radiative Transfer

    Science.gov (United States)

    Perliski, Lori

    Because radiative transfer cuts across many scientific disciplines with applications including remote sensing, climate, atmospheric chemistry, and photobiology, there is a need for comprehensive books on this subject that can appeal to a wide readership. While Atmospheric Radiative Transfer takes strides toward filling this niche by addressing a broad range of topics, it is dry reading and suffers from lack of detail. The book was based on a graduate-level course taught at the University of Sciences and Technologies in Lille, France, and indeed, the text reads much like an expanded outline perhaps derived from lecture notes.Part one deals with general radiative transfer, and part two covers Earth's radiation budget, the climate system, and remote sensing techniques. The radiative transfer equation and solutions for absorbing and scattering atmospheres are discussed as are the details of absorption, such as energy levels, line strengths, line intensities, equivalent widths, and weak- and strong-line limits.

  1. Observations of Exoplanet Atmospheres

    Science.gov (United States)

    Crossfield, Ian J. M.

    2015-10-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics and circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress, while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  2. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    OpenAIRE

    Laakso, A.; H. Kokkola; A.-I. Partanen; Niemeier, U.; Timmreck, C.; Lehtinen, K. E. J.; Hakkarainen, H.; Korhonen, H.

    2015-01-01

    Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an earth system model to study the radiative and climate impacts of an erupting volcano during solar radiation management (SRM). According to our simulations, the radiativ...

  3. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    OpenAIRE

    Laakso, A.; H. Kokkola; Partanen, A.-I.; Niemeier, U.; Timmreck, C.; Lehtinen, K. E. J.; Hakkarainen, H.; Korhonen, H.

    2016-01-01

    Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an Earth system model to study the radiative and climate changes occurring after an erupting volcano during solar radiation management (SRM). According to our simulations the radiative impacts of the eruptio...

  4. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    OpenAIRE

    L. Rondo; Flagan, R. C.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H_2SO_4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantita...

  5. Intercontinental transport of anthropogenic sulfur dioxide and other pollutants: An infrared remote sensing case study

    OpenAIRE

    Clarisse, Lieven; Fromm, Michael; Ngadi, Yasmine; Emmons, Louisa; Clerbaux, Cathy; Hurtmans, Daniel; Coheur, Pierre-François

    2011-01-01

    International audience Using 3 years worth of IASI (the Infrared Atmospheric Sounder Interferometer aboard METOP-A) measurements, we have identified 24 major events of uplift and transport of anthropogenic sulfur dioxide. These were all first observed over East Asia, and could be traced for over 60 hours. On 7 November 2010 a sulfur dioxide plume was observed over Northeast China and tracked for five days to North America. We discuss this event in detail with respect to build up; uplift an...

  6. Sulfur fluxes and isotopic compositions of the major rivers in China

    Science.gov (United States)

    Liu, C.; Lang, Y.; Tian, L.; Ding, H.; Strauss, H.; Zhao, Z.; Li, S.; Li, X.; Hu, J.

    2012-12-01

    Sulfur is widely distributed in the environment by volcanism, volatile emissions, precipitation, acid mine drainage and anthropogenic activity. Since the industrial revolution, the atmospheric sulfur cycle has been dominated by anthropogenic sources. Combustion of sulfur-containing fossil fuels release large quantities of sulfur dioxide into Earth's atmosphere annually. The cycling of sulfur, among those of many elements, is seriously disturbed by human activities at the earth's surface. Therefore, it is important to obtain a better understanding of sources and cycling processes of sulfur in river basins. For this purpose, we have measured the sulfur isotope composition of sulfate and its concentration for Changjiang (Yangtze River), Huanghe (Yellow River), Liaohe (Liao River), and Songhuajiang (Songhua River) in China. The sulfate fluxes of the major rivers in southern China are significantly larger as compared with the rivers in northern China. Sulfur isotopic compositions (δ34S) of sulfate in the rivers do not show a variation trend from southern to northern China. The sulfate δ34S values are 4.3‰~9.8‰ for Changjiang, 5.0‰~10.0‰ for most of river waters of Huanghe, and 2.0‰~27.0‰ for Songhuajiang. For Zhujiang (Pearl River), three sulfate δ34S values are from 1.0‰~6.9‰. The coal produced in southern China is generally of lower δ34S values as compared with that in northern China. The distributions of the sulfate δ34S values of the river waters of are generally lower in southern China, showing the contribution of atmospheric deposition of sulfur into the river water. Three main sources, atmospheric deposition (mostly anthropogenic), dissolution of sulfate evaporate, oxidation of sulfide minerals and/or sulfur-containing organic matter in soil, have been recognized for the sulfate in the rivers. Relative contributions of the different sulfur sources into the sulfate of the rivers are different, suggesting that sulfur cycling in the different

  7. Conversion of sulfur and nitrogen oxides in air under exposure to microsecond electron beams

    International Nuclear Information System (INIS)

    Flue gases of power plants realizing sulfur and nitrogen oxides into the atmosphere represent one of the environmental pollution sources. Paper presents the results of experimental investigations of conversion of sulfur and nitrogen oxides in the ionized gas mixture simulating composition of off-gases of thermal power stations. Pulse beam of microsecond duration electrons was used as a source of ionization. Mutual influence of both types of oxides on process of their conversion is shown. One studied possible kinetic mechanisms to remove sulfur and nitrogen oxides from gaseous mixture

  8. Budget deficits and public debt

    Directory of Open Access Journals (Sweden)

    Ph. D. Student Ionut Constantin

    2009-05-01

    Full Text Available In the recent decades, the budget deficit has become one of the characteristics of national economies. Furthermore, it finds its dimensions amplification. Despite this, more and more are the economists who dispute the need to balance the budget, arguing the need even the deficit and systematic use of in order to achieve economic equilibrium. Such guidance is substantiated by the need to promote an economic policy which ensures full use of resources and non-inflation economic growth.In these circumstances, balancing the budgest is clearly of secondary importance. In this context, it supported the need to increase expenditure at a pace faster than income growth and, implicitly , to keep budget deficits.

  9. Technology support for participatory budgeting

    DEFF Research Database (Denmark)

    Rose, Jeremy; Rios, Jesus; Lippa, Barbara

    2010-01-01

    Participatory budgeting is a reasonably well-established governance practice, particularly in South America. It is information and communication rich - making it well suited for modern technology support; in addition, the widespread participation of many citizens is difficult to achieve without...... this support. Participatory budgeting is associated with eParticipation, where much is already known about the kinds of technologies supporting citizen participation and how they are used. This paper identifies (from the existing literature) basic processes which are common to most participatory......, is integrated with a purpose-built internet platform; here we use the analysis to understand how the internet-based technologies are used to support the various participatory budgeting processes. We identify a range of these technologies which are currently used to support different e...

  10. Interaction products of sulfuric acid and sulfurous compounds of sour oil and their structural properties

    International Nuclear Information System (INIS)

    Present article is devoted to interaction products of sulfuric acid and sulfurous compounds of sour oil and their structural properties. The results of studies of obtaining of sulfides by complex formation with 86% sulfuric acid from sour oil were considered.

