WorldWideScience

Sample records for atmospheric sampling glow

  1. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  2. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  3. Conceptual Demonstration of Ambient Desorption-Optical Emission Spectroscopy Using a Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Source.

    Science.gov (United States)

    Marcus, R Kenneth; Paing, Htoo W; Zhang, Lynn X

    2016-06-01

    The concept of ambient desorption-optical emission spectroscopy (AD-OES) is demonstrated using a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as the desorption/excitation source. The LS-APGD has previously been employed for elemental analysis of solution samples and particulates introduced via laser ablation in both the optical emission and mass spectrometries (OES, MS) modes. In addition, the device has been shown to be effective for the analysis of elemental and molecular species operating in an ambient desorption/ionization mass spectrometry (ADI-MS) mode. Proof-of-concept is presented here in the use of the LS-APGD to volatilize three very diverse sample forms (metallic thin films, dry solution residues, and bulk materials), with the liberated material excited within the microplasma and detected via OES, i.e., AD-OES. While the demonstration is principally qualitative at this point, it is believed that the basic approach may find application across a broad spectrum of analytical challenges requiring elemental analysis, including metals, soils, and volume-limited solutions, analogous to what has been seen in the development of the field of ADI-MS for molecular species determinations. PMID:27175512

  4. Ambient desorption/ionization mass spectrometry using a liquid sampling-atmospheric glow discharge (LS-APGD) ionization source.

    Science.gov (United States)

    Marcus, R Kenneth; Burdette, Carolyn Q; Manard, Benjamin T; Zhang, Lynn X

    2013-10-01

    A novel approach to ambient desorption/ionization mass spectrometry (ADI-MS) is described, based on a recently developed liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source. The device is essentially unmodified relative to its implementation in elemental mass spectrometry, where the operational space is characterized by low operation power (LS-APGD source is mounted onto the source interface of a Thermo Finnigan LCQ Advantage Max quadrupole ion trap mass spectrometer without modifications to the instrument faceplate or ion optics. Described here is the initial evaluation of the roles of source geometry and working parameters, including electrolytic solution composition and plasma current, on the response of caffeine residues, with preliminary limits of detection based on the relative standard deviation of the spectral background suggested to be on the 10-pg level. Demonstrative spectra are presented for green tea extracts and raw leaves, coffee beans, a dried (raw) tobacco leaf, an analgesic tablet, and paper currency. Versatility is further revealed through the determination of components in common cigarette smoke. In each case, the spectra are characterized by (M + H)(+) species of the expected constituents. The capacity for a single source to perform both in solution and particulate elemental analysis (as shown previously) and ADI of molecular species is unique in the realm of mass spectrometry.

  5. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of elemental mass spectrometry. PMID:21910014

  6. Liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit.

    Science.gov (United States)

    Quarles, C Derrick; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Marcus, R Kenneth

    2012-01-01

    A new, low-power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications, other than removing the electrospray ionization source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra, including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements indicate that sodium concentrations of up to 50 μg mL(-1) generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. While solution-based concentration LOD levels of 0.02-2 μg mL(-1) are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to single-nanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of LS-APGD ion source may present a practical alternative to inductively coupled plasma sources typically employed in elemental mass spectrometry.

  7. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  8. Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source for Elemental Mass Spectrometry: Preliminary Parametric Evaluation and Figures of Merit

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.; Koppenaal, David W.; Marcus, R. Kenneth

    2012-01-01

    A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary and a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min

  9. Evaluation of the operating parameters of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Konegger-Kappel, Stefanie; Kappel, Stefanie Konegger; Marcus, R Kenneth

    2014-11-01

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as an ionization source for elemental analysis with an interdependent, parametric evaluation regarding sheath/cooling gas flow rate, discharge current, liquid flow rate, and the distance between the plasma and the sampling cone of the mass spectrometer. In order to better understand plasma processes (and different from previous reports), no form of collision/reaction processing was performed to remove molecular interferents. The evaluation was performed employing five test elements: cesium, silver, lead, lanthanum and nickel (10(-4) mol L(-1) in 1 mol L(-1) HNO3). The intensity of the atomic ions, levels of spectral background, the signal-to-background ratios, and the atomic-to-oxide/hydroxide adduct ratios were monitored in order to obtain fundamental understanding with regards to not only how each parameter effects the performance of this LS-APGD source, but also the inter-parametric effects. The results indicate that the discharge current and the liquid sampling flow rates are the key aspects that control the spectral composition. A compromise set of operating conditions was determined: sheath gas flow rate = 0.9 L min(-1), discharge current = 10 mA, solution flow rate = 10 μL min(-1), and sampling distance = 1 cm. Limits of detection (LODs) were calculated using the SBR-RSDB (signal-to-background ratio/relative standard deviation of the background) approach under the optimized condition. The LODs for the test elementals ranged from 15 to 400 ng mL(-1) for 10 μL injections, with absolute mass values from 0.2 to 4 ng.

  10. Atmospheric Pressure Glow Discharge with Liquid Electrode

    Science.gov (United States)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work

  11. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-04-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  12. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Science.gov (United States)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  13. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-03-01

    ABSTRACT In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Due to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for orbitrap analyzers are very well documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LSAPGD microplasma and the inherent IR measurement qualities of orbitrap analyzers. Important to the IR performance, the various operating parameters of the orbitrap sampling interface, HCD dissociation stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1 %RSD can be achieved, with values of 1-3 %RSD observed for low-abundance species. The results suggest that the LSAPGD is a very good candidate for field deployable MS analysis and that the high resolving powers of the orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision isotope ratios.

  14. Preliminary Assessment of Potential for Metal-Ligand Speciation in Aqueous Solution via the Liquid Sampling-Atmospheric Pressure Glow Discharge (LS-APGD) Ionization Source: Uranyl Acetate.

    Science.gov (United States)

    Zhang, Lynn X; Manard, Benjamin T; Powell, Brian A; Marcus, R Kenneth

    2015-07-21

    The determination of metals, including the generation of metal-ligand speciation information, is essential across a myriad of biochemical, environmental, and industrial systems. Metal speciation is generally affected by the combination of some form of chromatographic separation (reflective of the metal-ligand chemistry) with element-specific detection for the quantification of the metal composing the chromatographic eluent. Thus, the identity of the metal-ligand is assigned by inference. Presented here, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) is assessed as an ionization source for metal speciation, with the uranyl ion-acetate system used as a test system. Molecular mass spectra can be obtained from the same source by simple modification of the sustaining electrolyte solution. Specifically, chemical information pertaining to the degree of acetate complexation of uranyl ion (UO2(2+)) is assessed as a function of pH in the spectral abundance of three metallic species: inorganic (nonligated) uranyl, UO2Ac(H2O)n(MeOH)m(+), and UO2Ac2(H2O)n(MeOH)(m)H(+) (n = 1, 2, 3, ...; m = 1, 2, 3, ...). The product mass spectra are different from what are obtained from electrospray ionization sources that have been applied to this system. The resulting relationships between the speciation and pH values have been compared to calculated concentrations of the corresponding uranyl species: UO2(2+), UO2Ac(+), UO2Ac2. The capacity for the LS-APGD to affect both atomic mass spectra and structurally significant spectra for organometallic complexes is a unique and potentially powerful combination.

  15. Vehicle/Atmosphere Interaction Glows: Far Ultraviolet, Visible, and Infrared

    Science.gov (United States)

    Swenson, G.

    1999-10-01

    Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.

  16. Surface modification of polyester film by glow discharge tunnel at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    XU Xiang-yu; WANG Shou-guo; YE Tian-chun; JING Guang-yin; YU Da-peng

    2004-01-01

    A large-area improved dielectric barrier glow discharge tunnel has been developed for modifying the surface of polyester film at atmospheric pressure with argon and oxygen gas mixtures. The electrical properties of the glow discharge tunnel were studied by simultaneous measurement of the voltage and current. In addition, the effect of the glow discharge tunnel treatment on the surface of polyester film were studied. The resultant modifications of the surface properties of the treated samples were investigated through scanning probe microscopy and contact angle measurement.

  17. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  18. Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma

    Science.gov (United States)

    South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat

    2000-10-01

    There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.

  19. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  20. Dual-frequency glow discharges in atmospheric helium

    International Nuclear Information System (INIS)

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power

  1. Dual-frequency glow discharges in atmospheric helium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojiang; Guo, Ying [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Dai, Lu [School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-10-15

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power.

  2. Experiment and Simulation of Atmospheric Pressure Glow Surface Discharge

    Institute of Scientific and Technical Information of China (English)

    江中和; 胡希伟; 刘明海; 辜承林; 潘垣

    2003-01-01

    Atmospheric pressure glow discharge was observed in a surface discharge generator. The frequency of ac power supply is more than 9 kHz and the sinusoidal peak-to-peak applied voltage is 9 Ky. The electric field intensity in a kind of surface discharge generators is calculated with the boundary element method. Then a two-dimensional fluid model was used to simulate the ion trapping and electron trapping in a surface discharge just before the breakdown. The simulation results are in good agreement with our observation.

  3. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    Science.gov (United States)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  4. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    Science.gov (United States)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  5. Potential industrial applications of the one atmosphere uniform glow discharge plasma operating in ambient air

    International Nuclear Information System (INIS)

    The majority of industrial plasma processing is conducted with glow discharges at pressures below 10 Torr. This tends to limit such applications to high value workpieces, as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be generated at 1 atm and in air. The one atmosphere uniform glow discharge plasma (OAUGDP registered ) has these capabilities. As a normal glow discharge, the OAUGDP registered can operate with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum. This paper will survey exploratory investigations at the University of Tennessee's Plasma Sciences Laboratory of seven potential industrial applications of the OAUGDP registered which can be conducted at 1 atm and at room temperature with air as the working gas

  6. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    Science.gov (United States)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  7. Discharge Characteristics in Atmospheric Pressure Glow Surface Discharge in Helium Gas

    Institute of Scientific and Technical Information of China (English)

    LI Xue-Chen; WANG Long

    2005-01-01

    @@ Atmospheric pressure glow discharge is observed for the first time in a surface discharge generator in flowing helium. Electrical and optical methods are used to measure the characteristics of atmospheric pressure glow discharge for different voltages. The results show that discharge current waveforms are asymmetric for the different polarities of the applied voltage. A continuous discharge profile with a width of several microseconds appears for per half cycle of the applied voltage when the voltage is increased to a certain value. The short-pulsed discharge and the continuous current would result from the Townsend breakdown and glow discharge mechanisms respectively. The properties of surface discharge in stagnant helium are completely different from that in flowing helium.

  8. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    Science.gov (United States)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  9. Gas flow effects on the submicrosecond pulsed atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    The influence of gas flow on the discharge characteristics in the submicrosecond pulsed dielectric barrier discharge at atmospheric pressure was investigated by a one-dimensional self-consistent kinetic model. The convection-transport mechanism of the plasma species caused by a longitudinal gas flow was integrated into flux equation. Two discharge current pulses, the positive one and the negative one, are operated in a normal glow mode and a subnormal glow mode, respectively. It is shown that the gas flow has a significant impact on the discharge characteristics, especially on the positive discharge pulse. The spatial distribution of electrons is affected by the gas flow through the convection transport mechanism.

  10. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    Science.gov (United States)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  11. Effect of Atmospheric Pressure Glow Discharge Treatment on Polymerization of Acrylic Fabric and Its Printing Behavior

    Directory of Open Access Journals (Sweden)

    D M El-Zeer

    2014-03-01

    Full Text Available Acrylic fibers have been treated by atmospheric pressure glow discharge (APGD plasma in open air to enhance surface antistatic properties. The treated surfaces are investigated by scanning electron microscopy (SEM, Fourier-Transition Infrared Spectroscopy (FTIR and Atomic Force Microscope (AFM. Plasma treatment of acrylic fabric has been found to increase the surface roughness, modify the nature and density of surface functionalities, and drastically improve the wettability and antistatic ability of acrylic fibers.

  12. Characteristics of a glow discharge in atmospheric pressure air over the water surface

    Science.gov (United States)

    Shuaibov, A. K.; Chuchman, M. P.; Mesarosh, L. V.

    2014-06-01

    The current-voltage characteristics, the amount of cathode fall, and the spectra of plasma radiation from different spatial domains are presented versus the molecular band intensity of products arising in an atmospheric-pressure air glow discharge over the distilled water surface. The plasma electron temperature is also reported. The distance to a liquid cathode or anode is varied from 1 to 10 mm at a discharge mean current of 10-36 mA.

  13. Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air

    Science.gov (United States)

    Li, Xuechen; Zhao, Huanhuan; Jia, Pengying

    2013-11-01

    Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the current-voltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.

  14. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    Science.gov (United States)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  15. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    International audience In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determi...

  16. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%,where the coke increases gradually along with the increase of CH4/H2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2= 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge.A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.

  17. Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Yan; Wang De-Zhen; Wang Xiao-Gang

    2007-01-01

    The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum,the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.

  18. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge

    Indian Academy of Sciences (India)

    Raju Bhai Tyata; Deepak Prasad Subedi; Rajendra Shrestha; Chiow San Wong

    2013-03-01

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 11/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm-3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 $\\$J with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.

  19. SWIR sky glow imaging for detection of turbulence in the upper atmosphere

    Science.gov (United States)

    Dayton, David; Nolasco, Rudy; Allen, Jeff; Myers, Mike; Gonglewski, John; Fertig, Gregory; Burns, Dennis; Mons, Ishan

    2010-08-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band between 0.9 and 1.7 μm wave length. This has been demonstrated as an effective illumination source for night time imaging applications. It addition it has been shown that observation of the spatial and temporal variations of the illumination can be used to characterize atmospheric tidal wave actions in the sky glow region. These spatiotemporal variations manifest themselves as traveling wave patterns whose period and velocity are related to the wind velocity at 85 km as well as the turbulence induced by atmospheric vertical instabilities. Ground to space observation systems especially those employing adaptive optics are adversely affected by high altitude turbulence and winds. In this paper we propose the use of sky glow observations to predict and characterize image system degradation due to upper atmosphere turbulence.

  20. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    Science.gov (United States)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  1. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    International Nuclear Information System (INIS)

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc

  2. Prediction of atmospheric pressure glow discharge in dielectric-barrier system

    Science.gov (United States)

    Duan, Xiaoxi; He, Feng; Ouyang, Jiting

    2010-06-01

    A one-dimensional fluid model was used to investigate the breakdown mechanism and discharge mode in dielectric-barrier system. The results show that the dielectric barrier discharge mode depends strongly on the gas property (i.e., the electron multiplication). The atmospheric pressure dielectric barrier glow discharge could only be achieved in a gas (e.g., noble gas) in which the first Townsend ionization coefficient is sufficiently small and the electron multiplication does not rise up rapidly with the electric field, while could not be sustained in the gas (e.g., N2 and O2) in which the electron multiplication is sensitive to the field.

  3. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan; Zhao, Wei [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Li, Jing [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Duan, Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064 (China)

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  4. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Tao; WANG De-Zhen; WANG Yan-Hui; LIU Cheng-Sen

    2005-01-01

    @@ The radial evolution of atmospheric pressure glow discharge in helium is presented by numerical simulation. The calculations reveal the mechanism of two current peaks per half cycle. The first breakdown occurs firstly in the central region of the electrode, and then spreads to the edge, while the second breakdown ignites at the periphery firstly, and then propagates toward the discharge central region. The simulations indicate that radial electric fields and radial sheath play an important role in the evolution of the second peak. These results agree fundamentally with the experimental observations.

  5. Transition from Spark Discharge to Constricted Glow Discharge in Atmospheric Air by Capacitor Coupled Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yutao; REN Chunsheng; XU Zhenfeng; MA Tengcai; QI Bing; WANG Dezhen; WANG Younian

    2007-01-01

    The transition from a spark discharge to a constricted glow discharge in atmospheric air was studied with a capacitor coupled pin-to-water plasma reactor. The reason of the transition is considered to be of various factors, namely the change of the air gap due to the polarization of water molecules by the electric field, the feedback effect of the capacitors, and the ion trapping mechanism. The effects of the frequency of the power supply, inter-electrode gap, and coupled capacitance on the discharge transition were also investigated.

  6. An Experimental Study on Atmospheric Pressure Glow Discharge in Different Gases

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 詹如娟; 等

    2002-01-01

    Usually,the electrical breakdown of dielectric barrier discharge(DBD) at atmospheric pressure leads to a filamentary non-homogeneous discharge,However,it is also possible to obtain a diffuse DBD in homogeneous form,called atmospheric pressure glow discharge(APGD).We obtained a uniform APGD in helium and in the mixture of argon with alcohol,and studied the electrical characteristics of helium APGD.It if found that the relationship between discharge current and source frequency is different depending on the difference in gas gap when the applied voltage is kept constant.The discharge current shows an increasing trend with the increased frequency when gas gap is 0.8cm ,but the discharge current tends to decrease with the increased frequency when the gas gap increases.The discharge current always increases with the increased applied voltage when the source frequency is kept constant.We also observed a glow-like discharge in nitrogen at atmospheric pressure.

  7. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun

    2016-10-01

    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  8. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  9. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  10. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  11. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  12. Characteristics of Ozone Production by Using Atmospheric Surface Glow Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Mudtorlep NISOA

    2009-06-01

    Full Text Available Ozone is a strong oxidizer that can kill bacteria and other micro-organisms very effectively. In the recent years, ozone has become very important for sterilization of water used in shrimp farming and treatment of wastewater from food industry. However, ozonisers available in the markets are very expensive and have low energy-efficiency. In this work, a highly-efficient and low-cost system that can produce high-concentrations of ozone gas and dissolved ozone in water has been developed. The system consists of a dried air unit, high-voltage rf power supply, ozoniser tubes and venturi injector. The tubes are designed and configured to convert oxygen gas to ozone gas by atmospheric surface glow barrier discharge.

  13. A novel Y-type reactor for selective excitation of atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Xia, Guan-Guang; Wang, Jin-Yun; Huang, Aimin; Suib, Steven L.; Hayashi, Yuji; Matsumoto, Hiroshige

    2001-02-01

    A novel Y-type atmospheric pressure ac glow discharge plasma reactor has been designed and tested in CO reduction with hydrogen and the reverse water-gas shift reaction. The reactor consists of a Y-type quartz tube with an angle of 120°-180° between the two long arms, two metal rod electrodes serving as high voltage terminals and two pieces of aluminum foil which were wrapped outside of the quartz tubes as a ground electrode. Different combinations of input power applied on this three- electrode system can lead to selective plasmas on one side, two sides, or can also generate a stable arc between the two high voltage terminal electrodes. The ability to selectively activate different species with this type of apparatus can help to minimize side reactions in plasmas to obtain desirable products. The Y-type reactor may provide a novel means to study fundamental problems regarding radical reactions.

  14. Generation of large-area and glow-like surface discharge in atmospheric pressure air

    Science.gov (United States)

    Song, Ying; Xia, Yang; Bi, Zhenhua; Wang, Xueyang; Qi, Zhihua; Ji, Longfei; Li, Bin; Liu, Dongping

    2016-08-01

    A large-area (6 cm × 6 cm) air surface dielectric barrier discharge has been generated at atmospheric pressure by using well-aligned and micron-sized dielectric tubes with tungsten wire electrodes. Intensified CCD images with an exposure time of 5 ns show that the uniform surface air discharge can be generated during the rising and falling time of pulsed DC voltage. Current and voltage and optical measurements confirm the formation of glow-like air discharges on the surface of micron-sized dielectric tubes. Simulation results indicate that the microelectrode configuration contributes to the formation of strong surface electric field and plays an important role in the generation of uniform surface air discharge.

  15. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    Science.gov (United States)

    Baars-Hibbe, L.; Sichler, P.; Schrader, C.; Lucas, N.; Gericke, K.-H.; Büttgenbach, S.

    2005-02-01

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 µm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure.

  16. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    International Nuclear Information System (INIS)

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 μm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure

  17. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Liu, D. X., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Nie, Q. Y.; Li, H. P. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Chen, H. L. [Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Kong, M. G., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  18. Surface Treatment of Polyethylene Terephthalate Film Using Atmospheric Pressure Glow Discharge in Air

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌; 王辉

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted.The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19°, respectively.

  19. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B.; Chamorro, J. C.; Cejas, E. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina)

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  20. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  1. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    CERN Document Server

    Xu, Shaofeng

    2015-01-01

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are simila...

  2. Simulation of radio-frequency atmospheric pressure glow discharge in γ mode

    Institute of Scientific and Technical Information of China (English)

    Shang Wan-Li; Wang De-Zhen; Michael G. Kong

    2007-01-01

    The existence of two different discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as α mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion.In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathode under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the γmode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the c mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.

  3. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  4. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Zheng, Peichao; Liu, Keming; Wang, Jinmei; Dai, Yu; Yu, Bin; Zhou, Xianju; Hao, Honggang; Luo, Yuan

    2012-10-01

    The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the hydrophobic character partly recovers after long-term storage in ambient air.

  5. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    Science.gov (United States)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  6. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    Science.gov (United States)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  7. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  8. Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Chen; Niu Dong-Ying; Xu Long-Fei; Jia Peng-Ying; Chang Yuan-Yuan

    2012-01-01

    The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one-dimensional fluid model.Under some discharge conditions,the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low,while a glow-like discharge occurs at high voltage.For the one discharge pulse per half voltage cycle,the maximum of electron density appears near the anode at the beginning of the discharge,which corresponds to a Townsend discharge mode.The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent,which indicates the formation of a cathode-fall region.Therefore,the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse,which is consistent with previous experimental results.

  9. Detection of some industrially relevant elements in water by electrolyte cathode atmospheric glow discharge optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, PO Box 49, Budapest H-1525 (Hungary); Laczai, Nikoletta; Mezei, Pál [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, PO Box 49, Budapest H-1525 (Hungary); Cserfalvi, Tamás [T. Meisel Laboratory, Aqua-Concorde R& D LLC, Budapest, Bosnyák utca 11, H-1145 (Hungary)

    2015-05-01

    An electrolyte cathode atmospheric glow discharge optical emission spectrometry (ELCAD-OES) method was developed for the detection of the industrially relevant In, Rh and Te in water samples. Acid/additive type, sample pH and flow rate were optimized. The UV–Vis spectrum was scanned for analytical lines, free from spectral overlap interferences, and sensitive enough for quantifying the analytes at mg L{sup −1} or lower levels. In several cases, the background spectrum of the ELCAD hindered the use of conventional, resonant analytical lines in the UV due to overlaps with bands of molecular species (e.g., OH, NO, N{sub 2}). Te and Rh showed lower emission intensities than In (determined at In I 451.1 nm), even using the most sensitive, interference-free transitions (i.e., Te I 214.3 nm, Te I 238.6 nm and Rh I 437.5 nm). The emission intensities were highly sample pH dependent, i.e., analytical signals could only be detected at pH levels lower than 2. Conversely, the use of acidity lower than pH 1 caused lower plasma volume, due to its contraction into the sample introduction capillary, and discharge instability in terms of its frequent self-extinction. The detection limits for In, Rh and Te were 0.01, 0.5 and 2.4 mg L{sup −1}, respectively. Calibration curves were linear up to 100–150 mg L{sup −1}. The precision for In, Rh and Te in aqueous standards, expressed as relative standard deviation (RSD), was not higher than 4.6%, 6.4% and 7.4%, respectively. Samples with high salt content (e.g., well water) caused positive matrix effects (i.e., 2.0- to 3.6-fold signal enhancements), but also ~ 1.5 times higher RSDs. - Highlights: • An ELCAD-OES method is developed for the monitoring of In, Rh and Te in waters. • The UV–Vis emission spectrum was studied for interference-free spectral lines. • Effects of sample pH, acid-type on signal intensities and GD voltage were studied. • Calibration and analytical figures for low- to high-salinity waters were

  10. Development of radio-frequency-powered helium glow discharge optical emission source associated with sampling by laser ablation

    International Nuclear Information System (INIS)

    A new excitation source for emission spectrometry consisting of an r.f-powered helium glow discharge plasma and a laser-diode pumped Q-switched Nd:YAG laser, was developed. The Nd:YAG laser works dominantly as a sampling source for introduction of sample atoms to the glow discharge plasma, because the laser induced plasma cannot be generated by the laser itself due to its high repetition rate. On the other hand, the helium glow discharge plasma mainly acts as excitation source, because little amounts od sample atoms can be introduced due to the low sputtering rate. This effect arises from the low sputtering yield as well as the low ionization efficiency of helium atom. Besides, the excited species of helium gases has the excitation ability for atomic species requiring large excitation energies as fluorine atom due to their high metastable levels. From these characteristics in this method, the sampling process and the excitation having high excitation energy levels. In this study, fluorine atomic lines requiring large excitation energies were measured. These lines were observed only when the laser was irradiated to the helium plasma. They could be observed neither in the argon plasma nor in the helium plasma without the laser irradiation. Further, the calibration curve for a fluorine atomic line gave a linear relationship in the LiF concentration range of 0.02-5.0 mass%, as shown in Fig 2.

  11. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-11-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  12. The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Science.gov (United States)

    Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N. J.; Matejcik, S.

    2016-04-01

    This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).

  13. Final Report DE-FG02-00ER54583: 'Physics of Atmospheric Pressure Glow Discharges' and 'Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas'

    International Nuclear Information System (INIS)

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  14. Restraint Effect of Filaments on Applied Voltage in Atmospheric Pressure Glow Discharge%Restraint Effect of Filaments on Applied Voltage in Atmospheric Pressure Glow Discharge

    Institute of Scientific and Technical Information of China (English)

    李森; 陈强; 刘忠伟

    2012-01-01

    In this study, argon and nitrogen were used as the discharge gases in radio-frequency (RF: 13.56 MHz) powered dielectric barrier atmospheric plasma. It was noticed that in single dielectric barrier discharge (DBD) with nitrogen as the discharge gas, or in argon plasma with a high applied power, micro-filament channels were easily formed. The channels in these two kinds of discharge were both constrictive on the bare metallic electrode and expansive on the opposite electrode covered with a quartz layer. The number of micro-channels was increased along with the input power, which caused the change in the I-V curve shape, i.e., the current kept increasing and the voltage fluctuated within a confined range. With double dielectric layers, however, no micro-channels appeared in the ICCD images, and the I-V curve demonstrated a totally different shape. It was assumed that micro-filaments exhibited a restraining effect on the discharge voltage. The mechanism of this restraining effect was explored in this work.

  15. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    Science.gov (United States)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  16. TREATMENT OF METALS, POLYMER FILMS, AND FABRICS WITH A ONE ATMOSPHERE UNIFORM GLOW DISCHARGE PLASMA (OAUGDP) FOR INCREASED SURFACE ENERGY AND DIRECTIONAL ETCHING

    Institute of Scientific and Technical Information of China (English)

    J. Reece Roth; Z.Y. Chen; Peter P.- Y. Tsai

    2001-01-01

    Direct exposure of samples to the active species of air generated by a One AtmosphereUniform Glow Discharge Plasma (OA UGDP) has been used to etch and to increasethe surface energy of metallic surfaces, photoresist, polymer films, and nonwoven fab-rics. The OAUGDP is a non-thermal plasma with the classical characteristics of aDC normal glow discharge that operates in air (and other gases) at atmospheric pres-sure. Neither a vacuum system nor batch processing is necessary. A wide range ofapplications to metals, photoresist, films, fabrics, and polymeric webs can be accom-modated by direct exposure of the workpiece to the plasma in parallel-plate reactors.This technology is simple, it produces effects that can be obtained in no other way atone atmosphere; it generates minimal pollutants or unwanted by-products; and it issuitable for individual sample or online treatment of metallic surfaces, wafers, films.and fabrics.``Early exposures of solid materials to the OA UGDP required minutes to produce rela-tively small increases of surface energy. These durations appeared too long for com-mercial application to fast-moving webs. Recent improvements in OA UGDP gas com-position, power density, plasma quality, recirculating gas flow, and impedance match-ing of the power supply to the parallel plate plasma reactor have made it possible toraise the surface energy ofa variety of polymeric webs (PP, PET, PE, etc.) to levels of60 to 70 dynes/crn with one second of exposure. In air plasmas, the high surface ener-gies are not durable, and fall to 50 dynes/em after periods of weeks to months. Here.we report the exposure of metallic surfaces, photoresist, polymeric films, and nonwo-ven fabrics made of PP and PET to an impedance matched parallel plate OA UGDPfor durations ranging from one second to several tens of seconds. Data will be re-ported on the surface energy, wettability, wickability, and aging effect of polymericfilms and fabrics as functions of time of exposure, and time

  17. Sampling modulation technique in radio-frequency helium glow discharge emission source by use of pulsed laser ablation.

    Science.gov (United States)

    Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-05-01

    An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed. PMID:15034707

  18. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    Science.gov (United States)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  19. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    International Nuclear Information System (INIS)

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  20. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    Energy Technology Data Exchange (ETDEWEB)

    Lin Lin; Wang Yao; Huang Xiaodan [Eye Center, Affiliated Second Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China); Xu Zhikang [Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yao Ke, E-mail: xlren@zju.edu.cn [Eye Center, Affiliated Second Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2010-10-01

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  1. Validation of gas temperature measurements by OES in an atmospheric air glow discharge with water electrode using Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Verreycken, T; Van Gessel, A F H; Pageau, A; Bruggeman, P, E-mail: p.j.bruggeman@tue.n [Eindhoven University of Technology, Department of Applied Physics, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-04-15

    Rayleigh scattering is used to determine the gas temperature of an atmospheric pressure dc excited glow discharge in air with a water electrode. The obtained temperatures are compared with calculated rotational temperatures measured by optical emission spectroscopy of OH(A-X) and N{sub 2}(C-B). At a current of 15 mA a deviation is found between T{sub rot}(OH) and the gas temperature obtained from Rayleigh scattering of about 1000 K. The gas temperatures obtained from Rayleigh scattering, N{sub 2}(C) and OH(A) in the positive column are, respectively, 2600 {+-} 100 K, 2700 {+-} 150 K and 3600 {+-} 200 K. It is shown that the rotational temperature of N{sub 2}(C) is a reliable measurement of the gas temperature while this is not the case for OH(A). The results are explained in the context of quenching processes of the excited states. Spatially resolved gas temperatures in both longitudinal and radial directions are presented. The observed strong temperature gradients near the electrodes are checked to be consistent with the power dissipation and the heat transfer in the discharge. The effect of the polarity of the water electrode and filamentation on the measured temperatures is discussed.

  2. Restraint Effect of Filaments on Applied Voltage in Atmospheric Pressure Glow Discharge

    International Nuclear Information System (INIS)

    In this study, argon and nitrogen were used as the discharge gases in radio-frequency (RF: 13.56 MHz) powered dielectric barrier atmospheric plasma. It was noticed that in single dielectric barrier discharge (DBD) with nitrogen as the discharge gas, or in argon plasma with a high applied power, micro-filament channels were easily formed. The channels in these two kinds of discharge were both constrictive on the bare metallic electrode and expansive on the opposite electrode covered with a quartz layer. The number of micro-channels was increased along with the input power, which caused the change in the I-V curve shape, i.e., the current kept increasing and the voltage fluctuated within a confined range. With double dielectric layers, however, no micro-channels appeared in the ICCD images, and the I-V curve demonstrated a totally different shape. It was assumed that micro-filaments exhibited a restraining effect on the discharge voltage. The mechanism of this restraining effect was explored in this work.

  3. Study of a new direct current atmospheric pressure glow discharge in helium

    Energy Technology Data Exchange (ETDEWEB)

    Gielniak, B. [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fiedler, T. [Johannes Gutenberg-University Mainz, Institute for Inorganic and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2011-01-15

    In this study a new DC-APGD operated in He was developed and characterized. The discharge is operated at 0.9 kV and about 25-35 mA and at a gas flow of 100 ml/min. The source was spectroscopically studied and parameters such as the rotational temperature (T{sub rot}), the excitation temperature (T{sub exc}), the ionization temperature (T{sub ion}) and the electron number density (n{sub e}) were determined. The current-voltage characteristic of the source was studied as well. At optimized conditions the discharge operates in the normal region of the current-voltage characteristic. Rotational and excitation temperatures determined with the use of OH band and Fe I lines as thermometric species were of the order of about 900-1200 and 4500-5500 K, respectively. This indicates that despite of the atmospheric pressure, the discharge is not in LTE. Spatially resolved temperature measurements were performed with axial as well as radial resolution and showed relatively flat profiles. Axially resolved emission intensity profiles for several species such as H, N{sub 2}, N{sub 2}{sup +}, OH, He and Hg were determined. It also was found that H{sub 2} introduced into the He by electrolysis of acid solutions such as in ECHG considerably increases the spectroscopically measured gas temperatures but decreases the analyte line intensities, as shown for Hg.

  4. The effect of frequency on atmospheric pressure glow discharge in a pin-to-plate gap sustained by a resonant power supply

    Science.gov (United States)

    Wang, Yong Sheng; Ding, Wei Dong; Wang, Ya Nan; Wang, Jia Chen; Li, Fang; Fan, Chuan

    2016-06-01

    More and more researchers have been attracted to the research of atmospheric pressure glow discharge (APGD) because of its great prospect in numerous industrial applications. Nevertheless, almost all of the industrial applications are based on achievement of stable, large-volume, and uniform APGD. In a previous study, stable filamentary APGD was obtained by applying a resonant power supply between pin-to-plate electrodes which could limit the peak value of discharge current to supress the glow-to-arc transition through a series-wound resonance principle. The filamentary APGD is centimeter-level in the length but only several millimeters in diameter. Therefore, in order to obtain large-volume and uniform APGD, it is significant to study how to diffuse filamentary APGD in radial direction. With the increasing resonant frequency of alternating current discharge, excited particles (mainly including energetic electrons and trapped ions left from the previous half-cycle discharge) in the electrodes gap increase, which benefits obtaining stable self-sustaining APGD. In this paper, mechanism and law of the influence of resonant frequency on the diffusion of filamentary APGD in ambient air were studied. By comparing the photos of discharge plasma and waveforms of the discharge voltage and current, it is found that the volume of the glow discharge plasma enlarges as the resonant frequency of the power supply increases. It is very significant and anticipating to study how to obtain stable, large-volume, and uniform APGD in ambient air by the resonant power supply.

  5. Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution

    OpenAIRE

    Sasaki, Koichi; Ishigame, Hiroaki; Nishiyama, Shusuke

    2015-01-01

    This paper reports the density distributions of OH, Na, water vapor and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. The densities of OH, Na and H2O had different spatial distributions, while the Na density had a similar distribution to mist, suggesting that mist is the source of Na in the gas phase. When the flow rate of helium toward the electrolyte surface was increased, the distributions of all the species densities concentrated in the neighbori...

  6. Upper Atmospheric Particulate Monitoring and Sample Return

    Science.gov (United States)

    Liddell, Alan; Sohl, John E.

    2010-10-01

    H.A.R.B.O.R. (High Altitude Reconnaissance Balloon for Outreach and Research) is a student-run program in which high-altitude balloon systems are designed, constructed, and flown by students conducting individual or group research projects. One area of interest is in the sampling of particles in the upper atmosphere. Collecting airborne particulates and studying them under an SEM can answer questions on the origins of airborne particulate matter. We could find explanations for climate change or directly measure pollution caused by smokestacks. The SEM has the capacity to capture images of particulates and determine their composition. I am building a system capable of sampling air up to 30km (100,000 ft). The system will contain a servo-controlled filter system for sampling air captured by the ascent of the balloon. Currently, filter types are being evaluated for capture rate and air flow resistance. A circuit has been built to test the mass throughput of the airflow as the balloon travels its course. A vacuum chamber is being built to simulate the nearspace environment. Testing and simulation should be complete in time to fly a finalized sample return mission in spring 2011.

  7. Study of the atmospheric flashes and man-made global phenomena ultraviolet and infrared glow of the night air on the board of satellite "VERNOV"

    Science.gov (United States)

    Garipov, Gali; Panasyuk, Mikhael; Svertilov, Sergey; Bogomolov, Vitaliy; Barinova, Vera; Saleev, Kirill

    2016-04-01

    The set of scientific payload for optical observation on-board of "Vernov" satellite, launched at July 8, 2014, had measured transient (millisecond) flashes in the atmosphere in two wavelength bands: ultraviolet (UV,240-380nm) and red-infrared (IR,610-800nm). Global distribution of the flashes, their frequency and time parameters are studied in this work. Transient flashes measured from the satellite frequently were detected in high latitudes in winter time. Flashes in equatorial region were observed in series which were stretched along magnetic meridian and some of them were detected in cloudless regions. At night time when the Earth atmosphere was observed in nadir direction there were registered the optical signals of artificial origin, distributed along the meridian in an extended region of latitude in the Northern and Southern hemispheres of the Earth, modulated by low frequency and at the coincidence of the orbits with the geographic location of the powerful radio stations. Examples of the waveforms of such signals in UV and IR spectral ranges and their global distribution are presented in this presentation. Particular attention is paid to man-made causes of the glow in the ionosphere under the influence of the high power radio wave transmitters of low (LF) and high frequencies (HF). The height of the luminescence source and components of the atmosphere, which can be the sources of this radiation, are discussed.

  8. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Science.gov (United States)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  9. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2007-05-15

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform {alpha} mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  10. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  11. Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jichul; Raja, Laxminarayan L [Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-05-21

    The dielectric-barrier (DB) discharge is an important approach to generate uniform non-equilibrium atmospheric-pressure glow discharges. We report run-to-run variations, asymmetric pulse formation and long time-scale transient phenomena in these discharges. For similar DB discharge geometric and operating conditions, we observe significant run-to-run variations as manifested in the different voltage-current waveforms at the start of each new run. These run-to-run variations are also accompanied by asymmetric pulses at the start of each run. The variations are observed to drift to a repeatable true steady-state condition on time scales of order tens of minutes to hours. Asymmetric pulse waveforms drift to a symmetric pulse waveform at the true steady state. We explore reasons for these phenomena and rule out thermal drift during a discharge run and gas-phase impurity buildup as potential causes. The most plausible explanation appears to be variations in the surface characteristics of the DBs between two consecutive runs owing to varying inter-run environmental exposure and the conditioning of the dielectric surface during a run owing to plasma-surface interactions. We speculate that the dielectric surface state affects the secondary electron emission coefficient of the surface which in turn is manifested in the discharge properties. A zero-dimensional model of the discharge is used to explore the effect of secondary electron emission.

  12. Formation of Dielectric Barrier Multi-Pulse Glow Discharges in Helium at Atmospheric Pressure%大气压氦气介质阻挡多脉冲辉光放电的形成条件

    Institute of Scientific and Technical Information of China (English)

    郝艳捧; 王晓蕾; 阳林

    2009-01-01

    Discharge currents are measured on single pulse, multi-pulse glow dielectric barrier discharges (DBDs) using high-frequency power supply in helium at atmospheric pressure. The influence of the applied voltage amplitude and frequency, as well as gas distance on multi-pulse glow DBD is discussed and analyzed. Conditions to form multi-pulse glow DBDs are proposed. The results show that the higher amplitude of the applied voltage, the lower voltage frequency can be useful to form a multi-pulse glow DBD. Moreover, the higher applied voltage is necessary to form multi-pulse glow DBDs.%利用高频高压电源,进行大气压氦气介质阻挡放电试验,测量了单脉冲和多脉冲辉光放电的放电回路电流波形,分析了外加电压峰.峰值和频率、放电间隙对多脉冲辉光放电过程的影响,探讨了大气压氦气介质阻挡多脉冲辉光放电的形成条件.研究表明:多脉冲辉光放电的形成条件是较高的外加电压峰-峰值、较低的电源频率,其中较高的外加电压峰-峰值是产生多脉冲辉光放电的必要条件.

  13. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    OpenAIRE

    J. Namieśnik; K. Skarżyńska; Ż Polkowska

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  14. Glow and pseudo-glow discharges in a surface discharge generator

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Chen; Dong Li-Fang; Wang Long

    2005-01-01

    The glow discharge in flowing argon at one atmospheric pressure is realized in a surface discharge generator. The discharge current presents one peak per half-cycle of the applied voltage. The duration of the discharge pulse is more than 1μs when the frequency of the applied voltage is 60kHz. For the glow discharge in argon, the power consumption increases with the increase of voltage or the decrease of gas pressure.This relation is explained qualitatively based on the theory of the Townsend breakdown mechanism. In contrast, the discharge current in one atmospheric pressure air gives many spikes in each half-cycle, and correspondingly this kind of discharge is called pseudo-glow discharge. Every current spike oscillates with high-frequency damping. The pseudo-glow discharge in one atmospheric pressure air might result from the streamer breakdown mechanism.

  15. The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode

    Energy Technology Data Exchange (ETDEWEB)

    Dzimitrowicz, Anna; Jamroz, Piotr, E-mail: piotr.jamroz@pwr.edu.pl; Greda, Krzysztof; Nowak, Piotr; Nyk, Marcin; Pohl, Pawel [Wroclaw University of Technology, Faculty of Chemistry (Poland)

    2015-04-15

    Gold nanoparticles (Au NPs) were prepared by direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between a miniature argon flow microjet and a flowing liquid cathode. The applied discharge system was operated in a continuous flow liquid mode. The influence of various stabilizers added to the solution of the liquid cathode, i.e., gelatin (GEL), polyvinylpyrrolidone (PVP), or polyvinyl alcohol (PVA), as well as the concentration of the Au precursor (chloroauric acid, HAuCl{sub 4}) in the solution on the production growth of Au NPs was investigated. Changes in the intensity of the localized surface plasmon resonance (LSPR) band in UV/Vis absorption spectra of solutions treated by dc-μAPGD and their color were observed. The position and the intensity of the LSPR band indicated that relatively small nanoparticles were formed in solutions containing GEL as a capping agent. In these conditions, the maximum of the absorption LSPR band was at 531, 534, and 535 nm, respectively, for 50, 100, and 200 mg L{sup −1} of Au. Additionally, scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used to analyze the structure and the morphology of obtained Au NPs. The shape of Au NPs was spherical and uniform. Their mean size was ca. 27, 73, and 92 nm, while the polydispersity index was 0.296, 0.348, and 0.456 for Au present in the solution of the flowing liquid cathode at a concentration of 50, 100, and 200 mg L{sup −1}, respectively. The production rate of synthesized Au NPs depended on the precursor concentration with mean values of 2.9, 3.5, and 5.7 mg h{sup −1}, respectively.

  16. Glow discharge optical emission of plutonium and plutonium waste

    International Nuclear Information System (INIS)

    The application of glow discharges to the analysis of nonconducting materials such as glasses and ceramics is of great interest due to the number of advantages afforded by their direct solids capabilities. These types of samples, by their chemical nature, pose difficulties in dissolution for their subsequent analysis by common spectroscopic instrumental methods such as inductively coupled plasma atomic emission (ICP-AES). The ability of the glow discharge to sputter-atomize and excite solid nonconducting materials greatly reduces sample preparation time, cost, and complexity of an analysis. In comparison with x-ray spectroscopies, GD also provides the advantage of a relatively uniform sample atomization rate, resulting in a lowering of matrix effects. In a traditional direct current glow discharge (dc-GD), the material to be analyzed must first be ground and thoroughly mixed with a conductive host matrix and pressed into a solid pellet. Additionally, atmospheric gases which are often trapped in the sample upon pressing can degrade the quality of the plasma and obscure analytical results by reducing sputtering rates and affecting excitation conditions. Internal standardization has been carried out in both atomic absorption and emission dc-GD analyses in order to improve precision and accuracy which are affected by these problems

  17. Atmospheric tritium sampling at the NTS

    International Nuclear Information System (INIS)

    A modification of the method for the simultaneous collection of gaseous tritium and tritiated water vapor in air is under investigation. It is believed that the auxiliary hydrogen stream is unnecessary if a small volume of distilled water is added at the point of collection of water generated by the Pt-H2-O2 reaction. To test this hypothesis, two samplers were set up to sample the same air stream. Results are encouraging

  18. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  19. Optimizing the atmospheric sampling sites using fuzzy mathematic methods

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new approach applying fuzzy mathematic theorems, including the Primary Matrix Element Theorem and the Fisher ClassificationMethod, was established to solve the optimization problem of atmospheric environmental sampling sites. According to its basis, an applicationin the optimization of sampling sites in the atmospheric environmental monitoring was discussed. The method was proven to be suitable andeffective. The results were admitted and applied by the Environmental Protection Bureau (EPB) of many cities of China. A set of computersoftware of this approach was also completely compiled and used.

  20. 针-板DBD微流注与微辉光交替生成的机理研究%Atmospheric pressure streamer and glow-discharge generated alternately by pin-to-plane dielectric barrier discharge in air

    Institute of Scientific and Technical Information of China (English)

    俞哲; 张芝涛; 于清旋; 许少杰; 姚京; 白敏冬; 田一平; 刘开颖

    2012-01-01

    Performance of producing a high energy electron can be improved, if the glow discharge is generated in a system of dielectric barrier discharge. In this paper, different discharge modes of pin-to-plane dielectric barrier discharge are investigated in atmospheric pressure. Different discharge modes are observed in the positive half-period and negative half-period of the discharge. When and applied voltage is 3 kV, a streamer mode appear in the positive half-period and a corona (or Trichel discharge) mode occurs in negative half-period. When the applied voltage is 6 kV, a streamer emerges in the positive half-period and a micro glow discharge is present in the negative half-period. The micro glow discharge has hierarchical structure like that typical low pressure glow discharge produces. The generation of micro glow discharge is due to, enough strong cathode electric field strength and effective secondary electron emission process around naked negative electrode. The glow discharge transforming to arc discharge is avoided due to dielectric layer.%在介质阻挡放电体系中产生辉光放电可以有效的提高放电体系产生高能电子的性能,为等离子体化学反应提供更加丰富的活性粒子.本文对针一板介质阻挡放电体系下的放电模式进行了研究,实验发现放电正负半周期表现出不同的放电模式,激励电压为3kV时放电正负半周期分别为微流注放电和电晕放电(或者Trichel脉冲放电),激励电压为6kV时放电正负半周期分别为微流注放电和微辉光放电.微辉光放电形貌具有与典型辉光放电相同的分层次放电结构,分析了激励电压6kV时的放电过程,认为足够强的阴极电场强度和裸露针状电极形成的有效的二次电子发射过程是形成微辉光放电的主要因素,绝缘介质层的存在避免了微辉光放电向弧光放电过渡.

  1. An automated atmospheric sampling system operating on 747 airliners

    Science.gov (United States)

    Perkins, P. J.; Gustafsson, U. R. C.

    1976-01-01

    An air sampling system that automatically measures the temporal and spatial distribution of particulate and gaseous constituents of the atmosphere is collecting data on commercial air routes covering the world. Measurements are made in the upper troposphere and lower stratosphere (6 to 12 km) of constituents related to aircraft engine emissions and other pollutants. Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This unique system includes specialized instrumentation, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituent and related flight data are tape recorded in flight for later computer processing on the ground.

  2. Atmospheric Gas Tracers in Groundwater: Theory, Sampling. Measurement and Interpretation

    International Nuclear Information System (INIS)

    Some of the atmospheric gasses posses features that are sought in an environmental tracer of hydrogeologic interest. Among these, chlorofluorocarbons, sulfur hegzafluoride, carbon tetrachloride, methyl chloroform, krypton-85 etc. have found increasing use in groundwater age dating studies during the last ten years. This paper explains the theory of their use as tracer and discusses the major concerns as related to their sampling and analyses. Factors affecting their applicability and the approach to interpret tracer gas data is briefly outlined

  3. Microbiological sampling of the atmosphere using a latex sounding balloon

    Science.gov (United States)

    Adkins, W. P.; Bryan, N.; Christner, B. C.; Guzik, T. G.; Stewart, M. F.; Giammanco, J. R.

    2010-12-01

    The occurrence of microbes in the atmosphere has been the subject of scientific inquiry since Louis Pasteur’s time; however, data on the nature and diversity of microbial life in the upper troposphere and stratosphere is very limited. To experimentally address this, we have designed, constructed, and field-tested a lightweight, autonomous system that can sample at high altitudes using a latex sounding balloon. An important aspect of our sampling protocol is the ability to decontaminate and assess the level of background contamination during laboratory and field handling. Our approach involves the parallel decontamination and monitoring of 3 identical payloads: (i) one that remains in the laboratory, (ii) a control on the flight string, and (iii) a payload that opens and samples airborne particles in the atmosphere. Comparative analysis of various sterilization methods indicated that ethylene oxide was most effective at decreasing the concentration of DNA-containing cells, decreasing background cellular contamination by 94%. In conjunction, germicidal ultraviolet light, sodium hypochlorite, and 70% ethanol were used to decrease the concentration of microbes associated with payload surfaces. Bioaerosol collection is achieved by impact sampling on a 3.5 mm^2 retention surface covered with a thin layer of sterile silicone grease as the payload travels through the atmosphere. Initial flights have been successful in recovering viable microorganisms present in parcels of air at altitudes of 3 km to 9 km. Microscopic analysis on the collected cell assemblages implied that ~70% of the cells were potentially viable, and aerobic heterotrophic bacteria were cultured and isolated from liquid and agar-solidified culture media. Future plans include increasing the sampling altitude up to ~30 km in a series of discrete steps, maintaining our background controls and connection to lower altitude measurements. The pressure, temperature, and radiation levels in Earth’s stratosphere

  4. Reconstruction of thermally quenched glow curves in quartz

    International Nuclear Information System (INIS)

    The experimentally measured thermoluminescence (TL) glow curves of quartz samples are influenced by the presence of the thermal quenching effect, which involves a variation of the luminescence efficiency as a function of temperature. The real shape of the thermally unquenched TL glow curves is completely unknown. In the present work an attempt is made to reconstruct these unquenched glow curves from the quenched experimental data, and for two different types of quartz samples. The reconstruction is based on the values of the thermal quenching parameter W (activation energy) and C (a dimensionless constant), which are known from recent experimental work on these two samples. A computerized glow-curve deconvolution (CGCD) analysis was performed twice for both the reconstructed and the experimental TL glow curves. Special attention was paid to check for consistency between the results of these two independent CGCD analyses. The investigation showed that the reconstruction attempt was successful, and it is concluded that the analysis of reconstructed TL glow curves can provide improved values of the kinetic parameters E, s for the glow peaks of quartz. This also leads to a better evaluation of the half-lives of electron trapping levels used for dosimetry and luminescence dating.

  5. Use of passive sampling for atmospheric tritium monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Ideias, P.; Pierrard, O.; Tournieux, D. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Tenailleau, L. [Marine nationale (France)

    2014-07-01

    Tritium is one of the most important radionuclide in environmental radiological monitoring. In French civil and military nuclear facilities, the releases levels are between 100 to 100 000 higher than any other radionuclide (rare gas excluded). Moreover these levels will probably increase in the next decades. With an average energy of 6 keV, the beta particle from tritium radioactive decay is difficult to detect and quantify within the environmental levels. To monitor the tritium in the air, French actors (authorities, operator, and experts) commonly use atmospheric bubblers and water vapour condensers. This type of sampling approach is time-consuming and very costly. To simplify and complete these methods, the Institute for Radiological Protection and Nuclear Safety (IRSN), had developed an atmospheric tritium monitoring device based on passive sampling. The passive sampler developed consists in a small container designed with a patented specific geometry and filled with 13X molecular sieve. This system is based on free diffusion flow principle (Fick's law). The driving force is the partial pressure gradient existing between the environmental atmosphere and the passive sampler. The constancy of the sampling rate for different moisture conditions assures the representativeness of the proposed device. The desorption bench developed specifically allows the recovery of 99% of the water vapour sampled in the molecular sieve. More than 99% of the sampled tritium (HTO) activity is recovered in the range between 0 and 100 Bq.L{sup -1}. Above 100 Bq.L{sup -1} to 25 k Bq.L{sup -1} (max tested activity), it was verified that no more than 3% of the tritium remains in the molecular sieve.. Thus, the use of passive sampler provides: - a representative sampling method, - a good detection limit (0,01 Bq.m{sup -3}), - no electric power supply needs, - a wide range of sampling duration (1 day to 1 month), - a low-cost method for monitoring. Different performance tests were

  6. Determination of Hg{sup 2+} by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Zhang, Zhen [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Wang, Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-10-03

    Highlights: • A modified SBA-15 mesoporous silica (SH-SBA-15) was synthesized as a sorbent. • On-line SPE combined with SCGD-AES based on FIA was used to detect Hg{sup 2+} firstly. • A simple, low-cost Hg{sup 2+} analysis in a complex matrix was established. • The sensitive detection of Hg{sup 2+} was achieved with a detection limit of 0.75 μg L{sup −1}. - Abstract: A simple and sensitive method to determine Hg{sup 2+} was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized L-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg{sup 2+} elution conditions, namely, an FI flow rate of 2.0 mL min{sup −1} and an eluent comprised of 10% thiourea in 0.2 mol L{sup −1} HNO{sub 3}. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L{sup −1}, and the precision of the 11 replicate Hg{sup 2+} measurements was 0.86% at a concentration of 100 μg L{sup −1}. The proposed method was validated by determining Hg{sup 2+} in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310)

  7. Research Advances: Perchlorate in Dairy and Breast Milk Samples; NO Glow on Mars; Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    Science.gov (United States)

    King, Angela G.

    2005-07-01

    Perchlorate levels in milk suggest widespread presence of the chemical. NO emissions indicate circulation in Martian atmosphere. Modeling reveals subtle differences in drug membrane receptor interactions.

  8. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  9. 大气压氦气介质阻挡斑图放电与辉光放电的转换条件及其演化过程%Conversion and Evolution Process of Patterned Discharges to Glow Discharges in Atmospheric-pressure Helium Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    郝艳摔; 郑彬; 刘耀阁

    2012-01-01

    为研究在大气压氦气中斑图放电与辉光放电的转换,利用高频高压电源进行了大气压氦气介质阻挡放电(DBD)试验。通过测量外加电压与回路电流随时间变化的波形,并利用增强型电荷耦合器件(intensifiedchargecoupleddevice,ICCD)相机同时拍摄电极侧面和底面的短时曝光放电图像,研究了斑图放电和辉光放电的放电模式以及2种放电模式的转换规律。研究结果显示:放电起始时放电空间出现斑图放电,每个斑图放电单元经历了由汤森放电向辉光放电的演化过程;放电起始后降低外加电压,可得到稳定的单脉冲辉光放电;升高外加电压,回路电流逐渐变成双脉冲,斑图放电单元面积变小,放电单元数增多,放电逐渐均匀;外加电压升高到回路电流变为3脉冲及以上时放电转化为多脉冲辉光放电。以上结果证明:单个回路电流波形不能用来判断放电的均匀性;随着外加电压的升高,斑图放电向辉光放电的转换过程实质上是局部辉光放电向整体辉光放电的演化过程。%In order to study the conversion of spational-temporal patterned discharges to glow discharges in atmospheric helium, dielectric barrier discharges {DBDs) were obtained using a high-frequency power supply in atmospheric helium. Waveform of the applied voltage and loop current were measured and short exposure time discharge photos were taken with an intensified charge-couple device {ICCD} to investigate the characteristics of spatio-temporal patterned discharges, especially their conversion to glow discharges. The characteristics of glow discharges were also discussed. The results showed that spatio-temporal patterned discharges occurred when the applied voltage was high enough. Each pattern shared similar characteristics with a glow discharge and its physical process started from a Townsend discharge to a glow one. After a patterned

  10. Coupling of multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction with pulse glow discharge-ion mobility spectrometry for analysis of triazine herbicides in water and soil samples.

    Science.gov (United States)

    Zou, Nan; Yuan, Chunhao; Liu, Shaowen; Han, Yongtao; Li, Yanjie; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-07-29

    An analytical method based on stir bar sorptive extraction (SBSE) coupled with pulse glow discharge-ion mobility spectrometry (PGD-IMS) was developed for analysis of three triazine pesticide residues in water and soil samples. An injection port with sealing device and stir bars hold device were designed and constructed to directly position the SBSE fiber including the extracted samples into the heating device, making desorption and detection of analytes proceeded simultaneously. The extraction conditions such as SBSE solid phase material, extraction time, extraction temperature, pH value and salt concentration were optimized. Mixture of MWCNTs-COOH and PDMS were shown to be effective in enriching the triazines. The LODs and LOQs of three triazines were found to be 0.006-0.015μgkg(-1) and 0.02-0.05μgkg(-1), and the linear range was 0.05-10μgL(-1) with determination coefficients from 0.9987 to 0.9993. The SBSE-PGD-IMS method was environmentally friendly without organic solvent consumption in the entire experimental procedures, and it was demonstrated to be a commendable rapid analysis technique for analysis of triazine pesticide residues in environmental samples on site. The proposed method was applied for the analysis of real ground water, surface water and soil samples. PMID:27371024

  11. Detection of surface glow related to spacecraft glow phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Langer, W.D.; Cohen, S.A.; Manos, D.M.; Motley, R.W.; Ono, M.; Paul, S.; Roberts, D.; Selberg, H.

    1986-02-01

    We have developed a high flux source of low energy neutral beams to study the spacecraft glow phenomena by using a biased limiter to neutralize plasma in ACT-1. Beams of nitrogen and nitrogen-oxygen mixtures with energies of 1 to 15 eV and fluxes greater than or equal to 10/sup 14//cm/sup 2//s were directed on target surfaces consisting of Z-302 and Z-306 paints. With the nitrogen beams we successfully detected a glow due to beam-surface interactions. In addition, we discovered a volume glow effect due to beam-gas interactions which may also play a role in spacecraft glow. 11 refs., 14 figs.

  12. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  13. Air Sampling Instruments for Evaluation of Atmospheric Contaminants. Fourth Edition.

    Science.gov (United States)

    American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

    This text, a revision and extension of the first three editions, consists of papers discussing the basic considerations in sampling air for specific purposes, sampler calibration, systems components, sample collectors, and descriptions of air-sampling instruments. (BT)

  14. Observation of the glow-to-arc transitions

    Science.gov (United States)

    Watanabe, Shigeru; Saito, Shigeki; Takahashi, Kunio; Onzawa, Tadao

    2002-10-01

    Researches of the glow-to-arc transitions have been required for a new development of the welding technology in low current. It is important to clarify the characteristics of plasma in the transitions because there have been few reports investigated the transitions in detail. The glow-to-arc transitions were observed in argon at atmospheric pressure. The Th-W electrodes of 1 mm in a diameter are used. Both of the electrodes are needle-shaped and set in a quartz tube coaxially. Plasma is generated between the electrodes with the gap spacing of 1 mm. A DC power supply has been applying constant voltage of 600 V during the discharge. A high-speed camera is used to record the images of plasma in the transitions with the measurement of voltage and current between the electrodes. As a result, two things were confirmed for the behavior of the glow-to-arc transition. First, plasma extended over the cathode surface in the transition from the glow to the arc. Second, temperature in the tip of the cathode would increase gradually during the glow and decrease during the arc.

  15. Mechanistic investigations of shuttle glow

    Science.gov (United States)

    Caledonia, G. E.; Holtzclaw, K. W.; Krech, R. H.; Sonnenfroh, D. M.; Leone, A.; Blumberg, W. A. M.

    1993-01-01

    A series of laboratory measurements have been performed in order to provide a mechanistic interpretation for the visible shuttle glow. These studies involved interactions of an 8 km/s oxygen atom beam with both contaminant dosed surfaces and gaseous targets. We conclude that visible shuttle glow arises from surface mediated O + NO recombination via a Langmuir-Hinshelwood mechanism and that the gas-phase exchange reaction O + N2 - NO + N provides a viable source of precursor NO above surfaces oriented in the ram direction.

  16. Determination of Atmospheric PCB Level Variations in Continuously Collected Samples.

    Science.gov (United States)

    Sakin, Ahmet Egemen; Tasdemir, Yücel

    2016-08-01

    Polychlorinated biphenyls (PCBs) were measured in ambient air samples (n = 48) that were collected for a 2- to 3-day period in each season (winter, spring, summer, fall) of 2013. The samples were collected on the Campus of Uludag University, which is in a semirural region. The samples were collected using a high-volume air sampler. The gas and particle phase concentrations of 87 PCB congeners (Σ87PCB) were measured in these samples. The average gas and particle phase concentrations of the Σ87PCB were calculated to be 293 ± 257 and 52 ± 56 ng/m(3), respectively. However, the results of short-term measurements showed that the variation among the measurements in the gas phase was up to 39-fold and up to 84-fold in the particle phase. These results demonstrated that the ambient air PCB concentrations were not stable and changed dramatically on a daily basis. Therefore, it was clear that a small number of samples could not be representative of the entire region. Furthermore, the obtained concentrations showed differences that depended on the meteorological conditions and long distance transportation. The sampling indicated that PCB homologues with 3 or 4 chlorines were dominant. PMID:27290669

  17. Gas-particle partitioning of pesticides in atmospheric samples

    Science.gov (United States)

    Sanusi, Astrid; Millet, Maurice; Mirabel, Philippe; Wortham, Henri

    A filter-XAD-2 resin plug high-volume air sampler was used to collect the particle (P) and vapour (V) phases of 11 pesticides. The atmospheric concentrations were measured simultaneously at three sites characterised as remote (Aubure in the Vosges mountains), rural (Colmar, in the upper Rhine Valley), and urban (Strasbourg, in the upper Rhine Valley). The measured concentrations, which agree with those of literature, were used to study the influence of the physico-chemical parameters on the V/P partitioning. The behaviour observed on two organochlorine pesticides ( α-HCH and HCB), carbaryl, and trifluraline corresponds to the one presented in literature for organochlorine and PAH. Therefore, the V/P partitioning is mainly controlled by temperature, total suspended particle (TSP), and vapour pressure. Nevertheless, the slope of the regression line of log( A.TSP/ F ) against log P° l (where A and F are, respectively, the gas and particulate concentrations and P° l is the subcooled liquid-vapour pressure) is less compared with that presented in literature (0.36 against approximately 0.85). This difference could possibly result from the low TSP concentrations measured in our study. For some pesticides (trifluraline, γ-HCH, mecoprop, carbofuran and atrazine) the description of the V/P partitioning is improved by using relative humidity in addition to the three previous environmental parameters (temperature, TSP and vapour pressure). There seems to exist a competition mechanism between water molecules in gas phase and pesticides to adsorb on the receiving sites of the particles. By this mechanism increase in the atmospheric relative humidity induces a simultaneous increase of pesticides in the gas phase.

  18. Miniaturized In Situ Atmospheric Probe Sampling Inlet System for Uranus or Saturn Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized in situ atmospheric probe sampling inlet system for measuring chemical and isotopic composition of the...

  19. Determination of metal content in atmospheric dust samples using different vessel and filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, G.; Wentrup, G.J.

    1989-02-01

    In this paper materials like glassfibre and quartzglass filters were analysed with respect to their application for the analysis of metal contents in atmospheric dust samples. Furthermore different vessel materials, resistant to fluoric acid, have been tested too. In summary the most important fact for the determination of metal content in atmospheric dust samples - prior condition the chosen analysis method is suitable and sensitive enough - is the quality of the used materials. These materials are to be chosen thoroughly to the conditions required.

  20. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0006

    Science.gov (United States)

    Gauntner, D. J.; Holdeman, J. D.; Humenik, F. M.

    1977-01-01

    The NASA Global Atmospheric Sampling Program (GASP) is obtaining measurements of atmospheric trace constituents in the upper troposphere and lower stratosphere using fully automated air sampling systems on board several commercial B-747 aircraft in routine airline service. Atmospheric ozone, and related flight and meteorological data were obtained during 245 flights of a Qantas Airways of Australia B-747 and two Pan American World Airways B-747s from July 1976 through September 1976. In addition, whole air samples, obtained during three flights, were analyzed for trichlorofluoromethane, and filter samples, obtained during four flights, were analyzed for sulfates, nitrates, fluorides, and chlorides. Flight routes and dates, instrumentation, data processing procedures, data tape specifications, and selected analyses are discussed.

  1. Evolution of the Tl glow curve of Zn S:Mn nanocrystalline

    International Nuclear Information System (INIS)

    Full text: In the last two decades, the search for new materials for dosimetry has included semiconductor nano materials because of their luminescent properties. This search has included the study, synthesis, characterization and performance of nano structured semiconductors, which optoelectronic properties determine their applications. In this paper the evolution of the thermoluminescent glow curve of nanocrystalline powder samples (40-70 nm) of zinc sulfide doped with manganese (Zn S:Mn) was analyzed at a dose of 500 Gy using a 60Co source. This material was synthesized by the coprecipitation method and heat treated at 500 degrees C in forming gas atmosphere (80 N2:20H2). Photoluminescence results indicate a direct relationship between the concentration of manganese and the intensity of a peak at λ ≅ 600 nm. By means of numerical deconvolution the behavior of the glow curves obtained at different times after exposure was analyzed. The causing traps of thermoluminescence are to 0.60 ± 0.05 and 1.7 ± 0.4 eV below the conduction band and within the band gap. The fading and a variation in the shape of the brightness curve (evolution) caused by non radiative transitions (rotational and vibrational) within the crystal structure of the material is also reported. (Author)

  2. Analysis of atmospheric aerosols by atomic emission spectrometry with electrical discharge sampling

    International Nuclear Information System (INIS)

    A procedure is developed for the determination of the concentration of heavy metals (Pb, Mn, Cu, Ni, Zn, and Cd) in atmospheric air by atomic emission spectrometry with gas-discharge sampling onto the end of a standard carbon electrode. A design of a two-section sampler is proposed; the sampler provides the rapid determination of deposition factors for the deposition of heavy metals contained in aerosol particles onto the end of a carbon electrode. Examples of determining metal concentrations in a model sample of air and in atmospheric air and determination limits of metals deposited onto the end of a carbon electrode are given

  3. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy

    Science.gov (United States)

    Cardenas, A.; Pineda, Y.; Sarmiento Santos, A.; Vera, E.

    2016-02-01

    Composite samples of 316 stainless steel and SiC were produced by powder metallurgy. Starting materials were mixed in different proportions and compacted to 700MPa. Sintering stage was performed by abnormal glow discharge plasma with direct current in an inert atmosphere of argon. The process was conducted at a temperature of 1200°C±5°C with a heating rate of 100°C/min. This work shows, the effectiveness of plasma sintering process to generate the first contacts between particles and to reduce vacancies. This fact is confirmed by comparing green and sintered density of the material. The results of porosity show a decrease after plasma sintering. Wear tests showed the wear mechanisms, noting that at higher SiC contents, the wear resistance decreases due to poor matrix-reinforcement interaction and by the porosity presence which causes matrix-reinforcement sliding.

  4. Numerical analysis of thermoluminescence glow curves

    International Nuclear Information System (INIS)

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs

  5. Development of an automatic sampling device for the continuous measurement of atmospheric carbonyls compounds

    International Nuclear Information System (INIS)

    Two sampling strategies were studied to develop an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. Because of its specificity towards carbonyls compounds, sampling by using a transfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was first studied. However, this method do not allow a quantitative sampling of all studied carbonyl compounds, nor a continuous measurement in the field. To overcome the difficulties, a second strategy was investigated: the cryogenic adsorption onto solid adsorbent followed by thermodesorption and a direct analysis by GC/MS. Collection efficiency using different solid adsorbents was found greater than 95% for carbonyl compounds consisting of 1 to 7 carbons. This work is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds. (author)

  6. Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)

    Science.gov (United States)

    Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.

    2011-04-01

    The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.

  7. Surface composition of industrial metal samples with potential for atmospheric mercury deposition

    OpenAIRE

    Roseborough, Diana; Gustavsson, I; Göthelid, Mats; Aune, Ragnhild E.

    2010-01-01

    Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry, Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to study atmospherically exposed metal samples for surface mercury concentration at room temperature. The metals were collected from industrial and pre-conditioned sources. In most cases, mercury detection was impossible because the samples were found to be highly contaminated from sources such as oxygen, carbon, chlorine and sulfur. However, t...

  8. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  9. Sampling of Atmospheric Aerosols by Electrostatic Precipitation for Direct Analyses. Part 1

    CERN Document Server

    Hermann, G; Matz, R; Trenin, A; Moritz, W; Hermann, Gerd; Lasnitschka, Georg; Matz, Rudolf; Trenin, Alexander; Moritz, Walter

    2002-01-01

    A novel system for aerosol sampling by electrostatic precipitation using graphite platforms as sample collector is presented. Employing standard platforms for commercial analytical instruments, the conception allows fast solid sampling direct element analysis with ETAAS, ETV-ICP-MS/OES, and ETACFS without any wet digestive pre-treatment. Other advantages are: highly efficient electrostatic particle collection (>99% for d = 10e-9 m - 10e-6 m), reusable sample collectors, omission of filters and chemical reagents. On this basis, an electrostatic precipitator is constructed aiming at a small, relatively uncomplicated instrument. Ten precipitators are arranged in a multi-sampling apparatus for outdoor operation, which simultaneously collect ten samples on same or different collectors for instrumental element analyses, or for microscopic investigations of the collected particles. The precipitator is tested with different model aerosols as well as with atmospheric sampling. Element analysis is carried out with the ...

  10. Sampling of Atmospheric Aerosols by Electrostatic Precipitation for Direct Analyses. Part 2

    CERN Document Server

    Hermann, G; Matz, R; Trenin, A; Moritz, W; Hermann, Gerd; Lasnitschka, Georg; Matz, Rudolf; Trenin, Alexander; Moritz, Walter

    2002-01-01

    A novel system for aerosol sampling by electrostatic precipitation using graphite platforms as sample collector is presented. Employing standard platforms for commercial analytical instruments, the conception allows fast solid sampling direct element analysis with ETAAS, ETV-ICP-MS/OES, and ETACFS without any wet digestive pre-treatment. Other advantages are: highly efficient electrostatic particle collection (>99% for d = 10e-9 m - 10e-6 m), reusable sample collectors, omission of filters and chemical reagents. On this basis, an electrostatic precipitator is constructed aiming at a small, relatively uncomplicated instrument. Ten precipitators are arranged in a multi-sampling apparatus for outdoor operation, which simultaneously collect ten samples on same or different collectors for instrumental element analyses, or for microscopic investigations of the collected particles. The precipitator is tested with different model aerosols as well as with atmospheric sampling. Element analysis is carried out with the ...

  11. Consideration of impact of atmospheric intrusion in subsurface sampling for investigation of suspected underground nuclear explosions

    International Nuclear Information System (INIS)

    Radioactive noble gases radioxenon and radioargon constitute the primary smoking gun of an underground nuclear explosion. The aim of subsurface sampling of soil gas as part of an on-site inspection (OSI) is to search for evidence of a suspected underground nuclear event. It has been hypothesized that atmospheric gas can disturb soil gas concentrations and therefore potentially add to problems in civilian source discrimination verifying treaty compliance under the comprehensive nuclear-test ban treaty. This work describes a study of intrusion of atmospheric air into the subsurface and its potential impact on an OSI using results of simulations from the underground transport of environmental xenon (UTEX) model. (author)

  12. Preparation of Fluorescent Carbon Nanoparticles by Glow Discharge Plasma at Atmospheric Pressure%常压辉光放电等离子体制备荧光碳纳米粒子

    Institute of Scientific and Technical Information of China (English)

    谢春香; 张禹涛; 马腾才

    2012-01-01

    Superfine fluorescent carbon nanoparticles were prepared by glow discharge plasma,which generated a large amout of active particles such as high-energy electrons to decompose ethanol,and then to initiate the free radical reactions for producing the carbon nanoparticles.Either polyethylene glycol(PEG) 2000 or polyvinylpyrrolidone(PVP) 20000 was used as surfactant or surface modifier for the ethanol.The fluorescent properties and morphology of the carbon nanoparticles were characterized by fluorescence spectrophotometer and transmission electron microscopy(TEM),respectively.The results show that the morphology of fluorescent carbon nanoparticles is graphitic.The fluorescent intensities of the nanoparticles increase with reaction time,and they are higher in the resultants modified by PEG-2000 than by PVP-20000,as well as for those generated under streamer discharge mode than under glow discharge one.The quantum yield of photoluminescence is 46.58% for carbon nanoparticles prepared.%采用常压辉光放电等离子体制备了超细荧光碳纳米粒子。分别采用聚乙二醇(PEG)2000和聚乙烯吡咯烷酮(PVP)20000作为表面活性剂和表面修饰剂,利用辉光放电等离子体射流产生的大量高能电子等活性粒子分解乙醇溶液制备碳纳米粒子。采用透射电子显微镜和荧光分光光度计对生成物的形貌和荧光特性进行了检测。结果表明,生成物为石墨相的荧光碳纳米颗粒。随着反应时间的延长,生成物的荧光强度增强;采用PEG-2000修饰后产物的荧光强度比采用PVP-20000更强;丝状放电模式下生成物的荧光强度高于辉光放电模式。制备的碳纳米颗粒的荧光量子产率为46.58%。

  13. Profiles of Methane Dimerization with a Glow Discharge Plasma System

    OpenAIRE

    Tanabe, Shuji; Okitsu, Kenji; Matsumoto, Hiroshige

    1999-01-01

    The dimerization of methane in the absence of oxygen has been investigated in order to evaluate a newly-developed glow-discharge plasma reactor operated at atmospheric pressure. A homogeneous circular plasma zone is observed between two electrodes of a rotor and a stator, the former of which is rotating at a high speed to make a larger reaction zone. It was recognized that in a stream of flowing helium that methane is converted to C 2 hydrocarbons at high selectivities which decreased with th...

  14. Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution.

    Science.gov (United States)

    Salo, Hanna; Berisha, Anna-Kaisa; Mäkinen, Joni

    2016-03-01

    This is the first study seasonally applying Sphagnum papillosum moss bags and vertical snow samples for monitoring atmospheric pollution. Moss bags, exposed in January, were collected together with snow samples by early March 2012 near the Harjavalta Industrial Park in southwest Finland. Magnetic, chemical, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), K-means clustering, and Tomlinson pollution load index (PLI) data showed parallel spatial trends of pollution dispersal for both materials. Results strengthen previous findings that concentrate and slag handling activities were important (dust) emission sources while the impact from Cu-Ni smelter's pipe remained secondary at closer distances. Statistically significant correlations existed between the variables of snow and moss bags. As a summary, both methods work well for sampling and are efficient pollutant accumulators. Moss bags can be used also in winter conditions and they provide more homogeneous and better controlled sampling method than snow samples. PMID:26969058

  15. The retrieval of abnormal TL glow curves using modified glow curve analysis method

    International Nuclear Information System (INIS)

    The shape of TL glow curve is a useful indicator for assurance of correct reading of the personal dosimeter. Since the reading procedure of TLD is irreversible, however, an analytic remedy should be considered to procure reliable dosimetric information for the readings with irregular glow curve shape. In this study, kinetic trapping parameter of CaSO4 : Dy Teflon personal dosimeter (Teledyne PB-6A) were analyzed by Halperin and Braner's model for general-order kinetics. From these kinetic trapping parameters, we also developed a simple procedure to retrieve the dosimetric information from abnormally distorted glow curves. The computerized glow curve deconvolution (CGCD) fitting of the reference glow curve with kinetic parameters from this study yields relative errors of about 5% from the expected integral. It was also found that the glow curve remedial procedure developed could retrieve the distorted TL glow curves within error ranges of 15%. With the glow curve retrieval techniques, doses incurred by gamma radiation can now be successfully re-constructed for the CaSO4 : Dy Teflon dosimeter resulting abnormal glow curves. (author)

  16. TL glow curve analysis of UV, beta and gamma induced limestone collected from Amarnath holy cave

    Directory of Open Access Journals (Sweden)

    Vikas Dubey

    2015-01-01

    Full Text Available The paper reports themoluminescence glow curve analysis of UV (ultraviolet, β (beta and γ (gamma induced limestone collected from Amarnath holy cave. The collected natural sample was characterized by X-ray diffraction (XRD technique and crystallite size calculated by Scherer's formula. Surface morphology and particle size was calculated by transmission electron microscopy (TEM study. Effect of annealing temperature on collected lime stone examined by TL glow curve study. The limestone was irradiated by UV radiation (254 nm source and the TL glow curve recorded for different UV exposure time. For beta irradiation Sr90 source was used and is shows intense peak at 256 °C with a shoulder peak at higher temperature range. For gamma radiation Co60 source and TL glow curve recorded for different doses of gamma. The kinetic parameters calculation was performed for different glow curve by computerized glow curve deconvolution (CGCD technique. The chemical composition of natural limestone was analyzed by energy dispersive X-ray spectroscopy (EDXS.

  17. Comparison of methods for the quantification of carbonate carbon in atmospheric PM10 aerosol samples

    Science.gov (United States)

    Jankowski, Nicole; Schmidl, Christoph; Marr, Iain L.; Bauer, Heidi; Puxbaum, Hans

    Carbonate carbon (CC) represents an important fraction of atmospheric PM10 along with organic carbon (OC) and elemental carbon (EC), if specific sources (e.g. street abrasion, construction sites, desert dust) contribute to its composition. However, analytical methods for an easy and unambiguous determination of CC in atmospheric aerosols collected on filter matrices are scarce. We propose here a method for the determination of CC based on a heating pretreatment of the sample to remove OC and EC, followed by a total carbon determination to measure CC. This procedure is used for the correction of EC also determined by a heating pretreatment (Cachier, H., Bremond, M.P., Buat-Ménard, P., 1989. Determination of atmospheric soot carbon with a simple thermal method. Tellus 41B, 379-390) but without previous HCl fumigation, as proposed. Comparison of the carbon remaining after the proposed thermal treatment at 460 °C for 60 min in an oxygen stream showed good correlation for the carbonate carbon derived by calculation from the ionic balance for ambient air and street dust samples. Using the "three step" combustion technique it is now possible to determine OC, EC and CC by the use of a TC analyser in the concentration range of 2-200 μg carbon per sample aliquot, with good precision (3-5% RSD for TC and 5-10% for CC) and accuracy. In ambient air samples from a sampling site in Vienna with elevated PM10 levels ("Liesing") CC values as high as 25% of TC and 27% CO 32-; for street dust samples 32% of TC and 25% CO 32- of total PM10 mass were observed.

  18. Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment

    Science.gov (United States)

    Große-Kreul, Simon; Hübner, Simon; Benedikt, Jan; von Keudell, Achim

    2016-04-01

    Mass spectrometry of ions from atmospheric pressure plasmas is a challenging diagnostic method that has been applied to a large variety of cold plasma sources in the past. However, absolute densities can usually not be obtained, moreover, the process of sampling of ions and neutrals from such a plasma inherently influences the measured composition. These issues are studied in this contribution by a combination of experimental and numerical methods. Different numerical domains are sequentially coupled to calculate the ion transmission from the source to the mass analyzer. It is found that the energy of the sampled ions created by a radio-frequency microplasma operated in a He-N2 mixture at atmospheric pressure is of the order of 0.1 eV and that it depends linearly on the ion mass in good agreement with the expectation for seeded particles accelerated in a supersonic expansion. Moreover, the measured ion energy distribution from an afterglow of an atmospheric pressure plasma can be reproduced on basis of the particle trajectories in the sampling system. Eventually, an estimation of the absolute flux of ions to the detector is deduced.

  19. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Hidetoshi, E-mail: hinishiy@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Koizumi, Mitsuru, E-mail: koizumi@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Ogawa, Koji, E-mail: kogawa@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Kitamura, Shinich, E-mail: kitamura@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Konyuba, Yuji, E-mail: ykonyuub@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Watanabe, Yoshiyuki, E-mail: watanabeyoshiy@pref.yamagata.jp [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata 990-2473 (Japan); Ohbayashi, Norihiko, E-mail: n.ohbayashi@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Fukuda, Mitsunori, E-mail: nori@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Suga, Mitsuo, E-mail: msuga@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2014-12-15

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control.

  20. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    International Nuclear Information System (INIS)

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control

  1. Metastable helium atom density in a single electrode atmospheric plasma jet during sample treatment

    Science.gov (United States)

    Zaplotnik, R.; Bišćan, M.; Popović, D.; Mozetič, M.; Milošević, S.

    2016-06-01

    The metastable He atoms play an important role in atmospheric pressure plasma jet (APPJ) chemistry processes and in the plasma generation. This work presents cavity ring-down spectroscopy (CRDS) investigation of metastable helium atom (2{{3}}{{S}1} ) densities in a single electrode APPJ during sample treatment. A spatially resolved density distribution of a free jet (without sample) was measured at a He flow rate of 2 slm. The maximum measured density of a free jet was around 7× {{10}11} cm‑3. With the insertion of a sample the densities increased up to 10 times. Helium metastable atoms, in a single electrode helium APPJ (2 slm, ≈2.5 kV, pulsed DC, 10 kHz repetition rate), decayed exponentially with a mean lifetime of 0.27+/- 0.03 μs. Eight different samples of the same sizes but different conductivities were used to investigate the influence of a sample material on the He metastable densities. The correlation between sample conductivities and metastable He densities above the sample surface was found. Metastable He density can also be further increased with decreasing sample distance, increasing conductive sample surface area and by increasing He flow.

  2. A study of glow-discharge and permeation techniques for extraterrestrial oxygen beneficiation

    Science.gov (United States)

    Ash, R. L.; Wu, D.; Outlaw, R. A.

    1994-01-01

    Extraction of oxygen from Martian atmosphere and compression of lunar oxygen can utilize stabilized zirconia electrochemical pumps. Silver membranes can be used as electrodes to increase oxygen yield at relatively low temperatures. This study has investigated oxygen permeation through Ag 0.05Zr membranes with glow-discharge assisted disassociation. Data show that the overall process is controlled by bulk diffusion but the slow dissociative adsorption onto the surface limited the overall transport substantially. With glow-discharge assisted dissociation, an order of magnitude increase in oxygen throughput can be produced at relatively low temperatures (450-550C).

  3. [Sample preparation methods for chromatographic analysis of organic components in atmospheric particulate matter].

    Science.gov (United States)

    Hao, Liang; Wu, Dapeng; Guan, Yafeng

    2014-09-01

    The determination of organic composition in atmospheric particulate matter (PM) is of great importance in understanding how PM affects human health, environment, climate, and ecosystem. Organic components are also the scientific basis for emission source tracking, PM regulation and risk management. Therefore, the molecular characterization of the organic fraction of PM has become one of the priority research issues in the field of environmental analysis. Due to the extreme complexity of PM samples, chromatographic methods have been the chief selection. The common procedure for the analysis of organic components in PM includes several steps: sample collection on the fiber filters, sample preparation (transform the sample into a form suitable for chromatographic analysis), analysis by chromatographic methods. Among these steps, the sample preparation methods will largely determine the throughput and the data quality. Solvent extraction methods followed by sample pretreatment (e. g. pre-separation, derivatization, pre-concentration) have long been used for PM sample analysis, and thermal desorption methods have also mainly focused on the non-polar organic component analysis in PM. In this paper, the sample preparation methods prior to chromatographic analysis of organic components in PM are reviewed comprehensively, and the corresponding merits and limitations of each method are also briefly discussed.

  4. Comparison of halocarbon measurements in an atmospheric dry whole air sample

    Directory of Open Access Journals (Sweden)

    George C. Rhoderick

    2015-11-01

    Full Text Available Abstract The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs dichlorodifluoromethane (CFC-12, trichlorofluoromethane (CFC-11, and 1,1,2-trichlorotrifluoroethane (CFC-113; the hydrochlorofluorocarbons (HCFCs chlorodifluoromethane (HCFC-22 and 1-chloro-1,1-difluoroethane (HCFC-142b; and the hydrofluorocarbon (HFC 1,1,1,2-tetrafluoroethane (HFC-134a, all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%.

  5. Long-lived atmospheric trace gases measurements in flask samples from three stations in India

    Science.gov (United States)

    Lin, X.; Indira, N. K.; Ramonet, M.; Delmotte, M.; Ciais, P.; Bhatt, B. C.; Reddy, M. V.; Angchuk, D.; Balakrishnan, S.; Jorphail, S.; Dorjai, T.; Mahey, T. T.; Patnaik, S.; Begum, M.; Brenninkmeijer, C.; Durairaj, S.; Kirubagaran, R.; Schmidt, M.; Swathi, P. S.; Vinithkumar, N. V.; Yver Kwok, C.; Gaur, V. K.

    2015-09-01

    With the rapid growth in population and economic development, emissions of greenhouse gases (GHGs) from the Indian subcontinent have sharply increased during recent decades. However, evaluation of regional fluxes of GHGs and characterization of their spatial and temporal variations by atmospheric inversions remain uncertain due to a sparse regional atmospheric observation network. As a result of an Indo-French collaboration, three new atmospheric stations were established in India at Hanle (HLE), Pondicherry (PON) and Port Blair (PBL), with the objective of monitoring the atmospheric concentrations of GHGs and other trace gases. Here we present the results of the measurements of CO2, CH4, N2O, SF6, CO, and H2 from regular flask sampling at these three stations over the period 2007-2011. For each species, annual means, seasonal cycles and gradients between stations were calculated and related to variations in natural GHG fluxes, anthropogenic emissions, and monsoon circulations. Covariances between species at the synoptic scale were analyzed to investigate the likely source(s) of emissions. The flask measurements of various trace gases at the three stations have the potential to constrain the inversions of fluxes over southern and northeastern India. However, this network of ground stations needs further extension to other parts of India to better constrain the GHG budgets at regional and continental scales.

  6. The Consistency of Isotopologues of Ambient Atmospheric Nitric Acid in Passively Collected Samples

    Science.gov (United States)

    Bell, M. D.; Sickman, J. O.; Bytnerowicz, A.; Padgett, P.; Allen, E. B.

    2012-12-01

    Anthropogenic sources of nitrogen oxides have previously been shown to have distinctive isotopic signatures of oxygen and nitrogen. Nylon filters are currently used in passive sampling arrays to measure ambient atmospheric nitric acid concentrations and estimate deposition rates. This experiment measured the ability of nylon filters to consistently collect isotopologues of atmospheric nitric acid in the same ratios as they are present in the atmosphere. Samplers were deployed in continuous stirred tank reactors (CSTR) and at field sites across a nitrogen deposition gradient in Southern California. Filters were exposed over a four week period with individual filters being subjected to 1-4 week exposure times. Extracted nitric acid were measured for δ18O and δ15N ratios and compared for consistency based on length of exposure and amount of HNO3 collected. Filters within the CSTRs collected HNO3 at a consistent rate in both high and low concentration chambers. After two weeks of exposure, the mean δ18O values were within 0.5‰ of the δ18O of the source HNO3 solution. The mean of all weekly exposures were within 0.5‰ of the δ15N of the source solution, but after three weeks, the mean δ15N of adsorbed HNO3 was within 0.2‰. As the length of the exposure increased, the variability of measured delta values decreased for both elements. The field samplers collected HNO3 consistent with previously measured values along a deposition gradient. The mean δ18O at high deposition sites was 52.2‰ compared to 35.7‰ at the low deposition sites. Mean δ15N values were similar at all sites across the deposition gradient. Due to precipitation events occurring during the exposure period, the δ15N and δ18O of nitric acid were highly variable at all field sites. At single sites, changes in δ15N and δ18O were negatively correlated, consistent with two-sourcing mixing dynamics, but the slope of the regressions differed between high and low deposition sites. Anthropogenic

  7. Application of valve switch technique in fast analysis of SF6 in atmospheric samples

    International Nuclear Information System (INIS)

    A GC-ECD method for fast analysis of trace SF6 in atmospheric samples was established with valve switch technique. The sample was passed through the fore-cut column, a 3.2 mm x 1 m OD stainless steel tube packed with 40/60 mesh 5A M.S., 0.6 minutes later, switching 6-port valves simultaneously, the components having larger retention values was discharged out of the analysis system, only SF6 passing through the analyzing column, a 3.2 mm X 0.5 m OD stainless steel tube packed with 60/80 mesh 5A M. S., and ECD. Under the experimental chromatographic conditions, the average peak-height response of SF6 was 1.08 x 10-14 mL/μV, with the average relatively standard deviation of 2.2%, and the limit of detection of SF6 was 6.03 x 10-13 mL (triple baseline noise). The sample analyzing time was 1.2 min. It was much shorter than normal analysis method. Eleven atmospheric samples were analyzed in 12 minutes with the average relatively standard deviation of 2.1%. (authors)

  8. Testing of high-volume sampler inlets for the sampling of atmospheric radionuclides.

    Science.gov (United States)

    Irshad, Hammad; Su, Wei-Chung; Cheng, Yung S; Medici, Fausto

    2006-09-01

    Sampling of air for radioactive particles is one of the most important techniques used to determine the nuclear debris from a nuclear weapon test in the Earth's atmosphere or those particles vented from underground or underwater tests. Massive-flow air samplers are used to sample air for any indication of radionuclides that are a signature of nuclear tests. The International Monitoring System of the Comprehensive Nuclear Test Ban Treaty Organization includes seismic, hydroacoustic, infrasound, and gaseous xenon isotopes sampling technologies, in addition to radionuclide sampling, to monitor for any violation of the treaty. Lovelace Respiratory Research Institute has developed a large wind tunnel to test the outdoor radionuclide samplers for the International Monitoring System. The inlets for these samplers are tested for their collection efficiencies for different particle sizes at various wind speeds. This paper describes the results from the testing of two radionuclide sampling units used in the International Monitoring System. The possible areas of depositional wall losses are identified and the losses in these areas are determined. Sampling inlet type 1 was tested at 2.2 m s wind speed for 5, 10, and 20-microm aerodynamic diameter particles. The global collection efficiency was about 87.6% for 10-microm particles for sampling inlet type 1. Sampling inlet type 2 was tested for three wind speeds at 0.56, 2.2, and 6.6 m s for 5, 10, and 20-microm aerodynamic diameter particles in two different configurations (sampling head lowered and raised). The global collection efficiencies for these configurations for 10-microm particles at 2.2 m s wind speed were 77.4% and 82.5%, respectively. The sampling flow rate was 600 m h for both sampling inlets.