  11. Arctic Budget Study of Inter-member Variability using HIRHAM5 Ensemble Simulations

    OpenAIRE

    Nikiema, Oumarou; Rinke, Annette; Dethloff, Klaus; Laprise, Ren`e

    2015-01-01

    One of the challenges in evaluating and applying atmospheric regional climate models (RCM) is the non-linear behavior of atmospheric processes, which is still not well understood. These non-linearities determine the internal variability in the model. Therefore, an ensemble of RCM simulations with different initial atmospheric conditions has been run and a diabatic budget study for potential temperature (Nikiema et al. 2010) has been applied to investigate the origin of internally generated va...

  12. The Late Holocene Atmospheric Methane Budget Reconstructed from Ice Cores

    Science.gov (United States)

    Mitchell, Logan E.

    In this thesis I used a newly developed methane measurement line to make high-resolution, high-precision measurements of methane during the late Holocene (2800 years BP to present). This new measurement line is capable of an analytical precision of process have enabled me to make >1500 discrete ice core methane measurements and construct the highest resolution records of methane available over the late Holocene. I first used a shallow ice core from WAIS Divide (WDC05A) to produce a 1000 year long methane record with a ˜9 year temporal resolution. This record confirmed the existence of multidecadal scale variations that were first observed in the Law Dome, Antarctica ice core. I then explored a range of paleoclimate archives for possible mechanistic connections with methane concentrations on multidecadal timescales. In addition, I present a detailed description of the analytical methods used to obtain high-precision measurements of methane including the effects of solubility and a new chronology for the WDC05A ice core. I found that, in general, the correlations with paleoclimate proxies for temperature and precipitation were low over a range of geographic regions. Of these, the highest correlations were found from 1400-1600 C.E. during the onset of the Little Ice Age and with a drought index in the headwater region of the major East Asian rivers. Large population losses in Asia and the Americas are also coincident with methane concentration decreases indicating that anthropogenic activities may have been impacting multidecadal scale methane variability. In the second component I extended the WAIS Divide record back to 2800 years B.P. and also measured methane from GISP2D over this time interval. These records allowed me to examine the methane Inter-Polar Difference (IPD) which is created by greater northern hemispheric sources. The IPD provides an important constraint on changes in the latitudinal distribution of sources. We used this constraint and an 8-box global methane chemical transport model to examine the Early Anthropogenic Hypothesis which posits that humans began influencing climate thousands of years ago by increasing greenhouse gas emissions and preventing the onset of the next ice age. I found that most of the increase in methane sources over this time came from tropical regions with a smaller contribution coming from the extratropical northern hemisphere. Based on previous modeling estimates of natural methane source changes, I found that the increase in the southern hemisphere tropical methane emissions was likely natural and that the northern hemispheric increase in methane emissions was likely due to anthropogenic activities. These results also provide new constraints on the total magnitude of pre-industrial anthropogenic methane emissions, which I found to be between the high and low estimates that have been previously published in the literature. For the final component of my thesis I assembled a coalition of scientists to investigate the effects of layering on the process of air enclosure in ice at WAIS Divide. Air bubbles are trapped in ice 60-100m below the surface of an ice sheet as snow compacts into solid ice in a region that is known as the Lock-In Zone (LIZ). The details of this process are not known and in the absence of direct measurements previous researchers have assumed it to be a smooth process. This project utilized high-resolution methane and air content measurements as well as density of ice, delta15N of N2, and bubble number density measurements to show that air entrapment is affected by high frequency (mm scale) layering in the density of ice within the LIZ. I show that previous parameterizations of the bubble closure process in firn models have not accounted for this variability and present a new parameterization which does. This has implications for interpreting rapid changes in trace gases measured in ice cores since variable bubble closure will impact the smoothing of those records. In particular it is essential to understand the details of this process as new high resolution ice core records from Antarctica and Greenland examine the relative timing between greenhouse gases and rapid climate changes. (Abstract shortened by UMI.)

  13. Budget support, conditionality and poverty.

    OpenAIRE

    Mosley, P.; Suleiman, A.

    2005-01-01

    This paper examines the effectiveness of budget support aid as an anti-poverty instrument. We argue that a major determinant of this effectiveness is the element of trust – or `social capital´, as it may be seen – which builds up between representatives of the donor and recipient. Thus we model the conditionality processes attending budget support aid, not purely in the conventional way as a non-cooperative two-person game, but rather as a non-cooperative game which may mutate into a collabor...

  14. Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of β-pinene and 2-butene.

    OpenAIRE

    Carlsson, Philip T. M.; Keunecke, Claudia; Krüger, Bastian C.; Maaß, Mona-C.; Zeuch, Thomas

    2012-01-01

    Recent studies have suggested that the reaction of stabilised Criegee Intermediates (CIs) with sulfur dioxide (SO(2)), leading to the formation of a carbonyl compound and sulfur trioxide, is a relevant atmospheric source of sulfuric acid. Here, the significance of this pathway has been examined by studying the formation of gas phase products and aerosol during the ozonolysis of β-pinene and 2-butene in the presence of SO(2) in the pressure range of 10 to 1000 mbar. For β-pinene at atmospheric...

  15. Estimative of energy budget in Brazilian Savanna

    Science.gov (United States)

    Santanna, F. B.; Arruda, P. H.; Pinto-Jr, O. B.; Nogueira, J. D.

    2013-12-01

    The main goal of this work was to estimate the sensible (H) and latent (LE) heat flux using the eddy covariance method in a Cerrado "Campo Sujo" area, basically with herb-shrub physiognomy, sparse woody vegetation and approximately 2m height. The geographical position of the Cerrado, altitude, latitude, longitude, climate and weather conditions are determined by the dynamics of the atmosphere that affects the whole South America and consequently influence the ecological framework of ecosystems. The results shown by the components considered in the energy balance were more significant during the day, which the atmospheric boundary layer extends from the ground to about 50 or 100 meters height, showing greater instability and turbulence (u* > 0.2 m / s), and this turbulence is what justifies the use of the eddy covariance method to estimate the sensible and latent heat flux. The Cerrado presents seasonal difference between the densities estimates of sensible (H) and latent (LE) heat flux. During the rainy season the sensible heat flux (H) was 25% and the latent heat flux (LE) 54%. During the dry season the sensible heat flux (H) was 42% and the latent heat flux (LE) 30% of the energy budget.

  16. Multi-Year Budget Forecasting.

    Science.gov (United States)

    Mercure, Donald C.

    1995-01-01

    The multiyear forecasting model is a device to focus on the input side of the educational process--staff, materials, facilities, and services. An annual budget can be developed from the multiyear work plan, with specific policy statements being made to achieve the outcomes initially determined to be the goals and objectives of the district. (MLF)

  17. Program Budgeting: Promise and Problems.

    Science.gov (United States)

    Huff, Robert A.