  9. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere.

    Science.gov (United States)

    Makowska, Małgorzata G; Theil Kuhn, Luise; Cleemann, Lars N; Lauridsen, Erik M; Bilheux, Hassina Z; Molaison, Jamie J; Santodonato, Louis J; Tremsin, Anton S; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus

    2015-12-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components. PMID:26724075

  10. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Makowska, Małgorzata G., E-mail: malg@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Theil Kuhn, Luise; Cleemann, Lars N. [Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000 (Denmark); Lauridsen, Erik M. [Xnovo Technology ApS, Galoche Alle 15, Køge 4600 (Denmark); Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tremsin, Anton S. [Space Sciences Laboratory, University of California at Berkeley, Berkeley, California 94720 (United States); Grosse, Mirco [Institute for Applied Material Research, Karlsruhe Institute of Technology, Karlsruhe DE-76021 (Germany); Morgano, Manuel [Paul Scherrer Institut, Villigen PSI CH-5232 (Switzerland); Kabra, Saurabh [ISIS, Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom); Strobl, Markus [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2015-12-15

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

  11. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    Science.gov (United States)

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  12. Research of the Effects of Electron Focused Electric Field upon an Enhanced Glow Discharge Plasma Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    LI Liu-he; WU Yong-qin; ZHANG Yan-hua; CAI Xun; CHU Paul K

    2004-01-01

    A new Enhanced Glow Discharge Plasma Ion Implantation methods are introduced, in which the plasma are produced by the self glow discharge excitated by high negative voltage bias. The electric field is designed to a electron focusing mode by using a small area hollow anode and a large area sample holder cathode. The pattern of equipotentials of the electric field are calculated through finite-element method. By using the special electron-focusing field, the self glow discharge are enhanced and provide denser ions to implanted into the substrate.

  13. PIXE Analysis of Atmospheric Aerosol Samples in an Urban Area in Upstate NY

    Science.gov (United States)

    Nadareski, Benjamin; Ali, Salina; Yoskowitz, Josh; Vineyard, Michael; Labrake, Scott

    2014-09-01

    Extremely fine particles (PM2.5) are found to penetrate deep into the lungs and hence, are found to have harmful health effects on humans. Atmospheric aerosol samples collected in Schenectady, NY were analyzed for evidence for air pollution; specifically lead pollution over the past 12 months. Air samples were collected on 7 μm Kapton foils using a nine-stage cascade impactor that separates the particulate matter by aerodynamic size. A 2.2 MeV proton beam impacts the target samples. X-ray intensity versus energy spectra was produced using an Amptek silicon drift detector. Proton-induced x-ray emission (PIXE) techniques were used to analyze the energy spectra and we determined a range of 16 elements present in the aerosol samples including, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, and Pb. The elemental composition and concentrations of these elements were determined using GUPIX. Many of the elements suggest airborne soils, however we see trace amounts of lead concentrations only at the minimal level of detection around 1 ng / m3. Preliminary results suggest that lead pollution is not significant however; we believe that the trace amounts of lead detected are due to fuel emissions from small aircraft due to the sampling site near an airport. Extremely fine particles (PM2.5) are found to penetrate deep into the lungs and hence, are found to have harmful health effects on humans. Atmospheric aerosol samples collected in Schenectady, NY were analyzed for evidence for air pollution; specifically lead pollution over the past 12 months. Air samples were collected on 7 μm Kapton foils using a nine-stage cascade impactor that separates the particulate matter by aerodynamic size. A 2.2 MeV proton beam impacts the target samples. X-ray intensity versus energy spectra was produced using an Amptek silicon drift detector. Proton-induced x-ray emission (PIXE) techniques were used to analyze the energy spectra and we determined a range of 16 elements present in

  14. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature

    Directory of Open Access Journals (Sweden)

    M. Amodio

    2014-01-01

    Full Text Available The atmosphere is a carrier on which some natural and anthropogenic organic and inorganic chemicals are transported, and the wet and dry deposition events are the most important processes that remove those chemicals, depositing it on soil and water. A wide variety of different collectors were tested to evaluate site-specificity, seasonality and daily variability of settleable particle concentrations. Deposition fluxes of POPs showed spatial and seasonal variations, diagnostic ratios of PAHs on deposited particles, allowed the discrimination between pyrolytic or petrogenic sources. Congener pattern analysis and bulk deposition fluxes in rural sites confirmed long-range atmospheric transport of PCDDs/Fs. More and more sophisticated and newly designed deposition samplers have being used for characterization of deposited mercury, demonstrating the importance of rain scavenging and the relatively higher magnitude of Hg deposition from Chinese anthropogenic sources. Recently biological monitors demonstrated that PAH concentrations in lichens were comparable with concentrations measured in a conventional active sampler in an outdoor environment. In this review the authors explore the methodological approaches used for the assessment of atmospheric deposition, from the analysis of the sampling methods, the analytical procedures for chemical characterization of pollutants and the main results from the scientific literature.

  15. Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples

    Science.gov (United States)

    Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.

    2014-01-01

    Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.

  16. Binary Contamination in the SEGUE sample: Effects on SSPP Determinations of Stellar Atmospheric Parameters

    CERN Document Server

    Schlesinger, Katharine J; Lee, Young Sun; Masseron, Thomas; Yanny, Brian; Rockosi, Constance M; Gaudi, B Scott; Beers, Timothy C

    2010-01-01

    Using numerical modeling and a grid of synthetic spectra, we examine the effects that unresolved binaries have on the determination of various stellar atmospheric parameters for SEGUE targets measured using the SEGUE Stellar Parameter Pipeline (SSPP). To model undetected binaries that may be in the SEGUE sample, we use a variety of mass distributions for the primary and secondary stars in conjunction with empirically determined relationships for orbital parameters to determine the fraction of G-K dwarf stars, as defined by SDSS color cuts, that will be blended with a secondary companion. We focus on the G-K dwarf sample in SEGUE as it records the history of chemical enrichment in our galaxy. To determine the effect of the secondary on the spectroscopic parameters, we synthesize a grid of model spectra from 3275 to 7850 K (~0.1 to 1.0 \\msun) and [Fe/H]=-0.5 to -2.5 from MARCS model atmospheres using TurboSpectrum. We analyze both "infinite" signal-to-noise ratio (S/N) models and degraded versions, at median S/...

  17. Sampling and separations of polar volatile organic compounds in the atmosphere using SPME/GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, R.; Zhou, J. [York Univ., North York, ON (Canada)

    1999-11-01

    There are problems such as non-routine measurement of species of polar oxygenated volatile organic compounds (VOC) in the atmosphere, and as a consequence there are significantly fewer reports of these species in the literature compared with non-polar VOC. There are gaps in the understanding of their sources and transformations, and they can yet account for a significant fraction of the organic mass in the atmosphere. Experiences in the development of an analytical method for the measurement of these species in ambient air that combines sampling with non-equilibrium solid phase microextraction followed by analysis using GS-MS are described. There is a strong dependence on temperature and humidity that must be explained in the laboratory calibrations. It is shown by experiments designed to test the potential interference of ozone-olefin reactions during the sampling step that the interference is small for a reactive natural species, isoprene. The technique was applied to the measurement of oxygenated hydrocarbons in ambient air from urban Toronto, rural-forested (Bordon, ON) and remote arctic sites (Alert) during the past year. 1 fig. Abstract no. 433.

  18. Sampling and separations of polar volatile organic compounds in the atmosphere using SPME/GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, R.; Zhou, J. (York Univ., North York, ON (Canada))

    1999-01-01

    There are problems such as non-routine measurement of species of polar oxygenated volatile organic compounds (VOC) in the atmosphere, and as a consequence there are significantly fewer reports of these species in the literature compared with non-polar VOC. There are gaps in the understanding of their sources and transformations, and they can yet account for a significant fraction of the organic mass in the atmosphere. Experiences in the development of an analytical method for the measurement of these species in ambient air that combines sampling with non-equilibrium solid phase microextraction followed by analysis using GS-MS are described. There is a strong dependence on temperature and humidity that must be explained in the laboratory calibrations. It is shown by experiments designed to test the potential interference of ozone-olefin reactions during the sampling step that the interference is small for a reactive natural species, isoprene. The technique was applied to the measurement of oxygenated hydrocarbons in ambient air from urban Toronto, rural-forested (Bordon, ON) and remote arctic sites (Alert) during the past year. 1 fig. Abstract no. 433.

  19. On the feasibility of inversion methods based on models of urban sky glow

    International Nuclear Information System (INIS)

    Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures. - Highlights: • A method of urban sky glow inversion is introduced based on Monte-Carlo calculations. • Imaging photometry can provide enough information for basic inversions. • The inversion technique can be used to construct maps of light pollution. • The inclusion of multiple scattering in the models plays an important role

  20. Glow Discharge Plasma Nitriding of AISI 304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    A.QAYYUM; M.A.NAVEED; S.ZEB; G.MURTAZA; M.ZAKAULLAH

    2007-01-01

    Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis.The treated samples were analysed by X-ray diffraction(XRD)to explore the changes induced in the crystallographic structure.The XRD pattern confirmed the formation of an expanded austenite phase(γN)owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice.A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth(μm).The results showed clear evidence of surface changes with substantial increase in surface hardness.

  1. Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples.

    Science.gov (United States)

    Limbeck, Andreas; Handler, Markus; Neuberger, Bernhard; Klatzer, Barbara; Puxbaum, Hans

    2005-11-15

    A new approach for the carbon-specific determination of humic-like substances (HULIS) in atmospheric aerosols is presented. The method is based on a two-step isolation procedure of HULIS and the determination of HULIS carbon with a dissolved organic carbon analyzer. In the first step, a C18 solid-phase extraction is performed to separate HULIS from inorganic and hydrophilic organic sample constituents in aqueous sample solutions. The second isolation step is conducted on a strong anion exchanger to separate HULIS from remaining carbonaceous compounds. This ion chromatographic separation step including the subsequent on-line detection of HULIS carbon was performed fully automated to avoid the risk of sample contamination and to enhance the reproducibility of the method. With a 5-mL sample volume, a limit of detection of 1.0 mg C/L was obtained; this corresponds to an absolute amount of 5 microg of HULIS carbon. The reproducibility of the method given as the relative standard deviation was 4.3% (n = 10). The method was applied for the determination of water-soluble HULIS in airborne particulate matter. PM10 concentrations at an urban site in Vienna, Austria, ranged from around 0.1 to 1.8 microg of C/m(3) (n = 49); the fraction of water-soluble HULIS in OC was 12.1 +/- 7.2% (n = 49).

  2. Retrieval of dosimetric information from distorted glow curves using computerised glow curve deconvolution

    International Nuclear Information System (INIS)

    Computerised glow curve deconvolution (CGCD) can be used to retrieve dosimetric information from glow curves distorted by various irregularities. These may include reader malfunction, abnormal background arising from various sources and other system malfunctions. this paper illustrates how the dosimetric information can be retrieved from these irregular glow curves. The accuracy of the retrieved information depends, of course, on the extent of the damage to the glow curve. In LiF:Mg,Ti(TLD-100) for example, peaks 4 + 5 (the dosimetric peaks) are observed over the temperature range of 400 K - 500 K, i.e. 100 degrees Kelvin. Even for distortions over 20 K, i.e. 20% of the temperature range, the dosimetric information can be retrieved to an accuracy of approximately 1%. (author)

  3. Atmospheric pressure microwave sample preparation procedure for the combined analysis of total phosphorus and kjeldahl nitrogen.

    Science.gov (United States)

    Collins, L W; Chalk, S J; Kingston, H M

    1996-08-01

    An atmospheric pressure microwave digestion method has been developed for the combined analysis of total phosphorus and Kjeldahl nitrogen in complex matrices. In comparison to the digestion steps in EPA Methods 365.4 (total phosphorus) and 351.x (Kjeldahl nitrogen), this method requires less time, eliminates the need for a catalyst, and reduces the toxicity of the waste significantly. It employs a microwave-assisted digestion step, using refluxing borosilicate glass vessels at atmospheric pressure. Traditionally, this method has a time-consuming sample preparation step and generates toxic waste through the use of heavy metal catalysts. These advantages are gained by the combination of a high boiling point acid (sulfuric acid) and the application of focused microwave irradiation, which enhances the digestion process by direct energy coupling. NIST standard reference materials 1572 (citrus leaves), 1577a (bovine liver), and 1566 (oyster tissue) and tryptophan were analyzed to validate the method. Phosphorus concentrations were determined by the colorimetric ascorbic acid method outlined in EPA Method 365.3. Kjeldahl nitrogen concentrations were determined using EPA Method 351.1. The results of the analyses showed good precision and are in excellent agreement with the NIST published values for both elements.

  4. Atmospheric supply of trace elements studied by peat samples from ombrotrophic bogs.

    Science.gov (United States)

    Steinnes, E; Hvatum, O Ø; Bølviken, B; Varskog, P

    2005-01-01

    Concentrations of Fe and 12 trace elements in peat from ombrotrophic bogs were used to estimate the atmospheric deposition of these elements on a temporal and spatial scale. Peat samples were collected at 21 different sites in Norway encompassing large geographical differences in marine influence and air pollution. The study demonstrates that surface peat is an excellent medium to study geographical differences in heavy metal deposition, provided that effects of the surface plant cover are properly considered. Long-range atmospheric transport of pollutants is the main source for As, Cd, Pb, Sb, and Zn, and to a lesser extent for Cu and Se. Biogenic emissions from the ocean appear to be the main source of Se to the peat. The metals Co, Cr, Fe, and Ni are mainly associated with wind-blown local soil dust. Surface enrichment of Mn, and in part Zn, is mainly caused by nutrient circulation between the surface peat and vascular plants growing on it. Deposition of marine salts appears to be the main reason for lower Mn concentrations in the peat near the coast.

  5. Magnetic Study on Environmental Samples from Guadalajara Mexico for Monitoring of Atmospheric Pollution

    Science.gov (United States)

    Aguilar, B.; Cejudo, R.; Bogalo, M. F.; Rosas-Elguera, J.; Quintana, P.; Bautista, F.; Gogichaishvili, A.; Morales, J.

    2013-05-01

    Guadalajara is the second bigger city in Mexico, catalogued as critical zone because of atmospheric pollution levels. The magnetic methodology has been largely used as an alternative way to evaluate the pollution levels as well as identify the critical points in a given area. In this work, results from chemical analyses and magnetic measurements are presented in order to show the correlation between magnetic signal and the pollution level. We analyzed three kinds of environmental samples: urban soils, urban dust and leaves from ficus benjamina. Samples were taken in 30 sites distributed along a main avenue and two secondary avenues, including three points with very poor traffic influence. We determined a ferromagnetic carrier in most of samples, magnetite probably, since the Tc calculated from the thermomagnetic curves is around 580 °C. The magnetic susceptibility (Xlf) as well as the Saturation Isothermal Remanent Magnetization (SIRM) correlate well with the heavy metals content, specially Pb in urban dusts. These results allowed us to identify the most affected points, by vehicular traffic and industrial emissions. Furthermore, the values obtained for these magnetic parameters are above of those found in other studies for polluted cities in Europe and Asia.

  6. Distribution of Np and Pu in Swedish lichen samples (Cladonia stellaris) contaminated by atmospheric fallout

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Patric E-mail: patric.lindahl@radfys.lu.se; Roos, Per; Eriksson, Mats; Holm, Elis

    2004-07-01

    The activity concentrations of {sup 237}Np and the two Pu isotopes, {sup 239}Pu and {sup 240}Pu, were determined in lichen samples (Cladonia stellaris) contaminated by fallout from atmospheric nuclear test explosions and the Chernobyl accident. The samples were collected at 18 locations in Sweden, from north to south, between 1986 and 1988 and analysed with high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and alpha spectrometry. Data on the activity ratios {sup 238}Pu/{sup 239+240}Pu and {sup 134}Cs/{sup 137}Cs measured previously were also included in this study for comparison. The {sup 237}Np activity concentration ranged from 0.08{+-}0.01 to 2.08{+-}0.17 mBq kg{sup -1}, depending on the location of the sampling site and time of collection. The {sup 239+240}Pu activity concentration ranged from 0.09{+-}0.01 to 4.09{+-}0.15 Bq kg{sup -1}, with the {sup 240}Pu/{sup 239}Pu atomic ratio ranging between 0.16{+-}0.01 and 0.44{+-}0.03, the higher ratios indicating a combination of weapons test fallout and Chernobyl fallout. The {sup 237}Np/{sup 239}Pu atomic ratios ranged between 0.06{+-}0.01 and 0.42{+-}0.04, the lower ratios indicating combination of weapons test fallout and Chernobyl fallout. At a well-defined sampling site at Lake Rogen (62.32 deg. N, 12.38 deg. E), additional lichen samples were collected between 1987 and 1998 to study the distribution of Np and Pu in different layers. The concentrations of the two elements follow each other quite well in the profile.

  7. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 1012 cm -3 and 4x1013 cm -3. The peak velocity of the ejected plasma was 0. 8 x 105 cm sec-1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x107 cm-3. It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  8. Theoretical model of glow discharge plasma

    Institute of Scientific and Technical Information of China (English)

    郭小明; 周庭东; 白秀庭

    1996-01-01

    The physical model for glow discharge plasma has been modified. The modified model is also analytic and self-consistent. Electron density distribution under the conditions of longer gap separations and different working gas pressures has been analyzed, and comparison between theory and experiment has been made. The modified model has wider applications, and the theoretical results are in better agreement with the experimental.

  9. Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling

    Directory of Open Access Journals (Sweden)

    S. Sjogren

    2013-02-01

    Full Text Available We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH of the sample flow (lower than the atmospheric humidity is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry cloud droplets (maximum diameter approximately 25 μm, highly charged, up to 5 × 102 charges. One criterion is to minimise losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry, closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2.

    The water vapour transfer coefficient, k, was measured to be 4.6 × 10-7 kg m−2 s−1% RH−1 in the laboratory (temperature 294 K and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s−1 was achieved in the field. This corresponds to drying a 5.7 L min−1 (0.35 m3 h−1 aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min−1. The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l. in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was >94% during these five months.

  10. Continuous standalone controllable aerosol/cloud droplet dryer for atmospheric sampling

    Directory of Open Access Journals (Sweden)

    S. Sjogren

    2012-08-01

    Full Text Available We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH of the sample flow (lower than the atmospheric humidity is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry highly charged cloud droplets (maximum diameter approximately 25 μm with minimum losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2.

    The water vapour transfer coefficient, k, was measured to 4.6 × 10−7 kg m−2 s−1% RH−1 in the laboratory and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10−6 kg s−1 was achieved in the field. This corresponds to drying a 5.7 L min−1 (0.35 m3 h−1 aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min−1. The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l. in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was > 94% during these five months.

  11. Titan's night-glow mechanisms

    Science.gov (United States)

    Lavvas, P.; West, R. A.; Gronoff, G.

    2014-04-01

    Observations of Titan's emissions during its 2009 eclipse by Saturn revealed a weak airglow around the moon, as well as a brighter emission from its disk (Fig.1). We explore here the potential mechanisms that could generate these emissions and more specifically the role of magnetospheric plasma and cosmic rays in the upper and lower atmosphere, respectively [2]. We consider excitation of N2 by these energy sources and calculate the resulting emissions through a detailed model of N2 airglow [3](Fig.2), followed by careful radiation transfer of the emitted photons through the atmosphere, and into the UVIS and ISS instruments (Figs 3 & 4). Our results indicate that the observed limb emissions are consistent with magnetospheric plasma energy input, while emissions instigated by cosmic ray excitation deep in the atmosphere are strongly attenuated by the haze and can not explain the observed disk emissions [4](Tables 1 & 2). We discuss possible contributions from other sources that could potentially explain the disk observations. These include airglow from other species, chemiluminescence, aerosol particle fluorescence, and scattered light from the stellar background.

  12. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model

    Science.gov (United States)

    Duriscoe, Dan M.

    2013-11-01

    Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth's surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.

  13. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    Energy Technology Data Exchange (ETDEWEB)

    Vaikkinen, A. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kotiaho, T. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Kostiainen, R. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kauppila, T.J., E-mail: tiina.kauppila@helsinki.fi [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland)

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  14. Analysis on Lissajous Figures of Dielectric Barrier Glow Discharge in Atmospheric-pressure Helium%大气压下氦气介质阻挡辉光放电过程的Lissajous图形分析

    Institute of Scientific and Technical Information of China (English)

    郝艳捧; 刘耀阁; 郑彬

    2012-01-01

    In order to investigate the variation of equivalent capacitance during dielectric barrier discharge (DBD), single pulse and multi-pulse discharges were obtained using a high-frequency power supply in atmospheric-pressure helium. By measuring applied voltage and loop current, Lissajous figures were calculated and compared with those which were directly measured. The equivalent capacitance of the gas gap and dielectrics during the discharging and cutting-off phases were calculated with the corresponding relationship between the peaks and valleys of current pulse and the points on Lissajous figures. The reasons of variation of the equivalent capacitance were analyzed, and the physical process of discharge was discussed. The results show that the equivalent capacitance can be studied by using calculated Lissajous figures instead of the measured ones. The equivalent capacitance keeps unchanged during the discharge cutting-off stage, but changes with current during the discharging stage and reaches its maximum at the peak point of current pulse. And the process of discharge is mainly affected by the changing rates of applied voltage and space charges.%为研究介质阻挡放电(DBD)过程中等效电容的变化情况,利用高频高压电源,进行了大气压氦气介质阻挡单脉冲和多脉冲辉光放电试验,利用外施电压、回路电流计算得到放电Lissajous图形,并与直接测量的Lissajous图形进行了对比。确定了放电电流波峰和波谷在Lissajous图形上的对应位置,计算了放电截止和放电进行阶段气隙和介质的等效电容,分析了等效电容变化的原因,并且探讨了放电的物理过程。结果表明:计算得到的Lissajous图形与测量所得的Lissajous图形一致;介质等效电容在放电截止阶段保持不变,但在放电进行阶段随电流脉冲变化而变化,并且在电流峰值处最大;放电物理过程主要受到外施电压和介质表面电荷量的变化速率影响。

  15. Secondary ozonides of endo-cyclic alkenes analyzed by atmospheric sampling Townsend discharge ionization mass spectrometry

    Science.gov (United States)

    Nøjgaard, J. K.; Nørgaard, A. W.; Wolkoff, P.

    2007-05-01

    Secondary ozonides (SOZ) of cyclohexene, 1-methylcyclohexene, 4-isopropyl-1-methylcyclohexene and d-limonene were cryo-synthesized by ozonolysis in pentane and purified on a silica gel column. The mass spectra obtained by atmospheric sampling Townsend discharge ionization (ASTDI) and collision activated dissociation (CAD) of the protonized SOZ showed characteristic losses evident of the ozonide structure. Oxygen was eliminated as, e.g., O and O2, and loss of (HCHO + HCHO) or (O + CO2) corresponded to the SOZ base-peak for the substituted cyclohexenes by ASTDI-MS. The CAD spectra of the protonized species by use of methane as chemical ionization gas, showed consecutive losses of three oxygen atoms. Elimination of hydroxy-methyl hydroperoxide (HMHP) was particular important for the protonized SOZ, unlike consecutive loss of (HCHO + HCHO) or (O + CO2). In addition, the spectra of d-limonene were characterized by an unique loss of H2O2. These losses appear to be useful for identification of SOZ in gas-phase ozonolysis mixtures of endo-cyclic alkenes, which makes ASTDI an alternative to other on-line techniques for analysis of SOZ in ozonolysis mixtures.

  16. Development of an equipment for atmospheric krypton sampling, purification, concentration and 85Kr measurement

    International Nuclear Information System (INIS)

    (each divided in three heating zones) operating alternatively in 2-hour cycles. This provides a 'chromatographic separation' by successive heating of the three zones of the oven containing the columns. Krypton is trapped at ambient temperature and desorbed at high temperature (∼ 200 deg C). There is no need for an external desorption gas as the nitrogen carrier gas is produced by the system. Considering the poor adsorption capacity of most of the current adsorbents towards krypton, we performed an adsorbents screening to choose the best one for krypton at ambient temperature. The concentration stage consists of three in-line activated carbon column, in small-size furnaces, for further reduction of the elution gas volume. Final transfer into measuring cell is carried out by hot desorption of the accumulated krypton for each 6-hour cycle. First tests show that we collect about 0.7 cm3 of stable krypton (STP conditions). For the detection of 85Kr, there is no commercial 'off-the-shelf' system which fits our needs. Therefore, a proportional counter is under development with an industrial partner. Guard counters are located above and below the proportional counter containing the sample. The counter is filled with Ar + CO2 mixed with our sample (N2 + a few % Kr). Optimal gas proportions, efficiency, and background must be determined. Work in progress at present is to validate the proportional counter for 85Kr measurements and to assess the measurement of the krypton concentration using a stand-alone Thermal Conductivity Detector (TCD). Then, we plan to validate the integrated automated prototype, including TCD and counter, and operate it at a fixed place for 85Kr continuous monitoring in combination with atmospheric transfer calculations. An interesting feature of this equipment is that it could conceivably be splitted in two parts: a sampling unit that can be operated on the field (mobile sampler) and a detection unit which remains in the laboratory. Many configurations

  17. A Competitive Equilibrium for a Warm Glow Economy

    OpenAIRE

    Allouch, Nizar

    2009-01-01

    Despite a widespread interest in the warm glow model [Andreoni (1989,1990)], surprisingly most attention focused on the voluntary contribution equilibrium of the model, and only very little attention has been devoted to the competitive equilibrium. In this paper, we introduce the notion of competitive equilibrium for a warm glow economy [Henceforth, warm glow equilibrium]. Then, we establish (and prove), in the contest of our model, the three fundamental theorems of general equilibrium: (i) w...

  18. Glow discharges with electrostatic confinement of fast electrons

    Science.gov (United States)

    Kolobov, V. I.; Metel, A. S.

    2015-06-01

    This review presents a unified treatment of glow discharges with electrostatic confinement of fast electrons. These discharges include hollow cathode discharges, wire and cage discharges, reflect discharges with brush and multirod cathodes, and discharges in crossed electric and magnetic fields. Fast electrons bouncing inside electrostatic traps provide efficient ionization of gas at very low gas pressures. The electrostatic trap effect (ETE) was first observed by Paschen in hollow cathode discharges almost a century ago. The key parameters that define fundamental characteristics of ETE discharges are the ionization length λN, the penetration range, Λ, and the diffusion length λ of the fast electrons, and two universal geometric parameters of the traps: effective width a and length L. Peculiarities of electron kinetics and ion collection mechanism explain experimental observations for different trap geometries. The ETE is observed only at Λ > a, when the penetration range of the γ-electrons emitted by the cathode exceeds the trap width. In the optimal pressure range, when λN > a, and Λ current, Uc tends to its upper limit W/eβγ, where β is the percentage of ions arriving at the cathode and W is the gas ionization cost. In the low-pressure range, Λ > L, Uc rises from hundreds to thousands of volts. The sign of the anode potential fall, Ua, depends on the anode surface Sa and its position. When Sa is large compared to a critical value S*, Ua is negative and small. At Sa value of Ua becomes positive and rises up to 0.5-1 kV with decreasing p ultimately causing discharge extinction. Scaling laws indicate common physics between vacuum discharges and atmospheric pressure micro-discharges. We discuss peculiarities of electron kinetics under different conditions using semi-analytical models. Recent experimental results and applications of glow discharges with electrostatic confinement of fast electrons are described.

  19. Atmospheric carbon diooxide mixing ratios from the NOAA Climate Monitoring and Diagnostics Laboratory cooperative flask sampling network, 1967-1993

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.J.; Tans, P.P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States); BBoden, T.A. [Oak Ridge National Lab., TN (United States)

    1996-02-01

    This data report documents monthly atmospheric CO{sub 2} mixing ratios and measurements obtained by analyzing individual flask air samples for the NOAA/CMDL global cooperative flask sampling network. Measurements include land-based sampling sites and shipboard measurements covering 14 latitude bands in the Pacific Ocean and South China Sea. Analysis of the NOAA/CMDL flask CO{sub 2} database shows a long-term increase in atmospheric CO{sub 2} mixing ratios since the late 1960s. This report describes how the samples are collected and analyzed and how the data are processed, defines limitations, and restrictions of the data, describes the contents and format of the data files, and provides tabular listings of the monthly carbon dioxide records.

  20. A Review of Selected Engineered Nanoparticles in the Atmosphere: Sources, Transformations, and Techniques for Sampling and Analysis

    Science.gov (United States)

    A state-of-the-science review was undertaken to identify and assess sampling and analysis methods to detect and quantify selected nanomaterials (NMs) in the ambient atmosphere. The review is restricted to five types of NMs of interest to the Office of Research and Development Nan...

  1. Evolution of the Tl glow curve of Zn S:Mn nanocrystalline; Evolucion de la curva de brillo Tl de ZnS:Mn nanocristalino

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz H, A. A. [Universidad Autonoma de San Luis Potosi, Doctorado en Ingenieria y Ciencia de Materiales, 78000 San Luis Potosi (Mexico); Mendez G, V. H. [Universidad Autonoma de San Luis Potosi, Coordinacion para la Innovacion y Aplicacion de la Ciencia y la Tecnologia, 78000 San Luis Potosi (Mexico); Perez A, M. L.; Ortega S, J. J.; Araiza, J. J. [Universidad Autonoma de Zacatecas, Unidad Academica de Fisica, 98000, Zacatecas, Zac. (Mexico); Rivera, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Alfaro C, M. R. [Centro de Investigacion en Materiales Avanzados, Alianza Norte 202, 66600 Apodaca, Nuevo Leon (Mexico); Vega C, H. R., E-mail: icearturoortiz@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Full text: In the last two decades, the search for new materials for dosimetry has included semiconductor nano materials because of their luminescent properties. This search has included the study, synthesis, characterization and performance of nano structured semiconductors, which optoelectronic properties determine their applications. In this paper the evolution of the thermoluminescent glow curve of nanocrystalline powder samples (40-70 nm) of zinc sulfide doped with manganese (Zn S:Mn) was analyzed at a dose of 500 Gy using a {sup 60}Co source. This material was synthesized by the coprecipitation method and heat treated at 500 degrees C in forming gas atmosphere (80 N{sub 2}:20H{sub 2}). Photoluminescence results indicate a direct relationship between the concentration of manganese and the intensity of a peak at λ ≅ 600 nm. By means of numerical deconvolution the behavior of the glow curves obtained at different times after exposure was analyzed. The causing traps of thermoluminescence are to 0.60 ± 0.05 and 1.7 ± 0.4 eV below the conduction band and within the band gap. The fading and a variation in the shape of the brightness curve (evolution) caused by non radiative transitions (rotational and vibrational) within the crystal structure of the material is also reported. (Author)

  2. A Fast-Response Atmospheric Turbulence (FRAT) Probe with Gas-Sampling Ducts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to design, construct and test a high-frequency-response air-data probe, the Fast Response Atmospheric Turbulence probe (FRAT...

  3. Nitrogen Removal from Molten Steel under Argon DC Glow Plasma

    Institute of Scientific and Technical Information of China (English)

    SUN Ming-shan; DING Wei-zhong; LU Xiong-gang

    2005-01-01

    Under argon DC glow plasma, the nitrogen removal from molten steel was studied. The experimental result showed that nitrogen mass percent could be reduced to 0.000 8%. The change of polarity had no impact on nitrogen removal when the nitrogen mass percent was low. The mechanism of denitrogenation of molten steel under argon DC glow plasma was discussed.

  4. Determination of neonicotinoid insecticides and strobilurin fungicides in particle phase atmospheric samples by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Raina-Fulton, Renata

    2015-06-01

    A liquid chromatography-tandem mass spectrometry method has been developed for the determination of neonicotinoids and strobilurin fungicides in the particle phase fraction of atmosphere samples. Filter samples were extracted with pressurized solvent extraction, followed by a cleanup step with solid phase extraction. Method detection limits for the seven neonicotinoid insecticides and six strobilurin fungicides were in the range of 1.0-4.0 pg/m(3). Samples were collected from June to September 2013 at two locations (Osoyoos and Oliver) in the southern Okanagan Valley Agricultural Region of British Columbia, where these insecticides and fungicides are recommended for use on tree fruit crops (apples, pears, cherries, peaches, apricots) and vineyards. This work represents the first detection of acetamiprid, imidacloprid, clothianidin, kresoxim-methyl, pyraclostrobin, and trifloxystrobin in particle phase atmospheric samples collected in the Okanagan Valley in Canada. The highest particle phase atmospheric concentrations were observed for imidacloprid, pyraclostrobin, and trifloxystrobin at 360.0, 655.6, and 1908.2 pg/m(3), respectively.

  5. Preservation of atmospheric dimethyl sulphide samples on Tenax in sea-to-air flux measurements

    NARCIS (Netherlands)

    Zemmelink, H.J.; Gieskes, W.W C; Holland, P.M.; Dacey, J.W

    2002-01-01

    The low concentration of dimethyl sulphide (DMS) in the atmosphere makes it necessary to concentrate the gas before gas-chromatographic analysis. One of the preferred methods has been to use a cold Tenax adsorbent in this concentration step. DMS concentration onto Tenax-TA traps is shown to be sensi

  6. Acting green elicits a literal warm glow

    Science.gov (United States)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  7. Glow discharge based device for solving mazes

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation); Sarov Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Sarov, Nizhni Novgorod region 607188 (Russian Federation); Maksimov, Artem N.; Pylayev, Nikolay A. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation)

    2014-09-15

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  8. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Institute of Scientific and Technical Information of China (English)

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  9. Analysis of non-conducting powders by glow-discharge atomic emission spectrography

    International Nuclear Information System (INIS)

    An analytical method for control of the impurity levels of non-conducting powders during their preparation (particularly milling processes) is proposed. Impurity concentrations between some hundredths and a few percent as well as admixtures concentrations higher than 10% are determined. The glow discharge emission spectrography is applied after briquetting the samples with an excess of copper powder using a Grimm-type glow discharge lamp and a grating plan spectrograph with photographic detection. Difficulties arise from the band spectra due to non-metallic elements in the sample and from insufficient grain sizes, mixture homogeneity and compactness of the briquettes. The efficiency and detection limits in determination of SiO2 and ZrO2 in Al2O3 and of SiO2 in Bi2Ru2O7 are described. (author)

  10. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DEFF Research Database (Denmark)

    Makowska, Malgorzata G.; Kuhn, Luise Theil; Cleemann, Lars Nilausen;

    2015-01-01

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible w...

  11. Chemical speciation of chlorine in atmospheric aerosol samples by high-resolution proton induced X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols. - Highlights: ► Chemical specation of Cl in aerosol samples by high resolution PIXE spectroscopy. ► Fine structure of Kα and Kβ lines of reference compounds and APM samples was given. ► Kα spectra were well aligned with each other confirming the same Cl oxidation state. ► Pronounced chemical effects were observed in the Kβ spectra. ► We showed that chemical speciation of Cl was possible on thin aerosol samples

  12. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    Science.gov (United States)

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; Fitzsimmons, Paul; Carlson, Lane; Farrell, Mike; Nikroo, Abbas; Watson, Brian J.

    2016-02-01

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, a method to imprint a periodic micropattern of oxygen on the surface of GDP was developed and used to fabricate a flat sample for empirical testing. Photo exposure using collimated blue light was used to generate micropatterns of surface oxygen on the GDP material. The periodic oxygen micropattern was confirmed by secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy. A SIMS depth profile showed the atomic percent of oxygen ranged from 8 at. % near the surface to 1 at. % at a depth of 2 μm in a sample exposed for 4 min. The molecular interactions formed between the GDP and oxygen molecules were characterized using Fourier transform infrared resonance (FTIR), which showed the formation of hydroxyl (O-H) and carbonyl (C=O) bonds. The FTIR enabled the oxygen mass uptake as a function of photo exposure time to be quantified (resolved to typically 0.05 at. % oxygen). This experimental protocol was then applied to produce a GDP flat part with a periodic 75 μm wavelength micropattern of photo exposed (oxygen rich) and masked (oxygen deficient) regions. The micropatterned GDP ablators developed in this work are being used to assess the effect of surface oxygen on disruptive perturbations during the inertial confinement fusion implosion process.

  13. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    Science.gov (United States)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi

    2016-08-01

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ˜30% and ˜300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  14. Automatic sampling and analysis of organics and biomolecules by capillary action-supported contactless atmospheric pressure ionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Cheng-Huan Hsieh

    Full Text Available Contactless atmospheric pressure ionization (C-API method has been recently developed for mass spectrometric analysis. A tapered capillary is used as both the sampling tube and spray emitter in C-API. No electric contact is required on the capillary tip during C-API mass spectrometric analysis. The simple design of the ionization method enables the automation of the C-API sampling system. In this study, we propose an automatic C-API sampling system consisting of a capillary (∼1 cm, an aluminium sample holder, and a movable XY stage for the mass spectrometric analysis of organics and biomolecules. The aluminium sample holder is controlled by the movable XY stage. The outlet of the C-API capillary is placed in front of the orifice of a mass spectrometer, whereas the sample well on the sample holder is moved underneath the capillary inlet. The sample droplet on the well can be readily infused into the C-API capillary through capillary action. When the sample solution reaches the capillary outlet, the sample spray is readily formed in the proximity of the mass spectrometer applied with a high electric field. The gas phase ions generated from the spray can be readily monitored by the mass spectrometer. We demonstrate that six samples can be analyzed in sequence within 3.5 min using this automatic C-API MS setup. Furthermore, the well containing the rinsing solvent is alternately arranged between the sample wells. Therefore, the C-API capillary could be readily flushed between runs. No carryover problems are observed during the analyses. The sample volume required for the C-API MS analysis is minimal, with less than 1 nL of the sample solution being sufficient for analysis. The feasibility of using this setup for quantitative analysis is also demonstrated.

  15. Novel Approaches to the Sampling of Atmospheric Aerosols and Determination of Chemical Composition

    OpenAIRE

    Parshintsev, Evgeny

    2011-01-01

    The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more informat...

  16. Fractionation of trace elements in total atmospheric deposition by filtrating-bulk passive sampling.

    Science.gov (United States)

    Rueda-Holgado, F; Palomo-Marín, M R; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2014-07-01

    We have developed and validated a new simple and effective methodology for fractionation of soluble and insoluble forms of trace elements in total atmospheric deposition. The proposed methodology is based on the modification of a standard total deposition passive sampler by integrating a quartz fiber filter that retains the insoluble material, allowing the soluble fraction to pass through and flow to a receiving bottle. The quartz filter containing the insoluble fraction and the liquid containing the soluble fraction are then separately assayed by standardized ICP-MS protocols. The proposed atmospheric elemental fractionation sampler (AEFS) was validated by analyzing a Coal Fly Ash reference material with proper recoveries, and tested for field fractionation of a set of 10 key trace elements in total atmospheric deposition at the industrial area of Puchuncaví-Ventanas, Chile. The AEFS was proven useful for pollution assessment and also to identify variability of the soluble and insoluble fractions of the selected elements within the study area, improving the analytical information attainable by standard passive samplers for total deposition without the need of using sophisticated and high cost wet-only/dry only collectors.

  17. Seasonal associations and atmospheric transport distances of Fusarium collected with unmanned aerial vehicles and ground-based sampling devices

    Science.gov (United States)

    Schmale, David; Ross, Shane; Lin, Binbin

    2014-05-01

    Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. Members of this genus are important pathogens and mycotoxin producers. New information is needed to characterize seasonal trends in atmospheric loads of Fusarium and to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. Spores of Fusarium were collected from the atmosphere in an agricultural ecosystem in Blacksburg, VA, USA using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. More than 2,200 colony forming units (CFUs) of Fusarium were collected during 104 BVS sampling periods and 180 UAV sampling periods over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13 and 0 to 23 spores m-3 for the BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. Some of the species of Fusarium identified from our collections have not been previously reported in the state of Virginia. A Gaussian plume transport model was used to estimate distances to the potential inoculum source(s) by season. This work extends previous studies showing an association between atmospheric transport barriers (Lagrangian coherent structures or LCSs) and the movement of Fusarium in the lower atmosphere. An increased understanding of the aerobiology of Fusarium may contribute to new and improved control strategies for diseases causes by fusaria in the future.

  18. Study on Glow Discharge Plasma Used in Polyester Surface Modification

    Science.gov (United States)

    Liu, Wenzheng; Lei, Xiao; Zhao, Qiang

    2016-01-01

    To achieve an atmospheric pressure glow discharge (APGD) in air and modify the surface of polyester thread using plasma, the electric field distribution and discharge characteristics under different conditions were studied. We found that the region with a strong electric field, which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure, provided the initial electron for the entire discharge process. Thus, the discharge voltage was reduced. The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons. Thus, the transient current pulse discharge was reduced significantly, and an APGD in air was achieved. We designed double layer line-line contact electrodes, which can generate the APGD on the surface of a material under treatment directly. A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope (SEM). Two electrode structures - the multi-row line-line and double-helix line-line contact electrodes - were designed. A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes. This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.

  19. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z-machine

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, K. R.; Ao, T.; Lemke, R. W.; Flicker, D. G.; Schoff, M. E.; Blue, B. E.; Hamel, S.; Herrmann, M. C.

    2015-11-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - including the effect of changes in chemical composition. The shock pressures calculated from DFT are compared experimental data taken on magnetically launched flyer plate impact experiments on at Sandia's Z-machine. Large GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  20. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z machine

    Science.gov (United States)

    Cochrane, Kyle R.; Ao, T.; Lemke, R. W.; Hamel, S.; Schoff, M. E.; Blue, B. E.; Herrmann, M. C.; Mattsson, T. R.

    2014-03-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - for example regarding the role of chemical dissociation during shock compression, we find that the dissociation regime along the Hugoniot extends from 50 GPa to 250 GPa. The shock pressures calculated from DFT are compared experimental data taken at Sandia's Z-machine. The GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  1. Multi-element composition of historical lichen collections and bark samples, indicators of changing atmospheric conditions

    Science.gov (United States)

    Purvis, O. W.; Chimonides, P. D. J.; Jeffries, T. E.; Jones, G. C.; Rusu, A.-M.; Read, H.

    Thirty six element signatures were compared in historical Parmelia sulcata samples from the Natural History Museum herbarium collected over the period 1797-1967 with those recorded in the same species and tree bark sampled in 2000 from Burnham Beeches, lying 40 km west of London. Nineteen elements reached highest concentrations in herbarium samples, consistent with a pollution legacy and dust contamination in the herbarium. Healthy Parmelia sampled east and down-wind of London at a farm during peak SO 2 emissions in 1967 contained highest V, Ni, Zn, Cd, Se, Ge contents, supporting derivation from fuel combustion; the same sample was previously determined as having a low δ34S and high S and N contents. Lowest V, Co, Ni, Cu, Zn, Sn, Ba, Pb, Mo, Sb, Li, B, Cs, U, Th, Ga contents were recorded in a sample with a high δ34S and low S content collected in 1887 from a remote region from Ross-shire, Scotland. Se and Cd enrichment, never-the-less suggest a transboundary pollution influence. Lichen Pb concentrations from Burnham Beeches were amongst the lowest recorded in spite of lichens being collected close to roads. Herbarium samples help interpret changes in element deposition where few data exist, in spite of dust contamination.

  2. Glow discharge amorphous silicon tin alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A H; Sanchez, A; Williamson, D L; von Roedern, B; Madan, A

    1984-06-01

    We present basic density of states, photoresponse, and transport measurements made on low bandgap a-SiSn:H alloys produced by RF glow discharge deposition of SiH/sub 4/, H/sub 2/ and Sn(CH/sub 3/)/sub 4/. Although we demonstrate major changes in the local bonding structure and the density of states, the normalized photoresponse still remains poor. We provide evidence that two types of defect levels are produced with Sn alloying, and that the resultant density of states increase explains not only the n- to p-type conductivity transition reported earlier, but also the photoresponse behavior. We also report that a-SiSn:H can be doped with P. From our device analysis we suggest that in order to improve the alloy performance significantly, the density of states should be decreased to levels comparable to or lower than those presently obtained in a-Si:H.

  3. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gu-Ling; YANG Si-Ze; WANG Jiu-Li; WU Xing-Fang; FENG Wen-Ran; CHEN Guang-Liang; GU Wei-Chao; NIU Er-Wu; FAN Song-Hua; LIU Chi-Zi

    2006-01-01

    @@ A new method named the magnetic glow-arc plasma source ion implantation (MCA-PSⅡ) is proposed for inner surface modification of tubes. In MGA-PSⅡ, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90mm and length 600mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  4. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Science.gov (United States)

    Zhang, Gu-Ling; Wang, Jiu-Li; Wu, Xing-Fang; Feng, Wen-Ran; Chen, Guang-Liang; Gu, Wei-Chao; Niu, Er-Wu; Fan, Song-Hua; Liu, Chi-Zi; Yang, Si-Ze

    2006-05-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  5. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    International Nuclear Information System (INIS)

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  6. Seasonal trends and nightly fluctuations of SWIR air-glow irradiance

    Science.gov (United States)

    Dayton, David C.; Allen, Jeffrey; Nolasco, Rudolph; Gonglewski, John D.; Myers, Michael; Fertig, Gregory

    2011-11-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band with wavelength between 0.9 and 1.7 μm. This air glow has been proposed as an illumination source for obtaining imagery in the dark of night. By examining short term nightly fluctuations and long term seasonal trends in the ground level irradiance we hope to determine the source reliability for night time low light surveillance and imaging.

  7. Southeast Pacific atmospheric composition and variability sampled along 20˚S during VOCALS-REx

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.; Kleinman, L.; Coe, H.; Clarke, A.; Bretherton, C.; Wood, R.; Abel, S. J.; Barrett, P.; Brown, P.; George, R.; Freitag, S.; McNaughton, C.; Howell, S.; Shank, L.; Kapustin, V.; Brekhovskikh, V.; Lee, Y.-N.; Springston, S.; Toniazzo, T.; Krejci, R.; Fochesatto, J.; Shaw, G.; Krecl, P.; Brooks, B.; McKeeking, G.; Bower, K. N.; Williams, P. I.; Crosier, J.; Crawford, I.; Connolly, P.; Covert, D.; Bandy, A. R.

    2011-01-10

    The VAMOS Ocean-Climate-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20{sup o} S parallel between 70{sup o} W and 85{sup o} W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, ozone and sulphur dioxide were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients are observed to be associated with strong gradients in cloud droplet number. The FT is often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore - coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75{sup o} W was observed to be dominated by coastal emissions from sources to the west of the Andes

  8. Southeast Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    P. I. Williams

    2011-01-01

    Full Text Available The VAMOS Ocean-Climate-Atmosphere-Land Regional Experiment (VOCALS-REx was conducted from 15 October to 15 November 2008 in the South East Pacific region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL and Free Troposphere (FT along the 20° S parallel between 70° W and 85° W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, ozone and sulphur dioxide were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients are observed to be associated with strong gradients in cloud droplet number. The FT is often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore – coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75° W was observed to be dominated by coastal emissions from sources to the west of the Andes

  9. South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx

    Directory of Open Access Journals (Sweden)

    G. Allen

    2011-06-01

    Full Text Available The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL and Free Troposphere (FT along the 20° S parallel between 70° W and 85° W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, sulphur dioxide and ozone were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients in aerosol and trace gas concentrations were observed to be associated with strong gradients in cloud droplet number. The FT was often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore – coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75° W was observed to be dominated by coastal

  10. X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: The benefits of synchrotron X-rays

    Science.gov (United States)

    Bukowiecki, Nicolas; Lienemann, Peter; Zwicky, Christoph N.; Furger, Markus; Richard, Agnes; Falkenberg, Gerald; Rickers, Karen; Grolimund, Daniel; Borca, Camelia; Hill, Matthias; Gehrig, Robert; Baltensperger, Urs

    2008-09-01

    The determination of trace element mass concentrations in ambient air with a time resolution higher than one day represents an urgent need in atmospheric research. It involves the application of a specific technique both for the aerosol sampling and the subsequent analysis of the collected particles. Beside the intrinsic sensitivity of the analytical method, the sampling interval and thus the quantity of collected material that is available for subsequent analysis is a major factor driving the overall trace element detection power. This is demonstrated for synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) of aerosol samples collected with a rotating drum impactor (RDI) in hourly intervals and three particle size ranges. The total aerosol mass on the 1-h samples is in the range of 10 µg. An experimental detection of the nanogram amounts of trace elements with the help of synchrotron X-rays was only achievable by the design of a fit-for-purpose sample holder system, which considered the boundary conditions both from particle sampling and analysis. A 6-µm polypropylene substrate film has evolved as substrate of choice, due to its practical applicability during sampling and its suitable spectroscopic behavior. In contrast to monochromatic excitation conditions, the application of a 'white' beam led to a better spectral signal-to-background ratio. Despite the low sample mass, a counting time of less than 30 s per 1-h aerosol sample led to sufficient counting statistics. Therefore the RDI-SR-XRF method represents a high-throughput analysis procedure without the need for any sample preparation. The analysis of a multielemental mass standard film by SR-XRF, laboratory-based wavelength-dispersive XRF spectrometry and laboratory-based micro XRF spectrometry showed that the laboratory-based methods were no alternatives to the SR-XRF method with respect to sensitivity and efficiency of analysis.

  11. Accounting protesting and warm glow bidding in Contingent Valuation surveys considering the management of environmental goods

    DEFF Research Database (Denmark)

    Grammatikopoulou, Ioanna; Olsen, Søren Bøye

    2013-01-01

    Based on a Contingent Valuation survey aiming to reveal the willingness to pay (WTP) for conservation of a wetland area in Greece, we show how protest and warm glow motives can be taken into account when modeling WTP. In a sample of more than 300 respondents, we find that 54% of the positive bids...... for such selection bias by using a sample selection model. In our empirical sample, using the typical approach of removing protesters from the analysis, the value of protecting the wetland is significantly underestimated by as much as 46% unless correcting for selection bias....

  12. SWIR air glow mapping of the night sky

    Science.gov (United States)

    Myers, Michael M.; Dayton, David C.; Gonglewski, John D.; Fertig, Gregory; Allen, Jeff; Nolasco, Rudolf; Burns, Dennis; Mons, Ishan

    2010-08-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Islands of Kauai and Maui Hawaii.

  13. SWIR Hemispherical Air-Glow Plotting System SHAPS

    Science.gov (United States)

    Gonglewski, John D.; Myers, Michael M.; Dayton, David C.; Fertig, Gregory; Allen, Jeffrey; Nolasco, Rudolph; Maia, Franscisco

    2010-10-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Island of Kauai Hawaii.

  14. Multifunctional Glow Discharge Analyzer for Spacecraft Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Penn State University (PSU) propose to develop a highly sensitive spectrometer based on glow discharge emission for the...

  15. Sampling system of atmospheric water vapour for analysis of the γ sub(D) relationship

    International Nuclear Information System (INIS)

    The development of a system to water vapour air, for natural isotopic composition analysis of hydrogen is presented. The system uses molecular sieve, type '4A', without cooling agent and permits the choice of a sampling time, variyng from a few minutes to many hours, through the control of the admission of vapour flux. The system has good performance in field conditions, with errors of the order of + -3,00/00 in the γ sub(D)(0/00) measurements

  16. Computational modeling of glow discharge-induced fluid dynamics

    Science.gov (United States)

    Jayaraman, Balaji

    Glow discharge at atmospheric pressure using a dielectric barrier discharge can induce fluid flow and operate as an actuator for flow control. The largely isothermal surface plasma generation realized above can modify the near-wall flow structure by means of Lorentzian collisions between the ionized fluid and the neutral fluid. Such an actuator has advantages of no moving parts, performance at atmospheric conditions and devising complex control strategies through the applied voltage. However, the mechanism of the momentum coupling between the plasma and the fluid flow is not yet adequately understood. In the present work, a modeling framework is presented to simulate athermal, non-equilibrium plasma discharges in conjunction with low Mach number fluid dynamics at atmospheric pressure. The plasma and fluid species are treated as a two-fluid system exhibiting a few decades of length and time scales. The effect of the plasma dynamics on the fluid dynamics is devised via a body force treatment in the Navier-Stokes equations. Two different approaches of different degrees of fidelity are presented for modeling the plasma dynamics. The first approach, a phenomenological model, is based on a linearized force distribution approximating the discharge structure, and utilizing experimental guidance to deduce the empirical constants. A high fidelity approach is to model the plasma dynamics in a self-consistent manner using a first principle-based hydrodynamic plasma model. The atmospheric pressure regime of interest here enables us to employ local equilibrium assumptions, signifying efficient collisional energy exchange as against thermal heating from inelastic collision processes. The time scale ratios between convection, diffusion, and reaction/ionization mechanisms are O(107), making the system computationally stiff. To handle the stiffness, a sequential finite-volume operator-splitting algorithm capable of conserving space charge is developed; the approach can handle time

  17. Self-Aspirated Atmospheric Pressure Chemical Ionization Source for Direct Sampling of Analytes on Surfaces and in Liquid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Keiji G [ORNL; Ford, Michael J [ORNL; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.

  18. Self-aspirating atmospheric pressure chemical ionization source for direct sampling of analytes on surfaces and in liquid solutions.

    Science.gov (United States)

    Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol and Evista tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d3 as an internal standard.

  19. Quantitative determination of acetylcholine in microdialysis samples using liquid chromatography/atmospheric pressure spray ionization mass spectrometry.

    Science.gov (United States)

    Keski-Rahkonen, Pekka; Lehtonen, Marko; Ihalainen, Jouni; Sarajärvi, Timo; Auriola, Seppo

    2007-01-01

    A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.

  20. Effect of the percentage of reinforcement on the wear in the metal matrix composites sintered with abnormal glow discharge

    International Nuclear Information System (INIS)

    In this study an analysis of the behavior of dry wear coefficient of a Metal Matrix Composite (MMC) in 316 stainless steel reinforced with particles of titanium carbide (TiC) according to ASTM G 99 standards, in a pin-on-disk test. In this research it is tested the effect of the percentage of reinforcement in the MMC manufactured with 3, 6 y 9% (vol.) of TiC, in samples compacted at 800 MPa, generating different values of grain size, hardness and density, they are sintered with abnormal glow discharge, at a temperature of 1200 degree centigrade ±5 degree centigrade, with a protection atmosphere H2 - N2 and a permanence time of 30 minutes. According to the results obtained it is concluded that the best condition for the MMC manufacturing, in relation to the reinforcement percentage, is the one obtained when the mixture contains 6% of TiC compacted at 800 MPa. In these conditions, it was obtained: achieving smaller grain size, the greater hardness and the lowest coefficient of friction. In this respect, it was observed that the incorporation of the ceramic particles (TiC) in a matrix of austenitic steel (316) shows significant improvements in the resistance to the wear. (Author)

  1. Advances in the Remote Glow Discharge Experiment

    Science.gov (United States)

    Dominguez, Arturo; Zwicker, A.; Rusaits, L.; McNulty, M.; Sosa, Carl

    2014-10-01

    The Remote Glow Discharge Experiment (RGDX) is a DC discharge plasma with variable pressure, end-plate voltage and externally applied axial magnetic field. While the experiment is located at PPPL, a webcam displays the live video online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The RGDX is designed as an outreach tool that uses the attractive nature of a plasma in order to reach a wide audience and extend the presence of plasma physics and fusion around the world. In March 2014, the RGDX was made publically available and, as of early July, it has had approximately 3500 unique visits from 107 countries and almost all 50 US states. We present recent upgrades, including the ability to remotely control the distance between the electrodes. These changes give users the capability of measuring Paschen's Law remotely and provides a comprehensive introduction to plasma physics to those that do not have access to the necessary equipment.

  2. Direct Analysis of Amphetamine Stimulants in a Whole Urine Sample by Atmospheric Solids Analysis Probe Tandem Mass Spectrometry

    Science.gov (United States)

    Crevelin, Eduardo J.; Salami, Fernanda H.; Alves, Marcela N. R.; De Martinis, Bruno S.; Crotti, Antônio E. M.; Moraes, Luiz A. B.

    2016-05-01

    Amphetamine-type stimulants (ATS) are among illicit stimulant drugs that are most often used worldwide. A major challenge is to develop a fast and efficient methodology involving minimal sample preparation to analyze ATS in biological fluids. In this study, a urine pool solution containing amphetamine, methamphetamine, ephedrine, sibutramine, and fenfluramine at concentrations ranging from 0.5 pg/mL to 100 ng/mL was prepared and analyzed by atmospheric solids analysis probe tandem mass spectrometry (ASAP-MS/MS) and multiple reaction monitoring (MRM). A urine sample and saliva collected from a volunteer contributor (V1) were also analyzed. The limit of detection of the tested compounds ranged between 0.002 and 0.4 ng/mL in urine samples; the signal-to-noise ratio was 5. These results demonstrated that the ASAP-MS/MS methodology is applicable for the fast detection of ATS in urine samples with great sensitivity and specificity, without the need for cleanup, preconcentration, or chromatographic separation. Thus ASAP-MS/MS could potentially be used in clinical and forensic toxicology applications.

  3. Analysis of polybrominated diphenyl ethers in atmospheric deposition and snow samples by solid-phase disk extraction.

    Science.gov (United States)

    Quiroz, Roberto; Arellano, Lourdes; Grimalt, Joan O; Fernández, Pilar

    2008-05-23

    An extraction method for the quantitative analysis of polybrominated diphenyl ethers (PBDEs) in aqueous samples has been evaluated. The analytical methodology includes the sample filtration through glass fiber filter and subsequent extraction of dissolved phase compounds by C18 solid-phase disk extraction. Dependence of extraction efficiency on factors such as pollutant concentrations, sample volume, and stability during storage has been investigated. Mean extraction efficiencies of 97% for total PBDEs (13 tri- to heptabrominated congeners at spiking levels in the range of 15-90pg) with a RSD between 9 and 20% were achieved. Higher recoveries were observed for the more volatile PBDEs (112%) in relation to more brominated congeners (88%). The developed methodology was successfully applied to the analysis of these compounds in atmospheric deposition and snow samples from remote sites in Europe with method detection and quantitation limits in the range of 2.1-10pgL(-1) for almost all congeners, which allow the determination of PBDEs in remote areas with levels in the range of low to medium pgL(-1) for SigmaPBDEs.

  4. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  5. Laser-induced fluorescence monitoring of the gas phase in a glow discharge during reactive sputtering of vanadium

    Science.gov (United States)

    Khvostikov, V. A.; Grazhulene, S. S.; Burmii, Zh. P.; Marchenko, V. A.

    2011-11-01

    Processes in the gas phase of a glow discharge during diode and magnetron reactive sputtering of vanadium in an Ar-O2 atmosphere have been investigated by laser-induced fluorescence (LIF) as a function of the parameters of the glow discharge and the composition of the atmosphere. The intensity of the fluorescence spectra increased by 1.5-2.0 orders of magnitude in the magnetron sputtering process compared with that of diode sputtering. Under continuous sputtering conditions, the dependences of the intensities and relative compositions of the fluorescence spectra on the discharge parameters (discharge voltage and current) have been investigated. In pulsed mode of the glow discharge, the dynamics of changes in the spectra have been studied versus variations in the discharge duration and the lag time for recording the fluorescence signal. The dependence of the spectral line intensities on the partial pressure of oxygen has been found for vanadium and its oxide. The cathode surface at pressures of 0.03-0.04 Pa was shown to convert to the oxidized state.

  6. Tedlar bag sampling technique for vertical profiling of carbon dioxide through the atmospheric boundary layer with high precision and accuracy.

    Science.gov (United States)

    Schulz, Kristen; Jensen, Michael L; Balsley, Ben B; Davis, Kenneth; Birks, John W

    2004-07-01

    Carbon dioxide is the most important greenhouse gas other than water vapor, and its modulation by the biosphere is of fundamental importance to our understanding of global climate change. We have developed a new technique for vertical profiling of CO2 and meteorological parameters through the atmospheric boundary layer and well into the free troposphere. Vertical profiling of CO2 mixing ratios allows estimates of landscape-scale fluxes characteristic of approximately100 km2 of an ecosystem. The method makes use of a powered parachute as a platform and a new Tedlar bag air sampling technique. Air samples are returned to the ground where measurements of CO2 mixing ratios are made with high precision (< or =0.1%) and accuracy (< or =0.1%) using a conventional nondispersive infrared analyzer. Laboratory studies are described that characterize the accuracy and precision of the bag sampling technique and that measure the diffusion coefficient of CO2 through the Tedlar bag wall. The technique has been applied in field studies in the proximity of two AmeriFlux sites, and results are compared with tower measurements of CO2. PMID:15296321

  7. Atmospheric deposition of heavy metals studied by analysis of moss samples using neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    In a study of the atmospheric deposition of trace elements in different parts of Norway samples of the moss Hylocomium splendens were analyzed with respect to 26 elements. The determination of Cu, Zn, Pb, Cd and Ni was carried out by flame atomic absorption spectrometry, while an additional 21 elements were determined by instrumental neutron activation analysis. Several elements showed a substantially higher deposition in the southernmost parts of Norway than in places located farther north. As regards Pb, As and Sb, the difference amounted to a factor of ten or more. A similar but less pronounced trend was evident for elements such as V, Zn, Cd, Se and Ag. In some cases local pollution sources or marine aerosols had a significant effect on the results. For several heavy metals however long-distance transport from areas to the south and the south west of Norway was responsible for a major part of the air pollution

  8. AC Glow Discharge Plasma in N2O

    International Nuclear Information System (INIS)

    This paper considers the optical and electrical characterization of AC glow discharge plasma in the abnormal glow mode used for optical emission spectroscopy. The total discharge current and applied voltage are measured using conventional techniques. The electrical characteristics of the planer-cathode glow discharge confirmed that the plasma is operating at abnormal discharge mode characterized by the increases in the operating voltage as the current was raised under given pressure. Optical emission spectroscopy was used to determine the main emission lines of the glow discharge plasma of N2O at pressures between 0.5 and 4.0 Torr. It shows that the discharge emission range is mainly within 300-400 nm. The emission lines correspond to NO, O2, and O2+ are the dominant lines in the glow discharge plasma in the present study. Intensity of the emission lines show linear increase with the discharge current up to 0.4 A followed by saturation at higher currents. No emission lines were observed in this work corresponding to atomic oxygen or nitrogen

  9. Thermoluminescence glow curves and deconvoluted glow peaks of Ge doped flat fibers at ultra-high doses of electron radiation

    International Nuclear Information System (INIS)

    The behavior of Ge doped silica, SiO2 flat fibers (FF) irradiated with 2.5 MeV electron radiation at ultra-high dose (UHD) range, up to 1 MGy, has been investigated. The analyzed glow curves measured by the usage of the WinREMS software revealed that peak height and glow curve maximum temperature are highly dependent on the dose. The shape of the glow curves is constant with increasing dose. The supralinearity of all glow peaks increases to its f(D)max, which occurs around 50 kGy. No saturation occurs at f(D)max and further increases in dose, up to 1 MGy, exhibits a significant decrease in f(D). The glow peaks 2 (230 °C) and 4 (290 °C), deconvoluted by the usage of WinGCF software, are the first-order kinetic peaks and can be used as the main dosimetric peaks for high-dose measurements between 1 and 50 kGy in an industrial environment. - Highlights: • The supralinearity of FF was highly dependent on UHD. • f(D)max occurs around 50 kGy for 6 wt% Ge doped FF. • Peak 2 (230 °C) and peak 4 (290 °C) are the first-order kinetic peaks. • Sensitivity of FF decreases for doses >50 kGy

  10. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Akhmet, Marat, E-mail: marat@metu.edu.tr; Fen, Mehmet Onur [Department of Mathematics, Middle East Technical University, 06800 Ankara (Turkey); Rafatov, Ismail [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  11. Use of universal functional optimisation for TL glow curve analysis

    International Nuclear Information System (INIS)

    The effective use of any TL instrument requires an efficient software package to be able to fulfil different tasks required by research and practical applications. One of the standard features of the package used at the NPI Prague is the application of the interactive modular system Universal Functional Optimisation (UFO) for glow curve deconvolution. The whole system has been tested on standard glow curves using different models of the TL process (a single peak described by the Podgorsak approximation, first order kinetics and/or general order kinetics). Calculated values of basic TL parameters (E and s) show a good agreement with the results obtained by other authors. The main advantage of the system is in its modularity that enables flexible changes in the TL model and mathematical procedures of the glow curve analysis. (author)

  12. [The glow discharge as an atomization and ionization source

    International Nuclear Information System (INIS)

    This is to summarize the research progress in this project at the University of Florida over the past 13 months. In keeping with the directions of the Federal Demonstration Project, the report will be brief, presenting an overview of the major findings. We have continued the study of the glow discharge, primarily as an ionization source for elemental analysis. Glow discharge interest continues to grow in the analytical chemistry community as evidenced by the number of special symposia at major conferences, by the new researchers entering the field, and by the introduction of new instrumentation. There is little doubt that glow discharge mass spectrometry, for example, is now a major technique in the elemental analysis of solids

  13. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    Science.gov (United States)

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  14. Métodos de amostragem e análise para compostos reduzidos de enxofre atmosférico Sampling and analytical methods for atmospheric reduced sulphur compounds

    Directory of Open Access Journals (Sweden)

    Lícia P. S. Cruz

    2008-01-01

    Full Text Available This work presents a review of sampling and analytical methods that can be applied to atmospheric traces of reduced sulphur compounds (RSC in the atmosphere. Sampling methodology involving discontinuous methods with preconcentration is mostly used. For the most part, adsorption on solids and cryogenic capture are applied as a procedure. The analysis of these compounds has been done mainly by gas chromatography with FPD, fluorescence and spectrophotometry. Advantages and disadvantages of the methodologies are also mentioned in this paper, aiming to guide the reader towards the most appropriate choice of a sampling and analytical method for RSCs.

  15. Diffusion strengthening of Ti6Al4V alloy in Ar + O2 glow discharge plasma

    International Nuclear Information System (INIS)

    The effect of particular diffusion treatment in the temperature range 1023 - 1273 K with use of the glow discharge plasma in the atmosphere Ar + O2 on the microstructure, phase composition, microhardness, friction coefficient, wear resistance, surface roughness as well as the resistance against electrochemical corrosion of two commercial two-phase Ti6Al4V titanium alloy has been investigated in the work. As a result of the treatments performed on the specimens the value of the microhardness of the diffusion zone has increased from about 350 VHN 0.05 to about 1000 VHN 0.05 (however, the brittleness of the diffusion zone has increased at the same time), the amount of the β phase has decreased in that area, the resistance of the diffusion treated specimens to electrochemical corrosion in the 0.5 M aqueous solution NaCl is approximately the same as that of the not treated ones, the surface roughness after the treatments is slightly greater than that before the treatments and the tribological properties of duplex treated specimens are better than those of the shot-pinned ones. The positive effect of the glow discharge plasma on the thickness of the diffusion zone rich in interstitial oxygen atoms has been depicted as well. (author)

  16. LM-OSL thermal activation curves of quartz: Relevance to the thermal activation of the 110 deg. C TL glow-peak

    Energy Technology Data Exchange (ETDEWEB)

    Kiyak, N.G. [Physics Department, Faculty of Science and Arts, ISIK University, Istanbul (Turkey)], E-mail: kiyak@isikun.edu.tr; Polymeris, G.S. [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece); Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2008-02-15

    The thermally activated characteristics (TAC) of the linearly modulated optically stimulated luminescence (LM-OSL) signals of seven quartz samples from different origin were studied relative to the TAC of their respective thermoluminescence (TL) glow-peaks at 110 deg. C. Within the framework of the study the TAC behavior of the LM-OSL was investigated by measuring the OSL signal at room temperature (RT) with the 110 deg. C glow-peak present during OSL measurements, as well as, at 125 deg. C without the glow-peak at 110 deg. C removed by a cut-heat at 180 deg. C prior to OSL measurement. The LM-OSL curves were analyzed into individual components using a computerized deconvolution procedure. It was found that all individual LM-OSL components of each kind of quartz follow the TAC behavior of the respective TL glow-peak at 110 deg. C. The fourth component of the LM-OSL curve, centered at about t{sub m}=400s, appeared when the OSL measurements were performed at RT, whereas it was absent when the OSL measurement were performed at 180 deg. C. It is suggested that this component is closely related with the TL glow-peak at 110 deg. C.

  17. Studying surface glow discharge for application in plasma aerodynamics

    Science.gov (United States)

    Tereshonok, D. V.

    2014-02-01

    Surface glow discharge in nitrogen between two infinite planar electrodes occurring on the same plane has been studied in the framework of a diffusion-drift model. Based on the results of numerical simulations, the plasma structure of this discharge is analyzed and the possibility of using it in plasma aerodynamics is considered.

  18. NEW DEVELOPMENT IN DOUBLE GLOW SURFACE ALLOYING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of special alloys are produced on the surfaces of iron and steels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy,surface precipitation hardening high speed steel and surface precipitation hardening stainless steel are introduced.

  19. A study of the glow discharge plasma jet of the novel Hamburger-electrode

    Science.gov (United States)

    Liu, Wenzheng; Ma, Chuanlong; Yang, Xiao; Cui, Weisheng; Chen, Xiuyang

    2016-08-01

    To generate atmospheric pressure glow discharge plasma jets (APGDPJs), a novel Hamburger-electrode was proposed. Through the study on electric field distributions, flow field distributions, and characteristics of the discharge and jet, we found that adopting the mode of dielectric barrier discharge with non-uniform thickness of dielectric, it was easy to form the strong electric field areas which were conducive to generate discharge and electric field distributions with large electric field intensity in the narrow gap and weak electric field intensity in the wide gap that were not inclined to form a filament discharge. Using the structure of evenly distributed inner electrodes, it was easy to weaken the pressure of strong electric field areas and form flow field distributions which is beneficial for taking out the high density charged particles and generating APGDPJs. Stable APGDPJs in nitrogen with 3.5 mm in diameter and 9 mm in length were formed by using the novel Hamburger-electrode.

  20. A model for unconventional glow discharge nitriding of grade 2 titanium

    Directory of Open Access Journals (Sweden)

    T. Frączek

    2013-01-01

    Full Text Available An analysis of the influence of different parameters of the ion nitriding process conducted in a H2 + N2 atmosphere on the properties of the surface layer of Grade 2 titanium was carried out in the study. This allowed a model for ion nitriding of technical titanium to be developed. The equipment used in the experimental work included a JON-600 current glow-discharge furnace. It was found that the process of cathode nitriding with the use of the active screen led to an increase in the concentration of nitrogen in the surface layer and in the relative volume of nitrides. A factor which determines the qualitative and quantitative characteristics of phenomena that occur in the presence of the active screen is the high concentration and high energy level of nitrogen ions which interact with base material during nitriding.

  1. STUDY ON THE TANTALIZING ON THE SURFACE OF TITANIUM ALLOY BY NET-SHAPE CATHODE GLOW DISCHARGING

    Institute of Scientific and Technical Information of China (English)

    F. Chen; H. Zhou; Y.F. Zhang; J.D. Pan

    2005-01-01

    A new net-shape cathode sputtering target which has a simple structure and a high sputtering was put forward. The multiple-structure made of alloying and coating layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this method in double glow surface alloying process. The tantalized samples were investigated by SEM, XRD and electrochemical corrosion method .Results show the complicated tissue of pure tantalizing layer and diffusion layer was successfully formed on the surface of TC4 with the method of net-shape cathode glow discharge, which further improved the corrosion-resistance of TC4 and formed good corrosion-resistant alloys.

  2. Atmospheric CO2, d(O2/N2), APO and oxidative ratios from aircraft flask samples over Fyodorovskoye, Western Russia

    NARCIS (Netherlands)

    Laan, van der S.; Laan-Luijkx, van der I.T.; Rödenbeck, C.; Varlagin, A.; Shironya, I.; Neubert, R.E.M.

    2014-01-01

    We present atmospheric CO2 and d(O2/N2) from flask samples taken on board aircraft over Fyodorovskoye (56°27'N, 32°55'E) at heights of 3000 m and 100 m between 1998 and 2008. The long-term trends for CO2 and d(O2/N2) are similar for both sampling heights, and also similar to observations from marine

  3. Atmospheric CO2, delta(O-2/N-2), APO and oxidative ratios from aircraft flask samples over Fyodorovskoye, Western Russia

    NARCIS (Netherlands)

    van der Laan, Sander; van der Laan - Luijkx, Ingrid; Roedenbeck, C.; Varlagin, A.; Shironya, I.; Neubert, R. E. M.; Ramonet, M.; Meijer, H. A. J.

    2014-01-01

    We present atmospheric CO2 and delta(O-2/N-2) from flask samples taken on board aircraft over Fyodorovskoye (56 degrees 27'N, 32 degrees 55'E) at heights of 3000 m and 100 m between 1998 and 2008. The long-term trends for CO2 and delta(O-2/N-2) are similar for both sampling heights, and also similar

  4. Identification and quantification of flavonoids in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, S. E.; Freese, R.; Cornett, Claus;

    2000-01-01

    by column-switching, using the first column (a Zorbax 300SB C-3 column) for sample cleanup and eluting the heart-cut flavonoid fraction onto the second column (a Zorbax SE C-18 column) for separation and detection by ultraviolet and atmospheric pressure chemical ionization MS using single ion monitoring...

  5. Self-Consistent Description of Nitrogen dc Glow Discharge

    Institute of Scientific and Technical Information of China (English)

    傅广生; 王久丽; 于威; 韩理

    2002-01-01

    A self-consistent hybrid Monte Carlo fluid model is presented to describe the nitrogen dc glow discharge. The movement of fast electrons is simulated by the Monte Carlo method while the dynamics of slow electrons and ions is by fluid equations. The spatial features of the charged species and the corresponding electric field throughout the discharge have been calculated, which include the creation rates of ions and slow electrons, densities of the charged species, the electric field and the potential distribution. These closely related results can give a selfconsistent explanation of the discharge characteristics throughout the space of nitrogen dc glow discharge. The calculated ion density is also compared with the corresponding experimental result.

  6. Glow Discharge Induced Hydroxyl Radical Degradation of 2-Naphthylamine

    Science.gov (United States)

    Lu, Quanfang; Yu, Jie; Gao, Jinzhang; Yang, Wu

    2005-06-01

    In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several other active species. Hydroxyl radical directly attacks organic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventually degraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed by using an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC) and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (c0 =30 mg·l-1) is completely converted within 2h at 30°C and 600 V by glow discharge electrolysis, and the degradation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absence of ferrous ions and descended in the presence of them.

  7. Glow Discharge Induced Hydroxyl Radical Degradation of 2-Naphthylamine

    Institute of Scientific and Technical Information of China (English)

    Lu Quanfang; Yu Jie; Gao Jinzhang; Yang Wu

    2005-01-01

    In an aqueous solution, normal electrolysis at high voltages switches over sponta-neously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, andaqueous electron, as well as several other active species. Hydroxyl radical directly attacks or-ganic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventuallydegraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed byusing an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC)and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (c0 =30 mg.1-1) iscompletely converted within 2h at 30℃ and 600 V by glow discharge electrolysis, and the degra-dation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absenceof ferrous ions and descended in the presence of them.

  8. Effect of glow discharge air plasma on grain crops seed

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  9. The Use of DC Glow Discharges as Undergraduate Educational Tools

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  10. Some properties of a microwave boosted glow discharge source using neon as the operating gas.

    Science.gov (United States)

    Leis, F; Steers, E B

    1996-07-01

    The use of neon as the operating gas for the analysis of aluminium samples with the microwave boosted glow discharge source has been studied. A new type of anode tube allowed the gas to enter the source near the sample surface so that more material was transported into the discharge. Erosion rates have been measured under conditions optimised for high line-to-background ratios and found to be lower than with argon (9 and 21 n/s, respectively). Despite the lower erosion rate the detection limits measured for a number of elements in aluminium are in the range 0.02-1 microg/g and comparable to those obtained with argon as the operating gas.

  11. Pre-conditioned Backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: Sampling of propagation directions in polarising media

    CERN Document Server

    Muñoz, García; Mills,; P, F

    2014-01-01

    Context. The interpretation of polarised radiation emerging from a planetary atmosphere must rely on solutions to the vector Radiative Transport Equation (vRTE). Monte Carlo integration of the vRTE is a valuable approach for its flexible treatment of complex viewing and/or illumination geometries and because it can intuitively incorporate elaborate physics. Aims. We present a novel Pre-Conditioned Backward Monte Carlo (PBMC) algorithm for solving the vRTE and apply it to planetary atmospheres irradiated from above. As classical BMC methods, our PBMC algorithm builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. Methods. We show that the neglect of polarisation in the sampling of photon propagation directions in classical BMC algorithms leads to unstable and biased solutions for conservative, optically-thick, strongly-polarising media such as Rayleigh atmospheres. The numerical difficulty is avoid...

  12. Argon gas concentration effects on nanostructured molybdenum nitride layer growth using 100 Hz pulsed dc glow discharge

    Science.gov (United States)

    Ikhlaq, U.; Ahmad, R.; Saleem, S.; Shah, M. S.; Umm-i-Kalsoom; Khan, N.; Khalid, N.

    2012-08-01

    The effect of argon concentration (10%-40%) on the surface properties of molybdenum is studied in nitrogen-argon mixture using 100 Hz pulsed dc glow discharge. The analysis is carried out by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vickers microhardness tester to investigate surface properties of the nitrided samples. XRD results exhibit the formation of molybdenum nitrides. Crystallite size analysis and SEM morphology confirm the growth of nanostructured molybdenum nitride layers. Moreover, significant increase in surface hardness (by a factor of about two times) is found when the sample is treated for 30% argon in nitrogen-argon mixed plasma.

  13. Osmium conductive metal coating for SEM specimen using sublimated osmium tetroxide in negative glow phase of DC glow discharge.

    Science.gov (United States)

    Tanaka, A

    1994-08-01

    A new method of osmium conductive metal coating for scanning electron microscopy specimens using osmium tetroxide in direct current glow discharge and its apparatus have been devised. Anode and cathode plates are placed in a gas reactor, sublimated osmium tetroxide is introduced, and glow discharge is generated. As a result, the gas between the electrodes instantaneously becomes plasma. At the specimen surface, which is placed in the negative glow phase on the cathode plate, positively ionized osmium molecules are directly adhered and deposited, thereby leaving a completely amorphous metal coating of osmium. As a result, the formed coating precisely matched the fine structure of the specimen surface, and even when irradiated with a strong electron beam was free of heat damage, electrification and contamination. The secondary electron emission efficiency of the coating was also good. Furthermore, no granularity of the film surface was observed even when viewed at a high magnification. In this way, a superior osmium conductive metal coating was obtained. PMID:7996076

  14. Thermoluminescence glow curve for UV induced ZrO2:Ti phosphor with variable concentration of dopant and various heating rate

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2014-10-01

    Full Text Available The present paper reports the synthesis and characterization of Ti doped ZrO2 nanophosphors. The effects of variable concentration of titanium on thermoluminescence (TL behaviour are studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for nano phosphors. The starting material used for sample preparation are Zr(NO33 and Ti(NO33 and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ti (0.05–0.5 mol% there is no any phase change found with increase the concentration of Ti. Sample shows cubic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique for optimized concentration of dopant. The good connectivity with grains and the semi-sphere like structure was found by FEGSEM. The functional group analysis was determined by Fourier transform infrared (FTIR spectroscopic techniques. The prepared phosphor examined by thermoluminescence technique. For recording TL glow curve every time 2 mg phosphor was irradiated by UV 254 nm source and fixed the heating rate at 5 °C s−1. Sample shows well resolved peak at 167 °C with a shoulder peak at 376 °C. The higher temperature peak shows the well stability and less fading in prepared phosphor. Also the effect of Ti concentration at fixed UV exposure time was studied. The effect of UV exposure time and dose versus intensity plot was studied. Sample shows linear response with dose and broaden peak with high temperature shows the more stability and less fading in TL glow curve. The linear dose response, high stability and less fading phenomenon shows the sample may be useful for thermoluminescence dosimetry application. Trapping parameters are calculated for every recorded glow curve. The

  15. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  16. The atmospheric circulation of a nine-hot Jupiter sample: Probing circulation and chemistry over a wide phase space

    CERN Document Server

    Kataria, Tiffany; Lewis, Nikole K; Visscher, Channon; Showman, Adam P; Fortney, Jonathan J; Marley, Mark S

    2016-01-01

    We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model "grid" recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough...

  17. Atmospheric CO₂, δ(O₂/N₂) and δ13CO2 measurements at Jungfraujoch, Switzerland: results from a flask sampling intercomparison program

    OpenAIRE

    Laan-Luijkx, I.T. van der; S. Van der Laan; Uglietti, C.; M. F. Schibig; R. E. M. Neubert; H. A. J. Meijer; W. A. Brand; A. Jordan; J. M. Richter; Rothe, M; M. C. Leuenberger

    2013-01-01

    We present results from an intercomparison program of CO2, δ(O2/N2) and δ13CO2 measurements from atmospheric flask samples. Flask samples are collected on a bi-weekly basis at the High Altitude Research Station Jungfraujoch in Switzerland for three European laboratories: the University of Bern, Switzerland, the University of Groningen, the Netherlands and the Max Planck Institute for Biogeochemistry in Jena, Germany. Almost 4 years of measurements of CO2, δ(O2/N2) ...

  18. Three-Dimensional X-ray Observation of Atmospheric Biological Samples by Linear-Array Scanning-Electron Generation X-ray Microscope System

    Science.gov (United States)

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si3N4 thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields. PMID:21731770

  19. Three-dimensional X-ray observation of atmospheric biological samples by linear-array scanning-electron generation X-ray microscope system.

    Science.gov (United States)

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si₃N₄ thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields.

  20. Three-dimensional X-ray observation of atmospheric biological samples by linear-array scanning-electron generation X-ray microscope system.

    Directory of Open Access Journals (Sweden)

    Toshihiko Ogura

    Full Text Available Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM, which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB and the thin film of the sample mount. We present herein a three-dimensional (3D X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD array. The specimens are placed under a CuZn-coated Si₃N₄ thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields.

  1. Seasonal associations and atmospheric transport distances of fungi in the genus Fusarium collected with unmanned aerial vehicles and ground-based sampling devices

    Science.gov (United States)

    Lin, Binbin; Ross, Shane D.; Prussin, Aaron J.; Schmale, David G.

    2014-09-01

    Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. New information is needed to characterize seasonal trends in atmospheric loads of Fusarium and to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. We hypothesized that (1) atmospheric concentrations of Fusarium spores in an agricultural ecosystem vary with height and season and (2) transport distances from potential inoculum source(s) vary with season. To test these hypotheses, spores of Fusarium were collected from the atmosphere in an agricultural ecosystem in Blacksburg, VA, USA using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. More than 2200 colony forming units (CFUs) of Fusarium were collected during 104 BVS sampling periods and 180 UAV sampling periods over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13 and 0 to 23 spores m-3 for the BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. A Gaussian plume transport model was used to estimate distances to the potential inoculum source(s) by season, and produced mean transport distances of 1.4 km for the spring, 1.7 km for the summer, 1.2 km for the fall, and 4.1 km for the winter. Environmental signatures that predict atmospheric loads of Fusarium could inform disease spread, air pollution, and climate change.

  2. Study on the Precipitates Formed by Double Glow Plasma Surface Alloying with Tungsten-Molybdenum

    Institute of Scientific and Technical Information of China (English)

    Bin ZHAO; Jiansheng WU; Zhonghou LI; Xiaoping LIU; Zhong XU

    2001-01-01

    Due to the slow cooling rate in the alloying furnace, large amount of brittle precipitates appear in the alloyed layers which are formed by the DGPSA (Double Glow Plasma Surface Alloying)with tungsten-molybdenum. It causes the mechanical properties of the samples to be seriously degraded. Qualitative phase analysis reveals that they are mainly composed of theμ-phase, and a small amount of carbide, M6C. In this paper the microstructure and thermodynamic factors of the precipitates are exhaustively investigated. There are two transformation noses in the isothermal transformation (IT) diagram of the precipitates. As a major object of this work, an effective measure is offered to depress the deposition of the precipitates.

  3. Glow Discharge AES: Methodological Peculiarities of Pulse Element Analysis and Flash Desorption

    CERN Document Server

    Bregadze, Vasil G; Tsakadze, Ketevan J

    2007-01-01

    Different techniques of Glow Discharge AES are described in this paper. The most important parameters at such investigations are: the power of VHF-field, pressure of the inert gas and concentration of the easily ionizable additive, e.g. NaCl. The influences of these parameters were studied It is proposed a high sensitive flash desorption method, which enables investigation of the water desorption rate from humidified samples of biological origin, namely DNA and chromatin. The ways of minimizing of detection limit are considered as the most important characteristics of an analytical device. The concentration of any measured element is detectable if it correlates to the signal equal to tripled standard deviation of the results of background measurement. Electron temperature of the Helium has been evaluated by absorption rate at two lines of helium \\lambda=353.828nm; \\lambda'=344.759nm that was equal to T_c ~ 15000 K.

  4. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    Science.gov (United States)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-09-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  5. Green Ocean Amazon 2014/15 High-Volume Filter Sampling: Atmospheric Particulate Matter of an Amazon Tropical City and its Relationship to Population Health Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C. M. [Federal Univ. of Amazonas (Brazil); Santos, Erickson O. [Federal Univ. of Amazonas (Brazil); Fernandes, Karenn S. [Federal Univ. of Amazonas (Brazil); Neto, J. L. [Federal Univ. of Amazonas (Brazil); Souza, Rodrigo A. [Univ. of the State of Amazonas (Brazil)

    2016-08-01

    Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as part of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.

  6. Sintering unalloyed titanium in DC electrical abnormal glow discharge

    Directory of Open Access Journals (Sweden)

    Allan Seeber

    2010-03-01

    Full Text Available Powder metallurgy is widely used in the manufacture of components that have complex geometry. The good dimensional control, reduction in manufacturing steps and operating costs which has favored the use of this technique for manufacturing of titanium alloys components. However, the high affinity of this material with oxygen hinders strongly the sintering process. For this, the sintering associated with plasma technology can be considered an alternative technique for the processing of this material. The strict control of sintering atmosphere performed at low pressures and the reactive species present in the plasma environment can help to improve the sintering of this material. The results presented in this paper show a good correlation between the parameters used for the compaction of the samples and the microstructure develop during the plasma sintering of samples. The microstructure of the plasma assisted samples is also affected by the particular configuration used in the plasma reactor.

  7. Resistivity-temperature characteristics of sol gel YBa2Cu3Oy samples synthesized in flowing oxygen atmosphere

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Jun; Zhou Zuo-Wei; Zhou Liang-Yu; Lin Li; Li Xing-Guo; Feng Qing-Rong

    2004-01-01

    The relationship of resistivity versus synthesizing temperature of sol gel YBa2Cu3Oy samples was studied when prepared under flowing oxygen conditions. A set of high-temperature p-T curves was obtained for the whole process.After the sample finished the test measuring, its resistivity was ρ300=9.83 × 10-3Ω·cm at room temperature. The ρ-T curve also showed that the orthorhombic-tetragonal phase transformation of sol-gel YBa2Cu3Oy sample occurred at 581℃ for the sample in the rising temperature process, but at 613℃ in the cooling process, lower than that of the samples made by using the conventional powder metallurgy methods.

  8. Large Scale Modelling of Glow Discharges or Non - Plasmas

    Science.gov (United States)

    Shankar, Sadasivan

    The Electron Velocity Distribution Function (EVDF) in the cathode fall of a DC helium glow discharge was evaluated from a numerical solution of the Boltzmann Transport Equation(BTE). The numerical technique was based on a Petrov-Galerkin technique and a unique combination of streamline upwinding with self -consistent feedback-based shock-capturing. EVDF for the cathode fall was solved at 1 Torr, as a function of position x, axial velocity v_{rm x}, radial velocity v_{rm r}, and time t. The electron-neutral collisions consisted of elastic, excitation, and ionization processes. The algorithm was optimized and vectorized to speed execution by more than a factor of 10 on CRAY-XMP. Efficient storage schemes were used to save the memory allocation required by the algorithm. The analysis of the solution of BTE was done in terms of the 8-moments that were evaluated. Higher moments were found necessary to study the momentum and energy fluxes. The time and length scales were estimated and used as a basis for the characterization of DC glow discharges. Based on an exhaustive study of Knudsen numbers, it was observed that the electrons in the cathode fall were in the transition or Boltzmann regime. The shortest relaxation time was the momentum relaxation and the longest times were the ionization and energy relaxation times. The other times in the processes were that for plasma reaction, diffusion, convection, transit, entropy relaxation, and that for mean free flight between the collisions. Different models were classified based on the moments, time scales, and length scales in their applicability to glow discharges. These consisted of BTE with different number af phase and configuration dimensions, Bhatnagar-Gross-Krook equation, moment equations (e.g. Drift-Diffusion, Drift-Diffusion-Inertia), and spherical harmonic expansions.

  9. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  10. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  11. Glow discharge lamp: A light source for optical emission spectroscopy

    Science.gov (United States)

    Vishwanathan, K. S.; Srinivasan, V.; Nalini, S.; Mahalingam, T. R.

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emission spectrography by standardizing a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii, and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent.