    Planning, Programming, and Budgeting Systems (PPBS) are increasingly mentioned as effective means for improving the management of educational resources in institutions of higher education. PPBS has several advantages over conventional accounting systems, which still would be needed for day to day operations. First, it relates cost to output;…

  18. The Era of Budget Hotels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    What began as an idea from an Internet posting is now set to sweep through China Asingle posting on the Internet gave birth to a large budget hotel brand.In 2001, the founder of ctrip.com, Ji Qi, noticed an online friend com-plaining that ctrip.com’s hotel reser-

  19. Planning-Programming-Budgeting Systems.

    Science.gov (United States)

    Tudor, Dean

    Planning Programming and Budgeting Systems (PPBS) have been considered as either synonymous with abstract, advanced, mathematical systems analysis or as an advanced accounting and control system. If PPBS is to perform a useful function, both viewpoints must be combined such that a number of standardized procedures and reports are required and…

  20. The OSSA budget: Another view

    Science.gov (United States)

    Lanzerotti, L. J.

    The recent letter by L. H. Meredith commenting on the proposed fiscal year (FY) 1989 budget for the National Aeronautics and Space Administration (NASA) Office of Space Science and Applications (OSSA) fails to recognize the public procedures and planning processes that were involved in the determination of the budget. The letter also ignores the long-range planning that OSSA has been pursuing in very close consultation with the scientific community in order to achieve, insofar as possible, a rationalization of the budget and programmatic decision-making process. This planning, which addresses well the issues Meredith seems concerned about, does not absolutely guarantee budgetary success for the long term. However, without the planning, any success will be nearly impossible to achieve. I strongly suggest that Meredith (and any other interested member of AGU) obtain and read carefully copies of the minutes of the last two or three meetings of the OSSA Space and Earth Science Advisory Committee (SESAC) and a copy of the initial OSSA Strategic Plan. These minutes document a portion of the dialog between NASA and the science community which was instrumental in formulating this year's budget and the plans for following years.

  1. Kollektiivne vastutus ja gender budgeting

    Index Scriptorium Estoniae

    2005-01-01

    Vestlusringi teemad: riigieelarve koostamisel ei arvestata soolist võrdõiguslikkust; gender budgeting kui üks soolise võrdõiguslikkuse jälgimise viise; vabaabielu võib osutuda naisele palju ebasoodsamaks kui mehele; kogukonna kollektiivne vastutus perevägivalla korral. Vt. samas: Aasta 2004 suurte mõtlejate auhinnad

  2. Zero-Based Budgeting Redux.

    Science.gov (United States)

    Geiger, Philip E.

    1993-01-01

    Zero-based, programmatic budgeting involves four basic steps: (1) define what needs to be done; (2) specify the resources required; (3) determine the assessment procedures and standards to use in evaluating the effectiveness of various programs; and (4) assign dollar figures to this information. (MLF)

  3. Soot and Sulfuric Acid from Aircraft: Is There Enough to Cause Detrimental Environmental E-kCTSs?

    Science.gov (United States)

    Pueschel, R. F.; Strawa, A. W.; Ferry, G. V.; Howard, S. D.; Verma, S.

    1998-01-01

    fuel-S would have led to an annual contribution to the atmospheric sulfur budget by aircraft of 2.E7 kg H2SO4. This is about one part in 1.E4 of anthropogenic sulfate from other sources. The soot emission index given above yielded a 1990 injection of soot aerosol by aircraft of 1.E6 kg. Thus, soot amounts to only five percent of the aerosol generated by aircraft. Its reactivity with ozone would have to be 20 times that of sulfuric acid particles to make it chemically significant. Nevertheless, the findings, of stratospheric soot loadings commensurate with aircraft fuel consumption, based on the emission index given above and the assumption of stratospheric residence times of the order of one year implicate aircraft as stratospheric polluters. A trend similar to soot of H2SO4 aerosol loading could not be deciphered, neither from in situ measurements nor SAGE II satellite extinction, against the "noise" due to volcanic eruptions. Observation of soot particles at 20 km altitude which, if emitted by aircraft were generated at 10-12 km altitude, suggests a displacement of those particles against gravity. Because eddy mixing is virtually absent in the lower stratosphere and isentropic mixing explains lofting to only about 15 km, radiometric forces acting on morphologically and chemically asymmetric soot particles must be considered a possibility. The consequence could be an extended residence time of soot against that of sulfuric acid aerosol that would lower the single scatter albedo with time.

  4. The atmosphere and ocean: A physical introduction

    International Nuclear Information System (INIS)

    The book's contents are: The Earth within the solar system. Composition and physical properties of the ocean and atmosphere. Radiation, temperature and stability. Water in the atmosphere. Global budgets of heat, water and salt. Observations of winds and currents. The influence of the Earth's rotation on fluid motion. Waves and tides. Energy transfer in the ocean-atmosphere system. Climate variability and predictability. The atmosphere and ocean are two different environmental systems, yet both are interdependent, interacting and exchanging energy, heat and matter. This book attempts to bring the study of the atmosphere and ocean together. It is a descriptive account of physical properties, exploring their common bases, similarities, interactions and fundamental differences

  5. Sulfur isotopic ratio of DMS and DMSP from Lake Kinneret

    Science.gov (United States)

    Sela-Adler, Michal; Said-Ahmad, Ward; Eckert, Werner; Kamyshny, Alexey; Sivan, Orit; Amrani, Alon

    2014-05-01

    Volatile Organic sulfur compounds (VOSC) such as dimethylsulfide (DMS) are an important source of biogenic sulfur to the atmosphere. The main precursor of DMS is dimethylsulfoniopropionate (DMSP), a common osmolyte in marine algae. Atmospheric release of VOS compounds contributes to the formation of sulfate aerosols. The latter are of global importance due to their role as cloud-condensation nuclei. VOSC are abundant in terrestrial environments as well and may be involved in important biogeochemical cycles. In lake sediments, another mechanism for the formation of DMS by H2S methylation may be important. The 34S/32S ratio (d34S values) of DMSP of marine surface water around the globe is very homogeneous ranging between +18.9 o to +20.3 o and the fractionation between DMSP and DMS is water algae by using sulfur isotope ratios. Water column samples and sediment samples from Lake Kinneret were purged and trap in order to extract the VOSC and then introduced to a GC/MC-ICPMS for isotopic measurements (Amrani et al. 2013). The δ34S of DMSP in the water and sediment columns of Lake Kinneret a mesotrophic monomictic lake were measured. Our preliminary results show δ34S values for DMSP ranged between +10.3 o and +13.4 o in the water column. The sulfate δ34S values ranged between +12.6 o to +14.9 o. δ34S -DMSP in the sediment column showed similar values between +9.4 o and +13.0 o, indicating a similar sulfur source. Similar δ34S values obtain for other VOSC such as ethanethiol that contributes significantly to the VOSC of Lake Kinneret sediments. Amrani, A., W. Said-Ahmad,Y. Shaked, and R. P. Kiene. 2013. Sulfur isotopes homogeneity of oceanic DMSP and DMS. PNAS 110(46):18413-18418. Oduro, H., Kamyshny, A. Jr.,W. Guo, and J. Farquhar. 2011. Multiple sulfur isotopes analysis of volatile organic sulfur compounds and their sulfonium precursors in marine coastal environments. Marine Chemistry 124:78-89.