  12. Glow discharge lamp: a light source for optical emission spectroscopy

    International Nuclear Information System (INIS)

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emmission spectrography by standardising a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent. (author). 19 re fs., 13 figs., 2 tabs

  13. Reproducing continuous radio blackout using glow discharge plasma

    International Nuclear Information System (INIS)

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 109 to 2.5 × 1011 cm−3. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths

  14. Glow discharge assisted oxynitriding process of titanium for medical application

    Science.gov (United States)

    Wierzchoń, Tadeusz; Czarnowska, Elżbieta; Grzonka, Justyna; Sowińska, Agnieszka; Tarnowski, Michał; Kamiński, Janusz; Kulikowski, Krzysztof; Borowski, Tomasz; Kurzydłowski, Krzysztof J.

    2015-04-01

    The plasma oxynitriding process is a prospective method of producing titanium oxides as an integral part of a diffusive nitrided surface layer on titanium implants. This hybrid process, which combines glow discharge assisted nitriding and oxidizing, permits producing TiO2 + Ti2N + αTi(N)-type diffusive surface layers. The oxynitrided surface layers improve the corrosion and wear resistance of the substrate material. Additionally, the nanocrystalline titanium oxide TiO2 (rutile) improves the biological properties of titanium and its alloys when in contact with blood, whereas the TiN + Ti2N + αTi(N) zone eliminates the effect of metalosis.

  15. Determination of trace elements in high purity alumina powder by helium enhanced direct current glow discharge mass spectrometry

    Science.gov (United States)

    Jung, Sehoon; Kim, Sunhye; Hinrichs, Joachim

    2016-08-01

    Trace impurities in high purity alumina powder were determined by fast flow direct current glow discharge mass spectrometry (GD-MS). The non-conductive samples were prepared with high purity graphite powder and used as a sample binder and as a secondary cathode. To improve the sensitivity of the GD-MS analysis, helium was introduced as an additional glow discharge gas to argon plasma. The quantification results of the GD-MS measurement were calculated by external calibration with matrix matched certified reference materials. The GD-MS results for the determination of Na, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn and Ga in the alumina samples agreed well with the certified values of a reference material and the results of chemical analysis using wet sample digestion with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The GD-MS analysis is a rapid analysis technique to determine trace elements in non-conductive alumina to below mg·kg- 1 levels.

  16. Assessing the Warm Glow Effect in Contingent Valuations for Public Libraries

    Science.gov (United States)

    Lee, Soon-Jae; Chung, Hye-Kyung; Jung, Eun-Joo

    2010-01-01

    This article aims to present evidence of the warm glow effect in a public library setting. More specifically, it tests whether individual respondents with different values for the warm glow component report different values for their willingness to pay (WTP). The data come from a contingent valuation survey conducted on randomly selected citizens…

  17. Numerical analysis of thermoluminescence glow curves; Analisis numerico de las cruvas de termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Ros, J. M.; Delgado, A.

    1989-07-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs.

  18. Simulation of the influence of thermal quenching on thermoluminescence glow-peaks

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, B.; Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Pagonis, V. [Physics Department, McDaniel College, Westminster, MD 21157 (United States)

    2010-05-15

    The thermal quenching of luminescence efficiency is an effect which is present in many thermoluminescent (TL) materials. It causes a significant decrease of the luminescence signal and disturbs the shape of the glow-peaks. Therefore, in principle, the thermoluminescence kinetics theory cannot describe TL glow-peaks influenced by thermal quenching. In the present work a detailed simulation of the influence of the thermal quenching effect on thermoluminescence glow-peaks is presented. Specifically we study the shift of the quenched glow-peak with heating rate and the effect on the various heating rate methods, the influence on the symmetry factor and the kinetic order of the glow-peak, and the effect of thermal quenching on the initial rise and peak shape methods for evaluating kinetic parameters. Furthermore, the evaluation of the thermal quenching parameters using the quenched glow-peak and the possibility of using the conventional expression describing a single glow-peak to fit the quenched glow peaks are also investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Method for the determination of lignin content of a sample by flash pyrolysis in an atmosphere of hydrogen or helium and method therefor

    Science.gov (United States)

    Shakkottai, Parthasarathy (Inventor); Kwack, Eug Y. (Inventor); Lawson, Daniel D. (Inventor)

    1991-01-01

    The lignin content of wood, paper pulp or other material containing lignin (such as filter paper soaked in black liquor) is more readily determined by flash pyrolysis of the sample at approximately 550.degree. C. in a reducing atmosphere of hydrogen or in an inert atmosphere of helium followed by a rapid analysis of the product gas by a mass spectrometer. The heated pyrolysis unit as fabricated comprises a small platinum cup welded to an electrically-heated stainless steel ribbon with control means for programmed short duration (1.5 sec, approximately) heating and means for continuous flow of hydrogen or helium. The pyrolysis products enter an electron-ionization mode mass spectrometer for spectral evaluation. Lignin content is obtained from certain ratios of integrated ion currents of many mass spectral lines, the ratios being linearly related to the Kappa number of Klason lignin.

  20. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    KAUST Repository

    Hoffman, A. S.

    2016-07-26

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  1. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres.

    Science.gov (United States)

    Hoffman, A S; Debefve, L M; Bendjeriou-Sedjerari, A; Ouldchikh, S; Bare, Simon R; Basset, J-M; Gates, B C

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities-to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions-to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported. PMID:27475549

  2. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    Science.gov (United States)

    Hoffman, A. S.; Debefve, L. M.; Bendjeriou-Sedjerari, A.; Ouldchikh, S.; Bare, Simon R.; Basset, J.-M.; Gates, B. C.

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  3. Atmospheric deposition of heavy metals in Norway studied by the analysis of moss samples using neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    In a study of the atmospheric deposition of trace elements in different parts of Norway, samples of the moss Hylocomium Splendens were analyzed with respect to 28 elements. The determination of Cu, Zn, Cd and Pb was carried out by atomic absorption spectrophotometry, while 24 additional elements were determined by instrumental neutron activation analysis. In samples from southemmost Norway, a substantially higher concentration was found for elements such as Pb, Sb, V, Cr, Cu, Zn, As, Se, Mo, Ag and Cd than in samples from places located in the more northerly parts of the country. The results indicate that sources which are to the south and south-west of Scandinavia, contribute significantly to heavy metal deposition in Norway. (author)

  4. Analysis of oxysterols and vitamin D metabolites in mouse brain and cell line samples by ultra-high-performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry.

    Science.gov (United States)

    Ahonen, Linda; Maire, Florian B R; Savolainen, Mari; Kopra, Jaakko; Vreeken, Rob J; Hankemeier, Thomas; Myöhänen, Timo; Kylli, Petri; Kostiainen, Risto

    2014-10-17

    We have developed an ultra-high-performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometric (UHPLC-APPI-MS/MS) method for the simultaneous quantitative analyses of several oxysterols and vitamin D metabolites in mouse brain and cell line samples. An UHPLC-APPI-high resolution mass spectrometric (UHPLC-APPI-HRMS) method that uses a quadrupole-time of flight mass spectrometer was also developed for confirmatory analysis and for the identification of non-targeted oxysterols. Both methods showed good quantitative performance. Furthermore, APPI provides high ionization efficiency for determining oxysterols and vitamin D related compounds without the time consuming derivatization step needed in the conventionally used electrospray ionization method to achieve acceptable sensitivity. Several oxysterols were quantified in mouse brain and cell line samples. Additionally, 25-hydroxyvitamin D3 was detected in mouse brain samples for the first time.

  5. Polycyclic aromatic hydrocarbon concentrations in gas and particle phases and source determination in atmospheric samples from a semiurban area of Dourados, Brazil.

    Science.gov (United States)

    Ré, Nilva; Kataoka, Vanessa Mayumi Fukuy; Cardoso, Claudia Andrea Lima; Alcantara, Glaucia Braz; de Souza, João Batista Gomes

    2015-07-01

    A headspace solid-phase microextraction (HS-SPME) procedure that employs a PDMS/DVB fiber was developed for the analysis of gas-phase polycyclic aromatic hydrocarbons (PAHs) collected in polyurethane foam (PUF) by gas chromatography (GC) mass spectrometry. The method exhibited good linearity (R (2) > 0.99) and repeatability (4.9-25 %) as well as an impressive detection limit that ranged from 1.1 to 3.3 ng. Twenty-two air samples were collected by high-volume samplers from January to November 2007 in a semiurban area of Dourados (Brazil) and were analyzed for their content of total suspended particulates and PAHs. The PAHs were extracted from the PUF samples using the developed procedure (HS-SPME), and PAHs adsorbed on particulate matter were extracted with dichloromethane/methanol (4:1 [v/v]) in an ultrasonic bath. The values of the total daily concentrations of 16 PAHs determined in the samples ranged from 0.375 to 8.407 ng m(-3). In addition, diagnostic ratios were calculated, showing that the PAHs in the atmosphere at the sampling site originated predominantly from vehicle emissions and the combustion of grass and wood. Hierarchical cluster analysis and principal component analysis were performed as well, the results of which indicated (1) the same sources of PAH identified by the diagnostic ratios and (2) that the sampling days could be categorized into three groups depending on the atmospheric conditions. GC retention indices were also used to identify PAHs, biphenyl (phenylbenzene), and heterocyclic organic compounds (benzofurans) in some of the samples. PMID:25851064

  6. Use of chloroflurocarbons as internal standards for the measurement of atmospheric non-methane volatile organic compounds sampled onto solid adsorbent cartridges.

    Science.gov (United States)

    Karbiwnyk, Christine M; Mills, Craig S; Helmig, Detlev; Birks, John W

    2003-03-01

    Solid adsorbents have proven useful for determining the vertical profiles of volatile organic compounds (VOCs) using sampling platforms such as balloons, kites, and light aircraft, and those profiles provide valuable information about the sources, sinks, transformations, and transport of atmospheric VOCs. One of the largest contributions to error in VOC concentrations is the estimation of the volume of air sampled on the adsorbent cartridge. These errors arise from different sources, such as variations in pumping flow rates from changes in ambient temperature and pressure with altitude, and decrease in the sampling pump battery power. Another significant source for sampling rate variations are differences in the flow resistance of individual sampling cartridges. To improve the accuracy and precision of VOC measurements, the use of ambient chlorofluorocarbons (CFCs) as internal standards was investigated. A multibed solid adsorbent, AirToxic (Supelco), was chosen for its wide sampling range (C3-C12). Analysis was accomplished by thermal desorption and dual detection GC/FID/ECD, resulting in sensitive and selective detection of both VOCs and CFCs in the same sample. Long-lived chlorinated compounds (CFC-11, CFC-12, CFC-113, CCl4 and CH3CCl3) banned by the Montreal Protocol and subsequent amendments were studied for their ability to predict sample volumes using both ground-based and vertical profiling platforms through the boundary layer and free troposphere. Of these compounds, CFC-113 and CCl4 were found to yield the greatest accuracy and precision for sampling volume determination. Use of ambient CFC-113 and CCl4 as internal standards resulted in accuracy and precision of generally better than 10% for the prediction of sample volumes in ground-, balloon-, and aircraft-based measurements. Consequently, use of CFCs as reference compounds can yield a significant improvement of accuracy and precision for ambient VOC measurements in situations where accurate flow

  7. Analytical performance of glow discharge optical emission spectrometry with neon-argon mixed gases in determination of aluminum in steel samples%氖氩混合气体辉光放电发射光谱法测定钢样中铝的分析特性

    Institute of Scientific and Technical Information of China (English)

    WAGATSUMA; Kazuaki; HYUNKOOK; Park

    2007-01-01

    The emission characteristics of several atomic and ionic line of Al emitted from a Ne-Ar mixed gas glow discharge plasma were investigated. In comparison with pure Ar and pure Ne plasmas, the relative intensities of the Al emission lines are much different among these plasma gases. The Al Ⅱ lines which are identified to the 4f-3d transitions, such as Al Ⅱ 358. 71 nm and Al Ⅱ 358.66 nm, give intense emission when Ne is employed as the plasma gas, whereas these Al Ⅱ lines cannot be emitted from the pure Ar plasma. The reason for this effect is that the 4f excited levels are highly and selectively populated through resonance charge transfer collision between Al atom and Ne ion. The addition of small amounts of Ar to the Ne plasma increases the population of gas ions as well as the number density of electrons in the plasma because Ar ions are predominantly produced through Penning ionization collision between Ne metastable and Ar atom. This change occurring in the Ne-Ar mixed gas plasma results in enhancement in the emission intensities of Al lines. Among the atomic and ionic Al lines, the Al Ⅱ 358. 641 nm line can be employed as an analytical line for determination of trace-level Al, since the intensity is large and the background equivalent concentration is small in the Ne-Ar plasma.%研究了在Ne-Ar混合气体辉光等离子体中铝的原子及离子发射光谱线,并与纯Ar和纯Ne辉光等离子体进行了比较.在不同的放电气体环境下,Al发射线的相对强度不同.在Ne为放电气体时,可以观察到由4f→3d跃迁而产生的Al Ⅱ 358.71 nm和Al Ⅱ 358.66 nm两条发射线,而这两条线在以Ar为放电气体时不会产生.这种现象的原因是由于4f激发态是由Al原子和Ne离子的共振电荷转移碰撞而选择性高几率的产生的.由于亚稳态的Ne与Ar原子的彭宁碰撞会产生大量的Ar离子,因此在Ne等离子体中加入少量的Ar气时,会增加等离子体中气体离子的数量和电子

  8. COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    CZECHOWICZ, DG; CASTILLO, ER; NIKROO, A

    2002-04-01

    OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake.

  9. Multiple solutions in the theory of dc glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P G C; Benilov, M S; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2010-04-15

    Multiple steady-state solutions existing in the theory of dc glow discharges are computed for the first time. The simulations are performed in 2D in the framework of the simplest self-consistent model, which accounts for a single ion species and employs the drift-diffusion approximation. Solutions describing up to nine different modes were found in the case where losses of the ions and the electrons due to diffusion to the wall were neglected. One mode is 1D, exists at all values of the discharge current, and represents in essence the well-known solution of von Engel and Steenbeck. The other eight modes are axially symmetric, exist in limited ranges of the discharge current, and are associated with different patterns of current spots on the cathode. The mode with a spot at the centre of the cathode exhibits a well pronounced effect of normal current density. Account of diffusion losses affects the solutions dramatically: the number of solutions is reduced, a mode appears that exists at all discharge currents and comprises the Townsend, subnormal, normal and abnormal discharges. The solutions that exist in limited current ranges describe patterns, and these patterns seem to represent axially symmetric analogues of the 3D patterns observed in dc glow microdischarges in xenon.

  10. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  11. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  12. A Comparative Study between the Filamentary and Glow Modes of DBD Plasma in the Treatment of Wool Fibers

    Directory of Open Access Journals (Sweden)

    Doaa. M. El-Zeer

    2014-03-01

    Full Text Available In the present research it has been studied the effect of the DBD plasma on the treatment and modification of the surface a printing properities of the wool. Two types of DBD plasma have been investigated namely; the filamentary mode FDBD plasma and the glow mode GDBD plasma to reach the best condition of the treatment. Two discharge cells have been constructed one of them is for the generation of Atmospheric pressure glow discharge APGD and the other is for the generation of filamentary dielectric barrier discharge FDBD plasma. These two cells have the same dimensions except for the type of the dielectric barrier. In the APGD cell the dielectric barrier is a commercial porous fiber while in the FDBD cell the barrier is a Pyrex glass. It has been found that changing the type of the dielectric barriers acquires the discharge different properties. The efficiencies of these two types of discharge in the treatment of the textiles has been examined by treating the wool fabric with these two types of DBD plasma at different conditions of the current and treatment time. The induced changes in wool properties, such as whiteness index, wettability, tensile strength, elongation %, surface morphology, printability and fastness properties, have been investigated. The surface characterization was performed using FTIR and SEM imaging. It has been discovered that GDBD plasma is more efficient than FDBD because of not only its homogeneity but also the high concentration of nitrogen excited species that are the responsible for the surface activation of the textile.

  13. GCAFIT—A new tool for glow curve analysis in thermoluminescence nanodosimetry

    Science.gov (United States)

    Abd El-Hafez, A. I.; Yasin, M. N.; Sadek, A. M.

    2011-05-01

    Glow curve analysis is widely used for dosimetric studies and applications. Therefore, a new computer program, GCAFIT, for deconvoluting first-order kinetics thermoluminescence (TL) glow curves and evaluating the activation energy for each glow peak in the glow curve has been developed using the MATLAB technical computing language. A non-linear function describing a single glow peak is fitted to experimental points using the Levenberg-Marquardt least-square method. The developed GCAFIT software was used to analyze the glow curves of TLD-100, TLD-600, and TLD-700 nanodosimeters. The activation energy E obtained by the developed GCAFIT software was compared with that obtained by the peak shape methods of Grossweiner, Lushchik, and Halperin-Braner. The frequency factor S for each glow peak was also calculated. The standard deviations are discussed in each case and compared with those of other investigators. The results show that GCAFIT is capable of accurately analyzing first-order TL glow curves. Unlike other software programs, the developed GCAFIT software does not require activation energy as an input datum; in contrast, activation energy for each glow peak is given in the output data. The resolution of the experimental glow curve influences the results obtained by the GCAFIT software; as the resolution increases, the results obtained by the GCAFIT software become more accurate. The values of activation energy obtained by the developed GCAFIT software a in good agreement with those obtained by the peak shape methods. The agreement with the Halperin-Braner and Lushchik methods is better than with that of Grossweiner. High E and S values for peak 5 were observed; we believe that these values are not real because peak 5 may in fact consist of two or three unresolved peaks. We therefore treated E and S for peak 5 as an effective activation energy, Eeff, and an effective frequency factor, Seff. The temperature value for peak 5 was also treated as an effective quantity

  14. Effects of traces of molecular gases (hydrogen, nitrogen) in glow discharges in noble gases

    Science.gov (United States)

    Steers, E. B. M.; Smid, P.; Hoffmann, V.

    2008-07-01

    The "Grimm" type of low pressure glow discharge source, introduced some forty years ago, has proved to be a versatile analytical source. A flat sample is used as the cathode and placed about 0.2mm away from the end of a hollow tubular anode leading to an obstructed discharge. When the source was first developed, it was used for the direct analysis of solid metallic samples by optical emission spectroscopy (OES), normally with argon as the plasma gas; it was soon found that, using suitable electrical parameters, the cathode material was sputtered uniformly from a circular crater of diameter equal to that of the tubular anode, so that the technique could be used for compositional depth profile analysis (CDPA). Over the years the capability and applications of the technique have steadily increased. The use of rf powered discharges now permits the analysis of non-conducting layers and samples; improved instrumental design now allows CDPA of ever thinner layers (e.g. resolution of layers 5 nm thick in multilayer stacks is possible). For the original bulk material application, pre-sputtering could be used to remove any surface contamination but for CDPA, analysis must start immediately the discharge is ignited, so that any surface contamination can introduce molecular gases into the plasma gas and have significant analytical consequences, especially for very thin layers; in addition, many types of samples now analysed contain molecular gases as components (either as occluded gas, or e.g. as a nitride or oxide), and this gas enters the discharge when the sample is sputtered. It is therefore important to investigate the effect of such foreign gases on the discharge, in particular on the spectral intensities and hence the analytical results. The presentation will concentrate mainly on the effect of hydrogen in argon discharges, in the concentration range 0-2 % v/v but other gas mixtures (e.g. Ar/N_2, Ne/H_2) will be considered for comparison. In general, the introduction of

  15. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    Science.gov (United States)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  16. Organic composition of size segregated atmospheric particulate matter, during summer and winter sampling campaigns at representative sites in Madrid, Spain

    Science.gov (United States)

    Mirante, Fátima; Alves, Célia; Pio, Casimiro; Pindado, Oscar; Perez, Rosa; Revuelta, M.a. Aranzazu; Artiñano, Begoña

    2013-10-01

    Madrid, the largest city of Spain, has some and unique air pollution problems, such as emissions from residential coal burning, a huge vehicle fleet and frequent African dust outbreaks, along with the lack of industrial emissions. The chemical composition of particulate matter (PM) was studied during summer and winter sampling campaigns, conducted in order to obtain size-segregated information at two different urban sites (roadside and urban background). PM was sampled with high volume cascade impactors, with 4 stages: 10-2.5, 2.5-1, 1-0.5 and < 0.5 μm. Samples were solvent extracted and organic compounds were identified and quantified by GC-MS. Alkanes, polycyclic aromatic hydrocarbons (PAHs), alcohols and fatty acids were chromatographically resolved. The PM1-2.5 was the fraction with the highest mass percentage of organics. Acids were the organic compounds that dominated all particle size fractions. Different organic compounds presented apparently different seasonal characteristics, reflecting distinct emission sources, such as vehicle exhausts and biogenic sources. The benzo[a]pyrene equivalent concentrations were lower than 1 ng m- 3. The estimated carcinogenic risk is low.

  17. Studies of synthesizing behaviors and superconductivity of sol-gel YBa2Cu3O7-x samples in flowing oxygen atmosphere

    Institute of Scientific and Technical Information of China (English)

    Ting LUO; Yi ZHANG; Xing-guo LI; Li LIN; Yue-yang ZHANG; Qing-rong FENG

    2008-01-01

    Systematic studies of synthesizing behaviors of sol-gel YBa,2Cu,3O,7-x samples in flowing oxygen atmosphere and their superconductivity have been performed. A set of high temperature p-T curves has been obtained for the whole synthesizing process. After four rounds of synthesizing, the room temperature. The ρ'-T curve of the fourth round shows that the orthorhombic to tetragonal phase transformation of the sample occurs around 600℃, which is lower than that of the YBa,2Cu,3O,7-x sample prepared by conventional solid-state reaction method. Other measurements, such as X-ray diffraction, SEM measurement and low temperature R-T and M-T measurement, were also performed. And the R-T and M-T measurement results suggest that during the synthesiz-ing process, there exist some state at which the sample has better superconductivity than the other states. Moreover, we found screw dislocations presenting on the sample broken surface from the SEM images. This will change the concept that the screw dislocations can only grow on the surface of the YBCO thin films and single crystals.

  18. The possibilities of atmospheric plasma-spraying application to obtain hydroxyapatite coatings on the stainless steel samples

    Directory of Open Access Journals (Sweden)

    Mihailović Marija D.

    2013-01-01

    Full Text Available For decades, the standard metallic materials for hip implants, besides the 316LVM stainless steel, were titanium- and cobalt/chromium-based alloys. Although bioinert, due to their corrosion resistance, they are not biocompatible. Contemporary surgical implants are not made just of bioinert metal anymore, but with deposited bioactive hydroxyapatite (HAp coating. Hydroxyapatite is chemically identical with the mineral constituent of bones and teeth, what besides its biocompatibility provides bioactivity as well. The HAp limitations are, however, weak tensile strength and low fatigue resistance for long term loadings, if used alone. This is the reason for HAp to be deposited onto the surgical implant, and to enable its bioactivity, what means intergrowth with bones, and therefore the long-lasting and mechanical stable non-cemented prosthesis. This is important predominantly because the need for such prostheses for younger population, and a better life quality. There are several contemporary techniques that have been used for deposition of these coatings onto the metal implant. The possibilities of atmospheric plasma-spraying for obtaining the stable HAp coatings on the 316LVM stainless steel, ordinary used as a standard material for hip implants production are presented in this paper. The coatings of a commercially available hydroxyapatite powder were plasma-sprayed onto the specimens of medical grade 316LVM stainless steel under various operating conditions. The optical microscopy was used for microstructure and porosity characterization, while coating morphology and Ca/P ratio were analyzed using SEM equipped with EDX. Coating microstructure varied from a porous to a glassy structure, depending on operating conditions applied and coating thickness. Coating porosity was determined to be at the lower required limit requested for the bone-coating intergrowth possibility, but nevertheless adhesion measurements showed good results. The Ca/P ratio was

  19. Emergency procedures for nuclear installations: on the simulation and interpretation of offsite air sampling measurements during the early phase of an accidental release of radioactivity to the atmosphere

    International Nuclear Information System (INIS)

    During the early stages of an accidental release of radioactive material to the atmosphere, the immediate aims of the offsite Emergency management scheme are twofold: firstly, to determine the extent of any contamination occurring close to the site (i.e. out to a few km) for purposes of protecting the local public; secondly, to provide early estimates of source term and hence permit consequences farther afield to be assessed. In practice, these objectives would be largely reliant upon the sampling measurements made by mobile offsite survey teams and the ability with which they may be interpreted in terms of an atmospheric dispersion model. This paper investigates the methodology and effectiveness of these tasks for the rapid provision of advice to decision makers. SF6 tracer experiments which simulate the offsite plume sampling procedure are described. These provide realistic demonstrations of data quality with respect to variability and sparsity, and provide practical insight into the cause of these effects as well as guidance to improve the effectiveness of the sampling strategy. A statistical scheme is described which may be used in conjunction with a plume dispersion model to analyse such data and to provide hourly averaged estimates of source strength and plume concentration/dose. Worked examples using SF6 simulation data sets for a single sampling vehicle and a 2-dimensional gaussian plume model are presented and used to assess the accuracy and limitations of the averall approach. Although the results are encouraging, performance is found to fairly sensitive to the quality and quantity of the data

  20. Stability studies of propoxur herbicide in environmental water samples by liquid chromatography-atmospheric pressure chemical ionization ion-trap mass spectrometry.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-01

    Liquid chromatography-atmospheric pressure ionization ion-trap mass spectrometry has been investigated for the analysis of polar pesticides in water. The degradation behavior of propoxur, selected as a model pesticide belonging to the N-methylcarbamate group, in various aqueous matrices (Milli-Q water, drinking water, rain water, seawater and river water) was investigated. Two interfaces of atmospheric pressure ionization, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), were compared during the study. Propoxur and its transformation product (N-methylformamide) were best ionized as positive ions with both APCI and ESI, while another transformation product (2-isopropoxyphenol) yielded stronger signals as negative ions only with APCI. In addition, the effects of various pH, matrix type and irradiation sources (sunlight, darkness, indoor lighting and artificial UV lamp) on the chemical degradation (hydrolysis) were also assessed. From the kinetic studies of degradation, it was found that the half-life of propoxur was reduced from 327 to 161 h in Milli-Q water with variation of irradiation conditions from dark to sunlight exposure. Degradation rates largely increased with increasing pH. The half-life of the target compound dissolved in Milli-Q water under darkness decreased from 407 to 3 h when the pH of Milli-Q water was increased from 5 to 8.5. These suggest that hydrolysis of propoxur is light-intensity and pH-dependent. In order to mimic contaminated natural environmental waters, propoxur was spiked into real water samples at 30 microg/l. The degradation of propoxur in such water samples under various conditions were studied in detail and compared. With the ion trap run in a time-scheduled single ion monitoring mode, typical limits of detection of the instrument were in the range of 1-10 microg/l.

  1. Atmospheric CO2, δ(O2/N2 and δ13CO2 measurements at Jungfraujoch, Switzerland: results from a flask sampling intercomparison program

    Directory of Open Access Journals (Sweden)

    I. T. van der Laan-Luijkx

    2013-07-01

    Full Text Available We present results from an intercomparison program of CO2, δ(O2/N2 and δ13CO2 measurements from atmospheric flask samples. Flask samples are collected on a bi-weekly basis at the High Altitude Research Station Jungfraujoch in Switzerland for three European laboratories: the University of Bern, Switzerland, the University of Groningen, the Netherlands and the Max Planck Institute for Biogeochemistry in Jena, Germany. Almost 4 years of measurements of CO2, δ(O2/N2 and δ13CO2 are compared in this paper to assess the measurement compatibility of the three laboratories. While the average difference for the CO2 measurements between the laboratories in Bern and Jena meets the required compatibility goal as defined by the World Meteorological Organization, the standard deviation of the average differences between all laboratories is not within the required goal. However, the obtained annual trend and seasonalities are the same within their estimated uncertainties. For δ(O2/N2 significant differences are observed between the three laboratories. The comparison for δ13CO2 yields the least compatible results and the required goals are not met between the three laboratories. Our study shows the importance of regular intercomparison exercises to identify potential biases between laboratories and the need to improve the quality of atmospheric measurements.

  2. Atmospheric aerosol sampling campaign in Budapest and K-puszta. Part 2. Application of Stochastic Lung Model

    International Nuclear Information System (INIS)

    Complete text of publication follows. The Stochastic Lung Model [1] is a new important tool for the investigation of the health impact of atmospheric aerosols. The obtained concentrations of urban and rural aerosols (see part 1) were applied for lung deposition calculations with this model. The health effects of the inhaled particles may strongly depend on the location of deposition within the lung. This model was applied in order to calculate the deposition efficiencies of the measured aerosols in the tracheobronchial and the acinar regions of human respiratory system. In the acinar regions takes place the gas-exchange. In this model a lot of parameters can be adjusted and changed. For example: tidal volume, aerosol diameter and density, time of breathing cycle, etc. So can be calculation some cases among others males, females or children, sleep, sitting, light or heavy exercise, etc. As example the Figure 1. demonstrates that the acinar deposition has a maximum at 1-3 μm aerosol size and above 10 μm the practically do not reach the acinar region at sitting breathing conditions for male person. In the part I. the elements have been grouped. The first group was composed of Fe, Si and Ca. These elements can be found in 2-8 m size range with the largest rate. The deposition of Fe, Si and Ca elements has the largest probability in acinar region. The elemental concentrations in Budapest are much larger than in K-puszta. Thus, the acinar deposition of aerosol containing Fe, Si and Ca is relatively more significant in Budapest than in K-puszta. The second group was composed of S, Pb and W. The majority of these elements was in the 0,25-1 μm size range. These elements also deposit in acinar region but with less probability. Because their particles have large concentration they can also deposit in large amount. This work was supported by the National Research and Development Program (NRDP 3/005/2001). (author)

  3. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    Science.gov (United States)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  4. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    Energy Technology Data Exchange (ETDEWEB)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Buenos Aires, Argentina and Instituto de Física del Plasma (INFIP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires - UBA, C1428EHA, Buenos Aires (Argentina)

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  5. Application of Glow Discharge Plasma to Alter Surface Properties of Materials

    Science.gov (United States)

    Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.

    2005-01-01

    Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.

  6. Growth of ordered dusty structures in the glow discharge

    CERN Document Server

    Khakhaev, A; Khakhaev, Anatoly; Podriadtchikov, Sergey

    2004-01-01

    In plasma of direct-current glow discharge the dependence of ordered dusty structure volume, shape and density on plasma conditions were investigated. The structure is formed in a field of volume charge. In experimental investigations we used the aluminum oxide macroparticles with diameter up to 60 microns (size distribution function was not determined). Discharge tube was established vertically, has an internal diameter 2.6 cm and space gap between electrodes 45 cm. Particles were injected from the top end of the discharge tube into the plasma of spectral purity neon. Repeatability of randomized experiment results was better than 5% of the measured values. The areas of existence of various dusty ordered structures and their dependence on physical conditions in plasma (discharge current and pressure) were determined. When the interparticle distance in the structure is constant and particle positions have good time stability this structure was defined like "plasma crystal". Otherwise, we observed process of th...

  7. Mineralization of aqueous pentachlorophenolate by anodic contact glow discharge electrolysis

    Institute of Scientific and Technical Information of China (English)

    Haiming Yang; Meguru Tezuka

    2011-01-01

    Exhaustive mineralization of pentachlorophenolate ion (PCP) in phosphate buffer was carried out using anodic contact glow discharge electrolysis (CGDE), in which plasma was sustained between the electrolyte and anode. During CGDE, PCP degraded smoothly. The amount of total organic carbon decreased significantly, indicating the eventual conversion of the carbon atoms of benzene nucleus to inorganic carbons. Furthermore, chlorine atoms in PCP were liberated as chloride ions. As a primary intermediate product, 2,3,5,6-tetrachloro-1,4-benzoquinone was detected, and oxalate and formate as byproducts were also found. It was revealed that disappearance of PCP obeyed first-order kinetics. The reaction rate was generally unaffected by both O2 and inert gases in the cell, although it decreased by raising initial pH of solution. In addition, a plausible reaction pathway involving hydroxyl radical was proposed.

  8. Characteristics of sheath-driven tangential flow produced by a low-current DC surface glow discharge plasma actuator

    Science.gov (United States)

    Shin, Jichul; Shajid Rahman, Mohammad

    2014-08-01

    An experimental investigation of low-speed flow actuation at near-atmospheric pressure is presented. The flow actuation is achieved via low-current ( \\lesssim 1.0 mA) continuous or pulsed DC surface glow discharge plasma. The plasma actuator, consisting of two sharp-edged nickel electrodes, produces a tangential flow in a direction from anode to cathode, and is visualized using high-speed schlieren photography. The induced flow velocity estimated via the schlieren images reaches up to 5 m/s in test cases. The actuation capability increases with pressure and electrode gap distances, and the induced flow velocity increases logarithmically with the discharge power. Pulsed DC exhibits slightly improved actuation capability with better directionality. An analytic estimation of induced flow velocity obtained based on ion momentum in the cathode sheath and gas dynamics in one-dimensional flow yields values similar to those measured.

  9. Aspects of Metal Surface Glowing Mechanisms with Intensive Electron Beam Bombardment

    Directory of Open Access Journals (Sweden)

    I.V. Barsuk

    2012-06-01

    Full Text Available The paper gives a brief description and analysis of the main physical processes which can have an effect on the glowing nature of metal element surfaces in different electric vacuum devices when they are bombarded by electron beams. It has been found that the electron glowing effects on metal surfaces according to the electron energy can be explained with the help of the transition scattering on plasma waves or just with the classical transition radiation effect. This fact is rather important in terms of classical physics interpretation of the observed glowing effects on metal surface elements and techniques optimization of metal and electron beams diagnostics as well.

  10. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    Science.gov (United States)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  11. Thermoluminescence glow curve deconvolution and its statistical analysis using the flexibility of spreadsheet programs

    International Nuclear Information System (INIS)

    Analysing thermoluminescence glow curves involves the solving of a system of non-linear equations. These equations are either differential equations that must be solved numerically or functional approximations for their solution. The current paper presents software with the functions needed for the study of glow curves that is not a stand-alone computer program but an extension of MS Excel. It supplies functions that solve the general one trap model for the thermoluminescence process without the use of approximating functions. Combined with the Solver utility of Excel this gives a very flexible system for the analysis of glow curves. Functions for analysing the statistics of the deconvolution results are included. (authors)

  12. Control of glow discharge parameters using transverse supersonic gas flow - numerical experiment

    International Nuclear Information System (INIS)

    A low pressure glow discharge in a transverse supersonic gas flow was studied by numerical modelling for the case where the flow only partially fills the interelectrode gap. It's shown that by organizing a supersonic gas flow in a limited region of the interelectrode space can be controlled combustion conditions of the glow discharge, and its parameters. It is shown that it is possible to achieve stable combustion glow discharge at low and superlow pressures, when the parameter pL lies on the left branch of the Paschen curve

  13. Quantification of levoglucosan and its isomers by High Performance Liquid Chromatography – Electrospray Ionization tandem Mass Spectrometry and its applications to atmospheric and soil samples

    Directory of Open Access Journals (Sweden)

    C. Piot

    2011-07-01

    Full Text Available The determination of atmospheric concentrations of levoglucosan and its two isomers, unambiguous tracers of biomass burning emissions, became even more important with the development of wood as renewable energy for domestic heating. Many researches demonstrated the increase during recent years of atmospheric particulate matter load due to domestic biomass combustion in developed countries. Analysis of biomass burning tracers is traditionally performed with Gas Chromatography-Mass Spectrometry (GC-MS technique after derivatization and requires an organic solvent extraction. A simpler and faster technique using Liquid Chromatography – Electrospray Ionisation – tandem Mass Spectrometry (LC-ESI-MS/MS was optimized for the analysis of levoglucosan, mannosan and galactosan isomers after an aqueous extraction. This technique allows a good separation between the three compounds in a very reduced time (runtime ~5 min. LOD and LOQ of this method are 30 μg l−1 and 100 μg l−1 respectively, allowing the use of filters from low-volume sampler (as commonly used in routine campaigns. A comparison of simultaneous levoglucosan measurements by GC-MS and LC-ESI-MS/MS for about 50 samples coming from different types of sampling sites and seasons was realized and shows very good agreement between the two methods. Therefore LC-ESI-MS/MS method can be used as an alternative to GC-MS particularly for measurement campaigns in routine where analysis time is important and detection limit is reduced. This paper shows that this method is also applicable to other environmental sample types like soil.

  14. [Evaluation of potentiality of combined SHF- and glow discharge in intensification of carbon dioxide and hydrogen processing within life support system].

    Science.gov (United States)

    Klimarev, S I

    2011-01-01

    The article reports an experimental carbon dioxide hydration process in combined SHF- and glow discharge, and describes a design of SHF plasmatrones for CO2 processing at air pressure and in an integrated unit. Maximal transformation of 80% CO2 per a run was reached with the total input power of no more than 0.9 kW. Thermal zero lag of plasma forming, essentially instant and timely engagement and disengagement of thermal action on CO2-H2 mixture renders SHF-energy applicable to intensification of next generation life support technologies, processing of these gases within atmosphere regeneration system specifically.

  15. MOF-5 metal-organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde.

    Science.gov (United States)

    Gu, Zhi-Yuan; Wang, Gen; Yan, Xiu-Ping

    2010-02-15

    Metal-organic frameworks (MOFs) are one kind of highly porous crystalline materials, which are constructed by metal-containing inorganic nodes and organic linkers. With large surface area and high thermal stability, MOFs have great potential as sorbents for the preconcentration of trace analytes. However, such application of MOFs to the analysis of real samples has not been reported before. Here we report the utilization of MOF-5 as sorbent for in-field sampling and preconcentration of atmospheric formaldehyde before thermal desorption (TD) GC/MS (TD-GC/MS) determination without the need for any chemical derivatization. MOF-5 gave a 53 and 73 times better concentration effect than Tenax TA (organic polymers) and Carbograph 1TD (graphitized carbon black), respectively, for TD-GC/MS determination of formaldehyde. MOF-5 showed good performance for in-field sampling and preconcentration of formaldehyde from air samples with a relative humidity less than 45%. The collected formaldehyde on MOF-5 sorbent was stable for at least 72 h at room temperature before TD-GC/MS analysis. One tube packed with 300 mg of MOF-5 lasted 200 cycles of adsorption/TD without significant loss of collection efficiency. The breakthrough volume of such a tube was 1.2 L of 28.35 mg m(-3) formaldehyde at a sampling flow rate of 100 mL min(-1). The use of MOF-5 for in-field sampling and preconcentration in combination with TD-GC/MS for the determination of formaldehyde offered a linear range covering 3 orders of magnitude, and a detection limit of 0.6 microg m(-3). The precision for six replicate cycles of in-field sampling and preconcentration for TD-GC/MS determination using one 300 mg MOF-5 packed tube ranged from 2.8% to 5.3%. The tube-to-tube reproducibility of three MOF-5 tubes prepared in parallel was 7.7%. The developed method was applied to analysis of local indoor and outdoor air samples for formaldehyde and validated by the standard method TO-11A of the United States Environmental

  16. Atmospheric concentrations and size distributions of aircraft-sampled Cd, Cu, Pb and Zn over the southern bight of the North Sea

    Science.gov (United States)

    Injuk, J.; Otten, Ph.; Laane, R.; Maenhaut, W.; Van Grieken, R.

    In an effort to assess the atmospheric input of heavy metals to the Southern Bight of the North Sea, aircraft-based aerosol samplings in the lower troposphere were performed between September 1988 and October 1989. Total atmospheric particulate and size-differentiated concentrations of Cd, Cu, Pb and Zn were determined as a function of altitude, wind direction, air-mass history and season. The obtained data are compared with results of ship-based measurements carried out previously and with literature values of Cu, Pb and Zn, for the marine troposphere of the southern North Sea. The results point out the high variability of the concentrations with the meterological conditions, as well as with time and location. The experimentally found particle size distribution are bimodal with a significant difference in fractions of small and large particles. These large aerosol particles have a direct and essential impact on the air-to-sea transfer of anthropogenic trace metals, in spite of their low numerical abundance and relatively low heavy metal content.

  17. Effect of Ne Glow Discharge on Ion Density Control in LHD

    Institute of Scientific and Technical Information of China (English)

    S.Morita; M. Goto; S. Masuzaki; H. Suzuki; K. Tanaka; H. Nozato; Y. Takeiri; J. Miyazawa; LHD esperimental group

    2004-01-01

    Neon glow discharge cleaning was firstly attempted in Large Helical Device (LHD) instead of He glow discharge to remove hydrogen neutrals and to control the ion density, ni. The Ne glow discharge continued for 8 hours overnight after a three-day experiment. At the second night Halpha emission became weaker than the emission usually observed in the He glow discharge. A clear reduction of the hydrogen influx was also observed in neutral beam injection (NBI) discharges with Ne puff, whereas the neon recycling was strongly enhanced with appearance of a flat density profile. As a result, the lowest density limit was further reduced down to 0.2 times10 13 ,cm-3. The use of Ar puff formed a peaked density profile with a high Ti of 7 keV.

  18. Microhollow Glow Discharge Instrument for In Situ Lunar Surface Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Penn State University (PSU) propose to develop a highly sensitive spectrometer based on glow discharge plasma emission for the...

  19. CALCULATION OF BIMETAL PLATE BENDING FORCE OF A GLOW DISCHARGE STARTER

    OpenAIRE

    Akimov, V.; Mukha, L.

    2005-01-01

    Calculation techniques of bending power of bimetal plate electrode causing its displacement in the direction of the electrode of glow discharge starter have been represented. Calculation of bimetal electrode displacement has been conducted in correspondence with the chosen scheme.

  20. A single TiO2-coated side-glowing optical fiber for photocatalytic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    HU Yan; XU Jingjing; YUAN Chunwei; LIN Jian; YIN Zhidong

    2005-01-01

    By means of TiO2-layer-on-SiO2-layer, anatase TiO2 was deposited on novel side- glowing optical fibers, which can provide side UV radiation along the whole fiber length. FE-SEM images show that the double layers adhered well to the side-glowing optical fiber, and the TiO2 coating was homogeneous and smooth. The decomposition reaction of reactive brilliant red dye X-3B on a single TiO2-coated side-glowing optical fiber indicated that the side-scattering UV light intensity was strong enough for photocatalytic oxidation reaction. Therefore, TiO2-coated side-glowing optical fibers open up a new way to use the optical fiber reactor in photocatalytic wastewater treatment.

  1. Does exclusion of protest zeros and warm-glow bidders cause selection bias in Contingent Valuation?

    DEFF Research Database (Denmark)

    Grammatikopoulou, Ioanna; Olsen, Søren Bøye; Pouta, Eija

    the true WTP due to protest behavior. We conduct a contingent valuation study to estimate the WTP for conserving a Natura 2000 wetland area in Greece. We find that 54% of the positive bidders exert warm glow motivations while 29% of all responses can be classified as protest zero bids. We employ three...... different models to test for the potential impacts of how these positive warm glow and protest zero bidders are treated. We first exclude the warm glow cases, secondly we include them, and, finally, we correct for selection bias by using the Full Information Maximum Likelihood method for grouped data model....... Our findings show that removal of warm glow positive bidders does not distort the WTP estimate in any significant way. However, using the same approach for protest zero bidders, we find strong evidence of selection bias associated with removal of protest zero responses. Specifically, WTP estimates...

  2. Anthropogenic versus geogenic contribution to total suspended atmospheric particulate matter and its variations during a two-year sampling period in Beijing, China.

    Science.gov (United States)

    Schleicher, Nina; Norra, Stefan; Chai, Fahe; Chen, Yizhen; Wang, Shulan; Stüben, Doris

    2010-02-01

    Weekly samples of total suspended particles in air (TSP) were taken in south-east Beijing for a two-year period continuously from August 2005 to August 2007. Mass concentrations varied between 76 and 1028 microg m(-3) with an average concentration of 370 microg m(-3) for the whole period. The chemical composition and the mass concentration of aerosols in combination with meteorological data are reflecting specific influences of distinct aerosol sources on the pollution of Beijing's atmosphere. Lead (Pb), titanium (Ti), zinc (Zn) and copper (Cu) concentrations were chosen as indicator elements for different sources. Their amounts considerably varied over the course of the year. Element ratios, such as Pb/Ti, supported the distinction between periods of predominant geogenic or anthropogenic caused pollution. However, the interactions between aerosols from different sources are numerous and aerosol pollution still is a big and complex challenge for the sustainable development of Beijing.

  3. HELIOS-Retrieval: An Open-source, Nested Sampling Atmospheric Retrieval Code, Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation

    CERN Document Server

    Lavie, Baptiste; Mordasini, Christoph; Malik, Matej; Bonnefoy, Mickaël; Demory, Brice-Olivier; Oreshenko, Maria; Grimm, Simon L; Ehrenreich, David; Heng, Kevin

    2016-01-01

    We present an open-source retrieval code named HELIOS-Retrieval (hereafter HELIOS-R), designed to obtain chemical abundances and temperature-pressure profiles from inverting the measured spectra of exoplanetary atmospheres. In the current implementation, we use an exact solution of the radiative transfer equation, in the pure absorption limit, in our forward model, which allows us to analytically integrate over all of the outgoing rays (instead of performing Gaussian quadrature). Two chemistry models are considered: unconstrained chemistry (where the mixing ratios are treated as free parameters) and equilibrium chemistry (enforced via analytical formulae, where only the elemental abundances are free parameters). The nested sampling algorithm allows us to formally implement Occam's Razor based on a comparison of the Bayesian evidence between models. We perform a retrieval analysis on the measured spectra of the HR 8799b, c, d and e directly imaged exoplanets. Chemical equilibrium is disfavored by the Bayesian ...

  4. Effects of norms, warm-glow and time use on household recycling

    OpenAIRE

    Halvorsen, Bente

    2004-01-01

    Abstract: The aim of this paper is to quantify the relative importance of motivations based on warm-glow, social and moral norms and cost of time used recycling on household recycling efforts. We also test for crowding-out of intrinsic motivations when recycling is perceived as mandatory. We find that the most important variable increasing household recycling efforts is agreeing that recycling is a pleasant activity in itself, which may be interpreted as a warm-glow effect. The...

  5. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    Science.gov (United States)

    Luginbuhl, C. B.; Boley, P. A.; Davis, D. R.; Duriscoe, D. M.

    2015-03-01

    Using a wavelength-generalized version of the Garstang (1991) model, we evaluate overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED lamps. We conclude for both professional, and especially cultural (visual), astronomy, that low-pressure sodium and narrow-spectrum amber LED lamps cause much less sky glow than all broad-spectrum sources.

  6. Influence of Parameters of the Glow Discharge on Change of Structure and the Isotope Composition of the Cathode Materials

    Science.gov (United States)

    Savvatimova, I. B.; Gavritenkov, D. V.

    Results of examinations of changes in structure, element, and isotope composition of cathodes after the glow discharge exposure in hydrogen, deuterium, argon, and xenon are submitted. The voltage of the discharge was less than 1000 V and the current was 5-150 mA. Samples before and after ions bombardment in the glow discharge were explored by the methods of mass spectrometry: the secondary ions (SIMS), the secondary ions with additional ionization of neutral sprayed particles (SNMS), spark (SMS), and thermo-ionization (TIMS), and also methods of energy dispersion X-ray spectral analysis (EDX). The alpha-, beta-, gamma- emission, and gamma- spectrometry for radioactive uranium specimens were also carried out before and after experiments in the glow discharge. Changes in structure, isotope, and element composition of the cathode samples depend on current density, integrated ions flow (fluence of ions), kind of irradiating ions and other experimental conditions. Attempts are made to estimate qualitatively and quantitatively the role of each of the parameters on intensity of the observed changes in cathode composition. It is shown that the maximum changes in structure, chemical and isotope composition of the cathode material occur in "hot points," such as craters from microexplosions, phase segregations, blisters and other new formations. Various methods of the analysis revealed that the basic elements Mg, O, Si, Al, and Ca with quantities up to per cents and more were prevailing in these zones and not found out before experiment. The greatest changes of the isotope relations were observed for iron, calcium, silicon, chromium after experiments with pulsing current. EDX method finds out the elements missing in the samples before experiment such as cadmium, strontium, tin. The isotopes with mass number 59 (Co 100%), 55 (Mn 100%), 45 (Sc 100%) are also not found in initial samples and background measurement by TIMS method. Results of changes in the element and isotope

  7. Is this an arc or a glow discharge?

    International Nuclear Information System (INIS)

    A well known criterion for distinguishing an arc discharge from a glow discharge is a low voltage drop (10--30 V) and a high current density that varies from a few tens to 106 A/cm2 depending on arc type. The high current density is an attribute of arcs with cathode spots. The authors report here a study of the mechanism of emission in cathode spot arc where they realized a spotless discharge with a low voltage drop (30--50 V) and a high mean current density (104--106 A/cm2). The discharge was initiated between a broad cathode and point anode. The cathode was a smooth tungsten sphere electrode of about 100 μm in diameter. The point anode was made of various materials (Mo, Cu, Cd) with initial radius 1 μm. Before the experiment the cathode was cleaned by heating at 2,000 K at high vacuum (10-8 Torr). The discharge was initiated by self-breakdown when electrodes under the voltage 200--500 V were brought to close proximity with each other. The cathode-anode spacing d at the moment of breakdown was estimated to be < 1 μm. The discharge current was varied within 1--3 A by changing the applied voltage and impedance of coaxial cable generator. The discharge burned during 100--1,000 ns. After the single discharge the cathode and anode were examined with a scanning electron microscope. The cathode surface exposed to the discharge was smooth, i.e. no erosion pits similar to arc craters were found on the cathode surface. The anode was shortened after discharge by 5--50 μm depending on current, material and cone angle. A high current density and low voltage drop implies that this is an arc discharge, while the cold cathode and the absence f cathode spot trace are pertinent to a dense glow discharge. The mechanism of emission involving secondary electron emission is to be discussed

  8. Effect of the percentage of reinforcement on the wear in the metal matrix composites sintered with abnormal glow discharge; Efecto del porcentaje de refuerzo frente al desgaste en compuestos de matriz metalica sinterizados con descarga luminiscente anormal

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Velasquez, S.; Pineda-Triana, Y.; Aguilar-Castro, Y.; Vera-Lopez, E.

    2016-05-01

    In this study an analysis of the behavior of dry wear coefficient of a Metal Matrix Composite (MMC) in 316 stainless steel reinforced with particles of titanium carbide (TiC) according to ASTM G 99 standards, in a pin-on-disk test. In this research it is tested the effect of the percentage of reinforcement in the MMC manufactured with 3, 6 y 9% (vol.) of TiC, in samples compacted at 800 MPa, generating different values of grain size, hardness and density, they are sintered with abnormal glow discharge, at a temperature of 1200 degree centigrade ±5 degree centigrade, with a protection atmosphere H{sub 2} - N{sub 2} and a permanence time of 30 minutes. According to the results obtained it is concluded that the best condition for the MMC manufacturing, in relation to the reinforcement percentage, is the one obtained when the mixture contains 6% of TiC compacted at 800 MPa. In these conditions, it was obtained: achieving smaller grain size, the greater hardness and the lowest coefficient of friction. In this respect, it was observed that the incorporation of the ceramic particles (TiC) in a matrix of austenitic steel (316) shows significant improvements in the resistance to the wear. (Author)

  9. Fast simulation of atmospheric turbulence phase screen based on non-uniform sampling%非均匀采样的功率谱反演大气湍流相位屏的快速模拟∗

    Institute of Scientific and Technical Information of China (English)

    蔡冬梅; 遆培培; 贾鹏; 王东; 刘建霞

    2015-01-01

    The generation of atmosphere turbulence wave-front is important for studying the light propagation and imaging through the atmosphere, and correcting the atmosphere turbulence, such as the adaptive optics system. The power spectral density method generates phase screens quickly for using the fast Fourier transform (FFT). The main drawback to this approach is that lower order aberrations such as tilt are often under represented. The reason is that the low frequency is sampled inadequately. Since the low order aberrations include a major percentage of the atmospheric energy spectrum, the error of simulated phase screens makes this method less desirable to use. To overcome this shortcoming, a non-uniform sampling method is proposed to generate phase screens accurately. Unfortunately, when the sampling is nonuniform, the FFT does not apply directly. Generating such a phase screen is computation intensive which greatly reduces simulation speed. In this paper, we develop a fast, more accurate method to generate atmospheric turbulence phase screens, according to non-uniforming sampling. The nonequispaced fast Fourier transform (NUFFT) arises in a variety of application areas, ranging from medical imaging to radio astronomy to the numerical solution of partial differential equations. Speeding up the simulation of atmospheric turbulence phase screens is possible by using the non-uniform fast Fourier transform. In this paper, the atmospheric turbulence phase screen is decomposed into a series of harmonics. Then the non-uniform distributed har-monics are projected onto over-sampled uniform grid by using the Gaussian kernel function. Atmospheric turbulence phase screen will be generated using the standard fast Fourier transform on the over-sampled uniform grid. The at-mospheric turbulence phase screens can be generated quickly. Using Kolmogorov spectrum model in this paper, the phase screens can be generated quickly. The performances of generated phase screens are analyzed

  10. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  11. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  12. A high-precision measurement system for carbon and hydrogen isotopic ratios of atmospheric methane and its application to air samples collected in the western pacific region

    International Nuclear Information System (INIS)

    In order to study temporal and spatial variations of atmospheric CH4 quantitatively, we originally improved a measurement system for carbon and hydrogen isotopic ratios (δ13C and δD) of CH4 to attain high-precision measurements. By analyzing 100 mL aliquots of an ambient air sample, the precision of our system is 0.08 per mille for δ13C and 2.2 per mille for δD (1σ), which are one of the highest precisions reported so far. The system consists mainly of a CH4 preconcentration device and a continuous-flow gas chromatograph isotope ratio mass spectrometer equipped with a combustion furnace and a pyrolysis furnace for measurements of δ13C and δD. The preconcentration trap temperature was maintained at -130 ±1degC during collection of CH4 from the air sample by passing it through the trap, then at -83 ± 1degC while remaining air components such as N2 and O2 except for CH4 escaped, and finally at 100±1degC for CH4 elusion. The isotopic values are measured on a mass spectrometer, relative to respective reference gases. For this study, the δ13C and δD values of the reference gases were calibrated against our primary standards provided by the IAEA: our δ13C primary standards is NBS18, whereas our δD primary standards are V-SMOW and SLAP. To ensure the long-term stability and reproducibility of our measurement system, a calibrated whole air stored in a high-pressure cylinder, which was called 'test gas', was measured at least twice on each day when sample measurements were made. To measure small air samples, such as those extracted from ice cores, we also examined the relation between the sample size and the measured value of δ13C and δD: gradual enrichment of the δ13C occurred with decreasing CH4 content less than 8 nmol whereas no such effect could be seen for the δD. Furthermore, preliminary results of latitudinal distributions of δ13C and δD were discussed along with CH4 concentrations obtained by our shipboard air-sampling program. (author)

  13. Fission products in National Atmospheric Deposition Program—Wet deposition samples prior to and following the Fukushima Dai-Ichi Nuclear Power Plant incident, March 8?April 5, 2011

    Science.gov (United States)

    Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.

    2012-01-01

    Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.

  14. Platinum and Iridium Coatings Obtained by Double Glow Plasma Technology

    Institute of Scientific and Technical Information of China (English)

    WU Wangping; CHEN Zhaofeng; CHEN Zhou; CONG Xiangna; QIU Jinlian

    2012-01-01

    Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates.The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectroscopy.The microstructure and morphology of the coatings were observed by scanning electron microscopy.The hardness and elastic modulus of the coatings were estimated by nanoindentation.The measurements of adhesive forces of the coatings were performed with scratch tester.The results indicated that the Pt and Ir coatings displayed the preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrates.The interface between the Pt coating and substrate exhibited no evidence of delamination.The Ir coating was composed of irregular columnar grains with many nanovoids at the interface between the coating and substrate.The mean values of hardness for Pt and Ir coatings were 0.9 GPa and 9 GPa,respectively.The elastic modulus of Pt and Ir coatings were 178 GPa and 339 GPa,respectively.The adhesive forces of the Pt and Ir coatings were about 66.4 N and 55 N,respectively.The Pt and Ir coatings adhered well to the Ti alloy substrates.

  15. Bulk plasma properties in the pulsed glow discharge

    International Nuclear Information System (INIS)

    This work focuses on the spatial and temporal characteristics of a glow discharge plasma operated with power pulses of 5 ms in duration at 25% duty cycle. Interpretation of emission data provides insight into the nature of the plasma at each instant of a typical pulse cycle and at each position in space. Because the bulk plasma properties affect the distribution of excited energy levels of the sputtered atoms, an improved understanding of the plasma affords the ability to select conditions that enhance analytically important emission lines. Optical emission spectroscopy was used to determine the relative populations of excited states for atoms and ions during the initial breakdown, the steady state and the recombining periods of the discharge pulse cycle. The plasma is highly ionizing in nature at the time of breakdown--with lower excited states being overpopulated--before reaching the steady state, or plateau, period, also ionizing in nature. These behaviors arise from a loss of charged particles and photons to the surroundings that shifts the plasma away from Saha and Boltzmann balances during these periods. The post-pulse period typically displays recombining behavior, characterized by population inversion for selected species--except for regions close to the cathode, where electrons and ions are lost by diffusion and are not available for recombination. The sputtered analyte atom emissions closely mimic those of the plasma bath gas, except that their emissions persevere for longer in the recombining after-peak period than do the discharge gas species

  16. Degradation of Anionic Dye Eosin by Glow Discharge Electrolysis Plasma

    Institute of Scientific and Technical Information of China (English)

    GAO Jinzhang; MA Dongping; GUO Xiao; WANG Aixiang; FU Yan; WU Jianlin; YANG Wu

    2008-01-01

    This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant κ and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ. Mol-1 and the pre-exponential factor k0 of 2.065×10-1 min-1 were obtained, too. The determination of hydroxyl radical was carried out by using N, N-dimethyl -p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.

  17. Etching of UO{sub 2} in NF{sub 3} RF Plasma Glow Discharge

    Energy Technology Data Exchange (ETDEWEB)

    John M. Veilleux

    1999-08-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO{sub 2} were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO{sub 2} from stainless steel substrates. Experiments were conducted using NF{sub 3} gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO{sub 2} samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO{sub 2} in the samples had a relatively low density of 4.8 gm/cm{sub 3}. Counting of the depleted UO{sub 2} on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, {sup 234}Th and {sup 234}Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about {+-} 2%. Results demonstrated that UO{sub 2} can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO{sub 2} in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 {micro}m/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO{sub 2} etching was also noted below 50 W in which etching increased up to a maximum pressure, {approximately}23 Pa, then decreased with further increases in pressure.

  18. Impurities in TdeV with and without conditioning by trimethylboron/helium glow discharge

    International Nuclear Information System (INIS)

    Boronisation by glow discharge with 30% B(CH3)3 in He was applied in the TdeV tokamak. Plasma current and density scans were performed before and after the process; the impurity influxes (visible spectroscopy and mass spectrometry), the plasma contamination (VUV spectroscopy and effective ion charge Zeff) and the radiated power Prad were measured. The density limit was investigated. The lifetime of the conditioning effect was correlated with surface analysis of wall samples. Without boronisation, Zeff, Prad and a large fraction of the particle recycling were determined by oxygen from the residual gas. The density limit was (3.5-4.0)x1019 m-3 and a shrinkage of the plasma radius occurred at low current and high density. With boronisation, oxygen is reduced several fold, and (Zeff-1) and Prad are reduced by ∝60%. Also, plasma shrinkage is eliminated and the density limit is increased to ∝5x1019 m-3. The lifetime of the effect seems to be mostly determined by saturation of the boron layer by oxygen. (orig.)

  19. The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge

    OpenAIRE

    De Lucia, Frank C.; Herbst, Eric; Plummer, Grant M.; Blake, Geoffrey A.

    1983-01-01

    A technique for enhancement of positive molecular ion concentrations in a glow discharge is presented. The technique consists of modifying an anomalous glow discharge by the addition of a longitudinal magnetic field of up to 300 G. Enhancements in the ion signal strength, as measured by millimeter and submillimeter wave spectroscopy, are approximately two orders of magnitude. Evidence is presented that the magnetic field increases the length of the ion rich negative glow by restricting inside...

  20. Atmospheric chemistry of a 33-34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of chemical box modeling

    Science.gov (United States)

    Rose, William I.; Millard, Genevieve A.; Mather, Tamsin A.; Hunton, Donald E.; Anderson, Bruce; Oppenheimer, Clive; Thornton, Brett F.; Gerlach, Terrence M.; Viggiano, Albert A.; Kondo, Yutaka; Miller, Thomas M.; Ballenthin, John O.

    2006-10-01

    On 28 February 2000, a volcanic cloud from Hekla volcano, Iceland, was serendipitously sampled by a DC-8 research aircraft during the SAGE III Ozone Loss and Validation Experiment (SOLVE I). It was encountered at night at 10.4 km above sea level (in the lower stratosphere) and 33-34 hours after emission. The cloud is readily identified by abundant SO2 (≤1 ppmv), HCl (≤70 ppbv), HF (≤60 ppbv), and particles (which may have included fine silicate ash). We compare observed and modeled cloud compositions to understand its chemical evolution. Abundances of sulfur and halogen species indicate some oxidation of sulfur gases but limited scavenging and removal of halides. Chemical modeling suggests that cloud concentrations of water vapor and nitric acid promoted polar stratospheric cloud (PSC) formation at 201-203 K, yielding ice, nitric acid trihydrate (NAT), sulfuric acid tetrahydrate (SAT), and liquid ternary solution H2SO4/H2O/HNO3 (STS) particles. We show that these volcanically induced PSCs, especially the ice and NAT particles, activated volcanogenic halogens in the cloud producing >2 ppbv ClOx. This would have destroyed ozone during an earlier period of daylight, consistent with the very low levels of ozone observed. This combination of volcanogenic PSCs and chlorine destroyed ozone at much faster rates than other PSCs that Arctic winter. Elevated levels of HNO3 and NOy in the cloud can be explained by atmospheric nitrogen fixation in the eruption column due to high temperatures and/or volcanic lightning. However, observed elevated levels of HOx remain unexplained given that the cloud was sampled at night.

  1. On-line analysis of secondary ozonides from cyclohexene and D-limonene ozonolysis using atmospheric sampling townsend discharge ionization mass spectrometry

    Science.gov (United States)

    Nøjgaard, J. K.; Nørgaard, A. W.; Wolkoff, P.

    An on-line technique has been developed for analysis of gas-phase oxidation products formed in a reaction flow tube using different reaction times, concentrations and humidities. Products of ozonolysis, including thermally labile secondary ozonides (SOZ), were directly introduced into an atmospheric sampling townsend discharge ionization (ASTDI) source coupled to a triple quadrupole mass spectrometer (MS). Instant changes in the product composition were monitored in the total-ion chromatogram, or by fragment ions in the collision activated dissociation mass spectra by use of MS/MS scan techniques. Assignment of the individual ions was accomplished by inspection of the products' mass spectra obtained by pre-concentration of the gas phase on a dedicated short column followed by chromatographic analysis. The observed reaction products correspond to those identified with other techniques. Of relevance for future mechanistic modelling, is the point that conditions of excess D-limonene favoured the formation of the D-limonene SOZ (major product), which was observed to be quite stable in dry and humid air, without oxidants. The D-limonene/ozone ratio was observed to be crucial for the stability of the SOZ, because it is prone to ozonolysis, and no SOZ could be detected in completely reacted 1:1 mixtures.

  2. Dusty plasma structures in He-Kr DC glow discharge

    International Nuclear Information System (INIS)

    Complete text of publication follows. Ion drift in gas mixtures has certain properties that can be used to generate ion flows with desired characteristics. For example, when the field is strong, ion heating is significant, and there is a large difference in atomic weight between ions and atoms, the ion velocity distribution can be highly anisotropic. Ion distribution anisotropy can cause a substantial change in properties of dust structures in plasmas. Experiments on dusty plasma structures in glow discharge in mixtures of light and heavy gases (helium and argon), (helium and krypton) are performed, and results of numerical simulations of ion and electron drift in the mixture are presented. The model of electron-atom collisions is considered taking into account non-elastic collisions in electron energy balance. On the basis of numerical simulation the characteristics of electron velocity distribution function, the energy characteristics of electron drift in constant electric field in He-Kr discharge were tabulated. Values of drift velocity, average electron energy, Townsend characteristic energy, and average electron energy leading to excitation and ionization of atoms, ratio between energy losses in elastic and nonelastic collisions, Townsend ionization coefficient were obtained. For the experiment conditions calculations of dust particle charging characteristics are also conducted - values of an average dust charge, charge fluctuation, and number of the bounded ions are calculated. These calculations have shown that dust charging in a mix of a 'light' gas with a small additive of a 'heavy' gas and ions has a number of features which lead, in particular, to considerable (up to thousand times) increase of dust kinetic energy - this effect was observed in the experiments.

  3. The role of magnetic energy on plasma localization during the glow discharge under reduced pressure

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2016-06-01

    Full Text Available In this work, we present the first results of our research on the synergy of fields, electric and magnetic, in the initiation and development of glow discharge under reduced pressure. In the two-electrode system under reduced pressure, the breakdown voltage characterizes a minimum energy input of the electric field to initiate and sustain the glow discharge. The glow discharge enhanced by the magnetic field applied just above the surface of the cathode influences the breakdown voltage decreasing its value. The idea of the experiment was to verify whether the contribution of potential energy of the magnetic field applied around the cathode is sufficiently effective to locate the plasma of glow discharge to the grounded cathode, which, in fact, is the part of a vacuum chamber wall (the anode is positively biased in this case. In our studies, we used the grounded magnetron unit with positively biased anode in order to achieve favorable conditions for the deposition of thin films on fibrous substrates such as fabrics for metallization, assuming that locally applied magnetic field can effectively locate plasma. The results of our studies (Paschen curve with the participation of the magnetic field seem to confirm the validity of the research assumption. What is the most spectacular - the glow discharge was initiated between introduced into the chamber anode and the grounded cathode of magnetron ‘assisted’ by the magnetic field (discharge did not include the area of the anode, which is a part of the magnetron construction.

  4. The power supplies for the glow discharge electrodes in Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Thomas, E-mail: thomas.rummel@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Wendelsteinstr. 1, D-17491 Greifswald (Germany); Fuellenbach, Frank [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Wendelsteinstr. 1, D-17491 Greifswald (Germany); Boehm, Guenther; Kaesler, Wolfgang; Burek, Rainer [PPT Puls-Plasmatechnik GmbH, Feldstr. 56, D-44141 Dortmund (Germany); Pingel, Steffen; Spring, Anett; Schacht, Joerg; Woelk, Andreas [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Wendelsteinstr. 1, D-17491 Greifswald (Germany)

    2011-10-15

    The conditioning of the Wendelstein 7-X (W7-X) plasma vessel will be done by glow discharges. Ten electrodes are placed inside of the vessel. Due to the three dimensional geometry the conditions for the ignition and the stabilization of a glow discharge can vary from one electrode to the other electrode. Therefore ten individual power supplies with maximum ratings of 3 kV and 3 A will be used. The ten power supplies are individually controlled by a PLC based control system. This control system is a major part of the overall glow discharge system, because it has to allow the combination of two or more power supplies to groups, which can be controlled in a similar way. The glow discharge is planned to run up to a week in steady state mode. This requires a sophisticated monitoring system of the parameters of the power supplies and the implementation of a proper matrix of reaction after failures. One aim of the Wendelstein 7-X control system is the remote control of all activities from the W7-X main control room. The glow discharge power supply control has to allow such operation and special procedures for exchange of control rights were implemented. The power supply system was developed, manufactured installed and tested in collaboration between IPP and PPT.

  5. Enhancement of intensities in glow discharge mass spectrometry by using mixtures of argon and helium as plasma gases.

    Science.gov (United States)

    Lange, Britta; Matschat, Ralf; Kipphardt, Heinrich

    2007-12-01

    Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas. PMID:17940753

  6. H2/Ar direct current glow discharge mass spectrometry at constant voltage and pressure

    International Nuclear Information System (INIS)

    The addition of hydrogen to a direct current (dc) - argon glow discharge (GD) coupled to a time of flight mass spectrometer has been studied using a fixed voltage between the electrodes and a fixed discharge pressure. Hydrogen contents investigated were 0.5%, 1% and 10% v/v in the argon discharge and the samples under study consisted of a copper-base, a nickel-base and an iron-base homogeneous materials. Also, the in-depth profile analysis of a tin plate was investigated. Results have shown that hydrogen addition gives rise to significant changes in the slope of the linear relationship between the electrical current and the discharge voltage. Clearly, the electrical resistance of the discharge at the typical operation voltages in the interval 600-1000 V increases with hydrogen added to pure argon. A decrease of the sputtering rates was observed the higher the hydrogen concentrations. Besides, the 'reduced sputtering rates', i.e. the sputtering rates divided by the corresponding electrical current, were also lower for the H2/Ar discharges than for pure argon. However, the analytical ion signals observed using discharge voltages higher than 900 V turned out to be higher in a 0.5% H2/Ar discharge than in pure argon for the copper and nickel materials. Besides, for the three samples investigated the ion yields were from 1.5 up to 3 times higher in 0.5% H2/Ar discharges as compared to the pure argon. Finally, the effect of 0.5% H2 addition to the Ar discharge on the in-depth profile of a tin plate has also been investigated. As compared to the use of a pure Ar GD, higher sensitivity for major and minor components of the coating were observed without loss of the relative depth resolution achieved

  7. Physics of self-sustained oscillations in the positive glow corona

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Nae [Micro Devices Group, Micro Systems Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd, Mt. 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of)

    2012-07-15

    The physics of self-sustained oscillations in the phenomenon of positive glow corona is presented. The dynamics of charged-particle oscillation under static electric field has been briefly outlined; and, the resulting self-sustained current oscillations in the electrodes have been compared with the measurements from the positive glow corona experiments. The profile of self-sustained electrode current oscillations predicted by the presented theory qualitatively agrees with the experimental measurements. For instance, the experimentally observed saw-tooth shaped electrode current pulses are reproduced by the presented theory. Further, the theory correctly predicts the pulses of radiation accompanying the abrupt rises in the saw-tooth shaped current oscillations, as verified from the various glow corona experiments.

  8. Apocenter glow in eccentric debris disks: implications for Fomalhaut and $\\epsilon$ Eridani

    CERN Document Server

    Pan, Margaret; Kuchner, Marc J

    2016-01-01

    Debris disks often take the form of eccentric rings with azimuthal asymmetries in surface brightness. Such disks are often described as showing "pericenter glow", an enhancement of the disk brightness in regions nearest the central star. At long wavelengths, however, the disk apocenters should appear brighter than their pericenters: in the long wavelength limit, we find the apocenter/pericenter flux ratio scales as 1+e for disk eccentricity e. We produce new models of this "apocenter glow" to explore its causes and wavelength dependence and study its potential as a probe of dust grain properties. Based on our models, we argue that several far-infrared and (sub)millimeter images of the Fomalhaut and epsilon Eridani debris rings obtained with Herschel, JCMT, SHARC II, ALMA, and ACTA should be reinterpreted as suggestions or examples of apocenter glow. This reinterpretation yields new constraints on the disks' dust grain properties and size distributions.

  9. Computerized glow curve deconvolution of thermoluminescent emission from polyminerals of Jamaica Mexican flower

    Science.gov (United States)

    Favalli, A.; Furetta, C.; Zaragoza, E. Cruz; Reyes, A.

    The aim of this work is to study the main thermoluminescence (TL) characteristics of the inorganic polyminerals extracted from dehydrated Jamaica flower or roselle (Hibiscus sabdariffa L.) belonging to Malvaceae family of Mexican origin. TL emission properties of the polymineral fraction in powder were studied using the initial rise (IR) method. The complex structure and kinetic parameters of the glow curves have been analysed accurately using the computerized glow curve deconvolution (CGCD) assuming an exponential distribution of trapping levels. The extension of the IR method to the case of a continuous and exponential distribution of traps is reported, such as the derivation of the TL glow curve deconvolution functions for continuous trap distribution. CGCD is performed both in the case of frequency factor, s, temperature independent, and in the case with the s function of temperature.

  10. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan;

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...

  11. PIC/MCC Simulation of Glow Discharge Plasma in Four-Anode Device

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhongcai; SHI Jiaming; XU Bo

    2007-01-01

    Numerical simulations by the code of Object-Oriented PIC (Particle-in-Cell) and the Monte Carlo Collision (MCC) method were carried out in order to obtain an insight into the characteristics of plasmas generated by glow discharges in low pressure helium in a four-anode DC glow discharge device. The results show that, the pressure, the external mirror magnetic field, and the virtual breadth of the annular electrode affect the radial distribution of the plasma density and temperature. The simulations are instructive for further experiments.

  12. A STUDY OF THE POLYMERIZATION MECHANISM OF ACETONITRILE IN GLOW DISCHARGE

    Institute of Scientific and Technical Information of China (English)

    YU Qingsong; YE Mu; LU Lizhen; CHEN Jie; WANG Fosong; Yoshihito Osada

    1988-01-01

    Plasma polymerization of acetonitrile was carried out by a capacitively coupled RF plasma apparatus with external electrodes under some different reaction conditions such as discharge power. By investigating the informations provided by the polymer deposition regularities, IR spectra and elementary analysis results,the polymerization mechanism of acetonitrile in glow discharge have been investigated. The results show that acetonitrile polymerized in glow discharge mainly through hydrogen detachment for initiation at lower energy levels and the role that opening C = N triple bond played in polymerization became more important at higher energy levels.

  13. 110° C thermoluminescence glow peak of quartz – A brief review

    Indian Academy of Sciences (India)

    D K Koul

    2008-12-01

    The 110°C glow peak of quartz, though unstable at room temperature, has worked wonderfully in archaeology and retrospective dosimetry due to its pre-dose sensitization property. Various aspects of the peak, like its nature, defect centres involved, the impact of different stimuli and its application have been extensively studied. The main aims of this review are to (i) summarize briefly the work carried out on the various facets of this TL glow peak during the last four decades and (ii) identify the areas which need further attention in order to have a better understanding of the luminescence characteristics of this TL peak.

  14. Overheating Willingness to Pay: Who Gets Warm Glow and What It Means for Valuation

    OpenAIRE

    Interis, Matthew G.; Haab, Timothy C.

    2014-01-01

    In traditional contingent valuation, the researcher seeks the amount a respondent is willing, ceteris paribus, to pay to obtain something. But if a respondent receives a “warm glow†from a yes response, ceteris is not paribus. In estimating willingness to pay (WTP) to reduce environmental impacts from consumption of transportation fuel, we find that respondents who were relatively less environmentally focused in the past receive greater warm-glow benefits from a “yes†response and have ...

  15. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    Directory of Open Access Journals (Sweden)

    T. Frączek

    2011-07-01

    Full Text Available The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application of a booster screen effects in a nitrogen diffusion depth increment into the 316L austenitic steel surface, what results in the surface layer thickness escalation.

  16. Thermoluminescence glow curve involving any extent of retrapping or any order of kinetics

    Indian Academy of Sciences (India)

    Jai Prakash

    2013-09-01

    Adirovitch set of equations has been modified to explain the mechanisms involved in thermoluminescence (TL) glow curve. A simple model is proposed which explains the occurrence of TL glow curve involving any extent of retrapping or any order of kinetics. It has been observed that the extents of recombination and simultaneous rewrapping decide the order of kinetics involved. TL decay parameters, order of kinetics and initial concentration of trapped electrons per unit volume are evaluated easily and conveniently. It has been observed that retrapping increases with increasing order of kinetics.

  17. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole;

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A–X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three...

  18. Glow curve analysis of β-particles irradiated Na{sub 21}Mg(SO{sub 4}){sub 10}Cl{sub 3}:Dy phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kore, Bhushan P. [Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India); Dhoble, N.S. [Department of Chemistry, Sevadal Mahila Mahavidyalaya, Nagpur 440009 (India); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India)

    2014-01-15

    Dy doped Na{sub 21}Mg(SO{sub 4}){sub 10}Cl{sub 3} phosphor was prepared by modifying the solid state method and the formation of the compound was confirmed by X-ray diffraction (XRD) study. Morphology of the phosphor was analyzed by scanning electron microscopy (SEM). The thermally stimulated luminescence (TSL) studies of Dy doped Na{sub 21}Mg(SO{sub 4}){sub 10}Cl{sub 3} samples show the complex glow curve. Powder samples of Na{sub 21}Mg(SO{sub 4}){sub 10}Cl{sub 3}:Dy were irradiated by 2.2 MeV β-particles within dose range of 100–16,000 mGy. Analysis of the thermoluminescence glow curves was carried out by T{sub m}–T{sub stop} and glow curve deconvolution (GCD) method. Trapping parameters (activation energy and frequency factor) for individual deconvoluted peaks were obtained by Chen's peak shape method. The comparison of trapping parameters between γ-ray irradiated and β-particles irradiated Na{sub 21}Mg(SO{sub 4}){sub 10}Cl{sub 3}:Dy phosphor were also studied. -- Highlights: • This study reports the thermoluminescence properties of Na{sub 21}Mg(SO{sub 4}){sub 10}Cl{sub 3}:Dy phosphor for β-particles irradiation. • The main focus of this study is on the response of the phosphor to β-particles and difference in behavior from γ-ray irradiation. • Good linearity was observed for measuring the doses of β-particles upto 1500 mGy.

  19. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  20. The thermoluminescence glow curve and the deconvoluted glow peak characteristics of erbium doped silica fiber exposed to 70-130 kVp x-rays.

    Science.gov (United States)

    Alawiah, A; Bauk, S; Marashdeh, M W; Nazura, M Z N; Abdul-Rashid, H A; Yusoff, Z; Gieszczyk, W; Noramaliza, M N; Adikan, F R Mahamd; Mahdiraji, G A; Tamchek, N; Muhd-Yassin, S Z; Mat-Sharif, K A; Zulkifli, M I; Omar, N; Wan Abdullah, W S; Bradley, D A

    2015-10-01

    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.

  1. Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens

    DEFF Research Database (Denmark)

    Canulescu, Stela; Molchan, Igor S.; Tauziede, C.;

    2010-01-01

    be used to study the distribution of a tantalum fluoride layer within the anodized tantala layer. Further, comparison is made with data obtained using glow-discharge optical emission spectroscopy, where elemental fluorine can only be detected using a neon plasma. The ionization mechanisms responsible...

  2. SkyGlowNet: an Internet-Enabled Light at Night Monitoring System

    Science.gov (United States)

    Craine, Erin M.; Craine, Eric R.; Craine, Brian L.; Crawford, David L.

    2013-05-01

    The "Sky Glow Network" (SkyGlowNet) is an internet connected depository of photometric light at night (LAN) data that are collected automatically by static, internet-enabled Sky Brightness Meters (iSBMs). The data are collected nightly at high temporal frequency and can be used to monitor extended areas of sky brightness on hourly, nightly, monthly, seasonal, and annual cycles over long periods of time. The photometry can be used for scientific and community planning purposes, as well as a powerful tool for science, technology, engineering, and mathematics (STEM) educational outreach programs. The effective and efficient use of light in modern society has become an important and contentious issue that urgently requires better technical and societal understanding. It is important to us as astronomers, and will become increasingly relevant as dark sky areas shrink as a result of poorly implemented lighting. We outline the structure of SkyGlowNet, describe the iSBM unit, and discuss how to interact with the SkyGlowNet website. We discuss how these data can help us preserve observing sites in the future.

  3. Dependence of the transition from Townsend to glow discharge on secondary emission

    NARCIS (Netherlands)

    Raizer, Y.P.; Ebert, U.; Sijacic, D.

    2004-01-01

    In a recent paper Sijacic and Ebert have systematically studied the transition from Townsend to glow discharge, refering to older work from von Engel (1934) up to Raizer (1991), and they stated a strong dependendence on secondary emission gamma from the cathode. We here show that the earlier results

  4. Surface analysis by glow discharge spectrometry: cathode zone and sputtering yield

    International Nuclear Information System (INIS)

    Applications of the glow discharge optical spectroscopy for surface analysis are numerous. Moreover, this method enables to get qualitative and semi-quantitative results which are already significant. However, we should improve our knowledge of the physical parameters involved in the glow discharge lamp mechanisms and learn to handle such phenomena. The problems can be divided into two categories: sputtering of the target under argon ions accelerated in the cathode dark space, and luminous emission of torn away species which reach the negative glow region. Our aim was to take stock of the present theoretical knowledge which can be applied to the specific self-maintained glow discharge plasma. Moreover, we tried to link together (often roughly) the basic discharge parameters, i.e. current intensity I, voltage of the lamp Vg, pressure of the gas p. Specially a comparison between theoretical and experimental results was established concerning the pure target sputtering yields. The contribution of the argon ions striking the cathode is estimated taking into account their energetic distribution. The role of the fast argon neutrals produced by charge exchange with the ions is important; we evaluated their energetic distribution and their contribution to sputtering. The total theoretical sputtering yield is inferred: the comparison with experimental results is presented. The role of the gas temperature is emphasized

  5. I'm sexy and I glow it: female ornamentation in a nocturnal capital breeder.

    Science.gov (United States)

    Hopkins, Juhani; Baudry, Gautier; Candolin, Ulrika; Kaitala, Arja

    2015-10-01

    In many species, males rely on sexual ornaments to attract females. Females, by contrast, rarely produce ornaments. The glow-worm (Lampyris noctiluca) is an exception where wingless females glow to attract males that fly in search of females. However, little is known about the factors that promote the evolution of female ornaments in a sexual selection context. Here, we investigated if the female ornament of the glow-worm is a signal of fecundity used in male mate choice. In support of this, we found brightness to correlate with female fecundity, and males to prefer brighter dummy females. Thus, the glow emitted by females is a reliable sexual signal of female fecundity. It is likely that male preference for the fecundity-indicating ornament has evolved because of large variation among females in fecundity, and because nocturnal males cannot directly assess female size and fecundity. These results indicate that female ornamentation may evolve in capital breeders (i.e. those in which stored resources are invested in reproduction) when females vary significantly in fecundity and this variation cannot be assessed directly by males. PMID:26490414

  6. Effect of rf power on the electrical properties of glow-discharge a-Si:H

    OpenAIRE

    TOLUNAY, Hüseyin

    2002-01-01

    Hydrogenated amorphous silicon films were prepared in an rf glow-discharge system by decomposing undiluted silane at various rf power densities. Dark conductivity and photoconductivity of the films have been measured in the temperature range 420K-100K at four different photon fluxes. It was observed that both dark conductivity and photoconductivity increase with increasing rf power density.

  7. Quantitative Analysis on Carbon Migration in Double-Glow Discharge Plasma Surface Alloying Process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-xia; WANG Cong-zeng; ZHANG Wen-quan; SU Xue-kuan

    2004-01-01

    Carbon migration is of great significance in double-glow discharge plasma surface alloying process, but literature of quantitative analysis about carbon migration is relatively scarce. In this paper differential equations of the carbon and metal concentration distribution were established. By means of differential equations carbon migration was described and a numerical solution was acquired. The computational results fit the experiment results quite well.

  8. Endotoxin removal by radio frequency gas plasma (glow discharge)

    Science.gov (United States)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements

  9. A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding

    Directory of Open Access Journals (Sweden)

    Fabiana Cristina Nascimento

    2009-06-01

    Full Text Available Mechanical and tribological properties os AISI 304 and AISI 316 stainless steels submited to glow discharge ion nitriding are reported.The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN in both steels. Increasing the temperature, the phases γ´-Fe4N and - Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.

  10. DNA Sampling Hook

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The DNA Sampling Hook is a significant improvement on a method of obtaining a tissue sample from a live fish in situ from an aquatic environment. A tissue sample...

  11. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    Science.gov (United States)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  12. Spatial and temporal variability of SWIR air glow measurements

    Science.gov (United States)

    Allan, Jeffery; Dayton, David; Gonglewski, John; Myers, Michael; Nolasco, Rudolf

    2011-05-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band between 0.9 and 1.7 μm wave length. This phenomenon, often referred to as airglow, has been demonstrated as an effective illumination source for passive low light level night time imaging applications. It addition it has been shown that observation of the spatial and temporal variations of the illumination can be used to characterize atmospheric tidal wave actions in the airglow region. These spatio-temporal variations manifest themselves as traveling wave patterns whose period and velocity are related to the wind velocity at 85 km as well as the turbulence induced by atmospheric vertical instabilities. In this paper we present nearly a year of airglow observations over the whole sky, showing long term and short term fluctuations to characterize SWIR night time image system performance.

  13. Simultaneous determination of hydroxycinnamates and catechins in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Salka E.; Sandström, B.

    2003-01-01

    by atmospheric pressure chemical ionization (APCI) MS using single ion monitoring (SIM) in negative mode. Linear calibration graphs were achieved in the dynamic range of 10-1000 ng/ml urine. The inter- and intraassay coefficients of variation (C.V.%) for the analysis of the four compounds in quality control...

  14. Positron production within our atmosphere

    Science.gov (United States)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  15. The thermoluminescence glow curve and the deconvoluted glow peak characteristics of erbium doped silica fiber exposed to 70–130 kVp x-rays

    International Nuclear Information System (INIS)

    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF. - Highlights: • Supralinearity was not observed within the dose range of 0.1–0.7 Gy. • Er doped silica CF showed a sub-linear response. • The peak height and Tmax showed a significant dependency on dose. • The kinetics parameters were highly dependence on dose

  16. Properties of thermoluminescence glow curves from tunneling recombination processes in random distributions of defects

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [Physics Department, McDaniel College, Westminster, MD 21157 (United States)

    2014-09-15

    Localized electronic recombination processes in donor–acceptor pairs of luminescent materials have been recently modeled using a new kinetic model based on tunneling. Within this model, recombination is assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take place within a random distribution of centers. An approximate semi-analytical version of the model has been shown to simulate successfully thermally and optically stimulated luminescence (TL and OSL), linearly modulated OSL (LM-OSL) and isothermal TL processes. This paper presents a detailed analysis of the geometrical properties of the TL glow curves obtained within three different published versions of the model. The dependence of the shape of the TL glow curves on the kinetic parameters of the model is examined by allowing simultaneous random variations of the parameters, within wide ranges of physically reasonable values covering several orders of magnitude. It is found that the TL glow curves can be characterized according to their shape factors μ{sub g}, as commonly done in TL theory of delocalized transitions. The values of the shape factor are found to depend rather weakly on the activation energy E and the frequency factor s, but they have a strong dependence on the parameter ρ′ which characterizes the concentration of acceptors in the model. It is also shown by simulation that both the variable heating rate and initial rise methods are applicable in this type of model and can yield the correct value of the activation energy E. However, the initial rise method of analysis for the semianalytical version of the model fails to yield the correct E value, since it underestimates the low temperature part of the TL glow curves. Two analytical expressions are given for the TL intensity, which can be used on an empirical basis for computerized glow curve deconvolution analysis (CGCD). - Highlights: • Detailed study of TL glow curves in a tunneling model for

  17. Atmospheric CO2, δ(O2/N2) and δ13CO2 measurements at Jungfraujoch, Switzerland: results from a flask sampling intercomparison program

    OpenAIRE

    W. A. Brand; A. Jordan; J. M. Richter; Rothe, M; H. A. J. Meijer; M. F. Schibig; R. E. M. Neubert; Uglietti, C.; S. Van der Laan; Laan-Luijkx, I.T. van der; M. C. Leuenberger

    2012-01-01

    We present results from an intercomparison program of CO2, δ(O2/N2) and δ13CO2 measurements from atmospheric flask samples. Flask samples are collected on a bi-weekly basis at the High Altitude Research Station Jungfraujoch in Switzerland for three European laboratories: the University of Bern, Switzerland, the University of Groningen, the Netherlands and the Max Planck Institute for Biogeochemistry in Jena, Germany. Almost 4 yr of measurements of CO2, δ(O2/N2) and δ13...

  18. Micro-structured electrode arrays : high-frequency discharges at atmospheric pressure—characterization and new applications

    NARCIS (Netherlands)

    Baars-Hibbe, Lutz; Schrader, Christian; Sichler, Philipp; Cordes, Thorben; Gericke, Karl-Heinz; Büttgenbach, Stephanus; Draeger, Siegfried

    2004-01-01

    Micro-structured electrode (MSE) arrays allow to generate large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode dimensions in the µm-range realized by means of modern micro-machining and galvanic techniques are small enough to generate sufficiently h

  19. Development of On-Line Direct Current Glow Discharge Source for Analysis of Isotope Ratio of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The present research is focused on the analysis of isotope ratio of the hydrogen by measuring an intensity ratio of hydrogen/deuterium/tritium fluxes. The direct current glow discharge tube may provide a

  20. Automatable on-line generation of calibration curves and standard additions in solution-cathode glow discharge optical emission spectrometry

    International Nuclear Information System (INIS)

    Two methods are described that enable on-line generation of calibration standards and standard additions in solution-cathode glow discharge optical emission spectrometry (SCGD-OES). The first method employs a gradient high-performance liquid chromatography pump to perform on-line mixing and delivery of a stock standard, sample solution, and diluent to achieve a desired solution composition. The second method makes use of a simpler system of three peristaltic pumps to perform the same function of on-line solution mixing. Both methods can be computer-controlled and automated, and thereby enable both simple and standard-addition calibrations to be rapidly performed on-line. Performance of the on-line approaches is shown to be comparable to that of traditional methods of sample preparation, in terms of calibration curves, signal stability, accuracy, and limits of detection. Potential drawbacks to the on-line procedures include signal lag between changes in solution composition and pump-induced multiplicative noise. Though the new on-line methods were applied here to SCGD-OES to improve sample throughput, they are not limited in application to only SCGD-OES—any instrument that samples from flowing solution streams (flame atomic absorption spectrometry, ICP-OES, ICP-mass spectrometry, etc.) could benefit from them. - Highlights: • Describes rapid, on-line generation of calibration standards and standard additions • These methods enhance the ease of analysis and sample throughput with SCGD-OES. • On-line methods produce results comparable or superior to traditional calibration. • Possible alternative, null-point-based methods of calibration are described. • Methods are applicable to any system that samples from flowing liquid streams

  1. The impact of light source spectral power distribution on sky glow

    Science.gov (United States)

    Luginbuhl, Christian B.; Boley, Paul A.; Davis, Donald R.