  6. Monoclinic sulfur cathode utilizing carbon for high-performance lithium-sulfur batteries

    Science.gov (United States)

    Jung, Sung Chul; Han, Young-Kyu

    2016-09-01

    Sulfur cathodes for lithium-sulfur batteries have been designed to be combined with conductive carbon because the insulating nature of sulfur causes low active material utilization and poor rate capability. This paper is the first to report that carbon can induce a phase transition in a sulfur cathode. The stable form of a sulfur crystal at ambient temperature is orthorhombic sulfur. We found that monoclinic sulfur becomes more stable than orthorhombic sulfur if carbon atoms penetrate into the sulfur at elevated temperatures and the carbon density exceeds a threshold of C0.3S8. The high stability of the carbon-containing monoclinic sulfur persists during lithiation and is attributed to locally formed linear SC3S chains with marked stability. This study provides a novel perspective on the role of carbon in the sulfur cathode and suggests control of the crystal phase of electrodes by composite elements as a new way of designing efficient electrode materials.

  7. 24. Atmosphere and climate

    International Nuclear Information System (INIS)

    The Earth's atmosphere is changing, and we do not fully understand what the effect of those changes will be on our own lives, much less the lives of our children. It is easy to imagine effects that could be catastrophic for life on this planet. Yet, in the face of these possibilities and our inadequate understanding of Earth processes, anthropogenic emissions of trace gases - pollutants that affect climate, the ozone layer, and human health - continue. Tables give information on the following: CO2 emissions from industrial processes, 1989; Other greenhouse gas emissions, 1989; Atmospheric concentrations of greenhouse and ozone-depleting gases, 1959-90; World CO2 emissions from fossil fuel consumption and cement manufacture, 1950-89; Sulfur and nitrogen emissions, 1970-89; and Common anthropogenic pollutants, 1980-89

  8. President's Fiscal Year 2016 Budget Data

    Data.gov (United States)

    Executive Office of the President — Each year, after the President's State of the Union address, the Office of Management and Budget releases the Administration's Budget, offering proposals on key...

  9. Budget estimates, fiscal years 1994--1995

    International Nuclear Information System (INIS)

    This report contains the fiscal year budget justification to Congress. The budget provides estimates for salaries and expenses and for the Office of the Inspector General for fiscal years 1994 and 1995

  10. Photoreductive degradation of sulfur hexafluoride in the presence of styrene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sulfur hexafluoride (SF6) is known as one of the most powerful greenhouse gases in the atmosphere. Reductive photodegradation of SM6 by styrene has been studied with the purpose of developing a novel remediation for sulfur hexafluoride pollution. Effects of reaction conditions on the destruction and removal efficiency (DRE) of SF6 are examined in this study. Both initial styrene-to-SF6 ratio and initial oxygen concentration exert a significant influence on DRE. SF6 removal efficiency reaches a maximum value at the initial styrene-to-SF6 ratio of 0.2. It is found that DRE increases with oxygen concentration over the range of 0 to 0.09 mol/m3 and then decreases with increasing oxygen concentration. When water vapor is fed into the gas mixture, DRE is slightly enhanced over the whole studied time scale. The X-ray Photoelectron Spectroscopy (XPS) analysis, together with gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared spectroscopy (FT-IR) analysis, prove that nearly all the initial fluorine residing in the gas phase is in the form of SiF4, whereas, the initial sulfur is deposited in the form of elemental sulfur, after photodegradation. Free from toxic byproducts, photodegradation in the presence of styrene may serve as a promising technique for SF6 abatement.

  11. Photoreductive degradation of sulfur hexafluoride in the presence of styrene.

    Science.gov (United States)

    Huang, Li; Gu, Dinghong; Yang, Longyu; Xia, Lanyan; Zhang, Renxi; Hou, Huiqi

    2008-01-01

    Sulfur hexafluoride (SF6) is known as one of the most powerful greenhouse gases in the atmosphere. Reductive photodegradation of SF6 by styrene has been studied with the purpose of developing a novel remediation for sulfur hexafluoride pollution. Effects of reaction conditions on the destruction and removal efficiency (DRE) of SF6 are examined in this study. Both initial styrene-to-SF6 ratio and initial oxygen concentration exert a significant influence on DRE. SF6 removal efficiency reaches a maximum value at the initial styrene-to-SF6 ratio of 0.2. It is found that DRE increases with oxygen concentration over the range of 0 to 0.09 mol/m3 and then decreases with increasing oxygen concentration. When water vapor is fed into the gas mixture, DRE is slightly enhanced over the whole studied time scale. The X-ray Photoelectron Spectroscopy (XPS) analysis, together with gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared spectroscopy (FT-IR) analysis, prove that nearly all the initial fluorine residing in the gas phase is in the form of SiF4, whereas, the initial sulfur is deposited in the form of elemental sulfur, after photodegradation. Free from toxic byproducts, photodegradation in the presence of styrene may serve as a promising technique for SF6 abatement. PMID:18574959

  12. Performance Budgeting in Poland: An OECD Review

    OpenAIRE

    Ian Hawkesworth; Lisa von Trapp; David Fjord Nielsen

    2011-01-01

    Poland currently has a traditional budget system that is primarily based on organisational units and control of inputs. But Poland is in the process of introducing a new budget system, the performance-based budgeting system, in order to improve public finance management and strengthen allocative and operational efficiency, multi-year budgeting, and transparency and accountability. Poland faces hard choices on how to harness the advantages of performance management while minimising the costs i...

  13. Performance budgeting: Its rise and fall

    OpenAIRE

    Nguyen, Hoang-Phuong

    2007-01-01

    Among various budgeting theories and practices at the federal level, performance budgeting has played an important role with its long developmental history. Performance budgeting was short-lived as it was replaced by program budgeting in the early 1960s. Looking at the period between the first decade of the twentieth century and the mid-1960s, the present paper seeks to investigate two major questions to which budgetary literature has given short shrift: 1) What forces led to the emergence of...

  14. A Punctuated Equilibrium in French Budgeting Processes

    OpenAIRE

    B. Baumgartner, Frank; Foucault, Martial; François, Abel

    2006-01-01

    We use data on French budgeting to test models of friction, incrementalism and punctuated equilibrium. Data include the overall state budget since 1820; ministerial budgets for seven ministries since 1868; and a more complete ministerial series covering ten ministries since 1947. Our results in every case are remarkably similar to the highly leptokurtic distributions that Jones and Baumgartner (2005) demonstrated in US budgeting processes. This suggests that general characteristics of adminis...

  15. Advertising budgeting practices of Belgian industrial marketers.

    OpenAIRE

    François, Pierre

    2003-01-01

    The author reports on the results of a survey of a random sample of 102 belgian industrial companies, which measured which budget setting processes companies use, how they set budgets and the resulting budget composition. The objective of the study was first to compare the results with international practice, and second to try to explain their budgeting practices as a function of company, product and market characteristics measured in the same survey. The major conclusions are mixed : on the ...