    2014-05-01

    The effect of light source spectral power distribution on the visual brightness of anthropogenic sky glow is described. Under visual adaptation levels relevant to observing the night sky, namely with dark-adapted (scotopic) vision, blue-rich (“white”) sources produce a dramatically greater sky brightness than yellow-rich sources. High correlated color temperature LEDs and metal halide sources produce a visual brightness up to 8× brighter than low-pressure sodium and 3× brighter than high-pressure sodium when matched lumen-for-lumen and observed nearby. Though the sky brightness arising from blue-rich sources decreases more strongly with distance, the visual sky glow resulting from such sources remains significantly brighter than from yellow sources out to the limits of this study at 300 km.

  2. Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

    Indian Academy of Sciences (India)

    Md Nurujjaman; A N Sekar Iyengar

    2006-08-01

    Transition from chaotic to ordered state has been observed during the initial stage of a discharge in a cylindrical DC glow discharge plasma. Initially it shows a chaotic behavior but increasing the discharge voltage changes the characteristics of the discharge glow and shows a period subtraction of order 7 period → 5 period → 3 period → 1 period, i.e. the system goes to single mode through odd cycle subtraction. On further increasing the discharge voltage, the system goes through period doubling, like 1 period → 2 period → 4 period. On further increasing the voltage, the system goes to stable state through two period subtraction, like 4 period → 2 period → stable.

  3. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, M.; Kondo, M.; Noda, N. [Hydrogen Isotope Research Center, University of Toyama, Gofuku, Toyama (Japan); Tanaka, M.; Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu (Japan)

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  4. Self-Organization of a Laminar Structure of a Normal Glow Discharge

    Science.gov (United States)

    Timerkaev, B. A.; Petrova, O. A.; Saifutdinov, A. I.

    2016-03-01

    The behavior of a glow discharge at low pressures is considered. A combined experimental and theoretical method for determining the distributions of electron and ion concentrations in the discharge chamber is proposed. It is shown that the concentrations of charged particles in the negative glow rise not due to the intense ionization by fast electrons from the cathode regions, but instead due to the slowing down of their drift motion. The use of an experimental curve of the potential distribution along a discharge chamber and account of the nonlocal dependence of the Townsend coefficient on the electric field strength have allowed obtaining the distribution of the electric field strength and determining the exact character of variation in the concentration of charged particles along the discharge axis.

  5. Direct determination of trace amounts of acetic acid using a novel ambient glow discharge ion source

    Institute of Scientific and Technical Information of China (English)

    Xiao Hao Wang; Kun Liu; Fei Tang; Jiu Ming He; Xue Ye Wei; Zeper Abliz

    2010-01-01

    A novel ambient glow discharge ion source with improved line-cylinder electrodes is put forward and designed in this paper.The diameters of inner and outer electrodes are 0.16 and 4 mm respectively.With a special assembly method,a perfect coaxiality of the two electrodes is obtained.From the gas discharge experiment,it can be seen that the discharge can stably work in normal glow discharge mode.The operating currents of the ion source are in an order of milliamperes and can generate a much larger number and wider variety of reagent ions.The MS experiment shows that the ion source has higher detection sensitivity.

  6. Double Glow Plasma Hydrogen-free Carburizing on Commercial Purity Titanium

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gaohui; PAN Junde; HE Zhiyong; ZHANG Pingze; GAO Yuan; XU Zhong

    2005-01-01

    A carburized layer with special physical and chemical properties was formed on the surface of commercial purity titanium by a double glow plasma hydrogen-free carburizing technique. High-purity netlike solid graphite was used as a raw material and commercial purity titanium was used as the substrate material. Argon gas was used as the working gas. The carburized layer can be obviously observed under a microscope. X-ray diffraction indicates that TiC phase with higher hardness and dissociate state carbon phase was formed in the carburized layer. The glow discharge spectrum (GDS) analysis shows that the carbon concentration distributes gradiently along the depth of carburized layer. The surface hardness of the substrate increases obviously. The hardness distributes gradiently from the surface to inner of carburized layer. The friction coefficient reduces by more than 1/2, the ratio wear rate decreases by above three orders of magnitude. The wear resistance of the substrate material is improved consumedly.

  7. Glow corona generation and streamer inception at the tip of grounded objects during thunderstorms: revisited

    International Nuclear Information System (INIS)

    The initiation of streamers prior to a lightning strike can be reportedly inhibited by glow corona discharges generated from tall objects. In contrast to previous studies based on a simplified one-dimensional model of glow corona, a two-dimensional evaluation of the corona ion drift from tall objects is used here to analyse this effect quantitatively. Proper estimates for the corona space charge distribution generated during both the charging process of a thundercloud and the descent of the downward stepped leader are thus calculated. It is found that the shielding effect of the corona space charge on the streamer inception is not as severe as previously reported. Estimations of the effective height of the downward leader tip at which streamer inception takes place are presented and discussed for lightning rods and dissipation array systems. (paper)

  8. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Qian; DENG Yong-Feng; LIU Yue; HAN Xian-Wei

    2008-01-01

    A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Torr is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Torr to 100 Torr. It is also shown that in the range of the gas pressure from 1 Torr to 100 Torr with the slower rate of varying gas pressure, higher density of plasma can be obtained.

  9. A PC-based technique for creating 3D plots from monochromatic TL glow curves

    International Nuclear Information System (INIS)

    Recording of thermoluminescence emission spectra of many minerals is beset with the problem of detecting low (TL) emission intensities at high temperatures where the thermal noise is competing. Although very expensive techniques have been described in literature to obtain elegantly isometric plots of temperature, wavelength and TL intensity of weakly emitting minerals, the present work describes a very simple method of creating 3D projections of TL emission from measurements of monochromatic TL glow curves and using a commercially available PC software. A microprocessor-based data acquisition system has been indigenously developed and interfaced to the conventional TL glow-curve recorder. The digitised data are directly fed into an IBM compatible PC-XT and the 3D plots are created using a commercially available software named 'SURFER'. The programme can also generate contour maps. Typical plots are presented for the case of minerals like Scapolite, Spodumene an Kunzite. (author). 4 refs., 6 figs

  10. SkyGlowNet: Multi-Disciplinary Independent Student Research in Environmental Light at Night Monitoring

    Science.gov (United States)

    Craine, B. L.; Craine, E. R.; Culver, R. B.; DeBenedetti, J. C.; Flurchick, K. M.

    2014-07-01

    SkyGlowNet uses Internet-enabled sky brightness meters (iSBM) to monitor sky brightness over school sites. The data are used professionally and in STEM outreach to study natural and artificial sources of sky brightness, light pollution, energy efficiency, and environmental and health impacts of artificial night lighting. The iSBM units are owned by participating institutions and managed by faculty or students via proprietary Internet links. Student data are embargoed for two semesters to allow students to analyze data and publish results, then they are moved to a common area where students from different institutions can collaborate. The iSBM units can be set to operate automatically each night. Their data include time, sky brightness, weather conditions, and other related parameters. The data stream can be viewed and processed online or downloaded for study. SkyGlowNet is a unique, multi-disciplinary, real science program aiding research for science and non-science students.

  11. COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES

    International Nuclear Information System (INIS)

    OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 (micro)m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 (micro)m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard

  12. Thermoluminescence glow curve deconvolution function for the mixed-order kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vejnovic, Z.; Pavlovic, M.B. [Gosha Institute, Milana Rakica 35, 11000 Belgrade (Serbia); Davidovic, M. [Gosha Institute, Milana Rakica 35, 11000 Belgrade (Serbia)], E-mail: milorad.davidovic@gmail.com

    2008-09-15

    A new glow curve fitting function is proposed for mixed-order kinetics. The free parameters of this function are the glow curve maximum I{sub m}, the temperature maximum T{sub m}, activation energy E and ratio {alpha}=n{sub 0}/(h+n{sub 0}), where n{sub 0} and h are initial concentrations of electrons in active and inactive traps, respectively. The new fitting method for determination of the thermoluminescence (TL) parameters is checked for some characteristics values of the parameters. The characteristics of this obtained function are simplicity, clearness and precision. To get this function only analytical terms obtained out of mixed-order kinetics equation were used. There are no empirical terms.

  13. Fading prediction in thermoluminescent materials using computerised glow curve deconvolution (CGCD)

    CERN Document Server

    Furetta, C; Weng, P S

    1999-01-01

    The fading of three different thermoluminescent (TL) materials, CaF sub 2 : Tm (TLD-300), manocrystalline LiF : Mg,Ti (DTG-4) and MgB sub 4 O sub 7 : Dy,Na has been studied at room temperature and at 50 deg. C of storage. The evolution as a function of the elapsed time of the whole glow curve as well as of the individual peaks has been analysed using the Computerised Glow Curve Deconvolution (CGCD) program developed at the NTHU. The analysis allows to predict the loss of the dosimetric information and to make any correction is necessary for using the TL dosimeters in practical applications. Furthermore, it is well demonstrated that using CGCD it is not necessary to anneal the peaks having a rapid fading to avoid, then, any interfering effect on the more stable peaks.

  14. Hardness and stress of amorphous carbon film deposited by glow discharge and ion beam assisting deposition

    CERN Document Server

    Marques, F C

    2000-01-01

    The hardness and stress of amorphous carbon films prepared by glow discharge and by ion beam assisting deposition are investigated. Relatively hard and almost stress free amorphous carbon films were deposited by the glow discharge technique. On the other hand, by using the ion beam assisting deposition, hard films were also obtained with a stress of the same order of those found in tetrahedral amorphous carbon films. A structural analysis indicates that all films are composed of a sp sup 2 -rich network. These results contradict the currently accepted concept that both stress and hardness are only related to the concentration of sp sup 3 sites. Furthermore, the same results also indicate that the sp sup 2 sites may also contribute to the hardness of the films.

  15. A reflex glow discharge as a plasma source for broad area electron beam generation

    International Nuclear Information System (INIS)

    The authors demonstrated an electron beam generation scheme in which two glow discharge electron guns are used in a reflex configuration to create a dense and cold plasma in a large volume. The thermal electrons from this plasma, created mainly by electron beam ionization, are subsequently accelerated in the gap between two grids by an externally applied electric field to produce a broad area electron beam. This electron beam current density and energy are independently controlled by the voltage applied to the glow discharge guns and by the electric field sustained between the grids respectively. They present a schematic representation of the electron gun used in the experimental demonstration of the concept reported here

  16. Plasma Treatment of Polyethylene Powder Particles in Hollow Cathode Glow Discharge

    Science.gov (United States)

    Wolter, Matthias; Quitzau, Meike; Bornholdt, Sven; Kersten, Holger

    2008-09-01

    Polyethylen (PE) is widely used in the production of foils, insulators, packaging materials, plastic bottles etc. Untreated PE is hydrophobic due to its unpolar surface. Therefore, it is hard to print or glue PE and the surface has to be modified before converting. In the present experiments a hollow cathode glow discharge is used as plasma source which is mounted in a spiral conveyor in order to ensure a combines transport of PE powder particles. With this set-up a homogeneous surface treatment of the powder is possible while passing the glow discharge. The plasma treatment causes a remarkable enhancement of the hydrophilicity of the PE powder which can be verified by contact angle measurements and X-ray photoelectron spectroscopy.

  17. The glow duration time influence on the ionization rate detected in the diodes filled with noble gases on mbar pressures

    Directory of Open Access Journals (Sweden)

    Stepanović Olivera M.

    2003-01-01

    Full Text Available The results of the glow current duration time (glowing-time influence on the ionization rate detected in the gas filled diodes are presented. The electrical breakdown was detected as the minimal current impulse. After that diode glow from the minimal glowing-time (10-3 s, up to the maximal 103 s which overlap the time of the stationary regime formation in the gas diode tube. The diodes were with volumes of 300 cm3, but with a diode gap volume of about 1 cm3 and filled with helium, neon, argon or krypton, at the pressures of the order of mbar. The ionization rates were detected as the residual ionization after the glowing was interrupted, using the electrical breakdown time delay measuring method. The influence of the gap distance stationary current values and the relaxation period were also investigated. The result shows that the stationary regime in such a gas diode is established after the glowing time of 1-3 s, although the breakdown formative times were smaller then 1 ms.

  18. Glow Worms as a Tourist Attraction in Springbrook National Park: Visitor Attitudes and Economic Issues

    OpenAIRE

    Wilson, Clevo; Tisdell, Clement A.; Merritt, David

    2004-01-01

    Insect-based tourism mainly caters to a niche market, but its popularity has been growing in recent years. Despite its popularity this form of tourism has remained under-researched and in a sense its contribution to the tourism industry has gone mostly unnoticed. This paper reports the results of a study undertaken on one form of popular insect-based tourism, namely glow worms. The study was undertaken in Springbrook National Park (Natural Bridge section) southeast Queensland, which has one o...

  19. Decomposition of polychlorinated biphenyls (PCB's) in a radio-frequency glow discharge plasma

    International Nuclear Information System (INIS)

    A study was made on the decomposition of PCB's in a radio-frequency glow discharge plasma. When PCB's were decomposed in a plasma of oxygen at a few Torr, they were completely decomposed to gaseous products: carbon monoxide, carbon dioxide, water, hydrogen chloride, chlorine, and chlorine dioxide. Hazardous compounds such as phosgene and vinyl chloride were not detected by a GC-MS analysis. (author)

  20. CORRELATION BETWEEN ELECTRICAL AND VIBRATIONAL PROPERTIES OF CHLORINATED AND HYDROGENATED AMORPHOUS SILICON PREPARED BY GLOW DISCHARGE

    OpenAIRE

    Al Dallal, S.; Chevallier, J.; Kalem, S; Bourneix, J.

    1982-01-01

    Electrical conductivity and infrared transmission measurements have been carried out on chlorinated and hydrogenated amorphous silicon films prepared by glow discharge. Upon increasing the plasma power, we observed a change of transport mechanism, accompanied by an evolution of hydrogen and chlorine related bands. From this correlation between the transport and the infrared data we suggest that the evolution of SiCl2 species with the plasma power is mainly responsible for the change in bandga...

  1. A Monte Carlo Simulation for the Ion Transport in Glow Discharges with Dusts

    Institute of Scientific and Technical Information of China (English)

    SUN Ai-Ping; PU Wei; QIU Xiao-Ming

    2001-01-01

    We use the Monte Carlo method to simulate theion transport in the rf parallel plate glow discharge with a negative-voltage pulse connected to the electrode. It is found that self-consistent field, dust charge, dust concentration,and dust size influence the energy distribution and the density of the ions arriving at the target, and in particular, the latter two make significant influence. As dust concentration or dust size increases, the number of ions arriving at the target reduces greatly.

  2. Study on the Dyeing Behaviors of Low Temperature Glow Discharge Treated Wool

    Institute of Scientific and Technical Information of China (English)

    JIN Jun-chao; LU Wang; DAI Jin-jin

    2002-01-01

    Wool tops was modified by low temperature glow discharge (LTGD). The inputted power, the treating time and the pressure or vacuum were found to play an important role. The wool tops were dyed with reactive dye under a constant dyeing temperature after plasma treatment. Then the dyeing behaviors were studied based on the data of uptake, fixation, dyeing rate and fixing rate. The results revealed the possibility of low temperature dyeing and the suitable parameter of LTGD treatment.

  3. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Air Flow

    OpenAIRE

    Shneider, M. N.; Mokrov, M. S.; Milikh, G. M.

    2013-01-01

    We study the dynamic contraction a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to co...

  4. Measurement of the Atmospheric $\

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose1, D; Boser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glusenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Gora, D; Grant, D; Gross, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Klas, J; Klein, S R; Kohne, J -H; Kohnen, G; Kolanoski, H; Kopke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meszaros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Perez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Radel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schoneberg, S; Schonherr, L; Schonwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stoss, A; Strahler, E A; Strom, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge1, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2012-01-01

    We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by neutral current interactions of atmospheric neutrinos of all flavors. Using data recorded during the first year of operation of IceCube's DeepCore low energy extension, a sample of 1029 events is observed in 281 days of data. The number of observed cascades is $N_{\\rm cascade} = 496 \\pm 66 (stat.) \\pm 88(syst.)$ and the rest of the sample consists of residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is determined in the energy range between approximately 80 GeV and 6 TeV and is consistent with models of atmospheric neutrinos.

  5. Mechanism behind self-sustained oscillations in direct current glow discharges and dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Nae [Devices R and D Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Mt. 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of)

    2013-04-15

    An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by the fluid models, where oscillations are attributed to the positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and the surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in the DC glow discharges. Furthermore, this alternative description provides an elegant explanation to the formation of plasma fireballs in the laboratory plasma. It has been found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with the electric field. The presented mechanism also describes self-sustained oscillations of ions in dusty plasmas, which demonstrates that self-sustained oscillations in dusty plasmas and DC glow discharges involve common physical processes.

  6. Mixed- and general-order kinetics applied to selected thermoluminescence glow curves

    International Nuclear Information System (INIS)

    Mixed-order (MO) and general-order (GO) kinetics expressions are applied to experimental glow curves of CaSO4Ce, LiNaSO4: Eu, BaF2:Ce and SrF2:Er. The purpose is to compare the activation energies derived from the two models to investigate the correlation between the order of kinetics, b, and the parameter α of the MO model for real systems and to explore the validity of the correlation between b and α derived from the analysis of synthetic glow peaks or experimentally isolated single peak for complex glow curves. The two alternative routes resulted in clean fits with very close values of the sum of squared residuals. The general conclusions are: (1) the activation energies derived from the MO model are slightly higher than the ones derived from the GO model, but the difference appears to be insignificant, (2) the correlation between b and α is not smooth and the scatter in the b values for a given α is within the theoretically expected spread in the b value and (3) the MO expression is capable of evaluating the shape parameters as accurately as the GO expression with the advantage that it has a physical basis contrary to the purely empirical GO model. (authors)

  7. FT Tokamak Upgrade (FTU) vacuum vessel section cleaning by glow discharge in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ciotti, M.; Apicella, M.L.; Verdini, L.; Ferro, C.

    1991-09-01

    The possibility of applying glow discharge in hydrogen for the cleaning of the FTU (Frascati Tokamak Upgrade) vacuum chamber was analyzed on a 1:1 scale toroidal section by using the same operating conditions as foreseen for the machine. The discharge was maintained for six hours in the chamber with the wall temperature kept at 150 degrees C. The partial pressures at the end of the cleaning run were compared with those obtained by using only thermal outgassing at the same temperature. A reduction of about a factor of two in the H/sub 2/0 and C0/sub 2/ partial pressures was observed, related to a better cleanness of the surface. It was found that the high temperature during the glow discharge cleaning not only increases the efficiency of the discharge, but it is an efficient tool to remove impurities from the hidden regions, defined by the thermal shields that cover all the vacuum vessel walls not directly exposed to the glow discharge.

  8. Characterization of Nitrogen Glow Discharge Plasma via Optical Emission Spectrum Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lianzhu; ZHAO Shuxia; MENG Xiulan

    2008-01-01

    Optical emission spectroscopy in nitrogen glow discharge plasma is simulated, and the collision excitations and characteristic emissions of the species (N2, N2+, N+, N) are investigated by a Monte Carlo model for nitrogen molecular gas discharge. The excitation rates of the main excited states are calculated and the corresponding relation and relative magnitude between the distribution of excitation rate of a certain excited state and the distributions of the emission rates of various lines originating from this excited level are also explored. The simulated results are compared with the experimental measurements in two typical discharge conditions. The luminescence mechanism of the line N2+: 391.4 nm is explained based on the microscopic plasma processes. The cathode glow in N2 discharge is found to be mainly caused by N+impact excitation and the intensity of cathode glow decreases with the voltage. The corresponding relation between the emission rate or intensity of the 391.4 nm line and the production rate and the density of N2+ is also examined.

  9. Semi-continuous sampling of health relevant atmospheric particle subfractions for chemical speciation using a rotating drum impactor in series with sequential filter sampler.

    Science.gov (United States)

    Li, Fengxia; Schnelle-Kreis, Jürgen; Karg, Erwin; Cyrys, Josef; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2016-04-01

    To achieve unattended continuous long-term (eg., 1 week) sampling of size-segregated 24-h ambient particulate matter (PM), a sampling strategy of a modified 3-stage rotating drum impactor (RDI) in series with a sequential filter sampler was introduced and verified in a field campaign. Before the field sampling, lab experiment was conducted to test the collection efficiency of the third stage of the RDI using the quartz-fiber filter (QFF) as the substrate. The measured value is 0.36 μm, which is larger than the nominal value 0.1 μm. A fast direct analysis of organic species in all size fractions (levoglucosan were quantified. The comparability of two such sampler sets was verified with respect to the PM collection profile of the two RDIs as well as measured concentration of chemical compounds in each sampled size fraction, so that a future epidemiological study on the relationship between the finest PM/its chemical composition and health outcome could be carried out through parallel sampling at two sites. The internal correlations between the size-segregated organic compounds are discussed. Besides, the correlations between the size-segregated organic species and size-segregated particulate number concentration (PNC) as well as meteorological parameter are discussed as well. PMID:26676546

  10. Biological response of stainless steel surface modified by N2O/O2 glow discharge plasma

    International Nuclear Information System (INIS)

    Stainless steel wafers were treated with the glow discharge plasma of mixed N2O and O2 at different molar ratios at a certain discharge condition to create desirable biological characteristics to the surfaces. It was found that the molar ratio of N2O to O2 in the mixture at 1:1 used for plasma surface modification caused high apoptotic percentage. Contact angle measurement showed that the surface of stainless steel samples became very hydrophilic after the plasma modification with a value of 15o-30o. The control stainless steel chips without plasma treatment had a contact angle of 40 ± 2o. The data of Electron Spectroscopy for Chemical Analysis (ESCA) indicated that there was a certain amount of oxynitrites formed on the plasma treated surfaces, which was considered to play an important role to cell apoptosis and anti-clot formation in cell culture tests. The ESCA depth profile of up to 250 A from the top surface showed the change of elemental compositions within 40-50 A of the surface by the plasma treatment. The decreased platelet attachment, combined with increased apoptosis in fibroblasts is a distinct combination of biological responses arising from the mixed gas plasma treatment. These initial results suggest it may be of particular use relative to stainless steel stents where decreased platelet attachments are advantageous and induction of apoptosis could limit in-stent restenosis.

  11. Effect of glow DBD modulation on gas and thin film chemical composition: case of Ar/SiH4/NH3 mixture

    International Nuclear Information System (INIS)

    In recent years, atmospheric pressure plasma-enhanced chemical vapour deposition has been identified as a convenient way to deposit good quality thin films. With this type of process, where the gas mixture is injected on one side of the electrodes, the chemical composition of the gas evolves with the gas residence time in the plasma. The consequence is a possible gradient in the chemical composition over the thickness of in-line coatings. The present work shows that the modulation of the plasma with a square signal significantly reduces this gradient while the drawback of low growth rate is avoided by increasing the discharge power. This study deals with plane/plane glow dielectric barrier discharges (DBDs) in an Ar/NH3/SiH4 gas mixture to make thin films. The 50 kHz discharge power of the glow DBD was varied by increasing voltage and modulating excitation. The impact on (i) the plasma development was observed through emission spectroscopy and (ii) the thin film coating through Fourier transform infrared measurements. It is shown that the modulation significantly decreases the time and the energy needed to achieve stable chemistry, enhances secondary chemistry and limits disturbance induced by impurities because of a slower decrease of SiH4 concentration and thus a higher ratio of SiH4/impurities, all very important points for in-line AP-PECVD development. When the growth rate is limited by diffusion, coating growth continues when the discharge is off, so long as there is a precursor gradient between the surface and the gas bulk. A higher discharge power steepens this gradient, which enhances diffusion from the bulk and thus growth rate. (paper)

  12. Identification and quantification of flavonoids in human urine samples by column switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, Salka E.; Freese, R.; Cornett, C.;

    2000-01-01

    in negative mode. The fragmentor voltage was optimized with regard to maximum abundance of the molecular ion and qualifier ions of the analytes. Calibration graphs were prepared for urine, and good linearity was achieved over a dynamic range of 2.5-1000 ng/mL, The inter- and intraassay coefficients...... of variation for the analysis of the 12 different flavonoids in quality control urine samples were 12.3% on average (range 11.0-13.7%, n = 24, reproducibility) and the repeatability of the assay were 5.0% (mean, range 0.1-14.8%, it = 12). A subset of 10 urine samples from a human dietary intervention study...

  13. Genetic Sample Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database archives genetic tissue samples from marine mammals collected primarily from the U.S. east coast. The collection includes samples from field programs,...

  14. Genetic Sample Inventory - NRDA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This database archives genetic tissue samples from marine mammals collected in the North-Central Gulf of Mexico from 2010-2015. The collection includes samples from...

  15. Theory and Concentration Calculations of PUF Atmospheric Passive Sampling Technique for Persistent Organic Pollutants%PUF大气被动采样技术对POPs的采样计算

    Institute of Scientific and Technical Information of China (English)

    刘俊文; 李琦路; 李军; 张干; 刘向

    2012-01-01

    随着《斯德哥尔摩公约》的实施,大气中持久性有机污染物(POPs)的大气被动采样(PAS)观测技术得到了快速发展,相比于传统大气主动采样技术,PAS技术具有明显的优势.以应用最为广泛的聚氨酯软性泡沫材料大气被动采样(PUF-PAS)为例,重点阐述和讨论了3种通过大气被动采样技术来计算污染物在空气中的浓度的方法,并对其采样原理和发展趋势进行了简要介绍.%With the implementation of Stockholm Convention, passive atmospheric sampling (PAS) techniques for persistent organic pollutants (POPs) monitoring have been greatly developed and improved. PAS has shown its convenience and advantages by compare with the conventional active sampling technology. The review takes the most popularly used PAS, the polyurethane foam based PAS (PUF-PAS) as an example. It is focused on 3 kinds of methods for atmospheric concentrations of POPs derived from PAS. The sampling theory and prospect of PAS have also been discussed.

  16. Thermal quenching of thermoluminescence in quartz samples of various origin

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, B. [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124-Thessaloniki (Greece); Oniya, E. [Archaeometry Laboratory, Cultural and Educational Technology Institute (C.E.T.I.), R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece); Physics and Electronics Department, Adekunle Ajasin University, PMB 01, Akungba Akoko (Nigeria); Polymeris, G.S. [ISIK University, Physics Department, Faculty of Science and Arts, 34980-Sile, Istanbul (Turkey); Afouxenidis, D.; Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute (C.E.T.I.), R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece); Kitis, G., E-mail: gkitis@auth.g [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124-Thessaloniki (Greece)

    2011-03-15

    The effect of thermal quenching stands among the most important properties in the thermoluminescence (TL) of quartz on which many applications of TL are based. Since the quartz samples used in various applications are all of different origin it is useful to investigate whether the values of the thermal quenching parameters, i.e. the activation energy for thermal quenching W and a parameter C which describes the ratio of non-radiative to radiative luminescence transitions, evaluated mainly in specific quartz samples can be extrapolated to quartz samples of unknown origin as well as to quartz samples which are annealed at high temperatures. In the present work the TL glow curve of a series of un-annealed and annealed natural and synthetic quartz samples were studied as a function of the heating rate between 0.25 K/s and 16 K/s. Using an indirect fitting method it was found that the thermal quenching parameters W and C in most of the quartz samples are very similar to the values accepted in the literature. Furthermore, in some cases the thermal quenching parameters W and C are not the same for all TL glow-peaks in the same glow-curve. Finally, the strong external treatment of annealing the quartz samples at very high temperature can also influence at least one of the thermal quenching parameters.

  17. Thermal quenching of thermoluminescence in quartz samples of various origin

    International Nuclear Information System (INIS)

    The effect of thermal quenching stands among the most important properties in the thermoluminescence (TL) of quartz on which many applications of TL are based. Since the quartz samples used in various applications are all of different origin it is useful to investigate whether the values of the thermal quenching parameters, i.e. the activation energy for thermal quenching W and a parameter C which describes the ratio of non-radiative to radiative luminescence transitions, evaluated mainly in specific quartz samples can be extrapolated to quartz samples of unknown origin as well as to quartz samples which are annealed at high temperatures. In the present work the TL glow curve of a series of un-annealed and annealed natural and synthetic quartz samples were studied as a function of the heating rate between 0.25 K/s and 16 K/s. Using an indirect fitting method it was found that the thermal quenching parameters W and C in most of the quartz samples are very similar to the values accepted in the literature. Furthermore, in some cases the thermal quenching parameters W and C are not the same for all TL glow-peaks in the same glow-curve. Finally, the strong external treatment of annealing the quartz samples at very high temperature can also influence at least one of the thermal quenching parameters.

  18. PHYSIOLOGICAL AND BIOCHEMICAL CHANGES AT FOLIAR LEVEL INDUCED BY ATMOSPHERIC POLLUTANTS ON SAMPLES OF AESCULUS HIPPOCASTANUM L. FROM IAŞI CITY AREA

    OpenAIRE

    Bogdan Soltuzu; Zenovia Olteanu; Lăcrămioara Ivănescu; Constantin Toma; Maria-Magdalena Zamfirache

    2013-01-01

    We present in this paper some physiological changes (photosynthetic and transpiration processes intensity) and biochemical (content of photo-assimilating pigments) induced at foliar level by some pollutants in samples of Aesculus hippocastanum L. cultivated for ornamental purposes across the five air quality monitoring stations in Iasi city area. Pollutants monitored by the five stations are represented by gaseous (sulfur dioxide, carbon dioxide, nitrogen dioxide, ozone) and solid pollutants ...

  19. MORPHOLOGICAL AND BIOCHEMICAL CHANGES AT FOLIAR LEVEL INDUCED BY ATMOSPHERIC POLLUTANTS ON SAMPLES OF AESCULUS HIPPOCASTANUM L. FROM IAŞI CITY AREA

    OpenAIRE

    Bogdan Soltuzu; Zenovia Olteanu; Lăcrămioara Ivănescu; Constantin Toma; Maria-Magdalena Zamfirache

    2013-01-01

    We present in this paper some morphological changes (presence and size of the surface both normal and necrotic) and biochemical (water content and dry matter) induced at foliar level by some pollutants in samples of Aesculus hippocastanum L. cultivated for ornamental purposes across the five air quality monitoring stations in Iasi city area . These stations monitor the presence of gaseous pollutants (sulfur dioxide, carbon dioxide, nitrogen dioxide, ozone ) and solids (powders prone to sedime...

  20. Characterization of W Coating on Cu Substrate Prepared by Double-Glow Discharge%Characterization of W Coating on Cu Substrate Prepared by Double-Glow Discharge

    Institute of Scientific and Technical Information of China (English)

    张福斌; 王正铎; 陈强; 蔡惠平

    2012-01-01

    In this study, tungsten (W) was coated on a copper (Cu) substrate by using doubleglow discharge technique using a pure W panel as the target and argon (Ar) as the discharge and sputtering gas. The crystal structure of the W coating was examined by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was performed with cross-section images to investigate the penetration depth of W into the Cu body. Additionally, the properties of wearability resistance, corrosion resistance and mechanical strength of the W coated Cu matrix were also measured. It is concluded that in double-glow plasma, W coated Cu can be facilely prepared. It is noticed that the treatment temperature heavily dominates the properties of the W-Cu composite.

  1. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reinsberg, K.-G. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Schumacher, C. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Tempez, A. [HORIBA Jobin Yvon, 16-18 rue du Canal, F-91160 Longjumeau (France); Nielsch, K. [Institute for Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2012-10-15

    In this work the depth-profile analysis of thermoelectric layers deposited on Au and Cr covered Si wafers with the aid of pulsed radiofrequency glow discharge time-of-flight mass spectrometry (pulsed RF-GD-TOFMS also called plasma profiling TOFMS (PP-TOFMS Trade-Mark-Sign )) is described. For thermoelectric materials the depth resolutions obtained with both PP-TOFMS and secondary ion mass spectrometry (SIMS) are shown to be well comparable and in the order of the roughness of the corresponding layers (between 20 and 3700 nm). With both methods a direct solid analysis without any preparation steps is possible. In addition, the analysis of the samples with PP-TOFMS proved to be faster by a factor of 26 compared to SIMS, as sputtering rates were found to be 80 nm s{sup -1} and 3 nm s{sup -1}, respectively. For the analyzed samples the results of PP-TOFMS and SIMS show that a homogeneous deposition was obtained. Quantitative results for all samples could also be obtained directly by PP-TOFMS when the stoichiometry of one sample was determined beforehand for instance by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy energy dispersive X-ray fluorescence spectrometry (SEM-EDX). For Bi{sub 2}Te{sub 3} the standard deviation for the main component concentrations within one sample then is found to be between 1.1% and 1.9% and it is 3.6% from sample to sample. For Sb{sub 2}Te{sub 3} the values within one sample are from 1.7% to 4.2% and from sample to sample 5.3%, respectively. - Highlights: Black-Right-Pointing-Pointer Depth resolution in sub micrometer size by glow discharge mass spectrometry. Black-Right-Pointing-Pointer Bi and Sb telluride layers composition with GD-TOF-MS, ICP-OES and SEM-EDX agree. Black-Right-Pointing-Pointer Homogeneities of layers measured with GD-TOF-MS and SIMS agree.

  2. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH+) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected

  3. Influence of “Glow Discharge Plasma” as an External Stimulus on the Self-Assembly, Morphology and Binding Affinity of Gold Nanoparticle-Streptavidin Conjugates

    Directory of Open Access Journals (Sweden)

    Chang-Jun Liu

    2012-05-01

    Full Text Available In this study, we investigate the influence of glow discharge plasma (GDP on the self-assembly, morphology and binding affinity of streptavidin coated gold nanoparticles (Au-NP-SV and biotinylated antibody (bAb adsorbed on a highly oriented pyrolytic graphite (HOPG substrate. Atomic force microscope (AFM was used to image the pre- and post-GDP treated samples. The analysis of the AFM images showed a considerable change in the aggregation and morphology of Au-NP-conjugates after treatment with GDP. To our knowledge, this is the first report on using GDP to enhance and speed-up the aggregation (sintering of adsorbed NP biomolecular conjugates. These results show a promising route that could be generalized for other NPs and their conjugates. It can also be considered as an alternative and cheap aggregation method for controlling the binding affinity of biomolecular species on different surfaces with interesting applications.

  4. Measurement of the equation of state and of the index of refraction of an amorphous glow discharge polymer up to 45 GPa

    Science.gov (United States)

    Plisson, Thomas; Colin-Lalu, Pierre; Huser, Gael; Loubeyre, Paul

    2016-08-01

    We present an experimental determination of the ambient temperature equation of state, P ( ρ / ρ 0 , 293 K ) , up to 45 GPa, of the glow discharge polymer (GDP) used as a confining capsule for the fusible deuterium-tritium mixture in inertial confinement fusion experiments. An original method has been implemented to measure both the compression factor and the refractive index versus pressure. The data are obtained in a diamond anvil cell with two sample chambers of equal thickness containing, respectively, the GDP and a NaCl reference. This experimental equation of state is compared to numerical first principles simulations. Deviations are ascribed to the difficulty to simulate the detailed atomic structure of the polymer under moderate pressure.

  5. An algorithm for the deconvolution of the optically stimulated luminescence glow curves involving the mutual interactions among the electron traps

    International Nuclear Information System (INIS)

    The most of the algorithms reported on the deconvolution of the OSL/TL glow curve is basically based on the one trap one recombination center (OTOR) model. In the OTOR model, each individual trap is considered to be independent with each other (mutually exclusive with each other), and the total glow curve is produced solely by the summation of the glow peaks generated from the luminescence emitted by the electrons in one individual trap when transferring to other trap(s). Therefore, there could be a major difference between the model and real physical process of the OSL/TL mechanism. Because the electrons being excited to be in the conduction band barely have past recollection of the original traps, it is widely believed that electrons in one trap can be easily transferred to other trap via the conduction band. Particularly in case of the OSL, the effects of mutual interactions among the traps could be more dominant than those in case of the TL. An algorithm, which can be used to numerically analyze the OSL/TL curves with reflecting the mutual interactions among the individual traps via the conduction band, is developed. This algorithm is able to promptly generate the glow curves for a system with numerous electron traps and recombination centers. Thus, the algorithm can be used to effectively deconvolute the glow curve of a given measurement data.

  6. The chemically synthesized ageladine A-derivative LysoGlow84 stains lysosomes in viable mammalian brain cells and specific structures in the marine flatworm Macrostomum lignano.

    Science.gov (United States)

    Mordhorst, Thorsten; Awal, Sushil; Jordan, Sebastian; Petters, Charlotte; Sartoris, Linda; Dringen, Ralf; Bickmeyer, Ulf

    2015-02-01

    Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV) oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation) was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms' anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms. PMID:25679913

  7. The Chemically Synthesized Ageladine A-Derivative LysoGlow84 Stains Lysosomes in Viable Mammalian Brain Cells and Specific Structures in the Marine Flatworm Macrostomum lignano

    Directory of Open Access Journals (Sweden)

    Thorsten Mordhorst

    2015-02-01

    Full Text Available Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84. The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms’ anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.

  8. MORPHOLOGICAL AND BIOCHEMICAL CHANGES AT FOLIAR LEVEL INDUCED BY ATMOSPHERIC POLLUTANTS ON SAMPLES OF AESCULUS HIPPOCASTANUM L. FROM IAŞI CITY AREA

    Directory of Open Access Journals (Sweden)

    Bogdan Soltuzu

    2013-12-01

    Full Text Available We present in this paper some morphological changes (presence and size of the surface both normal and necrotic and biochemical (water content and dry matter induced at foliar level by some pollutants in samples of Aesculus hippocastanum L. cultivated for ornamental purposes across the five air quality monitoring stations in Iasi city area . These stations monitor the presence of gaseous pollutants (sulfur dioxide, carbon dioxide, nitrogen dioxide, ozone and solids (powders prone to sedimentation. Measurements were made "in vivo", as well on fresh material covering vegetation periods of years 2012 and 2013. The results are supporting the fact that the increased values of dry matter content do not correlate directly with the degree of necrosis of the leaves , which entitles us to believe that the biochemical and physiological modifications made by pollutants at this level are fast followed by defoliation events. The most critical situation is found at the samples of Aesculus hippocastanum L. grown at the site of the traffic station Podul de Piatră, where SO2 and particulate solids in suspension are the predominating pollutants.

  9. Application of computerised glow curve analysis in a TLD based personnel dosimetry service

    International Nuclear Information System (INIS)

    The methods and techniques of computerised Glow Curve Analysis (GCA) have clearly a potential for improvement of the thermoluminescence dosimetry (TLD) performance still to be exploited for practical work. Particularly personal dosimetry, whose results must comply with specific quality criteria, can be benefited from the more accurate handling of the usually complex glow curves, including several peaks with different properties and also different interest for dosimetry, notably their different intensity and thermal stability. Most of the so called standard procedures for TLD were proposed in the 70s aiming to obtain a sufficiently stable response for the usual integration periods, one to three months, in personal or environmental dosimetry. Mostly these procedures consisted in more or less complex annealing procedures applied before or after irradiation but having a common objective: the modification of the natural glow curve structure trying to eliminate the unstable low temperature peaks favouring the presence of high temperature peaks with better long term stability. In these initial stages of the employment of TLD, the physics behind the thermally activated light emissions in the materials employed for dosimetry was not properly understood and so these standard procedures were mainly of phenomenological nature, presenting important differences among laboratories. Since these early times and in parallel with an impressive increase of the practical use of TLD, an important research effort has been developed that have clarified many of the features of the TL physical processes in dosimetric materials, particularly LiF(Mg,Ti) and more recently also LiF(Mg,Cu,P). On the light of the accumulated knowledge, the old standard procedures should be revised and simplified. If achieved, this simplification will be excellent for TLD routine measurements

  10. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2011-11-15

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.

  11. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    International Nuclear Information System (INIS)

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: ► This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. ► A Boltzmann distribution is studied among iron lines of various excitation levels. ► We find an overpopulation of the high-lying energy levels from the normal distribution. ► It is caused through Penning-type collision of iron atom with argon metastable atom.

  12. Electrical and optical properties of Ar/NH3 atmospheric pressure plasma jet

    Science.gov (United States)

    Chang, Zheng-Shi; Yao, Cong-Wei; Chen, Si-Le; Zhang, Guan-Jun

    2016-09-01

    Inspired by the Penning effect, we obtain a glow-like plasma jet by mixing ammonia (NH3) into argon (Ar) gas under atmospheric pressure. The basic electrical and optical properties of an atmospheric pressure plasma jet (APPJ) are investigated. It can be seen that the discharge mode transforms from filamentary to glow-like when a little ammonia is added into the pure argon. The electrical and optical analyses contribute to the explanation of this phenomenon. The discharge mode, power, and current density are analyzed to understand the electrical behavior of the APPJ. Meanwhile, the discharge images, APPJ's length, and the components of plasma are also obtained to express its optical characteristics. Finally, we diagnose several parameters, such as gas temperature, electron temperature, and density, as well as the density number of metastable argon atoms of Ar/NH3 APPJ to help judge the usability in its applications.

  13. Diffuse α-mode atmospheric pressure radio-frequency discharge in neon

    International Nuclear Information System (INIS)

    In this work, a radio-frequency (RF) atmospheric pressure glow discharge burning in neon between planar metal electrodes is achieved for the first time. The RF discharge can operate in two stable modes: in a diffuse α-mode with uniformly covered electrode surfaces and in a constricted γ-mode. Similarities are revealed when the discharge is compared against the RF atmospheric pressure glow discharge in helium, namely both discharges show a discontinuity and a hysteresis in the current–voltage characteristic at the mode transition; the spatio-temporal profiles of the light emission in the α-mode from neon, helium and atomic oxygen are also similar. (fast track communication)

  14. Oxidative Degradation of o-Chlorophenol with Contact Glow Discharges in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    高锦章; 杨武; 刘永军; 陈平; 纳鹏君; 陆泉芳

    2003-01-01

    Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investi-gated under different pH, voltages and initial concentrations. And the mechanism of the oxidationwas explored. The results suggested that the degradation followed the first order kinetic law;Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence ofFe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates includedo-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.

  15. Analysis of green fluorescent protein bioluminescence in vivo and in vitro using a glow discharge

    Science.gov (United States)

    Hernández, L.; Mandujano, L. A.; Cuevas, J.; Reyes, P. G.; Osorio-González, D.

    2015-03-01

    The discovery of fluorescent proteins has been a revolution in cell biology and related sciences because of their many applications, mainly emphasizing their use as cellular markers. The green fluorescent protein (GFP) is one of the most used as it requires no cofactors to generate fluorescence and retains this property into any organism when it is expressed by recombinant DNA techniques, which is a great advantage. In this work, we analyze the emission spectra of recombinant green fluorescent protein in vivo and in vitro exposed to a glow discharge plasma of nitrogen in order to relate electron temperature to fluorescence intensity.

  16. Reduction of TiO2 with hydrogen cold plasma in DC pulsed glow discharge

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-wen; DING Wei-zhong; LU Xiong-gang; GUO Shu-qiang; XU Kuang-di

    2005-01-01

    The reduction of TiO2 to Ti2O3 with hydrogen cold plasma generated by a DC pulsed glow discharge was realized under 2 500 Pa at 1 233 K. Only a little of Ti10O19 and Ti9O17 was detected for using molecular hydrogen.Enhancement effects of hydrogen cold plasma on the reduction were discussed in terms of thermodynamic coupling,kinetics and plasma sheath. The exited hydrogen species are considered more effective reducing agents. It is instructive to reduce refractory oxides with plasma hydrogen at the reduced temperature.

  17. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  18. Analysis of dusty plasma in the positive column of glow discharges

    Institute of Scientific and Technical Information of China (English)

    王德真; 吴洪涛

    2002-01-01

    The radial distributions of ions, electrons and dust particles in the positive column of glow discharges are inves-tigated in a triple-pole diffusion model. The dust particles are mainly trapped in the region around the column axiswhere the electrostatic potential is the highest. The presence of the dust particles results in the ion density increasingand the electron density decreasing in the dust-trapped region. The dust-trapped region is wider for a higher dusttemperature or a smaller particulate radius. The ions and electrons in the dust-free region away from the column axisare in ambipolar diffusion.

  19. Analysis of dusty plasma in the positive column of glow discharges

    Institute of Scientific and Technical Information of China (English)

    王德真; 吴洪涛

    2002-01-01

    The radial distributions of ions,electrons and dust particles in the positive colum of glow discharges are investigated in a tripled-pole diffusion model.The dust particles are mainly trapped in the region around the column axis where the electrostatic potential is the highest.The presence of the dust particles results in the ion density increasing and the electron density decreasiung in the dust-trapped region.The dust-trapped region is wider for a higher dust temperature or a smaller particulate redius.The ions and electrons in the dust-free region away from the column axis are in ambipolar diffusion.

  20. Child–Langmuir law applicability for a cathode sheath description of glow discharge in hydrogen

    Science.gov (United States)

    Lisovskiy, V. A.; Artushenko, K. P.; Yegorenkov, V. D.

    2016-08-01

    The present paper reveals that the Child-Langmuir law version with the constant ion mobility has to be applied for the cathode sheath description of the glow discharge in hydrogen. Using the analytical model we demonstrate that even in a high electric field the constant mobility law version rather than that for the constant ion mean free path has to hold in the case of impeded charge exchange and the dominant effect of polarization forces on the ion motion through the cathode sheath.

  1. Dependence of the transition from Townsend to glow discharge on secondary emission

    CERN Document Server

    Raizer, Y P; Sijacic, D D; Raizer, Yu.P.; Ebert, Ute

    2004-01-01

    In a recent paper Sijacic and Ebert have systematically studied the transition from Townsend to glow discharge, refering to older work from von Engel (1934) up to Raizer (1991), and they stated a strong dependendence on secondary emission $\\gamma$ from the cathode. We here show that the earlier results of von Engel and Raizer on the small current expansion about the Townsend limit actually are the limit of small $\\gamma$ of the new expression; and that for larger $\\gamma$ the old and the new results vary by no more than a factor of 2. We discuss the $\\gamma$-dependence of the transition which is rather strong for short gaps.

  2. Study of stability of dc glow discharges with the use of Comsol Multiphysics software

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P G C; Benilov, M S; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2011-10-19

    Stability of different axially symmetric modes of current transfer in dc glow discharges is investigated in the framework of the linear stability theory with the use of Comsol Multiphysics software. Conditions of current-controlled microdischarges in xenon are treated as an example. Both real and complex eigenvalues have been detected, meaning that perturbations can vary with time both monotonically and with oscillations. In general, results given by the linear stability theory confirm intuitive concepts developed in the literature and conform to the experiment. On the other hand, suggestions are provided for further experimental and theoretical work.

  3. Optimization Of The RF Glow Discharge Condition For Hardening Of The Metal Surface

    International Nuclear Information System (INIS)

    An experiment on the determination of the optimization RF glow discharge condition has been done by varying physics parameters namely pressure, electrode separations and RF power. On the positive column region where plasma exist, the plasma density and temperature are measured by using Langmuir probe for each conditions of pressure, electrode separation and RF power. The pressure of 0,14 torr, electrode separation 3 cm and RF power 0,64 Watt where the plasma density is (9.01 ± 0,06) 1011 cm and plasma temperature is (3,39 ± 0.13) 105 K, yielded a better condition the for process of increasing the metal surface hardness

  4. Amostragem passiva de poluentes atmosféricos: aplicação ao SO2 Passive sampling of atmospheric pollutantes: aplication to SO2

    Directory of Open Access Journals (Sweden)

    Lícia Passos dos Santos Cruz

    2002-05-01

    Full Text Available The passive sampling technique has been widely used for many years in the measurement of personal exposure to pollutantes in the workplace. In recent years the technique has been used too for measurements in ambient air. In the specific case of SO2 a variety of passive samplers have been described in the literature. The great number are diffusive samplers and some few are permeation samplers. They are basically of two types: badge and tube-type. However there are more than 10 variations in relation to the sampler dimensions, diffusion barriers and pollutant sorption medium. The technique trend to be very used in the near future with samplers able to reach very low detection limits, proposing a viable option for monitoring specific species at urban, regional and global scales.

  5. Interpolation and Sampling Errors of the Ash and Sulphur Contents in Selected Polish Bituminous Coal Deposit (Upper Silesian Coal Basin - USCB) / Błędy Interpolacji I Opróbowania Zawartości Popiołu I Siarki W Wytypowanych Polskich Złożach Węgla Kamiennego (Górnośląskie Zagłębie Węglowe)

    Science.gov (United States)

    Mucha, Jacek; Wasilewska-Błaszczyk, Monika

    2015-09-01

    The basic sources of information on the parameters characterizing the quality of coal (i.e. its ash and sulphur contents) in the deposits of The Upper Silesian Coal Basin (Poland) are drill core sampling (the first stage of exploration) and channel sampling in mine workings (the second stage of exploration). Boreholes are irregularly spaced but provide relatively uniform coverage over an entire deposit area. Channel samples are taken regularly in mine workings, but only in the developed parts of the deposit. The present study considers selected seams of two mines. The methodology used is based on detailed geostatistical analysis, point kriging procedure and P. Gy's theory of sampling. Its purpose is: • defining and comparing geostatistical models for variability of the ash and sulphur contents for data originating from boreholes and mine workings, • predicting by means of point kriging the values of the parameters and errors of interpolation using data from boreholes at grid points where underground mine workings were later channel-sampled, • assessing the accuracy of interpolation by comparison of predicted values of parameters with real values (found by channel sampling), • evaluating the variances of total secondary sampling error (error of preparation of assay samples) and analytical error introduced by assaying of sulphur and ash, • assessing the contribution of sampling and analytical errors (global estimation error) to the interpolation errors. The authors found that the interpolation errors for ash or sulphur content are very large, with mean relative values of 35%-60%, mainly caused by the considerable natural variability, a significant role of random component of variability, and heterogeneity of spatial distribution of these characteristics. The sampling and analytical errors play a negligible role. Their values are smaller than 11% of interpolation error values. Presenting estimates of the spatial distribution of ash and sulphur contents in

  6. Identification of radiation treatment of wheat and rice samples using thermoluminescence of contaminating minerals

    International Nuclear Information System (INIS)

    Food irradiation is gaining popularity world-wide and this technology is important to improve the quality and reduce post harvest loses of foods. Because of the rapid commercialisation of irradiated foods throughout the world, compliance of different regulations relating to use of technology in different countries and demand of consumers for clear labelling of irradiated foods, there is need for the development of analytical methods to detect radiation treatment of foods. Among several methods studied so far, detection of irradiated foods; thermoluminescence (TL) is an important method that can be used to find out irradiation history of food samples that contain even a very minute amount of dust particles. In the present study the irradiated and unirradiated wheat and rice samples were analysed by TL method. The samples were purchased from the local market of Peshawar and irradiated to radiation doses of 0.5 and 1.0 kGy using 60Co irradiator at the Nuclear Institute for Food and Agriculture (NIFA), Peshawar. The mineral contaminants were isolated by jet water, ultrasonic treatment and density gradient. Thermoluminescence glow curves of the isolated minerals from irradiated and unirradiated samples were recorded between the temperature ranges of 50-500 degree C using a TL reader. Generally the glow curves for irradiated samples showed much higher TL intensities (TL1) than the unirradiated samples. The results were normalized by re-irradiation of mineral samples to gamma ray dose of 1.0 kGy followed by determination of the second glow curves (TL2). The ratio of the area of first glow curve to that of second glow curve (TL1/TL2) was calculated for selected temperature intervals and compared with the recommended values for unirradiated and irradiated samples. Finally the shapes of the glow curves for irradiated and unirradiated samples were also analysed. On the basis of these results (comparison of TL-intensities, (TL1/TL2) ratios and shapes of the glow curves), all

  7. Etching of uranium dioxide in nitrogen trifluoride RF plasma glow discharge

    Science.gov (United States)

    Veilleux, John Mark

    1999-10-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 mum/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ˜23 Pa, then decreased with further increases in pressure. A computer simulation, CHEMKIN, was applied to predict the NF3 plasma species in the experiments. The code was validated first by comparing its predictions of the NF3 plasma species with mass spectroscopy etching experiments of silicon. The code predictions were within +/-5% of the measured species concentrations. The F atom radicals were identified as the primary etchant species, diffusing from the bulk plasma to the UO2 surface and reacting to form a volatile UF6, which desorbed into the gas phase to be pumped away. Ions created in the plasma were too low in concentration to have a major effect on etching, but can enhance the etch rate by removing non-volatile reaction products blocking the reaction of F with UO2. The composition of these non-volatile products were determined based on thermodynamic analysis and the electronic structure of uranium. Analysis identified possible non-volatile products as the uranium fluorides, UF2-5, and certain uranium oxyfluorides UO2F, UO2F2, UOF3, and UOF 4 which form over the

  8. The measurement of the electron temperature in a spark discharge in air at atmospheric pressure

    International Nuclear Information System (INIS)

    The electron temperature in atmospheric pressure spark surface discharge was measured from the relative intensity ratio using several well-resolved atomic N I, N II, O II lines. The evaluated value is of 18 000 K. The repeated sparks were glowed by a pulsed high voltage source which restricted the are phase of sparks by appropriate low value of capacitors in voltage multiplier. (Authors)

  9. AGING EFFECTS OF REPEATEDLY GLOW-DISCHARGED POLYETHYLENE - INFLUENCE ON CONTACT-ANGLE, INFRARED-ABSORPTION, ELEMENTAL SURFACE-COMPOSITION, AND SURFACE-TOPOGRAPHY

    NARCIS (Netherlands)

    VANDERMEI, HC; STOKROOS, [No Value; SCHAKENRAAD, JM; BUSSCHER, HJ

    1991-01-01

    Aging effects of repeatedly oxygen glow-discharged polyethylene surfaces were determined by water contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron (XPS) spectroscopy, and surface topography determination. Glow-discharged surfaces were stored at room temperature and in liqu

  10. PHYSIOLOGICAL AND BIOCHEMICAL CHANGES AT FOLIAR LEVEL INDUCED BY ATMOSPHERIC POLLUTANTS ON SAMPLES OF AESCULUS HIPPOCASTANUM L. FROM IAŞI CITY AREA

    Directory of Open Access Journals (Sweden)

    Bogdan Soltuzu

    2013-12-01

    Full Text Available We present in this paper some physiological changes (photosynthetic and transpiration processes intensity and biochemical (content of photo-assimilating pigments induced at foliar level by some pollutants in samples of Aesculus hippocastanum L. cultivated for ornamental purposes across the five air quality monitoring stations in Iasi city area. Pollutants monitored by the five stations are represented by gaseous (sulfur dioxide, carbon dioxide, nitrogen dioxide, ozone and solid pollutants (dust prone to sedimentation. Measurements were made "in vivo", as well on fresh material covering vegetation periods of years 2012 and 2013. The necrosis and   the inducted foliar chlorosis by polluting agents represent the clear materialization of some profound physiological modifications which disturb the photo-assimilating structures and assimilator  pigments. The results lead to the conclusion that the amount of chlorophyll a and b and the intensity of photosynthesis aren`t always correlated, as already known from literature. The most obvious results of pollutants influence occurred for the individuals situated at the traffic station Podul de Piatră, where SO2 and particulate solids in suspension are the predominating pollutants and this fact states that the traffic pollutants are the most destructive.

  11. Development of a new multi-residue laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry method for the detection and quantification of pesticides and pharmaceuticals in wastewater samples.

    Science.gov (United States)

    Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien

    2012-11-19

    A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. PMID:23140957

  12. Visualizing ignition and combustion of methanol mixtures in a diesel engine; Methanol funmu no glow chakka to nensho no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Inomoto, Y.; Harada, T.; Kusaka, J.; Daisho, Y.; Kihara, R.; Saito, T. [Waseda University, Tokyo (Japan)

    1997-10-01

    A glow-assisted ignition system tends to suffer from poor ignitability and slow flame propagation at low load in a direct-injection diesel engine fueled with methanol. To investigate the ignition process and improve such disadvantages, methanol sprays, their ignition and flames were visualized at high pressures and temperatures using a modified two-stroke engine. The results show that parameters influencing ignition, the location of a glow-plug, swirl level, pressure and temperature are important. In addition, a full kinetics calculation was conducted to predict the delay of methanol mixture ignition by taking into account 39 chemical species and 157 elementary reactions. 3 refs., 9 figs.

  13. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  14. Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen

    International Nuclear Information System (INIS)

    The influence of a number of parameters on the cleaning and preconditioning efficiency of a combined rf and glow (RG) discharge is studied experimentally. The emphasis is laid on problems of oxygen removal from the surface. The important parameters are the wall temperature Tsub(W), the pump speed SP, the current Isub(G)D of the glow discharge and the hydrogen pressure P2. In a device with a ratio SP/S = 0,1 ms-1 (S: inner area), a rapid deoxidation is achieved when T-W >= 2000C. At room temperature, the oxide layer is reduced from a (carbon-free) surface when 1 to 2% of methane is added to the hydrogen: carbon monoxide is formed and evacuated. Admixture of other gases such as He, Ne do not increase the cleaning efficiency. An equation derived from a simplified model describes semi-quantitatively the observed parametric dependances. The tendency for arc spots to occur during the initial phases of the discharge depends on the preconditioning of the wall: a prolonged bake-out at 2000C leads to the non-appearance of arcs in all cases examined. Problems arise when a quadrupole residual gas analyser is used to measure the partial pressure of water in hydrogen. These are analysed and a conditioning technique is described which has proven to be appropriate in our measurements. (orig.)

  15. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus

    2011-12-01

    In the last years, glow discharge optical emission spectrometry (GDOES) gained more and more acceptance in the analysis of functional coatings. GDOES thereby represents an interesting alternative to common depth profiling techniques like AES and SIMS, based on its unique combination of high erosion rates and erosion depths, sensitivity, analysis of nonconductive layers and easy quantification even for light elements such as C, N, O and H. Starting with the fundamentals of GDOES, a short overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings and thin films. Results illustrating the high depth resolution, confirmation of stoichiometry, the detection of light elements in coatings as well as contamination on the surface or interfaces will be demonstrated by measurements of: a multilayer system Cr/Ti on silicon, interface contamination on silicon during deposition of aluminum, Al2O3-nanoparticle containing conversion coatings on zinc for corrosion resistance, Ti3SiC2 MAX-phase coatings by pulsed laser deposition and hydrogen detection in a V/Fe multilayer system. The selected examples illustrate that GDOES can be successfully adopted as an analytical tool in the development of new materials and coatings. A discussion of the results as well as of the limitations of GDOES is presented. © 2011 Elsevier B.V.

  16. Ti Coating on Magnesium Alloy by Arc-Added Glow Discharge Plasma Penetrating Technique

    Institute of Scientific and Technical Information of China (English)

    CUICai-e; MIAOQiang; PANJun-de; ZHANGPing-ze; ZHANGGao-hui

    2004-01-01

    Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer, penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its' anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.

  17. Ti Coating on Magnesium Alloy by Arc-Added Glow Discharge Plasma Penetrating Technique

    Institute of Scientific and Technical Information of China (English)

    CUI Cai-e; MIAO Qiang; PAN Jun-de; ZHANG Ping-ze; ZHANG Gao-hui

    2004-01-01

    Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer,penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its' anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.

  18. High-Energy Radiation from Thunderstorms with ADELE: TGFs, Steps, and Glows

    Science.gov (United States)

    Smith, David M.; Kelley, Nicole; Martinez-McKinney, Forest; Zhang, Zi Yan; Hazelton, Bryna; Grefenstette, Brian; Splitt, Michael; Lazarus, Steven; Ulrich, William; Levine, Steven; Dwyer, Joseph; Schaal, Meagan; Saleh, Ziad; Cramer, Eric; Rassoul, Hamid; Cummer, Steven; Lu, Gaopeng; Shao, Xuan-Min; Ho, Cheng; Blakeslee, Richard

    2011-01-01

    The biggest challenge in the study of high-energy processes in thunderstorms is getting a detector to the vicinity of the electrically active regions of a storm. The Airborne Detector for Energetic Lightning Emissions (ADELE) has been used to detect gamma rays from aircraft above storms and from a storm-chasing van on the ground. In August 2009, ADELE flew above Florida storms in a Gulfstream V jet, detecting the first terrestrial gamma-ray flash (TGF) seen from a plane and continuous glows of high-energy emission above thunderclouds. The presence of these glows suggests that a gradual process of relativistic runaway and feedback may help limit the total amount of charging in thunderstorms, in contrast to the traditional view that only lightning discharges compete with the charging process. The upper limits on TGF emission from intracloud and cloud-to-ground lightning from the ADELE flights demonstrated conclusively that a TGF of the sort seen from space is not associated with most lightning and not necessary to trigger it. In August 2010, observations from a van detected stepped-leader x-ray emission from at least four lightning strikes in ten days of operations. This mode of operation is therefore promising for future observations of the stepping process, although a more varied suite of instrumentation, in particular a flash-distance detector, would be useful. We will report on these results and on future possibilities for ADELE campaigns.

  19. A Study on Helium Glow Discharge Cleaning in the HL- 1M Tokamak

    Institute of Scientific and Technical Information of China (English)

    王志文; 严东海; 王恩耀

    2002-01-01

    Based on the principle of ion-bombarded reemission and sputtering desorption, the Glow Discharge Cleaning with helium (GDC(He)) is an effective method for controlling the recycle of H on the chamber wall, Carbon(C), Oxygen(O) impurity and improving the wall conditioning in HL-1M tokamak. It is characterized by simplicity without magnet and safety, compared with Taylor Discharge Cleaning (TDC), Alternating current glow discharge Cleaning (AC), Electron Cyclotron Resonance-Discharge Cleaning (ECR-DC). Compared with bake-out degassing, the wall has a higher degassing rate during GDC(He) and a lower impurity concentration in vacuum chambers after GDC(He). Cleaning patterns have been developed dominantly for de-oxidization, decarbonization and de-hydrogenization. The cleaning parameters for H recycle on the wall are also presented. This paper mainly describes the GDC system along with its parameters, breakdown voltage, volt-ampere characteristic, the range of operation safe and suitable cleaning patterns in the HL-1M tokamak, finally concluding with some suggestions on HL-2A GDC.

  20. Oxygen gettering properties of boron film produced by diborane DC glow discharge

    International Nuclear Information System (INIS)

    Boron film coated on plasma facing walls has been utilized to reduce the oxygen impurity level by the gettering action. The boron film is also useful to reduce the hydrogen recycling. In this study, the boronization was conducted by a DC glow discharge with a mixture gas of diborane and helium both for a graphite and a stainless steel (SS) liners. After the boronization, the oxygen glow discharge was carried out to evaluate the gettered oxygen amount. The state of the oxygen in the surface was also examined. The gettered oxygen amount in the case of the graphite liner was about twice larger than that in the case of the SS liner. The oxygen was trapped in the depth range from the top surface to 100 nm or from the top surface to 20-30 nm in the case of graphite or SS, respectively. The oxygen was observed to be chemically bonded with the boron. After the oxygen discharge, the helium discharge was conducted to recover the oxygen gettering ability. After the helium discharge, the oxygen discharge was again carried out. The gettered oxygen amount in the case of graphite was comparable with that in the case of SS. (orig.)

  1. Thermoluminescence glow curve deconvolution functions by continued fractions for different orders of kinetics

    Science.gov (United States)

    Flores-Llamas, H.; Gutiérrez-Tapia, C.

    2013-03-01

    The shape of the peaks in thermoluminescence (TL) dosimetry can be represented by the so-called temperature integral. In this paper, we present a very efficient method, based on a continued fraction approach to the incomplete gamma function, intended to calculate the overall temperature integral which includes the frequency factor ∝ T a . The single glow-peak algorithm for linear and exponential heating rates is derived. In the first case, the method provides a good approximation with a maximum relative error of 1.1×10-5 within the 0.1≤E/kT≤90 range in the case of a=0. It is shown that, in general, the method is efficient, converges quickly and can be adopted in the numerical fitting of glow lines in order to obtain the parameters relevant to TL. The utility of this approach is exemplified by adjusting the standard lithium flouride doped with magnesium and titanium (LiF): Mg, Ti (TLD-100) using five and six thermoluminescent peaks, determining that peak 6 is present and observable in the analysed spectrum. Finally, methods such as asymptotic expansion of the temperature integral by the asymptotic series approximation, the convergent series approximation, the Lagrange continued fraction approximation and a new obtained continued fraction approximation are compared with the method proposed here in the case of linear heating.

  2. Molecular basis for the blue bioluminescence of the Australian glow-worm Arachnocampa richardsae (Diptera: Keroplatidae).

    Science.gov (United States)

    Trowell, Stephen C; Dacres, Helen; Dumancic, Mira M; Leitch, Virginia; Rickards, Rodney W

    2016-09-16

    Bioluminescence is the emission of visible light by living organisms. Here we describe the isolation and characterisation of a cDNA encoding a MW ≈ 59,000 Da luciferase from the Australian glow-worm, Arachnocampa richardsae. The enzyme is a member of the acyl-CoA ligase superfamily and produces blue light on addition of D-luciferin. These results are contrary to earlier reports (Lee, J., Photochem Photobiol 24, 279-285 (1976), Viviani, V. R., Hastings, J. W. & Wilson, T., Photochem Photobiol 75, 22-27 (2002)), which suggested glow-worm luciferase has MW ≈ 36,000 Da and is unreactive with beetle luciferin. There are more than 2000 species of firefly, which all produce emissions from D-luciferin in the green to red regions of the electromagnetic spectrum. Although blue-emitting luciferases are known from marine organisms, they belong to different structural families and use a different substrate. The observation of blue emission from a D-luciferin-using enzyme is therefore unprecedented. PMID:27457804

  3. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Science.gov (United States)

    Li, Ben; He, Feng; Duan, Xiaoxi; Ouyang, Jiting

    2015-12-01

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  4. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Duan, Xiaoxi [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  5. Molecular basis for the blue bioluminescence of the Australian glow-worm Arachnocampa richardsae (Diptera: Keroplatidae).

    Science.gov (United States)

    Trowell, Stephen C; Dacres, Helen; Dumancic, Mira M; Leitch, Virginia; Rickards, Rodney W

    2016-09-16

    Bioluminescence is the emission of visible light by living organisms. Here we describe the isolation and characterisation of a cDNA encoding a MW ≈ 59,000 Da luciferase from the Australian glow-worm, Arachnocampa richardsae. The enzyme is a member of the acyl-CoA ligase superfamily and produces blue light on addition of D-luciferin. These results are contrary to earlier reports (Lee, J., Photochem Photobiol 24, 279-285 (1976), Viviani, V. R., Hastings, J. W. & Wilson, T., Photochem Photobiol 75, 22-27 (2002)), which suggested glow-worm luciferase has MW ≈ 36,000 Da and is unreactive with beetle luciferin. There are more than 2000 species of firefly, which all produce emissions from D-luciferin in the green to red regions of the electromagnetic spectrum. Although blue-emitting luciferases are known from marine organisms, they belong to different structural families and use a different substrate. The observation of blue emission from a D-luciferin-using enzyme is therefore unprecedented.

  6. Transmission characteristics of microwave in a glow-discharge dusty plasma

    Science.gov (United States)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  7. Characterization of the large area plane-symmetric low-pressure DC glow discharge

    Science.gov (United States)

    Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.

    2016-10-01

    Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC , 1 - 3/IC , 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of ~ 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te ~ 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of "cold" electrons with the mean electron energy of ~ 0.3-0.4 eV and the small Maxwellian population of "hot" electrons with the mean electron energy of ~ 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+ , 391/IN2 , 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with

  8. RF impedance measurements of DC atmospheric micro-discharges

    CERN Document Server

    Overzet, Lawrence J; Mandra, Monali; Goeckner, Matthew; Dufour, Thierry; Dussart, Remi; Lefaucheux, Philippe

    2016-01-01

    The available diagnostics for atmospheric micro-plasmas remain limited and relatively complex to implement; so we present a radio-frequency technique for diagnosing a key parameter here. The technique allows one to estimate the dependencies of the electron density by measuring the RF-impedance of the micro-plasma and analyzing it with an appropriate equivalent circuit. This technique is inexpensive, can be used in real time and gives reasonable results for argon and helium DC micro-plasmas in holes over a wide pressure range. The electron density increases linearly with current in the expected range consistent with normal glow discharge behavior.

  9. Exoplanet Atmospheres

    CERN Document Server

    Seager, S

    2010-01-01

    At the dawn of the first discovery of exoplanets orbiting sun-like stars in the mid-1990s, few believed that observations of exoplanet atmospheres would ever be possible. After the 2002 Hubble Space Telescope detection of a transiting exoplanet atmosphere, many skeptics discounted it as a one-object, one-method success. Nevertheless, the field is now firmly established, with over two dozen exoplanet atmospheres observed today. Hot Jupiters are the type of exoplanet currently most amenable to study. Highlights include: detection of molecular spectral features; observation of day-night temperature gradients; and constraints on vertical atmospheric structure. Atmospheres of giant planets far from their host stars are also being studied with direct imaging. The ultimate exoplanet goal is to answer the enigmatic and ancient question, "Are we alone?" via detection of atmospheric biosignatures. Two exciting prospects are the immediate focus on transiting super Earths orbiting in the habitable zone of M-dwarfs, and u...

  10. Atmospheric Neutrinos

    OpenAIRE

    Takaaki Kajita

    2012-01-01

    Atmospheric neutrinos are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith angle and energy-dependent deficit of muon-neutrino events. It was found that neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. This paper discusses...

  11. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...... experience in space, presented as middle ground experience. In the field of HCI, middle ground experiences complete the unarticulated spectrum between designing for foreground of attention or background awareness. When “Articulating Atmospheres through Middle Ground Experiences in Interaction Design...

  12. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  13. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  14. Hybrid modeling of a capacitively coupled radio frequency glow discharge in argon: Combined Monte Carlo and fluid model

    NARCIS (Netherlands)

    Bogaerts, A.; Gijbels, R.; W. Goedheer,

    1999-01-01

    A hybrid model has been developed for a capacitively coupled rf glow discharge in argon, employed as a spectroscopic source in the field of analytical chemistry. The cell is a rather small cylinder with a very small rf-powered electrode (only 5 mm in diameter). The typical working conditions applied

  15. Local Ion Nitriding of 38KhMYuA Steel with Glow Discharge in a Hollow Cathode

    Directory of Open Access Journals (Sweden)

    V.V. Budilov

    2015-09-01

    Full Text Available The effect of local ion nitriding in glow discharge with the hollow cathode effect (HCE on microstructure, phase composition and microhardness of steel 38KhMYuA was studied. Optical microscopy of the nitrided layer was carried out. The kinetic of diffusion layer growth was investigated.

  16. Quantitative determination of atmospheric hydroperoxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. (Upton, NY); Lloyd, Judith (Westbury, NY); Zheng, Jun (Stony Brook, NY)

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  17. UFA Auction Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between 1984 January - 2002 June, personnel from NMFS/PIFSC/FRMD/FMB/FMAP and Hawaii Department of Aquatic Resources (DAR) conducted port sampling at the United...

  18. Regional and global atmospheric aerosol studies using the ''Gent'' stacked filter unit sampler and other aerosol collectors, with multi-elemental analysis of the samples by nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    The ''Gent'' staked filter unit sampler and other collection devices are used in regional and global scale studies on the tropospheric atmospheric aerosols, its composition, sources and fate. The aerosol samples are analyzed by particle-induced X-ray emission analysis, instrumental neutron activation analysis, ion chromatography, a light reflectance technique (for determining black carbon), and gravimetry (for measuring the particular mass). In evaluating the data, use is made of receptor modelling techniques, transport models and wind sector analysis, and also of air mass trajectories and other meteorological information. Preliminary results from a long-term study in southern Norway are presented. It is suggested that the anthropogenic and soil dust aerosol components are mainly adverted to southern Norway by long-range transport and that the major fraction of the submicrometer particle mass is from anthropogenic origin. Preliminary results are also presented for an intensive study in southern Africa. On the basis of the data for two sites (about 40 km apart) in the Kruger National Park it was concluded that regionally representative aerosol samples were collected and that the biomass burning products account for more than 50% of the fine particle mass. Finally, our plans for future work are given. (author). 70 refs, 4 figs, 1 tab

  19. Distributional records of Ross Sea (Antarctica Tanaidacea from museum samples stored in the collections of the Italian National Antarctic Museum (MNA and the New Zealand National Institute of Water and Atmospheric Research (NIWA

    Directory of Open Access Journals (Sweden)

    Paola Piazza

    2014-11-01

    Full Text Available Here we present distributional records for Tanaidacea specimens collected during several Antarctic expeditions to the Ross Sea: the Italian PNRA expeditions (“V”, 1989/1990; “XI”, 1995/1996; “XIV”, 1998/1999; “XIX”, 2003/2004; “XXV”, 2009/2010 and the New Zealand historical (New Zealand Oceanographic Institute, NZOI, 1958-1961 and recent (“TAN0402 BIOROSS” voyage, 2004 and “TAN0802 IPY-CAML Oceans Survey 20/20” voyage, 2008 expeditions. Tanaidaceans were obtained from bottom samples collected at depths ranging from 16 to 3543 m by using a variety of sampling gears. On the whole, this contribution reports distributional data for a total of 2953 individuals belonging to 33 genera and 50 species. All vouchers are permanently stored in the Italian National Antarctic Museum collection (MNA, Section of Genoa (Italy and at the National Institute of Water and Atmospheric Research (NIWA Invertebrate Collection, Wellington (New Zealand.

  20. Degradation of 2,4-dichlorophenol by using glow discharge electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu Quanfang [Editorial Department of the University Journal, Northwest Normal University, Lanzhou 730070 (China); Yu Jie [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Gao Jinzhang [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)]. E-mail: jzgao@nwnu.edu.cn

    2006-08-25

    Degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous by glow discharge electrolysis (GDE) has been investigated. Ultraviolet (UV) absorption spectra, atomic force microscopy (AFM), high performance liquid chromatography (HPLC) and gas chromatogram-mass spectrum (GC/MS) are used to monitor the degradation process and to identify the major oxidation intermediate products. It has been found that 2,4-DCP undergoes a series of intermediate step, which leads to form a number of intermediate products, mainly isomeric chlorophenols and aliphatic acids. These products are further oxidized, eventually, mineralized into CO{sub 2} and Cl{sup -}. A degradation pathway for 2,4-DCP is proposed on the basis of detection of intermediate compounds.

  1. Oxidative Degradation of 4-chlorophenol in Aqueous Induced by Plasma with Submersed Glow Discharge Electrolysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC).Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe2+ were examined.The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation.

  2. Preparation of Al-Cr-Si oxide tritium permeation barrier by double glow plasma technology

    International Nuclear Information System (INIS)

    Al-Cr-Si oxide coatings were prepared on 316L stainless steel by double glow plasma surface alloying technique in order to promote the capability against tritium permeation. Microstructures and compositions of the coatings were studied by scanning electron microscope, transmission electron microscope and X-ray diffraction. Adhesion strength of the oxide coatings was tested by scratch adhesion test and thermal shock test. The results showed that dense and continuous Al2O3 films were formed on the substrate owing to the addition of elements Cr and Si. Besides, the spinel-type composite metal oxide Fe(AlCr)2O4 was formed of Al2O3 and iron/chromic oxide in the outer layer. The coatings prepared at oxygen flow rate of 10 standard cubic centimeter per minute exhibited the best microstructure and mechanical properties with a bonding force of 68 N. No cracks were found in the coatings after thermal shock testing. (authors)

  3. Application of Glow Discharge Aes for Investigation of Metal Ions and Water in Biology and Medicine

    CERN Document Server

    Bregadze, Vasil G; Tsakadze, Ketevan J

    2007-01-01

    AES VHF inductively coupled plasmatron may be applied to wide range of studies. It enables rapid microanalysis of various solutions including biological objects and peripheral blood serum. In addition, it may be used for investigation of water desorption from solid bodies and for determination of energetic metal-macromolecule complexes. Study of hydration energy and hydration number by kinetic curves of water glow discharge atomic spectral analysis of hydrogen (GD EAS analysis of hydrogen) desorption from Na-DNA humidified fibers allowed to reveal that structural and conformational changes in activation energy of hydrated water molecules increases by 0.65kcal/Mole of water. The developed method of analysis of elements in solutions containing high concentrations of organic materials allows systematic study of practically healthy persons and reveals risk factors for several diseases. Microelemental content of blood serum fractions showed that amount of not bounded with ceruloplasmin copper was three times more ...

  4. Degradation of Methyl Orange in Water by Contact Glow Discharge Electrolysis

    Institute of Scientific and Technical Information of China (English)

    GONG Jianying; CAI Weimin

    2007-01-01

    The degradation of methyl orange in a neutral phosphate buffer solution was investigated by means of contact glow discharge electrolysis (CGDE).The methyl oranges were degraded and eventually decomposed into inorganic carbon when CGDE was conducted under the applied DC voltage of 480 V and current of ca.80 mA.As the intermediate products,some phenolic compounds were detected as well as carboxylic acids.Experimental results showed that the oxidation process followed the first-order reaction law.Based on the analysis of the ultraviolet (UV) spectra of the solution and the intermediate products from High Pressure Liquid Chromatography-Mass Spectrum (HPLC-MS),the reaction pathway was proposed.The attack of hydroxyl radicals was considered to be a key step to start the whole oxidation process.

  5. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    Science.gov (United States)

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products.

  6. Surface alloying of Cu with Ti by double glow discharge process

    Institute of Scientific and Technical Information of China (English)

    袁庆龙; 池成忠; 苏永安; 徐重; 唐宾

    2004-01-01

    The surface of pure copper alloyed with Ti using double glow discharge process was investigated. The morphology, structure and forming mechanism of the Cu-Ti alloying layer were analyzed. The microhardness and wear resistance of the Cu-Ti alloying layer were measured, and compared with those of pure copper. The results indicate that the surface of copper activated by Ar and Ti ions bombardment is favorable to absorption and diffusion of Ti element. In current experimental temperature, as the Ti content increases, the liquid phase occurs between the deposited layer and diffused layer, which makes the Ti ions and atoms easy to dissolve and the thickness of Cu-Ti alloying layer increase rapidly. After cooling, the structure of the alloying layer is composed of CuTi, Cu4 Ti and Cu(Ti) solid solution. The solid solution strengthening and precipitation strengthening effects of Ti result in high surface hardness and wear resistance.

  7. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yu [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xie, Kan, E-mail: xiekan@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yu; Ouyang, Jiting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-02-15

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation of positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.

  8. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Air Flow

    CERN Document Server

    Shneider, M N; Milikh, G M

    2013-01-01

    We study the dynamic contraction a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed.

  9. Dynamic contraction of the positive column of a self-sustained glow discharge in air flow

    International Nuclear Information System (INIS)

    We study the dynamic contraction of a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed

  10. Dynamic contraction of the positive column of a self-sustained glow discharge in air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Mokrov, M. S. [Institute for Problems in Mechanics, RAS, Moscow (Russian Federation); Milikh, G. M. [Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States)

    2014-03-15

    We study the dynamic contraction of a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed.

  11. On the mechanism of pattern formation in glow dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-01-15

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, and external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.

  12. Calculation of parameters from glow curves for the mixed-order kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M B [Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Faculty of Electrical Engineering, PO Box 816, 11000 Belgrade (Serbia and Montenegro); Vejnovic, Z [Institute of Security, Kraljice Ane bb 11000 Belgrade (Serbia and Montenegro); Davidovic, M [Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia and Montenegro); Faculty of Electrical Engineering, PO Box 816, 11000 Belgrade (Serbia and Montenegro)

    2005-12-07

    A new method for the calculation of parameters is proposed. The method is based on determination of the glow curve maximum and effective values of the half-width and part of the half-width on the higher temperature side. A relation between the symmetry factor as a function of the corresponding constant {alpha} = n{sub 0}/(h+n{sub 0}) and the correction factor {delta} is obtained. An approximate symmetry factor function is derived, which enables analytical calculation of the parameters: activation energy E, constant {alpha}, and pre-exponential factor s{sup (h)}. An iterative procedure is developed for more precise calculation of these parameters. The new method is checked for some characteristic values of the parameters. The connection between the models of general and mixed-order kinetics has been described theoretically.

  13. Double Glow Plasma Surface Alloying Process Modeling Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Jiang XU; Xishan XIE; Zhong XU

    2003-01-01

    A model is developed for predicting the correlation between processing parameters and the technical target of double glowby applying artificial neural network (ANN). The input parameters of the neural network (NN) are source voltage, workpiecevoltage, working pressure and distance between source electrode and workpiece. The output of the NN model is three importanttechnical targets, namely the gross element content, the thickness of surface alloying layer and the absorption rate (the ratioof the mass loss of source materials to the increasing mass of workpiece) in the processing of double glow plasma surfacealloying. The processing parameters and technical target are then used as a training set for an artificial neural network. Themodel is based on multiplayer feedforward neural network. A very good performance of the neural network is achieved and thecalculated results are in good agreement with the experimental ones.

  14. Inactivation of Escherichia Coli Using Remote Low Temperature Glow Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Miao; CHEN Jierong; CHEN Chua

    2008-01-01

    Low-temperature plasma is distinguished as a developing approach for sterilization which can deal with and overcome those problems such as thermal sensitivity and destruction by heat,formation of toxic by-products,higher costs and inefficiency in performances,caused by conventional methods.In this study,an experimental investigation was undertaken to characterize the effects of the operational parameters,such as treating time,discharge power and gas flow rate,of remote glow discharge air plasma.The results show that the inactivation of Escherichia coli can reach above 99.99% in less than 60 seconds and the optimal operational conditions for treating time,discharge power and gas flow rate were:40 s,80 W and 60 cm3/min,respectively.The contribution of UV radiation during plasma germ deactivation is very limited.

  15. S. Miller’s Experiments in Modelling of Non-Equilibrium Conditions with Gas Electric Discharge Simulating Primary Atmosphere

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2015-12-01

    Full Text Available In this paper are submited data on the possibility of applying the coronal gas discharge effect (CGDE in modeling non-equilibrium conditions with gas electric discharge simulating conditions occurying in the primary atmosphere (electric sparks, lightning imitating S. Miller’s experiments. The physical basis and technique of visualization of gas discharge (GD glowing of water drops in alternating electric fields of high electrical voltage (5–30 kV and frequency (10–150 kHz, as well as the possible electrosynthesis of organic molecules from a mixture of inorganic substances as hydrogen (H2, methane (CH4, ammonia (NH3 and carbon monoxide (CO in aqueous solutions of water exposed under the electrical discharge, UV-radiation and thermal heating to t = +100 0C were examined. The colour coronal spectral gas discharge analysis was applied for investigation of water samples of various origin, the samples of hot mineral, sea and mountain water obtained from various water sources of Bulgaria.

  16. Ca2+ sparks and Ca2+ glows in superior cervical ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Li-jun YAO; Cai-hong WU; Jie LIU; Zhuan ZHOU; He-ping CHENG; Gang WANG; Kun-fu OU-YANG; Chao-liang WEI; Xian-hua WANG; Shi-rong WANG; Wei YAO; Hong-ping HUANG; Jian-hong LUO

    2006-01-01

    Aim: Ca2+ release from the endoplasmic reticulum (ER) is an integral component of neuronal Ca2+ signaling. The present study is to investigate properties of local Ca2+ release events in superior cervical ganglion (SCO) neurons. Methods: Primary cultured SCO neurons were prepared from neonatal rats (P3-P7). Low concentration of caffeine was used to induce Ca2+ release from the ER Ca2+ store, and intracellular Ca2+ was recorded by high-resolution line scan confocal imaging and the Ca2+ indicator Fluo-4. Results: Two populations of local Ca2+ release events with distinct temporal characteristics were evoked by 1.5 mmol/L caffeine near the surface membrane in the soma and the neurites of SCG neurons. Brief events similar to classic Ca2+ sparks lasted a few hundreds of milliseconds, whereas long-lasting events displayed duration up to tens of seconds. Typical somatic and neurite sparks were of 0.3- and 0.52-fold increase in local Fluo-4 fluorescence, respectively. Typical Ca2+ glows were brighter (△F/F0 approximately 0.6), but were highly confined in space. The half maximum of full duration of neurite sparks was much longer than those in the soma (685 vs 381 ms). Conclusion: Co-existence of Ca2+ sparks and Ca2+ glows in SCG neurons indicates distinctive local regulation of Ca2+ release kinetics. The local Ca2+ signals of variable, site-specific temporal length may bear important implications in encoding a "memory" of the trigger signal.

  17. Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis

    Science.gov (United States)

    Allagui, Anis; Rojas, Andrea Espinel; Bonny, Talal; Elwakil, Ahmed S.; Abdelkareem, Mohammad Ali

    2016-05-01

    In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as "random," and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution at different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.

  18. NITROGEN POTENTIAL DURING ION NITRIDING PROCESS IN GLOW-DISCHARGE PLASMA

    Directory of Open Access Journals (Sweden)

    A. A. Kozlov

    2015-01-01

    Full Text Available The paper considers problems on regulation of phase composition of a nitrided layer during gas and ion nitriding process in a glow-discharge. It has been established that  available models for control of nitrided layer structure with the help of nitriding index (nitrogen potential can not be applied for nitriding process in the glow-discharge. Principal difference of the ion nitriding from the gas one is in the fact that chemically active nitrogen is formed in the discharge zone (cathode layer and its mass-transfer is carried out in the form of an active particle flow (ions, atoms, molecules which directed to the metal surface.Interrelation of chemical discharge activity with such characteristics of nitriding steel as nitrogen solubility in  α-solid solution and  coefficient diffusion during ion nitriding in low-discharge plasma. It has been shown that regulation of the nitride layer structure during ion nitriding is reached due to changes in nitrogen flow density in plasma. While supporting the flow at the level of nitrogen solubility in  one phase or another (α, γ′  it is possible to obtain the nitrided layer consisting only of α-solid solution or γ′-nitride layer and diffusion sub-layer. Moreover a specific range of nitrogen flow density values exists for every steel grade where it is possible to ensure a limiting nitrogen concentration in α-solid solution and the γ′-layer characterized by low diffusion  mobility is not formed on the surface.

  19. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    OUYANG Ji-Ting; DUAN Xiao-Xi; XU Shao-Wei; HE Feng

    2012-01-01

    We present the results from 2D fluid modeling of the key roles controlling the glow dielectric barrier discharge (DBD) structure. A uniform DBD can be sustained at lower frequency when the space charge reaches uniformity due to plasma decay, while the patterned structure appears above a critical frequency when the space charge is nonuniform. The patterns start from the electrode edge where the electric field is significantly distorted, characterized by the patterned seed electrons that always form ahead of the surface charges. The formation of the patterned DBD structure is associated with the lateral inhibition of the local increase of space charges. The distribution of the volume seed electrons plays a key role in the DBD structure while the distribution of surface charge is a result of the formed structure.%We present the results from 2D fluid modeling of the key roles controlling the glow dielectric barrier discharge (DBD) structure.A uniform DBD can be sustained at lower frequency when the space charge reaches uniformity due to plasma decay,while the patterned structure appears above a critical frequency when the space charge is nonuniform.The patterns start from the electrode edge where the electric field is significantly distorted,characterized by the patterned seed electrons that always form ahead of the surface charges.The formation of the patterned DBD structure is associated with the lateral inhibition of the local increase of space charges.The distribution of the volume seed electrons plays a key role in the DBD structure while the distribution of surface charge is a result of the formed structure.

  20. Characterization of TL-glow curves resulting from sensitized TLD-100

    Science.gov (United States)

    Mahmoud, A. G.; Arafah, D.-E.; Sharabati, H.

    1998-01-01

    The thermally stimulated glow curves of LiF:Mg,Ti TLD-100 were measured following the absorption of high 0022-3727/31/2/008/img1-irradiation doses from a 0022-3727/31/2/008/img2 source. The thermoluminescence (TL) response as a function of dose (up to 100 Gy) was investigated at a constant heating rate of 0022-3727/31/2/008/img3. The data indicate the presence of a linear region (up to 10 Gy) followed by a supralinear one. Similar spectra in both sensitized and unsensitized material for the main overlapping dosimetric peaks (0022-3727/31/2/008/img4 to 0022-3727/31/2/008/img5) were observed. The sensitized material, however, indicates the presence of additional deeper trapping peaks beyond 0022-3727/31/2/008/img5, with varying intensities and features depending on the imparted dose. Kinetic analyses based on several methods were adopted concentrating on 0022-3727/31/2/008/img5 due to its role in personal dosimetry measurements. The trapping parameters (activation energy, E, frequency factor, s, and kinetic order, b) before and after sensitization were determined. The activation energy values are generally observed to be constant and independent of the sensitization process. Comparison between the values determined and other work, when available, indicates excellent agreement to within 3%. The glow peaks exhibit first order kinetics with sensitization. In particular, the kinetic order of 0022-3727/31/2/008/img8 was observed to decrease by about 23% upon sensitization. The results are discussed based on the model of radiative and non-radiative recombinations of non-separately charge traps and luminescent sites by excited and non-excited complexes formed during sensitization.