  16. BUDGETING IMPLICATIONS IN "HEALTHY"FINANCIAL PLANS

    OpenAIRE

    SOLOVASTRU, Alina

    2014-01-01

    The subject of this section is the budget - a plan expressed in financial terms - and why it is important for your activity and the organization. An organization uses budgets in different ways as part of its systems planning, information, performance measurement and control. The impact of budgets in these systems is important. In this section we will see how budgets acquire meanings if are interpreted in terms of organizational objectives, culture management and staff. This section seeks to c...

  17. Budget estimates fiscal year 1995: Volume 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report contains the Nuclear Regulatory Commission (NRC) fiscal year budget justification to Congress. The budget provides estimates for salaries and expenses and for the Office of the Inspector General for fiscal year 1995. The NRC 1995 budget request is $546,497,000. This is an increase of $11,497,000 above the proposed level for FY 1994. The NRC FY 1995 budget request is 3,218 FTEs. This is a decrease of 75 FTEs below the 1994 proposed level.

  18. Budget estimates fiscal year 1995: Volume 10

    International Nuclear Information System (INIS)

    This report contains the Nuclear Regulatory Commission (NRC) fiscal year budget justification to Congress. The budget provides estimates for salaries and expenses and for the Office of the Inspector General for fiscal year 1995. The NRC 1995 budget request is $546,497,000. This is an increase of $11,497,000 above the proposed level for FY 1994. The NRC FY 1995 budget request is 3,218 FTEs. This is a decrease of 75 FTEs below the 1994 proposed level

  19. Conversion of Sulfur-Dioxide in the Atmosphere

    DEFF Research Database (Denmark)

    Flyger, H.; Fenger, J.

    1976-01-01

    2 and ozone concentrations. The possibility of using NOx as an internal tracer is discussed; also the use of the inert tracer SF6 is treated and a special detector for the continuous registration of SF6 in relative concentrations down to 10–6 ppm is described. Preliminary results indicate a half...

  20. Atmospheric chemistry of organic sulfur and nitrogen compounds

    International Nuclear Information System (INIS)

    The work carried out during the first year of a four year Danish-Irish contract with the European Economic Community is described. The reactions of OH radicals with dialkyl sulfides and nitroalkanes have been studied applying both an absolute technique of pulse radiolysis with kinetic spectroscopy and a relative rate method using conventional smog chamber facilities. The reactions of OH with dimethyl sulfide and nitromethane have been investigated in special detail. Rate constants for reaction of Cl atoms with the same compounds have been determing using the relative rate method. (author)

  1. The Budget Enforcement Act in 1991: Isometric Budgeting

    OpenAIRE

    Doyle, Richard; McCaffery, Jerry

    1992-01-01

    The immediate effect of the Budget Enforcement Act (BEA) of 1990 was to cancel a pending $110 billion sequester and to change the Gramm-Rudman-Hollings deficit targets. These and other changes allowed Congress and the administration to escape responsibility for increases in the deficit if discretionary spending was kept within the caps and no new entitlement programs or revenue enhancements were added. This assumption and others relating to the empowerment of the Appropriations...

  2. Earth Radiation Budget Research at the NASA Langley Research Center

    Science.gov (United States)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  3. Planning to Communicate: A Budget Companion

    Science.gov (United States)

    Dereef, Marvin

    2011-01-01

    Failing to have a plan to communicate with stakeholders during the budget process is a plan to fail. Without community support, getting budget approval can be difficult. Thus, school business officials must have a plan to ensure the appropriate budget message is conveyed throughout all communication channels. In fact, a communication plan is the…

  4. Teaching Budget Cuts to Third Graders

    Science.gov (United States)

    Weiss, Dale

    2011-01-01

    As a teacher in the Milwaukee Public Schools (MPS) for the past 16 years, this author has grown used to dismal budget cut news arriving each February. Although cuts are always frustrating and their results burdensome, his school has been able to "hang on" reasonably well. This year, however, the budget cuts were extreme. The school's budget was…

  5. The Educational Budget: Its Intent vs Reality.

    Science.gov (United States)

    Jefferson, Anne L.

    Factors for discrepancies between budgeting ideals and actual implementation are discussed. The basic problem lies in the different orientations of budget establishers and implementors, or between product and process, which results in a separation of productivity and resource allocation issues. A recommendation is that the budgeting process must…

  6. Program Budgeting for a Graduate School Library.

    Science.gov (United States)

    Westerman, Mel

    Program budgeting, a method founded in the systems approach, allows control, management, and planning in the library system, and avoids the more comprehensive analysis required by zero-based budgeting. By evaluation of the impacts of the work accomplished by the library staff, the budgeted amounts can be justified or adjusted in subsequent years.…

  7. Venus lower atmospheric composition - Analysis by gas chromatography

    Science.gov (United States)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.

    1979-01-01

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen (69.3 ppm), argon (18.6 ppm), neon (4.31 ppm), and sulfur dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the cloud tops to their bottoms, as implied by Earth-based observations and these results, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  8. Compositional dependence of sulfur speciation in Terrestrial and Martian magmas

    Science.gov (United States)

    Nash, William; Wood, Bernard; Smythe, Duane

    2016-04-01

    The capacity of magmas to transport sulfur from mantle to crust strongly influences a planet's surface chemistry. Sulfur is perhaps exceptional among the elements in the diversity of it's chemical speciation, exhibiting four redox species at geologically relevant conditions: sulfide (2-), elemental sulfur (0), sulfite (4+) and sulphate (6+). Furthermore, the solubility of sulfur in a magma (and hence the magma's capacity for delivering mantle-derived sulfur to the crust) depends critically on it's oxidation state. Our aim with this experimental study was to quantitatively determine the chemical speciation of sulfur within several common magmas, as a function of oxygen fugacity (fO2). We have performed a series of experiments on six sulfur-bearing silicate melts, which together represent a broad range of naturally occurring compositions: two putative Martian basalts, two terrestrial MORBs (one primitive, one evolved), an andesite, and a dacite. These melts were equilibrated together (at one-atmosphere pressure, 1300°C) with various CO-CO2-SO2 gas mixtures, which imposed a range of fO2s. This range spanned -2 to +1.6 log units (relative to the Quartz-Fayalite-Magnetite or QFM buffer), and the step-size was 0.25 log units. The quenched glasses were analyzed by X-ray Absorption Spectroscopy (specifically XANES) at the Diamond synchrotron (UK), and the spectra obtained were used to determine the species of sulfur present in each glass. The chemical composition of each glass (including their sulfur contents) was characterized by electron-probe microanalysis. Despite the generally low concentrations of sulfur in our glasses (never exceeding 0.24 wt%), we have clearly resolved the crossover between reduced (S2-) and oxidized (S6+) species for three of our basalts. The other three melts yielded more noisy XANES spectra, and as a result their redox crossovers are visible, but less clearly resolved. For every melt composition, the redox crossover is a continuous (though

  9. The effect of H2SO4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid

    OpenAIRE

    Kurtén, T.; T. Petäjä; Smith,J; Ortega, I.K.; Sipilä, M.; Junninen, H.; M. Ehn; Vehkamäki, H.; Mauldin, L.; Worsnop, D.R.; M. Kulmala

    2011-01-01

    The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS) based on nitrate reagent ions. We have assessed the possible effect of the sulfuric acid molecules clustering with base molecules on CIMS measurements using computational chemistry. From the computational data, three conclusions can be drawn. First, a significant fraction of the gas-phase sulfuric acid molecules are very likely clustered with amines i...

  10. Teaching the Federal Budget, National Debt, and Budget Deficit: Findings from High School Teachers

    Science.gov (United States)

    Marri, Anand R.; Ahn, Meesuk; Crocco, Margaret Smith; Grolnick, Maureen; Gaudelli, William; Walker, Erica N.

    2011-01-01

    The issues surrounding the federal budget, national debt, and budget deficit are complex, but not beyond the reach of young students. This study finds scant treatment of the federal budget, national debt, and budget deficit in high schools today. It is hardly surprising that high school teachers spend so little time discussing these topics in…

  11. Is Zero-Based Budgeting Different from Planning--Programming--Budgeting Systems?

    Science.gov (United States)

    Hentschke, Guilbert C.

    1977-01-01

    Successful adoption of zero-base budgeting (ZBB) will be greater than that of planning-programming-budgeting-systems (PPBS) because perceived problems inherent in PPBS are largely missing in ZBB; ZBB appears to fit current school district budgeting behavior; and ZBB seems to improve communication about the need for budget reform. (Author/IRT)

  12. Observational Constraints on the Global Budget of Ethanol

    Science.gov (United States)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A. B.; de Gouw, J.; Millet, D.; Levy, H.; Oppenheimer, M.

    2007-12-01

    Ethanol, an oxygenated volatile organic compound (OVOC), is used extensively as a motor fuel and fuel additive to promote clean combustion. Ethanol can affect the oxidizing capacity and the ozone-forming potential of the atmosphere. Limited available atmospheric observations suggest a global background atmospheric ethanol mixing ratio of about 20 pptv, with values up to 3 ppbv near source regions; however, the atmospheric distribution and budget of ethanol remain poorly understood. Here, we use the global three-dimensional chemical transport model MOZART-4 to investigate the global ethanol distribution and budget, and place constraints on the budget by evaluating the model with atmospheric observations. We implement a global ethanol source of 14.7 Tg yr-1 in the model consisting of biogenic emissions (9.2 Tg yr-1), industrial/anthropogenic emissions (3.2 Tg yr-1), emissions from biofuels (1.8 Tg yr-1), biomass burning emissions (0.5 Tg yr-1), and a secondary source from atmospheric production (0.056 Tg yr-1). Gas-phase oxidation by the hydroxyl radical accounts for 66% of the global sink of ethanol in the model, dry deposition 9%, and wet scavenging 25%. The simulation yields a global mean ethanol burden of 0.11 Tg and an atmospheric lifetime of 3 days. The simulated boundary layer mean ethanol concentrations underestimate observations from field campaigns over the United States by 50%, downwind of Asia by 76% and over the remote Pacific Ocean by 86%. Because of the short lifetime of ethanol, the model discrepancy over remote tropical regions cannot be attributed to an underestimate of surface emissions over continents. In these regions, the dominant model source is secondary atmospheric production, from the reaction of the ethyl peroxy radical (C2H5O2) either with itself or with the methyl peroxy radical (CH3O2). A ~500-fold increase in this diffuse source (to ~30 Tg yr-1) distributed uniformly throughout the troposphere would largely correct the observation

  13. The global carbon budget 1959–2011

    Directory of Open Access Journals (Sweden)

    C. Le Quéré

    2013-05-01

    Full Text Available Accurate assessments of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF are based on energy statistics, while emissions from Land-Use Change (ELUC, including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM is computed from the concentration. The mean ocean CO2 sink (SOCEAN is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND is estimated by the difference of the other terms. For the last decade available (2002–2011, EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011

  14. Global change research budget frozen

    Science.gov (United States)

    For FY 1996, the interagency budget request for the U.S. Global Change Research Program (USGCRP) totals $2.156 billion, or a 1.8% ($39 million) increase over FY 1995. President Clinton has broadened the scope of the program to include another $358 million in reprogrammed activities in keeping with a push by the National Science and Technology Council's Committee on Environment and Natural Resources Research (CENR) to more closely link costs and objectives. In essence, the increase for what could be considered the “traditional” global change budget would be only 1.4%, or $24 million over the FY 1995 appropriation. USGCRP now embraces the Department of Energy (DoE) research on environmental technologies, NASA launch vehicle charges, and additional Mission to Planet Earth (MTPE) research for environmental issues other than global change.

  15. Sulfur monochloride in organic synthesis

    International Nuclear Information System (INIS)

    The data on the reactivity of sulfur monochloride published in the past 15 years have been reviewed and systematized. The review focuses on the synthesis of acyclic and heterocyclic compounds with the use of S2Cl2. The bibliography includes 154 references

  16. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  17. Capital budgeting and procurement practices

    OpenAIRE

    Philippe Burger; Ian Hawkesworth

    2013-01-01

    Capital investment is a key function of government. However, for a number of reasons it has proven difficult for governments to ensure that capital investment represents value for money, is affordable, and is budgeted and accounted for in a prudent and transparent manner. This article discusses these challenges facing governments. Using the findings of a survey conducted among OECD countries and enhanced engagement countries in 2012, this article provides an overview of what governments are d...

  18. The Montana 2015 Biennium Budget

    OpenAIRE

    Greene, Jeffrey; DeSoto, Julie

    2015-01-01

    Newly elected Democratic Governor Steve Bullock called for investing in Main Street, investing more in Montana’s education system, creating health care solutions that improve access for Montanans, and bringing high paying jobs to the state. The governor achieved few of his goals but the legislature did produce a balanced budget that addressed a variety of issues including Montana’s poorly funded state pension system, increased spending in a number of functional areas, provided $110 million in...

  19. National Saving and Budget Deficits.

    OpenAIRE

    Eisner, Robert

    1994-01-01

    It has been widely argued that government budget deficits reduce national saving. Estimated relations indicate otherwise, both for the traditional or conventional, 'official' measure of national saving and a broader, more relevant measure, encompassing government and household as well as private business investment in tangible capital. Greater price-adjusted, high-employment deficits, increases in the real monetary base, and declines in real exchange rates have all been associated with more s...

  20. Advertising Budget Allocation under Uncertainty

    OpenAIRE

    Duncan M. Holthausen, Jr.; Gert Assmus

    1982-01-01

    This article presents a model for the allocation of an advertising budget to geographic market segments, or territories, when the sales response to advertising in each segment is characterized by a probability distribution. It is shown that allocation decisions that are based on the expected sales response may be associated with a relatively large degree of risk and, therefore, non-optimal to a risk-averse manager. The model derives an "efficient frontier" in terms of the expected profit and ...

  1. Soft Budgets And Highway Franchising

    OpenAIRE

    Eduardo Engel; Ronald Fischer; Alexander Galetovic

    2004-01-01

    Latin American governments progressively substituted build–operate–and–transfer (BOT) contracts for government–provided highways during the nineties. Because under BOT a private franchise holder finances and operates the road in exchange for tolls, it is often claimed that BOT represents a privatization of highways. We argue that, as currently applied, the BOT model is an imperfect and incomplete privatization, because the franchise holders’ budget constraint has been soft, with losses being ...

  2. Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest

    OpenAIRE

    Sipilä, M.; N. Sarnela; Jokinen, T; Junninen, H.; Hakala, J.; Rissanen, M. P.; Praplan, A.; M. Simon; A. Kürten; BIANCHI, F.; Dommen, J; J. Curtius; T. Petäjä; Worsnop, D.R.

    2015-01-01

    Atmospheric amines may play a crucial role in formation of new aerosol particles via nucleation with sulfuric acid. Recent studies have revealed that concentrations below 1 pptV can significantly promote nucleation of sulfuric acid particles. While sulfuric acid detection is relatively straightforward, no amine measurements to date have been able to reach the critical sub-pptV concentration range and atmospheric amine concentrations are in general poorly characterized. In th...

  3. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    Science.gov (United States)

    Lauer, A.; Eyring, V.; Hendricks, J.; Jöckel, P.; Lohmann, U.

    2007-07-01

    International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2) per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing incoming solar radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics, to show that emissions from ships significantly increase the cloud droplet number concentration of low maritime water clouds. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase up to 5-10%. The sensitivity of the results is estimated by using three different emission inventories for present day conditions. The sensitivity analysis reveals that shipping contributes with 2.3% to 3.6% to the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm) over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases up to 8-10% depending on the emission inventory. Changes in aerosol optical thickness caused by the shipping induced modification of aerosol particle number concentration and chemical composition lead to a change of the net top of the atmosphere (ToA) clear sky radiation of about -0.013 W/m2 to -0.036 W/m2 on global annual average. The estimated all-sky direct aerosol effect calculated from these changes ranges between -0.009 W/m2 and -0.014 W/m2. The indirect aerosol effect of ships

  4. Innovative Concepts of Budgeting in the Enterprises

    OpenAIRE

    Adam Bąk

    2009-01-01

    The article presents the current concepts of budgeting with the special focus on innovative budgets. It includes the evolution of the budgeting concept starting from the traditional one which was applied in the second half of the 20th Century and assumed the budget as the main tool for the achievement of company’s goals. The next presented method is Better Budgeting. It arouse at the nineties as the resposne for the critics of the traditional method which was accused for the fixed assumptions...

  5. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    OpenAIRE

    Friedman, Carey L.; Selin, Noelle E

    2016-01-01

    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that c...

  6. Bulk sulfur (S) deposition in China

    Science.gov (United States)

    Liu, Lei; Zhang, Xiuying; Wang, Shanqian; Zhang, Wuting; Lu, Xuehe

    2016-06-01

    A systematic dataset of an observation network on a national scale has been organized to investigate the spatial distribution of bulk sulfur (S) deposition (Sdep) throughout China during 2000-2013, representing by far the most detailed data set to track the bulk sulfur deposition throughout China since 2000. Such a dataset is needed for ecosystem studies and for developing emission control policies. Bulk Sdep values showed great variations, ranging from 2.17 to 70.55 kg ha-1 y-1, with an average of 22.99 kg ha-1 y-1. The average rate of bulk Sdep located in East Coastal region (35.97 kg ha-1 y-1), Middle Yangtze region (57.90 kg ha-1 y-1), Middle Yellow River region (23.42 kg ha-1 y-1), North Coastal region (42.19 kg ha-1 y-1), Northeast region (34.28 kg ha-1 y-1), South Coastal region (36.97 kg S ha-1 y-1), Southwest region (33.85 kg ha-1 y-1) was 4.50, 7.24, 2.93, 5.28, 4.29, 4.63 and 4.24 times than that in Northwest region (7.99 kg ha-1 y-1). Bulk Sdep over China was mainly from fossil fuel combustion (76.96%), biomass burning (7.64%), crust (6.22%), aged sea salt (5.48%) and agriculture (3.68%). A systematic observation network on a national scale should be established to conduct a long-term monitoring atmospheric Sdep (including wet and dry deposition), based on exiting ecological stations administrated by different departments in China.

  7. The role of ammonia in sulfuric acid ion induced nucleation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2008-06-01

    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  8. Atmospheric contamination

    International Nuclear Information System (INIS)

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  9. Innovative Concepts of Budgeting in the Enterprises

    Directory of Open Access Journals (Sweden)

    Adam Bąk

    2009-03-01

    Full Text Available The article presents the current concepts of budgeting with the special focus on innovative budgets. It includes the evolution of the budgeting concept starting from the traditional one which was applied in the second half of the 20th Century and assumed the budget as the main tool for the achievement of company’s goals. The next presented method is Better Budgeting. It arouse at the nineties as the resposne for the critics of the traditional method which was accused for the fixed assumptions which were no longer matching with the fast changing competitive environment. This method assumed the high level of budget preparation as he opposite to the detailed level as well as shorter planning period. The Beyond Budgeting was the most radical method and eliminated budget as the tool supporting the management; the concept has been used from the nineties until today, by more than seventy multinational companies from beyond budgeting round table. However, Beyond Budgeting was also criticised for not being applied in the industrial sector and too theoretical approach. Therefore, Ronald Gleicha from European Business School, established a working group, which icludes the scientists and managers, in order to create by mid of 2009, the new and opitimal method, which is called Modern Budgeting.

  10. Biogenic sulfur and the acidity of rainfall in remote areas of Canada

    International Nuclear Information System (INIS)

    Sulfur released from any given natural or anthropogenic source carries an isotopic signature that can be used to trace its flow through the environment. Measurements of the concentration and isotopic composition of sulfur in weekly bulk precipitation samples collected over a 4-year period at a remote location in location in northern Ontario were recorded. The long-term isotopic data and the measurement on the production and release of dimethyl sulfide from boreal wetlands show that biogenic sources can account for up to 30% of the acidifying sulfur burden in the atmosphere in remote areas of Canada. The data suggest that significant biological reemission of anthropogenic sulfur is occurring. The role of this process in the continuing acidification of the environment for years to come must be a matter of concern

  11. Soft Budget Constraints in Public Hospitals.

    Science.gov (United States)

    Wright, Donald J

    2016-05-01

    A soft budget constraint arises when a government is unable to commit to not 'bailout' a public hospital if the public hospital exhausts its budget before the end of the budget period. It is shown that if the political costs of a 'bailout' are relatively small, then the public hospital exhausts the welfare-maximising budget before the end of the budget period and a 'bailout' occurs. In anticipation, the government offers a budget to the public hospital that may be greater than or less than the welfare-maximising budget. In either case, the public hospital treats 'too many' elective patients before the 'bailout' and 'too few' after. The introduction of a private hospital reduces the size of any 'bailout' and increases welfare. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25740723

  12. [Research progress on phosphorus budgets and regulations in reservoirs].

    Science.gov (United States)

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches. PMID:25876422

  13. Sulfur dioxide initiates global climate change in four ways

    International Nuclear Information System (INIS)

    Global climate change, prior to the 20th century, appears to have been initiated primarily by major changes in volcanic activity. Sulfur dioxide (SO2) is the most voluminous chemically active gas emitted by volcanoes and is readily oxidized to sulfuric acid normally within weeks. But trace amounts of SO2 exert significant influence on climate. All major historic volcanic eruptions have formed sulfuric acid aerosols in the lower stratosphere that cooled the earth's surface ∼ 0.5 oC for typically three years. While such events are currently happening once every 80 years, there are times in geologic history when they occurred every few to a dozen years. These were times when the earth was cooled incrementally into major ice ages. There have also been two dozen times during the past 46,000 years when major volcanic eruptions occurred every year or two or even several times per year for decades. Each of these times was contemporaneous with very rapid global warming. Large volumes of SO2 erupted frequently appear to overdrive the oxidizing capacity of the atmosphere resulting in very rapid warming. Such warming and associated acid rain becomes extreme when millions of cubic kilometers of basalt are erupted in much less than one million years. These are the times of the greatest mass extinctions. When major volcanic eruptions do not occur for decades to hundreds of years, the atmosphere can oxidize all pollutants, leading to a very thin atmosphere, global cooling and decadal drought. Prior to the 20th century, increases in atmospheric carbon dioxide (CO2) followed increases in temperature initiated by changes in SO2. By 1962, man burning fossil fuels was adding SO2 to the atmosphere at a rate equivalent to one 'large' volcanic eruption each 1.7 years. Global temperatures increased slowly from 1890 to 1950 as anthropogenic sulfur increased slowly. Global temperatures increased more rapidly after 1950 as the rate of anthropogenic sulfur emissions increased. By 1980

  14. Rhodanese functions as sulfur supplier for key enzymes in sulfur energy metabolism.

    Science.gov (United States)

    Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-06-01

    How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367

  15. Catalytic conversion of sulfur dioxide and trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Solov' eva, E.L.; Shenfel' d, B.E.; Kuznetsova, S.M.; Khludenev, A.G.

    1987-11-10

    The reclamation and utilization of sulfur-containing wastes from the flue gas of fossil-fuel power plants and the subsequent reduction in sulfur emission is addressed in this paper. The authors approach this problem from the standpoint of the catalytic oxidation of sulfur dioxide on solid poison-resistant catalysts with subsequent sorption of the sulfur trioxide and its incorporation into the manufacture of sulfuric acid. The catalyst they propose is a polymetallic dust-like waste from the copper-smelting industry comprised mainly of iron and copper oxides. Experiments with this catalyst were carried out using multifactorial experiment planning.

  16. In Situ Analysis of Sulfur Species in Sulfur Globules Produced from Thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes▿ †

    OpenAIRE

    Lee, Yong-Jin; Prange, Alexander; Lichtenberg, Henning; Rohde, Manfred; Dashti, Mona; Wiegel, Juergen

    2007-01-01

    The Firmicutes Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes convert thiosulfate, forming sulfur globules inside and outside cells. X-ray absorption near-edge structure analysis revealed that the sulfur consisted mainly of sulfur chains with organic end groups similar to sulfur formed in purple sulfur bacteria, suggesting the possibility that the process of sulfur globule formation by bacteria is an ancient feature.

  17. Clinton Administration federal budget proposal alternately described as dream and fantasy

    Science.gov (United States)

    Showstack, Randy

    Some federal science agency heads and advisors are pinching themselves to make sure the Clinton Administrations fiscal year 2001 federal budget request, announced on February 7, is not just a dream.Neal Lane, director of the Office of Science and Technology Policy calls the budget historic for its increases and commitment to science and technology. When asked what he thinks about the budget, NASA head Dan Goldin says, Look at the smile on my face. Rita Colwell, who leads the National Science Foundation (NSF), says, We couldn't ask for a better way to mark NSFs 50th anniversary Jim Baker, administrator of the National Oceanic and Atmospheric Administration (NOAA), says the budget is a good one for his agency.

  18. The global carbon budget 1959–2011

    Directory of Open Access Journals (Sweden)

    C. Le Quéré

    2012-12-01

    Full Text Available Accurate assessment of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr−1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9–3.5% in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr−1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr−1 or 3.6 ± 0.2 PgC yr−1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr−1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr−1. All uncertainties are reported as ±1

  19. Sulfur Dioxide Plume from Mt. Etna Eruption 2002 as Detected with AIRS Data

    Science.gov (United States)

    2007-01-01

    Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of sulfur dioxide injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future. The image clearly shows the sulfur dioxide plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to sulfur dioxide. By subtracting out the common water vapor signal in both channels, the sulfur dioxide feature remains and shows up as an enhancement in the difference image. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  20. Utilization of 'elemental' sulfur by different phototrophic sulfur bacteria (Chromatiaceae, Ectothiorhodospiraceae): A sulfur K-edge XANES spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Franz, B; Prange, A [Niederrhein University of Applied Sciences, Competence Center for Microbiology and Biotechnology (CCMB), Rheydter Strasse 277, 41065 Moenchengladbach (Germany); Lichtenberg, H; Hormes, J [Louisiana State University, Center for Advanced Microstructures and Devices (CAMD), 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Dahl, C, E-mail: A.Prange@gmx.d [University of Bonn, Institute for Microbiology and Biotechnology, Meckenheimer Allee 168, 53115 Bonn (Germany)

    2009-11-15

    Phototrophic sulfur bacteria are generally able to use elemental sulfur as an electron donor for anoxygenic photosynthesis. Elemental sulfur is mainly a mixture of cyclo-octasulfur and polymeric sulfur. The purple sulfur bacterium Allochromatium vinosum strongly prefers the polymeric sulfur fraction showing that sulfur speciation has a strong influence on availability of elemental sulfur. X-ray absorption near edge structure (XANES) spectroscopy was used to investigate whether polymeric sulfur is also the preferred sulfur species in other purple sulfur bacteria belonging to the families Chromatiaceae and Ecothiorodospiraceae. The cultures were fed with 50 mM of elemental sulfur consisting of 68% polymeric sulfur and 30% cyclo-octasulfur. In all cultures, elemental sulfur was converted into intra- or extracellular sulfur globules, respectively, and further oxidized to sulfate. Sulfate concentrations were determined by HPLC and turbidometric assays, respectively. However, the added elemental sulfur was only partly used by the bacteria, one part of the 'elemental sulfur' remained in the cultures and was not taken up. XANES spectroscopy revealed that only the polymeric sulfur fraction was taken up by all cultures investigated. This strongly indicates that polymeric 'chain-like' sulfur is the form preferably used by phototrophic sulfur bacteria.